WorldWideScience

Sample records for shergottites dar al

  1. The role of sulfides in the fractionation of highly siderophile and chalcophile elements during the formation of martian shergottite meteorites

    Science.gov (United States)

    Baumgartner, Raphael J.; Fiorentini, Marco L.; Lorand, Jean-Pierre; Baratoux, David; Zaccarini, Federica; Ferrière, Ludovic; Prašek, Marko K.; Sener, Kerim

    2017-08-01

    The shergottite meteorites are ultramafic to mafic igneous rocks whose parental magmas formed from partial melting of the martian mantle. This study reports in-situ laser ablation inductively coupled plasma mass spectrometry analyses for siderophile and chalcophile major and trace elements (i.e., Co, Ni, Cu, As, Se, Ag, Sb, Te, Pb, Bi, and the highly siderophile platinum-group elements, PGE: Os, Ir, Ru, Rh, Pt and Pd) of magmatic Fe-Ni-Cu sulfide assemblages from four shergottite meteorites. They include three geochemically similar incompatible trace element- (ITE-) depleted olivine-phyric shergottites (Yamato-980459, Dar al Gani 476 and Dhofar 019) that presumably formed from similar mantle and magma sources, and one distinctively ITE-enriched basaltic shergottite (Zagami). The sulfides in the shergottites have been variably modified by alteration on Earth and Mars, as well as by impact shock-shock related melting/volatilization during meteorite ejection. However, they inherit and retain their magmatic PGE signatures. The CI chondrite-normalized PGE concentration patterns of sulfides reproduce the whole-rock signatures determined in previous studies. These similarities indicate that sulfides exerted a major control on the PGE during shergottite petrogenesis. However, depletions of Pt (and Ir) in sulfide relative to the other PGE suggest that additional phases such discrete Pt-Fe-Ir alloys have played an important role in the concentration of these elements. These alloys are expected to have enhanced stability in reduced and FeO-rich shergottite magmas, and could be a common feature in martian igneous systems. A Pt-rich PGM was found to occur in a sulfide assemblage in Dhofar 019. However, its origin may be related to impact shock-related sulfide melting and volatilisation during meteorite ejection. In the ITE-depleted olivine-phyric shergottites, positive relationships exist between petrogenetic indicators (e.g., whole-rock Mg-number) and most moderately to

  2. 2010 U.S. Geological Survey (USGS) Topographic LiDAR: Mobile Bay, AL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — USGS Contract: G10PC00026 Task Order Number: G10PD00578 LiDAR was collected at a nominal pulse spacing of 2.0 meters for a 700 square mile area to the east of Mobile...

  3. Basaltic Shergottite NWA 856: Differentiation of a Martian Magma

    Science.gov (United States)

    Ferdous, J.; Brandon, A. D.; Peslier, A. H.; Pirotte, Z.

    2016-01-01

    NWA 856 or Djel Ibone, is a basaltic shergottite discovered as a single stone of 320 g in South Morocco in April, 2001. This meteorite is fresh, i.e. shows minimal terrestrial weathering for a desert find. No shergottite discovered in North Africa can be paired with NWA 856. The purpose of this study is to constrain its crystallization history using textural observations, crystallization sequence modeling and in-situ trace element analysis in order to understand differentiation in shergottite magmatic systems.

  4. Trace Element Characteristics of the New Shergottite LEW88516

    Science.gov (United States)

    Wadhwa, M.; Crozaz, G.

    1992-07-01

    LEW88516, a meteorite collected in Antarctica, has recently been identified as a shergottite (Mason and Satterwhite, 1991). The shergottites belong to a group of unique achondritic meteorites, the SNCs, for which Mars has been suggested as the parent body. From preliminary petrologic and geochemical studies, it appears that LEW88516 is closely related to the shergottite ALHA77005. Like ALHA77005, LEW88516 is composed of two distinct lithologies; one consists of large (mm-sized) pyroxenes poikilitically enclosing olivine crystals, and the other is represented by interstitial areas that contain small pyroxenes, olivine, maskelynite, whitlockite, and opaques (Lindstrom et al., 1992). Besides mineralogy and texture, whole rock chemical characteristics of these two shergottites also appear to be strikingly similar (Lindstrom et al., 1992; Boynton et al., 1992). We measured REE and other selected trace elements in individual mineral phases present in LEW88516, and compared the results with similar data obtained for ALHA77005 by Lundberg et al. (1990). Analyses were made on a thin section of LEW88516 with an ion microprobe; trace elements concentrations were measured in poikilitic and interstitial pyroxenes (augites and pigeonites), maskelynite, whitlockite, and glass. The total REE inventory of LEW88516 is dominated by whitlockite, although this mineral, as in ALHA77005, is present in only small modal abundance. Maskelynite in LEW88516 is characterized by a positive Eu anomaly that is approximately twice as large as that present in the maskelynite in ALHA77005, although the rest of the REE are present in lower abundances. The homogeneous, crystallite-free glass in LEW88516 is slightly enriched relative to LEW88516 bulk rock REE abundances, and has a REE pattern that is parallel to the ALHA77005 whole rock REE pattern. Pyroxenes in LEW88516 are zoned in their trace element concentrations, as are the pyroxenes in ALHA77005. Elemental abundances (e.g., REE, Y, Ti, Zr, Cr, V

  5. Evaluating crustal contributions to enriched shergottites from the petrology, trace elements, and Rb-Sr and Sm-Nd isotope systematics of Northwest Africa 856

    Science.gov (United States)

    Ferdous, J.; Brandon, A. D.; Peslier, A. H.; Pirotte, Z.

    2017-08-01

    observed mineralogy throughout the sequence with progressive crystallization. The Ti/Al ratios in the clinopyroxenes are consistent with initial crystallization occurring at these depths followed by polybaric crystallization as the parent magma ascended to the surface. The REE abundances in the clinopyroxenes and maskelynite are consistent with progressive crystallization in a closed system. The new results for NWA 856 are combined with other shergottite data and are compared to mixing and assimilation and fractional crystallization (AFC) models using depleted shergottite magmas and ancient Martian crust as end-members. The models indicate that the range of REE abundances and ratios, when taken in isolation, can be successfully explained for all shergottites by crustal contamination. However, no successful crustal contamination model can explain the restricted εNdI of -6.8 ± 0.2 over the wide range of Mg# (0.65-0.25), and corresponding trace element variations from enriched shergottites to depleted shergottites. The findings indicate that the origin of the long-term ITE-enriched signature in enriched shergottites and the geochemical variability seen in shergottites is not a result of crustal contamination but instead reflects ancient mantle heterogeneity.

  6. Shergottite Lead Isotope Signature in Chassigny and the Nakhlites

    Science.gov (United States)

    Jones, J. H.; Simon, J. I.

    2017-01-01

    The nakhlites/chassignites and the shergottites represent two differing suites of basaltic martian meteorites. The shergottites have ages less than or equal to 0.6 Ga and a large range of initial Sr-/Sr-86 and epsilon (Nd-143) ratios. Conversely, the nakhlites and chassignites cluster at 1.3-1.4 Ga and have a limited range of initial Sr-87/Sr-86 and epsilon (Nd-143). More importantly, the shergottites have epsilon (W-182) less than 1, whereas the nakhlites and chassignites have epsilon (W-182) approximately 3. This latter observation precludes the extraction of both meteorite groups from a single source region. However, recent Pb isotopic analyses indicate that there may have been interaction between shergottite and nakhlite/chassignite Pb reservoirs.Pb Analyses of Chassigny: Two different studies haveinvestigated 207Pb/204Pb vs. 206Pb/204Pb in Chassigny: (i)TIMS bulk-rock analyses of successive leaches and theirresidue [3]; and (ii) SIMS analysis of individual minerals[4]. The bulk-rock analyses fall along a regression of SIMSplagioclase analyses that define an errorchron that is olderthan the Solar System (4.61±0.1 Ga); i.e., these define amixing line between Chassigny’s principal Pb isotopic components(Fig. 1). Augites and olivines in Chassingy (notshown) also fall along or near the plagioclase regression [4].This agreement indicates that the whole-rock leachateslikely measure indigenous, martian Pb, not terrestrial contamination[5]. SIMS analyses of K-spars and sulfides definea separate, sub-parallel trend having higher 207Pb/206Pbvalues ([4]; Fig. 1). The good agreement between the bulkrockanalyses and the SIMS analyses of plagioclases alsoindicates that the Pb in the K-spars and sulfides cannot be amajor component of Chassigny.The depleted reservoir sampled by Chassigny plagioclaseis not the same as the solar system initial (PAT) andrequires a multi-stage origin. Here we show a two-stagemodel (Fig. 1) with a 238U/204Pb (µ) of 0.5 for 4.5-2.4 Gaand a µ of

  7. Lead Isotopes in Olivine-Phyric Shergottite Tissint: Implications for the Geochemical Evolution of the Shergottite Source Mantle

    Science.gov (United States)

    Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.

    2015-01-01

    Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean

  8. Lead Isotope Compositions of Acid Residues from Olivine-Phyric Shergottite Tissint: Implications for Heterogeneous Shergottite Source Reservoirs

    Science.gov (United States)

    Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.

    2015-01-01

    Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions and trace element abundances. These correlations have been interpreted as indicating the presence of a reduced, incompatible element- depleted reservoir and an oxidized, incompatible- element-enriched reservoir. The former is clearly a depleted mantle source, but there is ongoing debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former requires the ancient Martian crust to be the enriched source (crustal assimilation), whereas the latter requires isolation of a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and trace element concentration analyses of sequential acid-leaching fractions (leachates and the final residues) from the geochemically depleted olivine-phyric shergottite Tissint. The results suggest that the Tissint magma is not isotopically uniform and sampled at least two geochemical source reservoirs, implying that either crustal assimilation or magma mixing would have played a role in the Tissint petrogenesis.

  9. Constraints on the Parental Melts of Enriched Shergottites from Image Analysis and High Pressure Experiments

    Science.gov (United States)

    Collinet, M.; Medard, E.; Devouard, B.; Peslier, A.

    2012-01-01

    Martian basalts can be classified in at least two geochemically different families: enriched and depleted shergottites. Enriched shergottites are characterized by higher incompatible element concentrations and initial Sr-87/Sr-86 and lower initial Nd-143/Nd-144 and Hf-176/Hf-177 than depleted shergottites [e.g. 1, 2]. It is now generally admitted that shergottites result from the melting of at least two distinct mantle reservoirs [e.g. 2, 3]. Some of the olivine-phyric shergottites (either depleted or enriched), the most magnesian Martian basalts, could represent primitive melts, which are of considerable interest to constrain mantle sources. Two depleted olivine-phyric shergottites, Yamato (Y) 980459 and Northwest Africa (NWA) 5789, are in equilibrium with their most magnesian olivine (Fig. 1) and their bulk rock compositions are inferred to represent primitive melts [4, 5]. Larkman Nunatak (LAR) 06319 [3, 6, 7] and NWA 1068 [8], the most magnesian enriched basalts, have bulk Mg# that are too high to be in equilibrium with their olivine megacryst cores. Parental melt compositions have been estimated by subtracting the most magnesian olivine from the bulk rock composition, assuming that olivine megacrysts have partially accumulated [3, 9]. However, because this technique does not account for the actual petrography of these meteorites, we used image analysis to study these rocks history, reconstruct their parent magma and understand the nature of olivine megacrysts.

  10. Martian Pyroxenes in the Shergottite Meteorites; Zagami, SAU005, DAG476 and EETA79001

    Science.gov (United States)

    Stephen, N.; Benedix, G. K.; Bland, P.; Hamilton, V. E.

    2010-12-01

    The geology and surface mineralogy of Mars is characterised using remote sensing techniques such as thermal emission spectroscopy (TES) from instruments on a number of spacecraft currently orbiting Mars or gathered from roving missions on the Martian surface. However, the study of Martian meteorites is also important in efforts to further understand the geological history of Mars or to interpret mission data as they are believed to be the only available samples that give us direct clues as to Martian igneous processes [1]. We have recently demonstrated that the spectra of Martian-specific minerals can be determined using micro-spectroscopy [2] and that these spectra can be reliably obtained from thin sections of Martian meteorites [3]. Accurate modal mineralogy of these meteorites is also important [4]. In this study we are using a variety of techniques to build upon previous studies of these particular samples in order to fully characterise the nature of the 2 common pyroxenes found in Martian Shergottites; pigeonite and augite [5], [6]. Previous studies have shown that the Shergottite meteorites are dominated by pyroxene (pigeonite and augite in varying quantities) [4], [5], commonly but not always olivine, plagioclase or maskelynite/glass and also hydrous minerals, which separate the Martian meteorites from other achondrites [7]. Our microprobe study of meteorites Zagami, EETA79001, SAU005 and DAG476 in thin-section at the Natural History Museum, London shows a chemical variability within both the pigeonite and augite composition across individual grains in all thin sections; variation within either Mg or Ca concentration varies from core to rim within the grains. This variation can also be seen in modal mineralogy maps using SEM-derived element maps and the Photoshop® technique previously described [4], and in new micro-spectroscopy data, particularly within the Zagami meteorite. New mineral spectra have been gathered from the Shergottite thin-sections by

  11. Melt Inclusion Analysis of RBT 04262 with Relationship to Shergottites and Mars Surface Compositions

    Science.gov (United States)

    Potter, S. A.; Brandon, A. D.; Peslier, A. H.

    2015-01-01

    Martian meteorite RBT 04262 is in the shergottite class. It displays the two lithologies typically found in "lherzolitic shergottites": one with a poikilitic texture of large pyroxene enclosing olivine and another with non-poikilitic texture. In the case of RBT 04262, the latter strongly ressembles an olivine- phyric shergottite which led the initial classification of this meteorite in that class. RBT 04262 has been studied with regards to its petrology, geochemistry and cosmic ray exposure and belongs to the enriched oxidized end-member of the shergottites. Studies on RBT 04262 have primarily focused on the bulk rock composition or each of the lithologies independently. To further elucidate RBT 04262's petrology and use it to better understand Martian geologic history, an in-depth study of its melt inclusions (MI) is being conducted. The MI chosen for this study are found within olivine grains. MI are thought to be trapped melts of the crystallizing magma preserved by the encapsulating olivine and offer snapshots of the composition of the magma as it evolves. Some MI, in the most Mg-rich part of the olivine of olivine-pyric shergottites, may even be representative of the meteorite parent melt.

  12. Water in Nominally Anhydrous Minerals from Nakhlites and Shergottites

    Science.gov (United States)

    Peslier, Anne H.

    2013-01-01

    Estimating the amount of water in the interior of terrestrial planets has tremendous implications on our understanding of solar nebula evolution, planet formation and geological history, and extraterrestrial volcanism. Mars has been a recent focus of such enquiry with complementary datasets from spacecrafts, rovers and martian meteorite studies. In planetary interiors, water can be dissolved in fluids or melts and hydrous phases, but can also be locked as protons attached to structural oxygen in lattice defects in nominally anhydrous minerals (NAM) such as olivine, pyroxene, or feldspar [1-3]. Measuring water in Martian meteorite NAM is challenging because the minerals are fragile and riddled with fractures from impact processes that makes them break apart during sample processing. Moreover, curing the sample in epoxy causes problems for the two main water analysis techniques, Fourier transform infrared spectrometry (FTIR) and secondary ionization mass spectrometry (SIMS). Measurements to date have resulted in a heated debate on how much water the mantle of Mars contains. SIMS studies of NAM [4], amphiboles [5], and apatites [6-8] from Martian meteorites report finding enough water in these phases to infer that the martian mantle is as hydrous as that of the Earth. On the other hand, a SIMS study of glass in olivine melt inclusions from shergottites concludes that the Martian mantle is much drier [9]. The latter interpretation is also supported by the fact that most martian hydrous minerals generally have the relevant sites filled with Cl and F instead of H [10,11]. As for experimental results, martian basalt compositions can be reproduced using water as well as Cl in the parent melts [12,13]. Here FTIR is used to measure water in martian meteorite minerals in order to constrain the origin of the distribution of water in martian meteorite phases.

  13. EZZERELLI Kaïs, Diplomatie occidentale et dissidence arabe. La France coloniale et le mouvement arabiste en Syrie ottomane (1912-1914), Tunis, Dar al-Wasla, 2014

    OpenAIRE

    d’Andurain, Julie

    2017-01-01

    Le dernier ouvrage de Kaïs Ezzerelli, publié par la toute jeune maison d’édition Dar Al-Wasla à Tunis, porte sur la diplomatie occidentale, et plus particulièrement française, face au mouvement arabiste en Syrie ottomane juste avant la Grande Guerre. C’est un travail sérieux, minutieux et de ce fait tout à fait précieux. À partir de travaux scientifiques précédents et d’archives issues du fonds « Nouvelle Série » Turquie du ministère français des Affaires étrangères, l’auteur présente la séri...

  14. Rb-Sr And Sm-Nd Ages, and Petrogenesis of Depleted Shergottite Northwest Africa 5990

    Science.gov (United States)

    Shih, C. Y.; Nyquist, L. E.; Reese, Y.; Irving, A. J.

    2011-01-01

    Northwest Africa (NWA) 5990 is a very fresh Martian meteorite recently found on Hamada du Draa, Morocco and was classified as an olivine-bearing diabasic igneous rock related to depleted shergottites [1]. The study of [1] also showed that NWA 5990 resembles QUE 94201 in chemical, textural and isotopic aspects, except QUE 94201 contains no olivine. The depleted shergottites are characterized by REE patterns that are highly depleted in LREE, older Sm-Nd ages of 327-575 Ma and highly LREE-depleted sources with Nd= +35+48 [2-7]. Age-dating these samples by Sm-Nd and Rb-Sr methods is very challenging because they have been strongly shocked and contain very low abundances of light rare earth elements (Sm and Nd), Rb and Sr. In addition, terrestrial contaminants which are commonly present in desert meteorites will compromise the equilibrium of isotopic systems. Since NWA 5990 is a very fresh meteorite, it probably has not been subject to significant desert weathering and thus is a good sample for isotopic studies. In this report, we present Rb-Sr and Sm-Nd isotopic results for NWA 5990, discuss the correlation of the determined ages with those of other depleted shergottites, especially QUE 94201, and discuss the petrogenesis of depleted shergottites.

  15. Correlations Between Surficial Sulfur and a REE Crustal Assimilation Signature in Martian Shergottites

    Science.gov (United States)

    Jones, J. H.; Franz, H. B.

    2015-01-01

    Compared to terrestrial basalts, the Martian shergottite meteorites have an extraordinary range of Sr and Nd isotopic signatures. In addition, the S isotopic compositions of many shergottites show evidence of interaction with the Martian surface/ atmosphere through mass-independent isotopic fractionations (MIF, positive, non-zero delta(exp 33)S) that must have originated in the Martian atmosphere, yet ultimately were incorporated into igneous sulfides (AVS - acid-volatile sulfur). These positive delta(exp 33)S signatures are thought to be governed by solar UV photochemical processes. And to the extent that S is bound to Mars and not lost to space from the upper atmosphere, a positive delta(exp 33)S reservoir must be mass balanced by a complementary negative reservoir.

  16. Carbon abundance and isotopic studies of Shergotty and other shergottite meteorites

    International Nuclear Information System (INIS)

    Wright, I.P.; Carr, R.H.; Pillinger, C.T.

    1986-01-01

    Consortium samples of the Shergotty meteorite have been measured for C abundance and isotopic composition by stepped combustion and the results compared to different samples of the same meteorite and the other known shergottites. Clearly, the shergottite meteorites have a complex C chemistry and contain components of both low and high thermal stability. Two components labile at low temperature can be tentatively identified, one which is enriched in 13 C and may be related to the carbonate thought to be produced by pre-terrestrial weathering in Nakhla. The other, which is isotopically light, is presently of unknown origin but we speculate that it may be related to shock effects. At high temperatures, two of the samples examined show evidence for a component of CO 2 trapped from the martian atmosphere, possibly indicating that shock-produced glass is heterogeneously distributed throughout the shergottite group. This interpretation is corroborated by N isotope measurements made on one of the specimens. All samples appear to contain evidence of a high temperature magmatic component of C. (author)

  17. Tracking the Martian Mantle Signature in Olivine-Hosted Melt Inclusions of Basaltic Shergottites Yamato 980459 and Tissint

    Science.gov (United States)

    Peters, T. J.; Simon, J. I.; Jones, J. H.; Usui, T.; Moriwaki, R.; Economos, R.; Schmitt, A.; McKeegan, K.

    2014-01-01

    The Martian shergottite meteorites are basaltic to lherzolitic igneous rocks that represent a period of relatively young mantle melting and volcanism, approximately 600-150 Ma (e.g. [1,2]). Their isotopic and elemental composition has provided important constraints on the accretion, evolution, structure and bulk composition of Mars. Measurements of the radiogenic isotope and trace element concentrations of the shergottite meteorite suite have identified two end-members; (1) incompatible trace element enriched, with radiogenic Sr and negative epsilon Nd-143, and (2) incompatible traceelement depleted, with non-radiogenic Sr and positive epsilon 143-Nd(e.g. [3-5]). The depleted component represents the shergottite martian mantle. The identity of the enriched component is subject to debate, and has been proposed to be either assimilated ancient martian crust [3] or from enriched domains in the martian mantle that may represent a late-stage magma ocean crystallization residue [4,5]. Olivine-phyric shergottites typically have the highest Mg# of the shergottite group and represent near-primitive melts having experienced minimal fractional crystallization or crystal accumulation [6]. Olivine-hosted melt inclusions (MI) in these shergottites represent the most chemically primitive components available to understand the nature of their source(s), melting processes in the martian mantle, and origin of enriched components. We present trace element compositions of olivine hosted melt inclusions in two depleted olivinephyric shergottites, Yamato 980459 (Y98) and Tissint (Fig. 1), and the mesostasis glass of Y98, using Secondary Ionization Mass Spectrometry (SIMS). We discuss our data in the context of understanding the nature and origin of the depleted martian mantle and the emergence of the enriched component.

  18. DAR LA PALABRA. En torno al lenguaje de los niños y las niñas en la cárcel

    Directory of Open Access Journals (Sweden)

    Bibiana Escobar\\u2013García

    2017-01-01

    Full Text Available Este trabajo es parte de la investigación, los cuerpos de la excepción. Maternidad e infancia en la cárcel. Corresponde al referente teórico de una categoría vinculada al desarrollo del lenguaje de los niños en la institución carcelaria. El supuesto básico señala las condiciones de empobrecimiento del lenguaje en las cárceles y lo vincula a la suspensión antropológica mediante la cual allí se procede. Se asume que si bien la función habitual que se imagina para el sistema carcelario es la de normalizar a los sujetos, esta función da lugar a una más económica: proteger a la sociedad de los desechos antropológicos que repetidamente produce la Modernidad en el presente. No obstante, dicha protección sacrifica las condiciones de posibilidad de los niños que en la cárcel comparten la condena de sus madres.

  19. The parent magma of xenoliths in shergottite EETA79001: Bulk and trace element composition inferred from magmatic inclusions

    Science.gov (United States)

    Treiman, Allan H.; Lindstrom, David J.; Martinez, Rene R.

    1994-01-01

    The SNC meteorites are samples of the Martian crust, so inferences about their origins and parent magmas are of wide planetologic significance. The EETA79001 shergottite, a basalt, contains xenoliths of pyroxene-olivine cumulate rocks which are possibly related to the ALHA77005 and LEW88516 SNC lherzolites. Olivines in the xenoliths contain magmatic inclusions, relics of magma trapped within the growing crystals. The magmatic inclusions allow a parent magma composition to be retrieved; it is similar to the composition reconstructed from xenolith pyroxenes by element distribution coefficients. The xenolith parent magma is similar but not identical to parent magmas for the shergottite lherzolites.

  20. EBSD analysis of the Shergottite Meteorites: New developments within the technique and their implication on what we know about the preferred orientation of Martian minerals

    Science.gov (United States)

    Stephen, N.; Benedix, G. K.; Bland, P.; Berlin, J.; Salge, T.; Goran, D.

    2011-12-01

    What we know about the geology and mineralogy of the Martian surface has been characterised by both the use of remote sensing techniques and the analysis of Martian meteorites. Various techniques are employed to conduct these analyses including crystallographic, geochemical and spectral measurements, all of which enable us to infer a geological history for these rocks. Several references have been made to the potential for preferred orientation of crystals within the Shergottites [1] and their implication for the cooling history of the respective magmas on Mars [2]. We have already shown that a preferred orientation of the two pyroxenes, augite and pigeonite, can be seen in the Zagami meteorite using electron back-scatter diffraction (EBSD) analysis [3]. However, when compared to previous modal studies of the same meteorites [4], it becomes apparent that the current EBSD datasets for Martian meteorites are incomplete. Indexing of some minerals can be hampered by the lack of available matches within library databases for EBSD, or become difficult to resolve between minerals where crystallographic differences between similar minerals fall below the technical limitations of the instrument [3]. Recent advances in EBSD technologies combined with the simultaneous acquisition of energy-dispersive spectra (EDS) however now allow us to determine a more comprehensive set of analyses in a much shorter period of time, fully resolving even similar minerals where areas have been left with no indexing previously [5]. Preliminary investigations suggest that the new technology can successfully index >90% of the sample. The most recent EBSD analyses potentially reveals previously unseen fabrics in the meteorites alongside the EDS hyper-spectral imaging helping to resolve any unknown or questionable phases within them. In this study we will present new data from an investigation using EDS alongside EBSD analysis on 2 Shergottite meteorites, SAU 005 and Zagami, to further resolve

  1. Nuclear tracks, Sm isotopes and neutron capture effects in the Elephant Morraine shergottite

    International Nuclear Information System (INIS)

    Rajan, R.S.; Lugmair, G.; Tamhane, A.S.; Poupeau, G.

    1986-01-01

    Nuclear track studies, uranium concentration measurements and Sm-isotope studies have been performed on both lithologies A and B of the Elephant Morraine shergottite, EETA 79001. Track studies show that EETA 79001 was a rather small object in space with a preatmospheric radius of 12+-2 cm, corresponding to a preatmospheric mass of 28+-13 kg. Phosphates have U-concentrations ranging from 0.3 to 1.3 ppm. There are occasional phosphates with excess fission tracks, possibly produced from neutron induced fission of U and Th, during the regolith exposure in the shergottite parent body (SPB). Sm-isotope studies, while not showing any clear cut excess in 150 Sm, enable us to derive meaningful upper limits to thermal neutron fluences of 2 to 3x10 15 n/cm 2 , during a possible regolith irradiation. These limits are consistent with the track data and also enable us to derive an upper limit to the neutron exposure age of EETA 79001 of 55 Myr in the SPB regolith. (author)

  2. Nuclear tracks, Sm isotopes and neutron capture effects in the Elephant Morraine shergottite

    International Nuclear Information System (INIS)

    Rajan, R.S.; Lugmair, G.; Tamhane, A.S.; Poupeau, G.

    1985-01-01

    Nuclear track studies, uranium concentration measurements and Sm-isotope studies have been performed on both lithologies A and B of the Elephant Morraine Shergottite, EETA 79001. Track studies show that EETA 79001 was a rather small object in space with a preatmospheric radius of 12 +-2cm, corresponding to a preatmospheric mass of 28 +- 13 kg. U-concentrations measurements indicate that phosphates have concentrations ranging from 0.3 to 1.3 ppm. There are occasional phosphates with excess fission tracks, possibly produced from neutron induced fission of U and Th, during the regolith exposure in the shergottite parent body (SPB). Sm-isotope studies, while not showing any clear cut excess in 150 Sm, enable us to derive meaningful upper limits to thermal neutron fluences of 2 to 3x10 15 n/cm 2 , during a possible regolith irradiation. These limits are consistent with that required to explain the track data and also enable us to derive an upper limit to the neutron exposure age of EETA 79001 of 55 Myr in the SPB regolith. (Author) [pt

  3. Iron Redox Systematics of Shergottites and Martian Magmas

    Science.gov (United States)

    Righter, Kevin; Danielson, L. R.; Martin, A. M.; Newville, M.; Choi, Y.

    2010-01-01

    Martian meteorites record a range of oxygen fugacities from near the IW buffer to above FMQ buffer [1]. In terrestrial magmas, Fe(3+)/ SigmaFe for this fO2 range are between 0 and 0.25 [2]. Such variation will affect the stability of oxides, pyroxenes, and how the melt equilibrates with volatile species. An understanding of the variation of Fe(3+)/SigmaFe for martian magmas is lacking, and previous work has been on FeO-poor and Al2O3-rich terrestrial basalts. We have initiated a study of the iron redox systematics of martian magmas to better understand FeO and Fe2O3 stability, the stability of magnetite, and the low Ca/high Ca pyroxene [3] ratios observed at the surface.

  4. Crystallization history of enriched shergottites from Fe and Mg isotope fractionation in olivine megacrysts

    Science.gov (United States)

    Collinet, Max; Charlier, Bernard; Namur, Olivier; Oeser, Martin; Médard, Etienne; Weyer, Stefan

    2017-06-01

    Martian meteorites are the only samples available from the surface of Mars. Among them, olivine-phyric shergottites are basalts containing large zoned olivine crystals with highly magnesian cores (Fo 70-85) and rims richer in Fe (Fo 45-60). The Northwest Africa 1068 meteorite is one of the most primitive "enriched" shergottites (high initial 87Sr/86Sr and low initial ε143Nd). It contains olivine crystals as magnesian as Fo 77 and is a major source of information to constrain the composition of the parental melt, the composition and depth of the mantle source, and the cooling and crystallization history of one of the younger magmatic events on Mars (∼180 Ma). In this study, Fe-Mg isotope profiles analyzed in situ by femtosecond-laser ablation MC-ICP-MS are combined with compositional profiles of major and trace elements in olivine megacrysts. The cores of olivine megacrysts are enriched in light Fe isotopes (δ56FeIRMM-14 = -0.6 to -0.9‰) and heavy Mg isotopes (δ26MgDSM-3 = 0-0.2‰) relative to megacryst rims and to the bulk martian isotopic composition (δ56Fe = 0 ± 0.05‰, δ26Mg = -0.27 ± 0.04‰). The flat forsterite profiles of megacryst cores associated with anti-correlated fractionation of Fe-Mg isotopes indicate that these elements have been rehomogenized by diffusion at high temperature. We present a 1-D model of simultaneous diffusion and crystal growth that reproduces the observed element and isotope profiles. The simulation results suggest that the cooling rate during megacryst core crystallization was slow (43 ± 21 °C/year), and consistent with pooling in a deep crustal magma chamber. The megacryst rims then crystallized 1-2 orders of magnitude faster during magma transport toward the shallower site of final emplacement. Megacryst cores had a forsterite content 3.2 ± 1.5 mol% higher than their current composition and some were in equilibrium with the whole-rock composition of NWA 1068 (Fo 80 ± 1.5). NWA 1068 composition is thus close to a

  5. Preliminary Report on U-Th-Pb Isotope Systematics of the Olivine-Phyric Shergottite Tissint

    Science.gov (United States)

    Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.

    2014-01-01

    Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions, and trace element abundances.. These correlations have been interpreted as indicating the presence of a reduced, incompatible-element- depleted reservoir and an oxidized, incompatible-element-rich reservoir. The former is clearly a depleted mantle source, but there has been a long debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former clearly requires the ancient martian crust to be the enriched source (crustal assimilation), whereas the latter requires a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and U-Th-Pb concentration analyses of the olivine-phyric shergottite Tissint because U-Th-Pb isotope systematics have been intensively used as a powerful radiogenic tracer to characterize old crust/sediment components in mantle- derived, terrestrial oceanic island basalts. The U-Th-Pb analyses are applied to sequential acid leaching fractions obtained from Tissint whole-rock powder in order to search for Pb isotopic source components in Tissint magma. Here we report preliminary results of the U-Th-Pb analyses of acid leachates and a residue, and propose the possibility that Tissint would have experienced minor assimilation of old martian crust.

  6. Tracking the Depleted Mantle Signature in Melt Inclusions and Residual Glass of Basaltic Martian Shergottites using Secondary Ionization Mass Spectrometry

    Science.gov (United States)

    Peters, Timothy J.; Simon, Justin I.; Jones, John H.; Usui, Tomohiro; Economos, Rita C.; Schmitt, Axel K.; McKeegan, Kevin D.

    2013-01-01

    Trace element abundances of depleted shergottite magmas recorded by olivine-hosted melt inclusions (MI) and interstitial mesostasis glass were measured using the Cameca ims-1270 ion microprobe. Two meteorites: Tissint, an olivine-­phyric basaltic shergottite which fell over Morocco July 18th 2001; and the Antarctic meteorite Yamato 980459 (Y98), an olivine-phyric basaltic shergottite with abundant glassy mesostasis have been studied. Chondrite-­normalized REE patterns for MI in Tissint and Y98 are characteristically LREE depleted and, within analytical uncertainty, parallel those of their respective whole rock composition; supporting each meteorite to represent a melt composition that has experienced closed-­system crystallization. REE profiles for mesostasis glass in Y98 lie about an order of magnitude higher than those from the MI; with REE profiles for Tissint MI falling in between. Y98 MI have the highest average Sm/Nd and Y/Ce ratios, reflecting their LREE depletion and further supporting Y98 as one of our best samples to probe the depleted shergotitte mantle. In general, Zr/Nb ratios overlap between Y98 and Tissint MI, Ce/Nb ratios overlap between Y98 MI and mesostasis glass, and Sm/Nd ratios overlap between Y98 mesostasis glass and Tissint MI. These features support similar sources for both, but with subtle geochemical differences that may reflect different melting conditions or fractionation paths during ascent from the mantle. Interestingly, the REE patterns for both Y98 bulk and MI analyses display a flattening of the LREE that suggests a crustal contribution to the Y98 parent melt. This observation has important implications for the origins of depleted and enriched shergottites.

  7. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Tulalip Partnership

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC)to collect Light Detection and Ranging (LiDAR) data on a...

  8. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Willapa Valley (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In January, 2014 WSI, a Quantum Spatial (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  9. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Saddle Mountain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2013, WSI, a Quantum Spatial Company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  10. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  11. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  12. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Lewis County survey area for the Puget Sound LiDAR Consortium. This data...

  13. Infrastructure Investment Protection with LiDAR

    Science.gov (United States)

    2012-10-15

    The primary goal of this research effort was to explore the wide variety of uses of LiDAR technology and to evaluate their : applicability to NCDOT practices. NCDOT can use this information about LiDAR in determining how and when the : technology can...

  14. Saginaw Bay, MI LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:(NRCS) Saginaw Bay, MI LiDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G11PD01254 Woolpert Order...

  15. Rare earth elements in minerals of the ALHA77005 shergottite and implications for its parent magma and crystallization history

    Science.gov (United States)

    Lundberg, Laura L.; Crozaz, Ghislaine; Mcsween, Harry Y., Jr.

    1990-01-01

    Analyses of mineral REE and selected minor and trace elements were carried out on individual grains of pyroxenes, whitlockite, maskelynite, and olivine of the Antarctic shergottite ALHA77005, and the results are used to interpret its parent magma and crystallization history. The results of mineral compositions and textural observations suggest that ALHA77005 is a cumulate with about half cumulus material (olivine + chromite) and half postcumulus phases. Most of the REEs in ALHA77005 reside in whitlockite whose modal concentration is about 1 percent. Mineral REE data support previous suggestions that plagioclase and whitlockite crystallized late, and that low-Ca pyroxene initiated crystallization before high-Ca pyroxene. The REE patterns for the intercumulus liquid, calculated from distribution coefficients for ALHA77005 pyroxene, plagioclase, and whitlockite, are in very good agreement and are similar to that of Shergotty.

  16. Iowa LiDAR Mapping Project

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This is collection level metadata for LAS and ASCII data files from the statewide Iowa Lidar Project. The Iowa Light Detection and Ranging (LiDAR) Project collects...

  17. USGS Atchafalaya 2 LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Atchafalaya Basin project area. The entire survey area for Atchafalaya encompasses approximately...

  18. Hawaii DAR Dealer Reporting System Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2000 January, the Hawaii Division of Aquatic Resources (DAR) implemented a computerized data processing system for fish dealer data collected state-wide. Hawaii...

  19. University of Dar es Salaam Library Journal

    African Journals Online (AJOL)

    University of Dar es Salaam Library Journal. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... These include organization and dissemination of information, library education and training, information technology and its application in ...

  20. Heavy metal contamination in agricultural soils and water in Dar es ...

    African Journals Online (AJOL)

    USER

    Department of Environmental Science and Management, Ardhi University, P. O. Box 35176, Dar es Salaam, Tanzania. Accepted 20 ... opportunities, demand for food, proximity to markets and ... serious environmental and public health effects. One of ... concentrations they can lead to poisoning (Cambra et al.,. 1999).

  1. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR.

    Science.gov (United States)

    Brede, Benjamin; Lau, Alvaro; Bartholomeus, Harm M; Kooistra, Lammert

    2017-10-17

    In recent years, LIght Detection And Ranging (LiDAR) and especially Terrestrial Laser Scanning (TLS) systems have shown the potential to revolutionise forest structural characterisation by providing unprecedented 3D data. However, manned Airborne Laser Scanning (ALS) requires costly campaigns and produces relatively low point density, while TLS is labour intense and time demanding. Unmanned Aerial Vehicle (UAV)-borne laser scanning can be the way in between. In this study, we present first results and experiences with the RIEGL RiCOPTER with VUX ® -1UAV ALS system and compare it with the well tested RIEGL VZ-400 TLS system. We scanned the same forest plots with both systems over the course of two days. We derived Digital Terrain Model (DTMs), Digital Surface Model (DSMs) and finally Canopy Height Model (CHMs) from the resulting point clouds. ALS CHMs were on average 11.5 c m higher in five plots with different canopy conditions. This showed that TLS could not always detect the top of canopy. Moreover, we extracted trunk segments of 58 trees for ALS and TLS simultaneously, of which 39 could be used to model Diameter at Breast Height (DBH). ALS DBH showed a high agreement with TLS DBH with a correlation coefficient of 0.98 and root mean square error of 4.24 c m . We conclude that RiCOPTER has the potential to perform comparable to TLS for estimating forest canopy height and DBH under the studied forest conditions. Further research should be directed to testing UAV-borne LiDAR for explicit 3D modelling of whole trees to estimate tree volume and subsequently Above-Ground Biomass (AGB).

  2. Peregrinaciones parisinas: Rubén Darío

    Directory of Open Access Journals (Sweden)

    Beatriz Colombi

    1996-11-01

    Full Text Available Hacia 1900 se nuclea en París un grupo de corresponsales latinoamericanos conformando una suerte de enclave que reúne a figuras como Rubén Darío, Manuel Ugarte, Amado Nervo o Enrique Gómez Carrillo. Desde sus respectivas columnas estos cronistas construyen imágenes del mundo moderno atravesadas por el conflicto de pertenencia y marginalidad respecto al mismo. Este trabajo analiza las entregas que Rubén Darío escribe para La Nación de Buenos Aires durante la Feria Internacional de Paris de 1900, en relación con su contexto discursivo. En la enunciación de estas crónicas se alternan pasajes donde prima la superficialidad de la crónica elegante parisina con otras secciones argumentativas que dan cuenta de los desplazamientos de este sujeto entre el 'chroniqueur' y el intelectual que interviene -con la autoridad que le otorga su liderazgo estético- en el campo de los sucesos políticos, desmoronando cualquier 'fetichización' del espectáculo. Darío trama en su crónica la línea 'ondulante' de su prosa de artista con la línea 'informativa' de su tarea de diarista, imponiendo una marca 'modern style' a su escritura, que privilegia imágenes donde se fusionan elementos de ámbitos dispares; también se contamina de la retórica del acontecimiento moderno, en una hibridez propia del efecto sumativo de ese vasto mercado. Las crónicas, reunidas luego en Peregrinaciones de 1901, señalan también el pasaje entre el gran mercado cultural y el pequeño mercado estético, en una posición anfibia propia de esta textualidad

  3. Complex Urban LiDAR Data Set

    OpenAIRE

    Jeong, Jinyong; Cho, Younggun; Shin, Young-Sik; Roh, Hyunchul; Kim, Ayoung

    2018-01-01

    This paper presents a Light Detection and Ranging (LiDAR) data set that targets complex urban environments. Urban environments with high-rise buildings and congested traffic pose a significant challenge for many robotics applications. The presented data set is unique in the sense it is able to capture the genuine features of an urban environment (e.g. metropolitan areas, large building complexes and underground parking lots). Data of two-dimensional (2D) and threedimensional (3D) LiDAR, which...

  4. Assessment on Vulnerable Youths Integration to Dar es Salaam ...

    African Journals Online (AJOL)

    Assessment on Vulnerable Youths Integration to Dar es Salaam Solid Waste ... existing municipal solid waste management crisis facing Dar es Salaam City using ... enabling environment of turning rampant solid waste collection a commercial ...

  5. LiDAR data for the Delta Area of California

    Data.gov (United States)

    California Natural Resource Agency — LiDAR data for the Delta Area of California from the California Department of Water Resources. Bare earth grids from LiDAR.This data is in ESRI Grid format with 2...

  6. LiDAR utility for natural resource managers

    Science.gov (United States)

    Andrew Thomas Hudak; Jeffrey Scott Evans; Alistair Mattthew Stuart. Smith

    2009-01-01

    Applications of LiDAR remote sensing are exploding, while moving from the research to the operational realm. Increasingly, natural resource managers are recognizing the tremendous utility of LiDAR-derived information to make improved decisions. This review provides a cross-section of studies, many recent, that demonstrate the relevance of LiDAR across a suite of...

  7. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Quinault River Watershed, Washington (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Quinault watershed survey area for the Puget Sound LiDAR Consortium. This...

  8. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  9. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  10. Development of digital subtraction system DAR-1200

    International Nuclear Information System (INIS)

    Kawai, Masumi; Shimizu, Yasumitsu; Ozaki, Takeshi; Sawada, Hiroshi; Uzuyama, Kazuhiro; Nishioka, Hiroyuki

    1989-01-01

    Digital subtraction angiography (DSA) has been of widespread use clinically, and it has attracted considerable attention in angiographic examination today. The merits of Shimadzu high resolution digital subtraction system DAR-1200 are reported in this paper. Furthermore, the principle and clinical usefullness of a new method of DSA called the Peak-Hold DSA are explained especially in details. (author)

  11. Excreta Disposal in Dar-es-salaam

    NARCIS (Netherlands)

    Chaggu, E.; Mashouri, D.; Buuren, van J.C.L.; Sanders, W.T.M.; Lettinga, G.

    2002-01-01

    The sociocultural and socioeconomic situation of sanitation in Dar-es-Salaam (Dsm), Tanzania, was studied with explicit emphasis on pit-latrines. Without considering the sociocultural conditions, the so-called best solution might not be the right one. Therefore, in order to achieve the intended

  12. Orienteerumiskaart vs. LiDAR / Marek Karm

    Index Scriptorium Estoniae

    Karm, Marek

    2012-01-01

    Bakalaureusetööst, mille eesmärk oli võrrelda orienteerumiskaardi reljeefi LiDAR-i andmete põhjal saadava reljeefimudeliga ning leida vastus küsimusele, kas o-kaart võib olla kasulik kooste- või kontrollmaterjal mistahes reljeefimudelile

  13. 2000 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Kitsap Peninsula, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 1,146 square miles and covers part...

  14. 2003 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Snohomish County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 167 square miles and covers a...

  15. 2011 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Rattlesnake

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on six days between September 15th and November 5th, and from November 6th - 13th,...

  16. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: North Puget Sound Lowlands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data contributing to the Puget Sound Lowlands project of 2005. Arlington, City of Snohomish, Snohomish...

  17. 2003 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 100 square miles and covers part of...

  18. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Nooksack

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In July 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDARConsortium (PSLC) to collect Light Detection and Ranging (LiDAR) data on a...

  19. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data for the Lewis County project of 2005. The project site covered approximately 223 square miles, divided...

  20. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Olympic Peninsula

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data for the Olympic Peninsula project of 2005, totaling approximately 114.59 sq mi: 24.5 for Clallam...

  1. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Upper Naches River, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Upper Naches River Valley and Nile Slide area of interest on September 30th,...

  2. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Entiat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDARConsortium (PSLC) to collect Light Detection and Ranging (LiDAR) data for the...

  3. De la contingencia al destino

    Directory of Open Access Journals (Sweden)

    Heller, Agnes

    1991-10-01

    Full Text Available Not available.

    La modernidad no ha podido dar respuesta al problema de la contingencia histórica, El texto muestra, por medio de metáforas, que el abandono necesario de esta cuestión no significa que estemos abocados al relativismo respecto a la contingencia existencial. La contingencia existencial, individual, sigue presente en la vida de todo individuo. Se sostiene que podemos dar un destino a nuestras vidas, y ésta es la tarea principal del filósofo.

  4. Novel Methods for Measuring LiDAR

    Science.gov (United States)

    Ayrey, E.; Hayes, D. J.; Fraver, S.; Weiskittel, A.; Cook, B.; Kershaw, J.

    2017-12-01

    The estimation of forest biometrics from airborne LiDAR data has become invaluable for quantifying forest carbon stocks, forest and wildlife ecology research, and sustainable forest management. The area-based approach is arguably the most common method for developing enhanced forest inventories from LiDAR. It involves taking a series of vertical height measurements of the point cloud, then using those measurements with field measured data to develop predictive models. Unfortunately, there is considerable variation in methodology for collecting point cloud data, which can vary in pulse density, seasonality, canopy penetrability, and instrument specifications. Today there exists a wealth of public LiDAR data, however the variation in acquisition parameters makes forest inventory prediction by traditional means unreliable across the different datasets. The goal of this project is to test a series of novel point cloud measurements developed along a conceptual spectrum of human interpretability, and then to use the best measurements to develop regional enhanced forest inventories on Northern New England's and Atlantic Canada's public LiDAR. Similarly to a field-based inventory, individual tree crowns are being segmented, and summary statistics are being used as covariates. Established competition and structural indices are being generated using each tree's relationship to one another, whilst existing allometric equations are being used to estimate diameter and biomass of each tree measured in the LiDAR. Novel metrics measuring light interception, clusteredness, and rugosity are also being measured as predictors. On the other end of the human interpretability spectrum, convolutional neural networks are being employed to directly measure both the canopy height model, and the point clouds by scanning each using two and three dimensional kernals trained to identify features useful for predicting biological attributes such as biomass. Predictive models will be trained and

  5. The Mineralogy, Geochemistry, and Redox State of Multivalent Cations During the Crystallization of Primitive Shergottitic Liquids at Various (f)O2. Insights into the (f)O2 Fugacity of the Martian Mantle and Crustal Influences on Redox Conditions of Martian Magmas.

    Science.gov (United States)

    Shearer, C. K.; Bell, A. S.; Burger, P. V.; Papike, J. J.; Jones, J.; Le, L.; Muttik, N.

    2016-01-01

    The (f)O2 [oxygen fugacity] of crystallization for martian basalts has been estimated in various studies to range from IW-1 to QFM+4 [1-3]. A striking geochemical feature of the shergottites is the large range in initial Sr isotopic ratios and initial epsilon(sup Nd) values. Studies by observed that within the shergottite group the (f)O2 [oxygen fugacity] of crystallization is highly correlated with these chemical and isotopic characteristics with depleted shergottites generally crystallizing at reduced conditions and enriched shergottites crystallizing under more oxidizing conditions. More recent work has shown that (f)O2 [oxygen fugacity] changed during the crystallization of these magmas from one order of magnitude in Y980459 (Y98) to several orders of magnitude in Larkman Nunatak 06319. These real or apparent variations within single shergottitic magmas have been attributed to mixing of a xenocrystic olivine component, volatile loss-water disassociation, auto-oxidation during crystallization of mafic phases, and assimilation of an oxidizing crustal component (e.g. sulfate). In contrast to the shergottites, augite basalts such as NWA 8159 are highly depleted yet appear to be highly oxidized (e.g. QFM+4). As a first step in attempting to unravel petrologic complexities that influence (f)O2 [oxygen fugacity] in martian magmas, this study explores the effect of (f)O2 [oxygen fugacity] on the liquid line of descent (LLD) for a primitive shergottite liquid composition (Y98). The results of this study will provide a fundamental basis for reconstructing the record of (f)O2 [oxygen fugacity] in shergottites and other martian basalts, its effect on both mineral chemistries and valence state partitioning, and a means for examining the role of crystallization (and other more complex processes) on the petrologic linkages between olivine-phyric and pyroxene-plagioclase shergottites.

  6. Generalised small signal analysis of a DAR /Double Avalanche Region/ IMPATT diode

    Science.gov (United States)

    Datta, D. N.; Pal, B. B.

    1982-06-01

    A generalized small signal analysis of a DAR IMPATT diode is carried out using recent values of ionization rates and saturated drift velocities of electrons and holes for Si and GaAs taking both the drift and the diffusion of charge carriers into account. The results show similar discrete negative conductance frequency bands separated by positive conductance frequency bands for an asymmetrical structure as in the ideal case (Som et al., 1974), establishing that the harmonically related frequencies can be avoided in the Si DAR IMPATT diode. In contrast to the ideal case, however, the symmetrical DAR IMPATT here also exhibits finite negative conductance. The GaAs DAR IMPATT shows variations of negative conductance that are similar to those in Si at high frequencies (in the mm wave range); at the low frequency side (less than 1 GHz), however, the IMPATT gives uniform negative conductances unlike Si where the negative conductance comes only at higher frequencies. Consideration is given in the calculations to thin depletion layers (0.8, 1, and 2 microns) to show the usefulness of the device in the mm wave range.

  7. Canopy wake measurements using multiple scanning wind LiDARs

    Science.gov (United States)

    Markfort, C. D.; Carbajo Fuertes, F.; Iungo, V.; Stefan, H. G.; Porte-Agel, F.

    2014-12-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ˜O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 40-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is approximately 40 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  8. 2004 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Portland, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The all returns ASCII files contain the X,Y,Z values of all the LiDAR returns collected during the survey mission. In addition each return also has a time stamp,...

  9. Detecting Multi-layered Forest Stands Using High Density Airborne LiDAR Data. GI_Forum|GI_Forum 2015 – Geospatial Minds for Society|

    OpenAIRE

    Schultz, Alfred; Mund, Jan-Peter; Körner, Michael; Wilke, Robert

    2016-01-01

    Since two decades, the use of terrestrial laser scanning (TLS) and Airborne Light Detection and Ranging (LIDAR) has become very prominent in analysing 3D forest structures (AKAY et al. 2009). The potential of full waveform analysis of high density Airborne LiDAR data (ALS) for the detection and structural analysis of multi-layered forest stands is not yet well investigated (JASKIERNIAK et al. 2011), although ALS data provide exact information on tree heights of multi-layered forest stands usi...

  10. Approach to voxel-based carbon stock quanticiation using LiDAR data in tropical rainforest, Brunei

    Science.gov (United States)

    Kim, Eunji; Piao, Dongfan; Lee, Jongyeol; Lee, Woo-Kyun; Yoon, Mihae; Moon, Jooyeon

    2016-04-01

    Forest is an important means to adapt climate change as the only carbon sink recognized by the international community (KFS 2009). According to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), Agriculture, Forestry, and Other Land Use (AFOLU) sectors including forestry contributed 24% of total anthropogenic emissions in 2010 (IPCC 2014; Tubiello et al. 2015). While all sectors excluding AFOLU have increased Greenhouse Gas (GHG) emissions, land use sectors including forestry remains similar level as before due to decreasing deforestation and increasing reforestation. In earlier researches, optical imagery has been applied for analysis (Jakubowski et al. 2013). Optical imagery collects spectral information in 2D. It is difficult to effectively quantify forest stocks, especially in dense forest (Cui et al. 2012). To detect individual trees information from remotely sensed data, Light detection and ranging (LiDAR) has been used (Hyyppäet al. 2001; Persson et al. 2002; Chen et al. 2006). Moreover, LiDAR has the ability to actively acquire vertical tree information such as tree height using geo-registered 3D points (Kwak et al. 2007). In general, however, geo-register 3D point was used with a raster format which contains only 2D information by missing all the 3D data. Therefore, this research aimed to use the volumetric pixel (referred as "voxel") approach using LiDAR data in tropical rainforest, Brunei. By comparing the parameters derived from voxel based LiDAR data and field measured data, we examined the relationships between them for the quantification of forest carbon. This study expects to be more helpful to take advantage of the strategic application of climate change adaption.

  11. Liquid waste management: The case of Bahir Dar, Ethiopia ...

    African Journals Online (AJOL)

    Background: Human beings pollute the environment with their industrial and domestic wastes. In Bahir Dar Town there is no conventional municipal waste water collection and treatment system. Objective: The aim of this study was to describe the liquid waste disposal practices of the residents of Bahir Dar Town and to ...

  12. Analysis of inflow parameters using LiDARs

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2014-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technique for wind resource assessment and oncoming wind prediction in wind energy. The validation of LiDAR measurements and comparisons with other sensing elements thus, is of high importance for further

  13. 'Dar' + gerund in Ecuadorian Highland Spanish: contact-induced grammaticalization?

    NARCIS (Netherlands)

    Olbertz, H.

    2008-01-01

    The benefactive construction dar + gerund is used in the North Andean region only and is unknown elsewhere in the Spanish-speaking world. Based on the analysis of spontaneous data from Ecuadorian Highland Spanish, this paper provides a linguististic description of dar + gerund and of the social and

  14. 2006 OSIP OGRIP: Upland Counties LiDAR Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2006 OSIP digital LiDAR data was collected during the months of March and May (leaf-off conditions). The LiDAR covers the entire land area of the northern tier...

  15. Assessing LiDAR elevation data for KDOT applications.

    Science.gov (United States)

    2013-02-01

    LiDAR-based elevation surveys are a cost-effective means for mapping topography over large areas. LiDAR : surveys use an airplane-mounted or ground-based laser radar unit to scan terrain. Post-processing techniques are : applied to remove vegetation ...

  16. Darüşşifas Where Music Threapy was Practiced During Anatolian Seljuks and Ottomans

    Directory of Open Access Journals (Sweden)

    Gülşen Erdal

    2013-03-01

    günümüzde açıkça bilinmektedir. Bilinen en eski tedavi yöntemlerinden biri olan Müzikle tedavinin geçmişi binlerce yıl öncesine dayanır. Türklerin, müzikle tedavide İbn Sina, Razî, Farabî, Hasan Şuurî ve Gevrekzade Hasan Efendi gibi bilim adamlarının yaptıkları araştırmaların yer aldığı kitaplardan faydalanarak, Selçuklu ve Osmanlılar döneminde, akıl hastalıklarının tedavisine uygun akustikle inşa edilen hastaneler-darüşşifalarda kullanmaları, ilk ciddi müzikle tedavi uygulamaları olarak değerlendirilir. Darüşşifa, Türk ve İslam dünyasında pratiğe ve gözleme dayalı sağlık hizmetleri veren hastaları tedavi eden sağlık ve eğitim kurumlarına verilen isimlerden birisidir. Darüşşifalar Tıp mesleğinin uygulanmasına yönelik özel mimari anlayış içeren yapıları ile de ayrıcalıklı bir yere sahiptir. Türkler Anadolu’ya yerleşmeleri ile birlikte çeşitli imar faaliyetlerine başlamışlardır. Yapılan bu faaliyetler içerisinde kervansaraylar, medreseler ve camilerle birlikte darüşşifalar da bulunmaktadır. Selçuklu ve Osmanlı darüşşifalarında tıbbi konular araştırmalara ve bilimsel esaslara bağlı kalınarak işleniyor, aynı zamanda tıp medreselerinde cerrah yetiştiriliyordu. Yapılan eğitimler dışında tatbiki uygulamaların da yaptırıldığı bilinmektedir. Darrüşşifalar, Anadolu Selçuklu ve Osmanlı medreseleri plan şemasına uygun olarak tasarlanmıştır. Genelde derslerin verildiği ana eyvan ve farklı ihtiyaçlar için düzenlenmiş avlu etrafında yer alan odalardan oluşmaktaydı.Türk sanat tarihi içerisinde sıklıkla karşılaştığımız tıp siteleri aynı zamanda günümüz tıp fakültesi mantığı ile örtüşmektedir. Buralarda tedavi edici sağlık hizmetleri sunulmaktaydı. Müzikle tedavi yapılan darüşşifalardan günümüze ulaşan ve önem teşkil edenler bu çalışmada sanat tarihi ve müziğin iyileştirici gücünün yüzyıllar

  17. UNDERSTANDING THE MULTIDIMENSIONAL ISLAMIC FAITH THROUGH ‘ABD AL-GHANI AL-NABULUSI’S MYSTICAL PHILOSOPHY

    Directory of Open Access Journals (Sweden)

    Naoki Yamamoto

    2013-12-01

    Full Text Available This paper tries to present a new perspective on Islamic faith and Muslim identity to Muslim minorities who are challenged in practicing or following Islamic law in non-Islamic countries or non-Muslims in the contemporary world. It will uncover the multidimensional perspective of the concept of faith based on sin (dhanb and repentance (tawbah through the mystical philosophy of a Syrian scholar, Abd al-Ghani al-Nabulusi (d. 1143/1741 of the 18th century Ottoman Damascus who contributed to the field of Sufism particularly based on Ibn ‘Arabi’s thought of wahdat al-wujud (oneness of being and insan kamil (the perfect man. Nabulusi believes that anyone who lived during the inexistence of prophet’s revelation, inhabited an isolated place cut off from information about Islam, or lived in dar al-harb and did not make a hijra to dar al-islam could not be regarded as sinful in their deeds. However, faith in Allah is essential and infidelity is not forgiven regardless whether or not they live in dar al-islam or dar al-harb. Further, Nabulusi insists that true faith can be achieved by understanding the sin of existence; the ignorance of the difference of existence between Allah and men.  [Artikel ini menjelaskan identitas keberagamaan umat Islam minoritas yang dituntut untuk menerapkan syariat, namun harus hidup di negara non-muslim, dengan mendiskusikan perspektif multidimensional terhadap konsep dosa dan tobat seperti dikembangkan oleh Abd al-Ghanī al-Nabulusī (1143/1741, seorang sufi pemikir Syria, khususnya  wahdat al-wujūd dan insan kamil, yang hidup di masa kesultanan Usmani di Damaskus. Nabulusī berkeyakinan bahwa siapa saja yang hidup sebelum turunnya wahyu di masa Nabi, hidup di daerah terpencil yang tidak mengenal Islam, atau hidup di dar al-harb dan tidak hijrah ke dar al-islam, tidaklah dibebani dosa atas perbuatannya. Namun demikian, iman kepada Allah amatlah penting dan kekufuran tidaklah dimaafkan, baik seseorang tersebut hidup

  18. Object Classification Using Airborne Multispectral LiDAR Data

    Directory of Open Access Journals (Sweden)

    PAN Suoyan

    2018-02-01

    Full Text Available Airborne multispectral LiDAR system,which obtains surface geometry and spectral data of objects,simultaneously,has become a fast effective,large-scale spatial data acquisition method.Multispectral LiDAR data are characteristics of completeness and consistency of spectrum and spatial geometric information.Support vector machine (SVM,a machine learning method,is capable of classifying objects based on small samples.Therefore,by means of SVM,this paper performs land cover classification using multispectral LiDAR data. First,all independent point cloud with different wavelengths are merged into a single point cloud,where each pixel contains the three-wavelength spectral information.Next,the merged point cloud is converted into range and intensity images.Finally,land-cover classification is performed by means of SVM.All experiments were conducted on the Optech Titan multispectral LiDAR data,containing three individual point cloud collected by 532 nm,1024 nm,and 1550 nm laser beams.Experimental results demonstrate that ①compared to traditional single-wavelength LiDAR data,multispectral LiDAR data provide a promising solution to land use and land cover applications;②SVM is a feasible method for land cover classification of multispectral LiDAR data.

  19. Processing LiDAR Data to Predict Natural Hazards

    Science.gov (United States)

    Fairweather, Ian; Crabtree, Robert; Hager, Stacey

    2008-01-01

    ELF-Base and ELF-Hazards (wherein 'ELF' signifies 'Extract LiDAR Features' and 'LiDAR' signifies 'light detection and ranging') are developmental software modules for processing remote-sensing LiDAR data to identify past natural hazards (principally, landslides) and predict future ones. ELF-Base processes raw LiDAR data, including LiDAR intensity data that are often ignored in other software, to create digital terrain models (DTMs) and digital feature models (DFMs) with sub-meter accuracy. ELF-Hazards fuses raw LiDAR data, data from multispectral and hyperspectral optical images, and DTMs and DFMs generated by ELF-Base to generate hazard risk maps. Advanced algorithms in these software modules include line-enhancement and edge-detection algorithms, surface-characterization algorithms, and algorithms that implement innovative data-fusion techniques. The line-extraction and edge-detection algorithms enable users to locate such features as faults and landslide headwall scarps. Also implemented in this software are improved methodologies for identification and mapping of past landslide events by use of (1) accurate, ELF-derived surface characterizations and (2) three LiDAR/optical-data-fusion techniques: post-classification data fusion, maximum-likelihood estimation modeling, and hierarchical within-class discrimination. This software is expected to enable faster, more accurate forecasting of natural hazards than has previously been possible.

  20. TENSOR MODELING BASED FOR AIRBORNE LiDAR DATA CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    N. Li

    2016-06-01

    Full Text Available Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.

  1. LiDAR error estimation with WAsP engineering

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Mann, Jakob; Foussekis, D.

    2008-01-01

    The LiDAR measurements, vertical wind profile in any height between 10 to 150m, are based on assumption that the measured wind is a product of a homogenous wind. In reality there are many factors affecting the wind on each measurement point which the terrain plays the main role. To model Li......DAR measurements and predict possible error in different wind directions for a certain terrain we have analyzed two experiment data sets from Greece. In both sites LiDAR and met. mast data have been collected and the same conditions are simulated with Riso/DTU software, WAsP Engineering 2.0. Finally measurement...

  2. Dar al-Kalima akadeemia kultuuri- ja konverentsikeskus "AD DAR" : Petlemm, Palestiina = Dar al-Kalima Academy Cultural and Convention Centre "AD DAR" : Bethlehem, Palestine, 1998-2003 / Juha Leviskä

    Index Scriptorium Estoniae

    Leviskä, Juha

    2004-01-01

    Projekteerija: Vilhelm Helander, Juha Leviskä Arkkitehdit. Autorid Jyha Leviskä ja Jari Heikkinen, kaasautor Pekka Kivisalo, sisekujundaja Jari Heikkinen. Projekt 1998-1999, valmis 1999-2003. 2 joon.: plaan, vaade, 8 fotot: 4 välis- ja 4 sisevaadet

  3. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  4. 2009 PSLC-USGS Topographic LiDAR: Wenatchee

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WS) collected Light Detection and Ranging (LiDAR) data of the Wenatchee USGS area of interest (AOI) east of Wenatchee, WA on May 1nd - May...

  5. Intussusception in children seen at Muhimbili National Hospital, Dar ...

    African Journals Online (AJOL)

    Intussusception in children seen at Muhimbili National Hospital, Dar es salaam. ... its magnitude of concern and any seasonal variation in our environment. ... majority of the children present late, >48 hours from the onset of symptoms and ...

  6. Patient Satisfaction At The Muhimbili National Hospital In Dar Es ...

    African Journals Online (AJOL)

    Patient Satisfaction At The Muhimbili National Hospital In Dar Es Salaam, Tanzania. ... staffpatient relationship ethos, in which the patient is a viewed as a customer. Keywords: patient satisfaction, reform, Muhimbili National Hospital, referral ...

  7. LiDAR (Terrain), THURSTON COUNTY, WASHINGTON, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Fugro EarthData Company furnished the collection, processing, and development of LiDAR for 825 square miles in Washington (805 square miles of Thurston County and 20...

  8. Shipborne LiDAR system for coastal change monitoring

    Science.gov (United States)

    Kim, chang hwan; Park, chang hong; Kim, hyun wook; hyuck Kim, won; Lee, myoung hoon; Park, hyeon yeong

    2016-04-01

    Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land and the sea level has risen by about 8cm (1.9mm / yr) due to global warming from 1964 year to 2006 year in Korea. Coastal erosion due to sea-level rise has caused the problem of marine ecosystems and loss of tourism resources, etc. Regular monitoring of coastal erosion is essential at key locations with such volatility. But the survey method of land mobile LiDAR (light detection and ranging) system has much time consuming and many restrictions. For effective monitoring beach erosion, KIOST (Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system comprised a land mobile LiDAR (RIEGL LMS-420i), an INS (inertial navigation system, MAGUS Inertial+), a RTKGPS (LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land mobile LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.

  9. Upgrading transmission lines with aerial LiDAR technology

    Energy Technology Data Exchange (ETDEWEB)

    Koop, J.E. [Manitoba Hydro, Winnipeg, MB (Canada)

    2003-04-01

    LiDAR (Light Detection and Ranging) technology is described as an example of techniques used by hydro companies to increase their capacity with existing plants, and within tight budget constraints. LiDAR was chosen by Manitoba Hydro primarily because LiDAR's data collection method offers very fast turn-around time from collection to delivery, and most importantly because of LiDAR's highly accurate ability to map terrain and wire catenary shape in every span. The article describes a case study of the 'Nip and Tuck' method of wire re-tensioning based on LiDAR data, which was used by Manitoba Hydro to create a computer model of Saskatchewan Hydro's transmission line capacity on its 138 kV transmission line between Saskatoon and North Battleford. The model was needed to analyze the existing line conditions in an effort to minimize cascading failures on the 40-year old line. Using the 'Nip and Tuck' technology in combination with LiDAR, SaskPower engineers were able to complete the required modifications to raise transmission wire operating temperatures on the 135 km long line to 66 degree C in only 36 days, and at a cost that was 80 per cent less than the cost would have been using conventional techniques ($232,000 instead of the estimated $1.25 million).

  10. 2012-2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Hoh River Watershed, Washington (Deliveries 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Hoh River watershed survey area for the Puget Sound LiDAR Consortium and the...

  11. 2006 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Eastern Washington and River Corridors

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WS) collected Light Detection and Ranging (LiDAR) data in eastern Washington, eastern Oregon, and southern Canada in October and November,...

  12. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Chehalis River Watershed Area, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Chehalis River Watershed study area on January 28th, February 2nd-7th,...

  13. 2002 Puget Sound LiDAR Consortium (PSLC) Unclassified Topographic LiDAR: Puget Sound Lowlands Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 730 square miles and covers the...

  14. LiDAR Vegetation Investigation and Signature Analysis System (LVISA)

    Science.gov (United States)

    Höfle, Bernhard; Koenig, Kristina; Griesbaum, Luisa; Kiefer, Andreas; Hämmerle, Martin; Eitel, Jan; Koma, Zsófia

    2015-04-01

    Our physical environment undergoes constant changes in space and time with strongly varying triggers, frequencies, and magnitudes. Monitoring these environmental changes is crucial to improve our scientific understanding of complex human-environmental interactions and helps us to respond to environmental change by adaptation or mitigation. The three-dimensional (3D) description of the Earth surface features and the detailed monitoring of surface processes using 3D spatial data have gained increasing attention within the last decades, such as in climate change research (e.g., glacier retreat), carbon sequestration (e.g., forest biomass monitoring), precision agriculture and natural hazard management. In all those areas, 3D data have helped to improve our process understanding by allowing quantifying the structural properties of earth surface features and their changes over time. This advancement has been fostered by technological developments and increased availability of 3D sensing systems. In particular, LiDAR (light detection and ranging) technology, also referred to as laser scanning, has made significant progress and has evolved into an operational tool in environmental research and geosciences. The main result of LiDAR measurements is a highly spatially resolved 3D point cloud. Each point within the LiDAR point cloud has a XYZ coordinate associated with it and often additional information such as the strength of the returned backscatter. The point cloud provided by LiDAR contains rich geospatial, structural, and potentially biochemical information about the surveyed objects. To deal with the inherently unorganized datasets and the large data volume (frequently millions of XYZ coordinates) of LiDAR datasets, a multitude of algorithms for automatic 3D object detection (e.g., of single trees) and physical surface description (e.g., biomass) have been developed. However, so far the exchange of datasets and approaches (i.e., extraction algorithms) among LiDAR users

  15. Topobathymetric LiDAR point cloud processing and landform classification in a tidal environment

    Science.gov (United States)

    Skovgaard Andersen, Mikkel; Al-Hamdani, Zyad; Steinbacher, Frank; Rolighed Larsen, Laurids; Brandbyge Ernstsen, Verner

    2017-04-01

    Historically it has been difficult to create high resolution Digital Elevation Models (DEMs) in land-water transition zones due to shallow water depth and often challenging environmental conditions. This gap of information has been reflected as a "white ribbon" with no data in the land-water transition zone. In recent years, the technology of airborne topobathymetric Light Detection and Ranging (LiDAR) has proven capable of filling out the gap by simultaneously capturing topographic and bathymetric elevation information, using only a single green laser. We collected green LiDAR point cloud data in the Knudedyb tidal inlet system in the Danish Wadden Sea in spring 2014. Creating a DEM from a point cloud requires the general processing steps of data filtering, water surface detection and refraction correction. However, there is no transparent and reproducible method for processing green LiDAR data into a DEM, specifically regarding the procedure of water surface detection and modelling. We developed a step-by-step procedure for creating a DEM from raw green LiDAR point cloud data, including a procedure for making a Digital Water Surface Model (DWSM) (see Andersen et al., 2017). Two different classification analyses were applied to the high resolution DEM: A geomorphometric and a morphological classification, respectively. The classification methods were originally developed for a small test area; but in this work, we have used the classification methods to classify the complete Knudedyb tidal inlet system. References Andersen MS, Gergely Á, Al-Hamdani Z, Steinbacher F, Larsen LR, Ernstsen VB (2017). Processing and performance of topobathymetric lidar data for geomorphometric and morphological classification in a high-energy tidal environment. Hydrol. Earth Syst. Sci., 21: 43-63, doi:10.5194/hess-21-43-2017. Acknowledgements This work was funded by the Danish Council for Independent Research | Natural Sciences through the project "Process-based understanding and

  16. A Study on Factors Affecting Airborne LiDAR Penetration

    Directory of Open Access Journals (Sweden)

    Wei-Chen Hsu

    2015-01-01

    Full Text Available This study uses data from different periods, areas and parameters of airborne LiDAR (light detection and ranging surveys to understand the factors that influence airborne LiDAR penetration rate. A discussion is presented on the relationships between these factors and LiDAR penetration rate. The results show that the flight height above ground level (AGL does not have any relationship with the penetration rate. There are some factors that should have larger influence. For example, the laser is affected by a wet ground surface by reducing the number of return echoes. The field of view (FOV has a slightly negative correlation with the penetration rate, which indicates that the laser incidence angle close to zero should achieve the best penetration. The vegetation cover rate also shows a negative correlation with the penetration rate, thus bare ground and reduced vegetation in the aftermath of a typhoon also cause high penetration rate. More return echoes could be extracted from the full-waveform system, thereby effectively improving the penetration rate. This study shows that full-waveform LiDAR is an effective method for increasing the number of surface reflected echoes. This study suggests avoiding LiDAR survey employment directly following precipitation to prevent laser echo reduction.

  17. Waveform LiDAR across forest biomass gradients

    Science.gov (United States)

    Montesano, P. M.; Nelson, R. F.; Dubayah, R.; Sun, G.; Ranson, J.

    2011-12-01

    Detailed information on the quantity and distribution of aboveground biomass (AGB) is needed to understand how it varies across space and changes over time. Waveform LiDAR data is routinely used to derive the heights of scattering elements in each illuminated footprint, and the vertical structure of vegetation is related to AGB. Changes in LiDAR waveforms across vegetation structure gradients can demonstrate instrument sensitivity to land cover transitions. A close examination of LiDAR waveforms in footprints across a forest gradient can provide new insight into the relationship of vegetation structure and forest AGB. In this study we use field measurements of individual trees within Laser Vegetation Imaging Sensor (LVIS) footprints along transects crossing forest to non-forest gradients to examine changes in LVIS waveform characteristics at sites with low (field AGB measurements to original and adjusted LVIS waveforms to detect the forest AGB interval along a forest - non-forest transition in which the LVIS waveform lose the ability to discern differences in AGB. Our results help identify the lower end the forest biomass range that a ~20m footprint waveform LiDAR can detect, which can help infer accumulation of biomass after disturbances and during forest expansion, and which can guide the use of LiDAR within a multi-sensor fusion biomass mapping approach.

  18. Vielversprechende Loesungsmittel. Ionisch Fluessigkeiten als alternative Loesungsmittel bei der Extraction von petrochemikalien

    NARCIS (Netherlands)

    Haan, de A.B.; Meindersma, G.W.

    2010-01-01

    Die Trennung aromatischer von aliphatischen Kohlenwasserstoffverbindungen stellt insofern eine Herausforderung dar, als diese Kohlenwasserstoffe nah beieinander liegende Siedepunkte aufweisen und verschiedene Kombinationen azeotroper Gemische bilden [1]. Die herkömmlichen Verfahren zur Trennung

  19. Darüşşifas Where Music Threapy was Practiced During Anatolian Seljuks and Ottomans / Selçuklu ve Osmanlı Darüşşifalarında Müzikle Tedavi

    Directory of Open Access Journals (Sweden)

    Gülşen Erdal

    2013-03-01

    etki günümüzde açıkça bilinmektedir. Bilinen en eski tedavi yöntemlerinden biri olan Müzikle tedavinin geçmişi binlerce yıl öncesine dayanır. Türklerin, müzikle tedavide İbn Sina, Razî, Farabî, Hasan Şuurî ve Gevrekzade Hasan Efendi gibi bilim adamlarının yaptıkları araştırmaların yer aldığı kitaplardan faydalanarak, Selçuklu ve Osmanlılar döneminde, akıl hastalıklarının tedavisine uygun akustikle inşa edilen hastaneler-darüşşifalarda kullanmaları, ilk ciddi müzikle tedavi uygulamaları olarak değerlendirilir. Darüşşifa, Türk ve İslam dünyasında pratiğe ve gözleme dayalı sağlık hizmetleri veren hastaları tedavi eden sağlık ve eğitim kurumlarına verilen isimlerden birisidir. Darüşşifalar Tıp mesleğinin uygulanmasına yönelik özel mimari anlayış içeren yapıları ile de ayrıcalıklı bir yere sahiptir. Türkler Anadolu’ya yerleşmeleri ile birlikte çeşitli imar faaliyetlerine başlamışlardır. Yapılan bu faaliyetler içerisinde kervansaraylar, medreseler ve camilerle birlikte darüşşifalar da bulunmaktadır. Selçuklu ve Osmanlı darüşşifalarında tıbbi konular araştırmalara ve bilimsel esaslara bağlı kalınarak işleniyor, aynı zamanda tıp medreselerinde cerrah yetiştiriliyordu. Yapılan eğitimler dışında tatbiki uygulamaların da yaptırıldığı bilinmektedir. Darrüşşifalar, Anadolu Selçuklu ve Osmanlı medreseleri plan şemasına uygun olarak tasarlanmıştır. Genelde derslerin verildiği ana eyvan ve farklı ihtiyaçlar için düzenlenmiş avlu etrafında yer alan odalardan oluşmaktaydı. Türk sanat tarihi içerisinde sıklıkla karşılaştığımız tıp siteleri aynı zamanda günümüz tıp fakültesi mantığı ile örtüşmektedir. Buralarda tedavi edici sağlık hizmetleri sunulmaktaydı. Müzikle tedavi yapılan darüşşifalardan günümüze ulaşan ve önem teşkil edenler bu çalışmada sanat tarihi ve müziğin iyileştirici gücünün yüzyıllar

  20. Adolescent Girls with illegally Induced Abortion in Dar es Salaam

    DEFF Research Database (Denmark)

    Rasch, V; Silberschmidt, Margrethe; Mchumvu, Y

    2000-01-01

    that gave them the right to seek family planning services and in practice these services are not being provided. There is a need for youth-friendly family planning services and to make abortion safe and legal, in order to reduce unwanted pregnancies and abortion-related complications and deaths among......This article reports on a study of induced abortion among adolescent girls in Dar es Salaam, Tanzania, who were admitted to a district hospital in Dar es Salaam because of an illegally induced abortion in 1997. In the quantitative part of the study, 197 teenage girls (aged 14-19) were asked...

  1. Raster Vs. Point Cloud LiDAR Data Classification

    Science.gov (United States)

    El-Ashmawy, N.; Shaker, A.

    2014-09-01

    Airborne Laser Scanning systems with light detection and ranging (LiDAR) technology is one of the fast and accurate 3D point data acquisition techniques. Generating accurate digital terrain and/or surface models (DTM/DSM) is the main application of collecting LiDAR range data. Recently, LiDAR range and intensity data have been used for land cover classification applications. Data range and Intensity, (strength of the backscattered signals measured by the LiDAR systems), are affected by the flying height, the ground elevation, scanning angle and the physical characteristics of the objects surface. These effects may lead to uneven distribution of point cloud or some gaps that may affect the classification process. Researchers have investigated the conversion of LiDAR range point data to raster image for terrain modelling. Interpolation techniques have been used to achieve the best representation of surfaces, and to fill the gaps between the LiDAR footprints. Interpolation methods are also investigated to generate LiDAR range and intensity image data for land cover classification applications. In this paper, different approach has been followed to classifying the LiDAR data (range and intensity) for land cover mapping. The methodology relies on the classification of the point cloud data based on their range and intensity and then converted the classified points into raster image. The gaps in the data are filled based on the classes of the nearest neighbour. Land cover maps are produced using two approaches using: (a) the conventional raster image data based on point interpolation; and (b) the proposed point data classification. A study area covering an urban district in Burnaby, British Colombia, Canada, is selected to compare the results of the two approaches. Five different land cover classes can be distinguished in that area: buildings, roads and parking areas, trees, low vegetation (grass), and bare soil. The results show that an improvement of around 10 % in the

  2. 2004 Federal Emergency Management Agency (FEMA) Bare Earth Topographic LiDAR: Connecticut River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. The LiDAR files were converted from .PTS format to LAS...

  3. 2007 US Army Corps of Engineers (USACE), Jacksonville District US Virgin Islands LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Light Detection and Ranging (LiDAR) bare-earth classified LAS dataset is a topographic survey conducted for the USACE USVI LiDAR Project. These data were...

  4. 2011 U.S. Geological Survey (USGS) Topographic LiDAR: Louisiana Region 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Louisiana Region 1 LiDAR ARRA Task Order LiDAR Data Acquisition and Processing Production Task- Vermillion, Iberia, St. Mary, Terrebonne, and Lafourche...

  5. 2011 U.S. Geological Survey (USGS) Topographic LiDAR: Louisiana Region 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Louisiana Region 2 LiDAR ARRA Task Order LiDAR Data Acquisition and Processing Production Task- Orleans, Plaquemines, St. Bernard, St. Tammany Parishes,...

  6. Study on environmental test technology of LiDAR used for vehicle

    Science.gov (United States)

    Wang, Yi; Yang, Jianfeng; Ou, Yong

    2018-03-01

    With the development of intelligent driving, the LiDAR used for vehicle plays an important role in it, in some extent LiDAR is the key factor of intelligent driving. And environmental adaptability is one critical factor of quality, it relates success or failure of LiDAR. This article discusses about the environment and its effects on LiDAR used for vehicle, it includes analysis of any possible environment that vehicle experiences, and environmental test design.

  7. Diagnóstico Territorial Integral del municipio de Ciudad Darío

    Directory of Open Access Journals (Sweden)

    Laurent Dietsch

    2010-12-01

    Full Text Available EN ESTE ARTÍCULO SE PRESENTA EL “DIAGNÓSTICO TERRITORIAL INTEGRAL de Ciudad Darío” realizado como trabajo de fin de curso de la Maestría en Desarrollo Rural de la Universidad Centroamericana. Este estudio ha buscado contribuir a la formulación de propuestas de intervención de los actores sociales del municipio de Ciudad Darío sobre los procesos estratégicos de desarrollo del territorio. Se realizó unazonificación integral del municipio, identificándose cuatro zonas: una zona alta, campesina de agricultura de subsistencia; una zona de laderas secas; una planicie seca de latifundio ganadero; y finalmente, una zona de llanos y vegas fértiles de riego semi-intensivo. Posteriormente, se identificaron y clasificaron por capital (ambiental, económico, social-humano y político-institucional y nivel territorial, los principales procesos de cambio que afectan o podrían afectar al municipio. Su análisis permitió caracterizar las principales oportunidades y amenazas para el desarrollo del territorio y, al relacionarlo con las fortalezas y debilidades identificadas en la zonificación, evidenciar los principales factores que podrían incidir en el municipio y sus principales retos. Para enfrentar estos retos, se identificaron tres ejes estratégicos: la reducción de los niveles de inseguridad alimentaria y vulnerabilidad ambiental del municipio; el fomento integral de las cadenas de producción de hortalizas; y la prevención de riesgos sociales. Para cada uno de estos ejes se ha definido un conjunto de acciones ordenadas por capital y nivel territorial, orientadas a incidir sobre los principales procesos de cambio identificados. Finalmente, se definieron ejes estratégicos transversales enfocados al desarrollo de capacidades de incidir sobre los procesos claves de desarrollo del municipio.

  8. Relationship between LiDAR-derived forest canopy height and Landsat images

    Science.gov (United States)

    Cristina Pascual; Antonio Garcia-Abril; Warren B. Cohen; Susana. Martin-Fernandez

    2010-01-01

    The mean and standard deviation (SD) of light detection and ranging (LiDAR)-derived canopy height are related to forest structure. However, LiDAR data typically cover a limited area and have a high economic cost compared with satellite optical imagery. Optical images may be required to extrapolate LiDAR height measurements across a broad landscape. Different spectral...

  9. Demystifying LiDAR technologies for temperate rainforest in the Pacific Northwest

    Science.gov (United States)

    Rhonda Mazza; Demetrios Gatziolis

    2013-01-01

    Light detection and ranging (LiDAR), also known as airborne laser scanning, is a rapidly emerging technology for remote sensing. Used to help map, monitor, and assess natural resources, LiDAR data were first embraced by forestry professionals in Scandinavia as a tool for conducting forest inventories in the mid to late 1990s. Thus early LiDAR theory and applications...

  10. A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments

    Science.gov (United States)

    Jeffrey S. Evans; Andrew T. Hudak

    2007-01-01

    One prerequisite to the use of light detection and ranging (LiDAR) across disciplines is differentiating ground from nonground returns. The objective was to automatically and objectively classify points within unclassified LiDAR point clouds, with few model parameters and minimal postprocessing. Presented is an automated method for classifying LiDAR returns as ground...

  11. Tree filtering for high density airborne LiDAR data

    NARCIS (Netherlands)

    Abd Rahman, M.Z.; Gorte, B.G.H.

    2008-01-01

    A high resolution Airborne LiDAR data creates better opportunity for an individual tree measurement and provides valuable results for more precise forest inventory. This paper presents tree filtering approach that able to separate dominant tree and undergrowth vegetation. The results can be used for

  12. Feeding Dar es Salaam: a symbiotic food system perspective

    NARCIS (Netherlands)

    Wegerif, Marc C.A.

    2017-01-01

    This thesis is a sociological analysis of the agri-food system that feeds most of the over four and a half million residents of the fast-growing city of Dar es Salaam in Tanzania. It is based on qualitative research that has generated a picture of the food system that supplies the important foods

  13. Coastal Marine Pollution in Dar es Salaam (Tanzania) relative to ...

    African Journals Online (AJOL)

    Pollution surveys were undertaken during 2007 and 2008 in the coastal marine environment of Dar es Salaam and the remote Ras Dege Creek. The objective was to determine the levels of microbial contamination, heavy metals and persistent organic pollutants and compare these with the recommended environmental ...

  14. Aloe; Beyond use as cosmetics | Pili | Dar Es Salaam Medical ...

    African Journals Online (AJOL)

    Dar Es Salaam Medical Students' Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2008) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Aloe; Beyond use as cosmetics. K Pili. Abstract.

  15. Dar es Salaam City and Challenges in Solid Waste Management ...

    African Journals Online (AJOL)

    The focus of this paper is on challenges facing solid waste management in. Manzese and Sinza wards, in Dar es Salaam city. In this paper different ways of generating, disposing waste and the associated problems are surveyed. About 102 people were interviewed. Different methods were employed in data collection which ...

  16. Nitrogen concentration estimation with hyperspectral LiDAR

    Directory of Open Access Journals (Sweden)

    O. Nevalainen

    2013-10-01

    Full Text Available Agricultural lands have strong impact on global carbon dynamics and nitrogen availability. Monitoring changes in agricultural lands require more efficient and accurate methods. The first prototype of a full waveform hyperspectral Light Detection and Ranging (LiDAR instrument has been developed at the Finnish Geodetic Institute (FGI. The instrument efficiently combines the benefits of passive and active remote sensing sensors. It is able to produce 3D point clouds with spectral information included for every point which offers great potential in the field of remote sensing of environment. This study investigates the performance of the hyperspectral LiDAR instrument in nitrogen estimation. The investigation was conducted by finding vegetation indices sensitive to nitrogen concentration using hyperspectral LiDAR data and validating their performance in nitrogen estimation. The nitrogen estimation was performed by calculating 28 published vegetation indices to ten oat samples grown in different fertilization conditions. Reference data was acquired by laboratory nitrogen concentration analysis. The performance of the indices in nitrogen estimation was determined by linear regression and leave-one-out cross-validation. The results indicate that the hyperspectral LiDAR instrument holds a good capability to estimate plant biochemical parameters such as nitrogen concentration. The instrument holds much potential in various environmental applications and provides a significant improvement to the remote sensing of environment.

  17. Engineering geological mapping of Dar es Salaam city, Tanzania ...

    African Journals Online (AJOL)

    Two basic maps were prepared, namely, geomorphological and geological map depicts the spatial extent of the Neogene geological formations. Three distinct sandstone terraces could be distinguished in Dar es Salaam region at 0-15 m and 30 – 40 m above sea level. The terraces comprised sandstones fringed by coral ...

  18. San Clemente Island Baseline LiDAR Mapping Final Report

    Science.gov (United States)

    2016-12-01

    full-waveform LiDAR (Riegl® Q680i), a hyperspectral sensor (Specim AISA EAGLE), an SLR camera, and supporting instruments for geolocation and...manual editing would be necessary for detailed gully identification. Figure 12. Extensive gully erosion on the southwest part of San Clemente. Figure 13

  19. Heavy Metals and Organic Pollutants in Sediments of Dar es ...

    African Journals Online (AJOL)

    The Florida criteria (MacDonald 1993) for assessment of pollution of tropical marine sediments was adopted in oredr to evaluate the extent of pollution in Dar es Salaam harbour sediments. The Florida criteria is one of the established references for sediment quality assessment. Heavy metals that had concentrations above ...

  20. Knowledge, Attitude and Practice of Commercial Drivers in Dar es ...

    African Journals Online (AJOL)

    Purpose: The objective of this study was, first, to assess the knowledge, attitude and practice of commercial drivers in Dar es Salaam with regard to medicines that impair driving, and second, to evaluate the adequacy of antihistamine label information. Methods: Drivers were interviewed using a questionnaire after obtaining ...

  1. Liquid waste management: The case of Bahir Dar, Ethiopia

    African Journals Online (AJOL)

    admin

    liquid waste management practices of the community; to assess the .... Logistic regression was performed to assess the impact of a number of factors on the .... the ever-growing Bahir Dar Town with modern buildings using flush toilets will ...

  2. Community violence in Dar es Salaam, Tanzania: A mixed methods ...

    African Journals Online (AJOL)

    Most homicide deaths in Dar es Salaam, Tanzania (DSM) are a result of violence arising from within the community. This type of violence is commonly called, by perpetrators and victims, “mob justice”. Unilateral non-state collective violence can take four forms: lynching, vigilantism, rioting, and terrorism. The purpose of this ...

  3. Quantifying Ladder Fuels: A New Approach Using LiDAR

    Science.gov (United States)

    Heather Kramer; Brandon Collins; Maggi Kelly; Scott Stephens

    2014-01-01

    We investigated the relationship between LiDAR and ladder fuels in the northern Sierra Nevada, California USA. Ladder fuels are often targeted in hazardous fuel reduction treatments due to their role in propagating fire from the forest floor to tree crowns. Despite their importance, ladder fuels are difficult to quantify. One common approach is to calculate canopy base...

  4. Aggression; a Paradoxical pathology of the mind | Kitapondya | Dar ...

    African Journals Online (AJOL)

    Dar Es Salaam Medical Students' Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2008) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Aggression; a Paradoxical pathology of the mind.

  5. Accessibility, Congestion and Travel Delays in Dar es Salaam

    DEFF Research Database (Denmark)

    Melbye, Dea Christine; Møller-Jensen, Lasse; Andreasen, Manja Hoppe

    2015-01-01

    on to present a review of research into travel speed levels and congestion in Dar es Salaam. A set of city-wide maps of accessibility and delay levels are constructed based on available speed data and road network data obtained from the OpenStreetMap project and the findings are discussed with respect...

  6. 2011 USGS Topographic LiDAR: Suwannee River Expansion

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — USGS Task Order No. G10PD00236 USGS Contract No. G10PC00093 The Light Detection and Ranging (LiDAR) dataset is a survey of the Suwannee River Expansion in...

  7. Object-Based Crop Species Classification Based on the Combination of Airborne Hyperspectral Images and LiDAR Data

    Directory of Open Access Journals (Sweden)

    Xiaolong Liu

    2015-01-01

    Full Text Available Identification of crop species is an important issue in agricultural management. In recent years, many studies have explored this topic using multi-spectral and hyperspectral remote sensing data. In this study, we perform dedicated research to propose a framework for mapping crop species by combining hyperspectral and Light Detection and Ranging (LiDAR data in an object-based image analysis (OBIA paradigm. The aims of this work were the following: (i to understand the performances of different spectral dimension-reduced features from hyperspectral data and their combination with LiDAR derived height information in image segmentation; (ii to understand what classification accuracies of crop species can be achieved by combining hyperspectral and LiDAR data in an OBIA paradigm, especially in regions that have fragmented agricultural landscape and complicated crop planting structure; and (iii to understand the contributions of the crop height that is derived from LiDAR data, as well as the geometric and textural features of image objects, to the crop species’ separabilities. The study region was an irrigated agricultural area in the central Heihe river basin, which is characterized by many crop species, complicated crop planting structures, and fragmented landscape. The airborne hyperspectral data acquired by the Compact Airborne Spectrographic Imager (CASI with a 1 m spatial resolution and the Canopy Height Model (CHM data derived from the LiDAR data acquired by the airborne Leica ALS70 LiDAR system were used for this study. The image segmentation accuracies of different feature combination schemes (very high-resolution imagery (VHR, VHR/CHM, and minimum noise fractional transformed data (MNF/CHM were evaluated and analyzed. The results showed that VHR/CHM outperformed the other two combination schemes with a segmentation accuracy of 84.8%. The object-based crop species classification results of different feature integrations indicated that

  8. On the LiDAR contribution for the archaeological and geomorphological study of a deserted medieval village in Southern Italy

    International Nuclear Information System (INIS)

    Lasaponara, Rosa; Coluzzi, Rosa; Gizzi, Fabrizio T; Masini, Nicola

    2010-01-01

    Airborne laser scanning (ALS) is an optical measurement technique for obtaining high-precision information about the Earth's surface including basic terrain mapping (digital terrain model, bathymetry, corridor mapping), vegetation cover (forest assessment and inventory) and coastal and urban areas. Recent studies examined the possibility of using ALS in archaeological investigations to identify earthworks, although the ability of ALS measurements in this context has not yet been studied in detail. This paper focuses on the potential of the latest generation of airborne ALS for the detection and the spatial characterization of micro-topographic relief linked to archaeological and geomorphological features. The investigations were carried out near Monteserico, an archaeological area in the Basilicata region (Southern Italy) which is characterized by complex topographical and morphological features. The study emphasizes that the DTM-LiDAR data are a powerful instrument for detecting surface discontinuities relevant for investigating geomorphological processes and cultural features. The LiDAR survey allowed us to identify the urban shape of a medieval village, by capturing the small differences in height produced by surface and shallow archaeological remains (the so-called shadow marks) which were not visible from ground or from optical dataset. In this way, surface reliefs and small elevation changes, linked to geomorphological and archaeological features, have been surveyed with great detail

  9. SM-ND Age and REE Systematics of Larkman Nunatek 06319: Closed System Fractional Crystallization of a Shergottite Magma

    Science.gov (United States)

    Shafer, J. T.; Brandon, A. D.; Lapen T. J.; Righter, M.; Peslier, A. H.

    2010-01-01

    Sm-Nd isotopic data were collected on mineral separates and bulk rock powders of LAR 06319, yielding an age of 180+/-13 Ma (2(sigma)). This age is concordant with the Lu-Hf age (197+/-29 Ma, [1]) determined in conjunction with these data and the Sm-Nd age (190+/-26 Ma) of Shih et al., 2009 [2]. The Sm-Nd data form at statistically significant isochron (Fig. 1) that is controlled largely by leachate-residue pairs (samples with the R suffix are residues after leaching in cold 2N HCl for 10 minutes).

  10. Diversity arrays technology (DArT) markers in apple for genetic linkage maps

    OpenAIRE

    Schouten, H.J.; Weg, van de, W.E.; Carling, J.; Khan, S.A.; McKay, S.J.; Kaauwen, van, M.P.W.

    2012-01-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerf...

  11. Diversity arrays technology (DArT) markers in apple for genetic linkage maps

    OpenAIRE

    Schouten, Henk J.; van de Weg, W. Eric; Carling, Jason; Khan, Sabaz Ali; McKay, Steven J.; van Kaauwen, Martijn P. W.; Wittenberg, Alexander H. J.; Koehorst-van Putten, Herma J. J.; Noordijk, Yolanda; Gao, Zhongshan; Rees, D. Jasper G.; Van Dyk, Maria M.; Jaccoud, Damian; Considine, Michael J.; Kilian, Andrzej

    2011-01-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerf...

  12. Ground-Truthing of Airborne LiDAR Using RTK-GPS Surveyed Data in Coastal Louisiana's Wetlands

    Science.gov (United States)

    Lauve, R. M.; Alizad, K.; Hagen, S. C.

    2017-12-01

    Airborne LiDAR (Light Detection and Ranging) data are used by engineers and scientists to create bare earth digital elevation models (DEM), which are essential to modeling complex coastal, ecological, and hydrological systems. However, acquiring accurate bare earth elevations in coastal wetlands is difficult due to the density of marsh grasses that prevent the sensors reflection off the true ground surface. Previous work by Medeiros et al. [2015] developed a technique to assess LiDAR error and adjust elevations according to marsh vegetation density and index. The aim of this study is the collection of ground truth points and the investigation on the range of potential errors found in existing LiDAR datasets within coastal Louisiana's wetlands. Survey grids were mapped out in an area dominated by Spartina alterniflora and a survey-grade Trimble Real Time Kinematic (RTK) GPS device was employed to measure bare earth ground elevations in the marsh system adjacent to Terrebonne Bay, LA. Elevations were obtained for 20 meter-spaced surveyed grid points and were used to generate a DEM. The comparison between LiDAR derived and surveyed data DEMs yield an average difference of 23 cm with a maximum difference of 68 cm. Considering the local tidal range of 45 cm, these differences can introduce substantial error when the DEM is used for ecological modeling [Alizad et al., 2016]. Results from this study will be further analyzed and implemented in order to adjust LiDAR-derived DEMs closer to their true elevation across Louisiana's coastal wetlands. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, S. C. Medeiros, M. V. Bilskie, and J. F. Weishampel (2016), Coastal wetland response to sea-level rise in a fluvial estuarine system, Earth's Future, 4(11), 483-497, 10.1002/2016EF000385. Medeiros, S., S. Hagen, J. Weishampel, and J. Angelo (2015), Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density, Remote Sensing, 7

  13. 2005 Mississippi Merged LiDAR Data (2005 LiDAR data merged with 2005 Post-Katrina LiDAR data to create a bare-earth product for flood plain mapping in coastal Mississippi).

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pre- and post-hurricane Katrina LiDAR datasets of Hancock, Harrison, and Jackson Counties, MS, were merged into a seamless coverage by URS. The pre-Katrina LiDAR...

  14. Real-time computational photon-counting LiDAR

    Science.gov (United States)

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  15. Coastal and tidal landform detection from high resolution topobathymetric LiDAR data

    Science.gov (United States)

    Skovgaard Andersen, Mikkel; Al-Hamdani, Zyad; Steinbacher, Frank; Rolighed Larsen, Laurids; Brandbyge Ernstsen, Verner

    2016-04-01

    Coastal and tidal environments are valuable ecosystems, which, however, are under pressure in many areas around the world due to globalisation and/or climate change. Detailed mapping of these environments is required in order to manage the coastal zone in a sustainable way. However, historically these transition zones between land and water are difficult or even impossible to map and investigate in high spatial resolution due to the challenging environmental conditions. The new generation of airborne topobathymetric light detection and ranging (LiDAR) potentially enables full-coverage and high-resolution mapping of these land-water transition zones. We have carried out topobathymetric LiDAR surveys in the Knudedyb tidal inlet system, a coastal environment in the Danish Wadden Sea which is part of the Wadden Sea National Park and UNESCO World Heritage. Detailed digital elevation models (DEMs) with a grid cell size of 0.5 m x 0.5 m were generated from the LiDAR point cloud with a mean point density in the order of 20 points/m2. The DEM was analysed morphometrically using a modification of the tool Benthic Terrain Modeler (BTM) developed by Wright et al. (2005). Initially, stage (the elevation in relation to tidal range) was used to divide the area of investigation into the different tidal zones, i.e. subtidal, intertidal and supratidal. Subsequently, morphometric units were identified and characterised by a combination of statistical neighbourhood analysis with varying window sizes (using the Bathymetric Positioning Index (BPI) from the BTM, moving average and standard deviation), slope parameters and area/perimeter ratios. Finally, these morphometric units were classified into six different types of landforms based on their stage and morphometric characteristics, i.e. either subtidal channel, intertidal flat, intertidal creek, linear bar, swash bar or beach dune. We hereby demonstrate the potential of using airborne topobathymetric LiDAR for seamless mapping of land

  16. A Browning process : The case of Dar es Salaam city

    OpenAIRE

    Mng'ong'o, Othmar Simtali

    2005-01-01

    The study is about how green spaces and structures of Dar es Salaam city, quantitatively and qualitatively, are browning out. It also tries to explore the different reasons behind the browning tendency, and what it means to the function of the city and to the daily form of life of the inhabitants. Finally there is a discussion about how to counteract the tendency by involving the inhabitants in planning procedures following the communicative approach to planning. The main investigations have ...

  17. Rockfall hazard analysis using LiDAR and spatial modeling

    Science.gov (United States)

    Lan, Hengxing; Martin, C. Derek; Zhou, Chenghu; Lim, Chang Ho

    2010-05-01

    Rockfalls have been significant geohazards along the Canadian Class 1 Railways (CN Rail and CP Rail) since their construction in the late 1800s. These rockfalls cause damage to infrastructure, interruption of business, and environmental impacts, and their occurrence varies both spatially and temporally. The proactive management of these rockfall hazards requires enabling technologies. This paper discusses a hazard assessment strategy for rockfalls along a section of a Canadian railway using LiDAR and spatial modeling. LiDAR provides accurate topographical information of the source area of rockfalls and along their paths. Spatial modeling was conducted using Rockfall Analyst, a three dimensional extension to GIS, to determine the characteristics of the rockfalls in terms of travel distance, velocity and energy. Historical rockfall records were used to calibrate the physical characteristics of the rockfall processes. The results based on a high-resolution digital elevation model from a LiDAR dataset were compared with those based on a coarse digital elevation model. A comprehensive methodology for rockfall hazard assessment is proposed which takes into account the characteristics of source areas, the physical processes of rockfalls and the spatial attribution of their frequency and energy.

  18. LiDAR observation of the flow structure in typhoons

    Science.gov (United States)

    Wu, Yu-Ting; Hsuan, Chung-Yao; Lin, Ta-Hui

    2015-04-01

    Taiwan is subject to 3.4 landfall typhoons each year in average, generally occurring in the third quarter of every year (July-September). Understanding of boundary-layer turbulence characteristics of a typhoon is needed to ensure the safety of both onshore and offshore wind turbines used for power generation. In this study, a floating LiDAR (Light Detection and Ranging) was deployed in a harbor to collect data of wind turbulence, atmospheric pressure, and temperature in three typhoon events (Matmo typhoon, Soulik typhoon, Trami typhoon). Data collected from the floating LiDAR and from meteorological stations located at Taipei, Taichung and Kaohsiung are adopted to analyse the wind turbulence characteristics in the three typhoon events. The measurement results show that the maximum 10-min average wind speed measured with the floating LiDAR is up to 24 m/s at a height of 200 m. Compared with other normal days, the turbulence intensity is lower in the three typhoon events where the wind speed has a rapid increase. Changes of wind direction take place clearly as the typhoons cross Taiwan from East to West. Within the crossing intervals, the vertical momentum flux is observed to have a significant pattern with both upward and downward propagating waves which are relevant to the flow structure of the typhoons.

  19. Wavelength stabilized high pulse power laser diodes for automotive LiDAR

    Science.gov (United States)

    Knigge, A.; Klehr, A.; Wenzel, H.; Zeghuzi, A.; Fricke, J.; Maaßdorf, A.; Liero, A.; Tränkle, G.

    2018-03-01

    Diode lasers generating optical pulses with high peak power and lengths in the nanosecond range are key components of systems for free-space communication, metrology, material processing, spectroscopy, and light detection and ranging (LiDAR) as needed for object detection and autonomous driving. Automotive LiDAR systems demand additionally a good beam quality and low wavelength shift with temperature due to the wide operating temperature span. We present here internally wavelength stabilized lasers emitting ns optical pulses from an emission aperture between 30 μm and 100 μm with peak powers of tens of Watts at wavelengths around 905 nm. The vertical structure based on AlGaAs (confinement and cladding layers) and InGaAs (active quantum well) is especially optimized for pulsed operation with respect to the implementation of a surface Bragg grating with a high reflectivity. The fabricated 6 mm long distributed Bragg reflector (DBR) broad area (BA) lasers are electrically driven by an in-house developed high-speed unit generating 3 to 10 ns long nearly rectangular shaped current pulses with amplitudes of up to 250 A. Such lasers emit optical pulses with a peak power of more than 30 W at 95 A pulse current up to a temperature of 85°C with a wavelength shift as low as 65 pm/K and a lateral beam propagation factor less than 10. The influence of the lateral aperture width and the pulse length on the beam quality will be shown. A monolithic integration of 3 DBR BA lasers on a single chip whose emission can be combined into a single beam raises the output power to more than 100 W.

  20. Bestimmung des Bodenreibungsbeiwertes und der Oberflächenreibung eisbedeckter Wasserflächen im Meiningenstrom der Darß-Zingster Boddenkette und Anwendung auf vertikal integrierte hydronumerische Modelle

    OpenAIRE

    Schönfeldt, Hans-Jürgen; Raabe, Armin; Baudler, Henning

    2016-01-01

    In einem hydronumerischen Modell zur Prognose des Strömungs- und Wasserstandsfeldes flacher Gewässer wird eine auf der Turbulenztheorie basierende Tiefenkorrektur für den Bodenreibungsbeiwertwert eingeführt und auf der Basis von Berechnungen für die DarßZingster Boddenkette überprüft. Für einen ausgewählten Meßpunkt der Darß-Zingster Boddenkette wurde der Reibungsbeiwert sowohl am Boden als auch unter einer Eisschicht experimentell bestimmt. Die Auswirkungen einer Tiefenkorrektur des Reibungs...

  1. Assessment of changes in formations of non-forest woody vegetation in southern Denmark based on airborne LiDAR.

    Science.gov (United States)

    Angelidis, Ioannis; Levin, Gregor; Díaz-Varela, Ramón Alberto; Malinowski, Radek

    2017-09-01

    LiDAR (Light Detection and Ranging) is a remote sensing technology that uses light in the form of pulses to measure the range between a sensor and the Earth's surface. Recent increase in availability of airborne LiDAR scanning (ALS) data providing national coverage with high point densities has opened a wide range of possibilities for monitoring landscape elements and their changes at broad geographical extent. We assessed the dynamics of the spatial extent of non-forest woody vegetation (NFW) in a study area of approx. 2500 km 2 in southern Jutland, Denmark, based on two acquisitions of ALS data for 2006 and 2014 in combination with other spatial data. Our results show a net-increase (4.8%) in the total area of NFW. Furthermore, this net change comprises of both areas with a decrease and areas with an increase of NFW. An accuracy assessment based on visual interpretation of aerial photos indicates high accuracy (>95%) in the delineation of NFW without changes during the study period. For NFW that changed between 2006 and 2014, accuracies were lower (90 and 82% in removed and new features, respectively), which is probably due to lower point densities of the 2006 ALS data (0.5 pts./m 2 ) compared to the 2014 data (4-5 pts./m 2 ). We conclude that ALS data, if combined with other spatial data, in principle are highly suitable for detailed assessment of changes in landscape features, such as formations of NFW at broad geographical extent. However, in change assessment based on multi-temporal ALS data with different point densities errors occur, particularly when examining small or narrow NFW objects.

  2. Population structure of Chinese southwest wheat germplasms resistant to stripe rust and powdery mildew using the DArT-seq technique

    Directory of Open Access Journals (Sweden)

    Tianqing Chen

    2018-04-01

    Full Text Available ABSTRACT: Understanding genetic variability in existing wheat accessions is critical for collection, conservation and use of wheat germplasms. In this study, 138 Chinese southwest wheat accessions were investigated by genotyping using two resistance gene makers (Pm21 and Yr26 and DArT-seq technique. Finally, about 50% cultivars (lines amplified the specific allele for the Yr26 gene (Gwm11 and 40.6% for the Pm21 gene (SCAR1265. By DArT-seq analysis, 30,485 markers (6486 SNPs and 23999 DArTs were obtained with mean polymorphic information content (PIC value 0.33 and 0.28 for DArT and SNP marker, respectively. The mean Dice genetic similarity coefficient (GS was 0.72. Two consistent groups of wheat varieties were identified using principal coordinate analysis (PCoA at the level of both the chromosome 6AS and the whole-genome, respectively. Group I was composed of non-6VS/6AL translocation lines of different origins, while Group II was composed of 6VS/6AL translocation (T6VS/6AL lines, most of which carried the Yr26 and Pm21 genes and originated from Guizhou. Besides, a model-based population structure analysis revealed extensive admixture and further divided these wheat accessions into six subgroups (SG1, SG2, SG3, SG4, SG5 and SG6, based on their origin, pedigree or disease resistance. This information is useful for wheat breeding in southwestern China and association mapping for disease resistance using these wheat germplasms in future.

  3. Review of the Sayh al Uhaymir (SaU 005, Plus Pairings, Martian Meteorite from Al Wusta, Oman

    Directory of Open Access Journals (Sweden)

    Arshad Ali

    2017-01-01

    Full Text Available Al Wusta is a desert area in the Sultanate of Oman which is famous due to the discovery of a number of Martian and Lunar meteorites since the start of the present millennium. According to the Meteoritical Bulletin database, 137 approved Martian meteorites have been found worldwide, including 17 from Oman (4 from Zufar, 13 from Al Wusta region. Interestingly 11 finds in the last 15 years have been of Sayh al Uhaymir (SaU 005 and its pairings. These finds (estimated mass = 11.2 kg are linked to 10 search expeditions carried out between November 26, 1999 and March 2, 2014 by the Swiss group from the University of Bern and several anonymous meteorite hunters. The bulk of these meteorites (~97% is in the possession of anonymous collectors, negatively affecting Oman’s natural heritage and denying further research opportunities, given their associated scientific value. SaU 005 and its pairings belong to the shergottite group of the Shergotty-Nakhla-Chassigny (SNC meteorites, originating from various depths within the Martian mantle. We discuss the recently published oxygen isotope data of bulk and mineral fractions of SaU 008 recovered during the very first expedition in 1999 in the context of other shergottites found in Oman. The bulk oxygen isotope data of SaU 008 and Dhofar 019, another Martian meteorite from Oman, show a narrow range in δ18O values. Their Δ17O values are remarkably close to identical and fall linearly on a Martian fractionation line above the terrestrial fractionation line (TFL by + 0.32‰, suggesting that Mars’ mantle is homogeneous in oxygen isotopes. Petrographic and mineralogical data of SaU 005 and other pairings published in the Meteoritical Bulletin are compiled, and it is noted that all the meteorites are identical and are likely paired. The story behind these rare extra-terrestrial specimens demands a local meteorite museum and preliminary testing laboratory at Sultan Qaboos University (SQU to protect this treasure

  4. Development of a regional LiDAR field plot strategy for Oregon and Washington

    Science.gov (United States)

    Arvind Bhuta; Leah Rathbun

    2015-01-01

    The National Forest System (NFS) Pacific Northwest Region (R6) has been flying LiDAR on a per project basis. Additional field data was also collected in situ to many of these LiDAR projects to aid in the development of predictive models and estimate values which are unattainable through LiDAR data alone (e.g. species composition, tree volume, and downed woody material...

  5. LiDAR derived high resolution topography: the next challenge for the analysis of terraces stability and vineyard soil erosion

    Directory of Open Access Journals (Sweden)

    Federico Preti

    2013-09-01

    Full Text Available The soil erosion in the vineyards is a critical issue that could affect their productivity, but also, when the cultivation is organized in terraces, increase the risk due to derived slope failure processes. If terraces are not correctly designed or maintained, a progressively increasing of gully erosion affects the structure of the walls. The results of this process is the increasing of connectivity and runoff. In order to overcome such issues it is really important to recognize in detail all the surface drainage paths, thus providing a basis upon which develop a suitable drainage system or provide structural measures for the soil erosion risk mitigation. In the last few years, the airborne LiDAR technology led to a dramatic increase in terrain information. Airborne LiDAR and Terrestrial Laser Scanner derived high-resolution Digital Terrain Models (DTMs have opened avenues for hydrologic and geomorphologic studies (Tarolli et al., 2009. In general, all the main surface process signatures are correctly recognized using a DTM with cell sizes of 1 m. However sub-meter grid sizes may be more suitable in those situations where the analysis of micro topography related to micro changes is critical for slope failures risk assessment or for the design of detailed drainage flow paths. The Terrestrial Laser Scanner (TLS has been proven to be an useful tool for such detailed field survey. In this work, we test the effectiveness of high resolution topography derived by airborne LiDAR and TLS for the recognition of areas subject to soil erosion risk in a typical terraced vineyard landscape of “Chianti Classico” (Tuscany, Italy. The algorithm proposed by Tarolli et al. (2013, for the automatic recognition of anthropic feature induced flow direction changes, has been tested. The results underline the effectiveness of LiDAR and TLS data in the analysis of soil erosion signatures in vineyards, and indicate the high resolution topography as a useful tool to

  6. Feeding Dar es Salaam: a symbiotic food system perspective

    OpenAIRE

    Wegerif, Marc C.A.

    2017-01-01

    This thesis is a sociological analysis of the agri-food system that feeds most of the over four and a half million residents of the fast-growing city of Dar es Salaam in Tanzania. It is based on qualitative research that has generated a picture of the food system that supplies the important foods for the majority of residents of the city. The research took an actor orientated approach and started from urban eaters and then followed the food back through retailers, processors and transporters ...

  7. Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L. Estimated by SSR, DArT and Pedigree Data.

    Directory of Open Access Journals (Sweden)

    Giovanni Laidò

    Full Text Available Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2, both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg and brittle rachis (Br characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles.

  8. Performance testing of LiDAR exploitation software

    Science.gov (United States)

    Varela-González, M.; González-Jorge, H.; Riveiro, B.; Arias, P.

    2013-04-01

    Mobile LiDAR systems are being used widely in recent years for many applications in the field of geoscience. One of most important limitations of this technology is the large computational requirements involved in data processing. Several software solutions for data processing are available in the market, but users are often unknown about the methodologies to verify their performance accurately. In this work a methodology for LiDAR software performance testing is presented and six different suites are studied: QT Modeler, AutoCAD Civil 3D, Mars 7, Fledermaus, Carlson and TopoDOT (all of them in x64). Results depict as QTModeler, TopoDOT and AutoCAD Civil 3D allow the loading of large datasets, while Fledermaus, Mars7 and Carlson do not achieve these powerful performance. AutoCAD Civil 3D needs large loading time in comparison with the most powerful softwares such as QTModeler and TopoDOT. Carlson suite depicts the poorest results among all the softwares under study, where point clouds larger than 5 million points cannot be loaded and loading time is very large in comparison with the other suites even for the smaller datasets. AutoCAD Civil 3D, Carlson and TopoDOT show more threads than other softwares like QTModeler, Mars7 and Fledermaus.

  9. 2011-2013 Indiana Statewide Imagery and LiDAR Program: Lake Michigan Watershed Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Indiana's Statewide LiDAR data is produced at 1.5-meter average post spacing for all 92 Indiana Counties covering more than 36,420 square miles. New LiDAR data was...

  10. Diversity arrays technology (DArT) markers in apple for genetic linkage maps

    NARCIS (Netherlands)

    Schouten, H.J.; Weg, van de W.E.; Carling, J.; Khan, S.A.; McKay, S.J.; Kaauwen, van M.P.W.

    2012-01-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for

  11. Investigating assumptions of crown archetypes for modelling LiDAR returns

    NARCIS (Netherlands)

    Calders, K.; Lewis, P.; Disney, M.; Verbesselt, J.; Herold, M.

    2013-01-01

    LiDAR has the potential to derive canopy structural information such as tree height and leaf area index (LAI), via models of the LiDAR signal. Such models often make assumptions regarding crown shape to simplify parameter retrieval and crown archetypes are typically assumed to contain a turbid

  12. Anti-diabetic drugs in the private and public sector in Dar es Salaam ...

    African Journals Online (AJOL)

    Objectives: To compare availability, cost, affordability and sources of anti-diabetic drugs between private and public health facilities in Dar es Salaam, Tanzania. Design: Cross sectional descriptive study. Setting: Diabetic clinics in private and public health facilities in Dar es Salaam, Tanzania. Subjects: Eighty patients ...

  13. Wayne and Washtenaw Counties 1.0 PPSM LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Wayne and Washtenaw Counties 1.0 PPSM LiDAR LiDAR Data Acquisition and Processing Production Task USGS CONTRACT: 07CRCN0006 TASK ORDER NUMBER: G09PD00300...

  14. Status and prospects for LiDAR remote sensing of forested ecosystems

    Science.gov (United States)

    M. A. Wulder; N. C. Coops; A. T. Hudak; F. Morsdorf; R. Nelson; G. Newnham; M. Vastaranta

    2013-01-01

    The science associated with the use of airborne and satellite Light Detection and Ranging (LiDAR) to remotely sense forest structure has rapidly progressed over the past decade. LiDAR has evolved from being a poorly understood, potentially useful tool to an operational technology in a little over a decade, and these instruments have become a major success story in...

  15. 47 CFR 25.401 - Satellite DARS applications subject to competitive bidding.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Satellite DARS applications subject to competitive bidding. 25.401 Section 25.401 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Competitive Bidding Procedures for DARS § 25.401...

  16. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR

    Science.gov (United States)

    Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.

    2015-01-01

    Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  17. Flood Modeling Using a Synthesis of Multi-Platform LiDAR Data

    Directory of Open Access Journals (Sweden)

    Ryan M. Csontos

    2013-09-01

    Full Text Available This study examined the utility of a high resolution ground-based (mobile and terrestrial Light Detection and Ranging (LiDAR dataset (0.2 m point-spacing supplemented with a coarser resolution airborne LiDAR dataset (5 m point-spacing for use in a flood inundation analysis. The techniques for combining multi-platform LiDAR data into a composite dataset in the form of a triangulated irregular network (TIN are described, and quantitative comparisons were made to a TIN generated solely from the airborne LiDAR dataset. For example, a maximum land surface elevation difference of 1.677 m and a mean difference of 0.178 m were calculated between the datasets based on sample points. Utilizing the composite and airborne LiDAR-derived TINs, a flood inundation comparison was completed using a one-dimensional steady flow hydraulic modeling analysis. Quantitative comparisons of the water surface profiles and depth grids indicated an underestimation of flooding extent, volume, and maximum flood height using the airborne LiDAR data alone. A 35% increase in maximum flood height was observed using the composite LiDAR dataset. In addition, the extents of the water surface profiles generated from the two datasets were found to be statistically significantly different. The urban and mountainous characteristics of the study area as well as the density (file size of the high resolution ground based LiDAR data presented both opportunities and challenges for flood modeling analyses.

  18. University of Dar es Salaam Library Journal - Vol 9, No 1 (2007)

    African Journals Online (AJOL)

    Gender Analysis Of Electronic Information Resource Use: The Case Of The University Of Dar Es Salaam, Tanzania · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL ... A Bibliometric Study Of Research On Dar Es Salaam Region: 1980 To 2003 · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  19. Airborne LiDAR reflective linear feature extraction for strip adjustment and horizontal accuracy determination.

    Science.gov (United States)

    2009-02-01

    ODOT's Office of Aerial Engineering (OAE) has been using an Opetch 30/70 ALTM airborne LiDAR system for about four years. The introduction of LiDAR technology was a major development towards improving the mapping operations. The overall experiences a...

  20. Jean Lafitte 2013, 1.0 Meter LiDAR, Classified point cloud

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Jean Lafitte,G13PD00214, 1.0 Meter LiDAR Survey Area in south of New Orleans and encompasses 77...

  1. The Typology of Female Sex Workers in Dar-es-Salaam ...

    African Journals Online (AJOL)

    Objective: To establish the categories of female sex workers in Dar es Salaam. Methods: We conducted in depth-interviews with 32 female sex workers (FSWs) in five geographic areas of Dar-es-Salaam known to be the primary residential and working places, three local government leaders in three of the five areas known ...

  2. Epidemiological Studies on Bovine Mastitis in Smallholder Dairy Herds in the Dar es Salaam Region, Tanzania

    NARCIS (Netherlands)

    Kivaria, F.M.

    2006-01-01

    Recently the number of milking cows has increased substantially in the Dar es Salaam region due to an increasing demand for fresh milk in this densely populated urban centre. It is estimated that there are 1,765 smallholder dairy herds with 8,233 improved dairy animals in and around the Dar es

  3. Mapping of landslides under dense vegetation cover using object - oriented analysis and LiDAR derivatives

    NARCIS (Netherlands)

    Van Den Eeckhout, Miet; Kerle, N.; Hervas, Javier; Supper, Robert; Margottini, C.; Canuti, P.; Sassa, K.

    2013-01-01

    Light Detection and Ranging (LiDAR) and its wide range of derivative products have become a powerful tool in landslide research, particularly for landslide identification and landslide inventory mapping. In contrast to the many studies that use expert-based analysis of LiDAR derivatives to identify

  4. Comparisons between field- and LiDAR-based measures of stand structrual complexity

    Science.gov (United States)

    Van R. Kane; Robert J. McGaughey; Jonathan D. Bakker; Rolf F. Gersonde; James A. Lutz; Jerry F. Franklin

    2010-01-01

    Forest structure, as measured by the physical arrangement of trees and their crowns, is a fundamental attribute of forest ecosystems that changes as forests progress through successional stages. We examined whether LiDAR data could be used to directly assess the successional stage of forests by determining the degree to which the LiDAR data would show the same relative...

  5. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys

    Science.gov (United States)

    Andrew T. Hudak; Eva K. Strand; Lee A. Vierling; John C. Byrne; Jan U. H. Eitel; Sebastian Martinuzzi; Michael J. Falkowski

    2012-01-01

    Sound forest policy and management decisions to mitigate rising atmospheric CO2 depend upon accurate methodologies to quantify forest carbon pools and fluxes over large tracts of land. LiDAR remote sensing is a rapidly evolving technology for quantifying aboveground biomass and thereby carbon pools; however, little work has evaluated the efficacy of repeat LiDAR...

  6. FY12 St Johns River Water Management LiDAR Survey: Putnam (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the FY12 St Johns River Water Management LiDAR Survey, project area in north-central Florida and...

  7. Using satellite and airborne LiDAR to model woodpecker habitat occupancy at the landscape scale

    Science.gov (United States)

    Lee A. Vierling; Kerri T. Vierling; Patrick Adam; Andrew T. Hudak

    2013-01-01

    Incorporating vertical vegetation structure into models of animal distributions can improve understanding of the patterns and processes governing habitat selection. LiDAR can provide such structural information, but these data are typically collected via aircraft and thus are limited in spatial extent. Our objective was to explore the utility of satellite-based LiDAR...

  8. Registration of vehicle based panoramic image and LiDAR point cloud

    Science.gov (United States)

    Chen, Changjun; Cao, Liang; Xie, Hong; Zhuo, Xiangyu

    2013-10-01

    Higher quality surface information would be got when data from optical images and LiDAR were integrated, owing to the fact that optical images and LiDAR point cloud have unique characteristics that make them preferable in many applications. While most previous works focus on registration of pinhole perspective cameras to 2D or 3D LiDAR data. In this paper, a method for the registration of vehicle based panoramic image and LiDAR point cloud is proposed. Using the translation among panoramic image, single CCD image, laser scanner and Position and Orientation System (POS) along with the GPS/IMU data, precise co-registration between the panoramic image and the LiDAR point cloud in the world system is achieved. Results are presented under a real world data set collected by a new developed Mobile Mapping System (MMS) integrated with a high resolution panoramic camera, two laser scanners and a POS.

  9. A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data

    Science.gov (United States)

    Gajda, Agnieszka; Wójtowicz-Nowakowska, Anna

    2013-04-01

    A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data Land cover maps are generally produced on the basis of high resolution imagery. Recently, LiDAR (Light Detection and Ranging) data have been brought into use in diverse applications including land cover mapping. In this study we attempted to assess the accuracy of land cover classification using both high resolution aerial imagery and LiDAR data (airborne laser scanning, ALS), testing two classification approaches: a pixel-based classification and object-oriented image analysis (OBIA). The study was conducted on three test areas (3 km2 each) in the administrative area of Kraków, Poland, along the course of the Vistula River. They represent three different dominating land cover types of the Vistula River valley. Test site 1 had a semi-natural vegetation, with riparian forests and shrubs, test site 2 represented a densely built-up area, and test site 3 was an industrial site. Point clouds from ALS and ortophotomaps were both captured in November 2007. Point cloud density was on average 16 pt/m2 and it contained additional information about intensity and encoded RGB values. Ortophotomaps had a spatial resolution of 10 cm. From point clouds two raster maps were generated: intensity (1) and (2) normalised Digital Surface Model (nDSM), both with the spatial resolution of 50 cm. To classify the aerial data, a supervised classification approach was selected. Pixel based classification was carried out in ERDAS Imagine software. Ortophotomaps and intensity and nDSM rasters were used in classification. 15 homogenous training areas representing each cover class were chosen. Classified pixels were clumped to avoid salt and pepper effect. Object oriented image object classification was carried out in eCognition software, which implements both the optical and ALS data. Elevation layers (intensity, firs/last reflection, etc.) were used at segmentation stage due to

  10. ALS Association

    Science.gov (United States)

    ... toward a world without ALS! Walk to Defeat ALS® Walk to Defeat ALS® draws people of all ... We need your help. I Will Advocate National ALS Registry The National ALS Registry is a congressionally ...

  11. Now You See It… Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Juan Carlos Fernandez-Diaz

    2014-10-01

    Full Text Available In this paper we provide a description of airborne mapping LiDAR, also known as airborne laser scanning (ALS, technology and its workflow from mission planning to final data product generation, with a specific emphasis on archaeological research. ALS observations are highly customizable, and can be tailored to meet specific research needs. Thus it is important for an archaeologist to fully understand the options available during planning, collection and data product generation before commissioning an ALS survey, to ensure the intended research questions can be answered with the resultant data products. Also this knowledge is of great use for the researcher trying to understand the quality and limitations of existing datasets collected for other purposes. Throughout the paper we use examples from archeological ALS projects to illustrate the key concepts of importance for the archaeology researcher.

  12. Building Contour Extraction Based on LiDAR Point Cloud

    Directory of Open Access Journals (Sweden)

    Zhang Xu-Qing

    2017-01-01

    Full Text Available This paper presents a new method for solving the problem of utilizing the LiDAR data to extract the building contour line. For detection of the edge points between the building test points by using the least squares fitting to get the edge line of buildings and give the weight determining of the building of edge line slope depend on the length of the edge line. And then get the weighted mean of the positive and negative slope of the building edge line. Based on the structure of the adjacent edge perpendicular hypothesis, regularization processing to extract the edge of the skeleton line perpendicular. The experiments show that the extracted building edges have the good accuracy and have the good applicability in complex urban areas.

  13. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania.

    Science.gov (United States)

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Gosoniu, Laura; Drescher, Axel W; Fillinger, Ulrike; Tanner, Marcel; Killeen, Gerry F; Castro, Marcia C

    2009-05-01

    A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats.

  14. Delineation of peatland lagg boundaries from airborne LiDAR

    Science.gov (United States)

    Langlois, Melanie N.; Richardson, Murray C.; Price, Jonathan S.

    2017-09-01

    In Canada, peatlands are the most common type of wetland, but boundary delineation in peatland complexes has received little attention in the scientific literature. Typically, peatland boundaries are mapped as crisp, absolute features, and the transitional lagg zone—the ecotone found between a raised bog and the surrounding mineral land—is often overlooked. In this study, we aim (1) to advance existing approaches for detecting and locating laggs and lagg boundaries using airborne LiDAR surveys and (2) to describe the spatial distribution of laggs around raised bog peatlands. Two contrasting spatial analytical approaches for lagg detection were tested using five LiDAR-derived topographic and vegetation indices: topography, vegetation height, topographic wetness index, the standard deviation of the vegetation's height (as a proxy for the complexity of the vegetation's structure), and local indices of elevation variance. Using a dissimilarity approach (edge-detection, split-moving window analysis), no one variable accurately depicted both the lagg-mineral land and bog-lagg boundaries. Some indicators were better at predicting the bog-lagg boundary (i.e., vegetation height) and others at finding the lagg-mineral land boundary (i.e., topography). Dissimilarity analysis reinforces the usefulness of derived variables (e.g., wetness indices) in locating laggs, especially for those with weak topographic and vegetation gradients. When the lagg was confined between the bog and the adjacent upland, it took a linear form, parallel to the peatland's edge and was easier to predict. When the adjacent mineral land was flat or sloping away from the peatland, the lagg was discontinuous and intermittent and more difficult to predict.

  15. Familial ALS

    Science.gov (United States)

    Boylan, Kevin

    2015-01-01

    Synopsis Genes linked to ALS susceptibility are being identified at an increasing rate owing to advances in molecular genetic technology. Genetic mechanisms in ALS pathogenesis appear to exert major effects in ~10% of patients, but genetic factors at some level may be important components of disease risk in most ALS patients. Identification of gene variants associated with ALS has informed concepts of the pathogenesis of ALS, aided the identification of therapeutic targets, facilitated research to develop new ALS biomarkers, and supported the establishment of clinical diagnostic tests for ALS-linked genes. Translation of this knowledge to ALS therapy development is ongoing. PMID:26515623

  16. Important LiDAR metrics for discriminating forest tree species in Central Europe

    Science.gov (United States)

    Shi, Yifang; Wang, Tiejun; Skidmore, Andrew K.; Heurich, Marco

    2018-03-01

    Numerous airborne LiDAR-derived metrics have been proposed for classifying tree species. Yet an in-depth ecological and biological understanding of the significance of these metrics for tree species mapping remains largely unexplored. In this paper, we evaluated the performance of 37 frequently used LiDAR metrics derived under leaf-on and leaf-off conditions, respectively, for discriminating six different tree species in a natural forest in Germany. We firstly assessed the correlation between these metrics. Then we applied a Random Forest algorithm to classify the tree species and evaluated the importance of the LiDAR metrics. Finally, we identified the most important LiDAR metrics and tested their robustness and transferability. Our results indicated that about 60% of LiDAR metrics were highly correlated to each other (|r| > 0.7). There was no statistically significant difference in tree species mapping accuracy between the use of leaf-on and leaf-off LiDAR metrics. However, combining leaf-on and leaf-off LiDAR metrics significantly increased the overall accuracy from 58.2% (leaf-on) and 62.0% (leaf-off) to 66.5% as well as the kappa coefficient from 0.47 (leaf-on) and 0.51 (leaf-off) to 0.58. Radiometric features, especially intensity related metrics, provided more consistent and significant contributions than geometric features for tree species discrimination. Specifically, the mean intensity of first-or-single returns as well as the mean value of echo width were identified as the most robust LiDAR metrics for tree species discrimination. These results indicate that metrics derived from airborne LiDAR data, especially radiometric metrics, can aid in discriminating tree species in a mixed temperate forest, and represent candidate metrics for tree species classification and monitoring in Central Europe.

  17. Mapping river bathymetry with a small footprint green LiDAR: Applications and challenges

    Science.gov (United States)

    Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.

    2013-01-01

    Airborne bathymetric Light Detection And Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly sought after for high-resolution mapping of fluvial systems. To evaluate the potential utility of bathymetric LiDAR for applications of this kind, we compared detailed surveys collected using wading and sonar techniques with measurements from the United States Geological Survey’s hybrid topographic⁄ bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). These comparisons, based upon data collected from the Trinity and Klamath Rivers, California, and the Colorado River, Colorado, demonstrated

  18. In-Field High-Throughput Phenotyping of Cotton Plant Height Using LiDAR

    OpenAIRE

    Shangpeng Sun; Changying Li; Andrew H. Paterson

    2017-01-01

    A LiDAR-based high-throughput phenotyping (HTP) system was developed for cotton plant phenotyping in the field. The HTP system consists of a 2D LiDAR and an RTK-GPS mounted on a high clearance tractor. The LiDAR scanned three rows of cotton plots simultaneously from the top and the RTK-GPS was used to provide the spatial coordinates of the point cloud during data collection. Configuration parameters of the system were optimized to ensure the best data quality. A height profile for each plot w...

  19. Genetic linkage mapping in an F2 perennial ryegrass population using DArT markers

    DEFF Research Database (Denmark)

    Tomaszewski, Céline; Byrne, Stephen; Foito, Alexandra

    2012-01-01

    Perennial ryegrass is the principal forage grass species used in temperate agriculture. In recent years, significant efforts have been made to develop molecular marker strategies to allow cost-effective characterization of a large number of loci simultaneously. One such strategy involves using DAr......T markers, and a DArT array has recently been developed for the Lolium-Festuca complex. In this study, we report the first use of the DArTFest array to generate a genetic linkage map based on 326 markers in a Lolium perenne F2 population, consisting of 325 genotypes. For proof of concept, the map was used...

  20. 4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR

    Science.gov (United States)

    Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas

    2016-04-01

    The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten

  1. Green infrastructure for flood risk management in Dar es Salaam and Copenhagen

    DEFF Research Database (Denmark)

    Mguni, Patience; Herslund, Lise Byskov; Jensen, Marina Bergen

    2015-01-01

    , a comparison of the opportunities and barriers to the implementation of SUDS in Dar es Salaam and Copenhagen is presented. The results indicate that a bottom-up approach in Dar es Salaam is important, with the community level taking the lead, while in Copenhagen the top-down approach currently employed......The risk of flooding in urban areas could be better approached by complementing conventional sewer systems with sustainable urban drainage systems (SUDS) for storm-water management. This may be the case for developing world cities like Dar es Salaam with incomplete sewer services, as well as cities...

  2. How Well Can We Predict Salmonid Spawning Habitat with LiDAR?

    Science.gov (United States)

    Pfeiffer, A.; Finnegan, N. J.; Hayes, S.

    2013-12-01

    Suitable salmonid spawning habitat is, to a great extent, determined by physical, landscape driven characteristics such as channel morphology and grain size. Identifying reaches with high-quality spawning habitat is essential to restoration efforts in areas where salmonid species are endangered or threatened. While both predictions of suitable habitat and observations of utilized habitat are common in the literature, they are rarely combined. Here we exploit a unique combination of high-resolution LiDAR data and seven years of 387 individually surveyed Coho and Steelhead redds in Scott Creek, a 77 km2 un-glaciated coastal California drainage in the Santa Cruz Mountains, to both make and test predictions of spawning habitat. Using a threshold channel assumption, we predict grain size throughout Scott Creek via a shear stress model that incorporates channel width, instead of height, using Manning's equation (Snyder et al., 2013). Slope and drainage area are computed from a LiDAR-derived DEM, and channel width is calculated via hydraulic modeling. Our results for median grain size predictions closely match median grain sizes (D50) measured in the field, with the majority of sites having predicted D50's within a factor of two of the observed values, especially for reaches with D50 > 0.02m. This success suggests that the threshold model used to predict grain size is appropriate for un-glaciated alluvial channel systems. However, it appears that grain size alone is not a strong predictor of salmon spawning. Reaches with a high (>0.1m) average predicted D50 do have lower redd densities, as expected based on spawning gravel sizes in the literature. However, reaches with lower (<0.1m) predicted D50 have a wide range of redd densities, suggesting that reach-average grain size alone cannot explain spawning site selection in the finer-grained reaches of Scott Creek. We turn to analysis of bedform morphology in order to explain the variation in redd density in the low

  3. 2006-2008 PAMAP LiDAR Data of Pennsylvania (Northern Counties)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of classified LiDAR (Light Detection and Ranging) elevation points produced by the PAMAP Program. PAMAP data are organized into blocks, which...

  4. 2009 Federal Emergency Management Agency (FEMA) Topographic LiDAR: Fort Kent, Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Camp Dresser McKee Inc. contracted with Sanborn Map Company to provide LiDAR mapping services for Fort Kent, Maine. Utilizing multi-return systems, Light Detection...

  5. Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Hansen, G N

    2001-01-01

    The allatostatins are generally inhibitory insect neuropeptides. The Drosophila orphan receptor DAR-2 is a G-protein-coupled receptor, having 47% amino acid residue identity with another Drosophila receptor, DAR-1 (which is also called dros. GPCR, or DGR) that was previously shown...... to be the receptor for an intrinsic Drosophila A-type (cockroach-type) allatostatin. Here, we have permanently expressed DAR-2 in CHO cells and found that it is the cognate receptor for four Drosophila A-type allatostatins, the drostatins-A1 to -A4. Of all the drostatins, drostatin-A4 (Thr...... weakly in the brain. The Drosophila larval gut also contains about 20-30 endocrine cells, expressing the gene for the drostatins-A1 to -A4. We suggest, therefore, that DAR-2 mediates an allatostatin (drostatin)-induced inhibition of gut motility. This is the first report on the permanent and functional...

  6. Case of rhesus antigen weak D type 4.2. (DAR category detection

    Directory of Open Access Journals (Sweden)

    L. L. Golovkina

    2015-01-01

    Full Text Available Serological methods of Rhesus antigens identification in humans cannot identify D-antigen variants. In this article the serological characteristics of Rhesus antigen D weak type 4.2. (Category DAR are described.

  7. 2006 Florida LiDAR: Escambia, Santa Rosa, and Walton Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ESCAMBIA: The Light Detection and Ranging (LiDAR) LAS dataset is a survey of select areas within Escambia County, Florida. These data were produced for Dewberry and...

  8. I Pulmonary aspergilloma: A 15 years experience in Dar es Salaam ...

    African Journals Online (AJOL)

    College of Health Sciences,P 0 Box 65001, Dar es Salaam, Tanzania. Email address: ... esisting lung cavity by a fungus of the genus aspergillus forming ... is a national referral and teaching hospital with a ... Thus, preoperative evaluation and.

  9. LiDAR and DTM Data from Tapajos National Forest in Para, Brazil, 2008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides LiDAR point clouds and digital terrain models (DTM) from surveys over the Tapajos National Forest in Belterra municipality, Para, Brazil...

  10. 2010 U.S. Geological Survey (USGS) Topographic LiDAR: San Francisco Bay, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR)...

  11. CMS: LiDAR Data for Mangrove Forests in the Zambezi River Delta, Mozambique, 2014

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides high-resolution LiDAR point cloud data collected during surveys over mangrove forests in the Zambezi River Delta in Mozambique in May 2014....

  12. 2011 Federal Emergency Management Agency (FEMA) Topographic LiDAR: Quinnipiac River Watershed, Connecticut

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Quinnipiac AOI consists of one 443 square mile area. Ground Control is collected throughout the AOI for use in the processing of LiDAR data to ensure data...

  13. 2007 Lake County Board of County Commissioners Topographic LiDAR: Lake County, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata document describes the LiDAR point data in LAS format produced by Kucera covering the project area of Lake County, FL. The data produced is...

  14. 2007 Southwest Florida Water Management District (SWFWMD) LiDAR: Hillsborough/Little Manatee Districts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — EarthData International collected ADS-50 derived LiDAR over a portion of Hillsborough and Manatee Counties with a one meter post spacing. The period of collection...

  15. 2007 Southwest Florida Water Management District (SWFWMD) LiDAR: Hernando County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is one component of a digital terrain model (DTM) for the Southwest Florida Water Management Districts FY2006 Digital Orthophoto (B089) and LiDAR...

  16. 2006-2008 PAMAP LiDAR Data of Pennsylvania (Southern Counties)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of classified LiDAR (Light Detection and Ranging) elevation points produced by the PAMAP Program. Additional information is available at the...

  17. LiDAR-derived Vegetation Canopy Structure, Great Smoky Mountains National Park, 2011

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides multiple-return LiDAR-derived vegetation canopy structure at 30-meter spatial resolution for the Great Smoky Mountains National Park (GSMNP)....

  18. Managing pre-eclampsia and eclampsia in Dar es Salaam public ...

    African Journals Online (AJOL)

    Managing pre-eclampsia and eclampsia in Dar es Salaam public health facilities: A focus on equipment, supplies, ... Tanzania Medical Journal ... A checklist was used to assess availability of equipment, supplies and drugs, and a structured ...

  19. 2009 National Renewable Energy Laboratory/Boston Redevelopment Authority Topographic LiDAR: Boston, Massachusetts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Alliance for Sustainable Energy, LLC contracted with Sanborn to provide LiDAR mapping services for the Boston area. Utilizing multi-return systems, Light...

  20. 2010 U.S. Geological Survey Topographic LiDAR: Atchafalaya Basin, Louisiana

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Atchafalaya Basin in south-central Louisiana. The entire survey area encompasses 981 square miles....

  1. 2012 USACE Post Sandy Topographic LiDAR: Rhode Island and Massachusetts Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This topographic elevation point data derived from multiple return light detection and ranging (LiDAR) represents 354.272 square miles of coastline for Rhode Island...

  2. 2008 Northwest Florida Water Management District (NWFWMD) LiDAR: Inland Okaloosa County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Light Detection and Ranging (LiDAR) LAS dataset is a survey of inland Okaloosa County, Florida not covered in the 2008 Florida Department of Emergency...

  3. LiDAR Relative Reflectivity Surface (2011) for the St. Thomas East End Reserve, St. Thomas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution relative seafloor reflectivity surface for the St. Thomas East End Reserve...

  4. Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data.

    Science.gov (United States)

    Li, Xiaolu; Liang, Yu

    2015-05-20

    Analysis of light detection and ranging (LiDAR) intensity data to extract surface features is of great interest in remote sensing research. One potential application of LiDAR intensity data is target classification. A new bidirectional reflectance distribution function (BRDF) model is derived for target characterization of rough and smooth surfaces. Based on the geometry of our coaxial full-waveform LiDAR system, the integration method is improved through coordinate transformation to establish the relationship between the BRDF model and intensity data of LiDAR. A series of experiments using typical urban building materials are implemented to validate the proposed BRDF model and integration method. The fitting results show that three parameters extracted from the proposed BRDF model can distinguish the urban building materials from perspectives of roughness, specular reflectance, and diffuse reflectance. A comprehensive analysis of these parameters will help characterize surface features in a physically rigorous manner.

  5. Intraday monitoring of granitic exfoliation sheets with LiDAR and thermal imaging (Yosemite Valley, California, USA)

    Science.gov (United States)

    Guerin, Antoine; Derron, Marc-Henri; Jaboyedoff, Michel; Abellán, Antonio; Dubas, Olivier; Collins, Brian D.; Stock, Greg M.

    2016-04-01

    Rockfall activity in Yosemite Valley is often linked to the presence of exfoliation sheets associated with other structures such as faults, joints or geological contacts. Daily and seasonal temperature variations or freeze-thaw cycles may strongly promote crack propagation along discontinuities, ultimately leading to rockfalls (Stock et al., 2013). However, little is known concerning the impact of thermal variations on rock face deformation, despite its occurrence at all times of year. To understand the influence of daily temperature fluctuations on the behavior of exfoliation joints (i.e., fractures separating exfoliation sheets), we carried out two different experiments in October 2015: (a) We first monitored a sub-vertical granodiorite flake (19 m by 4 m by 0.1 m ; Collins and Stock, 2014) for 24 consecutive hours using LiDAR and infrared thermal sensors; (b) We monitored a rock cliff (60 m by 45 m) composed of tens of exfoliation sheets located on the southeast face of El Capitan (an ~1000-m-tall cliff located in western Yosemite Valley) for several hours (from 05:30 pm to 01:30 am) to investigate the diurnal cooling effect on rocks of different lithologies. To calibrate the raw apparent temperature measured by the thermal imager (FLIR T660 infrared camera), we fixed pieces of reflective paper (aluminum foil) and black duct tape on both monitored cliffs to measure the reflected temperature and the emissivity of the different rocks. In addition, ambient temperature and relative humidity readings were performed for each acquisition. We then compared the calibrated temperatures to the values registered by resistance temperature detectors (Pt100 sensors), also attached to the rock. Finally, we compared the millimeter scale deformations observed with LiDAR to the values measured by manual crackmeters (standard analog comparators with springs) installed beforehand in the fractures. For the first experiment (24-hour monitoring), a series of measurements were carried

  6. Urban Classification Techniques Using the Fusion of LiDAR and Spectral Data

    Science.gov (United States)

    2012-09-01

    37 D. MASK CREATION .......................................................................................39 viii 1. LiDAR-based Masks...in Quick Terrain Modeler 2. WorldView-2 The image used in this project was collected by WorldView-2 on November 8, 2011 at Zulu time 19:34:42...OBSERVATIONS A. PROCESS OVERVIEW The focus of this thesis was to create a robust technique for fusing LiDAR and spectral imagery for creation of a

  7. Sexual behaviours and associated factors among students at Bahir Dar University: a cross sectional study

    OpenAIRE

    Mulu, Wondemagegn; Yimer, Mulat; Abera, Bayeh

    2014-01-01

    Background Sexual behaviour is the core of sexuality matters in adolescents and youths. Their modest or dynamic behaviour vulnerable them to risky sexual behaviours. In Ethiopia, there is scarcity of multicentered representative data on sexual behaviours in students to have a national picture at higher education. This study therefore conducted to assess sexual behaviours and associated factors at Bahir Dar University, Ethiopia. Methods A cross sectional study was conducted among Bahir Dar Uni...

  8. Synergy of VSWIR and LiDAR for Ecosystem Structure, Biomass, and Canopy Diversity

    Science.gov (United States)

    Cook, Bruce D.; Asner, Gregory P.

    2010-01-01

    This slide presentation reviews the use of Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer and LiDAR to study ecosystem structure, biomass and canopy diversity. It is shown that the biophysical data from LiDAR and biochemical information from hyperspectral remote sensing provides complementary data for: (1) describing spatial patterns of vegetation and biodiversity, (2) characterizing relationships between ecosystem form and function, and (3) detecting natural and human induced change that affects the biogeochemical cycles.

  9. Modeling marbled murrelet (Brachyramphus marmoratus) habitat using LiDAR-derived canopy data

    Science.gov (United States)

    Hagar, Joan C.; Eskelson, Bianca N.I.; Haggerty, Patricia K.; Nelson, S. Kim; Vesely, David G.

    2014-01-01

    LiDAR (Light Detection And Ranging) is an emerging remote-sensing tool that can provide fine-scale data describing vertical complexity of vegetation relevant to species that are responsive to forest structure. We used LiDAR data to estimate occupancy probability for the federally threatened marbled murrelet (Brachyramphus marmoratus) in the Oregon Coast Range of the United States. Our goal was to address the need identified in the Recovery Plan for a more accurate estimate of the availability of nesting habitat by developing occupancy maps based on refined measures of nest-strand structure. We used murrelet occupancy data collected by the Bureau of Land Management Coos Bay District, and canopy metrics calculated from discrete return airborne LiDAR data, to fit a logistic regression model predicting the probability of occupancy. Our final model for stand-level occupancy included distance to coast, and 5 LiDAR-derived variables describing canopy structure. With an area under the curve value (AUC) of 0.74, this model had acceptable discrimination and fair agreement (Cohen's κ = 0.24), especially considering that all sites in our sample were regarded by managers as potential habitat. The LiDAR model provided better discrimination between occupied and unoccupied sites than did a model using variables derived from Gradient Nearest Neighbor maps that were previously reported as important predictors of murrelet occupancy (AUC = 0.64, κ = 0.12). We also evaluated LiDAR metrics at 11 known murrelet nest sites. Two LiDAR-derived variables accurately discriminated nest sites from random sites (average AUC = 0.91). LiDAR provided a means of quantifying 3-dimensional canopy structure with variables that are ecologically relevant to murrelet nesting habitat, and have not been as accurately quantified by other mensuration methods.

  10. ASTER GDEM validation using LiDAR data over coastal regions of Greenland

    DEFF Research Database (Denmark)

    Hvidegaard, Sine Munk; Sørensen, Louise Sandberg; Forsberg, René

    2011-01-01

    Elevation data from airborne Light Detection and Ranging (LiDAR) campaigns are used in an attempt to evaluate the accuracy of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global digital elevation model (GDEM) in Greenland. The LiDAR elevation data set is characterized...... of Greenland and the effect of the number of scenes used to generate the ASTER GDEM as well as relief are associated with the GDEM accuracy....

  11. Getting the most neutrinos out of IsoDAR

    Energy Technology Data Exchange (ETDEWEB)

    Ciuffoli, Emilio; Zhao, Fengyi; Deliyergiyev, Maksym [CAS, Institute of Modern Physics, Lanzhou (China); Mohammed, Hosam; Evslin, Jarah [CAS, Institute of Modern Physics, Lanzhou (China); University of the Chinese Academy of Sciences, Beijing (China)

    2017-12-15

    Several experimental collaborations worldwide intend to test sterile neutrino models by measuring the disappearance of antineutrinos produced via isotope decay at rest (IsoDAR). The most advanced of these proposals have very similar setups, in which a proton beam strikes a target yielding neutrons which are absorbed by a high isotopic purity {sup 7}Li converter, yielding {sup 8}Li whose resulting decay yields the antineutrinos. In this note, we use FLUKA and GEANT4 simulations to investigate three proposed modifications of this standard proposal. In the first, the {sup 7}Li is replaced with {sup 7}Li compounds including a deuterium moderator. In the second, a gap is placed between the target and the converter to reduce the neutron bounce-back. Finally, we consider cooling the converter with liquid nitrogen. We find that these modifications can increase the antineutrino yield by as much as 50%. The first also substantially reduces the quantity of high purity {sup 7}Li which is needed. (orig.)

  12. (Women’s Readings of Parvaz- Dar- Hobab

    Directory of Open Access Journals (Sweden)

    Jamal Mohammadi

    2008-07-01

    Full Text Available This research is an attempt to explain how audiences read and decode the dominant or preferred reading of television soap operas ( here, one of them named : Parvaz Dar Hobab . The main problem of this research is that in what way TV soap operas prefer or make dominant some meanings, ideas and values and how audiences interpret and decode these meanings and ideas and values. From this viewpoint, a soap opera is an articulation constructed of different, and sometimes contrast, elements which are unified around a nodal point. In other words, a television soap opera is an articulatory discourse which is constructed through some technical, social and ideological codes by hegemonic system. In a TV soap opera, as a discourse, some ideas and meanings are preferred over the others. The question is that how social subjects, who have an objective position in the social structure, read and decode these dominant ideas and meanings? In this research, in the first part we have used the semilogical- structuralist method to explain the preferred reading of TV soap operas, and in the second part we used focused group interview to study women readings. To mention one of the conclusions of this research, we can say that this soap opera attempts to hide that social nihilism which is the main factor of addiction. Most of the audiences have an oppositional reading of this problem.

  13. Advances in animal ecology from 3D ecosystem mapping with LiDAR

    Science.gov (United States)

    Davies, A.; Asner, G. P.

    2015-12-01

    The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Although the use of LiDAR data is widespread in vegetation science, it has only recently (3D ecosystem structure for animals. We reviewed the studies to date that have used LiDAR in animal ecology, synthesising the insights gained. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential than traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. LiDAR technology can be applied to animal ecology studies in a wide variety of environments to answer an impressive array of questions. Drawing on case studies from vastly different groups, termites and lions, we further demonstrate the applicability of LiDAR and highlight new understanding, ranging from habitat preference to predator-prey interactions, that would not have been possible from studies restricted to field based methods. We conclude with discussion of how future studies will benefit by using LiDAR to consider 3D habitat effects in a wider variety of ecosystems and with more taxa to develop a better understanding of animal dynamics.

  14. The application of LiDAR to investigate foredune morphology and vegetation

    Science.gov (United States)

    Doyle, Thomas B.; Woodroffe, Colin D.

    2018-02-01

    LiDAR (Light Detection and Ranging) has been used to investigate coastal landform morphology, evolution, and change for almost a decade. Repeated airborne LiDAR surveys can provide the scientific community with significant observations of how shorelines have evolved, which may then enable forecasts of future patterns of change. However, there have been few studies that have considered the application of this new technology to the specific study of foredune morphology and vegetation. The accuracy and appropriateness of airborne LiDAR needs to be assessed, particularly where the density of vegetation may obscure the underlying topography, prior to interpreting derived geomorphic features. This study: i) tests the vertical accuracy of airborne LiDAR in 37 foredune systems along the coast of south-eastern Australia, and ii) demonstrates that it can be used to describe foredune morphology and vegetation in considerable detail. There was a strong correlation between the remotely-sensed LiDAR-derived elevation and field topographic and vegetation surveys (R2 = 0.96). A protocol for obtaining foredune geomorphic and botanical parameters is described. It enables widespread biogeomorphic characterisation along coasts for which LiDAR data is available, which can benefit both coastal managers and researchers alike.

  15. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation

    Directory of Open Access Journals (Sweden)

    Wuming Zhang

    2016-06-01

    Full Text Available Separating point clouds into ground and non-ground measurements is an essential step to generate digital terrain models (DTMs from airborne LiDAR (light detection and ranging data. However, most filtering algorithms need to carefully set up a number of complicated parameters to achieve high accuracy. In this paper, we present a new filtering method which only needs a few easy-to-set integer and Boolean parameters. Within the proposed approach, a LiDAR point cloud is inverted, and then a rigid cloth is used to cover the inverted surface. By analyzing the interactions between the cloth nodes and the corresponding LiDAR points, the locations of the cloth nodes can be determined to generate an approximation of the ground surface. Finally, the ground points can be extracted from the LiDAR point cloud by comparing the original LiDAR points and the generated surface. Benchmark datasets provided by ISPRS (International Society for Photogrammetry and Remote Sensing working Group III/3 are used to validate the proposed filtering method, and the experimental results yield an average total error of 4.58%, which is comparable with most of the state-of-the-art filtering algorithms. The proposed easy-to-use filtering method may help the users without much experience to use LiDAR data and related technology in their own applications more easily.

  16. Methodology and Characteristics of Zad al-masir fi ‘ilm al-tafsirby AllamaIbn al-Jawzī (Urdu

    Directory of Open Access Journals (Sweden)

    Dr. Muhammad Riaz al Azhari

    2017-01-01

    Full Text Available This article describes the methodology and characteristics of Zad al-masir fi ‘ilm al-tafsir. This is one the finest work of AllamaIbn al-Jawzī, a 6th century prominent Interpreter. Several editions of this Tafsir have been published. However, the edition of dar al-kitab al-‘arbi, Beirut published in four volumes is selected for this study. This exegesis is based on conventional narrations, authentic quotations from the Islamic Scholars and lingual & grammatical discussions. As a witness, causes of verses (asbabal-Nuz┴l,Makki and MadaniSurah’s (chapters, the abrogating and abrogated verses (al-nasikhwal-mans┴kh and Islamic jurisprudence have been discussed in it where needed. The quality of this translation which is admirable is that mostly authentic Ahadith from original sources, and references to well known basic books in relevant discussions have been described. `

  17. LiDAR Mapping of Earthquake Uplifted Paleo-shorelines, Southern Wairarapa Coast, North Island, New Zealand

    Science.gov (United States)

    Valenciano, J.; Angenent, J.; Marshall, J. S.; Clark, K.; Litchfield, N. J.

    2017-12-01

    The Hikurangi subduction margin along the east coast of the North Island, New Zealand accommodates oblique convergence of the Pacific Plate westward beneath the Australian plate at 45 mm/yr. Pronounced forearc uplift occurs at the southern end of the margin along the Wairarapa coast, onshore of the subducting Hikurangi plateau. Along a narrow coastal lowland, a series of uplifted Holocene marine terraces and beach ridges preserve a geologic record of prehistoric coseismic uplift events. In January 2017, we participated in the Research Experience for Undergraduates (REU) program of the NSF SHIRE Project (Subduction at Hikurangi Integrated Research Experiment). We visited multiple coastal sites for reconnaissance fieldwork to select locations for future in-depth study. For the coastline between Flat Point and Te Kaukau Point, we used airborne LiDAR data provided by Land Information New Zealand (LINZ) to create ArcGIS digital terrain models for mapping and correlating uplifted paleo-shorelines. Terrace elevations derived from the LiDAR data were calibrated through the use of Real Time Kinematic (RTK) GPS surveying at one field site (Glenburn Station). Prior field mapping and radiocarbon dating results (Berryman et al., 2001; Litchfield and Clark, 2015) were used to guide our LiDAR mapping efforts. The resultant maps show between four and seven uplifted terraces and associated beach ridges along this coastal segment. At some sites, terrace mapping and lateral correlation are impeded by discontinuous exposures and the presence of landslide debris, alluvial fan deposits, and sand dunes. Tectonic uplift along the southern Hikurangi margin is generated by a complex interaction between deep megathrust slip and shallow upper-plate faulting. Each uplifted Holocene paleo-shoreline is interpreted to represent a single coseismic uplift event. Continued mapping, surveying, and age dating may help differentiate between very large margin-wide megathrust earthquakes (M8.0-9.0+) and

  18. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  19. Independent evaluation of the SNODAS snow depth product using regional scale LiDAR-derived measurements

    Science.gov (United States)

    Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.

    2014-06-01

    Repeated Light Detection and Ranging (LiDAR) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 LiDAR-derived dataset of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically-based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the coterminous United States. Independent validation data is scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation dataset with substantial geographic coverage. Within twelve distinctive 500 m × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 LiDAR acquisitions. This supplied a dataset for constraining the uncertainty of upscaled LiDAR estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled LiDAR snow depths were then compared to the SNODAS-estimates over the entire study area for the dates of the LiDAR flights. The remotely-sensed snow depths provided a more spatially continuous comparison dataset and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between LiDAR observations and SNODAS estimates were most drastic, suggesting natural processes specific to these regions as causal influences on model uncertainty.

  20. Parallel Landscape Driven Data Reduction & Spatial Interpolation Algorithm for Big LiDAR Data

    Directory of Open Access Journals (Sweden)

    Rahil Sharma

    2016-06-01

    Full Text Available Airborne Light Detection and Ranging (LiDAR topographic data provide highly accurate digital terrain information, which is used widely in applications like creating flood insurance rate maps, forest and tree studies, coastal change mapping, soil and landscape classification, 3D urban modeling, river bank management, agricultural crop studies, etc. In this paper, we focus mainly on the use of LiDAR data in terrain modeling/Digital Elevation Model (DEM generation. Technological advancements in building LiDAR sensors have enabled highly accurate and highly dense LiDAR point clouds, which have made possible high resolution modeling of terrain surfaces. However, high density data result in massive data volumes, which pose computing issues. Computational time required for dissemination, processing and storage of these data is directly proportional to the volume of the data. We describe a novel technique based on the slope map of the terrain, which addresses the challenging problem in the area of spatial data analysis, of reducing this dense LiDAR data without sacrificing its accuracy. To the best of our knowledge, this is the first ever landscape-driven data reduction algorithm. We also perform an empirical study, which shows that there is no significant loss in accuracy for the DEM generated from a 52% reduced LiDAR dataset generated by our algorithm, compared to the DEM generated from an original, complete LiDAR dataset. For the accuracy of our statistical analysis, we perform Root Mean Square Error (RMSE comparing all of the grid points of the original DEM to the DEM generated by reduced data, instead of comparing a few random control points. Besides, our multi-core data reduction algorithm is highly scalable. We also describe a modified parallel Inverse Distance Weighted (IDW spatial interpolation method and show that the DEMs it generates are time-efficient and have better accuracy than the one’s generated by the traditional IDW method.

  1. Optimizing variable radius plot size and LiDAR resolution to model standing volume in conifer forests

    Science.gov (United States)

    Ram Kumar Deo; Robert E. Froese; Michael J. Falkowski; Andrew T. Hudak

    2016-01-01

    The conventional approach to LiDAR-based forest inventory modeling depends on field sample data from fixed-radius plots (FRP). Because FRP sampling is cost intensive, combining variable-radius plot (VRP) sampling and LiDAR data has the potential to improve inventory efficiency. The overarching goal of this study was to evaluate the integration of LiDAR and VRP data....

  2. Automated Detection of Geomorphic Features in LiDAR Point Clouds of Various Spatial Density

    Science.gov (United States)

    Dorninger, Peter; Székely, Balázs; Zámolyi, András.; Nothegger, Clemens

    2010-05-01

    relevant results. Consequently, it could be verified that a topographic surface can be properly represented by a set of distinct planar structures. Therefore, the subsequent interpretation of those planes with respect to geomorphic characteristics is acceptable. The additional in situ geological measurements verified some of our findings in the sense that similar primary directions could be found that were derived from the LiDAR data set and (Zámolyi et al., 2010, this volume). References: P. Dorninger, N. Pfeifer: "A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds"; Sensors, 8 (2008), 11; 7323 - 7343. C. Nothegger, P. Dorninger: "3D Filtering of High-Resolution Terrestrial Laser Scanner Point Clouds for Cultural Heritage Documentation"; Photogrammetrie, Fernerkundung, Geoinformation, 1 (2009), 53 - 63. A. Zámolyi, B. Székely, G. Molnár, A. Roncat, P. Dorninger, A. Pocsai, M. Wyszyski, P. Drexel: "Comparison of LiDAR derived directional topographic features with geologic field evidence: a case study of Doren landslide (Vorarlberg, Austria)"; EGU General Assembly 2010, Vienna, Austria

  3. Geotechnical applications of LiDAR pertaining to geomechanical evaluation and hazard identification

    Science.gov (United States)

    Lato, Matthew J.

    Natural hazards related to ground movement that directly affect the safety of motorists and highway infrastructure include, but are not limited to, rockfalls, rockslides, debris flows, and landslides. This thesis specifically deals with the evaluation of rockfall hazards through the evaluation of LiDAR data. Light Detection And Ranging (LiDAR) is an imaging technology that can be used to delineate and evaluate geomechanically-controlled hazards. LiDAR has been adopted to conduct hazard evaluations pertaining to rockfall, rock-avalanches, debris flows, and landslides. Characteristics of LiDAR surveying, such as rapid data acquisition rates, mobile data collection, and high data densities, pose problems to traditional CAD or GIS-based mapping methods. New analyses methods, including tools specifically oriented to geomechanical analyses, are needed. The research completed in this thesis supports development of new methods, including improved survey techniques, innovative software workflows, and processing algorithms to aid in the detection and evaluation of geomechanically controlled rockfall hazards. The scientific research conducted between the years of 2006-2010, as presented in this thesis, are divided into five chapters, each of which has been published by or is under review by an international journal. The five research foci are: (i) geomechanical feature extraction and analysis using LiDAR data in active mining environments; (ii) engineered monitoring of rockfall hazards along transportation corridors: using mobile terrestrial LiDAR; (iii) optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses; (iv) location orientation bias when using static LiDAR data for geomechanical analysis; and (v) evaluating roadside rockmasses for rockfall hazards from LiDAR data: optimizing data collection and processing protocols. The research conducted pertaining to this thesis has direct and significant implications with

  4. Development of LiDAR measurements for the German offshore test site

    International Nuclear Information System (INIS)

    Rettenmeier, A; Kuehn, M; Waechter, M; Rahm, S; Mellinghoff, H; Siegmeier, B; Reeder, L

    2008-01-01

    The paper introduces the content of the recently started joint research project 'Development of LiDAR measurements for the German Offshore Test Site' which has the objective to support other research projects at the German offshore test site 'alpha ventus'. The project has started before the erection of the offshore wind farm and one aim is to give recommendations concerning LiDAR technology useable for offshore measurement campaigns and data analysis. The work is organized in four work packages. The work package LiDAR technology deals with the specification, acquisition and calibration of a commercial LiDAR system for the measurement campaigns. Power curve measurements are dedicated to power curve assessment with ground-based LiDAR using standard statistical methods. Additionally, it deals with the development of new methods for the measurement of non-steady short-term power curves. Wind field research aims at the development of wake loading simulation methods of wind turbines and the exploration of loading control strategies and nacelle-based wind field measurement techniques. Finally, dissemination of results to the industry takes place in work package Technology transfer

  5. In-Field High-Throughput Phenotyping of Cotton Plant Height Using LiDAR

    Directory of Open Access Journals (Sweden)

    Shangpeng Sun

    2017-04-01

    Full Text Available A LiDAR-based high-throughput phenotyping (HTP system was developed for cotton plant phenotyping in the field. The HTP system consists of a 2D LiDAR and an RTK-GPS mounted on a high clearance tractor. The LiDAR scanned three rows of cotton plots simultaneously from the top and the RTK-GPS was used to provide the spatial coordinates of the point cloud during data collection. Configuration parameters of the system were optimized to ensure the best data quality. A height profile for each plot was extracted from the dense three dimensional point clouds; then the maximum height and height distribution of each plot were derived. In lab tests, single plants were scanned by LiDAR using 0.5° angular resolution and results showed an R2 value of 1.00 (RMSE = 3.46 mm in comparison to manual measurements. In field tests using the same angular resolution; the LiDAR-based HTP system achieved average R2 values of 0.98 (RMSE = 65 mm for cotton plot height estimation; compared to manual measurements. This HTP system is particularly useful for large field application because it provides highly accurate measurements; and the efficiency is greatly improved compared to similar studies using the side view scan.

  6. Development and mapping of DArT markers within the Festuca - Lolium complex

    Science.gov (United States)

    Kopecký, David; Bartoš, Jan; Lukaszewski, Adam J; Baird, James H; Černoch, Vladimír; Kölliker, Roland; Rognli, Odd Arne; Blois, Helene; Caig, Vanessa; Lübberstedt, Thomas; Studer, Bruno; Shaw, Paul; Doležel, Jaroslav; Kilian, Andrzej

    2009-01-01

    Background Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT) array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. Results The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used), we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. Conclusion The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca × Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions. PMID:19832973

  7. Specular and diffuse object extraction from a LiDAR derived Digital Surface Model (DSM)

    International Nuclear Information System (INIS)

    Saraf, N M; Hamid, J R A; Kamaruddin, M H

    2014-01-01

    This paper intents to investigate the indifferent behaviour quantitatively of target objects of interest due to specular and diffuse reflectivity based on generated LiDAR DSM of the study site in Ampang, Kuala Lumpur. The LiDAR data to be used was initially checked for its reliability and accuracy. The point cloud LiDAR data was converted to raster to allow grid analysis of the next process of generating the DSM and DTM. Filtering and masking were made removing the features of interest (i.e. building and tree) and other unwanted above surface features. A normalised DSM and object segmentation approach were conducted on the trees and buildings separately. Error assessment and findings attained were highlighted and documented. The result of LiDAR verification certified that the data is reliable and useable. The RMSE obtained is within the tolerance value of horizontal and vertical accuracy (x, y, z) i.e. 0.159 m, 0.211 m 0.091 m respectively. Building extraction inclusive of roof top based on slope and contour analysis undertaken indicate the capability of the approach while single tree extraction through aspect analysis appears to preserve the accuracy of the extraction accordingly. The paper has evaluated the suitable methods of extracting non-ground features and the effective segmentation of the LiDAR data

  8. The Extraction of Vegetation Points from LiDAR Using 3D Fractal Dimension Analyses

    Directory of Open Access Journals (Sweden)

    Haiquan Yang

    2015-08-01

    Full Text Available Light Detection and Ranging (LiDAR, a high-precision technique used for acquiring three-dimensional (3D surface information, is widely used to study surface vegetation information. Moreover, the extraction of a vegetation point set from the LiDAR point cloud is a basic starting-point for vegetation information analysis, and an important part of its further processing. To extract the vegetation point set completely and to describe the different spatial morphological characteristics of various features in a LiDAR point cloud, we have used 3D fractal dimensions. We discovered that every feature has its own distinctive 3D fractal dimension interval. Based on the 3D fractal dimensions of tall trees, we propose a new method for the extraction of vegetation using airborne LiDAR. According to this method, target features can be distinguished based on their morphological characteristics. The non-ground points acquired by filtering are processed by region growing segmentation and the morphological characteristics are evaluated by 3D fractal dimensions to determine the features required for the determination of the point set for tall trees. Avon, New York, USA was selected as the study area to test the method and the result proves the method’s efficiency. Thus, this approach is feasible. Additionally, the method uses the 3D coordinate properties of the LiDAR point cloud and does not require additional information, such as return intensity, giving it a larger scope of application.

  9. Localized Segment Based Processing for Automatic Building Extraction from LiDAR Data

    Science.gov (United States)

    Parida, G.; Rajan, K. S.

    2017-05-01

    The current methods of object segmentation and extraction and classification of aerial LiDAR data is manual and tedious task. This work proposes a technique for object segmentation out of LiDAR data. A bottom-up geometric rule based approach was used initially to devise a way to segment buildings out of the LiDAR datasets. For curved wall surfaces, comparison of localized surface normals was done to segment buildings. The algorithm has been applied to both synthetic datasets as well as real world dataset of Vaihingen, Germany. Preliminary results show successful segmentation of the buildings objects from a given scene in case of synthetic datasets and promissory results in case of real world data. The advantages of the proposed work is non-dependence on any other form of data required except LiDAR. It is an unsupervised method of building segmentation, thus requires no model training as seen in supervised techniques. It focuses on extracting the walls of the buildings to construct the footprint, rather than focussing on roof. The focus on extracting the wall to reconstruct the buildings from a LiDAR scene is crux of the method proposed. The current segmentation approach can be used to get 2D footprints of the buildings, with further scope to generate 3D models. Thus, the proposed method can be used as a tool to get footprints of buildings in urban landscapes, helping in urban planning and the smart cities endeavour.

  10. LOCALIZED SEGMENT BASED PROCESSING FOR AUTOMATIC BUILDING EXTRACTION FROM LiDAR DATA

    Directory of Open Access Journals (Sweden)

    G. Parida

    2017-05-01

    Full Text Available The current methods of object segmentation and extraction and classification of aerial LiDAR data is manual and tedious task. This work proposes a technique for object segmentation out of LiDAR data. A bottom-up geometric rule based approach was used initially to devise a way to segment buildings out of the LiDAR datasets. For curved wall surfaces, comparison of localized surface normals was done to segment buildings. The algorithm has been applied to both synthetic datasets as well as real world dataset of Vaihingen, Germany. Preliminary results show successful segmentation of the buildings objects from a given scene in case of synthetic datasets and promissory results in case of real world data. The advantages of the proposed work is non-dependence on any other form of data required except LiDAR. It is an unsupervised method of building segmentation, thus requires no model training as seen in supervised techniques. It focuses on extracting the walls of the buildings to construct the footprint, rather than focussing on roof. The focus on extracting the wall to reconstruct the buildings from a LiDAR scene is crux of the method proposed. The current segmentation approach can be used to get 2D footprints of the buildings, with further scope to generate 3D models. Thus, the proposed method can be used as a tool to get footprints of buildings in urban landscapes, helping in urban planning and the smart cities endeavour.

  11. Performance Assessment of High Resolution Airborne Full Waveform LiDAR for Shallow River Bathymetry

    Directory of Open Access Journals (Sweden)

    Zhigang Pan

    2015-04-01

    Full Text Available We evaluate the performance of full waveform LiDAR decomposition algorithms with a high-resolution single band airborne LiDAR bathymetry system in shallow rivers. A continuous wavelet transformation (CWT is proposed and applied in two fluvial environments, and the results are compared to existing echo retrieval methods. LiDAR water depths are also compared to independent field measurements. In both clear and turbid water, the CWT algorithm outperforms the other methods if only green LiDAR observations are available. However, both the definition of the water surface, and the turbidity of the water significantly influence the performance of the LiDAR bathymetry observations. The results suggest that there is no single best full waveform processing algorithm for all bathymetric situations. Overall, the optimal processing strategies resulted in a determination of water depths with a 6 cm mean at 14 cm standard deviation for clear water, and a 16 cm mean and 27 cm standard deviation in more turbid water.

  12. Using LiDAR to as a Potential Method for Detection Plastics in Water

    Science.gov (United States)

    Lee, G.; Neal, A.; Mielke, R.; Bookhagen, B.

    2010-12-01

    We conducted a series of experiments using Light Detection and Range (LiDAR) technology as an innovative way to detect the presence of plastics in water. The purpose of this study was to determine if LiDAR technology is a feasible, non-intrusive alternative to dredging in the ocean to determine the amount of plastics in the ocean. We used a tripod mounted RIEGL LMS-Z420i terrestrial LiDAR 3-D scanner and the associated operating software RiSCAN Pro. The terrestrial LiDAR is an optical remote sensing technology that measures the reflection of near infared light to find the range of a distant target that is most commonly used to create high precision digital elevation models of terrestrial surfaces. In theory, water should absorb the near infared light, while the plastics should reflect the light. The experiments consisted of different scale models of plastic pellets in water, ranging from a small plastic dish to a large tank to test the range of the LiDAR in different salt and fresh water mediums.

  13. Ti, Al

    Indian Academy of Sciences (India)

    In the present study, authors report on the effect that substrate bias voltage has on the microstructure and mechanical properties of (Ti, Al)N hard coatings deposited with cathodic arc evaporation (CAE) technique. The coatings were deposited from a Ti0.5Al0.5 powder metallurgical target in a reactive nitrogen atmosphere at ...

  14. Determinants of acceptance of cervical cancer screening in Dar es Salaam, Tanzania

    DEFF Research Database (Denmark)

    Kahesa, Crispin; Kjaer, Susanne; Mwaiselage, Julius

    2012-01-01

    to accept screening in comparison with women who had five or more children (ORs 3.21). Finally, knowledge of cervical cancer and awareness of the existing screening program were also associated with increased acceptance rates (ORs of 5.90 and 4.20). CONCLUSION: There are identifiable subgroups where...... cervical cancer screening can be increased in Dar es Salaam. Special attention should be paid to women of low education and women of high parity. In addition, knowledge and awareness raising campaigns that goes hand in hand with culturally acceptable screening services will likely lead to an increased......ABSTRACT: OBJECTIVE: To describe how demographic characteristics and knowledge of cervical cancer influence screening acceptance among women living in Dar es Salaam, Tanzania. METHODS: Multistage cluster sampling was carried out in 45 randomly selected streets in Dar es Salaam. Women between...

  15. Algunas novelas de Darío Fernández-Flórez: de Zarabanda (1944 a Alta Costura (1954. Temas escabrosos en tiempos de restricciones moralistas

    Directory of Open Access Journals (Sweden)

    Montejo Gurruchaga, Lucía

    2008-06-01

    Full Text Available Dario Fernández-Flórez begins in 1944 with Zarabanda a narrative style of intellectual eroticism and inmoral atmosphere which attracted no attention. Six years later he published Lola, espejo oscuro the recollections of a high prostitute. The novel was an scandal and an immediate success. Although the topic and its treatment were odd at the time because the strict moral values which mantained Franco´s regime were ignored, the novel was published with no cuts at all. Censorship was deaf to all the voices that warned of its dangers. This had an explanation: Darío Fernández-Flórez held an important post in the Propaganda National Service. After his dismissal censors were less lenient.Darío Fernández-Flórez inicia en 1944 con Zarabanda una narrativa de erotismo intelectualizado y ambiente amoral que no tuvo ningún eco. Seis años después publicará Lola, espejo oscuro, las memorias de una prostituta de alto copete. La novela suscitó un gran escándalo y su éxito fue inmediato. Aunque el tema y su tratamiento eran inusitados en aquellos momentos porque la obra daba al traste con los estrictos valores morales que sustentaban el régimen franquista, la novela fue publicada sin recortes; la censura hizo oídos sordos a todas las voces que alertaban de su peligro. Este hecho tiene una explicación: Darío Fernández-Flórez ocupaba un cargo importante en el Servicio Nacional de Propaganda. Tras su cese, los censores serán menos benevolentes.

  16. Detailed Hydrographic Feature Extraction from High-Resolution LiDAR Data

    Energy Technology Data Exchange (ETDEWEB)

    Danny L. Anderson

    2012-05-01

    Detailed hydrographic feature extraction from high-resolution light detection and ranging (LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such extractions are presented, including the use of sinuosity and longitudinal root-mean-square-error (LRMSE). These metrics are then used to quantitatively compare stream networks in two studies. The first study examines the effect of raster cell size on watershed boundaries and stream networks delineated from LiDAR-derived digital elevation models (DEMs). The study confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes generally yielded better stream network delineations, based on sinuosity and LRMSE. The second study demonstrates a new method of delineating a stream directly from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and accuracy of hydrographic feature extractions. The direct delineation method developed herein and termed “mDn”, is an extension of the D8 method that has been used for several decades with gridded raster data. The method divides the region around a starting point into sectors, using the LiDAR data points within each sector to determine an average slope, and selecting the sector with the greatest downward slope to determine the direction of flow. An mDn delineation was compared with a traditional grid-based delineation, using TauDEM, and other readily available, common stream data sets. Although, the TauDEM delineation yielded a sinuosity that more closely matches the reference, the mDn delineation yielded a sinuosity that was higher than either the TauDEM method or the existing published stream delineations. Furthermore, stream delineation using the mDn method yielded the smallest LRMSE.

  17. Portable and Airborne Small Footprint LiDAR: Forest Canopy Structure Estimation of Fire Managed Plots

    Directory of Open Access Journals (Sweden)

    Claudia M.C.S. Listopad

    2011-06-01

    Full Text Available This study used an affordable ground-based portable LiDAR system to provide an understanding of the structural differences between old-growth and secondary-growth Southeastern pine. It provided insight into the strengths and weaknesses in the structural determination of portable systems in contrast to airborne LiDAR systems. Portable LiDAR height profiles and derived metrics and indices (e.g., canopy cover, canopy height were compared among plots with different fire frequency and fire season treatments within secondary forest and old growth plots. The treatments consisted of transitional season fire with four different return intervals: 1-yr, 2-yr, 3-yr fire return intervals, and fire suppressed plots. The remaining secondary plots were treated using a 2-yr late dormant season fire cycle. The old growth plots were treated using a 2-yr growing season fire cycle. Airborne and portable LiDAR derived canopy cover were consistent throughout the plots, with significantly higher canopy cover values found in 3-yr and fire suppressed plots. Portable LiDAR height profile and metrics presented a higher sensitivity in capturing subcanopy elements than the airborne system, particularly in dense canopy plots. The 3-dimensional structures of the secondary plots with varying fire return intervals were dramatically different to old-growth plots, where a symmetrical distribution with clear recruitment was visible. Portable LiDAR, even though limited to finer spatial scales and specific biases, is a low-cost investment with clear value for the management of forest canopy structure.

  18. Diversity arrays technology (DArT) markers in apple for genetic linkage maps.

    Science.gov (United States)

    Schouten, Henk J; van de Weg, W Eric; Carling, Jason; Khan, Sabaz Ali; McKay, Steven J; van Kaauwen, Martijn P W; Wittenberg, Alexander H J; Koehorst-van Putten, Herma J J; Noordijk, Yolanda; Gao, Zhongshan; Rees, D Jasper G; Van Dyk, Maria M; Jaccoud, Damian; Considine, Michael J; Kilian, Andrzej

    2012-03-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52-54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55-76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9579-5) contains supplementary material, which is available to authorized users.

  19. International Journal of Science and Technology(STECH) Bahir Dar ...

    African Journals Online (AJOL)

    Nneka Umera-Okeke

    In many countries, the use of energy crops, including the use of Jatropha as feedstock ... assessment of ecological and economic information for identifying the .... 2012 on a 0.5 x 0.5-degree grid (Mitchell et al., 2003). ..... scale deployment of dedicated bioenergy crops in the UK." Renewable and. Sustainable. Energy.

  20. Synchronous Adversarial Feature Learning for LiDAR based Loop Closure Detection

    OpenAIRE

    Yin, Peng; He, Yuqing; Xu, Lingyun; Peng, Yan; Han, Jianda; Xu, Weiliang

    2018-01-01

    Loop Closure Detection (LCD) is the essential module in the simultaneous localization and mapping (SLAM) task. In the current appearance-based SLAM methods, the visual inputs are usually affected by illumination, appearance and viewpoints changes. Comparing to the visual inputs, with the active property, light detection and ranging (LiDAR) based point-cloud inputs are invariant to the illumination and appearance changes. In this paper, we extract 3D voxel maps and 2D top view maps from LiDAR ...

  1. Evaluating UAV and LiDAR Retrieval of Snow Depth in a Coniferous Forest in Arizona

    Science.gov (United States)

    Van Leeuwen, W. J. D.; Broxton, P.; Biederman, J. A.

    2017-12-01

    Remote sensing of snow depth and cover in forested environments is challenging. Trees interfere with the remote sensing of snowpack below the canopy and cause large variations in the spatial distribution of the snowpack itself (e.g. between below canopy environments to shaded gaps to open clearings). The distribution of trees and topographic variation make it challenging to monitor the snowpack with in-situ observations. Airborne LiDAR has improved our ability to monitor snowpack over large areas in montane and forested environments because of its high sampling rate and ability to penetrate the canopy. However, these LiDAR flights can be too expensive and time-consuming to process, making it hard to use them for real-time snow monitoring. In this research, we evaluate Structure from Motion (SfM) as an alternative to Airborne LiDAR to generate high-resolution snow depth data in forested environments. This past winter, we conducted a snow field campaign over Arizona's Mogollon Rim where we acquired aerial LiDAR, multi-angle aerial photography from a UAV, and extensive field observations of snow depth at two sites. LiDAR and SFM derived snow depth maps were generated by comparing "snow-on" and "snow-off" LiDAR and SfM data. The SfM- and LiDAR-generated snow depth maps were similar at a site with fewer trees, though there were more discrepancies at a site with more trees. Both compared reasonably well with the field observations at the sparser forested site, with poorer agreement at the denser forested site. Finally, although the SfM produced point clouds with much higher point densities than the aerial LiDAR, the SfM was not able to produce meaningful snow depth estimates directly underneath trees and had trouble in areas with deep shadows. Based on these findings, we are optimizing our UAV data acquisition strategies for this upcoming field season. We are using these data, along with high-resolution hydrological modeling, to gain a better understanding of how

  2. MKENO-DAR: a direct angular representation Monte Carlo code for criticality safety analysis

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Komuro, Yuichi; Tsunoo, Yukiyasu; Nakayama, Mitsuo.

    1984-03-01

    Improving the Monte Carlo code MULTI-KENO, the MKENO-DAR (Direct Angular Representation) code has been developed for criticality safety analysis in detail. A function was added to MULTI-KENO for representing anisotropic scattering strictly. With this function, the scattering angle of neutron is determined not by the average scattering angle μ-bar of the Pl Legendre polynomial but by the random work operation using probability distribution function produced with the higher order Legendre polynomials. This code is avilable for the FACOM-M380 computer. This report is a computer code manual for MKENO-DAR. (author)

  3. Coastal and tidal landform detection from high resolution topobathymetric LiDAR data

    DEFF Research Database (Denmark)

    Andersen, Mikkel S.; Al-Hamdani, Zyad K.; Steinbacher, Frank

    -resolution mapping of these land-water transition zones. We have carried out topobathymetric LiDAR surveys in the Knudedyb tidal inlet system, a coastal environment in the Danish Wadden Sea which is part of the Wadden Sea National Park and UNESCO World Heritage. Detailed digital elevation models (DEMs) with a grid...... to tides. Furthermore, we demonstrate the potential of morphometric analysis on high-resolution topobathymetric LiDAR data for automatic identification, characterisation and classification of different landforms present in coastal land-water transition zones. Acknowledgements This work was funded...

  4. Numerical modeling of the airflow around a forest edge using LiDAR-derived forest heigths

    DEFF Research Database (Denmark)

    Boudreault, Louis-Etienne; Dellwik, Ebba; Bechmann, Andreas

    A 3D methodology to quantify the effect of forests on the mean wind flow field is presented. The methodology is based on the treatment of forest raw data of light detection and ranging (LiDAR) scans, and a computational fluid dynamics (CFD) method based on a Reynolds-averaged Navier-Stokes (Ra......NS) approach using the k−e turbulence model with a corresponding canopy model. The example site investigated is a forest edge located on the Falster island in Denmark, where a measurement campaign was conducted. The LiDAR scans are used in order to obtain the forest heights, which served as input...

  5. Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana

    NARCIS (Netherlands)

    Wittenberg, A.H.J.; Lee, van der T.A.J.; Cayla, C.; Kilian, A.; Visser, R.G.F.; Schouten, H.J.

    2005-01-01

    Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or

  6. Remote Sensing of Sonoran Desert Vegetation Structure and Phenology with Ground-Based LiDAR

    Directory of Open Access Journals (Sweden)

    Joel B. Sankey

    2014-12-01

    Full Text Available Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  7. Comparing LiDAR-Generated to ground- surveyed channel cross-sectional profiles in a forested mountain stream

    Science.gov (United States)

    Brian C. Dietterick; Russell White; Ryan Hilburn

    2012-01-01

    Airborne Light Detection and Ranging (LiDAR) holds promise to provide an alternative to traditional ground-based survey methods for stream channel characterization and some change detection purposes, even under challenging landscape conditions. This study compared channel characteristics measured at 53 ground-surveyed and LiDAR-derived crosssectional profiles located...

  8. Prevalence of teeth with untreated dental trauma among nursery and primary school pupils in Dar es Salaam, Tanzania.

    NARCIS (Netherlands)

    Kahabuka, F.K.; Plasschaert, A.J.M.; Hof, M.A. van 't

    2001-01-01

    The aim of this study was to investigate the prevalence of teeth with untreated dental trauma among children aged 4-15 years in Dar es Salaam, Tanzania. A sample of 4524 children from three districts of different socio-economic status in the Dar es Salaam area was examined for signs of dental trauma

  9. Carbazole-based copolymers via direct arylation polymerization (DArP) for Suzuki-convergent polymer solar cell performance

    DEFF Research Database (Denmark)

    Gobalasingham, Nemal S.; Ekiz, Seyma; Pankow, Robert M.

    2017-01-01

    Although direct arylation polymerization (DArP) has recently emerged as an alternative to traditional cross-coupling methods like Suzuki polymerization, the evaluation of DArP polymers in practical applications like polymer solar cells (PSCs) is limited. Because even the presence of minute...

  10. Airborne LiDAR reflective linear feature extraction for strip adjustment and horizontal accuracy determination : executive summary.

    Science.gov (United States)

    2009-02-01

    The Office of Aerial Engineering (OAE) has been : using an Optech 30/70 ALTM airborne LiDAR system : for about four years. The introduction of LiDAR : technology was a major development towards : improving the mapping operations, and the overall : ex...

  11. Computer-based synthetic data to assess the tree delineation algorithm from airborne LiDAR survey

    Science.gov (United States)

    Lei Wang; Andrew G. Birt; Charles W. Lafon; David M. Cairns; Robert N. Coulson; Maria D. Tchakerian; Weimin Xi; Sorin C. Popescu; James M. Guldin

    2013-01-01

    Small Footprint LiDAR (Light Detection And Ranging) has been proposed as an effective tool for measuring detailed biophysical characteristics of forests over broad spatial scales. However, by itself LiDAR yields only a sample of the true 3D structure of a forest. In order to extract useful forestry relevant information, this data must be interpreted using mathematical...

  12. Investigating the influence of LiDAR ground surface errors on the utility of derived forest inventories

    Science.gov (United States)

    Wade T. Tinkham; Alistair M. S. Smith; Chad Hoffman; Andrew T. Hudak; Michael J. Falkowski; Mark E. Swanson; Paul E. Gessler

    2012-01-01

    Light detection and ranging, or LiDAR, effectively produces products spatially characterizing both terrain and vegetation structure; however, development and use of those products has outpaced our understanding of the errors within them. LiDAR's ability to capture three-dimensional structure has led to interest in conducting or augmenting forest inventories with...

  13. Registration of Aerial Optical Images with LiDAR Data Using the Closest Point Principle and Collinearity Equations.

    Science.gov (United States)

    Huang, Rongyong; Zheng, Shunyi; Hu, Kun

    2018-06-01

    Registration of large-scale optical images with airborne LiDAR data is the basis of the integration of photogrammetry and LiDAR. However, geometric misalignments still exist between some aerial optical images and airborne LiDAR point clouds. To eliminate such misalignments, we extended a method for registering close-range optical images with terrestrial LiDAR data to a variety of large-scale aerial optical images and airborne LiDAR data. The fundamental principle is to minimize the distances from the photogrammetric matching points to the terrestrial LiDAR data surface. Except for the satisfactory efficiency of about 79 s per 6732 × 8984 image, the experimental results also show that the unit weighted root mean square (RMS) of the image points is able to reach a sub-pixel level (0.45 to 0.62 pixel), and the actual horizontal and vertical accuracy can be greatly improved to a high level of 1/4⁻1/2 (0.17⁻0.27 m) and 1/8⁻1/4 (0.10⁻0.15 m) of the average LiDAR point distance respectively. Finally, the method is proved to be more accurate, feasible, efficient, and practical in variety of large-scale aerial optical image and LiDAR data.

  14. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase two, volume 3 : advanced consideration in LiDAR technology for bridge evaluation.

    Science.gov (United States)

    2012-03-01

    This report describes Phase Two enhancement of terrestrial LiDAR scanning for bridge damage : evaluation that was initially developed in Phase One. Considering the spatial and reflectivity : information contained in LiDAR scans, two detection algorit...

  15. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 3 : use of scanning LiDAR in structural evaluation of bridges.

    Science.gov (United States)

    2009-12-01

    This volume introduces several applications of remote bridge inspection technologies studied in : this Integrated Remote Sensing and Visualization (IRSV) study using ground-based LiDAR : systems. In particular, the application of terrestrial LiDAR fo...

  16. KML-Based Access and Visualization of High Resolution LiDAR Topography

    Science.gov (United States)

    Crosby, C. J.; Blair, J. L.; Nandigam, V.; Memon, A.; Baru, C.; Arrowsmith, J. R.

    2008-12-01

    Over the past decade, there has been dramatic growth in the acquisition of LiDAR (Light Detection And Ranging) high-resolution topographic data for earth science studies. Capable of providing digital elevation models (DEMs) more than an order of magnitude higher resolution than those currently available, LiDAR data allow earth scientists to study the processes that contribute to landscape evolution at resolutions not previously possible yet essential for their appropriate representation. These datasets also have significant implications for earth science education and outreach because they provide an accurate representation of landforms and geologic hazards. Unfortunately, the massive volume of data produced by LiDAR mapping technology can be a barrier to their use. To make these data available to a larger user community, we have been exploring the use of Keyhole Markup Language (KML) and Google Earth to provide access to LiDAR data products and visualizations. LiDAR digital elevation models are typically delivered in a tiled format that lends itself well to a KML-based distribution system. For LiDAR datasets hosted in the GEON OpenTopography Portal (www.opentopography.org) we have developed KML files that show the extent of available LiDAR DEMs and provide direct access to the data products. Users interact with these KML files to explore the extent of the available data and are able to select DEMs that correspond to their area of interest. Selection of a tile loads a download that the user can then save locally for analysis in their software of choice. The GEON topography system also has tools available that allow users to generate custom DEMs from LiDAR point cloud data. This system is powerful because it enables users to access massive volumes of raw LiDAR data and to produce DEM products that are optimized to their science applications. We have developed a web service that converts the custom DEM models produced by the system to a hillshade that is delivered to

  17. Urban morphological determinants of temperature regulating ecosystem services in African cities: the case of Dar es Salaam, Tanzania

    Science.gov (United States)

    Cavan, Gina; Lindley, Sarah; Kibassa, Deusdedit; Shemdoe, Riziki; Capuano, Paolo; De Paola, Francesco; Renner, Florian; Pauleit, Stephan

    2013-04-01

    Urban green structure provides important regulating ecosystem services, such as temperature and flood regulation, and thus, has the potential to increase the resilience of African cities to climate change. Green structures within urban areas are not only limited to discrete units associated with recreational parks, agricultural areas and open spaces: they also exist within zones which have other primary functions, such as church yards, along transport routes, and within residential areas. Differing characteristics of urban areas can be conceptualised and subsequently mapped through the idea of urban morphology types. Urban morphology types are classifications which combine facets of urban form and function. When mapped, UMT units provide biophysically relevant meso-scale geographical zones which can be used as the basis for understanding climate-related impacts and adaptations. For example, they support the assessment of urban temperature patterns and the temperature regulating services provided by urban green structures. There are some examples of the use of UMTs for assessing regulating ecosystem services in European cities but little similar knowledge is available in an African context. This paper outlines the concept of urban morphology types (UMTs) and how they were applied to African case study cities (Cavan et al., 2012). It then presents the methods used to understand temperature regulating ecosystem services across an example African case study city, including (i) a GIS-based assessment of urban green structures, and (ii) applying an energy balance model to estimate current and future surface temperatures under climate change projections. The assessment is carried out for Dar es Salaam, Tanzania. Existing evidence suggests increases in both mean and extreme temperatures in the city. Historical analysis of the number of hot days per year suggests a rise from a maximum of 47 days per year in the period 1961-87 to 72 days per year in 2003-2011 (Giugni et al

  18. Interpersonal Conflicts and Styles of Managing Conflicts among Students at Bahir Dar University, Ethiopia

    Science.gov (United States)

    Bazezew, Arega; Neka, Mulugeta

    2017-01-01

    Interpersonal conflict happens everywhere and at any time and is inherent in all societies. However, the methods of managing such conflict are quite different from one organisation to the other. The general objective of the study was to assess interpersonal conflicts and styles of managing conflicts among students at Bahir Dar University.…

  19. 2014 U.S. Geological Survey CMGP LiDAR: Post Sandy (Pennsylvania)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fugro EarthData, Inc. (Fugro) was tasked by the U.S. Geological Survey (USGS) to plan, acquire, process, and produce derivative products of LiDAR data at a nominal...

  20. Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR

    International Nuclear Information System (INIS)

    Gao, Yang; Zhong, Ruofei; Liu, Xianlin; Tang, Tao; Wang, Liuzhao

    2017-01-01

    Pavement markings provide an important foundation as they help to keep roads users safe. Accurate and comprehensive information about pavement markings assists the road regulators and is useful in developing driverless technology. Mobile light detection and ranging (LiDAR) systems offer new opportunities to collect and process accurate pavement markings’ information. Mobile LiDAR systems can directly obtain the three-dimensional (3D) coordinates of an object, thus defining spatial data and the intensity of (3D) objects in a fast and efficient way. The RGB attribute information of data points can be obtained based on the panoramic camera in the system. In this paper, we present a novel method process to automatically extract pavement markings using multiple attribute information of the laser scanning point cloud from the mobile LiDAR data. This method process utilizes a differential grayscale of RGB color, laser pulse reflection intensity, and the differential intensity to identify and extract pavement markings. We utilized point cloud density to remove the noise and used morphological operations to eliminate the errors. In the application, we tested our method process on different sections of roads in Beijing, China, and Buffalo, NY, USA. The results indicated that both correctness ( p ) and completeness ( r ) were higher than 90%. The method process of this research can be applied to extract pavement markings from huge point cloud data produced by mobile LiDAR. (paper)

  1. The Dar es Salaam Seascape: A Case Study of an Environmental ...

    African Journals Online (AJOL)

    These pressures have resulted in substantial negative environmental state changes, e.g., habitat loss and degradation, biodiversity loss and disturbance of food webs, and coastal erosion/accretion. Thus, the Dar es Salaam seascape has become an environmental “hotspot” of degradation, with consequent negative ...

  2. LiDAR Relative Reflectivity Surface (2011) for Coral Bay, St. John

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution relative seafloor reflectivity surface for Coral Bay, St. John in the U.S....

  3. International Journal of Arts and Humanities(IJAH) Bahir Dar- Ethiopia

    African Journals Online (AJOL)

    DrNneka

    International Journal of Arts and Humanities(IJAH). Bahir Dar- Ethiopia. Vol. 5(2), S/No 17, April, ... Commission's accreditation exercise on personnel in the business education programmes of the universities in the South-east .... education personnel in universities. Method. The study adopted descriptive survey design.

  4. Linking rainforest ecophysiology and microclimate through fusion of airborne LiDAR and hyperspectral imagery

    Science.gov (United States)

    Eben N. Broadbent; Angélica M. Almeyda Zambrano; Gregory P. Asner; Christopher B. Field; Brad E. Rosenheim; Ty Kennedy-Bowdoin; David E. Knapp; David Burke; Christian Giardina; Susan Cordell

    2014-01-01

    We develop and validate a high-resolution three-dimensional model of light and air temperature for a tropical forest interior in Hawaii along an elevation gradient varying greatly in structure but maintaining a consistent species composition. Our microclimate models integrate high-resolution airborne waveform light detection and ranging data (LiDAR) and hyperspectral...

  5. Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data

    Science.gov (United States)

    Van R. Kane; Jonathan D. Bakker; Robert J. McGaughey; James A. Lutz; Rolf F. Gersonde; Jerry F. Franklin

    2010-01-01

    LiDAR measurements of canopy structure can be used to classify forest stands into structural stages to study spatial patterns of canopy structure, identify habitat, or plan management actions. A key assumption in this process is that differences in canopy structure based on forest age and elevation are consistent with predictions from models of stand development. Three...

  6. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology

    Science.gov (United States)

    Chase, Arlen F.; Fisher, Christopher T.; Leisz, Stephen J.; Weishampel, John F.

    2012-01-01

    The application of light detection and ranging (LiDAR), a laser-based remote-sensing technology that is capable of penetrating overlying vegetation and forest canopies, is generating a fundamental shift in Mesoamerican archaeology and has the potential to transform research in forested areas world-wide. Much as radiocarbon dating that half a century ago moved archaeology forward by grounding archaeological remains in time, LiDAR is proving to be a catalyst for an improved spatial understanding of the past. With LiDAR, ancient societies can be contextualized within a fully defined landscape. Interpretations about the scale and organization of densely forested sites no longer are constrained by sample size, as they were when mapping required laborious on-ground survey. The ability to articulate ancient landscapes fully permits a better understanding of the complexity of ancient Mesoamerican urbanism and also aids in modern conservation efforts. The importance of this geospatial innovation is demonstrated with newly acquired LiDAR data from the archaeological sites of Caracol, Cayo, Belize and Angamuco, Michoacán, Mexico. These data illustrate the potential of technology to act as a catalytic enabler of rapid transformational change in archaeological research and interpretation and also underscore the value of on-the-ground archaeological investigation in validating and contextualizing results. PMID:22802623

  7. 2002 Maryland Department of Natural Resources LiDAR: Worcester County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Light Detection and Ranging (LiDAR) is a method of locating objects on the ground using aerial-borne equipment. It is similar to RADAR or SONAR in that the two-way...

  8. Multispectral LiDAR Data for Land Cover Classification of Urban Areas

    Directory of Open Access Journals (Sweden)

    Salem Morsy

    2017-04-01

    Full Text Available Airborne Light Detection And Ranging (LiDAR systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood classifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy.

  9. Analysis of airborne LiDAR surveys to quantify the characteristic morphologies of northern forested wetlands

    Science.gov (United States)

    Murray C. Richardson; Carl P. J. Mitchell; Brian A. Branfireun; Randall K. Kolka

    2010-01-01

    A new technique for quantifying the geomorphic form of northern forested wetlands from airborne LiDAR surveys is introduced, demonstrating the unprecedented ability to characterize the geomorphic form of northern forested wetlands using high-resolution digital topography. Two quantitative indices are presented, including the lagg width index (LWI) which objectively...

  10. Development of DArT-based PCR markers for selecting drought-tolerant spring barley.

    Science.gov (United States)

    Fiust, Anna; Rapacz, Marcin; Wójcik-Jagła, Magdalena; Tyrka, Mirosław

    2015-08-01

    The tolerance of spring barley (Hordeum vulgare L.) cultivars to spring drought is an important agronomic trait affecting crop yield and quality in Poland. Therefore, breeders require new molecular markers to select plants with lower spring drought susceptibility. With the advent of genomic selection technology, simple molecular tools may still be applicable to screen material for markers of the most important traits and in-depth genome scanning. In previous studies, diversity arrays technology (DArT)-based genetic maps were constructed for F2 populations of Polish fodder and malt barley elite breeding lines, and 15 and 18 quantitative trait loci (QTLs) related to spring drought tolerance were identified, respectively. In this paper, we show the results of a conversion of 30 DArT markers corresponding to 11 QTLs into simple sequence repeat (SSR) and sequence tagged site (STS) markers. Twenty-two polymorphic markers were obtained, including 13 DArT-based SSRs. Additionally, 31 SSR markers, located in close proximity to the DArT markers, were selected from the GrainGenes database and tested. Further analyses of 24 advanced breeding lines with different drought tolerances confirmed that five out of the 30 converted markers, as well as three out of the 31 additional SSR markers, were effective in marker-assisted selection for drought tolerance. The possible function of clones related to these markers in drought tolerance is discussed.

  11. Child Labour in Urban Agriculture: The Case of Dar es Salaam, Tanzania.

    Science.gov (United States)

    Mlozi, Malongo R. S.

    1995-01-01

    Urban agriculture in Dar es Salaam was found to use child labor of both children with parents of higher and lower socioeconomic status (SES). Discusses policy implications and calls for the education of parents of lower SES not to expect an economic contribution from their children's labor, and the education of children about their rights. (LZ)

  12. How Children Living in Poor Areas of Dar Es Salaam, Tanzania Perceive Their Own Multiple Intelligences

    Science.gov (United States)

    Dixon, Pauline; Humble, Steve; Chan, David W.

    2016-01-01

    This study was carried out with 1,857 poor children from 17 schools, living in low-income areas of Dar Es Salaam, Tanzania. All children took the "Student Multiple Intelligences Profile" (SMIP) questionnaire as part of a bigger project that gathered data around concepts and beliefs of talent. This paper sets out two aims, first to…

  13. Genetics and Human Agency: Comment on Dar-Nimrod and Heine (2011)

    Science.gov (United States)

    Turkheimer, Eric

    2011-01-01

    Dar-Nimrod and Heine (2011) decried genetic essentialism without denying the importance of genetics in the genesis of human behavior, and although I agree on both counts, a deeper issue remains unaddressed: how should we adjust our cognitions about our own behavior in light of genetic influence, or is it perhaps not necessary to take genetics into…

  14. 2012-2013 U.S. Geological Survey LiDAR: Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Territory of Guam, LiDAR Task G11PD01189 This task order is for production of surface model products of The Territory of Guam. The models are produced from data...

  15. Patterns and correlates of solid waste disposal practices in Dar es ...

    African Journals Online (AJOL)

    This study examines the patterns and correlations of solid waste disposal practices among households in urbanized and populated Dar es Salaam city in Tanzania. The Tanzanian Household Budget Survey (HBS) data covering many households' characteristics was used. Multinomial Logit (MNL) model was applied to ...

  16. Fast and nondestructive method for leaf level chlorophyll estimation using hyperspectral LiDAR

    NARCIS (Netherlands)

    Nevalainen, O.; Hakala, T.; Suomalainen, J.M.; Mäkipää, R.; Peltoniemi, M.; Krooks, A.; Kaasalainen, S.

    2014-01-01

    We propose an empirical method for nondestructive estimation of chlorophyll in tree canopies. The first prototype of a full waveform hyperspectral LiDAR instrument has been developed by the Finnish Geodetic Institute (FGI). The instrument efficiently combines the benefits of passive and active

  17. Key events and their effects on cycling behaviour in Dar-es-Salaam : abstract + powerpoint

    NARCIS (Netherlands)

    Nkurunziza, A.; Zuidgeest, M.H.P.; Brussel, M.J.G.; van Maarseveen, M.F.A.M.

    2012-01-01

    The paper explores key events and investigates their effects on cycling behaviour in the city of Dar-es-Salaam, Tanzania. The objective of the study is to identify specific key events during a person’s life course with a significant effect on change of travel behaviour towards cycling in relation to

  18. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Science.gov (United States)

    Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...

  19. Pit Latrine Emptying Behavior and Demand for Sanitation Services in Dar Es Salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Marion W. Jenkins

    2015-02-01

    Full Text Available Pit latrines are the main form of sanitation in unplanned areas in many rapidly growing developing cities. Understanding demand for pit latrine fecal sludge management (FSM services in these communities is important for designing demand-responsive sanitation services and policies to improve public health. We examine latrine emptying knowledge, attitudes, behavior, trends and rates of safe/unsafe emptying, and measure demand for a new hygienic latrine emptying service in unplanned communities in Dar Es Salaam (Dar, Tanzania, using data from a cross-sectional survey at 662 residential properties in 35 unplanned sub-wards across Dar, where 97% had pit latrines. A picture emerges of expensive and poor FSM service options for latrine owners, resulting in widespread fecal sludge exposure that is likely to increase unless addressed. Households delay emptying as long as possible, use full pits beyond what is safe, face high costs even for unhygienic emptying, and resort to unsafe practices like ‘flooding out’. We measured strong interest in and willingness to pay (WTP for the new pit emptying service at 96% of residences; 57% were WTP ≥U.S. $17 to remove ≥200 L of sludge. Emerging policy recommendations for safe FSM in unplanned urban communities in Dar and elsewhere are discussed.

  20. The effect of El Nino on trypanosome infection in cattle in Dar es ...

    African Journals Online (AJOL)

    A retrospective study was carried out to assess the effect of El Nino on trypanosome infection in cattle. Trypanosome infection was monitored in free grazing dairy cattle before and after El Nino in Dar es Salaam. The study involved 49 smallholder dairy herds with a total of 570 dairy cattle. Trypanosomes were identified by ...

  1. A comparison of two open source LiDAR surface classification algorithms

    Science.gov (United States)

    With the progression of LiDAR (Light Detection and Ranging) towards a mainstream resource management tool, it has become necessary to understand how best to process and analyze the data. While most ground surface identification algorithms remain proprietary and have high purchase costs; a few are op...

  2. Land Cover Segmentation of Airborne LiDAR Data Using Stochastic Atrous Network

    Directory of Open Access Journals (Sweden)

    Hasan Asy’ari Arief

    2018-06-01

    Full Text Available Inspired by the success of deep learning techniques in dense-label prediction and the increasing availability of high precision airborne light detection and ranging (LiDAR data, we present a research process that compares a collection of well-proven semantic segmentation architectures based on the deep learning approach. Our investigation concludes with the proposition of some novel deep learning architectures for generating detailed land resource maps by employing a semantic segmentation approach. The contribution of our work is threefold. (1 First, we implement the multiclass version of the intersection-over-union (IoU loss function that contributes to handling highly imbalanced datasets and preventing overfitting. (2 Thereafter, we propose a novel deep learning architecture integrating the deep atrous network architecture with the stochastic depth approach for speeding up the learning process, and impose a regularization effect. (3 Finally, we introduce an early fusion deep layer that combines image-based and LiDAR-derived features. In a benchmark study carried out using the Follo 2014 LiDAR data and the NIBIO AR5 land resources dataset, we compare our proposals to other deep learning architectures. A quantitative comparison shows that our best proposal provides more than 5% relative improvement in terms of mean intersection-over-union over the atrous network, providing a basis for a more frequent and improved use of LiDAR data for automatic land cover segmentation.

  3. planning for the automation of the university of dar es salaam library

    African Journals Online (AJOL)

    The paper examines the planning process for the automation of the University of Dar es Salaam Library. The planning phases described include the preparation phase, planning for implementation and database construction. The major issues during the preparation phase are the discussion on the context of automation, ...

  4. Mapping snags and understory shrubs for LiDAR based assessment of wildlife habitat suitability

    Science.gov (United States)

    Sebastian Martinuzzi; Lee A. Vierling; William A. Gould; Michael J. Falkowski; Jeffrey S. Evans; Andrew T. Hudak; Kerri T. Vierling

    2009-01-01

    The lack of maps depicting forest three-dimensional structure, particularly as pertaining to snags and understory shrub species distribution, is a major limitation for managing wildlife habitat in forests. Developing new techniques to remotely map snags and understory shrubs is therefore an important need. To address this, we first evaluated the use of LiDAR data for...

  5. Real-time surveillance system for marine environment based on HLIF LiDAR

    Science.gov (United States)

    Babichenko, Sergey; Sobolev, Innokenti; Aleksejev, Valeri; Sõro, Oliver

    2017-10-01

    The operational monitoring of the risk areas of marine environment requires cost-effective solutions. One of the options is the use of sensor networks based on fixed installations and moving platforms (coastal boats, supply-, cargo-, and passenger vessels). Such network allows to gather environmental data in time and space with direct links to operational activities in the controlled area for further environmental risk assessment. Among many remote sensing techniques the LiDAR (Light Detection And Ranging) based on Light Induced Fluorescence (LIF) is the tool of direct assessment of water quality variations caused by chemical pollution, colored dissolved organic matter, and phytoplankton composition. The Hyperspectral LIF (HLIF) LiDAR acquires comprehensive LIF spectra and analyses them by spectral pattern recognition technique to detect and classify the substances in water remotely. Combined use of HLIF LiDARs with Real-Time Data Management System (RTDMS) provides the economically effective solution for the regular monitoring in the controlled area. OCEAN VISUALS in cooperation with LDI INNOVATION has developed Oil in Water Locator (OWL™) with RTDMS (OWL MAP™) based on HLIF LiDAR technique. This is a novel technical solution for monitoring of marine environment providing continuous unattended operations. OWL™ has been extensively tested on board of various vessels in the North Sea, Norwegian Sea, Barents Sea, Baltic Sea and Caribbean Sea. This paper describes the technology features, the results of its operational use in 2014-2017, and outlook for the technology development.

  6. Multispectral LiDAR Data for Land Cover Classification of Urban Areas.

    Science.gov (United States)

    Morsy, Salem; Shaker, Ahmed; El-Rabbany, Ahmed

    2017-04-26

    Airborne Light Detection And Ranging (LiDAR) systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity) from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood classifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs) computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy.

  7. Hyperspectral and LiDAR remote sensing of fire fuels in Hawaii Volcanoes National Park.

    Science.gov (United States)

    Varga, Timothy A; Asner, Gregory P

    2008-04-01

    Alien invasive grasses threaten to transform Hawaiian ecosystems through the alteration of ecosystem dynamics, especially the creation or intensification of a fire cycle. Across sub-montane ecosystems of Hawaii Volcanoes National Park on Hawaii Island, we quantified fine fuels and fire spread potential of invasive grasses using a combination of airborne hyperspectral and light detection and ranging (LiDAR) measurements. Across a gradient from forest to savanna to shrubland, automated mixture analysis of hyperspectral data provided spatially explicit fractional cover estimates of photosynthetic vegetation, non-photosynthetic vegetation, and bare substrate and shade. Small-footprint LiDAR provided measurements of vegetation height along this gradient of ecosystems. Through the fusion of hyperspectral and LiDAR data, a new fire fuel index (FFI) was developed to model the three-dimensional volume of grass fuels. Regionally, savanna ecosystems had the highest volumes of fire fuels, averaging 20% across the ecosystem and frequently filling all of the three-dimensional space represented by each image pixel. The forest and shrubland ecosystems had lower FFI values, averaging 4.4% and 8.4%, respectively. The results indicate that the fusion of hyperspectral and LiDAR remote sensing can provide unique information on the three-dimensional properties of ecosystems, their flammability, and the potential for fire spread.

  8. Modeling commuter preferences for the proposed bus rapid transit in Dar-es-Salaam

    NARCIS (Netherlands)

    Nkurunziza, A.; Zuidgeest, M.H.P.; Brussel, M.J.G.; van Maarseveen, M.F.A.M.

    2012-01-01

    The paper analyzes individual commuter preferences towards the proposed bus rapid transit (BRT) system in Dar-es-Salaam, Tanzania. The objective of the survey was to identify how commuters perceive and value the proposed BRT service quality attributes. A stated preference survey of potential users

  9. A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests

    DEFF Research Database (Denmark)

    Boudreault, Louis-Etienne; Bechmann, Andreas; Taryainen, Lasse

    2015-01-01

    and this information is required for each grid point in the three-dimensional computational domain. By using raw data from aerial LiDAR scans together with the Beer-Lambert law, we propose and test a method to calculate and grid highly variable and realistic frontal area density input. An extensive comparison...

  10. Effect of Tree Phenology on LiDAR Measurement of Mediterranean Forest Structure

    Directory of Open Access Journals (Sweden)

    William Simonson

    2018-04-01

    Full Text Available Retrieval of forest biophysical properties using airborne LiDAR is known to differ between leaf-on and leaf-off states of deciduous trees, but much less is understood about the within-season effects of leafing phenology. Here, we compare two LiDAR surveys separated by just six weeks in spring, in order to assess whether LiDAR variables were influenced by canopy changes in Mediterranean mixed-oak woodlands at this time of year. Maximum and, to a slightly lesser extent, mean heights were consistently measured, whether for the evergreen cork oak (Quercus suber or semi-deciduous Algerian oak (Q. canariensis woodlands. Estimates of the standard deviation and skewness of height differed more strongly, especially for Algerian oaks which experienced considerable leaf expansion in the time period covered. Our demonstration of which variables are more or less affected by spring-time leafing phenology has important implications for analyses of both canopy and sub-canopy vegetation layers from LiDAR surveys.

  11. Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR

    Science.gov (United States)

    Gao, Yang; Zhong, Ruofei; Tang, Tao; Wang, Liuzhao; Liu, Xianlin

    2017-08-01

    Pavement markings provide an important foundation as they help to keep roads users safe. Accurate and comprehensive information about pavement markings assists the road regulators and is useful in developing driverless technology. Mobile light detection and ranging (LiDAR) systems offer new opportunities to collect and process accurate pavement markings’ information. Mobile LiDAR systems can directly obtain the three-dimensional (3D) coordinates of an object, thus defining spatial data and the intensity of (3D) objects in a fast and efficient way. The RGB attribute information of data points can be obtained based on the panoramic camera in the system. In this paper, we present a novel method process to automatically extract pavement markings using multiple attribute information of the laser scanning point cloud from the mobile LiDAR data. This method process utilizes a differential grayscale of RGB color, laser pulse reflection intensity, and the differential intensity to identify and extract pavement markings. We utilized point cloud density to remove the noise and used morphological operations to eliminate the errors. In the application, we tested our method process on different sections of roads in Beijing, China, and Buffalo, NY, USA. The results indicated that both correctness (p) and completeness (r) were higher than 90%. The method process of this research can be applied to extract pavement markings from huge point cloud data produced by mobile LiDAR.

  12. Assessment of Ploidy and Genome Constitution of Some Musa balbisiana Cultivars using DArT Markers

    Czech Academy of Sciences Publication Activity Database

    Sales, E. K.; Butardo, N. G.; Paniagua, H. G.; Jansen, H.; Doležel, Jaroslav

    2011-01-01

    Roč. 36, č. 1 (2011), s. 11-18 ISSN 0115-463X Institutional research plan: CEZ:AV0Z50380511 Keywords : DArT * genome * Musa balbisiana Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.075, year: 2011 http://home.ueb.cas.cz/publikace/2011_Sales_PHILIPPINE_JOURNAL_OF_CROP_SCIENCE_11.pdf

  13. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology.

    Science.gov (United States)

    Chase, Arlen F; Chase, Diane Z; Fisher, Christopher T; Leisz, Stephen J; Weishampel, John F

    2012-08-07

    The application of light detection and ranging (LiDAR), a laser-based remote-sensing technology that is capable of penetrating overlying vegetation and forest canopies, is generating a fundamental shift in Mesoamerican archaeology and has the potential to transform research in forested areas world-wide. Much as radiocarbon dating that half a century ago moved archaeology forward by grounding archaeological remains in time, LiDAR is proving to be a catalyst for an improved spatial understanding of the past. With LiDAR, ancient societies can be contextualized within a fully defined landscape. Interpretations about the scale and organization of densely forested sites no longer are constrained by sample size, as they were when mapping required laborious on-ground survey. The ability to articulate ancient landscapes fully permits a better understanding of the complexity of ancient Mesoamerican urbanism and also aids in modern conservation efforts. The importance of this geospatial innovation is demonstrated with newly acquired LiDAR data from the archaeological sites of Caracol, Cayo, Belize and Angamuco, Michoacán, Mexico. These data illustrate the potential of technology to act as a catalytic enabler of rapid transformational change in archaeological research and interpretation and also underscore the value of on-the-ground archaeological investigation in validating and contextualizing results.

  14. 2006 Federal Emergency Management Agency (FEMA) Topographic LiDAR: Cumberland and York Counties, Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the fall of 2006, Sanborn Map Company was contracted by Camp Dresser McKee, Inc (CDM) to execute a LiDAR (Light Detection and Ranging) survey campaign in the...

  15. 2009 U.S. Geological Survey (USGS) Topographic LiDAR: Androscoggin County, Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — USGS Contract Number: G10PC00026 USGS Task Order: G10PD01737 LiDAR was collected at a 1.0 points per square meter (1.0m GSD) for the county of Androscoggin, Maine...

  16. A comparison of two open source LiDAR surface classification algorithms

    Science.gov (United States)

    Wade T. Tinkham; Hongyu Huang; Alistair M.S. Smith; Rupesh Shrestha; Michael J. Falkowski; Andrew T. Hudak; Timothy E. Link; Nancy F. Glenn; Danny G. Marks

    2011-01-01

    With the progression of LiDAR (Light Detection and Ranging) towards a mainstream resource management tool, it has become necessary to understand how best to process and analyze the data. While most ground surface identification algorithms remain proprietary and have high purchase costs; a few are openly available, free to use, and are supported by published results....

  17. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping

    Directory of Open Access Journals (Sweden)

    Tingting Cui

    2016-12-01

    Full Text Available For multi-sensor integrated systems, such as the mobile mapping system (MMS, data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  18. Implications of sensor configuration and topography on vertical plant profiles derived from terrestrial LiDAR

    NARCIS (Netherlands)

    Calders, K.; Armston, J.; Newnham, G.; Herold, M.; Goodwin, N.

    2014-01-01

    The vertical distribution of plant constituents is a key parameter to describe vegetation structure and influences several processes, such as radiation interception, growth and habitat. Terrestrial laser scanning (TLS), also referred to as terrestrial LiDAR, has the potential to measure the canopy

  19. LiDAR Relative Reflectivity Surface (2011) for Fish Bay, St. John

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution relative seafloor reflectivity surface for Fish Bay, St. John in the U.S....

  20. Using Satellite and Airborne LiDAR to Model Woodpecker Habitat Occupancy at the Landscape Scale

    Science.gov (United States)

    Vierling, Lee A.; Vierling, Kerri T.; Adam, Patrick; Hudak, Andrew T.

    2013-01-01

    Incorporating vertical vegetation structure into models of animal distributions can improve understanding of the patterns and processes governing habitat selection. LiDAR can provide such structural information, but these data are typically collected via aircraft and thus are limited in spatial extent. Our objective was to explore the utility of satellite-based LiDAR data from the Geoscience Laser Altimeter System (GLAS) relative to airborne-based LiDAR to model the north Idaho breeding distribution of a forest-dependent ecosystem engineer, the Red-naped sapsucker (Sphyrapicus nuchalis). GLAS data occurred within ca. 64 m diameter ellipses spaced a minimum of 172 m apart, and all occupancy analyses were confined to this grain scale. Using a hierarchical approach, we modeled Red-naped sapsucker occupancy as a function of LiDAR metrics derived from both platforms. Occupancy models based on satellite data were weak, possibly because the data within the GLAS ellipse did not fully represent habitat characteristics important for this species. The most important structural variables influencing Red-naped Sapsucker breeding site selection based on airborne LiDAR data included foliage height diversity, the distance between major strata in the canopy vertical profile, and the vegetation density near the ground. These characteristics are consistent with the diversity of foraging activities exhibited by this species. To our knowledge, this study represents the first to examine the utility of satellite-based LiDAR to model animal distributions. The large area of each GLAS ellipse and the non-contiguous nature of GLAS data may pose significant challenges for wildlife distribution modeling; nevertheless these data can provide useful information on ecosystem vertical structure, particularly in areas of gentle terrain. Additional work is thus warranted to utilize LiDAR datasets collected from both airborne and past and future satellite platforms (e.g. GLAS, and the planned IceSAT2

  1. Application of LiDAR to hydrologic flux estimation in Australian eucalypt forests (Invited)

    Science.gov (United States)

    Lane, P. N.; Mitchell, P. J.; Jaskierniak, D.; Hawthorne, S. N.; Griebel, A.

    2013-12-01

    The potential of LiDAR in ecohydrology is significant as characterising catchment vegetation is crucial to accurate estimation of evapotranspiration (ET). While this may be done at large scales for model parameterisation, stand-scale applications are equally appropriate where traditional methods of measurement of LAI or sapwood areas are time consuming and reliant on assumptions of representative sampling. This is particularly challenging in mountain forests where aspect, soil properties and energy budgets can vary significantly, reflected in the vegetation or where there are changes in the spatial distribution of structural attributes following disturbance. Recent research has investigated the spatial distribution of ET in a eucalypt forest in SE Australia using plot-scale sapflow, interception and forest floor ET measurements. LiDAR was used scale up these measurements. LiDAR (0.16 m scanner footprint) canopy indices were correlated via stepwise regression with 4 water use scalars: basal area (BA), sapwood area (SA), leaf area index (LAI) and canopy coverage (C), with Hmed, Hmean, H80, H95 the best predictors. Combining these indices with empirical relationships between SA and BA, and SA and transpiration (T), and inventory plot 'ground truthing' transpiration was estimated across the 1.3 km2 catchment. Interception was scaled via the Gash model with LiDAR derived inputs. The up-scaling showed a significant variability in the spatial distribution of ET, related to the distribution of SA. The use of LiDAR meant scaling could be achieved at an appropriate spatial scale (20 x 20 m) to the measurements. The second example is the use of airborne LiDAR in developing growth forest models for hydrologic modeling. LiDAR indices were used to stratify multilayered forests using mixed-effect models with a wide range of theoretical distribution functions. When combined with historical plot-scale inventory data we show demonstrated improved growth modeling over traditional

  2. Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDAR

    Directory of Open Access Journals (Sweden)

    Vincenzo Giannico

    2016-04-01

    Full Text Available Assessing forest stand conditions in urban and peri-urban areas is essential to support ecosystem service planning and management, as most of the ecosystem services provided are a consequence of forest stand characteristics. However, collecting data for assessing forest stand conditions is time consuming and labor intensive. A plausible approach for addressing this issue is to establish a relationship between in situ measurements of stand characteristics and data from airborne laser scanning (LiDAR. In this study we assessed forest stand volume and above-ground biomass (AGB in a broadleaved urban forest, using a combination of LiDAR-derived metrics, which takes the form of a forest allometric model. We tested various methods for extracting proxies of basal area (BA and mean stand height (H from the LiDAR point-cloud distribution and evaluated the performance of different models in estimating forest stand volume and AGB. The best predictors for both models were the scale parameters of the Weibull distribution of all returns (except the first (proxy of BA and the 95th percentile of the distribution of all first returns (proxy of H. The R2 were 0.81 (p < 0.01 for the stand volume model and 0.77 (p < 0.01 for the AGB model with a RMSE of 23.66 m3·ha−1 (23.3% and 19.59 Mg·ha−1 (23.9%, respectively. We found that a combination of two LiDAR-derived variables (i.e., proxy of BA and proxy of H, which take the form of a forest allometric model, can be used to estimate stand volume and above-ground biomass in broadleaved urban forest areas. Our results can be compared to other studies conducted using LiDAR in broadleaved forests with similar methods.

  3. Development and mapping of DArT markers within the Festuca - Lolium complex

    Directory of Open Access Journals (Sweden)

    Studer Bruno

    2009-10-01

    Full Text Available Abstract Background Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. Results The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used, we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. Conclusion The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca × Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions.

  4. BUILDING DAMAGE ASSESSMENT AFTER EARTHQUAKE USING POST-EVENT LiDAR DATA

    Directory of Open Access Journals (Sweden)

    H. Rastiveis

    2015-12-01

    Full Text Available After an earthquake, damage assessment plays an important role in leading rescue team to help people and decrease the number of mortality. Damage map is a map that demonstrates collapsed buildings with their degree of damage. With this map, finding destructive buildings can be quickly possible. In this paper, we propose an algorithm for automatic damage map generation after an earthquake using post-event LiDAR Data and pre-event vector map. The framework of the proposed approach has four main steps. To find the location of all buildings on LiDAR data, in the first step, LiDAR data and vector map are registered by using a few number of ground control points. Then, building layer, selected from vector map, are mapped on the LiDAR data and all pixels which belong to the buildings are extracted. After that, through a powerful classifier all the extracted pixels are classified into three classes of “debris”, “intact building” and “unclassified”. Since textural information make better difference between “debris” and “intact building” classes, different textural features are applied during the classification. After that, damage degree for each candidate building is estimated based on the relation between the numbers of pixels labelled as “debris” class to the whole building area. Calculating the damage degree for each candidate building, finally, building damage map is generated. To evaluate the ability proposed method in generating damage map, a data set from Port-au-Prince, Haiti’s capital after the 2010 Haiti earthquake was used. In this case, after calculating of all buildings in the test area using the proposed method, the results were compared to the damage degree which estimated through visual interpretation of post-event satellite image. Obtained results were proved the reliability of the proposed method in damage map generation using LiDAR data.

  5. Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data

    Science.gov (United States)

    Van Den Eeckhaut, Miet; Kerle, Norman; Poesen, Jean; Hervás, Javier

    2012-11-01

    In contrast to the many studies that use expert-based analysis of LiDAR derivatives for landslide mapping in forested terrain, only few studies have attempted to develop (semi-)automatic methods for extracting landslides from LiDAR derivatives. While all these studies are pixel-based, it has not yet been tested whether object-oriented analysis (OOA) could be an alternative. This study investigates the potential of OOA using only single-pulse LiDAR derivatives, such as slope gradient, roughness and curvature to map landslides. More specifically, the focus is on both LiDAR data segmentation and classification of slow-moving landslides in densely vegetated areas, where spectral data do not allow accurate landslide identification. A multistage procedure has been developed and tested in the Flemish Ardennes (Belgium). The procedure consists of (1) image binarization and multiresolution segmentation, (2) classification of landslide parts (main scarps and landslide body segments) and non-landslide features (i.e. earth banks and cropland fields) with supervised support vector machines at the appropriate scale, (3) delineation of landslide flanks, (4) growing of a landslide body starting from its main scarp, and (5) final cleaning of the inventory map. The results obtained show that OOA using LiDAR derivatives allows recognition and characterization of profound morphologic properties of forested deep-seated landslides on soil-covered hillslopes, because more than 90% of the main scarps and 70% of the landslide bodies of an expert-based inventory were accurately identified with OOA. For mountainous areas with bedrock, on the other hand, creation of a transferable model is expected to be more difficult.

  6. Applying a weighted random forests method to extract karst sinkholes from LiDAR data

    Science.gov (United States)

    Zhu, Junfeng; Pierskalla, William P.

    2016-02-01

    Detailed mapping of sinkholes provides critical information for mitigating sinkhole hazards and understanding groundwater and surface water interactions in karst terrains. LiDAR (Light Detection and Ranging) measures the earth's surface in high-resolution and high-density and has shown great potentials to drastically improve locating and delineating sinkholes. However, processing LiDAR data to extract sinkholes requires separating sinkholes from other depressions, which can be laborious because of the sheer number of the depressions commonly generated from LiDAR data. In this study, we applied the random forests, a machine learning method, to automatically separate sinkholes from other depressions in a karst region in central Kentucky. The sinkhole-extraction random forest was grown on a training dataset built from an area where LiDAR-derived depressions were manually classified through a visual inspection and field verification process. Based on the geometry of depressions, as well as natural and human factors related to sinkholes, 11 parameters were selected as predictive variables to form the dataset. Because the training dataset was imbalanced with the majority of depressions being non-sinkholes, a weighted random forests method was used to improve the accuracy of predicting sinkholes. The weighted random forest achieved an average accuracy of 89.95% for the training dataset, demonstrating that the random forest can be an effective sinkhole classifier. Testing of the random forest in another area, however, resulted in moderate success with an average accuracy rate of 73.96%. This study suggests that an automatic sinkhole extraction procedure like the random forest classifier can significantly reduce time and labor costs and makes its more tractable to map sinkholes using LiDAR data for large areas. However, the random forests method cannot totally replace manual procedures, such as visual inspection and field verification.

  7. A DArT marker genetic map of perennial ryegrass (Lolium perenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of Lolium perenne, L. multiflorum and Festuca pratensis.

    Science.gov (United States)

    King, Julie; Thomas, Ann; James, Caron; King, Ian; Armstead, Ian

    2013-07-03

    Ryegrasses and fescues (genera, Lolium and Festuca) are species of forage and turf grasses which are used widely in agricultural and amenity situations. They are classified within the sub-family Pooideae and so are closely related to Brachypodium distachyon, wheat, barley, rye and oats. Recently, a DArT array has been developed which can be used in generating marker and mapping information for ryegrasses and fescues. This represents a potential common marker set for ryegrass and fescue researchers which can be linked through to comparative genomic information for the grasses. A F2 perennial ryegrass genetic map was developed consisting of 7 linkage groups defined by 1316 markers and deriving a total map length of 683 cM. The marker set included 866 DArT and 315 gene sequence-based markers. Comparison with previous DArT mapping studies in perennial and Italian ryegrass (L. multiflorum) identified 87 and 105 DArT markers in common, respectively, of which 94% and 87% mapped to homoeologous linkage groups. A similar comparison with meadow fescue (F. pratensis) identified only 28 DArT markers in common, of which c. 50% mapped to non-homoelogous linkage groups. In L. perenne, the genetic distance spanned by the DArT markers encompassed the majority of the regions that could be described in terms of comparative genomic relationships with rice, Brachypodium distachyon, and Sorghum bicolor. DArT markers are likely to be a useful common marker resource for ryegrasses and fescues, though the success in aligning different populations through the mapping of common markers will be influenced by degrees of population interrelatedness. The detailed mapping of DArT and gene-based markers in this study potentially allows comparative relationships to be derived in future mapping populations characterised using solely DArT markers.

  8. Development and validation of the Dimensional Anhedonia Rating Scale (DARS) in a community sample and individuals with major depression.

    Science.gov (United States)

    Rizvi, Sakina J; Quilty, Lena C; Sproule, Beth A; Cyriac, Anna; Michael Bagby, R; Kennedy, Sidney H

    2015-09-30

    Anhedonia, a core symptom of Major Depressive Disorder (MDD), is predictive of antidepressant non-response. In contrast to the definition of anhedonia as a "loss of pleasure", neuropsychological studies provide evidence for multiple facets of hedonic function. The aim of the current study was to develop and validate the Dimensional Anhedonia Rating Scale (DARS), a dynamic scale that measures desire, motivation, effort and consummatory pleasure across hedonic domains. Following item selection procedures and reliability testing using data from community participants (N=229) (Study 1), the 17-item scale was validated in an online study with community participants (N=150) (Study 2). The DARS was also validated in unipolar or bipolar depressed patients (n=52) and controls (n=50) (Study 3). Principal components analysis of the 17-item DARS revealed a 4-component structure mapping onto the domains of anhedonia: hobbies, food/drink, social activities, and sensory experience. Reliability of the DARS subscales was high across studies (Cronbach's α=0.75-0.92). The DARS also demonstrated good convergent and divergent validity. Hierarchical regression analysis revealed the DARS showed additional utility over the Snaith-Hamilton Pleasure Scale (SHAPS) in predicting reward function and distinguishing MDD subgroups. These studies provide support for the reliability and validity of the DARS. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter.

    Science.gov (United States)

    Liu, Wanli

    2017-03-08

    The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.

  10. Improving low-relief coastal LiDAR DEMs with hydro-conditioning of fine-scale and artificial drainages

    Directory of Open Access Journals (Sweden)

    Thomas Richard Allen

    2015-11-01

    Full Text Available Improvements in Light Detection and Ranging (LiDAR technology and spatial analysis of high-resolution digital elevation models (DEMs have advanced the accuracy and diversity of applications for coastal hazards and natural resources management. This article presents a concise synthesis of LiDAR analysis for coastal flooding and management applications in low-relief coastal plains and a case study demonstration of a new, efficient drainage mapping algorithm. The impetus for these LiDAR applications follows historic flooding from Hurricane Floyd in 1999, after which the State of North Carolina and the Federal Emergency Management Agency undertook extensive LiDAR data acquisition and technological developments for high-resolution floodplain mapping. An efficient algorithm is outlined for hydro-conditioning bare earth LiDAR DEMs using available US Geological Survey National Hydrography Dataset canal and ditch vectors. The methodology is illustrated in Moyock, North Carolina, for refinement of hydro-conditioning by combines pre-existing bare earth DEMs with spatial analysis of LiDAR point clouds in segmented and buffered ditch and canal networks. The methodology produces improved maps of fine-scale drainage, reduced omission of areal flood inundation, and subwatershed delineations that typify heavily ditched and canalled drainage areas. These preliminary results illustrate the capability of the technique to improve the representation of ditches in DEMs as well as subsequent flow and inundation modeling that could spur further research on low-relief coastal LiDAR applications.

  11. Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data

    International Nuclear Information System (INIS)

    Bailey, Brian N; Mahaffee, Walter F

    2017-01-01

    The rapid evolution of high performance computing technology has allowed for the development of extremely detailed models of the urban and natural environment. Although models can now represent sub-meter-scale variability in environmental geometry, model users are often unable to specify the geometry of real domains at this scale given available measurements. An emerging technology in this field has been the use of terrestrial LiDAR scanning data to rapidly measure the three-dimensional geometry of trees, such as the distribution of leaf area. However, current LiDAR methods suffer from the limitation that they require detailed knowledge of leaf orientation in order to translate projected leaf area into actual leaf area. Common methods for measuring leaf orientation are often tedious or inaccurate, which places constraints on the LiDAR measurement technique. This work presents a new method to simultaneously measure leaf orientation and leaf area within an arbitrarily defined volume using terrestrial LiDAR data. The novelty of the method lies in the direct measurement of the fraction of projected leaf area G from the LiDAR data which is required to relate projected leaf area to total leaf area, and in the new way in which radiation transfer theory is used to calculate leaf area from the LiDAR data. The method was validated by comparing LiDAR-measured leaf area to (1) ‘synthetic’ or computer-generated LiDAR data where the exact area was known, and (2) direct measurements of leaf area in the field using destructive sampling. Overall, agreement between the LiDAR and reference measurements was very good, showing a normalized root-mean-squared-error of about 15% for the synthetic tests, and 13% in the field. (paper)

  12. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    Science.gov (United States)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    Field measurements of the wake flow produced from the interaction between atmospheric boundary layer and a wind turbine are performed with three wind LiDARs. The tested wind turbine is a 2 MW Enercon E-70 located in Collonges, Switzerland. First, accuracy of mean values and frequency resolution of the wind measurements are surveyed as a function of the number of laser rays emitted for each measurement. Indeed, measurements performed with one single ray allow maximizing sampling frequency, thus characterizing wake turbulence. On the other hand, if the number of emitted rays is increased accuracy of mean wind is increased due to the longer sampling period. Subsequently, two-dimensional measurements with a single LiDAR are carried out over vertical sections of the wind turbine wake and mean wake flow is obtained by averaging 2D measurements consecutively performed. The high spatial resolution of the used LiDAR allows characterizing in details velocity defect present in the central part of the wake and its downstream recovery. Single LiDAR measurements are also performed by staring the laser beam at fixed directions for a sampling period of about ten minutes and maximizing the sampling frequency in order to characterize wake turbulence. From these tests wind fluctuation peaks are detected in the wind turbine wake at blade top-tip height for different downstream locations. The magnitude of these turbulence peaks is generally reduced by moving downstream. This increased turbulence level at blade top-tip height observed for a real wind turbine has been already detected from previous wind tunnel tests and Large Eddy simulations, thus confirming the presence of a source of dangerous fatigue loads for following wind turbines within a wind farm. Furthermore, the proper characterization of wind fluctuations through LiDAR measurements is proved by the detection of the inertial subrange from spectral analysis of these velocity signals. Finally, simultaneous measurements with two

  13. Introduction of ‘The Bastard’ in the Urban Fabric of the Tetuan Medina - Dar Oddi House

    Science.gov (United States)

    Calvo-Serran, Julio; García-Carrillo, Fabián; Santiago-Zaragoza, Juan Manuel; Ouadighi El Oddi, Feirouz

    2017-10-01

    The medina of Tetuan has suffered a steady growing since its founding at the end of xv century by Sidi al-Mandary. It has always followed the Islamic city rules and included those works carried away by the sultan. This process had two breaking moments, that of the occupation of the city by the Spanish army in 1860 and the establishment of the Spanish protectorate. The first inside widening of the Luneta Street of the medina took place when the Rif War had already finished (provoked by the establishment of the Spanish Protectorate). The Widening was being built and the “modernity” could astonish anyone. The motives for Hadj Ahmed El Oddi to build his own house in the heart of the medina should be searched in the “kaida”, that is the tradition so close to the muslin character of Tetuan. Building inside the medina meant not only keeping the familiar tradition but following the way of life their family, neighbours, friends kept. It was considered improper to do it in a different place. They could own properties in the new quarters, but only to be rented, not to be first residence. Dar Oddi was built in 1920 in the city centre al-Blal, the oldest quarter of the medina of Tetuan. Built on the foundation of a demolished house would be built as the new houses already built inside the medina by neighbours and relatives. That ‘current fashion’ was similar to a muslin house of the beginning of the xx century: based on the tradition but contaminated by the social changes taking place outside he medina and in short inside.

  14. Quantifying spatial distribution of snow depth errors from LiDAR using Random Forests

    Science.gov (United States)

    Tinkham, W.; Smith, A. M.; Marshall, H.; Link, T. E.; Falkowski, M. J.; Winstral, A. H.

    2013-12-01

    There is increasing need to characterize the distribution of snow in complex terrain using remote sensing approaches, especially in isolated mountainous regions that are often water-limited, the principal source of terrestrial freshwater, and sensitive to climatic shifts and variations. We apply intensive topographic surveys, multi-temporal LiDAR, and Random Forest modeling to quantify snow volume and characterize associated errors across seven land cover types in a semi-arid mountainous catchment at a 1 and 4 m spatial resolution. The LiDAR-based estimates of both snow-off surface topology and snow depths were validated against ground-based measurements across the catchment. Comparison of LiDAR-derived snow depths to manual snow depth surveys revealed that LiDAR based estimates were more accurate in areas of low lying vegetation such as shrubs (RMSE = 0.14 m) as compared to areas consisting of tree cover (RMSE = 0.20-0.35 m). The highest errors were found along the edge of conifer forests (RMSE = 0.35 m), however a second conifer transect outside the catchment had much lower errors (RMSE = 0.21 m). This difference is attributed to the wind exposure of the first site that led to highly variable snow depths at short spatial distances. The Random Forest modeled errors deviated from the field measured errors with a RMSE of 0.09-0.34 m across the different cover types. Results show that snow drifts, which are important for maintaining spring and summer stream flows and establishing and sustaining water-limited plant species, contained 30 × 5-6% of the snow volume while only occupying 10% of the catchment area similar to findings by prior physically-based modeling approaches. This study demonstrates the potential utility of combining multi-temporal LiDAR with Random Forest modeling to quantify the distribution of snow depth with a reasonable degree of accuracy. Future work could explore the utility of Terrestrial LiDAR Scanners to produce validation of snow-on surface

  15. Modelling vertical error in LiDAR-derived digital elevation models

    Science.gov (United States)

    Aguilar, Fernando J.; Mills, Jon P.; Delgado, Jorge; Aguilar, Manuel A.; Negreiros, J. G.; Pérez, José L.

    2010-01-01

    A hybrid theoretical-empirical model has been developed for modelling the error in LiDAR-derived digital elevation models (DEMs) of non-open terrain. The theoretical component seeks to model the propagation of the sample data error (SDE), i.e. the error from light detection and ranging (LiDAR) data capture of ground sampled points in open terrain, towards interpolated points. The interpolation methods used for infilling gaps may produce a non-negligible error that is referred to as gridding error. In this case, interpolation is performed using an inverse distance weighting (IDW) method with the local support of the five closest neighbours, although it would be possible to utilize other interpolation methods. The empirical component refers to what is known as "information loss". This is the error purely due to modelling the continuous terrain surface from only a discrete number of points plus the error arising from the interpolation process. The SDE must be previously calculated from a suitable number of check points located in open terrain and assumes that the LiDAR point density was sufficiently high to neglect the gridding error. For model calibration, data for 29 study sites, 200×200 m in size, belonging to different areas around Almeria province, south-east Spain, were acquired by means of stereo photogrammetric methods. The developed methodology was validated against two different LiDAR datasets. The first dataset used was an Ordnance Survey (OS) LiDAR survey carried out over a region of Bristol in the UK. The second dataset was an area located at Gador mountain range, south of Almería province, Spain. Both terrain slope and sampling density were incorporated in the empirical component through the calibration phase, resulting in a very good agreement between predicted and observed data (R2 = 0.9856 ; p reasonably good fit to the predicted errors. Even better results were achieved in the more rugged morphology of the Gador mountain range dataset. The findings

  16. AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Desport Estelle

    2012-08-01

    Full Text Available Abstract Definition of the disease AL amyloidosis results from extra-cellular deposition of fibril-forming monoclonal immunoglobulin (Ig light chains (LC (most commonly of lambda isotype usually secreted by a small plasma cell clone. Most patients have evidence of isolated monoclonal gammopathy or smoldering myeloma, and the occurrence of AL amyloidosis in patients with symptomatic multiple myeloma or other B-cell lymphoproliferative disorders is unusual. The key event in the development of AL amyloidosis is the change in the secondary or tertiary structure of an abnormal monoclonal LC, which results in instable conformation. This conformational change is responsible for abnormal folding of the LC, rich in β leaves, which assemble into monomers that stack together to form amyloid fibrils. Epidemiology AL amyloidosis is the most common type of systemic amyloidois in developed countries with an estimated incidence of 9 cases/million inhabitant/year. The average age of diagnosed patients is 65 years and less than 10% of patients are under 50. Clinical description The clinical presentation is protean, because of the wide number of tissues or organs that may be affected. The most common presenting symptoms are asthenia and dyspnoea, which are poorly specific and may account for delayed diagnosis. Renal manifestations are the most frequent, affecting two thirds of patients at presentation. They are characterized by heavy proteinuria, with nephrotic syndrome and impaired renal function in half of the patients. Heart involvement, which is present at diagnosis in more than 50% of patients, leading to restrictive cardiopathy, is the most serious complication and engages prognosis. Diagnostic methods The diagnosis relies on pathological examination of an involved site showing Congo red-positive amyloid deposits, with typical apple-green birefringence under polarized light, that stain positive with an anti-LC antibody by immunohistochemistry and

  17. 2007 Oregon Department of Geology and Mineral Industries (DoGAMI) LiDAR: Northwest Oregon and Portland Metro Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. collected Light Detection and Ranging (LiDAR) data for the Oregon Department of Geology and Mineral Industries (DoGAMI) and the Oregon...

  18. IsoDAR@KamLAND: A Conceptual Design Report for the Technical Facility

    CERN Document Server

    Abs, M; Alonso, J R; Axani, S; Barletta, W A; Barlow, R; Bartoszek, L; Bungau, A; Calabretta, L; Calanna, A; Campo, D; Castro, G; Celona, L; Collin, G H; Conrad, J M; Gammino, S; Johnson, R; Karagiorgi, G; Kayser, S; Kleeven, W; Kolano, A; Labrecque, F; Loinaz, W A; Minervini, J; Moulai, M H; Okuno, H; Owen, H; Papavassiliou, V; Shaevitz, M H; Shimizu, I; Shokair, T M; Sorensen, K F; Spitz, J; Toups, M; Vagins, M; Van Bibber, K; Wascko, M O; Winklehner, D; Winslow, L A; Yang, J J

    2015-01-01

    This conceptual design report describes the technical facility for the IsoDAR electron-antineutrino source at KamLAND. The IsoDAR source will allow an impressive program of neutrino oscillation and electroweak physics to be performed at KamLAND. This report provides information on the physics case, the conceptual design for the subsystems, alternative designs considered, specifics of installation at KamLAND, and identified needs for future development. We discuss the risks we have identified and our approach to mitigating those risks with this design. A substantial portion of the conceptual design is based on three years of experimental efforts and on industry experience. This report also includes information on the conventional facilities.

  19. Wind Predictions Upstream Wind Turbines from a LiDAR Database

    Directory of Open Access Journals (Sweden)

    Soledad Le Clainche

    2018-03-01

    Full Text Available This article presents a new method to predict the wind velocity upstream a horizontal axis wind turbine from a set of light detection and ranging (LiDAR measurements. The method uses higher order dynamic mode decomposition (HODMD to construct a reduced order model (ROM that can be extrapolated in space. LiDAR measurements have been carried out upstream a wind turbine at six different planes perpendicular to the wind turbine axis. This new HODMD-based ROM predicts with high accuracy the wind velocity during a timespan of 24 h in a plane of measurements that is more than 225 m far away from the wind turbine. Moreover, the technique introduced is general and obtained with an almost negligible computational cost. This fact makes it possible to extend its application to both vertical axis wind turbines and real-time operation.

  20. Automated Extraction of 3D Trees from Mobile LiDAR Point Clouds

    Directory of Open Access Journals (Sweden)

    Y. Yu

    2014-06-01

    Full Text Available This paper presents an automated algorithm for extracting 3D trees directly from 3D mobile light detection and ranging (LiDAR data. To reduce both computational and spatial complexities, ground points are first filtered out from a raw 3D point cloud via blockbased elevation filtering. Off-ground points are then grouped into clusters representing individual objects through Euclidean distance clustering and voxel-based normalized cut segmentation. Finally, a model-driven method is proposed to achieve the extraction of 3D trees based on a pairwise 3D shape descriptor. The proposed algorithm is tested using a set of mobile LiDAR point clouds acquired by a RIEGL VMX-450 system. The results demonstrate the feasibility and effectiveness of the proposed algorithm.

  1. Comparative study of building footprint estimation methods from LiDAR point clouds

    Science.gov (United States)

    Rozas, E.; Rivera, F. F.; Cabaleiro, J. C.; Pena, T. F.; Vilariño, D. L.

    2017-10-01

    Building area calculation from LiDAR points is still a difficult task with no clear solution. Their different characteristics, such as shape or size, have made the process too complex to automate. However, several algorithms and techniques have been used in order to obtain an approximated hull. 3D-building reconstruction or urban planning are examples of important applications that benefit of accurate building footprint estimations. In this paper, we have carried out a study of accuracy in the estimation of the footprint of buildings from LiDAR points. The analysis focuses on the processing steps following the object recognition and classification, assuming that labeling of building points have been previously performed. Then, we perform an in-depth analysis of the influence of the point density over the accuracy of the building area estimation. In addition, a set of buildings with different size and shape were manually classified, in such a way that they can be used as benchmark.

  2. High resolution, topobathymetric LiDAR coastal zone characterization in Denmark

    DEFF Research Database (Denmark)

    Steinbacher, Frank; Baran, Ramona; Andersen, Mikkel S.

    2016-01-01

    Coastal and tidal environments are valuable ecosystems, which, however, are under pressure in many areas around the world due to globalization and/or climate change. Detailed mapping of these environments is required in order to manage the coastal zone in a sustainable way. However, historically...... locations with different environmental settings. We demonstrate the potential of using airborne topobathymetric LiDAR for seamless mapping of land-water transition zones in challenging coastal environments, e.g. in an environment with high water column turbidity and continuously varying water levels due...... these transition zones between land and water are difficult or even impossible to map and investigate in high spatial resolution due to the challenging environmental conditions. The new generation of airborne topobathymetric light detection and ranging (LiDAR) potentially enables full-coverage and high...

  3. Remote measurement of surface roughness, surface reflectance, and body reflectance with LiDAR.

    Science.gov (United States)

    Li, Xiaolu; Liang, Yu

    2015-10-20

    Light detection and ranging (LiDAR) intensity data are attracting increasing attention because of the great potential for use of such data in a variety of remote sensing applications. To fully investigate the data potential for target classification and identification, we carried out a series of experiments with typical urban building materials and employed our reconstructed built-in-lab LiDAR system. Received intensity data were analyzed on the basis of the derived bidirectional reflectance distribution function (BRDF) model and the established integration method. With an improved fitting algorithm, parameters involved in the BRDF model can be obtained to depict the surface characteristics. One of these parameters related to surface roughness was converted to a most used roughness parameter, the arithmetical mean deviation of the roughness profile (Ra), which can be used to validate the feasibility of the BRDF model in surface characterizations and performance evaluations.

  4. Coronary bypass surgery in patients aged 70 years and over: Mortality, morbidity, & length of stay. Dar al-fouad experience

    Directory of Open Access Journals (Sweden)

    Ahmed Ghali

    2014-03-01

    This study supports the continued performance of coronary artery bypass grafting in patients 70 years. Advanced age alone should not deter a cardiac surgeon from offering such a potentially beneficial intervention.

  5. Imperial Russia as Dar al-Islam? Nineteenth-Century Debates on Ijtihad and Taqlid among the Volga Tatars

    NARCIS (Netherlands)

    Kemper, M.

    2015-01-01

    The Muslims of the Russian Empire provide us with some interesting cases of how local Islamic scholars used the language and genres of Islamic law to describe their situation in a "northern" and non-Muslim state. The development of Islamic law in nineteenth-century Russia was influenced by close

  6. Towards Automation in Landcover Mapping from LiDAR Data in Alpine Environment

    Science.gov (United States)

    Dorninger, Peter; Briese, Christian; Nothegger, Clemens; Klauser, Armin

    2010-05-01

    Digital terrain models derived from airborne LiDAR (often referred to as airborne laser scanning) are commonly used for various applications in geomorphology. The ongoing development in sensor technology makes flight campaigns with some 10 points per square meter economically feasible for large areas. Simultaneously, the achievable accuracy of the originally acquired points as well as those of the derived products increases due to improved measurement techniques. Additionally, full-waveform (FWF) laser scanning systems record the time-dependent strength of the backscattered signal. This allows for the determination of numerous points (i.e. echoes) for one emitted laser beam hitting multiple targets within its footprint. Practically, about five echoes may be determined from the digitized signal form. Furthermore, additional attributes can be determined for each echo. These are, for example, a reflectivity measure (amplitude), the widening of the echo (echo width), or the sequence of the echoes of a single shot. By considering the polar measurement range and atmospheric conditions, a physical calibration of such measurements is possible. The application of FWF information to increase the accuracy and the reliability of digital terrain models especially in areas with dense vegetation was shown by Doneus & Briese (2006). However, these additional attributes are rarely used for object or landcover classification. This is still the domain of automated image interpretation (e.g. Zebedin et al., 2006). Nevertheless, image interpretation has well known deficiencies in areas with vegetation or if shadows occur. Therefore, we tested a hybrid approach which uses conventional first echo / last echo (FE/LE) airborne laser scanning data (first and last pulse) and an RGB-orthophoto. The testing site is located in an alpine area in Tyrol, Austria. For the classification, topographic models, a slope map, a local roughness measure and a penetration ratio were determined from the

  7. True Orthophoto Generation from Aerial Frame Images and LiDAR Data: An Update

    Directory of Open Access Journals (Sweden)

    Hamid Gharibi

    2018-04-01

    Full Text Available Image spectral and Light Detection and Ranging (LiDAR positional information can be related through the orthophoto generation process. Orthophotos have a uniform scale and represent all objects in their correct planimetric locations. However, orthophotos generated using conventional methods suffer from an artifact known as the double-mapping effect that occurs in areas occluded by tall objects. The double-mapping problem can be resolved through the commonly known true orthophoto generation procedure, in which an occlusion detection process is incorporated. This paper presents a review of occlusion detection methods, from which three techniques are compared and analyzed using experimental results. The paper also describes a framework for true orthophoto production based on an angle-based occlusion detection method. To improve the performance of the angle-based technique, two modifications to this method are introduced. These modifications, which aim at resolving false visibilities reported within the angle-based occlusion detection process, are referred to as occlusion extension and radial section overlap. A weighted averaging approach is also proposed to mitigate the seamline effect and spectral dissimilarity that may appear in true orthophoto mosaics. Moreover, true orthophotos generated from high-resolution aerial images and high-density LiDAR data using the updated version of angle-based methodology are illustrated for two urban study areas. To investigate the potential of image matching techniques in producing true orthophotos and point clouds, a comparison between the LiDAR-based and image-matching-based true orthophotos and digital surface models (DSMs for an urban study area is also presented in this paper. Among the investigated occlusion detection methods, the angle-based technique demonstrated a better performance in terms of output and running time. The LiDAR-based true orthophotos and DSMs showed higher qualities compared to their

  8. Intestinal Parasitic Infections in Bahir Dar and Risk Factors for Transmission

    OpenAIRE

    Erko, Berhanu; Medhin, Girmay; Birrie, Hailu

    1995-01-01

    A study of intestinal parasites and assessment of transmission factors were made in Bahir Dar town, northwestern Ethiopia. Out of 528 children examined by formolether concentration method over 95 % were found to harbour one or more intestinal parasites. Human behaviour and poor sanitary conditions appeared to be responsible for the transmission of geohelminths, faeco-orally transmitted amoebae and water-related schistosome parasites. Health education is suggested to play a vital role in the c...

  9. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    OpenAIRE

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-01-01

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. Th...

  10. Flying Under the LiDAR: Relating Forest Structure to Bat Community Diversity

    Science.gov (United States)

    Swanson, A. C.; Weishampel, J. F.

    2015-12-01

    Bats are important to many ecological processes such as pollination, insect (and by proxy, disease) control, and seed dispersal and can be used to monitor ecosystem health. However, they are facing unprecedented extinction risks from habitat degradation as well as pressures from pathogens (e.g., white-nose syndrome) and wind turbines. LiDAR allows ecologists to measure structural variables of forested landscapes with increased precision and accuracy at broader spatial scales than previously possible. This study used airborne LiDAR to classify forest habitat/canopy structure at the Ordway-Swisher Biological Station (OSBS) in north central Florida. LiDAR data were acquired by the NEON airborne observation platform in summer 2014. OSBS consists of open-canopy pine savannas, closed-canopy hardwood hammocks, and seasonally wet prairies. Multiple forest structural parameters (e.g., mean, maximum, and standard deviation of height returns) were derived from LiDAR point clouds using the USDA software program FUSION. K-means clustering was used to segregate each 5x5 m raster across the ~3765 ha OSBS area into six different clusters based on the derived canopy metrics. Cluster averages for maximum, mean, and standard deviation of return heights ranged from 0 to 19.4 m, 0 to 15.3 m, and 0 to 3.0 m, respectively. To determine the relationships among these landscape-canopy features and bat species diversity and abundances, AnaBat II bat detectors were deployed from May to September in 2015 stratified by these distinct clusters. Bat calls were recorded from sunset to sunrise during each sampling period. Species were identified using AnalookW. A statistical regression model selection approach was performed in order to evaluate how forest attributes such as understory clutter, open regions, open and closed canopy, etc. influence bat communities. This knowledge provides a deeper understanding of habitat-species interactions to better manage survival of these species.

  11. Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR

    Science.gov (United States)

    Chen, Tao; Zhang, Pei Zhen; Liu, Jing; Li, Chuan You; Ren, Zhi Kun; Hudnut, Kenneth W.

    2014-01-01

    High-precision and high-resolution topography are the fundamental data for active fault research. Light detection and ranging (LiDAR) presents a new approach to build detailed digital elevation models effectively. We take the Haiyuan fault in Gansu Province as an example of how LiDAR data may be used to improve the study of active faults and the risk assessment of related hazards. In the eastern segment of the Haiyuan fault, the Shaomayin site has been comprehensively investigated in previous research because of its exemplary tectonic topographic features. Based on unprecedented LiDAR data, the horizontal and vertical coseismic offsets at the Shaomayin site are described. The measured horizontal value is about 8.6 m, and the vertical value is about 0.8 m. Using prior dating ages sampled from the same location, we estimate the horizontal slip rate as 4.0 ± 1.0 mm/a with high confidence and define that the lower bound of the vertical slip rate is 0.4 ± 0.1 mm/a since the Holocene. LiDAR data can repeat the measurements of field work on quantifying offsets of tectonic landform features quite well. The offset landforms are visualized on an office computer workstation easily, and specialized software may be used to obtain displacement quantitatively. By combining precious chronological results, the fundamental link between fault activity and large earthquakes is better recognized, as well as the potential risk for future earthquake hazards.

  12. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    Science.gov (United States)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  13. Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory

    Science.gov (United States)

    Junttila, Virpi; Finley, Andrew O.; Bradford, John B.; Kauranne, Tuomo

    2013-01-01

    Recently airborne Light Detection And Ranging (LiDAR) has emerged as a highly accurate remote sensing modality to be used in operational scale forest inventories. Inventories conducted with the help of LiDAR are most often model-based, i.e. they use variables derived from LiDAR point clouds as the predictive variables that are to be calibrated using field plots. The measurement of the necessary field plots is a time-consuming and statistically sensitive process. Because of this, current practice often presumes hundreds of plots to be collected. But since these plots are only used to calibrate regression models, it should be possible to minimize the number of plots needed by carefully selecting the plots to be measured. In the current study, we compare several systematic and random methods for calibration plot selection, with the specific aim that they be used in LiDAR based regression models for forest parameters, especially above-ground biomass. The primary criteria compared are based on both spatial representativity as well as on their coverage of the variability of the forest features measured. In the former case, it is important also to take into account spatial auto-correlation between the plots. The results indicate that choosing the plots in a way that ensures ample coverage of both spatial and feature space variability improves the performance of the corresponding models, and that adequate coverage of the variability in the feature space is the most important condition that should be met by the set of plots collected.

  14. Evaluation of Landslide Mapping Techniques and LiDAR-based Conditioning Factors

    Science.gov (United States)

    Mahalingam, R.; Olsen, M. J.

    2014-12-01

    Landslides are a major geohazard, which result in significant human, infrastructure, and economic losses. Landslide susceptibility mapping can help communities to plan and prepare for these damaging events. Mapping landslide susceptible locations using GIS and remote sensing techniques is gaining popularity in the past three decades. These efforts use a wide variety of procedures and consider a wide range of factors. Unfortunately, each study is often completed differently and independently of others. Further, the quality of the datasets used varies in terms of source, data collection, and generation, which can propagate errors or inconsistencies into the resulting output maps. Light detection and ranging (LiDAR) has proved to have higher accuracy in representing the continuous topographic surface, which can help minimize this uncertainty. The primary objectives of this paper are to investigate the applicability and performance of terrain factors in landslide hazard mapping, determine if LiDAR-derived datasets (slope, slope roughness, terrain roughness, stream power index and compound topographic index) can be used for predictive mapping without data representing other common landslide conditioning factors, and evaluate the differences in landslide susceptibility mapping using widely-used statistical approaches. The aforementioned factors were used to produce landslide susceptibility maps for a 140 km2 study area in northwest Oregon using six representative techniques: frequency ratio, weights of evidence, logistic regression, discriminant analysis, artificial neural network, and support vector machine. Most notably, the research showed an advantage in selecting fewer critical conditioning factors. The most reliable factors all could be derived from a single LiDAR DEM, reducing the need for laborious and costly data gathering. Most of the six techniques showed similar statistical results; however, ANN showed less accuracy for predictive mapping. Keywords : LiDAR

  15. LiDAR-based Prediction of Arthropod Abundance at the Southern Slopes of Mt. Kilimanjaro

    Science.gov (United States)

    Ziegler, Alice

    2017-04-01

    LiDAR (Light Detection And Ranging) is a remote sensing technology that offers high-resolution three-dimensional information about the covered area. These three-dimensional datasets were used in this work to derive structural parameters of the vegetation to predict the abundance of eight different arthropod assemblages with several models. For the model training of each arthropod assemblage, different versions (extent, filters) of the LiDAR datasets were provided and evaluated. Furthermore the importance of each of the LiDAR-derived structural parameters for each model was calculated. The best input dataset and structural parameters were used for the prediction of the abundance of arthropod assemblages. The analyses of the prediction results across seven different landuse types and the eight arthropod assemblages exposed, that for the arthropod assemblages, LiDAR-based predictions were in general best feasible for "Orthoptera" (average R2 (coefficient of determination) over all landuses: 0.14), even though the predictions for the other arthropod assemblages reached values of the same magnitude. It was also found that the landuse type "disturbed forest" showed the best results (average R2 over all assemblages: 0.20), whereas "home garden" was the least predictable (average R2 over all assemblages: 0.04). Differenciated by arthropod-landuse pairs, the results showed distinct differences and the R2 values diverged clearly. It was shown, that when model settings were optimized for only one arthropod taxa, values for R2 could reach values up to 0.55 ("Orthoptera" in "disturbed forest"). The analysis of the importance of each structural parameter for the prediction revealed that about one third of the 18 used parameters were always among the most important ones for the prediction of all assemblages. This strong ranking of parameters implied that focus for further research needs to be put on the selection of predictor variables.

  16. Use of LiDAR to Assist in Delineating Waters of the United States, Including Wetlands

    Science.gov (United States)

    2014-03-01

    components: a mounting platform, a laser and scanning mirror, an inertial measurement unit (IMU), a global positioning system (GPS) antenna and...including but not limited to TIFF, ASC , IMG, and KML files or compressed as a KMZ file. These files are quickly imported and viewed using GIS such as...sediment transport processes and hydraulics. Sedimentology 56:2024–2043. Hogg, A., and J. Holland. 2008. An evaluation of DEMs derived from LiDAR

  17. 3D turbulence measurements in inhomogeneous boundary layers with three wind LiDARs

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2014-05-01

    One of the most challenging tasks in atmospheric anemometry is obtaining reliable turbulence measurements of inhomogeneous boundary layers at heights or in locations where is not possible or convenient to install tower-based measurement systems, e.g. mountainous terrain, cities, wind farms, etc. Wind LiDARs are being extensively used for the measurement of averaged vertical wind profiles, but they can only successfully accomplish this task under the limiting conditions of flat terrain and horizontally homogeneous flow. Moreover, it has been shown that common scanning strategies introduce large systematic errors in turbulence measurements, regardless of the characteristics of the flow addressed. From the point of view of research, there exist a variety of techniques and scanning strategies to estimate different turbulence quantities but most of them rely in the combination of raw measurements with atmospheric models. Most of those models are only valid under the assumption of horizontal homogeneity. The limitations stated above can be overcome by a new triple LiDAR technique which uses simultaneous measurements from three intersecting Doppler wind LiDARs. It allows for the reconstruction of the three-dimensional velocity vector in time as well as local velocity gradients without the need of any turbulence model and with minimal assumptions [EGU2013-9670]. The triple LiDAR technique has been applied to the study of the flow over the campus of EPFL in Lausanne (Switzerland). The results show the potential of the technique for the measurement of turbulence in highly complex boundary layer flows. The technique is particularly useful for micrometeorology and wind engineering studies.

  18. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates

    OpenAIRE

    Dengsheng Lu; Qi Chen; Guangxing Wang; Emilio Moran; Mateus Batistella; Maozhen Zhang; Gaia Vaglio Laurin; David Saah

    2012-01-01

    Landsat Thematic mapper (TM) image has long been the dominate data source, and recently LiDAR has offered an important new structural data stream for forest biomass estimations. On the other hand, forest biomass uncertainty analysis research has only recently obtained sufficient attention due to the difficulty in collecting reference data. This paper provides a brief overview of current forest biomass estimation methods using both TM and LiDAR data. A case study is then presented that demonst...

  19. ÉTUDE DE CAS — Dar es-Salaam, Tanzanie : Assurer la sécurité ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    20 déc. 2010 ... En l'absence de services suffisants, les citadins sont passés maîtres dans l'art de « se débrouiller » et d'improviser. Par la force des choses, Dar es-Salaam, ou Dar, est devenue une ville ..... Urban agriculture: Growing food in our cities. City dwellers have been growing their own food for millennia.

  20. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.

    Science.gov (United States)

    Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong

    2016-05-30

    Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.

  1. Utilizing LiDAR Datasets From Experimental Watersheds to Advance Ecohydrological Understanding in Seasonally Snow-Covered Forests

    Science.gov (United States)

    Harpold, A. A.; Broxton, P. D.; Guo, Q.; Barlage, M. J.; Gochis, D. J.

    2014-12-01

    The Western U.S. is strongly reliant on snowmelt from forested areas for ecosystem services and downstream populations. The ability to manage water resources from snow-covered forests faces major challenges from drought, disturbance, and regional changes in climate. An exciting avenue for improving ecohydrological process understanding is Light Detection and Ranging (LiDAR) because the technology simultaneously observes topography, forest properties, and snow/ice at high-resolution (100 km2). The availability and quality of LiDAR datasets is increasing rapidly, however they remain under-utilized for process-based ecohydrology investigations. This presentation will illustrate how LiDAR datasets from the Critical Zone Observatory (CZO) network have been applied to advance ecohydrological understanding through direct empirical analysis, as well as model parameterization and verification. Direct analysis of the datasets has proved fruitful for pre- and post-disturbance snow distribution estimates and interpreting in-situ snow depth measurements across sites. In addition, we illustrate the potential value of LiDAR to parameterize and verify of physical models with two examples. First, we use LiDAR to parameterize a land surface model, Noah multi-parameterization (Noah-MP), to investigate the sensitivity of modeled water and energy fluxes to high-resolution forest information. Second, we present a Snow Physics and Laser Mapping (SnowPALM) model that is parameterized with LiDAR information at its native 1-m scale. Both modeling studies demonstrate the value of LiDAR for representing processes with greater fidelity. More importantly, the increased model fidelity led to different estimates of water and energy fluxes at larger, watershed scales. Creating a network of experimental watersheds with LiDAR datasets offers the potential to test theories and models in previously unexplored ways.

  2. Motion field estimation for a dynamic scene using a 3D LiDAR.

    Science.gov (United States)

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  3. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    Directory of Open Access Journals (Sweden)

    Qingquan Li

    2014-09-01

    Full Text Available This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  4. Automated method for measuring the extent of selective logging damage with airborne LiDAR data

    Science.gov (United States)

    Melendy, L.; Hagen, S. C.; Sullivan, F. B.; Pearson, T. R. H.; Walker, S. M.; Ellis, P.; Kustiyo; Sambodo, Ari Katmoko; Roswintiarti, O.; Hanson, M. A.; Klassen, A. W.; Palace, M. W.; Braswell, B. H.; Delgado, G. M.

    2018-05-01

    Selective logging has an impact on the global carbon cycle, as well as on the forest micro-climate, and longer-term changes in erosion, soil and nutrient cycling, and fire susceptibility. Our ability to quantify these impacts is dependent on methods and tools that accurately identify the extent and features of logging activity. LiDAR-based measurements of these features offers significant promise. Here, we present a set of algorithms for automated detection and mapping of critical features associated with logging - roads/decks, skid trails, and gaps - using commercial airborne LiDAR data as input. The automated algorithm was applied to commercial LiDAR data collected over two logging concessions in Kalimantan, Indonesia in 2014. The algorithm results were compared to measurements of the logging features collected in the field soon after logging was complete. The automated algorithm-mapped road/deck and skid trail features match closely with features measured in the field, with agreement levels ranging from 69% to 99% when adjusting for GPS location error. The algorithm performed most poorly with gaps, which, by their nature, are variable due to the unpredictable impact of tree fall versus the linear and regular features directly created by mechanical means. Overall, the automated algorithm performs well and offers significant promise as a generalizable tool useful to efficiently and accurately capture the effects of selective logging, including the potential to distinguish reduced impact logging from conventional logging.

  5. Phylogenetic Relationships between Four Salix L. Species Based on DArT Markers

    Directory of Open Access Journals (Sweden)

    Jerzy A. Przyborowski

    2013-12-01

    Full Text Available The objectives of this study were to evaluate the usefulness of DArT markers in genotypic identification of willow species and describe genetic relationships between four willow species: Salix viminalis, S. purpurea, S. alba and S. triandra. The experimental plant material comprised 53 willow genotypes of these four species, which are popularly grown in Poland. DArT markers seem to identify Salix species with a high degree of accuracy. As a result, the examined species were divided into four distinct groups which corresponded to the four analyzed species. In our study, we observed that S. triandra was very different genetically from the other species, including S. alba which is generally classified into the same subgenus of Salix. The above corroborates the findings of other authors who relied on molecular methods to reveal that the classification of S. triandra to the subgenus Salix was erroneous. The Principal Coordinate Analysis (PCoA and the neighbor-joining dendrogram also confirmed the clear division of the studied willow genotypes into four clusters corresponding to individual species. This confirmed the usefulness of DArT markers in taxonomic analyses and identification of willow species.

  6. The OptD-multi method in LiDAR processing

    International Nuclear Information System (INIS)

    Błaszczak-Bąk, Wioleta; Sobieraj-Żłobińska, Anna; Kowalik, Michał

    2017-01-01

    New and constantly developing technology for acquiring spatial data, such as LiDAR (light detection and ranging), is a source for large volume of data. However, such amount of data is not always needed for developing the most popular LiDAR products: digital terrain model (DTM) or digital surface model. Therefore, in many cases, the number of contained points are reduced in the pre-processing stage. The degree of reduction is determined by the algorithm used, which should enable the user to obtain a dataset appropriate and optimal for the planned purpose. The aim of this article is to propose a new Optimum Dataset method (OptD method) in the processing of LiDAR point clouds. The OptD method can reduce the number of points in a dataset for the specified optimization criteria concerning the characteristics of generated DTM. The OptD method can be used in two variants: OptD-single (one criterion for optimization) and OptD-multi (two or more optimization criteria). The OptD-single method has been thoroughly tested and presented by Błaszczak-Bąk (2016 Acta Geodyn. Geomater . 13/4 379–86). In this paper the authors discussed the OptD-multi method. (paper)

  7. High-Density LiDAR Mapping of the Ancient City of Mayapán

    Directory of Open Access Journals (Sweden)

    Timothy Hare

    2014-09-01

    Full Text Available A 2013 survey of a 40 square kilometer area surrounding Mayapán, Yucatan, Mexico used high-density LiDAR data to map prehispanic architecture and related natural features. Most of the area is covered by low canopy dense forest vegetation over karstic hilly terrain that impedes full coverage archaeological survey. We used LiDAR at 40 laser points per square meter to generate a bare earth digital elevation model (DEM. Results were evaluated with comparisons to previously mapped areas and with traditional archaeological survey methods for 38 settlement clusters outside of the city wall. Ground checking employed full coverage survey of selected 500 m grid squares, as well as documentation of the chronology and detail of new public and domestic settlement features and cenotes. Results identify the full extent of continued, contemporary Postclassic settlement (A.D. 1150–1450 outside of the city wall to at least 500 meters to the east, north, and west. New data also reveal an extensive modified landscape of terraformed residential hills, rejolladas, and dense settlement dating from Preclassic through Classic Periods. The LiDAR data also allow for the identification of rooms, benches, and stone property walls and lanes within the city.

  8. Shift work and sleep disorder among textile mill workers in Bahir Dar, northwest Ethiopia.

    Science.gov (United States)

    Abebe, Y; Fantahun, M

    1999-07-01

    To assess the length and quality of sleep among shift workers at Bahir Dar textile mill. A cross sectional study using structured questionnaire that contained sociodemographic variables, duration of work, work schedule, number of sleeping hours, sleep disorders, and associated reasons for such disorders. A textile mill in Bahir Dar, northwest Ethiopia. Three-hundred ninety four random sample of production workers of the mill. Sleep disorders, and the impact of external and home environment on sleep. The mean duration of work in the factory was 25.4 +/- 7.1 years. Ninety-seven per cent of the study population work in a rotating eight hourly shift system. The mean number of hours a worker sleeps after a worked shift was 5.1 +/- 2.3. Two hundred thirty (58.4%) claimed to experience a sleep disorder. Sleep disturbance was significantly associated with rotating shift work, external environmental noise, and working in the spinning department. The majority of the workers in Bahir Dar textile mill experienced sleep disturbances as detailed in the study methodology.

  9. AN EFFICIENT METHOD FOR AUTOMATIC ROAD EXTRACTION BASED ON MULTIPLE FEATURES FROM LiDAR DATA

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-06-01

    Full Text Available The road extraction in urban areas is difficult task due to the complicated patterns and many contextual objects. LiDAR data directly provides three dimensional (3D points with less occlusions and smaller shadows. The elevation information and surface roughness are distinguishing features to separate roads. However, LiDAR data has some disadvantages are not beneficial to object extraction, such as the irregular distribution of point clouds and lack of clear edges of roads. For these problems, this paper proposes an automatic road centerlines extraction method which has three major steps: (1 road center point detection based on multiple feature spatial clustering for separating road points from ground points, (2 local principal component analysis with least squares fitting for extracting the primitives of road centerlines, and (3 hierarchical grouping for connecting primitives into complete roads network. Compared with MTH (consist of Mean shift algorithm, Tensor voting, and Hough transform proposed in our previous article, this method greatly reduced the computational cost. To evaluate the proposed method, the Vaihingen data set, a benchmark testing data provided by ISPRS for “Urban Classification and 3D Building Reconstruction” project, was selected. The experimental results show that our method achieve the same performance by less time in road extraction using LiDAR data.

  10. An Efficient Method for Automatic Road Extraction Based on Multiple Features from LiDAR Data

    Science.gov (United States)

    Li, Y.; Hu, X.; Guan, H.; Liu, P.

    2016-06-01

    The road extraction in urban areas is difficult task due to the complicated patterns and many contextual objects. LiDAR data directly provides three dimensional (3D) points with less occlusions and smaller shadows. The elevation information and surface roughness are distinguishing features to separate roads. However, LiDAR data has some disadvantages are not beneficial to object extraction, such as the irregular distribution of point clouds and lack of clear edges of roads. For these problems, this paper proposes an automatic road centerlines extraction method which has three major steps: (1) road center point detection based on multiple feature spatial clustering for separating road points from ground points, (2) local principal component analysis with least squares fitting for extracting the primitives of road centerlines, and (3) hierarchical grouping for connecting primitives into complete roads network. Compared with MTH (consist of Mean shift algorithm, Tensor voting, and Hough transform) proposed in our previous article, this method greatly reduced the computational cost. To evaluate the proposed method, the Vaihingen data set, a benchmark testing data provided by ISPRS for "Urban Classification and 3D Building Reconstruction" project, was selected. The experimental results show that our method achieve the same performance by less time in road extraction using LiDAR data.

  11. Algorithm for Extracting Digital Terrain Models under Forest Canopy from Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Almasi S. Maguya

    2014-07-01

    Full Text Available Extracting digital elevationmodels (DTMs from LiDAR data under forest canopy is a challenging task. This is because the forest canopy tends to block a portion of the LiDAR pulses from reaching the ground, hence introducing gaps in the data. This paper presents an algorithm for DTM extraction from LiDAR data under forest canopy. The algorithm copes with the challenge of low data density by generating a series of coarse DTMs by using the few ground points available and using trend surfaces to interpolate missing elevation values in the vicinity of the available points. This process generates a cloud of ground points from which the final DTM is generated. The algorithm has been compared to two other algorithms proposed in the literature in three different test sites with varying degrees of difficulty. Results show that the algorithm presented in this paper is more tolerant to low data density compared to the other two algorithms. The results further show that with decreasing point density, the differences between the three algorithms dramatically increased from about 0.5m to over 10m.

  12. Registration of Urban Aerial Image and LiDAR Based on Line Vectors

    Directory of Open Access Journals (Sweden)

    Qinghong Sheng

    2017-09-01

    Full Text Available In a traditional registration of a single aerial image with airborne light detection and ranging (LiDAR data using linear features that regard line direction as a control or linear features as constraints in the solution, lacking the constraint of linear position leads to the error propagation of the adjustment model. To solve this problem, this paper presents a line vector-based registration mode (LVR in which image rays and LiDAR lines are expressed by a line vector that integrates the line direction and the line position. A registration equation of line vector is set up by coplanar imaging rays and corresponding control lines. Three types of datasets consisting of synthetic, theInternational Society for Photogrammetry and Remote Sensing (ISPRS test project, and real aerial data are used. A group of progressive experiments is undertaken to evaluate the robustness of the LVR. Experimental results demonstrate that the integrated line direction and the line position contributes a great deal to the theoretical and real accuracies of the unknowns, as well as the stability of the adjustment model. This paper provides a new suggestion that, for a single image and LiDAR data, registration in urban areas can be accomplished by accommodating rich line features.

  13. IsoDAR@KamLAND:A Conceptual Design Report for the Conventional Facilities arXiv

    CERN Document Server

    Alonso, Jose R.

    This document describes requirements for the caverns to house the cyclotron, beam transport line, and target systems; issues associated with transport and assembly of components on the site; electrical power, cooling and ventilation; as well as issues associated with radiation protection of the environment and staff of KamLAND who will be interfacing with IsoDAR during its operational phases. Specifics of IsoDAR operations at the KamLAND site are not addressed. Recent developments in planning for deployment of IsoDAR include the identification of a potential new site for the experiment, where the target can be placed directly on the equatorial plane of the KamLAND detector, and also, an upgrade of the detector resolution to 3\\%/$\\sqrt{E(MeV)}$. The option of the new site might allow, depending on the results of shielding and background evaluations in KamLAND, for an increase in event rate by about a factor of 1.6 owing to increased solid angle for the detector, improving the physics reach for a same period of...

  14. Estimating Ladder Fuels: A New Approach Combining Field Photography with LiDAR

    Directory of Open Access Journals (Sweden)

    Heather A. Kramer

    2016-09-01

    Full Text Available Forests historically associated with frequent fire have changed dramatically due to fire suppression and past harvesting over the last century. The buildup of ladder fuels, which carry fire from the surface of the forest floor to tree crowns, is one of the critical changes, and it has contributed to uncharacteristically large and severe fires. The abundance of ladder fuels makes it difficult to return these forests to their natural fire regime or to meet management objectives. Despite the importance of ladder fuels, methods for quantifying them are limited and imprecise. LiDAR (Light Detection and Ranging, a form of active remote sensing, is able to estimate many aspects of forest structure across a landscape. This study investigates a new method for quantifying ladder fuel in the field (using photographs with a calibration banner and remotely (using LiDAR data. We apply these new techniques in the Klamath Mountains of Northern California to predict ladder fuel levels across the study area. Our results demonstrate a new utility of LiDAR data to identify fire hazard and areas in need of fuels reduction.

  15. Drainage Structure Datasets and Effects on LiDAR-Derived Surface Flow Modeling

    Directory of Open Access Journals (Sweden)

    Ruopu Li

    2013-12-01

    Full Text Available With extraordinary resolution and accuracy, Light Detection and Ranging (LiDAR-derived digital elevation models (DEMs have been increasingly used for watershed analyses and modeling by hydrologists, planners and engineers. Such high-accuracy DEMs have demonstrated their effectiveness in delineating watershed and drainage patterns at fine scales in low-relief terrains. However, these high-resolution datasets are usually only available as topographic DEMs rather than hydrologic DEMs, presenting greater land roughness that can affect natural flow accumulation. Specifically, locations of drainage structures such as road culverts and bridges were simulated as barriers to the passage of drainage. This paper proposed a geospatial method for producing LiDAR-derived hydrologic DEMs, which incorporates data collection of drainage structures (i.e., culverts and bridges, data preprocessing and burning of the drainage structures into DEMs. A case study of GIS-based watershed modeling in South Central Nebraska showed improved simulated surface water derivatives after the drainage structures were burned into the LiDAR-derived topographic DEMs. The paper culminates in a proposal and discussion of establishing a national or statewide drainage structure dataset.

  16. Analyzing Hydro-Geomorphic Responses in Post-Fire Stream Channels with Terrestrial LiDAR

    Science.gov (United States)

    Nourbakhshbeidokhti, S.; Kinoshita, A. M.; Chin, A.

    2015-12-01

    Wildfires have potential to significantly alter soil properties and vegetation within watersheds. These alterations often contribute to accelerated erosion, runoff, and sediment transport in stream channels and hillslopes. This research applies repeated Terrestrial Laser Scanning (TLS) Light Detection and Ranging (LiDAR) to stream reaches within the Pike National Forest in Colorado following the 2012 Waldo Canyon Fire. These scans allow investigation of the relationship between sediment delivery and environmental characteristics such as precipitation, soil burn severity, and vegetation. Post-fire LiDAR images provide high resolution information of stream channel changes in eight reaches for three years (2012-2014). All images are processed with RiSCAN PRO to remove vegetation and triangulated and smoothed to create a Digital Elevation Model (DEM) with 0.1 m resolution. Study reaches with two or more successive DEM images are compared using a differencing method to estimate the volume of sediment erosion and deposition. Preliminary analysis of four channel reaches within Williams Canyon and Camp Creek yielded erosion estimates between 0.035 and 0.618 m3 per unit area. Deposition was estimated as 0.365 to 1.67 m3 per unit area. Reaches that experienced higher soil burn severity or larger rainfall events produced the greatest geomorphic changes. Results from LiDAR analyses can be incorporated into post-fire hydrologic models to improve estimates of runoff and sediment yield. These models will, in turn, provide guidance for water resources management and downstream hazards mitigation.

  17. Timely binding of IHF and Fis to DARS2 regulates ATP–DnaA production and replication initiation

    Science.gov (United States)

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-01-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP–DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP–DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP–DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP–DnaA was fully active in replication initiation and underwent DnaA–ATP hydrolysis. ADP–DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP–DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP–DnaA production, thereby promoting timely initiation. Moreover, we show that IHF–DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP–DnaA and replication initiation in coordination with the cell cycle and growth phase. PMID:25378325

  18. Timely binding of IHF and Fis to DARS2 regulates ATP-DnaA production and replication initiation.

    Science.gov (United States)

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-12-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP-DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP-DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP-DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP-DnaA was fully active in replication initiation and underwent DnaA-ATP hydrolysis. ADP-DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP-DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP-DnaA production, thereby promoting timely initiation. Moreover, we show that IHF-DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP-DnaA and replication initiation in coordination with the cell cycle and growth phase. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].

    Science.gov (United States)

    Liu, Feng; Tan, Chang; Lei, Pi-Feng

    2014-11-01

    Taking Wugang forest farm in Xuefeng Mountain as the research object, using the airborne light detection and ranging (LiDAR) data under leaf-on condition and field data of concomitant plots, this paper assessed the ability of using LiDAR technology to estimate aboveground biomass of the mid-subtropical forest. A semi-automated individual tree LiDAR cloud point segmentation was obtained by using condition random fields and optimization methods. Spatial structure, waveform characteristics and topography were calculated as LiDAR metrics from the segmented objects. Then statistical models between aboveground biomass from field data and these LiDAR metrics were built. The individual tree recognition rates were 93%, 86% and 60% for coniferous, broadleaf and mixed forests, respectively. The adjusted coefficients of determination (R(2)adj) and the root mean squared errors (RMSE) for the three types of forest were 0.83, 0.81 and 0.74, and 28.22, 29.79 and 32.31 t · hm(-2), respectively. The estimation capability of model based on canopy geometric volume, tree percentile height, slope and waveform characteristics was much better than that of traditional regression model based on tree height. Therefore, LiDAR metrics from individual tree could facilitate better performance in biomass estimation.

  20. 3D turbulence measurements using three intersecting Doppler LiDAR beams: validation against sonic anemometry

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2013-04-01

    Nowadays communities of researchers and industry in the wind engineering and meteorology sectors demand extensive and accurate measurements of atmospheric boundary layer turbulence for a better understanding of its role in a wide range of onshore and offshore applications: wind resource evaluation, wind turbine wakes, meteorology forecast, pollution and urban climate studies, etc. Atmospheric turbulence has been traditionally investigated through sonic anemometers installed on meteorological masts. However, the setup and maintenance of instrumented masts is generally very costly and the available location for the measurements is limited by the fixed position and height of the facility. In order to overcome the above-mentioned shortcomings, a measurement technique is proposed, based on the reconstruction of the three-dimensional velocity vector from simultaneous measurements of three intersecting Doppler wind LiDARs. This measuring technique presents the main advantage of being able to measure the wind velocity at any point in space inside a very large volume, which can be set and optimized for each test. Furthermore, it is very flexible regarding its transportation, installation and operation in any type of terrain. On the other hand, LiDAR measurements are strongly affected by the aerosol concentration in the air, precipitation, and the spatial and temporal resolution is poorer than that of a sonic anemometer. All this makes the comparison between these two kinds of measurements a complex task. The accuracy of the technique has been assessed by this study against sonic anemometer measurements carried out at different heights on the KNMI's meteorological mast at Cabauw's experimental site for atmospheric research (CESAR) in the Netherlands. An early uncertainty analysis shows that one of the most important parameters to be taken into account is the relative angles between the intersecting laser beams, i.e., the position of each LiDAR on the terrain and their

  1. High resolution t-LiDAR scanning of an active bedrock fault scarp for palaeostress analysis

    Science.gov (United States)

    Reicherter, Klaus; Wiatr, Thomas; Papanikolaou, Ioannis; Fernández-Steeger, Tomas

    2013-04-01

    Palaeostress analysis of an active bedrock normal fault scarp based on kinematic indicators is carried applying terrestrial laser scanning (t-LiDAR or TLS). For this purpose three key elements are necessary for a defined region on the fault plane: (i) the orientation of the fault plane, (ii) the orientation of the slickenside lineation or other kinematic indicators and (iii) the sense of motion of the hanging wall. We present a workflow to obtain palaeostress data from point cloud data using terrestrial laser scanning. The entire case-study was performed on a continuous limestone bedrock normal fault scarp on the island of Crete, Greece, at four different locations along the WNW-ESE striking Spili fault. At each location we collected data with a mobile terrestrial light detection and ranging system and validated the calculated three-dimensional palaeostress results by comparison with the conventional palaeostress method with compass at three of the locations. Numerous kinematics indicators for normal faulting were discovered on the fault plane surface using t-LiDAR data and traditional methods, like Riedel shears, extensional break-outs, polished corrugations and many more. However, the kinematic indicators are more or less unidirectional and almost pure dip-slip. No oblique reactivations have been observed. But, towards the tips of the fault, inclination of the striation tends to point towards the centre of the fault. When comparing all reconstructed palaeostress data obtained from t-LiDAR to that obtained through manual compass measurements, the degree of fault plane orientation divergence is around ±005/03 for dip direction and dip. The degree of slickenside lineation variation is around ±003/03 for dip direction and dip. Therefore, the percentage threshold error of the individual vector angle at the different investigation site is lower than 3 % for the dip direction and dip for planes, and lower than 6 % for strike. The maximum mean variation of the complete

  2. AUTOMATIC 3D BUILDING MODEL GENERATIONS WITH AIRBORNE LiDAR DATA

    Directory of Open Access Journals (Sweden)

    N. Yastikli

    2017-11-01

    Full Text Available LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified

  3. Mobile LiDAR Measurement for Aerosol Investigation in South-Central Hebei, China

    Science.gov (United States)

    qin, kai; Wu, Lixin; Zheng, Yunhui; Wong Man, Sing; Wang, Runfeng; Hu, Mingyu; Lang, Hongmei; Wang, Luyao; Bai, Yang; Rao, Lanlan

    2016-04-01

    With the rapid industrialization and urbanization in China during the last decades, the increasing anthropogenic pollutant emissions have significantly caused serious air pollution problems which are adversely influencing public health. Hebei is one of the most air polluted provinces in China. In January 2013, an extremely severe and persistent haze episode with record-breaking PM2.5 outbreak affecting hundreds of millions of people occurred over eastern and northern China. During that haze episode, 7 of the top 10 most polluted cities in China were located in the Hebei Province according to the report of China's Ministry of Environmental Protection. To investigate and the spatial difference and to characterize the vertical distribution of aerosol in different regions of south-central Hebei, mobile measurements were carried out using a mini micro pulse LiDAR system (model: MiniMPL) in March 2014. The mobile LiDAR kit consisting of a MiniMPL, a vibration reduction mount, a power inverter, a Windows surface tablet and a GPS receiver were mounted in a car watching though the sunroof opening. For comparison, a fixed measurement using a traditional micro pulse LiDAR system (model: MPL-4B) was conducted simultaneously in Shijiazhuang, the capital of Hebei Province. The equipped car was driven from downtown Shijiazhuang by way of suburban and rural area to downtown Cangzhou, Handan, and Baoding respectively at almost stable speed around 100Km per hour along different routes which counted in total more than 1000Km. The results can be summarized as: 1) the spatial distribution of total aerosol optical depth along the measurement routes in south-central Hebei was controlled by local terrain and population in general, with high values in downtown and suburban in the plain areas, and low values in rural areas along Taihang mountain to the west and Yan mountain to the north; 2) obviously high AODs were obtained at roads crossing points, inside densely populated area and nearby

  4. Automatic 3d Building Model Generations with Airborne LiDAR Data

    Science.gov (United States)

    Yastikli, N.; Cetin, Z.

    2017-11-01

    LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D) modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified that automatic 3D

  5. Fusion of Airborne Discrete-Return LiDAR and Hyperspectral Data for Land Cover Classification

    Directory of Open Access Journals (Sweden)

    Shezhou Luo

    2015-12-01

    Full Text Available Accurate land cover classification information is a critical variable for many applications. This study presents a method to classify land cover using the fusion data of airborne discrete return LiDAR (Light Detection and Ranging and CASI (Compact Airborne Spectrographic Imager hyperspectral data. Four LiDAR-derived images (DTM, DSM, nDSM, and intensity and CASI data (48 bands with 1 m spatial resolution were spatially resampled to 2, 4, 8, 10, 20 and 30 m resolutions using the nearest neighbor resampling method. These data were thereafter fused using the layer stacking and principal components analysis (PCA methods. Land cover was classified by commonly used supervised classifications in remote sensing images, i.e., the support vector machine (SVM and maximum likelihood (MLC classifiers. Each classifier was applied to four types of datasets (at seven different spatial resolutions: (1 the layer stacking fusion data; (2 the PCA fusion data; (3 the LiDAR data alone; and (4 the CASI data alone. In this study, the land cover category was classified into seven classes, i.e., buildings, road, water bodies, forests, grassland, cropland and barren land. A total of 56 classification results were produced, and the classification accuracies were assessed and compared. The results show that the classification accuracies produced from two fused datasets were higher than that of the single LiDAR and CASI data at all seven spatial resolutions. Moreover, we find that the layer stacking method produced higher overall classification accuracies than the PCA fusion method using both the SVM and MLC classifiers. The highest classification accuracy obtained (OA = 97.8%, kappa = 0.964 using the SVM classifier on the layer stacking fusion data at 1 m spatial resolution. Compared with the best classification results of the CASI and LiDAR data alone, the overall classification accuracies improved by 9.1% and 19.6%, respectively. Our findings also demonstrated that the

  6. Buildings classification from airborne LiDAR point clouds through OBIA and ontology driven approach

    Science.gov (United States)

    Tomljenovic, Ivan; Belgiu, Mariana; Lampoltshammer, Thomas J.

    2013-04-01

    In the last years, airborne Light Detection and Ranging (LiDAR) data proved to be a valuable information resource for a vast number of applications ranging from land cover mapping to individual surface feature extraction from complex urban environments. To extract information from LiDAR data, users apply prior knowledge. Unfortunately, there is no consistent initiative for structuring this knowledge into data models that can be shared and reused across different applications and domains. The absence of such models poses great challenges to data interpretation, data fusion and integration as well as information transferability. The intention of this work is to describe the design, development and deployment of an ontology-based system to classify buildings from airborne LiDAR data. The novelty of this approach consists of the development of a domain ontology that specifies explicitly the knowledge used to extract features from airborne LiDAR data. The overall goal of this approach is to investigate the possibility for classification of features of interest from LiDAR data by means of domain ontology. The proposed workflow is applied to the building extraction process for the region of "Biberach an der Riss" in South Germany. Strip-adjusted and georeferenced airborne LiDAR data is processed based on geometrical and radiometric signatures stored within the point cloud. Region-growing segmentation algorithms are applied and segmented regions are exported to the GeoJSON format. Subsequently, the data is imported into the ontology-based reasoning process used to automatically classify exported features of interest. Based on the ontology it becomes possible to define domain concepts, associated properties and relations. As a consequence, the resulting specific body of knowledge restricts possible interpretation variants. Moreover, ontologies are machinable and thus it is possible to run reasoning on top of them. Available reasoners (FACT++, JESS, Pellet) are used to check

  7. LESTO: an Open Source GIS-based toolbox for LiDAR analysis

    Science.gov (United States)

    Franceschi, Silvia; Antonello, Andrea; Tonon, Giustino

    2015-04-01

    During the last five years different research institutes and private companies stared to implement new algorithms to analyze and extract features from LiDAR data but only a few of them also created a public available software. In the field of forestry there are different examples of software that can be used to extract the vegetation parameters from LiDAR data, unfortunately most of them are closed source (even if free), which means that the source code is not shared with the public for anyone to look at or make changes to. In 2014 we started the development of the library LESTO (LiDAR Empowered Sciences Toolbox Opensource): a set of modules for the analysis of LiDAR point cloud with an Open Source approach with the aim of improving the performance of the extraction of the volume of biomass and other vegetation parameters on large areas for mixed forest structures. LESTO contains a set of modules for data handling and analysis implemented within the JGrassTools spatial processing library. The main subsections are dedicated to 1) preprocessing of LiDAR raw data mainly in LAS format (utilities and filtering); 2) creation of raster derived products; 3) flight-lines identification and normalization of the intensity values; 4) tools for extraction of vegetation and buildings. The core of the LESTO library is the extraction of the vegetation parameters. We decided to follow the single tree based approach starting with the implementation of some of the most used algorithms in literature. These have been tweaked and applied on LiDAR derived raster datasets (DTM, DSM) as well as point clouds of raw data. The methods range between the simple extraction of tops and crowns from local maxima, the region growing method, the watershed method and individual tree segmentation on point clouds. The validation procedure consists in finding the matching between field and LiDAR-derived measurements at individual tree and plot level. An automatic validation procedure has been developed

  8. 2014 Mobile County, AL Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Atlantic was contracted to acquire high resolution topographic LiDAR (Light Detection and Ranging) data located in Mobile County, Alabama. The intent was to collect...

  9. Landslide detection using LiDAR data and data mining technology: Ali Mountain Highway case study (Taiwan)

    Science.gov (United States)

    Cheng, Youg-Sin; Yu, Teng-To; Tarolli, Paolo

    2017-04-01

    Taiwan mountains are severely affected each year by landslides, rock falls, and debris flows where the roads system suffer the most critical consequences. Among all mountain highways, Ali Highway, located into the main entrance of Alishan Mountain region, is one of the most landslide-prone areas in southern Taiwan. During the typhoon season, between May and August, the probability of occurrence of mass movements is at higher level than usual seeing great erosion rates. In fact, during Typhoon Morakot, in 2009, the intense rainfall caused abrupt interruption of the circulation for three months triggering several landslides (Liu et al. 2012). The topographic features such as slope, roughness and curvature among others have been extracted from 1 m DTM derived by a LiDAR dataset (collected in 2015) to investigate the slope failures along the Ali Mountain Highway. The high-resolution DTM highlighted that the hydrogeomorphological (e.g. density of stream, the distance from the ridge and terrain) features are one of the most influencing factors affecting the change and the instability of the slopes. To detect the landslide area, the decision tree classifier and the random forest algorithm (RF) have been adopted. The results provided a suitable analysis of the area involved in the failure. This will be a useful step in the understanding (and management) landslide processes of study area. References Liu CN, Dong JJ, Chen CJ, Lee WF (2012) Typical landslides and related mechanisms in Ali Mountain highway induced by typhoon Morakot: Perspectives from engineering geology. Landslides 9:239-254.

  10. Remote sensing systems – Platforms and sensors: Aerial, satellites, UAVs, optical, radar, and LiDAR: Chapter 1

    Science.gov (United States)

    Panda, Sudhanshu S.; Rao, Mahesh N.; Thenkabail, Prasad S.; Fitzerald, James E.

    2015-01-01

    The American Society of Photogrammetry and Remote Sensing defined remote sensing as the measurement or acquisition of information of some property of an object or phenomenon, by a recording device that is not in physical or intimate contact with the object or phenomenon under study (Colwell et al., 1983). Environmental Systems Research Institute (ESRI) in its geographic information system (GIS) dictionary defines remote sensing as “collecting and interpreting information about the environment and the surface of the earth from a distance, primarily by sensing radiation that is naturally emitted or reflected by the earth’s surface or from the atmosphere, or by sending signals transmitted from a device and reflected back to it (ESRI, 2014).” The usual source of passive remote sensing data is the measurement of reflected or transmitted electromagnetic radiation (EMR) from the sun across the electromagnetic spectrum (EMS); this can also include acoustic or sound energy, gravity, or the magnetic field from or of the objects under consideration. In this context, the simple act of reading this text is considered remote sensing. In this case, the eye acts as a sensor and senses the light reflected from the object to obtain information about the object. It is the same technology used by a handheld camera to take a photograph of a person or a distant scenic view. Active remote sensing, however, involves sending a pulse of energy and then measuring the returned energy through a sensor (e.g., Radio Detection and Ranging [RADAR], Light Detection and Ranging [LiDAR]). Thermal sensors measure emitted energy by different objects. Thus, in general, passive remote sensing involves the measurement of solar energy reflected from the Earth’s surface, while active remote sensing involves synthetic (man-made) energy pulsed at the environment and the return signals are measured and recorded.

  11. Improving LiDAR Biomass Model Uncertainty through Non-Destructive Allometry and Plot-level 3D Reconstruction with Terrestrial Laser Scanning

    Science.gov (United States)

    Stovall, A. E.; Shugart, H. H., Jr.

    2017-12-01

    Future NASA and ESA satellite missions plan to better quantify global carbon through detailed observations of forest structure, but ultimately rely on uncertain ground measurement approaches for calibration and validation. A significant amount of the uncertainty in estimating plot-level biomass can be attributed to inadequate and unrepresentative allometric relationships used to convert plot-level tree measurements to estimates of aboveground biomass. These allometric equations are known to have high errors and biases, particularly in carbon rich forests because they were calibrated with small and often biased samples of destructively harvested trees. To overcome this issue, a non-destructive methodology for estimating tree and plot-level biomass has been proposed through the use of Terrestrial Laser Scanning (TLS). We investigated the potential for using TLS as a ground validation approach in LiDAR-based biomass mapping though virtual plot-level tree volume reconstruction and biomass estimation. Plot-level biomass estimates were compared on the Virginia-based Smithsonian Conservation Biology Institute's SIGEO forest with full 3D reconstruction, TLS allometry, and Jenkins et al. (2003) allometry. On average, full 3D reconstruction ultimately provided the lowest uncertainty estimate of plot-level biomass (9.6%), followed by TLS allometry (16.9%) and the national equations (20.2%). TLS offered modest improvements to the airborne LiDAR empirical models, reducing RMSE from 16.2% to 14%. Our findings suggest TLS plot acquisitions and non-destructive allometry can play a vital role for reducing uncertainty in calibration and validation data for biomass mapping in the upcoming NASA and ESA missions.

  12. Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR

    Science.gov (United States)

    Reddy, Ashwan D.; Hawbaker, Todd J.; Wurster, F.; Zhu, Zhiliang; Ward, S.; Newcomb, Doug; Murray, R.

    2015-01-01

    Peatlands are a major reservoir of global soil carbon, yet account for just 3% of global land cover. Human impacts like draining can hinder the ability of peatlands to sequester carbon and expose their soils to fire under dry conditions. Estimating soil carbon loss from peat fires can be challenging due to uncertainty about pre-fire surface elevations. This study uses multi-temporal LiDAR to obtain pre- and post-fire elevations and estimate soil carbon loss caused by the 2011 Lateral West fire in the Great Dismal Swamp National Wildlife Refuge, VA, USA. We also determine how LiDAR elevation error affects uncertainty in our carbon loss estimate by randomly perturbing the LiDAR point elevations and recalculating elevation change and carbon loss, iterating this process 1000 times. We calculated a total loss using LiDAR of 1.10 Tg C across the 25 km2 burned area. The fire burned an average of 47 cm deep, equivalent to 44 kg C/m2, a value larger than the 1997 Indonesian peat fires (29 kg C/m2). Carbon loss via the First-Order Fire Effects Model (FOFEM) was estimated to be 0.06 Tg C. Propagating the LiDAR elevation error to the carbon loss estimates, we calculated a standard deviation of 0.00009 Tg C, equivalent to 0.008% of total carbon loss. We conclude that LiDAR elevation error is not a significant contributor to uncertainty in soil carbon loss under severe fire conditions with substantial peat consumption. However, uncertainties may be more substantial when soil elevation loss is of a similar or smaller magnitude than the reported LiDAR error.

  13. Analysis of elevation changes detected from multi-temporal LiDAR surveys in forested landslide terrain in western Oregon

    Science.gov (United States)

    Burns, W.J.; Coe, J.A.; Kaya, B.S.; Ma, Liwang

    2010-01-01

    We examined elevation changes detected from two successive sets of Light Detection and Ranging (LiDAR) data in the northern Coast Range of Oregon. The first set of LiDAR data was acquired during leafon conditions and the second set during leaf-off conditions. We were able to successfully identify and map active landslides using a differential digital elevation model (DEM) created from the two LiDAR data sets, but this required the use of thresholds (0.50 and 0.75 m) to remove noise from the differential elevation data, visual pattern recognition of landslideinduced elevation changes, and supplemental QuickBird satellite imagery. After mapping, we field-verified 88 percent of the landslides that we had mapped with high confidence, but we could not detect active landslides with elevation changes of less than 0.50 m. Volumetric calculations showed that a total of about 18,100 m3 of material was missing from landslide areas, probably as a result of systematic negative elevation errors in the differential DEM and as a result of removal of material by erosion and transport. We also examined the accuracies of 285 leaf-off LiDAR elevations at four landslide sites using Global Positioning System and total station surveys. A comparison of LiDAR and survey data indicated an overall root mean square error of 0.50 m, a maximum error of 2.21 m, and a systematic error of 0.09 m. LiDAR ground-point densities were lowest in areas with young conifer forests and deciduous vegetation, which resulted in extensive interpolations of elevations in the leaf-on, bare-earth DEM. For optimal use of multi-temporal LiDAR data in forested areas, we recommend that all data sets be flown during leaf-off seasons.

  14. Simulation of Satellite, Airborne and Terrestrial LiDAR with DART (I):Waveform Simulation with Quasi-Monte Carlo Ray Tracing

    Science.gov (United States)

    Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing

    2016-01-01

    Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.

  15. On Feature Extraction from Large Scale Linear LiDAR Data

    Science.gov (United States)

    Acharjee, Partha Pratim

    Airborne light detection and ranging (LiDAR) can generate co-registered elevation and intensity map over large terrain. The co-registered 3D map and intensity information can be used efficiently for different feature extraction application. In this dissertation, we developed two algorithms for feature extraction, and usages of features for practical applications. One of the developed algorithms can map still and flowing waterbody features, and another one can extract building feature and estimate solar potential on rooftops and facades. Remote sensing capabilities, distinguishing characteristics of laser returns from water surface and specific data collection procedures provide LiDAR data an edge in this application domain. Furthermore, water surface mapping solutions must work on extremely large datasets, from a thousand square miles, to hundreds of thousands of square miles. National and state-wide map generation/upgradation and hydro-flattening of LiDAR data for many other applications are two leading needs of water surface mapping. These call for as much automation as possible. Researchers have developed many semi-automated algorithms using multiple semi-automated tools and human interventions. This reported work describes a consolidated algorithm and toolbox developed for large scale, automated water surface mapping. Geometric features such as flatness of water surface, higher elevation change in water-land interface and, optical properties such as dropouts caused by specular reflection, bimodal intensity distributions were some of the linear LiDAR features exploited for water surface mapping. Large-scale data handling capabilities are incorporated by automated and intelligent windowing, by resolving boundary issues and integrating all results to a single output. This whole algorithm is developed as an ArcGIS toolbox using Python libraries. Testing and validation are performed on a large datasets to determine the effectiveness of the toolbox and results are

  16. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest

    Directory of Open Access Journals (Sweden)

    Shaun R. Levick

    2016-05-01

    Full Text Available Abstract Background Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Results Estimation of wood volume from airborne LiDAR was most robust (R2 = 0.92, RMSE = 50.57 m3 ha−1 ~14.13 Mg C ha−1 when trained and tested with 1 ha experimental plot data (n = 50. Predictions based on a more extensive (n = 1100 plot network with considerably smaller (0.05 ha plots were inferior (R2 = 0.68, RMSE = 101.01 ~28.09 Mg C ha−1. Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R2 and RMSE variability of the LiDAR-predicted wood volume model. Conclusions Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We

  17. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest.

    Science.gov (United States)

    Levick, Shaun R; Hessenmöller, Dominik; Schulze, E-Detlef

    2016-12-01

    Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Estimation of wood volume from airborne LiDAR was most robust (R 2  = 0.92, RMSE = 50.57 m 3 ha -1  ~14.13 Mg C ha -1 ) when trained and tested with 1 ha experimental plot data (n = 50). Predictions based on a more extensive (n = 1100) plot network with considerably smaller (0.05 ha) plots were inferior (R 2  = 0.68, RMSE = 101.01 ~28.09 Mg C ha -1 ). Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R 2 and RMSE variability of the LiDAR-predicted wood volume model. Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We are moving into a forest management era where

  18. Modeling of a sensitive time-of-flight flash LiDAR system

    Science.gov (United States)

    Fathipour, V.; Wheaton, S.; Johnson, W. E.; Mohseni, H.

    2016-09-01

    used for monitoring and profiling structures, range, velocity, vibration, and air turbulence. Remote sensing in the IR region has several advantages over the visible region, including higher transmitter energy while maintaining eye-safety requirements. Electron-injection detectors are a new class of detectors with high internal avalanche-free amplification together with an excess-noise-factor of unity. They have a cutoff wavelength of 1700 nm. Furthermore, they have an extremely low jitter. The detector operates in linear-mode and requires only bias voltage of a few volts. This together with the feedback stabilized gain mechanism, makes formation of large-format high pixel density electron-injection FPAs less challenging compared to other detector technologies such as avalanche photodetectors. These characteristics make electron-injection detectors an ideal choice for flash LiDAR application with mm scale resolution at longer ranges. Based on our experimentally measured device characteristics, a detailed theoretical LiDAR model was developed. In this model we compare the performance of the electron-injection detector with commercially available linear-mode InGaAs APD from (Hamamatsu G8931-20) as well as a p-i-n diode (Hamamatsu 11193 p-i-n). Flash LiDAR images obtained by our model, show the electron-injection detector array (of 100 x 100 element) achieves better resolution with higher signal-to-noise compared with both the InGaAs APD and the p-i-n array (of 100 x 100 element).

  19. Ensemble classification of individual Pinus crowns from multispectral satellite imagery and airborne LiDAR

    Science.gov (United States)

    Kukunda, Collins B.; Duque-Lazo, Joaquín; González-Ferreiro, Eduardo; Thaden, Hauke; Kleinn, Christoph

    2018-03-01

    Distinguishing tree species is relevant in many contexts of remote sensing assisted forest inventory. Accurate tree species maps support management and conservation planning, pest and disease control and biomass estimation. This study evaluated the performance of applying ensemble techniques with the goal of automatically distinguishing Pinus sylvestris L. and Pinus uncinata Mill. Ex Mirb within a 1.3 km2 mountainous area in Barcelonnette (France). Three modelling schemes were examined, based on: (1) high-density LiDAR data (160 returns m-2), (2) Worldview-2 multispectral imagery, and (3) Worldview-2 and LiDAR in combination. Variables related to the crown structure and height of individual trees were extracted from the normalized LiDAR point cloud at individual-tree level, after performing individual tree crown (ITC) delineation. Vegetation indices and the Haralick texture indices were derived from Worldview-2 images and served as independent spectral variables. Selection of the best predictor subset was done after a comparison of three variable selection procedures: (1) Random Forests with cross validation (AUCRFcv), (2) Akaike Information Criterion (AIC) and (3) Bayesian Information Criterion (BIC). To classify the species, 9 regression techniques were combined using ensemble models. Predictions were evaluated using cross validation and an independent dataset. Integration of datasets and models improved individual tree species classification (True Skills Statistic, TSS; from 0.67 to 0.81) over individual techniques and maintained strong predictive power (Relative Operating Characteristic, ROC = 0.91). Assemblage of regression models and integration of the datasets provided more reliable species distribution maps and associated tree-scale mapping uncertainties. Our study highlights the potential of model and data assemblage at improving species classifications needed in present-day forest planning and management.

  20. Trends in Automatic Individual Tree Crown Detection and Delineation—Evolution of LiDAR Data

    Directory of Open Access Journals (Sweden)

    Zhen Zhen

    2016-04-01

    Full Text Available Automated individual tree crown detection and delineation (ITCD using remotely sensed data plays an increasingly significant role in efficiently, accurately, and completely monitoring forests. This paper reviews trends in ITCD research from 1990–2015 from several perspectives—data/forest type, method applied, accuracy assessment and research objective—with a focus on studies using LiDAR data. This review shows that active sources are becoming more prominent in ITCD studies. Studies using active data—LiDAR in particular—accounted for 80% of the total increase over the entire time period, those using passive data or fusion of passive and active data comprised relatively small proportions of the total increase (8% and 12%, respectively. Additionally, ITCD research has moved from incremental adaptations of algorithms developed for passive data sources to innovative approaches that take advantage of the novel characteristics of active datasets like LiDAR. These improvements make it possible to explore more complex forest conditions (e.g., closed hardwood forests, suburban/urban forests rather than a single forest type although most published ITCD studies still focused on closed softwood (41% or mixed forest (22%. Approximately one-third of studies applied individual tree level (30% assessment, with only a quarter reporting more comprehensive multi-level assessment (23%. Almost one-third of studies (32% that concentrated on forest parameter estimation based on ITCD results had no ITCD-specific evaluation. Comparison of methods continues to be complicated by both choice of reference data and assessment metric; it is imperative to establish a standardized two-level assessment framework to evaluate and compare ITCD algorithms in order to provide specific recommendations about suitable applications of particular algorithms. However, the evolution of active remotely sensed data and novel platforms implies that automated ITCD will continue to be a

  1. High Frequency Field Measurements of an Undular Bore Using a 2D LiDAR Scanner

    Directory of Open Access Journals (Sweden)

    Kévin Martins

    2017-05-01

    Full Text Available The secondary wave field associated with undular tidal bores (known as whelps has been barely studied in field conditions: the wave field can be strongly non-hydrostatic, and the turbidity is generally high. In situ measurements based on pressure or acoustic signals can therefore be limited or inadequate. The intermittent nature of this process in the field and the complications encountered in the downscaling to laboratory conditions also render its study difficult. Here, we present a new methodology based on LiDAR technology to provide high spatial and temporal resolution measurements of the free surface of an undular tidal bore. A wave-by-wave analysis is performed on the whelps, and comparisons between LiDAR, acoustic and pressure-derived measurements are used to quantify the non-hydrostatic nature of this phenomenon. A correction based on linear wave theory applied on individual wave properties improves the results from the pressure transducer (Root mean square error, R M S E of 0 . 19 m against 0 . 38 m; however, more robust data is obtained from an upwards-looking acoustic sensor despite high turbidity during the passage of the whelps ( R M S E of 0 . 05 m. Finally, the LiDAR scanner provides the unique possibility to study the wave geometry: the distribution of measured wave height, period, celerity, steepness and wavelength are presented. It is found that the highest wave from the whelps can be steeper than the bore front, explaining why breaking events are sometimes observed in the secondary wave field of undular tidal bores.

  2. Development of a UAV-LiDAR System with Application to Forest Inventory

    Directory of Open Access Journals (Sweden)

    Darren Turner

    2012-05-01

    Full Text Available We present the development of a low-cost Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR system and an accompanying workflow to produce 3D point clouds. UAV systems provide an unrivalled combination of high temporal and spatial resolution datasets. The TerraLuma UAV-LiDAR system has been developed to take advantage of these properties and in doing so overcome some of the current limitations of the use of this technology within the forestry industry. A modified processing workflow including a novel trajectory determination algorithm fusing observations from a GPS receiver, an Inertial Measurement Unit (IMU and a High Definition (HD video camera is presented. The advantages of this workflow are demonstrated using a rigorous assessment of the spatial accuracy of the final point clouds. It is shown that due to the inclusion of video the horizontal accuracy of the final point cloud improves from 0.61 m to 0.34 m (RMS error assessed against ground control. The effect of the very high density point clouds (up to 62 points per m2 produced by the UAV-LiDAR system on the measurement of tree location, height and crown width are also assessed by performing repeat surveys over individual isolated trees. The standard deviation of tree height is shown to reduce from 0.26 m, when using data with a density of 8 points perm2, to 0.15mwhen the higher density data was used. Improvements in the uncertainty of the measurement of tree location, 0.80 m to 0.53 m, and crown width, 0.69 m to 0.61 m are also shown.

  3. 3D Scene Reconstruction Using Omnidirectional Vision and LiDAR: A Hybrid Approach

    Directory of Open Access Journals (Sweden)

    Michiel Vlaminck

    2016-11-01

    Full Text Available In this paper, we propose a novel approach to obtain accurate 3D reconstructions of large-scale environments by means of a mobile acquisition platform. The system incorporates a Velodyne LiDAR scanner, as well as a Point Grey Ladybug panoramic camera system. It was designed with genericity in mind, and hence, it does not make any assumption about the scene or about the sensor set-up. The main novelty of this work is that the proposed LiDAR mapping approach deals explicitly with the inhomogeneous density of point clouds produced by LiDAR scanners. To this end, we keep track of a global 3D map of the environment, which is continuously improved and refined by means of a surface reconstruction technique. Moreover, we perform surface analysis on consecutive generated point clouds in order to assure a perfect alignment with the global 3D map. In order to cope with drift, the system incorporates loop closure by determining the pose error and propagating it back in the pose graph. Our algorithm was exhaustively tested on data captured at a conference building, a university campus and an industrial site of a chemical company. Experiments demonstrate that it is capable of generating highly accurate 3D maps in very challenging environments. We can state that the average distance of corresponding point pairs between the ground truth and estimated point cloud approximates one centimeter for an area covering approximately 4000 m 2 . To prove the genericity of the system, it was tested on the well-known Kitti vision benchmark. The results show that our approach competes with state of the art methods without making any additional assumptions.

  4. Extracting More Data from LiDAR in Forested Areas by Analyzing Waveform Shape

    Directory of Open Access Journals (Sweden)

    Peter Beets

    2012-03-01

    Full Text Available Light Detection And Ranging (LiDAR in forested areas is used for constructing Digital Terrain Models (DTMs, estimating biomass carbon and timber volume and estimating foliage distribution as an indicator of tree growth and health. All of these purposes are hindered by the inability to distinguish the source of returns as foliage, stems, understorey and the ground except by their relative positions. The ability to separate these returns would improve all analyses significantly. Furthermore, waveform metrics providing information on foliage density could improve forest health and growth estimates. In this study, the potential to use waveform LiDAR was investigated. Aerial waveform LiDAR data were acquired for a New Zealand radiata pine plantation forest, and Leaf Area Density (LAD was measured in the field. Waveform peaks with a good signal-to-noise ratio were analyzed and each described with a Gaussian peak height, half-height width, and an exponential decay constant. All parameters varied substantially across all surface types, ruling out the potential to determine source characteristics for individual returns, particularly those with a lower signal-to-noise ratio. However, pulses on the ground on average had a greater intensity, decay constant and a narrower peak than returns from coniferous foliage. When spatially averaged, canopy foliage density (measured as LAD varied significantly, and was found to be most highly correlated with the volume-average exponential decay rate. A simple model based on the Beer-Lambert law is proposed to explain this relationship, and proposes waveform decay rates as a new metric that is less affected by shadowing than intensity-based metrics. This correlation began to fail when peaks with poorer curve fits were included.

  5. Derivation of Strike and Dip in Sedimentary Terrain Using 3D Image Interpretation Based on Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Chih-Hsiang Yeh

    2014-01-01

    Full Text Available Traditional geological mapping may be hindered by rough terrain and dense vegetation resulting in obscured geological details. The advent of airborne Light Detection and Ranging (LiDAR provides a very precise three-dimensional (3D digital terrain model (DTM. However, its full potential in complementing traditional geological mapping remains to be explored using 3D rendering techniques. This study uses two types of 3D images which differ in imaging principles to further explore the finer details of sedimentary terrain. Our purposes are to demonstrate detailed geological mapping with 3D rendering techniques, to generate LiDAR-derived 3D strata boundaries that are advantageous in generating 2D geological maps and cross sections, and to develop a new practice in deriving the strike and dip of bedding with LiDAR data using an example from the north bank of the Keelung River in northern Taiwan. We propose a geological mapping practice that improves efficiency and meets a high-precision mapping standard with up to 2 m resolution using airborne LiDAR data. Through field verification and assessment, LiDAR data manipulation with relevant 3D visualization is shown to be an effective approach in improving the details of existing geological maps, specifically in sedimentary terrain.

  6. Unveiling topographical changes using LiDAR mapping capability: case study of Belaga in Sarawak, East-Malaysia

    Science.gov (United States)

    Ganendra, T. R.; Khan, N. M.; Razak, W. J.; Kouame, Y.; Mobarakeh, E. T.

    2016-06-01

    The use of Light Detection and Ranging (LiDAR) remote sensing technology to scan and map landscapes has proven to be one of the most popular techniques to accurately map topography. Thus, LiDAR technology is the ultimate method of unveiling the surface feature under dense vegetation, and, this paper intends to emphasize the diverse techniques that can be utilized to elucidate topographical changes over the study area, using multi-temporal airborne full waveform LiDAR datasets collected in 2012 and 2014. Full waveform LiDAR data offers access to an almost unlimited number of returns per shot, which enables the user to explore in detail topographical changes, such as vegetation growth measurement. The study also found out topography changes at the study area due to earthwork activities contributing to soil consolidation, soil erosion and runoff, requiring cautious monitoring. The implications of this study not only concurs with numerous investigations undertaken by prominent researchers to improve decision making, but also corroborates once again that investigations employing multi-temporal LiDAR data to unveil topography changes in vegetated terrains, produce more detailed and accurate results than most other remote sensing data.

  7. Handling Low-Density LiDAR Data: Calculating the Heights of Civil Constructions and the Accuracy Expected

    Directory of Open Access Journals (Sweden)

    Rubén Martínez Marín

    2013-01-01

    Full Text Available During the last years, in many developed countries, administrations and private companies have devoted considerable amounts of money to obtain mapping data using airborne LiDAR. For many civil activities, we can take advantage of it, since those data are available with no cost. Some important questions arise: Are those data good enough to be used for determining the heights of the civil constructions with the accuracy we need in some civil work? What accuracy can we expect when using low-density LiDAR data (0.5 pts/m2? In order to answer those questions, we have developed a specific methodology based on establishing a set of control points on the top of several constructions and calculating the elevation of each one using postprocessing GPS. Those results have been taken as correct values and the comparison between those values and the elevations obtained, assigning values to the control points by the interpolation of the LiDAR dataset, has been carried out. This paper shows the results obtained using low-density airborne LiDAR data and the accuracy obtained. Results have shown that LiDAR can be accurate enough (10–25 cm to determine the height of civil constructions and apply those data in many civil engineering activities.

  8. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.

    Science.gov (United States)

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-15

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.

  9. LiDAR and Orthophoto Synergy to optimize Object-Based Landscape Change: Analysis of an Active Landslide

    Directory of Open Access Journals (Sweden)

    Martijn Kamps

    2017-08-01

    Full Text Available Active landslides have three major effects on landscapes: (1 land cover change, (2 topographical change, and (3 above ground biomass change. Data derived from multi-temporal Light Detection and Ranging technology (LiDAR are used in combination with multi-temporal orthophotos to quantify these changes between 2006 and 2012, caused by an active deep-seated landslide near the village of Doren in Austria. Land-cover is classified by applying membership-based classification and contextual improvements based on the synergy of orthophotos and LiDAR-based elevation data. Topographical change is calculated by differencing of LiDAR derived digital terrain models. The above ground biomass is quantified by applying a local-maximum algorithm for tree top detection, in combination with allometric equations. The land cover classification accuracies were improved from 65% (using only LiDAR and 76% (using only orthophotos to 90% (using data synergy for 2006. A similar increase from respectively 64% and 75% to 91% was established for 2012. The increased accuracies demonstrate the effectiveness of using data synergy of LiDAR and orthophotos using object-based image analysis to quantify landscape changes, caused by an active landslide. The method has great potential to be transferred to larger areas for use in landscape change analyses.

  10. Self-Tuning Method for Increased Obstacle Detection Reliability Based on Internet of Things LiDAR Sensor Models.

    Science.gov (United States)

    Castaño, Fernando; Beruvides, Gerardo; Villalonga, Alberto; Haber, Rodolfo E

    2018-05-10

    On-chip LiDAR sensors for vehicle collision avoidance are a rapidly expanding area of research and development. The assessment of reliable obstacle detection using data collected by LiDAR sensors has become a key issue that the scientific community is actively exploring. The design of a self-tuning methodology and its implementation are presented in this paper, to maximize the reliability of LiDAR sensors network for obstacle detection in the 'Internet of Things' (IoT) mobility scenarios. The Webots Automobile 3D simulation tool for emulating sensor interaction in complex driving environments is selected in order to achieve that objective. Furthermore, a model-based framework is defined that employs a point-cloud clustering technique, and an error-based prediction model library that is composed of a multilayer perceptron neural network, and k-nearest neighbors and linear regression models. Finally, a reinforcement learning technique, specifically a Q-learning method, is implemented to determine the number of LiDAR sensors that are required to increase sensor reliability for obstacle localization tasks. In addition, a IoT driving assistance user scenario, connecting a five LiDAR sensor network is designed and implemented to validate the accuracy of the computational intelligence-based framework. The results demonstrated that the self-tuning method is an appropriate strategy to increase the reliability of the sensor network while minimizing detection thresholds.

  11. Quantifying Wave Breaking Shape and Type in the Surf-Zone Using LiDAR

    Science.gov (United States)

    Albright, A.; Brodie, K. L.; Hartzell, P. J.; Glennie, C. L.

    2017-12-01

    Waves change shape as they shoal and break across the surf-zone, ultimately dissipating and transferring their energy into turbulence by either spilling or plunging. This injection of turbulence and changes in wave shape can affect the direction of sediment transport at the seafloor, and ultimately lead to morphological evolution. Typical methods for collecting wave data in the surf-zone include in-situ pressure gauges, velocimeters, ultrasonic sensors, and video imagery. Drawbacks to these data collection methods are low spatial resolution of point measurements, reliance on linear theory to calculate sea-surface elevations, and intensive computations required to extract wave properties from stereo 2D imagery. As a result, few field measurements of the shapes of plunging and/or spilling breakers exist, and existing knowledge is confined to results of laboratory studies. We therefore examine the use of a multi-beam scanning Light Detection and Ranging (LiDAR) remote sensing instrument with the goal of classifying the breaking type of propagating waves in the surf-zone and quantitatively determining wave morphometric properties. Data were collected with a Velodyne HDL-32E LiDAR scanner (360° vertical field of view) mounted on an arm of the Coastal Research Amphibious Buggy (CRAB) at the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina. Processed laser scan data are used to visualize the lifecycle of a wave (shoaling, breaking, broken) and identify wave types (spilling, plunging, non-breaking) as they pass beneath the scanner. For each rotation of the LiDAR scanner, the point cloud data are filtered, smoothed, and detrended in order to identify individual waves and measure their properties, such as speed, height, period, upward/downward slope, asymmetry, and skewness. The 3D nature of point cloud data is advantageous for research, because it enables viewing from any angle. In our analysis, plan views are used to separate individual waves

  12. Temporal Analysis and Automatic Calibration of the Velodyne HDL-32E LiDAR System

    Directory of Open Access Journals (Sweden)

    T. O. Chan

    2013-10-01

    Full Text Available At the end of the first quarter of 2012, more than 600 Velodyne LiDAR systems had been sold worldwide for various robotic and high-accuracy survey applications. The ultra-compact Velodyne HDL-32E LiDAR has become a predominant sensor for many applications that require lower sensor size/weight and cost. For high accuracy applications, cost-effective calibration methods with minimal manual intervention are always desired by users. However, the calibrations are complicated by the Velodyne LiDAR's narrow vertical field of view and the very highly time-variant nature of its measurements. In the paper, the temporal stability of the HDL-32E is first analysed as the motivation for developing a new, automated calibration method. This is followed by a detailed description of the calibration method that is driven by a novel segmentation method for extracting vertical cylindrical features from the Velodyne point clouds. The proposed segmentation method utilizes the Velodyne point cloud's slice-like nature and first decomposes the point clouds into 2D layers. Then the layers are treated as 2D images and are processed with the Generalized Hough Transform which extracts the points distributed in circular patterns from the point cloud layers. Subsequently, the vertical cylindrical features can be readily extracted from the whole point clouds based on the previously extracted points. The points are passed to the calibration that estimates the cylinder parameters and the LiDAR's additional parameters simultaneously by constraining the segmented points to fit to the cylindrical geometric model in such a way the weighted sum of the adjustment residuals are minimized. The proposed calibration is highly automatic and this allows end users to obtain the time-variant additional parameters instantly and frequently whenever there are vertical cylindrical features presenting in scenes. The methods were verified with two different real datasets, and the results suggest

  13. Key events and their effects on cycling behaviour in Dar-es-Salaam : abstract + powerpoint

    OpenAIRE

    Nkurunziza, A.; Zuidgeest, M.H.P.; Brussel, M.J.G.; van Maarseveen, M.F.A.M.

    2012-01-01

    The paper explores key events and investigates their effects on cycling behaviour in the city of Dar-es-Salaam, Tanzania. The objective of the study is to identify specific key events during a person’s life course with a significant effect on change of travel behaviour towards cycling in relation to stage of change. Stage of change is a key construct of the transtheoretical model of behaviour change that defines behavioural readiness (intentions and actions) into six distinct categories (i.e....

  14. Processing and evaluation of riverine waveforms acquired by an experimental bathymetric LiDAR

    Science.gov (United States)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.

    2010-12-01

    Accurate mapping of fluvial environments with airborne bathymetric LiDAR is challenged not only by environmental characteristics but also the development and application of software routines to post-process the recorded laser waveforms. During a bathymetric LiDAR survey, the transmission of the green-wavelength laser pulses through the water column is influenced by a number of factors including turbidity, the presence of organic material, and the reflectivity of the streambed. For backscattered laser pulses returned from the river bottom and digitized by the LiDAR detector, post-processing software is needed to interpret and identify distinct inflections in the reflected waveform. Relevant features of this energy signal include the air-water interface, volume reflection from the water column itself, and, ideally, a strong return from the bottom. We discuss our efforts to acquire, analyze, and interpret riverine surveys using the USGS Experimental Advanced Airborne Research LiDAR (EAARL) in a variety of fluvial environments. Initial processing of data collected in the Trinity River, California, using the EAARL Airborne Lidar Processing Software (ALPS) highlighted the difficulty of retrieving a distinct bottom signal in deep pools. Examination of laser waveforms from these pools indicated that weak bottom reflections were often neglected by a trailing edge algorithm used by ALPS to process shallow riverine waveforms. For the Trinity waveforms, this algorithm had a tendency to identify earlier inflections as the bottom, resulting in a shallow bias. Similarly, an EAARL survey along the upper Colorado River, Colorado, also revealed the inadequacy of the trailing edge algorithm for detecting weak bottom reflections. We developed an alternative waveform processing routine by exporting digitized laser waveforms from ALPS, computing the local extrema, and fitting Gaussian curves to the convolved backscatter. Our field data indicate that these techniques improved the

  15. a Darío Bentancurt, el de la novísima historia

    Directory of Open Access Journals (Sweden)

    Javier Guerreo Barrón

    1999-01-01

    Full Text Available Ha perdido Colombia, y de que forma, a muchos de sus mejores hombres y mujeres y recientemente, el turno macabro le tocó a la inteligencia. Darío Betancourt Echeverry, nació en Restrepo, Valle, el 10 de diciembre de 1952. Estudió Ciencias Sociales en la Universidad Nacional y en la Universidad Libre. Su primera etapa profesional trasegó sobre la historia colonial y el movimiento Comunero, de la cual quedan dos obras: "Historia de Colombia" Colonial,(Bogotá, Universidad Santo Tomás, 1985 e "Historia de la Edad Media", (Bogotá, Universidad Santo Tomás, 1986.

  16. In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR.

    Science.gov (United States)

    Sun, Shangpeng; Li, Changying; Paterson, Andrew H; Jiang, Yu; Xu, Rui; Robertson, Jon S; Snider, John L; Chee, Peng W

    2018-01-01

    Plant breeding programs and a wide range of plant science applications would greatly benefit from the development of in-field high throughput phenotyping technologies. In this study, a terrestrial LiDAR-based high throughput phenotyping system was developed. A 2D LiDAR was applied to scan plants from overhead in the field, and an RTK-GPS was used to provide spatial coordinates. Precise 3D models of scanned plants were reconstructed based on the LiDAR and RTK-GPS data. The ground plane of the 3D model was separated by RANSAC algorithm and a Euclidean clustering algorithm was applied to remove noise generated by weeds. After that, clean 3D surface models of cotton plants were obtained, from which three plot-level morphologic traits including canopy height, projected canopy area, and plant volume were derived. Canopy height ranging from 85th percentile to the maximum height were computed based on the histogram of the z coordinate for all measured points; projected canopy area was derived by projecting all points on a ground plane; and a Trapezoidal rule based algorithm was proposed to estimate plant volume. Results of validation experiments showed good agreement between LiDAR measurements and manual measurements for maximum canopy height, projected canopy area, and plant volume, with R 2 -values of 0.97, 0.97, and 0.98, respectively. The developed system was used to scan the whole field repeatedly over the period from 43 to 109 days after planting. Growth trends and growth rate curves for all three derived morphologic traits were established over the monitoring period for each cultivar. Overall, four different cultivars showed similar growth trends and growth rate patterns. Each cultivar continued to grow until ~88 days after planting, and from then on varied little. However, the actual values were cultivar specific. Correlation analysis between morphologic traits and final yield was conducted over the monitoring period. When considering each cultivar individually

  17. Financial sustainability in municipal solid waste management--costs and revenues in Bahir Dar, Ethiopia.

    Science.gov (United States)

    Lohri, Christian Riuji; Camenzind, Ephraim Joseph; Zurbrügg, Christian

    2014-02-01

    Providing good solid waste management (SWM) services while also ensuring financial sustainability of the system continues to be a major challenge in cities of developing countries. Bahir Dar in northwestern Ethiopia outsourced municipal waste services to a private waste company in 2008. While this institutional change has led to substantial improvement in the cleanliness of the city, its financial sustainability remains unclear. Is the private company able to generate sufficient revenues from their activities to offset the costs and generate some profit? This paper presents a cost-revenue analysis, based on data from July 2009 to June 2011. The analysis reveals that overall costs in Bahir Dar's SWM system increased significantly during this period, mainly due to rising costs related to waste transportation. On the other hand, there is only one major revenue stream in place: the waste collection fee from households, commercial enterprises and institutions. As the efficiency of fee collection from households is only around 50%, the total amount of revenues are not sufficient to cover the running costs. This results in a substantial yearly deficit. The results of the research therefore show that a more detailed cost structure and cost-revenue analysis of this waste management service is important with appropriate measures, either by the privates sector itself or with the support of the local authorities, in order to enhance cost efficiency and balance the cost-revenues towards cost recovery. Delays in mitigating the evident financial deficit could else endanger the public-private partnership (PPP) and lead to failure of this setup in the medium to long term, thus also endangering the now existing improved and currently reliable service. We present four options on how financial sustainability of the SWM system in Bahir Dar might be enhanced: (i) improved fee collection efficiency by linking the fees of solid waste collection to water supply; (ii) increasing the value

  18. ITIJAHAT AMNA MAKTABAH FI MALAYSIA NAHW TA'ALUM AL-LUGHAH AL-'ARABIYAH LI AGHRADH KHASHAH

    Directory of Open Access Journals (Sweden)

    Nurul Shifaah Binti Abdullah

    2016-12-01

    Full Text Available The concept of teaching Arabic for specific purposes (ASP is the new concept in teaching Arabic to non-native speakers. This study was intended to look at the Trustees of the global library Dar al-Hikma Islamic University in Malaysia where a class of employees imposed working conditions need to learn Arabic; to make them easier to deal with their clients from the Arabic-speaking countries.  Therefore, it was a need for the employees to learn Arabic in specific purpose. The study was conducted through descriptive and analytical approach and the data were obtained through personal interview and made up the sample of nine members. The paper concluded the results of the most important: the desire of Trustees of the Dar al-Hikma library to learn Arabic for the purposes of office, and they see the need to focus on speaking and writing skills.DOI: 10.15408/a.v3i2.4591

  19. Rubén Darío y la pintura Principio ekfrástico y sinestesia // Rubén Darío and painting: Ekphrastic principle and synesthesia

    Directory of Open Access Journals (Sweden)

    Alvaro Salvador

    2016-12-01

    Full Text Available The article examines the relationships between literature and painting in the works of Rubén Darío. The issue is seen in the context of modernis synesthesia, which was strongly present in the literary ideology of the modernist discourse, and it is analyzed with the help of the theories of ekphrasis of Murray Krieger. In Darío’s canonical works painting plays an important role, both in the form of literary references, and the so called “transpositions of art”, in its intent to create a total art.

  20. Registration of Aerial Image with Airborne LiDAR Data Based on Plücker Line

    Directory of Open Access Journals (Sweden)

    SHENG Qinghong

    2015-07-01

    Full Text Available Registration of aerial image with airborne LiDAR data is a key to feature extraction. A registration model based on Plücker line is proposed. The relative position and attitude relationship between the conjugate lines in LiDAR and image is determined based on Plücker linear equation, which describes line transformation in space, then coplanarity condition equation is established. Finally, coordinate transformation between image point and corresponding LiDAR point is achieved by the spiral movement of Plücker lines in the image. The registration model of Plücker linear coplanarity condition equation is simple, and jointly describes the rotation and translation to avoid coupling error between them, so the accuracy is approved. This research provides technical support for high-quality earth spatial information acquisition.

  1. Mapping and quantifying geodiversity in land-water transition zones using MBES and topobathymetric LiDAR

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Andersen, Mikkel Skovgaard; Gergely, Aron

    due to the challenging environmental conditions. Combining vessel borne shallow water multibeam echosounder (MBES) surveys ,to cover the subtidal coastal areas and the river channel areas, with airborne topobathymetric light detection and ranging (LiDAR) surveys, to cover the intertidal and supratidal...... coastal areas and the river floodplain areas, potentially enables full-coverage and high-resolution mapping in these challenging environments. We have carried out MBES and topobathymetric LiDAR surveys in the Knudedyb tidal inlet system, a coastal environment in the Danish Wadden Sea which is part...... of the Wadden Sea National Park and UNESCO World Heritage, and in the Ribe Vesterå, a fluvial environment in the Ribe Å river catchment discharging into the Knudedyb tidal basin. Detailed digital elevation models (DEMs) with a grid cell size of 0.5 m x 0.5 m were generated from the MBES and the LiDAR point...

  2. INTERVENCIÓN PARA REDUCIR EL TRASTORNO DE ANSIEDAD ASOCIADO AL TDA/TDAH

    OpenAIRE

    García-Fernández, Laura

    2012-01-01

    El trastorno por déficit de atención con o sin hiperactividad es abordado aquí valorando la comorbilidad asociada al mismo. Principalmente nos centramos en el trastorno de ansiedad por ser uno de los más frecuentes dentro de este grupo. Además de dar a conocer la sintomatología de ambas problemáticas y la relación que entre ellas existe, se propone un programa de intervención dirigido a la infancia, para disminuir la ansiedad asociada al TDAH. Para llegar a este punto primero se realiza un re...

  3. Rekombinante bovin-humane Parainfluenzaviren Typ 3 als Impfvektoren gegen nicht-virale Antigene

    OpenAIRE

    Schomacker, Henrick

    2008-01-01

    Bei bhPIV3 handelt es sich um ein bovines Parainfluenzavirus Typ 3 (bPIV3), dessen Ober-flächenproteingene gegen jene des humanen Parainfluenzavirus Typ 3 (hPIV3) ausgetauscht wurden. Dieses ursprünglich als experimenteller Impfstoff gegen hPIV3 entwickelte Virus wurde darüber hinaus als Impfvektor zur Expression anderer viraler Antigene verwendet. Im Rahmen der hier vorgestellten Arbeit wurden die ersten bhPIV3-basierten Vektoren für nicht-virale Antigene hergestellt und in einem ersten Vers...

  4. Aufgabenorientierung mit proaktiver Formfokussierung als didaktisches Konzept für den Deutschunterricht im Tourismus

    Directory of Open Access Journals (Sweden)

    Gloria Bosch Roig

    2012-04-01

    Full Text Available Der aufgabenoriente Unterricht Deutsch für den Tourismus stellt eine realitätsnähere Variante des kommunikativen Deutschunterrichts dar, die es ermöglicht, sinnvolle Inhalte mit der effizienten Bewältigung konkreter Interaktionssituationen des Berufslebens zu kombinieren. Dabei werden die formellen Aspekte der Sprache weder aus dem Unterricht ausgeklammert noch als reine Form-Funktionsbeziehungen eingeführt. Grammatik wird vielmehr als eine metasprachliche Aufgabe verstanden, die es kooperativ und interaktiv zu entschlüsseln und zu lösen gilt.

  5. A Concealed Car Extraction Method Based on Full-Waveform LiDAR Data

    Directory of Open Access Journals (Sweden)

    Chuanrong Li

    2016-01-01

    Full Text Available Concealed cars extraction from point clouds data acquired by airborne laser scanning has gained its popularity in recent years. However, due to the occlusion effect, the number of laser points for concealed cars under trees is not enough. Thus, the concealed cars extraction is difficult and unreliable. In this paper, 3D point cloud segmentation and classification approach based on full-waveform LiDAR was presented. This approach first employed the autocorrelation G coefficient and the echo ratio to determine concealed cars areas. Then the points in the concealed cars areas were segmented with regard to elevation distribution of concealed cars. Based on the previous steps, a strategy integrating backscattered waveform features and the view histogram descriptor was developed to train sample data of concealed cars and generate the feature pattern. Finally concealed cars were classified by pattern matching. The approach was validated by full-waveform LiDAR data and experimental results demonstrated that the presented approach can extract concealed cars with accuracy more than 78.6% in the experiment areas.

  6. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    Science.gov (United States)

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-07-10

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  7. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    Directory of Open Access Journals (Sweden)

    Jian Tang

    2015-07-01

    Full Text Available A new scan that matches an aided Inertial Navigation System (INS with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR and Simultaneous Localization and Mapping (SLAM technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  8. Airborne LiDAR for the Detection of Archaeological Vegetation Marks Using Biomass as a Proxy

    Directory of Open Access Journals (Sweden)

    David Stott

    2015-02-01

    Full Text Available In arable landscapes, the airborne detection of archaeological features is often reliant on using the properties of the vegetation cover as a proxy for sub-surface features in the soil. Under the right conditions, the formation of vegetation marks allows archaeologists to identify and interpret archaeological features. Using airborne Laser Scanning, based on the principles of Light Detection and Ranging (LiDAR to detect these marks is challenging, particularly given the difficulties of resolving subtle changes in a low and homogeneous crop with these sensors. In this paper, an experimental approach is adopted to explore how these marks could be detected as variations in canopy biomass using both range and full waveform LiDAR data. Although some detection was achieved using metrics of the full waveform data, it is the novel multi-temporal method of using discrete return data to detect and characterise archaeological vegetation marks that is offered for further consideration. This method was demonstrated to be applicable over a range of capture conditions, including soils deemed as difficult (i.e., clays and other heavy soils, and should increase the certainty of detection when employed in the increasingly multi-sensor approaches to heritage prospection and management.

  9. Family perceptions of intellectual disability: Understanding and support in Dar es Salaam

    Science.gov (United States)

    2012-01-01

    When attempting to understand the construct of intellectual disability in different contexts, speaking to family members in addition to the individual with the disability may provide new insight about understandings of and responses to intellectual disability in society and may help to identify the forms of support that are available or needed to ensure the quality of life of people with disabilities. This article outlines and discusses interviews that were conducted in Dar es Salaam, Tanzania, with family members of children and adults with intellectual disabilities. These interviews explore how families came to understand that their child had an intellectual disability; the availability of family support; and family hopes and dreams for the future, and were a part of a wider exploratory study that gathered insight from individuals with disabilities, families, and other providers of support to explore understandings and perceptions of disability in Dar es Salaam. Understanding family experiences will help researchers, policy makers, non-governmental organisations, and others to identify family strengths and family support needs which can ultimately improve family quality of life and the quality of life of the member with a disability. PMID:28729979

  10. A Least Squares Collocation Method for Accuracy Improvement of Mobile LiDAR Systems

    Directory of Open Access Journals (Sweden)

    Qingzhou Mao

    2015-06-01

    Full Text Available In environments that are hostile to Global Navigation Satellites Systems (GNSS, the precision achieved by a mobile light detection and ranging (LiDAR system (MLS can deteriorate into the sub-meter or even the meter range due to errors in the positioning and orientation system (POS. This paper proposes a novel least squares collocation (LSC-based method to improve the accuracy of the MLS in these hostile environments. Through a thorough consideration of the characteristics of POS errors, the proposed LSC-based method effectively corrects these errors using LiDAR control points, thereby improving the accuracy of the MLS. This method is also applied to the calibration of misalignment between the laser scanner and the POS. Several datasets from different scenarios have been adopted in order to evaluate the effectiveness of the proposed method. The results from experiments indicate that this method would represent a significant improvement in terms of the accuracy of the MLS in environments that are essentially hostile to GNSS and is also effective regarding the calibration of misalignment.

  11. Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision

    Science.gov (United States)

    Yang, Bingwei; Xie, Xinhao; Li, Duan

    2018-01-01

    Time of flight (TOF) based light detection and ranging (LiDAR) is a technology for calculating distance between start/stop signals of time of flight. In lab-built LiDAR, two ranging systems for measuring flying time between start/stop signals include time-to-digital converter (TDC) that counts time between trigger signals and analog-to-digital converter (ADC) that processes the sampled start/stop pulses waveform for time estimation. We study the influence of waveform characteristics on range accuracy and precision of two kinds of ranging system. Comparing waveform based ranging (WR) with analog discrete return system based ranging (AR), a peak detection method (WR-PK) shows the best ranging performance because of less execution time, high ranging accuracy, and stable precision. Based on a novel statistic mathematical method maximal information coefficient (MIC), WR-PK precision has a high linear relationship with the received pulse width standard deviation. Thus keeping the received pulse width of measuring a constant distance as stable as possible can improve ranging precision. PMID:29642639

  12. Genetic diversity of carotenoid-rich bananas evaluated by Diversity Arrays Technology (DArT

    Directory of Open Access Journals (Sweden)

    Edson P. Amorim

    2009-01-01

    Full Text Available The aim of this work was to evaluate the carotenoid content and genetic variability of banana accessions from the Musa germplasm collection held at Embrapa Cassava and Tropical Fruits, Brazil. Forty-two samples were analyzed, including 21 diploids, 19 triploids and two tetraploids. The carotenoid content was analyzed spectrophotometrically and genetic variability was estimated using 653 DArT markers. The average carotenoid content was 4.73 µg.g-1, and ranged from 1.06 µg.g-1 for the triploid Nanica (Cavendish group to 19.24 µg.g-1 for the triploid Saney. The diploids Modok Gier and NBA-14 and the triploid Saney had a carotenoid content that was, respectively, 7-fold, 6-fold and 9-fold greater than that of cultivars from the Cavendish group (2.19 µg.g-1. The mean similarity among the 42 accessions was 0.63 (range: 0.24 to 1.00. DArT analysis revealed extensive genetic variability in accessions from the Embrapa Musa germplasm bank.

  13. Identifying Ancient Settlement Patterns through LiDAR in the Mosquitia Region of Honduras.

    Directory of Open Access Journals (Sweden)

    Christopher T Fisher

    Full Text Available The Mosquitia ecosystem of Honduras occupies the fulcrum between the American continents and as such constitutes a critical region for understanding past patterns of socio-political development and interaction. Heavy vegetation, rugged topography, and remoteness have limited scientific investigation. This paper presents prehistoric patterns of settlement and landuse for a critical valley within the Mosquitia derived from airborne LiDAR scanning and field investigation. We show that (i though today the valley is a wilderness it was densely inhabited in the past; (ii that this population was organized into a three-tiered system composed of 19 settlements dominated by a city; and, (iii that this occupation was embedded within a human engineered landscape. We also add to a growing body of literature that demonstrates the utility of LiDAR as means for rapid cultural assessments in undocumented regions for analysis and conservation. Our ultimate hope is for our work to promote protections to safeguard the unique and critically endangered Mosquitia ecosystem and other similar areas in need of preservation.

  14. Identifying Ancient Settlement Patterns through LiDAR in the Mosquitia Region of Honduras

    Science.gov (United States)

    Fernández-Diaz, Juan Carlos; Cohen, Anna S.; Neil Cruz, Oscar; Gonzáles, Alicia M.; Leisz, Stephen J.; Pezzutti, Florencia; Shrestha, Ramesh; Carter, William

    2016-01-01

    The Mosquitia ecosystem of Honduras occupies the fulcrum between the American continents and as such constitutes a critical region for understanding past patterns of socio-political development and interaction. Heavy vegetation, rugged topography, and remoteness have limited scientific investigation. This paper presents prehistoric patterns of settlement and landuse for a critical valley within the Mosquitia derived from airborne LiDAR scanning and field investigation. We show that (i) though today the valley is a wilderness it was densely inhabited in the past; (ii) that this population was organized into a three-tiered system composed of 19 settlements dominated by a city; and, (iii) that this occupation was embedded within a human engineered landscape. We also add to a growing body of literature that demonstrates the utility of LiDAR as means for rapid cultural assessments in undocumented regions for analysis and conservation. Our ultimate hope is for our work to promote protections to safeguard the unique and critically endangered Mosquitia ecosystem and other similar areas in need of preservation. PMID:27560962

  15. Body-art practices among undergraduate medical university students in dar es salaam, Tanzania, 2014.

    Science.gov (United States)

    Chacha, Chacha Emmanuel; Kazaura, Method R

    2015-01-01

    Body-art practices are increasing among adolescents and young adults. Although substantial data are available in developed countries, little has been documented about body-art practices in developing countries. To determine the magnitude, types and reasons for practicing body-art practices among undergraduate medical University students in Dar es Salaam, Tanzania. A cross-sectional descriptive study was conducteed among undergraduate University students in Dar es Salaam involving 536 respondents from two Universities. We used a self-administered questionnaire to collect data. Analyses were based on summary measures and bivariate analyses. While 7.5% of undergraduate students reported having tattoos, 20% reported having body puncturing or piercing. Body piercing is reported more among female university undergraduate students than their male counterparts. Reported main reasons for undergoing body-art include "a mark of beauty," 24%, "just wanted one," 18% and "a mark of femininity or masculinity," 17%. The majority (98%) of students were aware that unsafe body-art practices may lead to contracting HIV and more than half (52%) reported awareness of the risk of Hepatitis B infection. Despite high awareness of the potential risks involved in unsafe body arts that include tattoo and piercing, these practices are increasing among adolescents and young adults. There is need to have educational and counseling efforts so as to minimize associated health risks.

  16. Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2018-04-01

    Full Text Available Time of flight (TOF based light detection and ranging (LiDAR is a technology for calculating distance between start/stop signals of time of flight. In lab-built LiDAR, two ranging systems for measuring flying time between start/stop signals include time-to-digital converter (TDC that counts time between trigger signals and analog-to-digital converter (ADC that processes the sampled start/stop pulses waveform for time estimation. We study the influence of waveform characteristics on range accuracy and precision of two kinds of ranging system. Comparing waveform based ranging (WR with analog discrete return system based ranging (AR, a peak detection method (WR-PK shows the best ranging performance because of less execution time, high ranging accuracy, and stable precision. Based on a novel statistic mathematical method maximal information coefficient (MIC, WR-PK precision has a high linear relationship with the received pulse width standard deviation. Thus keeping the received pulse width of measuring a constant distance as stable as possible can improve ranging precision.

  17. Scintillation measurements at Bahir Dar during the high solar activity phase of solar cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens; Sato, Hiroatsu [German Aerospace Center (DLR), Neustrelitz (Germany). Inst. of Communications and Navigation; Mersha, Mogese Wassaie [Bahir Dar Univ. (Ethiopia). Washera Geospace and Radar Science Lab.

    2017-04-01

    Small-scale ionospheric disturbances may cause severe radio scintillations of signals transmitted from global navigation satellite systems (GNSSs). Consequently, smallscale plasma irregularities may heavily degrade the performance of current GNSSs such as GPS, GLONASS or Galileo. This paper presents analysis results obtained primarily from two high-rate GNSS receiver stations designed and operated by the German Aerospace Center (DLR) in cooperation with Bahir Dar University (BDU) at 11.6 N, 37.4 E. Both receivers collect raw data sampled at up to 50 Hz, from which characteristic scintillation parameters such as the S4 index are deduced. This paper gives a first overview of the measurement setup and the observed scintillation events over Bahir Dar in 2015. Both stations are located close to one another and aligned in an east-west, direction which allows us to estimate the zonal drift velocity and spatial dimension of equatorial ionospheric plasma irregularities. Therefore, the lag times of moving electron density irregularities and scintillation patterns are derived by applying cross-correlation analysis to high-rate measurements of the slant total electron content (sTEC) along radio links between a GPS satellite and both receivers and to the associated signal power, respectively. Finally, the drift velocity is derived from the estimated lag time, taking into account the geometric constellation of both receiving antennas and the observed GPS satellites.

  18. Application of the Ultraviolet Scanning Elastic Backscatter LiDAR for the Investigation of Aerosol Variability

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2015-05-01

    Full Text Available In order to investigate the aerosol variability over the southwest region of Slovenia, an ultraviolet scanning elastic backscatter LiDAR was utilized to make the vertical scan for atmospheric probing. With the assumption of horizontal atmospheric homogeneity, aerosol optical variables were retrieved from the horizontal pixel data points of two-dimensional range-height-indicator (RHI diagrams by using a multiangle retrieval method, in which optical depth is defined as the slope of the resulting linear function when height is kept constant. To make the data retrieval feasible and precise, a series of key procedures complemented the data processing, including construction of the RHI diagram, correction of Rayleigh scattering, assessment of horizontal atmospheric homogeneity and retrieval of aerosol optical variables. The measurement example demonstrated the feasibility of the ultraviolet scanning elastic backscatter LiDAR in the applications of the retrieval of aerosol extinction and determination of the atmospheric boundary layer height. Three months’ data combined with the modeling of air flow trajectories using Hybrid Single Particle Lagrangian Integrated Trajectory Model were analyzed to investigate aerosol variability. The average value of aerosol extinction with the presence of land-based air masses from the European continent was found to be two-times larger than that influenced by marine aerosols from the Mediterranean or Adriatic Sea.

  19. Quantifying landscape change in an arctic coastal lowland using repeat airborne LiDAR

    Science.gov (United States)

    Jones, Benjamin M.; Stoker, Jason M.; Gibbs, Ann E.; Grosse, Guido; Romanovsky, Vladimir E.; Douglas, Thomas A.; Kinsman, Nichole E.M.; Richmond, Bruce M.

    2013-01-01

    Increases in air, permafrost, and sea surface temperature, loss of sea ice, the potential for increased wave energy, and higher river discharge may all be interacting to escalate erosion of arctic coastal lowland landscapes. Here we use airborne light detection and ranging (LiDAR) data acquired in 2006 and 2010 to detect landscape change in a 100 km2 study area on the Beaufort Sea coastal plain of northern Alaska. We detected statistically significant change (99% confidence interval), defined as contiguous areas (>10 m2) that had changed in height by at least 0.55 m, in 0.3% of the study region. Erosional features indicative of ice-rich permafrost degradation were associated with ice-bonded coastal, river, and lake bluffs, frost mounds, ice wedges, and thermo-erosional gullies. These features accounted for about half of the area where vertical change was detected. Inferred thermo-denudation and thermo-abrasion of coastal and river bluffs likely accounted for the dominant permafrost-related degradational processes with respect to area (42%) and volume (51%). More than 300 thermokarst pits significantly subsided during the study period, likely as a result of storm surge flooding of low-lying tundra (impact of warm summers in the late-1980s and mid-1990s. Our results indicate that repeat airborne LiDAR can be used to detect landscape change in arctic coastal lowland regions at large spatial scales over sub-decadal time periods.

  20. Depression among patients attending antiretroviral treatment program in public health facilities in Bahir Dar City, Ethiopia.

    Science.gov (United States)

    Tareke, Minale; Addisu, Fikir; Abate, Andargie

    2018-05-01

    The magnitude of depression is not well investigated among people living with HIV/AIDS. Thus, this research aimed to assess the magnitude of depression and its influencing factors among people living with HIV/AIDS attending government institutions in Bahir Dar City, North West, Ethiopia. institution based-cross-sectional study was done among randomly selected 415 people living with HIV/AIDS attending antiretroviral therapy program in Bahir Dar city, Ethiopia. Socio-demographic data and medical histories for all respondents were collected using interviewer-administered structured questionnaire. We assessed the odds of association of patient characteristics with depression was assessed using multiple logistic regression. The relative effect estimates of the respective factors were presented with odds ratio accompanied by their 95% uncertainty intervals. From 407 people living with HIV/AIDS interviewed, 198(48.6%) of them had depression. Social support, HIV clinical staging, total daily pill burden, treatment regimen and adherence to highly active antiretroviral therapy were significantly associated with depression. The magnitude of depression among people living with HIV/AIDS was found to be high. Early mental health screening should be done for people living with HIV/AIDS. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Hydrogeology and water chemistry of Infranz catchment springs, Bahir Dar Area, Lake Tana Basin, Ethiopia

    Science.gov (United States)

    Abera, F. N.

    2017-12-01

    The major springs in the Infranz catchment are a significant source of water for Bahir city and nearby villages, while they help to sustain Infranz River and the downstream wetlands. The aim of the research was to understand the hydrogeological conditions of these high-discharge springs, and to explain the hydrochemical composition of spring waters. Water samples from rainwater and springs were collected and analyzed and compared for major cations and anions. The hydrochemical data analysis showed that all water samples of the springs have freshwater chemistry, Ca-HCO3 type, while deep groundwater shows more evolved types. This indicates limited water-rock interaction and short residence time for the spring waters. The rise of NO3- and PO43- may indicate future water quality degradation unless the anthropogenic activities upgradient and nearby are restricted. The uptake of 75% of spring water for water supply of Bahir Dar results in wetland degradation. Key words: Spring water, Infranz River, Bahir Dar, Ethiopia, hydrochemistry

  2. Body-art practices among undergraduate medical university students in Dar Es Salaam, Tanzania, 2014

    Directory of Open Access Journals (Sweden)

    Chacha Emmanuel Chacha

    2015-01-01

    Full Text Available Background: Body-art practices are increasing among adolescents and young adults. Although substantial data are available in developed countries, little has been documented about body-art practices in developing countries. Objective: To determine the magnitude, types and reasons for practicing body-art practices among undergraduate medical University students in Dar es Salaam, Tanzania. Materials and Methods: A cross-sectional descriptive study was conducteed among undergraduate University students in Dar es Salaam involving 536 respondents from two Universities. We used a self-administered questionnaire to collect data. Analyses were based on summary measures and bivariate analyses. Results: While 7.5% of undergraduate students reported having tattoos, 20% reported having body puncturing or piercing. Body piercing is reported more among female university undergraduate students than their male counterparts. Reported main reasons for undergoing body-art include "a mark of beauty," 24%, "just wanted one," 18% and "a mark of femininity or masculinity," 17%. The majority (98% of students were aware that unsafe body-art practices may lead to contracting HIV and more than half (52% reported awareness of the risk of Hepatitis B infection. Conclusions: Despite high awareness of the potential risks involved in unsafe body arts that include tattoo and piercing, these practices are increasing among adolescents and young adults. There is need to have educational and counseling efforts so as to minimize associated health risks.

  3. Identifying Ancient Settlement Patterns through LiDAR in the Mosquitia Region of Honduras.

    Science.gov (United States)

    Fisher, Christopher T; Fernández-Diaz, Juan Carlos; Cohen, Anna S; Neil Cruz, Oscar; Gonzáles, Alicia M; Leisz, Stephen J; Pezzutti, Florencia; Shrestha, Ramesh; Carter, William

    2016-01-01

    The Mosquitia ecosystem of Honduras occupies the fulcrum between the American continents and as such constitutes a critical region for understanding past patterns of socio-political development and interaction. Heavy vegetation, rugged topography, and remoteness have limited scientific investigation. This paper presents prehistoric patterns of settlement and landuse for a critical valley within the Mosquitia derived from airborne LiDAR scanning and field investigation. We show that (i) though today the valley is a wilderness it was densely inhabited in the past; (ii) that this population was organized into a three-tiered system composed of 19 settlements dominated by a city; and, (iii) that this occupation was embedded within a human engineered landscape. We also add to a growing body of literature that demonstrates the utility of LiDAR as means for rapid cultural assessments in undocumented regions for analysis and conservation. Our ultimate hope is for our work to promote protections to safeguard the unique and critically endangered Mosquitia ecosystem and other similar areas in need of preservation.

  4. Automatic building extraction from LiDAR data fusion of point and grid-based features

    Science.gov (United States)

    Du, Shouji; Zhang, Yunsheng; Zou, Zhengrong; Xu, Shenghua; He, Xue; Chen, Siyang

    2017-08-01

    This paper proposes a method for extracting buildings from LiDAR point cloud data by combining point-based and grid-based features. To accurately discriminate buildings from vegetation, a point feature based on the variance of normal vectors is proposed. For a robust building extraction, a graph cuts algorithm is employed to combine the used features and consider the neighbor contexture information. As grid feature computing and a graph cuts algorithm are performed on a grid structure, a feature-retained DSM interpolation method is proposed in this paper. The proposed method is validated by the benchmark ISPRS Test Project on Urban Classification and 3D Building Reconstruction and compared to the state-art-of-the methods. The evaluation shows that the proposed method can obtain a promising result both at area-level and at object-level. The method is further applied to the entire ISPRS dataset and to a real dataset of the Wuhan City. The results show a completeness of 94.9% and a correctness of 92.2% at the per-area level for the former dataset and a completeness of 94.4% and a correctness of 95.8% for the latter one. The proposed method has a good potential for large-size LiDAR data.

  5. 3D Maize Plant Reconstruction Based on Georeferenced Overlapping LiDAR Point Clouds

    Directory of Open Access Journals (Sweden)

    Miguel Garrido

    2015-12-01

    Full Text Available 3D crop reconstruction with a high temporal resolution and by the use of non-destructive measuring technologies can support the automation of plant phenotyping processes. Thereby, the availability of such 3D data can give valuable information about the plant development and the interaction of the plant genotype with the environment. This article presents a new methodology for georeferenced 3D reconstruction of maize plant structure. For this purpose a total station, an IMU, and several 2D LiDARs with different orientations were mounted on an autonomous vehicle. By the multistep methodology presented, based on the application of the ICP algorithm for point cloud fusion, it was possible to perform the georeferenced point clouds overlapping. The overlapping point cloud algorithm showed that the aerial points (corresponding mainly to plant parts were reduced to 1.5%–9% of the total registered data. The remaining were redundant or ground points. Through the inclusion of different LiDAR point of views of the scene, a more realistic representation of the surrounding is obtained by the incorporation of new useful information but also of noise. The use of georeferenced 3D maize plant reconstruction at different growth stages, combined with the total station accuracy could be highly useful when performing precision agriculture at the crop plant level.

  6. Invasive Shrub Mapping in an Urban Environment from Hyperspectral and LiDAR-Derived Attributes.

    Science.gov (United States)

    Chance, Curtis M; Coops, Nicholas C; Plowright, Andrew A; Tooke, Thoreau R; Christen, Andreas; Aven, Neal

    2016-01-01

    Proactive management of invasive species in urban areas is critical to restricting their overall distribution. The objective of this work is to determine whether advanced remote sensing technologies can help to detect invasions effectively and efficiently in complex urban ecosystems such as parks. In Surrey, BC, Canada, Himalayan blackberry ( Rubus armeniacus ) and English ivy ( Hedera helix ) are two invasive shrub species that can negatively affect native ecosystems in cities and managed urban parks. Random forest (RF) models were created to detect these two species using a combination of hyperspectral imagery, and light detection and ranging (LiDAR) data. LiDAR-derived predictor variables included irradiance models, canopy structural characteristics, and orographic variables. RF detection accuracy ranged from 77.8 to 87.8% for Himalayan blackberry and 81.9 to 82.1% for English ivy, with open areas classified more accurately than areas under canopy cover. English ivy was predicted to occur across a greater area than Himalayan blackberry both within parks and across the entire city. Both Himalayan blackberry and English ivy were mostly located in clusters according to a Local Moran's I analysis. The occurrence of both species decreased as the distance from roads increased. This study shows the feasibility of producing highly accurate detection maps of plant invasions in urban environments using a fusion of remotely sensed data, as well as the ability to use these products to guide management decisions.

  7. The use of social media among adolescents in Dar es Salaam and Mtwara, Tanzania.

    Science.gov (United States)

    Pfeiffer, Constanze; Kleeb, Matthis; Mbelwa, Alice; Ahorlu, Collins

    2014-05-01

    Social media form part of the rapid worldwide digital development that is re-shaping the life of many young people. While the use of social media by youths is increasingly researched in the North, studies about youth in the South are missing. It therefore remains unclear how social media can be included in interventions that aim at informing young people in many countries of the global South about sexual and reproductive health. This paper presents findings of a mixed-methods study of young people's user behaviour on the internet and specifically of social media as a platform for sexual health promotion in Tanzania. The study used questionnaires with 60 adolescents and in-depth interviews with eight students aged 15 to 19 years in Dar es Salaam, and in Mtwara, Southern Tanzania. Findings show that youth in Dar es Salaam and Mtwara access the internet mainly through mobile phones. Facebook is by far the most popular internet site. Adolescents highlighted their interest in reproductive and sexual health messages and updates being delivered through humorous posts, links and clips, as well as by youth role models like music stars and actors that are entertaining and reflect up-to-date trends of modern youth culture. Copyright © 2014 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.

  8. Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR

    Directory of Open Access Journals (Sweden)

    J. Jubanski

    2013-06-01

    Full Text Available Quantification of tropical forest above-ground biomass (AGB over large areas as input for Reduced Emissions from Deforestation and forest Degradation (REDD+ projects and climate change models is challenging. This is the first study which attempts to estimate AGB and its variability across large areas of tropical lowland forests in Central Kalimantan (Indonesia through correlating airborne light detection and ranging (LiDAR to forest inventory data. Two LiDAR height metrics were analysed, and regression models could be improved through the use of LiDAR point densities as input (R2 = 0.88; n = 52. Surveying with a LiDAR point density per square metre of about 4 resulted in the best cost / benefit ratio. We estimated AGB for 600 km of LiDAR tracks and showed that there exists a considerable variability of up to 140% within the same forest type due to varying environmental conditions. Impact from logging operations and the associated AGB losses dating back more than 10 yr could be assessed by LiDAR but not by multispectral satellite imagery. Comparison with a Landsat classification for a 1 million ha study area where AGB values were based on site-specific field inventory data, regional literature estimates, and default values by the Intergovernmental Panel on Climate Change (IPCC showed an overestimation of 43%, 102%, and 137%, respectively. The results show that AGB overestimation may lead to wrong greenhouse gas (GHG emission estimates due to deforestation in climate models. For REDD+ projects this leads to inaccurate carbon stock estimates and consequently to significantly wrong REDD+ based compensation payments.

  9. Modelling stand biomass fractions in Galician Eucalyptus globulus plantations by use of different LiDAR pulse densities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Ferreiro, E.; Miranda, D.; Barreiro-Fernandez, L.; Bujan, S.; Garcia-Gutierrez, J.; Dieguez-Aranda, U.

    2013-07-01

    Aims of study: To evaluate the potential use of canopy height and intensity distributions, determined by airborne LiDAR, for the estimation of crown, stem and aboveground biomass fractions. To assess the effects of a reduction in LiDAR pulse densities on model precision. Area of study: The study area is located in Galicia, NW Spain. The forests are representative of Eucalyptus globulus stands in NW Spain, characterized by low-intensity silvicultural treatments and by the presence of tall shrub. Material and methods: Linear, multiplicative power and exponential models were used to establish empirical relationships between field measurements and LiDAR metrics. A random selection of LiDAR returns and a comparison of the prediction errors by LiDAR pulse density factor were performed to study a possible loss of fit in these models. Main results: Models showed similar goodness-of-fit statistics to those reported in the international literature. R2 ranged from 0.52 to 0.75 for stand crown biomass, from 0.64 to 0.87 for stand stem biomass, and from 0.63 to 0.86 for stand aboveground biomass. The RMSE/MEAN 100 of the set of fitted models ranged from 17.4% to 28.4%. Models precision was essentially maintained when 87.5% of the original point cloud was reduced, i.e. a reduction from 4 pulses m{sup 2} to 0.5 pulses m{sup 2}. Research highlights: Considering the results of this study, the low-density LiDAR data that are released by the Spanish National Geographic Institute will be an excellent source of information for reducing the cost of forest inventories. (Author)

  10. Modeling Urban Growth Spatial Dynamics: Case studies of Addis Ababa and Dar es Salaam

    Science.gov (United States)

    Buchta, Katja; Abo El Wafa, Hany; Printz, Andreas; Pauleit, Stephan

    2013-04-01

    Rapid urbanization, and consequently, the dramatic spatial expansion of mostly informal urban areas increases the vulnerability of African cities to the effects of climate change such as sea level rise, more frequent flooding, droughts and heat waves. The EU FP 7 funded project CLUVA (Climate Change and Urban Vulnerability in Africa, www.cluva.eu) aims to develop strategies for minimizing the risks of natural hazards caused by climate change and to improve the coping capacity of African cities. Green infrastructure may play a particular role in climate change adaptation by providing ecosystem services for flood protection, stormwater retention, heat island moderation and provision of food and fuel wood. In this context, a major challenge is to gain a better understanding of the spatial and temporal dynamics of the cities and how these impact on green infrastructure and hence their vulnerability. Urban growth scenarios for two African cities, namely Addis Ababa, Ethiopia and Dar es Salaam, Tanzania, were developed based on a characterization of their urban morphology. A population growth driven - GIS based - disaggregation modeling approach was applied. Major impact factors influencing the urban dynamics were identified both from literature and interviews with local experts. Location based factors including proximity to road infrastructure and accessibility, and environmental factors including slope, surface and flood risk areas showed a particular impact on urban growth patterns. In Addis Ababa and Dar es Salaam, population density scenarios were modeled comparing two housing development strategies. Results showed that a densification scenario significantly decreases the loss of agricultural and green areas such as forests, bushland and sports grounds. In Dar es Salaam, the scenario of planned new settlements with a population density of max. 350 persons per hectare would lead until 2025 to a loss of agricultural land (-10.1%) and green areas (-6.6%). On the other

  11. Development and mapping of DArT markers within the Festuca - Lolium complex

    DEFF Research Database (Denmark)

    Kopecký, David; Bartos, Jan; Lukaszewski, Adam J

    2009-01-01

    Background Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex...... predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT) array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. Results The DAr...

  12. Aggregating pixel-level basal area predictions derived from LiDAR data to industrial forest stands in North-Central Idaho

    Science.gov (United States)

    Andrew T. Hudak; Jeffrey S. Evans; Nicholas L. Crookston; Michael J. Falkowski; Brant K. Steigers; Rob Taylor; Halli Hemingway

    2008-01-01

    Stand exams are the principal means by which timber companies monitor and manage their forested lands. Airborne LiDAR surveys sample forest stands at much finer spatial resolution and broader spatial extent than is practical on the ground. In this paper, we developed models that leverage spatially intensive and extensive LiDAR data and a stratified random sample of...

  13. Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data

    Science.gov (United States)

    Luo, Shezhou; Wang, Cheng; Xi, Xiaohuan; Pan, Feifei; Qian, Mingjie; Peng, Dailiang; Nie, Sheng; Qin, Haiming; Lin, Yi

    2017-06-01

    Wetland biomass is essential for monitoring the stability and productivity of wetland ecosystems. Conventional field methods to measure or estimate wetland biomass are accurate and reliable, but expensive, time consuming and labor intensive. This research explored the potential for estimating wetland reed biomass using a combination of airborne discrete-return Light Detection and Ranging (LiDAR) and hyperspectral data. To derive the optimal predictor variables of reed biomass, a range of LiDAR and hyperspectral metrics at different spatial scales were regressed against the field-observed biomasses. The results showed that the LiDAR-derived H_p99 (99th percentile of the LiDAR height) and hyperspectral-calculated modified soil-adjusted vegetation index (MSAVI) were the best metrics for estimating reed biomass using the single regression model. Although the LiDAR data yielded a higher estimation accuracy compared to the hyperspectral data, the combination of LiDAR and hyperspectral data produced a more accurate prediction model for reed biomass (R2 = 0.648, RMSE = 167.546 g/m2, RMSEr = 20.71%) than LiDAR data alone. Thus, combining LiDAR data with hyperspectral data has a great potential for improving the accuracy of aboveground biomass estimation.

  14. A comparison of accuracy and cost of LiDAR versus stand exam data for landscape management on the Malheur National Forest

    Science.gov (United States)

    Susan Hummel; A. T. Hudak; E. H. Uebler; M. J. Falkowski; K. A. Megown

    2011-01-01

    Foresters are increasingly interested in remote sensing data because they provide an overview of landscape conditions, which is impractical with field sample data alone. Light Detection and Ranging (LiDAR) provides exceptional spatial detail of forest structure, but difficulties in processing LiDAR data have limited their application beyond the research community....

  15. Fusion of LiDAR and aerial imagery for the estimation of downed tree volume using Support Vector Machines classification and region based object fitting

    Science.gov (United States)

    Selvarajan, Sowmya

    The study classifies 3D small footprint full waveform digitized LiDAR fused with aerial imagery to downed trees using Support Vector Machines (SVM) algorithm. Using small footprint waveform LiDAR, airborne LiDAR systems can provide better canopy penetration and very high spatial resolution. The small footprint waveform scanner system Riegl LMS-Q680 is addition with an UltraCamX aerial camera are used to measure and map downed trees in a forest. The various data preprocessing steps helped in the identification of ground points from the dense LiDAR dataset and segment the LiDAR data to help reduce the complexity of the algorithm. The haze filtering process helped to differentiate the spectral signatures of the various classes within the aerial image. Such processes, helped to better select the features from both sensor data. The six features: LiDAR height, LiDAR intensity, LiDAR echo, and three image intensities are utilized. To do so, LiDAR derived, aerial image derived and fused LiDAR-aerial image derived features are used to organize the data for the SVM hypothesis formulation. Several variations of the SVM algorithm with different kernels and soft margin parameter C are experimented. The algorithm is implemented to classify downed trees over a pine trees zone. The LiDAR derived features provided an overall accuracy of 98% of downed trees but with no classification error of 86%. The image derived features provided an overall accuracy of 65% and fusion derived features resulted in an overall accuracy of 88%. The results are observed to be stable and robust. The SVM accuracies were accompanied by high false alarm rates, with the LiDAR classification producing 58.45%, image classification producing 95.74% and finally the fused classification producing 93% false alarm rates The Canny edge correction filter helped control the LiDAR false alarm to 35.99%, image false alarm to 48.56% and fused false alarm to 37.69% The implemented classifiers provided a powerful tool for

  16. Analysis of diverse direct arylation polymerization (DArP) conditions toward the efficient synthesis of polymers converging with stille polymers in organic solar cells

    DEFF Research Database (Denmark)

    Livi, Francesco; Gobalasingham, Nemal S.; Thompson, Barry C.

    2016-01-01

    Despite the emergence of direct arylation polymerization (DArP) as an alternative method to traditional cross-coupling routes like Stille polymerization, the exploration of DArP polymers in practical applications like polymer solar cells (PSCs) is limited. DArP polymers tend to have a reputation...... for being marginally inferior to Stille counterparts due to the increased presence of defects that result from unwanted side reactions in direct arylation, such as unselective C-H bond activation and homocoupling. We report ten DArP protocols across the three major classes of DArP to generate poly[(2,5-bis...... was synthesized in superheated THF with Cs2CO3, neodecanoic acid, and P(o-anisyl)3, it generated polymers of exceptional quality that performed comparably to Stille counterparts in both roll coated ITO-free and spin-coated ITO devices....

  17. Ketal-Synthese mit Brønsted-aciden ionischen Flüssigkeiten als Katalysator in zweiphasigen Reaktionssystemen

    OpenAIRE

    Thomann, Michael

    2017-01-01

    In dieser Arbeit wurde ein neuartiges Verfahren zur Produktion von 2,2-Dimethoxypropan (DMP) aus Aceton und Methanol unter Verwendung von Brønsted-aciden ionischen Flüssigkeiten (BAILs) als Katalysator in einer flüssig-flüssig Zweiphasenreaktion entwickelt. Darüber hinaus wurde die Anwendung des neuartigen Zweiphasenprozesses in der Herstellung von Ketalen aus höhermolekularen linearen Ketonen, insbesondere 2-Butanon, und Methanol demonstriert. Im Unterschied zu bisher publizierten Verfahren ...

  18. eEcoLiDAR, eScience infrastructure for ecological applications of LiDAR point clouds : reconstructing the 3D ecosystem structure for animals at regional to continental scales

    NARCIS (Netherlands)

    Kissling, W.D.; Seijmonsbergen, A.C.; Foppen, R.P.B.; Bouten, W.

    2017-01-01

    The lack of high-resolution measurements of 3D ecosystem structure across broad spatial extents impedes major advancements in animal ecology and biodiversity science. We aim to fill this gap by using Light Detection and Ranging (LiDAR) technology to characterize the vertical and horizontal

  19. Dos visiones del espacio marino como modernidad. Entre la poesía de Rubén Darío y la pintura de Joaquín Sorolla

    Directory of Open Access Journals (Sweden)

    Acereda, Alberto

    2003-06-01

    Full Text Available The representation of the marine space in Hispanic fin-de-siècle allows us to establish some comments to carry out a new reading of the difficult concept of modernity. The present article studies two visions of the marine space as modernity. On the one hand, the paintings by the Spaniard Joaquin Sorolla present the marine space as a locus amoenus, and as a place for enjoyment where art becomes an economic object. On the other hand, the Nicaraguan poet Rubén Darío intented to create an art opposed to materialism, and he gave us a vision of the ocean linked to a metaphysical meditation of existential tones. Darío was familiar with Joaquin Sorolla's paintings and he even wrote short essays on them. This particular aspect allows us to prove in a clearer way the differences in their visions about modernity and art.La representación del espacio marino en el fin de siglo hispánico permite establecer algunas consideraciones que favorecen una nueva lectura sobre el difícil concepto de modernidad. El presente artículo estudia dos visiones del espacio marino como modernidad. Por un lado, la pintura del español Joaquín Sorolla percibe el espacio marino como locus amoenus y marco de diversión por el que el arte se convierte en un objeto económico. Por otro lado, el poeta nicaragüense Ruben Darío aspiró a un arte opuesto al materialismo y planteó una visión del mar ligada a una reflexión metafísica de signo existencial. Darío conoció la pintura de Joaquín Sorolla y hasta en algún caso realizó breves comentarios de ella. Esta particularidad nos permite probar de manera más clara las diferencias en sus visiones sobre la modernidad y el arte.

  20. Estimation of the fraction of absorbed photosynthetically active radiation (fPAR) in maize canopies using LiDAR data and hyperspectral imagery.

    Science.gov (United States)

    Qin, Haiming; Wang, Cheng; Zhao, Kaiguang; Xi, Xiaohuan

    2018-01-01

    Accurate estimation of the fraction of absorbed photosynthetically active radiation (fPAR) for maize canopies are important for maize growth monitoring and yield estimation. The goal of this study is to explore the potential of using airborne LiDAR and hyperspectral data to better estimate maize fPAR. This study focuses on estimating maize fPAR from (1) height and coverage metrics derived from airborne LiDAR point cloud data; (2) vegetation indices derived from hyperspectral imagery; and (3) a combination of these metrics. Pearson correlation analyses were conducted to evaluate the relationships among LiDAR metrics, hyperspectral metrics, and field-measured fPAR values. Then, multiple linear regression (MLR) models were developed using these metrics. Results showed that (1) LiDAR height and coverage metrics provided good explanatory power (i.e., R2 = 0.81); (2) hyperspectral vegetation indices provided moderate interpretability (i.e., R2 = 0.50); and (3) the combination of LiDAR metrics and hyperspectral metrics improved the LiDAR model (i.e., R2 = 0.88). These results indicate that LiDAR model seems to offer a reliable method for estimating maize fPAR at a high spatial resolution and it can be used for farmland management. Combining LiDAR and hyperspectral metrics led to better performance of maize fPAR estimation than LiDAR or hyperspectral metrics alone, which means that maize fPAR retrieval can benefit from the complementary nature of LiDAR-detected canopy structure characteristics and hyperspectral-captured vegetation spectral information.

  1. All About ALS

    Science.gov (United States)

    ... Subscribe August 2015 Print this issue All About ALS Understanding a Devastating Disorder En español Send us ... Sports Concussions Wise Choices How Can I Help ALS Research? If you have ALS, join the National ...

  2. Tree species classification using within crown localization of waveform LiDAR attributes

    Science.gov (United States)

    Blomley, Rosmarie; Hovi, Aarne; Weinmann, Martin; Hinz, Stefan; Korpela, Ilkka; Jutzi, Boris

    2017-11-01

    Since forest planning is increasingly taking an ecological, diversity-oriented perspective into account, remote sensing technologies are becoming ever more important in assessing existing resources with reduced manual effort. While the light detection and ranging (LiDAR) technology provides a good basis for predictions of tree height and biomass, tree species identification based on this type of data is particularly challenging in structurally heterogeneous forests. In this paper, we analyse existing approaches with respect to the geometrical scale of feature extraction (whole tree, within crown partitions or within laser footprint) and conclude that currently features are always extracted separately from the different scales. Since multi-scale approaches however have proven successful in other applications, we aim to utilize the within-tree-crown distribution of within-footprint signal characteristics as additional features. To do so, a spin image algorithm, originally devised for the extraction of 3D surface features in object recognition, is adapted. This algorithm relies on spinning an image plane around a defined axis, e.g. the tree stem, collecting the number of LiDAR returns or mean values of returns attributes per pixel as respective values. Based on this representation, spin image features are extracted that comprise only those components of highest variability among a given set of library trees. The relative performance and the combined improvement of these spin image features with respect to non-spatial statistical metrics of the waveform (WF) attributes are evaluated for the tree species classification of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and Silver/Downy birch (Betula pendula Roth/Betula pubescens Ehrh.) in a boreal forest environment. This evaluation is performed for two WF LiDAR datasets that differ in footprint size, pulse density at ground, laser wavelength and pulse width. Furthermore, we evaluate the

  3. Evaluating solar irradiance over facades in high building cities, based on LiDAR technology

    International Nuclear Information System (INIS)

    Martínez-Rubio, A.; Sanz-Adan, F.; Santamaría-Peña, J.; Martínez, Araceli

    2016-01-01

    Highlights: • A method for evaluating solar irradiance over façades in building cities with mutual shading. • It calculates irradiance curves in all building façades, using LiDAR and irradiance information. • Solar irradiation maps of the city buildings are really important for urban planning. • It allows to selection BIPV elements depending of the irradiation in each façade point. • The model can be extrapolated to all the building envelope. - Abstract: Arranging a solar irradiation map of the buildings of a city is a valuable tool for sustainable urban planning in regard to non-carbonized criteria in important applications. Such applications may include: selection of materials for the building envelope and insulation according to the irradiation received at each point; monitoring the installation of photovoltaic systems to ensure that they are located in the optimal irradiance zones; or building restoration to improve the energy efficiency and electric generation. The proposed method enables to estimate the incidence of the solar irradiance as well as to visualize the effect it produces in every region of the buildings that compose the urban area of a city. The process includes the use of Laser Imaging Detection and Ranging (LiDAR) information along with 5-min horizontal irradiance data. This developed algorithm has been verified through being applied to different building envelopes distributed in different geographical areas. The results demonstrate a satisfied performance which makes that the methodology can be extrapolated to any city where the LiDAR Data and irradiance information are available, permitting an accurate analysis of the solar irradiance over the building envelopes. The algorithm succeeds in obtaining a map of solar radiation captured by the envelope of any urban building that estimates the photovoltaic power generation depending on the geographic location and on the influence of shading caused by adjacent buildings. The provided

  4. How much does the time lag between wildlife field-data collection and LiDAR-data acquisition matter for studies of animal distributions? A case study using bird communities

    Science.gov (United States)

    Kerri T. Vierling; Charles E. Swift; Andrew T. Hudak; Jody C. Vogeler; Lee A. Vierling

    2014-01-01

    Vegetation structure quantified by light detection and ranging (LiDAR) can improve understanding of wildlife occupancy and species-richness patterns. However, there is often a time lag between the collection of LiDAR data and wildlife data. We investigated whether a time lag between the LiDAR acquisition and field-data acquisition affected mapped wildlife distributions...

  5. Reconstructing the Roman Site “Aquis Querquennis” (Bande, Spain from GPR, T-LiDAR and IRT Data Fusion

    Directory of Open Access Journals (Sweden)

    Iván Puente

    2018-03-01

    Full Text Available This work presents the three-dimensional (3D reconstruction of one of the most important archaeological sites in Galicia: “Aquis Querquennis” (Bande, Spain using in-situ non-invasive ground-penetrating radar (GPR and Terrestrial Light Detection and Ranging (T-LiDAR techniques, complemented with infrared thermography. T-LiDAR is used for the recording of the 3D surface of this particular case and provides high resolution 3D digital models. GPR data processing is performed through the novel software tool “toGPRi”, developed by the authors, which allows the creation of a 3D model of the sub-surface and the subsequent XY images or time-slices at different depths. All these products are georeferenced, in such a way that the GPR orthoimages can be combined with the orthoimages from the T-LiDAR for a complete interpretation of the site. In this way, the GPR technique allows for the detection of the structures of the barracks that are buried, and their distribution is completed with the structure measured by the T-LiDAR on the surface. In addition, the detection of buried elements made possible the identification and labelling of the structures of the surface and their uses. These structures are additionally inspected with infrared thermography (IRT to determine their conservation condition and distinguish between original and subsequent constructions.

  6. The Use of Three-Dimensional Convolutional Neural Networks to Interpret LiDAR for Forest Inventory

    Directory of Open Access Journals (Sweden)

    Elias Ayrey

    2018-04-01

    Full Text Available As light detection and ranging (LiDAR technology becomes more available, it has become common to use these datasets to generate remotely sensed forest inventories across landscapes. Traditional methods for generating these inventories employ the use of height and proportion metrics to measure LiDAR returns and relate these back to field data using predictive models. Here, we employ a three-dimensional convolutional neural network (CNN, a deep learning technique that scans the LiDAR data and automatically generates useful features for predicting forest attributes. We test the accuracy in estimating forest attributes using the three-dimensional implementations of different CNN models commonly used in the field of image recognition. Using the best performing model architecture, we compared CNN performance to models developed using traditional height metrics. The results of this comparison show that CNNs produced 12% less prediction error when estimating biomass, 6% less in estimating tree count, and 2% less when estimating the percentage of needleleaf trees. We conclude that using CNNs can be a more accurate means of interpreting LiDAR data for forest inventories compared to standard approaches.

  7. A Decade of Technology Enhanced Learning at the University of Dar es Salaam, Tanzania: Challenges, Achievements, and Opportunities

    Science.gov (United States)

    Mtebe, Joel S.; Raphael, Christina

    2017-01-01

    For a decade past, integration of technology in teaching and learning has been received with both apprehension and skeptism from academics and student majority at the University of Dar es Salaam (UDSM). The study recounts real, professional and practical experiences, challenges, and opportunities of integrating educational technologies using…

  8. Calculating the ecosystem service of water storage in isolated wetlands using LiDAR in north central Florida, USA (presentation)

    Science.gov (United States)

    This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We f...

  9. Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana.

    Science.gov (United States)

    Wittenberg, Alexander H J; van der Lee, Theo; Cayla, Cyril; Kilian, Andrzej; Visser, Richard G F; Schouten, Henk J

    2005-08-01

    Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F(2) population obtained from a Col x Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.

  10. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.

    Science.gov (United States)

    Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai

    2018-03-01

    With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.

  11. Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data

    Science.gov (United States)

    Carlos A. Silva; Andrew T. Hudak; Lee A. Vierling; E. Louise Loudermilk; Joseph J. O' Brien; J. Kevin Hiers; Steve B. Jack; Carlos Gonzalez-Benecke; Heezin Lee; Michael J. Falkowski; Anahita Khosravipour

    2016-01-01

    Light Detection and Ranging (LiDAR) has demonstrated potential for forest inventory at the individual-tree level. The aim in this study was to predict individual-tree height (Ht; m), basal area (BA; m2), and stem volume (V; m3...

  12. An historically consistent and broadly applicable MRV system based on LiDAR sampling and Landsat time-series

    Science.gov (United States)

    W. Cohen; H. Andersen; S. Healey; G. Moisen; T. Schroeder; C. Woodall; G. Domke; Z. Yang; S. Stehman; R. Kennedy; C. Woodcock; Z. Zhu; J. Vogelmann; D. Steinwand; C. Huang

    2014-01-01

    The authors are developing a REDD+ MRV system that tests different biomass estimation frameworks and components. Design-based inference from a costly fi eld plot network was compared to sampling with LiDAR strips and a smaller set of plots in combination with Landsat for disturbance monitoring. Biomass estimation uncertainties associated with these different data sets...

  13. Characterization and classification of vegetation canopy structure and distribution within the Great Smoky Mountains National Park using LiDAR

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jitendra [ORNL; HargroveJr., William Walter [United States Department of Agriculture (USDA), United States Forest Service (USFS); Norman, Steven P [United States Department of Agriculture (USDA), United States Forest Service (USFS); Hoffman, Forrest M [ORNL; Newcomb, Doug [U.S. Fish and Wildlife Service

    2015-01-01

    Vegetation canopy structure is a critically important habit characteristic for many threatened and endangered birds and other animal species, and it is key information needed by forest and wildlife managers for monitoring and managing forest resources, conservation planning and fostering biodiversity. Advances in Light Detection and Ranging (LiDAR) technologies have enabled remote sensing-based studies of vegetation canopies by capturing three-dimensional structures, yielding information not available in two-dimensional images of the landscape pro- vided by traditional multi-spectral remote sensing platforms. However, the large volume data sets produced by airborne LiDAR instruments pose a significant computational challenge, requiring algorithms to identify and analyze patterns of interest buried within LiDAR point clouds in a computationally efficient manner, utilizing state-of-art computing infrastructure. We developed and applied a computationally efficient approach to analyze a large volume of LiDAR data and to characterize and map the vegetation canopy structures for 139,859 hectares (540 sq. miles) in the Great Smoky Mountains National Park. This study helps improve our understanding of the distribution of vegetation and animal habitats in this extremely diverse ecosystem.

  14. A categorical, improper probability method for combining NDVI and LiDAR elevation information for potential cotton precision agricultural applications

    Science.gov (United States)

    An algorithm is presented to fuse the Normalized Difference Vegetation Index (NDVI) with Light Detection and Ranging (LiDAR) elevation data to produce a map potentially useful for the site-specific scouting and pest management of several insect pests. In cotton, these pests include the Tarnished Pl...

  15. Separation of Ground and Low Vegetation Signatures in LiDAR Measurements of Salt-Marsh Environments

    NARCIS (Netherlands)

    Wang, C.; Menenti, M.; Stoll, M.P.; Feola, A.; Belluco, E.; Marani, M.

    2009-01-01

    Light detection and ranging (LiDAR) has been shown to have a great potential in the accurate characterization of forest systems; however, its application to salt-marsh environments is challenging because the characteristic short vegetation does not give rise to detectable differences between first

  16. Mapping aboveground carbon stocks using LiDAR data in Eucalyptus spp. plantations in the state of Sao Paulo, Brazil

    Science.gov (United States)

    Carlos Alberto Silva; Carine Klauberg; Samuel de Padua Chaves e Carvalho; Andrew T. Hudak; e Luiz Carlos Estraviz. Rodriguez

    2014-01-01

    Fast growing plantation forests provide a low-cost means to sequester carbon for greenhouse gas abatement. The aim of this study was to evaluate airborne LiDAR (Light Detection And Ranging) to predict aboveground carbon (AGC) stocks in Eucalyptus spp. plantations. Biometric parameters (tree height (Ht) and diameter at breast height (DBH)) were collected from...

  17. Assessing Surface Fuel Hazard in Coastal Conifer Forests through the Use of LiDAR Remote Sensing

    Science.gov (United States)

    Koulas, Christos

    The research problem that this thesis seeks to examine is a method of predicting conventional fire hazards using data drawn from specific regions, namely the Sooke and Goldstream watershed regions in coastal British Columbia. This thesis investigates whether LiDAR data can be used to describe conventional forest stand fire hazard classes. Three objectives guided this thesis: to discuss the variables associated with fire hazard, specifically the distribution and makeup of fuel; to examine the relationship between derived LiDAR biometrics and forest attributes related to hazard assessment factors defined by the Capitol Regional District (CRD); and to assess the viability of the LiDAR biometric decision tree in the CRD based on current frameworks for use. The research method uses quantitative datasets to assess the optimal generalization of these types of fire hazard data through discriminant analysis. Findings illustrate significant LiDAR-derived data limitations, and reflect the literature in that flawed field application of data modelling techniques has led to a disconnect between the ways in which fire hazard models have been intended to be used by scholars and the ways in which they are used by those tasked with prevention of forest fires. It can be concluded that a significant trade-off exists between computational requirements for wildfire simulation models and the algorithms commonly used by field teams to apply these models with remote sensing data, and that CRD forest management practices would need to change to incorporate a decision tree model in order to decrease risk.

  18. Characterization and classification of vegetation canopy structure and distribution within the Great Smoky Mountains National Park using LiDAR

    Science.gov (United States)

    Jitendra Kumar; Jon Weiner; William W. Hargrove; Steve Norman; Forrest M. Hoffman; Doug Newcomb

    2016-01-01

    Vegetation canopy structure is a critically important habitat characteristic for many threatened and endangered birds and other animal species, and it is key information needed by forest and wildlife managers for monitoring and managing forest resources, conservation planning and fostering biodiversity. Advances in Light Detection and Ranging (LiDAR) technologies have...

  19. Occupational exposure and health problems in small-scale industry workers in Dar es Salaam, Tanzania: a situation analysis.

    NARCIS (Netherlands)

    Rongo, L.M.B.; Barten, F.J.M.H.; Msamanga, G.I.; Heederik, D.; Dolmans, W.M.V.

    2004-01-01

    BACKGROUND: Workers in informal small-scale industries (SSI) in developing countries involved in welding, spray painting, woodwork and metalwork are exposed to various hazards with consequent risk to health. Aim To assess occupational exposure and health problems in SSI in Dar es Salaam, Tanzania.

  20. 2011 U.S. Geological Survey (USGS) Alabama Topographic LiDAR: Baldwin County East and West

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — USGS Contract: G10PC00026 Task Order Number: G10PD02126 LiDAR was collected at a 2.0 meter nominal post spacing (2.0m GSD) for approximately 329 square miles of...

  1. 2013-2014 U.S. Geological Survey CMGP LiDAR: Post Sandy (MA, NH, RI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: New England CMGP Sandy Lidar LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD00796 Woolpert Order...

  2. Fine-spatial scale predictions of understory species using climate- and LiDAR-derived terrain and canopy metrics

    Science.gov (United States)

    Nijland, Wiebe; Nielsen, Scott E.; Coops, Nicholas C.; Wulder, Michael A.; Stenhouse, Gordon B.

    2014-01-01

    Food and habitat resources are critical components of wildlife management and conservation efforts. The grizzly bear (Ursus arctos) has diverse diets and habitat requirements particularly for understory plant species, which are impacted by human developments and forest management activities. We use light detection and ranging (LiDAR) data to predict the occurrence of 14 understory plant species relevant to bear forage and compare our predictions with more conventional climate- and land cover-based models. We use boosted regression trees to model each of the 14 understory species across 4435 km2 using occurrence (presence-absence) data from 1941 field plots. Three sets of models were fitted: climate only, climate and basic land and forest covers from Landsat 30-m imagery, and a climate- and LiDAR-derived model describing both the terrain and forest canopy. Resulting model accuracies varied widely among species. Overall, 8 of 14 species models were improved by including the LiDAR-derived variables. For climate-only models, mean annual precipitation and frost-free periods were the most important variables. With inclusion of LiDAR-derived attributes, depth-to-water table, terrain-intercepted annual radiation, and elevation were most often selected. This suggests that fine-scale terrain conditions affect the distribution of the studied species more than canopy conditions.

  3. Geometric Calibration and Radiometric Correction of LiDAR Data and Their Impact on the Quality of Derived Products

    Directory of Open Access Journals (Sweden)

    Wai-Yeung Yan

    2011-09-01

    Full Text Available LiDAR (Light Detection And Ranging systems are capable of providing 3D positional and spectral information (in the utilized spectrum range of the mapped surface. Due to systematic errors in the system parameters and measurements, LiDAR systems require geometric calibration and radiometric correction of the intensity data in order to maximize the benefit from the collected positional and spectral information. This paper presents a practical approach for the geometric calibration of LiDAR systems and radiometric correction of collected intensity data while investigating their impact on the quality of the derived products. The proposed approach includes the use of a quasi-rigorous geometric calibration and the radar equation for the radiometric correction of intensity data. The proposed quasi-rigorous calibration procedure requires time-tagged point cloud and trajectory position data, which are available to most of the data users. The paper presents a methodology for evaluating the impact of the geometric calibration on the relative and absolute accuracy of the LiDAR point cloud. Furthermore, the impact of the geometric calibration and radiometric correction on land cover classification accuracy is investigated. The feasibility of the proposed methods and their impact on the derived products are demonstrated through experimental results using real data.

  4. A comparison of forest height prediction from FIA field measurement and LiDAR data via spatial models

    Science.gov (United States)

    Yuzhen Li

    2009-01-01

    Previous studies have shown a high correspondence between tree height measurements acquired from airborne LiDAR and that those measured using conventional field techniques. Though these results are very promising, most of the studies were conducted over small experimental areas and tree height was measured carefully or using expensive instruments in the field, which is...

  5. Computing Risk to West Coast Intertidal Rocky Habitat due to Sea Level Rise using LiDAR Topobathy

    Science.gov (United States)

    Compared to marshes, little information is available on the potential for rocky intertidal habitats to migrate upward in response to sea level rise (SLR). To address this gap, we utilized topobathy LiDAR digital elevation models (DEMs) downloaded from NOAA’s Digital Coast G...

  6. DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects

    Directory of Open Access Journals (Sweden)

    Maneesh Sharma

    2010-11-01

    Full Text Available Topography and land cover characteristics can have significant effects on infiltration, runoff, and erosion processes on watersheds. The ability to model the timing and routing of surface water and erosion is affected by the resolution of the digital elevation model (DEM. High resolution ground-based Light Detecting and Ranging (LiDAR technology can be used to collect detailed topographic and land cover characteristic data. In this study, a method was developed to remove vegetation from ground-based LiDAR data to create high resolution DEMs. Research was conducted on intensively studied rainfall–runoff plots on the USDA-ARS Walnut Gulch Experimental Watershed in Southeast Arizona. LiDAR data were used to generate 1 cm resolution digital surface models (DSM for 5 plots. DSMs created directly from LiDAR data contain non-surface objects such as vegetation cover. A vegetation removal method was developed which used a slope threshold and a focal mean filter method to remove vegetation and create bare earth DEMs. The method was validated on a synthetic plot, where rocks and vegetation were added incrementally. Results of the validation showed a vertical error of ±7.5 mm in the final DEM.

  7. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

    Science.gov (United States)

    Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey

    2011-01-01

    Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...

  8. Development of a LiDAR derived digital elevation model (DEM) as Input to a METRANS geographic information system (GIS).

    Science.gov (United States)

    2011-05-01

    This report describes an assessment of digital elevation models (DEMs) derived from : LiDAR data for a subset of the Ports of Los Angeles and Long Beach. A methodology : based on Monte Carlo simulation was applied to investigate the accuracy of DEMs ...

  9. Testing the Suitability of a Terrestrial 2D LiDAR Scanner for Canopy Characterization of Greenhouse Tomato Crops

    Directory of Open Access Journals (Sweden)

    Jordi Llop

    2016-09-01

    Full Text Available Canopy characterization is essential for pesticide dosage adjustment according to vegetation volume and density. It is especially important for fresh exportable vegetables like greenhouse tomatoes. These plants are thin and tall and are planted in pairs, which makes their characterization with electronic methods difficult. Therefore, the accuracy of the terrestrial 2D LiDAR sensor is evaluated for determining canopy parameters related to volume and density and established useful correlations between manual and electronic parameters for leaf area estimation. Experiments were performed in three commercial tomato greenhouses with a paired plantation system. In the electronic characterization, a LiDAR sensor scanned the plant pairs from both sides. The canopy height, canopy width, canopy volume, and leaf area were obtained. From these, other important parameters were calculated, like the tree row volume, leaf wall area, leaf area index, and leaf area density. Manual measurements were found to overestimate the parameters compared with the LiDAR sensor. The canopy volume estimated with the scanner was found to be reliable for estimating the canopy height, volume, and density. Moreover, the LiDAR scanner could assess the high variability in canopy density along rows and hence is an important tool for generating canopy maps.

  10. Effects of LiDAR point density and landscape context on the retrieval of urban forest biomass

    Science.gov (United States)

    Singh, K. K.; Chen, G.; McCarter, J. B.; Meentemeyer, R. K.

    2014-12-01

    Light Detection and Ranging (LiDAR), as an alternative to conventional optical remote sensing, is being increasingly used to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and better data accuracies, which however pose challenges to the procurement and processing of LiDAR data for large-area assessments. Reducing point density cuts data acquisition costs and overcome computational challenges for broad-scale forest management. However, how does that impact the accuracy of biomass estimation in an urban environment containing a great level of anthropogenic disturbances? The main goal of this study is to evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing regions of Charlotte, North Carolina, USA. We used multiple linear regression to establish the statistical relationship between field-measured biomass and predictor variables (PVs) derived from LiDAR point clouds with varying densities. We compared the estimation accuracies between the general Urban Forest models (no discrimination of forest type) and the Forest Type models (evergreen, deciduous, and mixed), which was followed by quantifying the degree to which landscape context influenced biomass estimation. The explained biomass variance of Urban Forest models, adjusted R2, was fairly consistent across the reduced point densities with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models using two representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, signifying the distance impact of development on biomass estimation. Our evaluation

  11. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.

    Science.gov (United States)

    Jimenez-Berni, Jose A; Deery, David M; Rozas-Larraondo, Pablo; Condon, Anthony Tony G; Rebetzke, Greg J; James, Richard A; Bovill, William D; Furbank, Robert T; Sirault, Xavier R R

    2018-01-01

    Crop improvement efforts are targeting increased above-ground biomass and radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height contribute to biomass production, but manual measurements of these traits, and in particular above-ground biomass, are slow and labor-intensive, more so when made at multiple developmental stages. These constraints limit the ability to capture these data in a temporal fashion, hampering insights that could be gained from multi-dimensional data. Here we demonstrate the capacity of Light Detection and Ranging (LiDAR), mounted on a lightweight, mobile, ground-based platform, for rapid multi-temporal and non-destructive estimation of canopy height, ground cover and above-ground biomass. Field validation of LiDAR measurements is presented. For canopy height, strong relationships with LiDAR ( r 2 of 0.99 and root mean square error of 0.017 m) were obtained. Ground cover was estimated from LiDAR using two methodologies: red reflectance image and canopy height. In contrast to NDVI, LiDAR was not affected by saturation at high ground cover, and the comparison of both LiDAR methodologies showed strong association ( r 2 = 0.92 and slope = 1.02) at ground cover above 0.8. For above-ground biomass, a dedicated field experiment was performed with destructive biomass sampled eight times across different developmental stages. Two methodologies are presented for the estimation of biomass from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). The parameters involved in the calculation of 3DVI and 3DPI were optimized for each sample event from tillering to maturity, as well as generalized for any developmental stage. Individual sample point predictions were strong while predictions across all eight sample events, provided the strongest association with biomass ( r 2 = 0.93 and r 2 = 0.92) for 3DPI and 3DVI, respectively. Given these results, we believe that application of this system will provide new

  12. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR.

    Science.gov (United States)

    Gordon, Christopher E; Price, Owen F; Tasker, Elizabeth M

    2017-07-01

    There is a public perception that large high-severity wildfires decrease biodiversity and increase fire hazard by homogenizing vegetation composition and increasing the cover of mid-story vegetation. But a growing literature suggests that vegetation responses are nuanced. LiDAR technology provides a promising remote sensing tool to test hypotheses about post-fire vegetation regrowth because vegetation cover can be quantified within different height strata at fine scales over large areas. We assess the usefulness of airborne LiDAR data for measuring post-fire mid-story vegetation regrowth over a range of spatial resolutions (10 × 10 m, 30 × 30 m, 50 × 50 m, 100 × 100 m cell size) and investigate the effect of fire severity on regrowth amount and spatial pattern following a mixed severity wildfire in Warrumbungle National Park, Australia. We predicted that recovery would be more vigorous in areas of high fire severity, because park managers observed dense post-fire regrowth in these areas. Moderate to strong positive associations were observed between LiDAR and field surveys of mid-story vegetation cover between 0.5-3.0 m. Thus our LiDAR survey was an apt representation of on-ground vegetation cover. LiDAR-derived mid-story vegetation cover was 22-40% lower in areas of low and moderate than high fire severity. Linear mixed-effects models showed that fire severity was among the strongest biophysical predictors of mid-story vegetation cover irrespective of spatial resolution. However much of the variance associated with these models was unexplained, presumably because soil seed banks varied at finer scales than our LiDAR maps. Dense patches of mid-story vegetation regrowth were small (median size 0.01 ha) and evenly distributed between areas of low, moderate and high fire severity, demonstrating that high-severity fires do not homogenize vegetation cover. Our results are relevant for ecosystem conservation and fire management because they: indicate

  13. Storage, Collection and Disposal of Kariakoo Market Wastes in Dar Es Salaam, Tanzania

    DEFF Research Database (Denmark)

    Yhdego, Michael

    1992-01-01

    waste management in Kariakoo market, Dar es Salaam. The main problems identified were poor market design and lack of a well organized waste storage, collection and disposal systems. Two-thirds of the waste consists of vegetable matter. Proposals for improved design of storage and collection facilities......In many developing countries, the market is still the most important source of commerce for traders and provisions for the general public. The transmission of disease in the market place involves factors relating to the host, the agent and the environment. This study examines the quality of solid...... are described. Experiments revealed wastes from the market are readily decomposable by composting. A change in the design of covered markets and improvements in waste handling are essential to reduce the potential health hazards in developing countries....

  14. A Denoising Method for LiDAR Full-Waveform Data

    Directory of Open Access Journals (Sweden)

    Xudong Lai

    2015-01-01

    Full Text Available Decomposition of LiDAR full-waveform data can not only enhance the density and positioning accuracy of a point cloud, but also provide other useful parameters, such as pulse width, peak amplitude, and peak position which are important information for subsequent processing. Full-waveform data usually contain some random noises. Traditional filtering algorithms always cause distortion in the waveform. λ/μ filtering algorithm is based on Mean Shift method. It can smooth the signal iteratively and will not cause any distortion in the waveform. In this paper, an improved λ/μ filtering algorithm is proposed, and several experiments on both simulated waveform data and real waveform data are implemented to prove the effectiveness of the proposed algorithm.

  15. Acceptance of contraceptives among women who had an unsafe abortion in Dar es Salaam

    DEFF Research Database (Denmark)

    Rasch, Vibeke; Massawe, Siriel; Yambesi, Fortunata

    2004-01-01

    . Of these, 86% stated they were still using contraception 1-6 months after discharge. Initially, 55% of the women accepted to use condoms either alone or as part of double protection. After 1-6 months this proportion had dropped to 18%. Single women were significantly more likely to use condoms. CONCLUSION......OBJECTIVE: To assess the need for post-abortion contraception and to determine if women who had an unsafe abortion will use a contraceptive method to avoid repeated unwanted pregnancies and STDs/HIV. METHOD: Women attending Temeke Municipal Hospital, Dar es Salaam, after an unsafe abortion...... or an induced abortion performed at the hospital (n=788) were counselled about contraception and the risk of contracting STDs/HIV. A free ward-based contraceptive service was offered and the women were asked to return for follow-up. RESULTS: Participants (90%) accepted the post-abortion contraceptive service...

  16. A Three Tier Architecture Applied to LiDAR Processing and Monitoring

    Directory of Open Access Journals (Sweden)

    Efrat Jaeger-Frank

    2006-01-01

    Full Text Available Emerging Grid technologies enable solving scientific problems that involve large datasets and complex analyses, which in the past were often considered difficult to solve. Coordinating distributed Grid resources and computational processes requires adaptable interfaces and tools that provide modularized and configurable environments for accessing Grid clusters and executing high performance computational tasks. Computationally intensive processes are also subject to a high risk of component failures and thus require close monitoring. In this paper we describe a scientific workflow approach to coordinate various resources via data analysis pipelines. We present a three tier architecture for LiDAR interpolation and analysis, a high performance processing of point intensive datasets, utilizing a portal, a scientific workflow engine and Grid technologies. Our proposed solution is available to the community in a unified framework through a shared cyberinfrastructure, the GEON portal, enabling scientists to focus on their scientific work and not be concerned with the implementation of the underlying infrastructure.

  17. A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data

    Science.gov (United States)

    Chen, Chuanfa; Li, Yanyan; Li, Wei; Dai, Honglei

    2013-08-01

    We presented a multiresolution hierarchical classification (MHC) algorithm for differentiating ground from non-ground LiDAR point cloud based on point residuals from the interpolated raster surface. MHC includes three levels of hierarchy, with the simultaneous increase of cell resolution and residual threshold from the low to the high level of the hierarchy. At each level, the surface is iteratively interpolated towards the ground using thin plate spline (TPS) until no ground points are classified, and the classified ground points are used to update the surface in the next iteration. 15 groups of benchmark dataset, provided by the International Society for Photogrammetry and Remote Sensing (ISPRS) commission, were used to compare the performance of MHC with those of the 17 other publicized filtering methods. Results indicated that MHC with the average total error and average Cohen’s kappa coefficient of 4.11% and 86.27% performs better than all other filtering methods.

  18. Climate change induced risk analysis of Dar es Salaam city (Tanzania)

    Science.gov (United States)

    Topa, Maria Elena; Herslund, Lise; Cavan, Gina; Printz, Andreas; Simonis, Ingo; Bucchignani, Edoardo; Jean-Baptiste, Nathalie; Hellevik, Siri; Johns, Regina; Kibassa, Deusdedit; Kweka, Clara; Magina, Fredrick; Mangula, Alpha; Mbuya, Elinorata; Uhinga, Guido; Kassenga, Gabriel; Kyessi, Alphonce; Shemdoe, Riziki; Kombe, Wilbard

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. The main objective of CLUVA is to develop context-centered methods and knowledge to be applied to African cities to assess vulnerabilities and increase knowledge on managing climate related risks. The project estimates the impacts of climate changes in the next 40 years at urban scale and downscales IPCC climate projections to evaluate specific threats to selected African test cities. These are mainly from floods, sea-level rise, droughts, heat waves, and desertification. The project evaluates and links: social vulnerability; urban green structures and ecosystem services; urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. The multi-scale and multi-disciplinary qualitative, quantitative and probabilistic approach of CLUVA is currently being applied to selected African test cities (Addis Ababa - Ethiopia; Dar es Salaam - Tanzania; Douala - Cameroun; Ouagadougou - Burkina Faso; St. Louis - Senegal). In particular, the poster will present preliminary findings for the Dar es Salaam case study. Dar es Salaam, which is Tanzania's largest coastal city, is exposed to floods, coastal erosion, droughts and heat waves, and highly vulnerable to impacts as a result of ineffective urban planning (about 70% unplanned settlements), poverty and lack of basic infrastructure (e.g. lack of or poor quality storm water drainage systems). Climate change could exacerbate the current situation increasing hazard-exposure alongside the impacts of development pressures which act to increase urban vulnerability for example because of informal (unregulated) urbanization. The CLUVA research team - composed of climate and environmental scientists, risk management experts, urban planners and social scientists from both European and African institutions - has

  19. Automatically Generated Vegetation Density Maps with LiDAR Survey for Orienteering Purpose

    Science.gov (United States)

    Petrovič, Dušan

    2018-05-01

    The focus of our research was to automatically generate the most adequate vegetation density maps for orienteering purpose. Application Karttapullatuin was used for automated generation of vegetation density maps, which requires LiDAR data to process an automatically generated map. A part of the orienteering map in the area of Kazlje-Tomaj was used to compare the graphical display of vegetation density. With different settings of parameters in the Karttapullautin application we changed the way how vegetation density of automatically generated map was presented, and tried to match it as much as possible with the orienteering map of Kazlje-Tomaj. Comparing more created maps of vegetation density the most suitable parameter settings to automatically generate maps on other areas were proposed, too.

  20. Bilevel Optimization for Scene Segmentation of LiDAR Point Cloud

    Directory of Open Access Journals (Sweden)

    LI Minglei

    2018-02-01

    Full Text Available The segmentation of point clouds obtained by light detection and ranging (LiDAR systems is a critical step for many tasks,such as data organization,reconstruction and information extraction.In this paper,we propose a bilevel progressive optimization algorithm based on the local differentiability.First,we define the topological relation and distance metric of points in the framework of Riemannian geometry,and in the point-based level using k-means method generates over-segmentation results,e.g.super voxels.Then these voxels are formulated as nodes which consist a minimal spanning tree.High level features are extracted from voxel structures,and a graph-based optimization method is designed to yield the final adaptive segmentation results.The implementation experiments on real data demonstrate that our method is efficient and superior to state-of-the-art methods.

  1. Interpersonal Conflicts and Styles of Managing Conflicts among Students at Bahir Dar University, Ethiopia

    Directory of Open Access Journals (Sweden)

    Arega Bazezew

    2017-07-01

    Full Text Available Interpersonal conflict happens everywhere and at any time and is inherent in all societies. However, the methods of managing such metamorphoses are quite different from one organisation to the other. The general objective of the study was to assess interpersonal conflicts and styles of managing conflicts among students at Bahir Dar University. Mixed-methods research composed of quantitative and qualitative approaches was implemented for the study. One‑way Multivariate Analysis of Variance was employed to identify the interaction effect between dependent and independent variables. The study showed that the major sources of conflicts were ethnic differences, religious diversity, sexual abuse, theft and insulting. It was also noted that compromising, avoiding and collaborating were frequently used conflict management styles between students. It is recommended that university leaders and students be expected to understand the real causes of conflicts for healthier management styles.

  2. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    Science.gov (United States)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  3. How integrating 3D LiDAR data in the dike surveillance protocol: The French case

    Science.gov (United States)

    Bretar, F.; Mériaux, P.; Fauchard, C.

    2012-04-01

    carried out. A LiDAR system is able to acquire data on a dike structure of up to 80 km per day, which makes the use of this technique also valuable in case of emergency situations. It provides additional valuable products like precious information on dike slopes and crest or their near environment (river banks, etc.). Moreover, in case of vegetation, LiDAR data makes possible to study hidden structures or defaults from images like the erosion of riverbanks under forestry vegetation. The possibility of studying the vegetation is also of high importance: the development of woody vegetation near or onto the dike is a major risk factor. Surface singularities are often signs of disorder or suspected disorder in the dike itself: for example a subsidence or a sinkhole on a ridge may result from internal erosion collapse. Finally, high resolution topographic data contribute to build specific geomechanical model of the dike that, after incorporating data provided by geophysical and geotechnical surveys, are integrated in the calculations of the structure stability. Integrating the regular use of LiDAR data in the dike surveillance protocol is not yet operational in France. However, the high number of French stakeholders at the national level (on average, there is one stakeholder for only 8-9km of dike !) and the real added value of LiDAR data makes a spatial data infrastructure valuable (webservices for processing the data, consulting and filling the database on the field when performing the local diagnosis)

  4. Tropical Airborne LiDAR for Landslide Assessment in Malaysia: a technical perspective

    Science.gov (United States)

    Abd Manap, Mohamad; Azhari Razak, Khamarrul; Mohamad, Zakaria; Ahmad, Azhari; Ahmad, Ferdaus; Mohamad Zin, Mazlan; A'zad Rosle, Qalam

    2015-04-01

    Malaysia has faced a substantial number of landslide events every year. Cameron Highlands, Pahang is one of the badly areas affected by slope failures characterized by extreme climate, rugged topographic and weathered geological structures in a tropical environment. A high frequency of landslide occurrence in the hilly areas is predominantly due to the geological materials, tropical monsoon seasons and uncontrolled agricultural activities. Therefore the Government of Malaysia through the Prime Minister Department has allocated a special budget to conduct national level hazard and risk mapping project through Minerals and Geoscience Department Malaysia, the Ministry of Natural Resources and Environment. The primary aim of this project is to provide slope hazard risk information for a better slope management in Malaysia. In addition this project will establish national infrastructure for geospatial information on the geological terrain and slope by emphasizing the disaster risk throughout the country. The areas of interest are located in the three different selected areas i.e. Cameron Highlands (275 square kilometers), Ipoh (200 square kilometers) and Cheras Kajang -- Batang kali (650 square kilometers). These areas are selected based on National Slope Master Plan (2009 -- 2023) that endorsed by Malaysia Government Cabinet. The national hazard and risk mapping project includes six parts of major tasks: (1) desk study and mobilization, (2) airborne LiDAR data acquisition and analysis, (3) field data acquisition and verification, (4) hazard and risk for natural terrain, (5) hazard and risk analysis for man-made slope and (6) Man-made slope mitigation/preventive measures. The project was authorized in September, 2014 and will be ended in March, 2016. In this paper, the main focus is to evaluate the suitability of integrated capability of airborne- and terrestrial LiDAR data acquisition and analysis, and also digital photography for regional landslide assessment. The

  5. Joint Temperature-Lasing Mode Compensation for Time-of-Flight LiDAR Sensors

    Directory of Open Access Journals (Sweden)

    Anas Alhashimi

    2015-12-01

    Full Text Available We propose an expectation maximization (EM strategy for improving the precision of time of flight (ToF light detection and ranging (LiDAR scanners. The novel algorithm statistically accounts not only for the bias induced by temperature changes in the laser diode, but also for the multi-modality of the measurement noises that is induced by mode-hopping effects. Instrumental to the proposed EM algorithm, we also describe a general thermal dynamics model that can be learned either from just input-output data or from a combination of simple temperature experiments and information from the laser’s datasheet. We test the strategy on a SICK LMS 200 device and improve its average absolute error by a factor of three.

  6. Quantification of tidal inlet morphodynamics using high-resolution MBES and LiDAR

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Lefebvre, Alice; Fraccascia, Serena

    -bathymetric surveys using high-resolution red and green Light Detection And Ranging (LiDAR). Detailed digital elevation models with a grid cell size of 1 m x 1 m were generated and analysed geomorphometrically. The analyses reveal a main ebb-directed net sand transport in the main channel; however, due...... to the geometry of the main channel, displaying a confluent meander bend, confined areas in the main channel are characterised by an opposite-directed net sand transport. In the inter-tidal areas the main net sand transport is flood-directed. However, also here the analyses reveal the existence of oblique second...... is transported from the inlet channel to the intertidal flat. Therefore, in addition to the typical main sand transport directions with net export in the inlet channel and net import over the adjacent inter-tidal flats, these investigations suggest an exchange and possible recirculation of sand between the inlet...

  7. Determinants of High Blood Pressure and Barriers to Diagnosis and Treatment in Dar es Salaam, Tanzania

    Science.gov (United States)

    ZACK, Rachel M.; IREMA, Kahema; KAZONDA, Patrick; LEYNA, Germana H.; LIU, Enju; SPIEGELMAN, Donna; FAWZI, Wafaie; NJELEKELA, Marina; KILLEWO, Japhet; DANAEI, Goodarz

    2017-01-01

    Objectives We assessed prevalence and determinants of high blood pressure, and barriers to diagnosis and treatment, in Dar es Salaam, Tanzania. Methods We surveyed and screened 2,174 community-dwelling adults aged ≥40 years in 2014 and conducted a follow-up after one year. Results Median blood pressure was 131/81 mmHg and hypertension prevalence was 37%. Mean adjusted difference in SBP was 4.0 mmHg for overweight, 6.3 mmHg for obese class I, and 10.5 mmHg for obese class II/III compared with normal weight participants. Those who were physically inactive had 4.8 mmHg higher SBP compared to those with more than 24 hours of moderate or vigorous activity per week. Drinkers of at least 10 grams of alcohol per day had 4.5 mmHg higher SBP than did non-drinkers. Among hypertensives, 48% were diagnosed, 22% were treated, and 10% were controlled. Hypertensives without health insurance were 12% less likely to be diagnosed than insured hypertensives. Of referred participants, 68% sought care, but only 27% were on treatment and 8% had controlled blood pressure at follow-up. Reasons for not seeking care included lack of symptoms, cost of visit, and lack of time. Reasons for not being on treatment included lack of symptoms, not being prescribed treatment, and having finished one course of treatment. Conclusions Major risk factors for hypertension in Dar es Salaam are overweight, obesity, inadequate physical activity, and limited access to quality medical care. Increased insurance coverage and community-based screening, along with quality medical care and patient education, may help control this burgeoning epidemic. PMID:27648720

  8. A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas

    Directory of Open Access Journals (Sweden)

    Matsumoto Takashi

    2010-04-01

    Full Text Available Abstract Background The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents. Results An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin. Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7% deviated (p Conclusions We propose a synthetic map with 11 linkage groups containing 489 markers (167 SSRs and 322 DArTs covering 1197 cM. This first saturated map is proposed as a "reference Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker

  9. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Science.gov (United States)

    Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.

  10. Coastal change analysis of Lovells Island using high resolution ground based LiDAR imagery

    Science.gov (United States)

    Ly, Jennifer K.

    Many methods have been employed to study coastline change. These methods range from historical map analysis to GPS surveys to modern airborne LiDAR and satellite imagery. These previously used methods can be time consuming, labor intensive, and expensive and have varying degrees of accuracy and temporal coverage. Additionally, it is often difficult to apply such techniques in direct response to an isolated event within an appropriate temporal framework. Here we utilize a new ground based Canopy Biomass LiDAR (CBL) system built at The University of Massachusetts Boston (in collaboration with the Rochester Institute of Technology) in order to identify and analyze coastal change on Lovells Island, Boston Harbor. Surveys of a bluff developing in an eroding drumlin and beach cusps on a high-energy cobble beach on Lovells Island were conducted in June, September and December of 2013. At each site for each survey, the CBL was set up and multiple scans of each feature were taken on a predetermined transect that was established parallel to the high-water mark at distances relative to the scale of the bluff and cusps. The scans from each feature were compiled, integrated and visualized using Meshlab. Results from our surveys indicate that the highly portable and easy to deploy CBL system produces images of exceptional clarity, with the capacity to resolve small-scale changes to coastal features and systems. The CBL, while still under development (and coastal surveying protocols with it are just being established), appears to be an ideal tool for analyzing coastal geological features and is anticipated to prove to be a useful tool for the observation and analysis of coastal change. Furthermore, there is significant potential for utilizing the low cost ultra-portable CBL in frequent deployments to develop small-scale erosion rate and sediment budget analyses.

  11. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    Science.gov (United States)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-01-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  12. A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas.

    Science.gov (United States)

    Hippolyte, Isabelle; Bakry, Frederic; Seguin, Marc; Gardes, Laetitia; Rivallan, Ronan; Risterucci, Ange-Marie; Jenny, Christophe; Perrier, Xavier; Carreel, Françoise; Argout, Xavier; Piffanelli, Pietro; Khan, Imtiaz A; Miller, Robert N G; Pappas, Georgios J; Mbéguié-A-Mbéguié, Didier; Matsumoto, Takashi; De Bernardinis, Veronique; Huttner, Eric; Kilian, Andrzej; Baurens, Franc-Christophe; D'Hont, Angélique; Cote, François; Courtois, Brigitte; Glaszmann, Jean-Christophe

    2010-04-13

    The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana) in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents. An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin). Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7%) deviated (p DArTs) covering 1197 cM. This first saturated map is proposed as a "reference Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker segregation.

  13. Elevated blood pressure among primary school children in Dar es salaam, Tanzania: prevalence and risk factors.

    Science.gov (United States)

    Muhihi, Alfa J; Njelekela, Marina A; Mpembeni, Rose N M; Muhihi, Bikolimana G; Anaeli, Amani; Chillo, Omary; Kubhoja, Sulende; Lujani, Benjamin; Maghembe, Mwanamkuu; Ngarashi, Davis

    2018-02-13

    Whilst the burden of non-communicable diseases is increasing in developing countries, little data is available on blood pressure among Tanzanian children. This study aimed at determining the blood pressure profiles and risk factors associated with elevated blood pressure among primary school children in Dar es Salaam, Tanzania. We conducted a cross sectional survey among 446 children aged 6-17 years from 9 randomly selected primary schools in Dar es Salaam. We measured blood pressure using a standardized digital blood pressure measuring machine (Omron Digital HEM-907, Tokyo, Japan). We used an average of the three blood pressure readings for analysis. Elevated blood pressure was defined as average systolic or diastolic blood pressure ≥ 90th percentile for age, gender and height. The proportion of children with elevated blood pressure was 15.2% (pre-hypertension 4.4% and hypertension 10.8%). No significant gender differences were observed in the prevalence of elevated BP. Increasing age and overweight/obese children were significantly associated with elevated BP (p = 0.0029 and p < 0.0001) respectively. Similar associations were observed for age and overweight/obesity with hypertension. (p = 0.0506 and p < 0.0001) respectively. In multivariate analysis, age above 10 years (adjusted RR = 3.63, 95% CI = 1.03-7.82) was significantly and independently associated with elevated BP in this population of school age children. We observed a higher proportion of elevated BP in this population of school age children. Older age and overweight/obesity were associated with elevated BP. Assessment of BP and BMI should be incorporated in school health program in Tanzania to identify those at risk so that appropriate interventions can be instituted before development of associated complications.

  14. TREE CANOPY COVER MAPPING USING LiDAR IN URBAN BARANGAYS OF CEBU CITY, CENTRAL PHILIPPINES

    Directory of Open Access Journals (Sweden)

    J. A. Ejares

    2016-06-01

    Full Text Available This paper investigates tree canopy cover mapping of urban barangays (smallest administrative division in the Philippines in Cebu City using LiDAR (Light Detection and Ranging. Object-Based Image Analysis (OBIA was used to extract tree canopy cover. Multi-resolution segmentation and a series of assign-class algorithm in eCognition software was also performed to extract different land features. Contextual features of tree canopies such as height, area, roundness, slope, length-width and elliptic fit were also evaluated. The results showed that at the time the LiDAR data was collected (June 24, 2014, the tree cover was around 25.11 % (or 15,674,341.8 m2 of the city’s urban barangays (or 62,426,064.6 m2. Among all urban barangays in Cebu City, Barangay Busay had the highest cover (55.79 % while barangay Suba had the lowest (0.8 %. The 16 barangays with less than 10 % tree cover were generally located in the coastal area, presumably due to accelerated urbanization. Thirty-one barangays have tree cover ranging from 10.59–-27.3 %. Only 3 barangays (i.e., Lahug, Talamban, and Busay have tree cover greater than 30 %. The overall accuracy of the analysis was 96.6 % with the Kappa Index of Agreement or KIA of 0.9. From the study, a grouping can be made of the city’s urban barangays with regards to tree cover. The grouping will be useful to urban planners not only in allocating budget to the tree planting program of the city but also in planning and creation of urban parks and playgrounds.

  15. Determinants of condom use among antenatal clinic attendees in Dar es Salaam, Tanzania.

    Science.gov (United States)

    Msamanga, Gernard; Tchetgen, Eric; Spiegelman, Donna; Fawzi, Mary Kay Smith; Kaaya, Sylvia; Urassa, Willy; Hunter, David; Kapiga, Saidi; Fawzi, Wafaie

    2009-08-01

    To determine the demographic, socio-economic and psycho-social factors associated with condom use amongst antenatal clinic attendees in Dar es Salaam. A cross sectional study design was employed in four antenatal clinics in Dar es Salaam. Pregnant women were interviewed between April 1995 and July 1997 to find out if they have ever used a condom and if so whether they had used them consistently for all coital acts in the previous year. Of 1,585 women interviewed, 41% had their first sexual experience before age of 18 years and 82% had a history of having more than two sexual partners during their lifetime. Sixty-two percent of women had never used a condom. Although 40% had used a condom in the previous year only 12% used them consistently. Ever use of a condom increased significantly with the number of years of education of the respondent and her partner also with the respondent's financial independence. Women with > 9 years of education were twice as likely as women with condom users (prevalence ratio (PR) = 2.1, 95% confidence interval (CI) = 1.6-2.7). Professional women were almost twice as likely as housewives to have ever used a condom (PR = 1.8, 95% CI = 1.3-2.3). Women who reported that they have had more than four sexual partners during their lifetime were associated with nearly a four-fold higher lifetime rate of having ever used a condom, compared with a single lifetime partnership (PR = 3.9, 95% CI = 2.8-5.4). The reported prevalence of ever use of a condom amongst antenatal clinic attendees is low and inconsistent especially among HIV positive women. Deliberate effort should be used to ensure condom access, availability and correct and consistent use of condoms by women in all sexual acts.

  16. Quantifying landscape change in an arctic coastal lowland using repeat airborne LiDAR

    International Nuclear Information System (INIS)

    Jones, Benjamin M; Stoker, Jason M; Gibbs, Ann E; Richmond, Bruce M; Grosse, Guido; Romanovsky, Vladimir E; Douglas, Thomas A; Kinsman, Nicole E M

    2013-01-01

    Increases in air, permafrost, and sea surface temperature, loss of sea ice, the potential for increased wave energy, and higher river discharge may all be interacting to escalate erosion of arctic coastal lowland landscapes. Here we use airborne light detection and ranging (LiDAR) data acquired in 2006 and 2010 to detect landscape change in a 100 km 2 study area on the Beaufort Sea coastal plain of northern Alaska. We detected statistically significant change (99% confidence interval), defined as contiguous areas (>10 m 2 ) that had changed in height by at least 0.55 m, in 0.3% of the study region. Erosional features indicative of ice-rich permafrost degradation were associated with ice-bonded coastal, river, and lake bluffs, frost mounds, ice wedges, and thermo-erosional gullies. These features accounted for about half of the area where vertical change was detected. Inferred thermo-denudation and thermo-abrasion of coastal and river bluffs likely accounted for the dominant permafrost-related degradational processes with respect to area (42%) and volume (51%). More than 300 thermokarst pits significantly subsided during the study period, likely as a result of storm surge flooding of low-lying tundra (<1.4 m asl) as well as the lasting impact of warm summers in the late-1980s and mid-1990s. Our results indicate that repeat airborne LiDAR can be used to detect landscape change in arctic coastal lowland regions at large spatial scales over sub-decadal time periods. (letter)

  17. Knowledge and attitudes towards obesity among primary school children in Dar es Salaam, Tanzania.

    Science.gov (United States)

    Njelekela, Marina A; Muhihi, Alfa; Mpembeni, Rose N M; Anaeli, Amani; Chillo, Omary; Kubhoja, Sulende; Lujani, Benjamin; Ngarashi, Davis; Maghembe, Mwanamkuu

    2015-01-01

    Childhood obesity has increased over the past two decades. Child obesity is likely to persist through adulthood and increases the risk of non-communicable diseases (NCDs) later in life. This study assessed knowledge and attitudes towards obesity among primary school children in Dar es Salaam, Tanzania. A cross-sectional study was conducted in randomly selected primary schools in Dar es Salaam. A structured questionnaire was used to assess the knowledge and attitudes. Anthropometric and blood pressure measurements were taken using standard procedures. A total of 446 children were included in the analysis. The mean age of the participants was 11.1 ± 2.0 years. The mean body mass index (BMI), systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 16.6 ± 4.0 kg/m(2), 103.9 ± 10.3 mmHg and 65.6 ± 8.2 mmHg, respectively. Prevalence of obesity (defined as BMI >95(th) percentile for age and sex) was 5.2%. Half of the children (51.1%) had heard about obesity from teachers at school (20%), radio (19.4%) and books/newspaper (17.3%). Less than half (45.4%) had knowledge about the risk factors for childhood obesity and correctly defined obesity (44.6%). However, a good number of the children (72.1%) were aware that they can be affected by obesity. Majority of them had negative attitude towards obesity and various factors leading to or resulting from childhood obesity. Knowledge about childhood obesity among primary school children is moderate and have negative attitude towards obesity. Integrating educational programs early in primary schools may be an effective strategy to impact knowledge about obesity and other non-communicable diseases early in childhood.

  18. Virtual Surveyor based Object Extraction from Airborne LiDAR data

    Science.gov (United States)

    Habib, Md. Ahsan

    Topographic feature detection of land cover from LiDAR data is important in various fields - city planning, disaster response and prevention, soil conservation, infrastructure or forestry. In recent years, feature classification, compliant with Object-Based Image Analysis (OBIA) methodology has been gaining traction in remote sensing and geographic information science (GIS). In OBIA, the LiDAR image is first divided into meaningful segments called object candidates. This results, in addition to spectral values, in a plethora of new information such as aggregated spectral pixel values, morphology, texture, context as well as topology. Traditional nonparametric segmentation methods rely on segmentations at different scales to produce a hierarchy of semantically significant objects. Properly tuned scale parameters are, therefore, imperative in these methods for successful subsequent classification. Recently, some progress has been made in the development of methods for tuning the parameters for automatic segmentation. However, researchers found that it is very difficult to automatically refine the tuning with respect to each object class present in the scene. Moreover, due to the relative complexity of real-world objects, the intra-class heterogeneity is very high, which leads to over-segmentation. Therefore, the method fails to deliver correctly many of the new segment features. In this dissertation, a new hierarchical 3D object segmentation algorithm called Automatic Virtual Surveyor based Object Extracted (AVSOE) is presented. AVSOE segments objects based on their distinct geometric concavity/convexity. This is achieved by strategically mapping the sloping surface, which connects the object to its background. Further analysis produces hierarchical decomposition of objects to its sub-objects at a single scale level. Extensive qualitative and qualitative results are presented to demonstrate the efficacy of this hierarchical segmentation approach.

  19. Object Tracking with LiDAR: Monitoring Taxiing and Landing Aircraft

    Directory of Open Access Journals (Sweden)

    Zoltan Koppanyi

    2018-02-01

    Full Text Available Mobile light detection and ranging (LiDAR sensors used in car navigation and robotics, such as the Velodyne’s VLP-16 and HDL-32E, allow for sensing the surroundings of the platform with high temporal resolution to detect obstacles, tracking objects and support path planning. This study investigates the feasibility of using LiDAR sensors for tracking taxiing or landing aircraft close to the ground to improve airport safety. A prototype system was developed and installed at an airfield to capture point clouds to monitor aircraft operations. One of the challenges of accurate object tracking using the Velodyne sensors is the relatively small vertical field of view (30°, 41.3° and angular resolution (1.33°, 2°, resulting in a small number of points of the tracked object. The point density decreases with the object–sensor distance, and is already sparse at a moderate range of 30–40 m. The paper introduces our model-based tracking algorithms, including volume minimization and cube trajectories, to address the optimal estimation of object motion and tracking based on sparse point clouds. Using a network of sensors, multiple tests were conducted at an airport to assess the performance of the demonstration system and the algorithms developed. The investigation was focused on monitoring small aircraft moving on runways and taxiways, and the results indicate less than 0.7 m/s and 17 cm velocity and positioning accuracy achieved, respectively. Overall, based on our findings, this technology is promising not only for aircraft monitoring but for airport applications.

  20. OPEN-SOURCE DIGITAL ELEVATION MODEL (DEMs EVALUATION WITH GPS AND LiDAR DATA

    Directory of Open Access Journals (Sweden)

    N. F. Khalid

    2016-09-01

    Full Text Available Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM, Shuttle Radar Topography Mission (SRTM, and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010 are freely available Digital Elevation Model (DEM datasets for environmental modeling and studies. The quality of spatial resolution and vertical accuracy of the DEM data source has a great influence particularly on the accuracy specifically for inundation mapping. Most of the coastal inundation risk studies used the publicly available DEM to estimated the coastal inundation and associated damaged especially to human population based on the increment of sea level. In this study, the comparison between ground truth data from Global Positioning System (GPS observation and DEM is done to evaluate the accuracy of each DEM. The vertical accuracy of SRTM shows better result against ASTER and GMTED10 with an RMSE of 6.054 m. On top of the accuracy, the correlation of DEM is identified with the high determination of coefficient of 0.912 for SRTM. For coastal zone area, DEMs based on airborne light detection and ranging (LiDAR dataset was used as ground truth data relating to terrain height. In this case, the LiDAR DEM is compared against the new SRTM DEM after applying the scale factor. From the findings, the accuracy of the new DEM model from SRTM can be improved by applying scale factor. The result clearly shows that the value of RMSE exhibit slightly different when it reached 0.503 m. Hence, this new model is the most suitable and meets the accuracy requirement for coastal inundation risk assessment using open source data. The suitability of these datasets for further analysis on coastal management studies is vital to assess the potentially vulnerable areas caused by coastal inundation.