WorldWideScience

Sample records for shell forming organisms

  1. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.

    Science.gov (United States)

    Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia

    2017-11-01

    Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Planktic foraminifera form their shells via metastable carbonate phases

    OpenAIRE

    Jacob, D. E.; Wirth, R.; Agbaje, O. B. A.; Branson, O.; Eggins, S. M.

    2017-01-01

    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polym...

  3. A shell approach for fibrous reinforcement forming simulations

    Science.gov (United States)

    Liang, B.; Colmars, J.; Boisse, P.

    2018-05-01

    Because of the slippage between fibers, the basic assumptions of classical plate and shell theories are not verified by fiber reinforcement during a forming. However, simulations of reinforcement forming use shell finite elements when wrinkles development is important. A shell formulation is proposed for the forming simulations of continuous fiber reinforcements. The large tensile stiffness leads to the quasi inextensibility in the fiber directions. The fiber bending stiffness determines the curvature of the reinforcement. The calculation of tensile and bending virtual works are based on the precise geometry of the single fiber. Simulations and experiments are compared for different reinforcements. It is shown that the proposed fibrous shell approach not only correctly simulates the deflections but also the rotations of the through thickness material normals.

  4. Nucleon mass difference and off-shell form factors

    International Nuclear Information System (INIS)

    Kimel, I.

    1981-08-01

    The use of off-shell form factors in calculating the proton-neutron mass difference is advocated. These form factors appear in a Cottingham rotated Born-like expression for the mass difference and could lead to a good value for Δ = M sub(p) - M sub(n). (Author) [pt

  5. Planktic foraminifera form their shells via metastable carbonate phases.

    Science.gov (United States)

    Jacob, D E; Wirth, R; Agbaje, O B A; Branson, O; Eggins, S M

    2017-11-02

    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polymorph vaterite, implying a non-classical crystallisation pathway involving metastable phases that transform ultimately to calcite. The current understanding of how planktic foraminifer shells record climate, and how they will fare in a future high-CO 2 world is underpinned by analogy to the precipitation and dissolution of inorganic calcite. Our findings require a re-evaluation of this paradigm to consider the formation and transformation of metastable phases, which could exert an influence on the geochemistry and solubility of the biomineral calcite.

  6. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  7. On growth and form of irregular coiled-shell of a terrestrial snail: Plectostoma concinnum (Fulton, 1901) (Mollusca: Caenogastropoda: Diplommatinidae).

    Science.gov (United States)

    Liew, Thor-Seng; Kok, Annebelle C M; Schilthuizen, Menno; Urdy, Severine

    2014-01-01

    The molluscan shell can be viewed as a petrified representation of the organism's ontogeny and thus can be used as a record of changes in form during growth. However, little empirical data is available on the actual growth and form of shells, as these are hard to quantify and examine simultaneously. To address these issues, we studied the growth and form of a land snail that has an irregularly coiled and heavily ornamented shell-Plectostoma concinnum. The growth data were collected in a natural growth experiment and the actual form changes of the aperture during shell ontogeny were quantified. We used an ontogeny axis that allows data of growth and form to be analysed simultaneously. Then, we examined the association between the growth and the form during three different whorl growing phases, namely, the regular coiled spire phase, the transitional constriction phase, and the distortedly-coiled tuba phase. In addition, we also explored the association between growth rate and the switching between whorl growing mode and rib growing mode. As a result, we show how the changes in the aperture ontogeny profiles in terms of aperture shape, size and growth trajectory, and the changes in growth rates, are associated with the different shell forms at different parts of the shell ontogeny. These associations suggest plausible constraints that underlie the three different shell ontogeny phases and the two different growth modes. We found that the mechanism behind the irregularly coiled-shell is the rotational changes of the animal's body and mantle edge with respect to the previously secreted shell. Overall, we propose that future study should focus on the role of the mantle and the columellar muscular system in the determination of shell form.

  8. Organic superalkalis with closed-shell structure and aromaticity

    Science.gov (United States)

    Srivastava, Ambrish Kumar

    2018-06-01

    Benzene (C6H6) and polycyclic hydrocarbons such as naphthalene (C10H8), anthracene (C14H10) and coronene (C24H12) are well known aromatic organic compounds. We study the substitution of Li replacing all H-atoms in these hydrocarbons using density functional method. The vertical ionisation energy of such lithiated species, i.e. C6Li6, C10Li8, C14Li10 and C24Li12 ranges 4.24-4.50 eV, which is lower than the ionisation energy (IE) of Li atom. Thus, these species may behave as superalkalis due to their lower IE than alkali metal. However, these lithiated species possess planar and closed-shell structure, unlike typical superalkalis. Furthermore, all Li-substituted species are aromatic although their degree of aromaticity is reduced as compared to corresponding hydrocarbon analogues. We have further explored the structure of C6Li6 as star-like, unlike its inorganic analogue B3N3Li6, which appears as fan-like structure. We have also demonstrated that the interaction of C6Li6 with a superhalogen (such as BF4) is similar to that of a typical superalkali (such as OLi3). This may further suggest that the proposed lithiated species may form a new class of closed-shell organic superalkalis with aromaticity.

  9. A Simple Method for Forming Hybrid Core-Shell Nanoparticles Suspended in Water

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2008-01-01

    addition fragmentation chain transfer (RAFT polymerization as dispersant. Then, the resulting dispersion is engaged in a radical emulsion polymerization process whereby a hydrophobic organic monomer (styrene and butyl acrylate is polymerized to form the shell of the hybrid nanoparticle. This method is extremely versatile, allowing the preparation of a variety of nanocomposites with metal oxides (alumina, rutile, anatase, barium titanate, zirconia, copper oxide, metals (Mo, Zn, and even inorganic nitrides (Si3N4.

  10. Inner-shell couplings in transiently formed superheavy quasimolecules

    Energy Technology Data Exchange (ETDEWEB)

    Verma, P [Kalindi College, University of Delhi, New Delhi 110008 (India); Mokler, P H [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Braeuning-Demian, A; Kozhuharov, C; Braeuning, H; Bosch, F; Hagmann, S; Liesen, D [GSI Helmholzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Anton, J; Fricke, B [Universitaet Kassel, 34109 Kassel (Germany); Stachura, Z [Institute for Nuclear Physics, Cracow PL 31342 (Poland); Wahab, M A, E-mail: p.verma.du@gmail.com [Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 (India)

    2011-06-15

    The inner-shell couplings for U{sup q+}-ions (73{<=}q{<=}91) moving moderately slow at {approx}69 MeV u{sup -1} and bombarding thin Au targets have been investigated. Having established the definite survival probability of incoming projectile K vacancies in these targets in an earlier publication, the transfer of these vacancies to the target K-shell due to inner-shell couplings has been studied. As the system is in the quasiadiabatic collision regime for the K-shell of collision partners, advanced SCF-DFS (self-consistent field-Dirac-Fock-Slater) multielectron level diagrams have been used for interpretation. Using a simple model, the L-K shell coupling interaction distance has been estimated and compared with level diagram calculations.

  11. New marine science organization formed

    Science.gov (United States)

    Wooster, Warren S.

    A new international organization, the North Pacific Marine Science Organization (PICES) will be established to promote and coordinate marine scientific research in the northern North Pacific Ocean and the Berlin Sea. This was decided in Ottawa on December 12, 1990, when a draft convention was approved by representatives of Canada, China, Japan, the United States, and the Soviet Union. PICES will focus on research on the ocean environment and its interactions with land and atmosphere, its role and response to global weather and climate change, its flora, fauna and ecosystems, its uses and resources, and impacts upon it from human activities. Such studies relate not only to the effects of fishing and environmental change on fish stocks but also to such issues as the impacts of oil spills and other forms of pollution and the eventual consequences of climate change for uses of the ocean and its resources.

  12. Characterizing haploinsufficiency of SHELL gene to improve fruit form prediction in introgressive hybrids of oil palm.

    Science.gov (United States)

    Teh, Chee-Keng; Muaz, Siti Dalila; Tangaya, Praveena; Fong, Po-Yee; Ong, Ai-Ling; Mayes, Sean; Chew, Fook-Tim; Kulaveerasingam, Harikrishna; Appleton, David

    2017-06-08

    The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene - a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (sh AVROS , sh MPOB , sh MPOB2 , sh MPOB3 and sh MPOB4 ) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm.

  13. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-04-01

    Safety of Hanford single-shell tanks (SSTs) containing organic carbon is a concern because the carbon in the presence of oxidizers (NO 3 or NO 2 ) is combustible when sufficiently concentrated and exposed to elevated temperatures. A propagating chemical reaction could potentially occur at high temperature (above 200 C). The rapid increase in temperature and pressure within a tank might result in the release of radioactive waste constituents to the environment. The purpose of this study is to gather available laboratory information about the organic carbon waste inventories stored in the Hanford SSTs. Specifically, the major objectives of this investigation are: Review laboratory analytical data and measurements for SST composite core and supernatant samples for available organic data; Assess the correlation of organic carbon estimated utilizing the TRAC computer code compared to laboratory measurements; and From the laboratory analytical data, estimate the TOC content with confidence levels for each of the 149 SSTs

  14. The bacterial carbon-fixing organelle is formed by shell envelopment of preassembled cargo.

    Directory of Open Access Journals (Sweden)

    Anna H Chen

    Full Text Available Cyanobacteria play a significant role in the global carbon cycle. In Synechococcuselongatus, the carbon-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO is concentrated into polyhedral, proteinaceous compartments called carboxysomes.Using live cell fluorescence microscopy, we show that carboxysomes are first detected as small seeds of RuBisCO that colocalize with existing carboxysomes. These seeds contain little or no shell protein, but increase in RuBisCO content over several hours, during which time they are exposed to the solvent. The maturing seed is then enclosed by shell proteins, a rapid process that seals RuBisCO from the cytosol to establish a distinct, solvent-protected microenvironment that is oxidizing relative to the cytosol. These closure events can be spatially and temporally coincident with the appearance of a nascent daughter RuBisCO seed.Carboxysomes assemble in a stepwise fashion, inside-to-outside, revealing that cargo is the principle organizer of this compartment's biogenesis. Our observations of the spatial relationship of seeds to previously formed carboxysomes lead us to propose a model for carboxysome replication via sequential fission, polymerization, and encapsulation of their internal cargo.

  15. Deformation Behavior of Press Formed Shell by Indentation and Its Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Minoru Yamashita

    2015-01-01

    Full Text Available Deformation behavior and energy absorbing performance of the press formed aluminum alloy A5052 shells were investigated to obtain the basic information regarding the mutual effect of the shell shape and the indentor. Flat top and hemispherical shells were indented by the flat- or hemispherical-headed indentor. Indentation force in the rising stage was sharper for both shell shapes when the flat indentor was used. Remarkable force increase due to high in-plane compressive stress arisen by the appropriate tool constraint was observed in the early indentation stage, where the hemispherical shell was deformed with the flat-headed indentor. This aspect is preferable for energy absorption performance per unit mass. Less fluctuation in indentation force was achieved in the combination of the hemispherical shell and similar shaped indentor. The consumed energy in the travel length of the indentor equal to the shell height was evaluated. The increase ratio of the energy is prominent when the hemispherical indentor is replaced by a flat-headed one in both shell shapes. Finite element simulation was also conducted. Deformation behaviors were successfully predicted when the kinematic hardening plasticity was introduced in the material model.

  16. Form-finding of shell structures generated from physical models

    NARCIS (Netherlands)

    Li, Q.; Su, Y; Wu, Y; Borgart, A.; Rots, J.G.

    2017-01-01

    Vector form intrinsic finite element is a recently developed and promising numerical method for the analysis of complicated structural behavior. Taking the cable-link element as example, the framework of the vector form intrinsic finite element is explained first. Based on this, a constant strain

  17. RHFPPP, SCF-LCAO-MO Calculation for Closed Shell and Open Shell Organic Molecules

    International Nuclear Information System (INIS)

    Bieber, A.; Andre, J.J.

    1987-01-01

    1 - Nature of physical problem solved: Complete program performs SCF-LCAO-MO calculations for both closed and open-shell organic pi-molecules. The Pariser-Parr-People approximations are used with- in the framework of the restricted Hartree-Fock method. The SCF calculation is followed, if desired, by a variational configuration interaction (CI) calculation including singly excited configurations. 2 - Method of solution: A standard procedure is used; at each step a real symmetric matrix has to be diagonalized. The self-consistency is checked by comparing the eigenvectors between two consecutive steps. 3 - Restrictions on the complexity of the problem: i) The calculations are restricted to planar molecules. ii) In order to avoid accumulation of round-off errors, in the iterative procedure, double precision arithmetic is used. iii) The program is restricted to systems up to about 16 atoms; however the size of the systems can easily be modified if required

  18. Universal analytical scattering form factor for shell-, core-shell, or homogeneous particles with continuously variable density profile shape.

    Science.gov (United States)

    Foster, Tobias

    2011-09-01

    A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society

  19. The evolution of shell form in tropical terrestrial microsnails

    NARCIS (Netherlands)

    Liew, Thor Seng

    2014-01-01

    Mollusca form an important animal phylum that first appeared in the Cambrian, and today is,after Arthropoda, the second largest animal phylum, with more than 100,000 extant species(Bieler, 1992, Brusca and Brusca, 2003), with the class Gastropoda accounting for 80% of the extant species in the

  20. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-07-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTS) obtained from a review of the laboratory analytical data. This activity was undertaken at the request of Westinghouse Hanford Company (WHC). The objective of this study is to provide a best estimate, including confidence levels, of total organic carbon (TOC) in each of the 149 SSTs at Hanford. The TOC analyte information presented in this report is useful as part of the criteria to identify SSTs for additional measurements or monitoring for the organic safety program. This report is a precursor to an investigation of TOC and moisture in Hanford SSTS, in order to provide best estimates for each together in one report. Measured laboratory data were obtained for 75 of the 149 SSTS. The data represent a thorough investigation of data from 224 tank characterization datasets, including core-sampling and process laboratory data. Liquid and solid phase TOC values were investigated by examining selected tanks with both reported TOC values in solid and liquid phases. Some relationships were noted, but there was no clustering of data or significance between the solid and liquid phases. A methodology was developed for estimating the distribution and levels of TOC in SSTs using a logarithmic scale and an analysis of variance (ANOVA) technique. The methodology grouped tanks according to waste type using the Sort On Radioactive Waste Type (SORWT) grouping method. The SORWT model categorizes Hanford SSTs into groups of tanks expected to exhibit similar characteristics based on major waste types and processing histories. The methodology makes use of laboratory data for the particular tank and information about the SORWT group of which the tank is a member. Recommendations for a simpler tank grouping strategy based on organic transfer records were made

  1. Pre-Rationalized Parametric Designing of Roof Shells Formed by Repetitive Modules of Catalan Surfaces

    Directory of Open Access Journals (Sweden)

    Jolanta Dzwierzynska

    2018-04-01

    Full Text Available The aim of the study is to develop an original, methodical, and practical approach to the early stages of parametric design of roof shells formed by repetitive modules of Catalan surfaces. It is presented on the example of designing the roof shells compound of four concrete elements. The designing process proposed by us consists in linking geometric shaping of roofs’ models with their structural analysis and optimization. Contrary to other methods, which use optimization process in order to find free roof forms, we apply it in order to explore and improve design alternatives. It is realized with the application of designing tools working in Rhinoceros 3D software. The flexible scripts elaborated by us, in order to achieve roofs’ models of regular and symmetrical shapes, are converted into simulation models to perform structural analysis. It is mainly focused on how the roof shells perform dependently on their geometric characteristics. The simulation enables one to evaluate various roof shells’ shapes, as well as to select an optimal design solution. The proposed approach to the conceptual design process may drive the designing to achieve geometric and structural forms which not only follow the design intentions but also target better results.

  2. On growth and form of irregular coiled-shell of a terrestrial snail: Plectostoma concinnum (Fulton, 1901 (Mollusca: Caenogastropoda: Diplommatinidae

    Directory of Open Access Journals (Sweden)

    Thor-Seng Liew

    2014-05-01

    Full Text Available The molluscan shell can be viewed as a petrified representation of the organism’s ontogeny and thus can be used as a record of changes in form during growth. However, little empirical data is available on the actual growth and form of shells, as these are hard to quantify and examine simultaneously. To address these issues, we studied the growth and form of a land snail that has an irregularly coiled and heavily ornamented shell–Plectostoma concinnum. The growth data were collected in a natural growth experiment and the actual form changes of the aperture during shell ontogeny were quantified. We used an ontogeny axis that allows data of growth and form to be analysed simultaneously. Then, we examined the association between the growth and the form during three different whorl growing phases, namely, the regular coiled spire phase, the transitional constriction phase, and the distortedly-coiled tuba phase. In addition, we also explored the association between growth rate and the switching between whorl growing mode and rib growing mode. As a result, we show how the changes in the aperture ontogeny profiles in terms of aperture shape, size and growth trajectory, and the changes in growth rates, are associated with the different shell forms at different parts of the shell ontogeny. These associations suggest plausible constraints that underlie the three different shell ontogeny phases and the two different growth modes. We found that the mechanism behind the irregularly coiled-shell is the rotational changes of the animal’s body and mantle edge with respect to the previously secreted shell. Overall, we propose that future study should focus on the role of the mantle and the columellar muscular system in the determination of shell form.

  3. Characterizing haploinsufficiency of SHELL gene to improve fruit form prediction in introgressive hybrids of oil palm

    OpenAIRE

    Teh, Chee Keng; Muaz, Siti Dalila; Tangaya, Praveena; Fong, Po-Yee; Ong, Ai Ling; Mayes, Sean; Chew, Fook Tim; Kulaveerasingam, Harikrishna; Appleton, David Ross

    2017-01-01

    The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura???shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene ? a type II MADS-box transcription factor mainly present in ...

  4. Efficacy of antimicrobials extracted from organic pecan shell for inhibiting the growth of Listeria spp.

    Science.gov (United States)

    Babu, Dinesh; Crandall, Philip G; Johnson, Casey L; O'Bryan, Corliss A; Ricke, Steven C

    2013-12-01

    Growers and processors of USDA certified organic foods are in need of suitable organic antimicrobials. The purpose of the research reported here was to develop and test natural antimicrobials derived from an all-natural by-product, organic pecan shells. Unroasted and roasted organic pecan shells were subjected to solvent free extraction to produce antimicrobials that were tested against Listeria spp. and L. monocytogenes serotypes to determine the minimum inhibitory concentrations (MIC) of antimicrobials. The effectiveness of pecan shell extracts were further tested using a poultry skin model system and the growth inhibition of the Listeria cells adhered onto the skin model were quantified. The solvent free extracts of pecan shells inhibited Listeria strains at MICs as low as 0.38%. The antimicrobial effectiveness tests on a poultry skin model exhibited nearly a 2 log reduction of the inoculated cocktail mix of Listeria strains when extracts of pecan shell powder were used. The extracts also produced greater than a 4 log reduction of the indigenous spoilage bacteria on the chicken skin. Thus, the pecan shell extracts may prove to be very effective alternative antimicrobials against food pathogens and supplement the demand for effective natural antimicrobials for use in organic meat processing. © 2013 Institute of Food Technologists®

  5. Forms of organic phosphorus in wetland soils

    Science.gov (United States)

    Cheesman, A. W.; Turner, B. L.; Reddy, K. R.

    2014-12-01

    Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e., forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydrogeomorphic, and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g-1, of which an average of 58% was extracted in a single-step NaOH-EDTA procedure. The extracts contained a broad range of P forms, including phosphomonoesters (averaging 24% of the total soil P), phosphodiesters (averaging 10% of total P), phosphonates (up to 4% of total P), and both pyrophosphate and long-chain polyphosphates (together averaging 6% of total P). Soil P composition was found to be dependant upon two key biogeochemical properties: organic matter content and pH. For example, stereoisomers of inositol hexakisphosphate were detected exclusively in acidic soils with high mineral content, while phosphonates were detected in soils from a broad range of vegetation and hydrogeomorphic types but only under acidic conditions. Conversely inorganic polyphosphates occurred in a broad range of wetland soils, and their abundance appears to reflect more broadly that of a "substantial" and presumably active microbial community with a significant relationship between total inorganic polyphosphates and microbial biomass P. We conclude that soil P composition varies markedly among freshwater wetlands but can be predicted by fundamental soil properties.

  6. Stable tetrabenzo-Chichibabin's hydrocarbons: Tunable ground state and unusual transition between their closed-shell and open-shell resonance forms

    KAUST Repository

    Zeng, Zebing

    2012-09-05

    Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabin\\'s hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin\\'s hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl 3 and/or concentrated H 2SO 4. The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm). © 2012 American Chemical Society.

  7. Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2010-11-01

    Full Text Available Abstract Background The formation of the molluscan shell is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called "calcifying matrix" is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, most of its protein components remain uncharacterised. Results Recent expressed sequence tag (EST investigations of the mantle tissue from the tropical abalone (Haliotis asinina provide an opportunity to further characterise the proteins in the shell by a proteomic approach. In this study, we have identified a total of 14 proteins from distinct calcified layers of the shell. Only two of these proteins have been previously characterised from abalone shells. Among the novel proteins are several glutamine- and methionine-rich motifs and hydrophobic glycine-, alanine- and acidic aspartate-rich domains. In addition, two of the new proteins contained Kunitz-like and WAP (whey acidic protein protease inhibitor domains. Conclusion This is one of the first comprehensive proteomic study of a molluscan shell, and should provide a platform for further characterization of matrix protein functions and interactions.

  8. K -shell decomposition reveals hierarchical cortical organization of the human brain

    International Nuclear Information System (INIS)

    Lahav, Nir; Ksherim, Baruch; Havlin, Shlomo; Ben-Simon, Eti; Maron-Katz, Adi; Cohen, Reuven

    2016-01-01

    In recent years numerous attempts to understand the human brain were undertaken from a network point of view. A network framework takes into account the relationships between the different parts of the system and enables to examine how global and complex functions might emerge from network topology. Previous work revealed that the human brain features ‘small world’ characteristics and that cortical hubs tend to interconnect among themselves. However, in order to fully understand the topological structure of hubs, and how their profile reflect the brain’s global functional organization, one needs to go beyond the properties of a specific hub and examine the various structural layers that make up the network. To address this topic further, we applied an analysis known in statistical physics and network theory as k-shell decomposition analysis. The analysis was applied on a human cortical network, derived from MRI/DSI data of six participants. Such analysis enables us to portray a detailed account of cortical connectivity focusing on different neighborhoods of inter-connected layers across the cortex. Our findings reveal that the human cortex is highly connected and efficient, and unlike the internet network contains no isolated nodes. The cortical network is comprised of a nucleus alongside shells of increasing connectivity that formed one connected giant component, revealing the human brain’s global functional organization. All these components were further categorized into three hierarchies in accordance with their connectivity profile, with each hierarchy reflecting different functional roles. Such a model may explain an efficient flow of information from the lowest hierarchy to the highest one, with each step enabling increased data integration. At the top, the highest hierarchy (the nucleus) serves as a global interconnected collective and demonstrates high correlation with consciousness related regions, suggesting that the nucleus might serve as a

  9. Biofiltration of methanol in an organic biofilter using peanut shells as medium.

    Science.gov (United States)

    Ramirez-Lopez, E M; Corona-Hernandez, J; Avelar-Gonzalez, F J; Omil, F; Thalasso, F

    2010-01-01

    Biofiltration consists of a filter-bed of organic matter serving both as carrier for the active biomass and as nutrient supply, through which the polluted gas passes. The selection of a suitable medium material is of major importance to ensure optimum biofilter efficiency. Peanut shells are an agricultural byproduct locally available in large quantities at a low price in most tropical and sub-tropical countries. A previous study showed that peanut shells are physically and chemically suitable for biofiltration. This paper presents the results obtained during a six month biofiltration experiment using peanut shells as medium and methanol as air pollutant. It is shown that peanut shells are potentially suitable as biofiltration medium, since degradation rates of up to 30 kg MeOH/m(3)d with an empty bed residence time of 19s was obtained. The biofilter showed a good resistance to shock load and no operational problems were observed.

  10. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    Science.gov (United States)

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  11. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-12-01

    Full Text Available A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570, and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM, Fourier transform infrared (FTIR spectrscopy, X-ray diffractometry (XRD, contact angle meter (CA, and scanning electron microscope (SEM. The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570. Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.

  12. Estimating local, organic, and other price premiums of shell eggs in Hawaii.

    Science.gov (United States)

    Loke, Matthew K; Xu, Xun; Leung, PingSun

    2016-05-01

    Hedonic modeling and retail scanner data were utilized to investigate the influence of local, organic, nutrition benefits, and other attributes of shell eggs on retail price premium in Hawaii. Within a revealed preference framework, the analysis of local and organic attributes, simultaneously, under a single unified setting is important, as such work is highly deficient in the published literature. This paper finds high to moderate price premiums in four key attributes of shell eggs - organic (64%), local (40%), nutrition benefits claimed (33%), and brown shell (18.4%). Large and extra-large sized eggs also experience price premiums over medium sized eggs. With each larger packing size, the estimated coefficients were negative, indicating a price discount, relative to the baseline packing size. However, there is no evidence to support the overwhelming influence of "local" over "organic", as hypothesized in other research work. Overall, the findings in this paper suggest industry producers and retailers should highlight and market effusively the primary attributes of their shell eggs, including "local", to remain competitive in the marketplace. Effective communication channels are crucial to delivering the product information, capturing the attention of consumers, and securing retail sales. © 2016 Poultry Science Association Inc.

  13. Cluster form factor calculation in the ab initio no-core shell model

    International Nuclear Information System (INIS)

    Navratil, Petr

    2004-01-01

    We derive expressions for cluster overlap integrals or channel cluster form factors for ab initio no-core shell model (NCSM) wave functions. These are used to obtain the spectroscopic factors and can serve as a starting point for the description of low-energy nuclear reactions. We consider the composite system and the target nucleus to be described in the Slater determinant (SD) harmonic oscillator (HO) basis while the projectile eigenstate to be expanded in the Jacobi coordinate HO basis. This is the most practical case. The spurious center of mass components present in the SD bases are removed exactly. The calculated cluster overlap integrals are translationally invariant. As an illustration, we present results of cluster form factor calculations for 5 He vertical bar 4 He+n>, 5 He vertical bar 3 H+d>, 6 Li vertical bar 4 He+d>, 6 Be vertical bar 3 He+ 3 He>, 7 Li vertical bar 4 He+ 3 H>, 7 Li vertical bar 6 Li+n>, 8 Be vertical bar 6 Li+d>, 8 Be vertical bar 7 Li+p>, 9 Li vertical bar 8 Li+n>, and 13 C vertical bar 12 C+n>, with all the nuclei described by multi-(ℎ/2π)Ω NCSM wave functions

  14. Densities, form factors, transitions and multipole moments in the s-d shell, with the Skyrme force

    International Nuclear Information System (INIS)

    Oliveira, D.R. de; Mizrahi, S.S.

    1977-09-01

    The nuclear densities, radii, multipole moments, form-factors and transition probabilities obtained for the A = 4n type of nuclei in the s-d shell are reported, using the Hartree-Fock wave functions calculated with the Skyrme force. Experimental data and theoretical values derived by others are shown for comparison [pt

  15. Core-Shell Double Gyroid Structure Formed by Linear ABC Terpolymer Thin Films.

    Science.gov (United States)

    Antoine, Ségolène; Aissou, Karim; Mumtaz, Muhammad; Telitel, Siham; Pécastaings, Gilles; Wirotius, Anne-Laure; Brochon, Cyril; Cloutet, Eric; Fleury, Guillaume; Hadziioannou, Georges

    2018-05-01

    The synthesis and self-assembly in thin-film configuration of linear ABC triblock terpolymer chains consisting of polystyrene (PS), poly(2-vinylpyridine) (P2VP), and polyisoprene (PI) are described. For that purpose, a hydroxyl-terminated PS-b-P2VP (45 kg mol -1 ) building block and a carboxyl-terminated PI (9 kg mol -1 ) are first separately prepared by anionic polymerization, and then are coupled via a Steglich esterification reaction. This quantitative and metal-free catalyst synthesis route reveals to be very interesting since functionalization and purification steps are straightforward, and well-defined terpolymers are produced. A solvent vapor annealing (SVA) process is used to promote the self-assembly of frustrated PS-b-P2VP-b-PI chains into a thin-film core-shell double gyroid (Q 230 , space group: Ia3¯d) structure. As terraces are formed within PS-b-P2VP-b-PI thin films during the SVA process under a CHCl 3 vapor, different plane orientations of the Q 230 structure ((211), (110), (111), and (100)) are observed at the polymer-air interface depending on the film thickness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Co-Au core-shell nanocrystals formed by sequential ion implantation into SiO2

    International Nuclear Information System (INIS)

    Kluth, P.; Hoy, B.; Johannessen, B.; Dunn, S. G.; Foran, G. J.; Ridgway, M. C.

    2006-01-01

    Co-Au core-shell nanocrystals (NCs) were formed by sequential ion implantation of Au and Co into thin SiO 2 . The NCs were investigated by means of transmission electron microscopy and extended x-ray absorption fine structure spectroscopy. The latter reveals a bond length expansion in the Co core compared to monatomic Co NCs. Concomitantly, a significant contraction of the bond length and a significant reduction of the effective Au-Au coordination number were observed in the Au shells. Increased Debye-Waller factors indicate significant strain in the NCs. These experimental results verify recent theoretical predictions

  17. A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers.

    Science.gov (United States)

    Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi

    2014-01-01

    Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.

  18. A Semi-Analytical Solution for Elastic Analysis of Rotating Thick Cylindrical Shells with Variable Thickness Using Disk Form Multilayers

    Directory of Open Access Journals (Sweden)

    Mohammad Zamani Nejad

    2014-01-01

    Full Text Available Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT. These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM is also presented and good agreement was found.

  19. Transuranium elements in organic chemical forms

    International Nuclear Information System (INIS)

    Sakanoue, Masanobu; Yamamoto, Masayoshi

    1987-01-01

    It is very important to achive an understanding what role organic matter plays in the behavior of transuranium elements in the environment. This paper reports the studies on characteristics of fallout Pu and Am in soil closely related to soil organic matter, and interaction of humic acid and Am (III) in aqueous solution. From the results obtained, it was suggested that the humic acids had strong interaction with transuranium elements, but such soluble complexes were removed soon from the solution by coagulation and sorption on soil. (author)

  20. A Massive Shell of Supernova-formed Dust in SNR G54.1+0.3

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dwek, Eli; Arendt, Richard G. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borkowski, Kazimierz J.; Reynolds, Stephen P. [North Carolina State University, Raleigh, NC 27695 (United States); Slane, Patrick; Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gelfand, Joseph D. [New York University, Abu Dhabi (United Arab Emirates)

    2017-02-10

    While theoretical models of dust condensation predict that most refractory elements produced in core-collapse supernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed in SN 1987A. We present an analysis of observations from the Spitzer Space Telescope , Herschel Space Observatory , Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding the pulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 μ m to a magnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, which exhibits the same spectral signature. If this species is responsible for producing the observed spectral feature and accounts for a significant fraction of the observed infrared continuum, we find that it would be the dominant constituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such as carbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3 M {sub ⊙}. We discuss how these results may be affected by varying dust grain properties and self-consistent grain heating models. The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SN-formed dust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a cluster in which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 16–27 M {sub ⊙} and imply a high dust condensation efficiency, similar to that found for Cas A and SN 1987A. The study provides another example of significant dust formation in a Type IIP SN explosion and sheds light on the properties of pristine SN-condensed dust.

  1. Nanocrystalline p-hydroxyacetanilide (paracetamol) and gold core-shell structure as a model drug deliverable organic-inorganic hybrid nanostructure

    Science.gov (United States)

    Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2013-09-01

    We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b

  2. Core-shell nanophosphor architecture: toward efficient energy transport in inorganic/organic hybrid solar cells.

    Science.gov (United States)

    Li, Qinghua; Yuan, Yongbiao; Chen, Zihan; Jin, Xiao; Wei, Tai-huei; Li, Yue; Qin, Yuancheng; Sun, Weifu

    2014-08-13

    In this work, a core-shell nanostructure of samarium phosphates encapsulated into a Eu(3+)-doped silica shell has been successfully fabricated, which has been confirmed by X-ray diffraction, transmission electron microscopy (TEM), and high-resolution TEM. Moreover, we report the energy transfer process from the Sm(3+) to emitters Eu(3+) that widens the light absorption range of the hybrid solar cells (HSCs) and the strong enhancement of the electron-transport of TiO2/poly(3-hexylthiophene) (P3HT) bulk heterojunction (BHJ) HSCs by introducing the unique core-shell nanoarchitecture. Furthermore, by applying femtosecond transient absorption spectroscopy, we successfully obtain the electron transport lifetimes of BHJ systems with or without incorporating the core-shell nanophosphors (NPs). Concrete evidence has been provided that the doping of core-shell NPs improves the efficiency of electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor. Consequently, a notable power conversion efficiency of 3.30% for SmPO4@Eu(3+):SiO2 blended TiO2/P3HT HSCs is achieved at 5 wt % as compared to 1.98% of pure TiO2/P3HT HSCs. This work indicates that the core-shell NPs can efficiently broaden the absorption region, facilitate electron-transport of BHJ, and enhance photovoltaic performance of inorganic/organic HSCs.

  3. Tubular House - Form Follows Technology, Concrete Shell Structure with Inner Thermal Insulation

    Science.gov (United States)

    Idem, Robert; Kleczek, Paweł; Pawłowski, Krzysztof; Chudoba, Piotr

    2017-10-01

    The aim of this paper is the theoretical analysis of the possibilities and limitations of using an unconventional technology and the original architectural form stemming from it - the building with external construction and internal insulation. In Central European climatic conditions, the traditional solution for the walls of heated buildings relies on using external thermal insulation. This stems from building physics: it prevents interstitial condensation of water vapour in the wall. Internal insulation is used exceptionally. This is done e.g. in historical buildings undergoing thermal modernization (due to the impossibility of interfering with facade). In such cases, a thermal insulation layer is used on the internal wall surface, along with an additional layer of vapour barrier. The concept of building concerns the intentional usage of an internal insulation. In this case, the construction is a tight external reinforced concrete shell. The architectural form of such building is strongly interrelated with the technology, which was used to build it. The paper presents the essence of this concept in descriptive and drawing form. The basic elements of such building are described (the external construction, the internal insulation and ventilation). As a case study, authors present a project of a residential building along with the description of the applied materials and installation solutions, and the results obtained from thermal, humidity and energetic calculations. The discussion presents the advantages and disadvantages of the proposed concept. The basic advantage of this solution is potentially low building cost. This stems from minimizing the ground works, the simplicity of the joints and the outer finish, as well as from the possibility of prefabrication of the elements. The continuity of the thermal insulation allows to reduce the amount of thermal bridges. The applied technology and form are applicable most of all for small buildings, due to limited

  4. Ru-core/Cu-shell bimetallic nanoparticles with controlled size formed in one-pot synthesis.

    Science.gov (United States)

    Helgadottir, I; Freychet, G; Arquillière, P; Maret, M; Gergaud, P; Haumesser, P H; Santini, C C

    2014-12-21

    Suspensions of bimetallic nanoparticles (NPs) of Ru and Cu have been synthesized by simultaneous decomposition of two organometallic compounds in an ionic liquid. These suspensions have been characterized by Anomalous Small-Angle X-ray Scattering (ASAXS) at energies slightly below the Ru K-edge. It is found that the NPs adopt a Ru-core, a Cu-shell structure, with a constant Ru core diameter of 1.9 nm for all Ru : Cu compositions, while the Cu shell thickness increases with Cu content up to 0.9 nm. The formation of RuCuNPs thus proceeds through rapid decomposition of the Ru precursor into RuNPs of constant size followed by the reaction of the Cu precursor and agglomeration as a Cu shell. Thus, the different decomposition kinetics of precursors make possible the elaboration of core-shell NPs composed of two metals without chemical affinity.

  5. Legal forms of the commercial organizations

    Directory of Open Access Journals (Sweden)

    Sedov I.A.

    2017-01-01

    Full Text Available this article discusses the various forms of commercial companies. The paper focuses on the process of incorporation of the limited liability company. The author describes contradictions of the new companies incorporation process at the present stage of market relations development in Russia.

  6. Taxation and forms of organizing business activities

    Directory of Open Access Journals (Sweden)

    Đinđić Srđan

    2013-01-01

    Full Text Available This paper takes sample tax regimes and tendencies from the developed countries in the EU-15 and the USA, and uses them to analyse the influence of taxation on the choice of organizational form of profit-oriented entities in Serbia. In order to understand how the procedure of taxation affects the sphere of business decision-making it is necessary to focus on the tax status of business losses and valorization and the effects of the double taxation of dividends. The rule of successive deduction of losses ensures the fiscally transparent entity receives a tax saving in the form of a reduction of the present value of the total paid tax. Meanwhile the corporation is handicapped because it postpones loss deductions, that is, it postpones tax saving, which directly influences the level of the present value of saved tax. The global trend of gradually moving from the classical system towards shareholder relief provision, above all in the form of a reduced withholding tax rate on dividends, has two opposing features: it simplifies the tax procedure while neglecting the distributional aims (consequences of taxation. The analysis of a particular practical example from the Serbian tax context enables us to draw a conclusion in relation to the relative taxes paid by entrepreneurs versus enterprises. The developed countries favour fiscally transparent entities, whereas Serbia allocates tax privileges to enterprises.

  7. Organic filler from golden apple snails shells to improve the silicone rubber insulator properties

    Science.gov (United States)

    Tepsila, Sujirat; Suksri, Amnart

    2018-02-01

    This paper investigates the effect of an addition of filler compound using golden apple snail shell as an organic filler to the silicone rubber insulator. The filler obtained from golden apple snail shell is found mostly contained calcium carbonate. The organic calcium carbonate (CaCO3) with particle size of 45, 75, 100 and 300 micron were prepared. Sample of silicone rubber that were filled with fillers were tested under ASTM D638-02a type standard for mechanical test. Also, electrical test such as I-V characteristics (ASTM D257-07) and dry arc test according to ASTM D495-14 have been performed. The results revealed that using larger particle size of organic filler obtained from the golden apple snail shell resulted to higher value of dielectric constant as well as higher dielectric strength. Also, the filler helps slow down the tracking activity at an insulator surface due to its crystals of calcium carbonate. However, when using excessive amount of filler, the sample will have a drawbacks in mechanical properties. By using agriculture waste as a filler compound, one can reduced the usage of commercial CaCO3 as an inorganic materials and to lower the investment cost to a final silicone rubber product.

  8. A Practitioner’s View of the Future of Organization Design: Future Trends and Implications for Royal Dutch Shell

    Directory of Open Access Journals (Sweden)

    Jan Steinmetz

    2012-05-01

    Full Text Available Humanity is facing an increasingly challenging outlook for energy needs and the planet. Royal Dutch Shell is a global group of energy and petrochemicals companies with approximately 100,000 employees in more than 80 countries that is committed to help meet the challenges of the new energy environment in a sustainable and responsible manner. My statement will present some of the future trends and possible implications which can be seen for organization design within Royal Dutch Shell (Shell and which are applicable to other large, complex enterprises. It largely represents the personal views and reflections of a practitioner both inside and outside of Shell’s human resources (HR function in the United States. Using the lens of organization design, we will review the themes that emerged from the Shell Energy 2025 and Shell Energy 2050 global scenarios. Next, we will discuss Shell’s previous experience, challenges, and issues related to organization design, and how the recent redesign of the HR function has provided wider space and crisper focus to meet the challenges of the future. Finally, we will review the design challenges that the future trends impose upon the organization design practice. Although these challenges and implications are derived from experience working in Shell and its joint ventures, they are not confined solely to Shell. Because many of the challenges discussed below would benefit from scholarly research, the statement represents a practitioner’s view on how the future of organization design may play out.

  9. TiO2@C Core-Shell Nanoparticles Formed by Polymeric Nano-Encapsulation

    Directory of Open Access Journals (Sweden)

    Mitra eVasei

    2014-07-01

    Full Text Available TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e. the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN around each TiO2 nanoparticles. Upon pyrolisis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  10. Analysis of organic carbon and moisture in Hanford single-shell tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

    1995-05-01

    This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford.

  11. Analysis of organic carbon and moisture in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

    1995-05-01

    This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford

  12. Radionuclides, Trace Metals, and Organic Compounds in Shells of Native Freshwater Mussels Along the Hanford Reach of the Columbia River: 6000 Years Before Present to Current Times

    Energy Technology Data Exchange (ETDEWEB)

    B. L. Tiller; T. E. Marceau

    2006-01-25

    This report documents concentrations of radionuclides, trace metals, and semivolatile organic compounds measured in shell samples of the western pearl shell mussel collected along the Hanford Reach of the Columbia River.

  13. Effectiveness of Rotation-free Triangular and Quadrilateral Shell Elements in Sheet-metal Forming Simulations

    International Nuclear Information System (INIS)

    Brunet, M.; Sabourin, F.

    2005-01-01

    This paper is concerned with the effectiveness of triangular 3-node shell element without rotational d.o.f. and the extension to a new 4-node quadrilateral shell element called S4 with only 3 translational degrees of freedom per node and one-point integration. The curvatures are computed resorting to the surrounding elements. Extension from rotation-free triangular element to a quadrilateral element requires internal curvatures in order to avoid singular bending stiffness. Two numerical examples with regular and irregular meshes are performed to show the convergence and accuracy. Deep-drawing of a box, spring-back analysis of a U-shape strip sheet and the crash simulation of a beam-box complete the demonstration of the bending capabilities of the proposed rotation-free triangular and quadrilateral elements

  14. Smaller calcite lattice deformation caused by occluded organic material in coccoliths than in mollusk shell

    DEFF Research Database (Denmark)

    Frølich, Simon; Sørensen, Henning Osholm; Hakim, Sepideh Sadat

    2015-01-01

    The growth and nucleation of biominerals are directed and affected by associated biological molecules. In this paper, we investigate the influence of occluded biomolecules on biogenic calcite from the coccolithophorid Pleurochrysis carterae and from chalk, a rock composed predominantly of fossil....... Two heating cycles allow us to differentiate the effects of thermal agitation and organic molecules. Single peak analysis and Rietveld refinement were combined to show significant differences resulting from the occluded biomolecules on the mineral phase in biogenic calcite in the mollusk shell...

  15. Corrective action strategy for single-shell tanks containing organic chemicals

    International Nuclear Information System (INIS)

    Turner, D.A.

    1993-08-01

    A Waste Tank Organic Safety Program (Program) Plan is to be transmitted to the U.S. Department of Energy, Richland Operations Office (RL) for approval by December 31, 1993. In April 1993 an agreement was reached among cognizant U.S. Department of Energy - Headquarters (HQ), RL and Westinghouse Hanford Company (WHC) staff that the Program Plan would be preceded by a ''Corrective Action Strategy,'' which addressed selected planning elements supporting the Program Plan. The ''Corrective Action Strategy'' would be reviewed and consensus reached regarding the planning elements. A Program Plan reflecting this consensus would then be prepared. A preliminary ''corrective action strategy'' is presented for resolving the organic tanks safety issue based on the work efforts recommended in the ISB (Interim Safety Basis for Hanford Site tank farm facilities). A ''corrective action strategy'' logic was prepared for individual SSTs (single-shell tanks), or a group of SSTs having similar characteristics, as appropriate. Four aspects of the organic tanks safety issue are addressed in the ISB: SSTs with the potential for combustion in the tank's headspace; combustion of a floating organic layer as a pool fire; surface fires in tanks that formerly held floating organic layers; SSTs with the potential for organic-nitrate reactions. A preliminary ''corrective action strategy'' for each aspect of the organic tanks safety issue is presented

  16. Expansion of X-ray form factor for close shell using uncorrelated wave function

    Energy Technology Data Exchange (ETDEWEB)

    AL-Robayi, Enas M. [Babylon University , College of Science for Women, laser Physics Department, Hilla (Iraq)

    2013-12-16

    The atomic scattering factor has been studied for Be+ve, and B+2ve ions using the uncorrelated wave function (Hartree-Fock (HF)) for inter particle electronic shells. The physical importance of this factor appears in its relation to several important atomic properties as, the coherent scattering intensity, the total scattering intensity, the incoherent scattering function, the coherent scattering cross section, the total incoherent cross section, the nuclear magnetic shielding constant, the geometrical structure factor. Also there is one atomic properties the one particle radial density distribution function D(r)has been studied using the partitioning technique.

  17. Nacre in Abalone Shell: Organic and Inorganic Components and their effects to the Formation and Mechanical Properties

    Science.gov (United States)

    Lopez, Maria Isabel

    Abalone nacre is a natural composite that exhibits exceptional mechanical properties due to its organization that extends to various levels of hierarchy. Most of the toughness has been attributed by nacre's third level of hierarchy which entitles a brick and mortar structure consisting of the CaCO3 tiles and organic interlayers. However, there are other important components that are vital to the structure and strength of red abalone nacre. The process of formation of red abalone (Haliotis rufescens) nacre following periods of growth interruption, taking into consideration important environmental factors (access to food and temperature) and to employ high-magnification characterization techniques (scanning electron microscopy and transmission electron microscopy) to better understand how the soft tissue (e.g. epithelium and organic membrane) influences the mechanism of growth. The structure-property relationship of red abalone (Haliotis rufescens) nacre, focusing in the individual constituents (isolated mineral and isolated organic component) and comparing that to the integrated structure. Mechanical tests such as, tensile tests, microscratch, and nanoindentation is performed on the isolated organic constituent and the isolated mineral of red abalone shell. Specimens are characterized by SEM to verify the toughening and deformation mechanisms. Results obtained from the isolated mineral validate the importance of the organic constituent as the mechanical properties decline greatly as the organic component is removed. This approach forms a general picture of the mechanical response of the organic interlayers and growth bands and their effect on the toughness of the abalone nacre. These results are significant to understand the important characteristics of abalone nacre, such as the structure and mechanical properties, and an attempt to aid in improving the latest attempts to produce novel nacre-inspired materials.

  18. Contaminant Release from Residual Waste in Closed Single-Shell Tanks and Other Waste Forms Associated with the Tanks

    International Nuclear Information System (INIS)

    Deutsch, William J.

    2008-01-01

    This chapter describes the release of contaminants from the various waste forms that are anticipated to be associated with closure of the single-shell tanks. These waste forms include residual sludge or saltcake that will remain in the tanks after waste retrieval. Other waste forms include engineered glass and cementitious materials as well as contaminated soil impacted by previous tank leaks. This chapter also describes laboratory testing to quantify contaminant release and how the release data are used in performance/risk assessments for the tank waste management units and the onsite waste disposal facilities. The chapter ends with a discussion of the surprises and lessons learned to date from the testing of waste materials and the development of contaminant release models

  19. Form factors and transition charge densities for the quadrupole and hexadecupole electroexcitation of some 2p-1f shell nuclei

    International Nuclear Information System (INIS)

    Raina, P.K.; Sharma, S.K.

    1986-12-01

    A microscopic description of the recent data on the inelastic electron scattering form factors for the O + → 2 + as well as O + → 4 + transitions in some doubly even Ti, Cr, Fe, Ni and Zn isotopes is attempted in terms of the projected Hartree-Fock-Bogolubov wave functions resulting from realistic effective interactions operating in the 2p-1f shell. It turns out that the available form factor data out to about 2.5fm -1 can be reproduced in most of the cases in a fairly satisfactory manner in terms of reasonable values of effective charges. It is seen that the empirical transition charge densities in Ni and Zn isotopes extracted from the form factor data via the Fourier-Bessel analysis play a decisive role vis-a-vis the choice of a model of core-polarization contributions. (author). 28 refs, 8 figs, 2 tabs

  20. Challenges to the Application of δ15N measurements of the organic fraction of archaeological and fossil mollusk shells to assess paleoenvironmental change.

    Science.gov (United States)

    Andrus, C. F. T.

    2015-12-01

    Nitrogen isotope analysis of the organic fraction of mollusk shells is beginning to be applied to questions of past anthropogenic and natural environmental variation using samples from archaeological and fossil deposits. Fairly extensive proxy validation research has been conducted in the past decade, documenting the relationship between the δ15N of ambient particulate organic matter, mollusk soft tissues, and shell organic matrix. However, comparatively little research has addressed the potential effects of taphonomy and diagenesis on these proxy records. Assessing archaeological samples are especially complex in that humans may have transported and/or cooked shell prior to deposition. Shell δ15N data will be presented from modern and archaeological oyster (Crassostrea virginica) and clam shell (Mercenaria spp.) of various late Holocene ages and late Cretaceous Crassatellites vadosus shells. Archaeological shells show some loss of organic matter over time, yet some Cretaceous shells retain enough matrix to permit δ15N analysis. The Cretaceous samples required concentration of the remaining organic matrix by removing carbonate via acid pretreatment prior to EA-IRMS analysis, but modern and archaeological shells had sufficient organic matrix to permit analysis without acid pretreatment. The δ15N data from the archaeological shells do not display obvious alteration from the loss of organic matrix. The results of cooking experiments performed on modern oyster shells also indicate little alteration of δ15N values, unless the shell was heated to the point of disintegration. While these experiments indicate promise for the application of δ15N analysis of shell organic matter, the results are incomplete and lack ideal control over initial δ15N values in ancient samples used for comparisons. Future research, perhaps focused on compound-specific δ15N analysis and additional controlled experiments on moderns shells, may improve this assessment.

  1. Graphitic carbon nitride nanosheet@metal-organic framework core-shell nanoparticles for photo-chemo combination therapy

    Science.gov (United States)

    Chen, Rui; Zhang, Jinfeng; Wang, Yu; Chen, Xianfeng; Zapien, J. Antonio; Lee, Chun-Sing

    2015-10-01

    Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX and the PDT effect of g-C3N4 nanosheets can lead to considerably enhanced efficacy. Furthermore, the red fluorescence of DOX and the blue fluorescence of g-C3N4 nanosheets provide the additional function of dual-color imaging for monitoring the drug release process.Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX

  2. The Empirical Survey on the Effect of Using Media in Explosive Forming of Tubular Shells

    OpenAIRE

    V. Hadavi; J. Zamani; R. Hosseini

    2009-01-01

    The special and unique advantages of explosive forming, has developed its use in different industries. Considering the important influence of improving the current explosive forming techniques on increasing the efficiency and control over the explosive forming procedure, the effects of air and water as the energy-conveying medium, and also their differences will be illustrated in this paper. Hence, a large number of explosive forming tests have been conducted on two sizes...

  3. Organic migration forms of radionuclides and performance assessment

    International Nuclear Information System (INIS)

    Xu Gouqing

    2010-01-01

    Much attention is paid to inorganic migration forms of radionuclides in groundwater during performance assessment before and organic migration forms, are seldom noted. Therefore some question may come into confidence level in performance assessment. This paper mainly discusses the distribution of organic substances in groundwater and their potential effect on performance assessment. The results obtained in recent years show that clay rocks are generally impermeable to water, but in some cases the interstitial water may be observed in them and the concentration of DOC, HA and FA is rather higher than that in granitic groundwater. The concentration of DOC is relatively low in granitic groundwater, but up to now the effect of organic migration forms of radionuclides in granitic groundwater on performance assessment is not finally determined, it is necessary to make further investigations. (authors)

  4. How the turtle forms its shell: a paracrine hypothesis of carapace formation.

    Science.gov (United States)

    Cebra-Thomas, Judith; Tan, Fraser; Sistla, Seeta; Estes, Eileen; Bender, Gunes; Kim, Christine; Riccio, Paul; Gilbert, Scott F

    2005-11-15

    We propose a two-step model for the evolutionary origin of the turtle shell. We show here that the carapacial ridge (CR) is critical for the entry of the ribs into the dorsal dermis. Moreover, we demonstrate that the maintenance of the CR and its ability to attract the migrating rib precursor cells depend upon fibroblast growth factor (FGF) signaling. Inhibitors of FGF allow the CR to degenerate, with the consequent migration of ribs along the ventral body wall. Beads containing FGF10 can rearrange rib migration in the chick, suggesting that the CR FGF10 plays an important role in attracting the rib rudiments. The co-ordinated growth of the carapacial plate and the ribs may be a positive feedback loop (similar to that of the limbs) caused by the induction of Fgf8 in the distal tips of the ribs by the FGF10-secreting mesenchyme of the CR. Once in the dermis, the ribs undergo endochrondral ossification. We provide evidence that the ribs act as signaling centers for the dermal ossification and that this ossification is due to bone morphogenetic proteins secreted by the rib. Thus, once the ribs are within the dermis, the ossification of the dermis is not difficult to achieve. This relatively rapid means of carapace formation would allow for the appearance of turtles in the fossil record without obvious intermediates. Copyright 2005 Wiley-Liss, Inc.

  5. Method of fabricating nested shells and resulting product

    Science.gov (United States)

    Henderson, Timothy M.; Kool, Lawrence B.

    1982-01-01

    A multiple shell structure and a method of manufacturing such structure wherein a hollow glass microsphere is surface treated in an organosilane solution so as to render the shell outer surface hydrophobic. The surface treated glass shell is then suspended in the oil phase of an oil-aqueous phase dispersion. The oil phase includes an organic film-forming monomer, a polymerization initiator and a blowing agent. A polymeric film forms at each phase boundary of the dispersion and is then expanded in a blowing operation so as to form an outer homogeneously integral monocellular substantially spherical thermoplastic shell encapsulating an inner glass shell of lesser diameter.

  6. The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties

    NARCIS (Netherlands)

    Marie, B.; Jackson, D.J.; Ramos-Silva, P.; Zanella-Cléon, I.; Guichard, N.; Marin, F.

    2013-01-01

    Proteins that are occluded within the molluscan shell, the so-called shell matrix proteins (SMPs), are an assemblage of biomolecules attractive to study for several reasons. They increase the fracture resistance of the shell by several orders of magnitude, determine the polymorph of CaCO(3)

  7. The dorsal shell wall structure of Mesozoic ammonoids

    Directory of Open Access Journals (Sweden)

    Gregor Radtke

    2017-03-01

    Full Text Available The study of pristine preserved shells of Mesozoic Ammonoidea shows different types of construction and formation of the dorsal shell wall. We observe three major types: (i The vast majority of Ammonoidea, usually planispirally coiled, has a prismatic reduced dorsal shell wall which consists of an outer organic component (e.g., wrinkle layer, which is the first layer to be formed, and the subsequently formed dorsal inner prismatic layer. The dorsal mantle tissue suppresses the formation of the outer prismatic layer and nacreous layer. With the exception of the outer organic component, secretion of a shell wall is omitted at the aperture. A prismatic reduced dorsal shell wall is always secreted immediately after the hatching during early teleoconch formation. Due to its broad distribution in (planispiral Ammonoidea, the prismatic reduced dorsal shell wall is probably the general state. (ii Some planispirally coiled Ammonoidea have a nacreous reduced dorsal shell wall which consists of three mineralized layers: two prismatic layers (primary and secondary dorsal inner prismatic layer and an enclosed nacreous layer (secondary dorsal nacreous layer. The dorsal shell wall is omitted at the aperture and was secreted in the rear living chamber. Its layers are a continuation of an umbilical shell doubling (reinforcement by additional shell layers that extends towards the ventral crest of the preceding whorl. The nacreous reduced dorsal shell wall is formed in the process of ontogeny following a prismatic reduced dorsal shell wall. (iii Heteromorph and some planispirally coiled taxa secrete a complete dorsal shell wall which forms a continuation of the ventral and lateral shell layers. It is formed during ontogeny following a prismatic reduced dorsal shell wall or a priori. The construction is identical with the ventral and lateral shell wall, including a dorsal nacreous layer. The wide distribution of the ability to form dorsal nacre indicates that it is

  8. On the material properties of shell plate formed by line heating

    Directory of Open Access Journals (Sweden)

    Hyung Kyun Lim

    2017-01-01

    Full Text Available This paper is concerned with investigating the plastic material properties of steel plate formed by line heating method, and is aimed at implementing more rational design considering the accidental limit states such as collision or grounding. For the present study, line heating test for marine grade steel plate has been carried out with varying plate thickness and heating speed, and then microscopic examination and tensile test have been carried out. From the microscopic, it is found that the grain refined zones like ferrite and pearlite are formed all around the heat affected zone. From the tensile test results, it is seen that yield strength, tensile strength, fracture strain, hardening exponent and strength coefficient vary with plate thickness and heat input quantity. The formulae relating the material properties and heat input parameter should be, therefore, derived for the design purpose considering the accidental impact loading. This paper ends with describing the extension of the present study.

  9. Form and formation of flares and parabolae based on new observations of the internal shell structure in lytoceratid and perisphinctid ammonoids

    Directory of Open Access Journals (Sweden)

    Gregor Radtke

    2016-08-01

    Full Text Available The ultrastructure of pristine shells of Jurassic and Cretaceous lytoceratid and perisphinctid ammonoids indicates that flares and parabolae represent homologous structures. Both mark an interruption of shell growth. We dismiss earlier interpretations of parabolae as actual aperture, relics of resorbed apophyses or superstructure of the musculature associated to a semi-internal shell. Instead we propose an episodic growth model including several growth stops at the aperture during the formation of a frill-like aperture for parabolae and flares. Such an aperture is composed of the outer prismatic layer, the nacreous layer and an apertural prismatic coating. Here, we observed the apertural prismatic coating for the first time as an integral part of flares and parabolae. The apertural prismatic coating covers only the inner surface of the frill and was secreted by a permanent mantle cover indicating a prolonged period without the production of new shell material. Parabolae differ from flares by their general shape and the presence of ventro-lateral parabolic notches and nodes. The notches were formed by folding of the frill and had the potential to form semi-open spines. The corresponding parabolic nodes are caused by an outward swelling of the shell-secreting mantle tissue producing new shell material at the position of the folding. New shell material that belongs to the conch tube is attached to the base of flares and parabolae after withdrawal of the mantle edge representing the continuation of shell growth. Usually, the frilled aperture associated with flares and parabolae were removed during lifetime. This study reports on flares in Argonauticeras for the first time. In this genus they are typically associated with varices.

  10. Stable tetrabenzo-Chichibabin's hydrocarbons: Tunable ground state and unusual transition between their closed-shell and open-shell resonance forms

    KAUST Repository

    Zeng, Zebing; Sung, Youngmo; Bao, Nina; Tan, Davin; Lee, Richmond; Zafra, José Luis; Lee, Byungsun; Ishida, Masatoshi; Ding, Jun; Lõ pez Navarrete, Juan Teodomiro; Li, Yuan; Zeng, Wangdong; Kim, Dongho; Huang, Kuo-Wei; Webster, Richard D.; Casado, Juan; Wu, Jishan

    2012-01-01

    -shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin's hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure

  11. Considerations about the present forms of work organization in schools

    Directory of Open Access Journals (Sweden)

    Celso João Ferretti

    2011-10-01

    Full Text Available The article discusses the relationships between the present forms of work organization in schools and the changes that took place in the work organization on contemporary capitalism since those changes played a strong influence on the Brazilian educationalreform of the 90’s. The school administration was very much affected by it on the basis of a functional articulation involving centralization/decentralization strategies and the adoption of a managerial model of work organization. The result is the intensification and the relative loss of control of teachers over their own work and, at the same time, being made responsible for the success or the failure of the reform implementation. This also causes resistances, dissimulations, and the deliberate or the conformist adhesions, which can motivate conflicts. For this reason it is discussed the Ball’s propositions regarding the micro-politics of the school.

  12. Tetra- and hexavalent uranium forms bidentate-mononuclear complexes with particulate organic matter in a naturally uranium-enriched peatland

    DEFF Research Database (Denmark)

    Mikutta, Christian; Langner, Peggy; Bargar, John R.

    2016-01-01

    Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work...... of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ∼3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. Our data indicates that U(IV/VI) complexation by natural organic matter prevents...... the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI)....

  13. Performance effect of multiple control forms in a Lean organization

    DEFF Research Database (Denmark)

    Kristensen, Thomas Borup; Israelsen, Poul

    2012-01-01

    Over the last decades Lean has developed into a prominent management philosophy reaching beyond shop floor tools. However, substantial support of performance effects from Lean is still scarce and at best with mixed results. Recently, research has turned its focus towards perceiving Lean...... as a control package. In this paper we present statistical support for enhanced performance coming from Lean. Furthermore, our results strongly support the perception of Lean as a set of multiple control forms (output, behavioral, and social controls) that complement each other. Therefore, performance...... is increased if the average level of control forms is increased, and performance is further increased if the control forms are balanced at the same level representing a complementary effect between them. Our data are archival data spanning multiple years in a strong Lean organization. The dependent performance...

  14. Constructing Taxonomies to Identify Distinctive Forms of Primary Healthcare Organizations

    Science.gov (United States)

    Borgès Da Silva, Roxane; Pineault, Raynald; Hamel, Marjolaine; Levesque, Jean-Frédéric; Roberge, Danièle; Lamarche, Paul

    2013-01-01

    Background. Primary healthcare (PHC) renewal gives rise to important challenges for policy makers, managers, and researchers in most countries. Evaluating new emerging forms of organizations is therefore of prime importance in assessing the impact of these policies. This paper presents a set of methods related to the configurational approach and an organizational taxonomy derived from our analysis. Methods. In 2005, we carried out a study on PHC in two health and social services regions of Quebec that included urban, suburban, and rural areas. An organizational survey was conducted in 473 PHC practices. We used multidimensional nonparametric statistical methods, namely, multiple correspondence and principal component analyses, and an ascending hierarchical classification method to construct a taxonomy of organizations. Results. PHC organizations were classified into five distinct models: four professional and one community. Study findings indicate that the professional integrated coordination and the community model have great potential for organizational development since they are closest to the ideal type promoted by current reforms. Conclusion. Results showed that the configurational approach is useful to assess complex phenomena such as the organization of PHC. The analysis highlights the most promising organizational models. Our study enhances our understanding of organizational change in health services organizations. PMID:24959575

  15. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics

    Directory of Open Access Journals (Sweden)

    N. Sareen

    2010-02-01

    Full Text Available We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The kinetics were characterized using UV-Vis spectrophotometry. The results suggest that the bimolecular reaction of methylglyoxal with an ammonium or hydronium ion is the rate-limiting step for the formation of light-absorbing species, with kNH4+II=5×10−6 M−1 min−1 and kH3O+II≤10−3 M−1 min−1. Evidence of aldol condensation products and oligomeric species up to 759 amu was found using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS. Tentative identifications of carbon-nitrogen species and a sulfur-containing compound were also made using Aerosol-CIMS. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit significant surface tension depression. These observations add to the growing body of evidence that dicarbonyl compounds may form secondary organic material in the aerosol aqueous phase, and that secondary organic aerosol formation via heterogeneous processes may affect seed aerosol properties.

  16. Forms of treaties for organization of innovative goods marketing

    Directory of Open Access Journals (Sweden)

    Veronika A. Per’kova

    2016-03-01

    Full Text Available Objective to identify various ways of innovative products marketing as well as the contract forms most demanded by innovative business that are used in innovative products marketing. Methods the methodological basis of the study was both general scientific methods systemic structural dialectical formal logical analysis synthesis deduction induction etc. methods the method of a philosophical nature and specific methods the method of dogmatic analysis interpretation of legal norms and legal structures formallegal structuralfunctional. Results it was stated that marketing is the final stage of innovation process which is commercializing the innovation i.e. obtains profit through its sales therefore it is important to allocate the contractual structures that mediate sales and distribution of innovative products. It is shown that using contractual forms of organization of innovative products sales the parties determine the marketing scheme for the produced goods and thereby create modify and stop the property relations of the parties thus the contracts whose ultimate goal of signing and execution is marketing of innovations can be identified as organizational by their legal nature. The contractual forms that mediate marketing of innovative products include the contracts of sale agency agreements presented in the Russian civil legislation by the contract of agency contract of commission and agency agreements as well as franchising agreements. Besides in the practice of civil turnover there are mixed contracts contracts based on the freedom principle and the connecting elements of several contractual structures. Mixed contracts include distributor contracts. Scientific novelty for the first time the article comprehensively defines contractual forms of organization of innovative products marketing depending on the means of its distribution and describes the legal nature of emerging relationships for innovations marketing. Practical significance the main

  17. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-01-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells

  18. Designing of an artificial light energy converter in the form of short-chain dyad when combined with core-shell gold/silver nanocomposites.

    Science.gov (United States)

    Dutta Pal, Gopa; Paul, Somnath; Bardhan, Munmun; De, Asish; Ganguly, Tapan

    2017-06-05

    UV-vis absorption, steady state and time resolved fluorescence and absorption spectroscopic investigations demonstrate that the short chain dyad MNTMA when combined with gold-silver core-shell (Au@Ag) nanocomposite , forms elongated conformers in the excited state whereas for the dyad - Ag (spherical) system the majority of dyads remains in a folded conformation. In the dyad-core-shell nanocomposite system, energy wasting charge recombination rate slows down primarily due to elongated conformation and thus it may be anticipated that this hybrid nanocomposite system may serve as a better light energy conversion device. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  20. The rates of charge separation and energy destructive charge recombination processes within an organic dyad in presence of metal-semiconductor core shell nanocomposites.

    Science.gov (United States)

    Mandal, Gopa; Bhattacharya, Sudeshna; Das, Subrata; Ganguly, Tapan

    2012-01-01

    Steady state and time resolved spectroscopic measurements were made at the ambient temperature on an organic dyad, 1-(4-Chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA), where the donor 1-methoxynaphthalene (1 MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond, in presence of Ag@TiO2 nanoparticles. Time resolved fluorescence and absorption measurements reveal that the rate parameters associated with charge separation, k(CS), within the dyad increases whereas charge recombination rate k(CR) reduces significantly when the surrounding medium is changed from only chloroform to mixture of chloroform and Ag@TiO2 (noble metal-semiconductor) nanocomposites. The observed results indicate that the dyad being combined with core-shell nanocomposites may form organic-inorganic nanocomposite system useful for developing light energy conversion devices. Use of metal-semiconductor nanoparticles may provide thus new ways to modulate charge recombination processes in light energy conversion devices. From comparison with the results obtained in our earlier investigations with only TiO2 nanoparticles, it is inferred that much improved version of light energy conversion device, where charge-separated species could be protected for longer period of time of the order of millisecond, could be designed by using metal-semiconductor core-shell nanocomposites rather than semiconductor nanoparticles only.

  1. Effect of physicochemical form on copper availability to aquatic organisms

    International Nuclear Information System (INIS)

    Harrison, F.L.

    1983-11-01

    Copper concentration and speciation were determined in influent and effluent waters collected from eight power stations that used copper alloys in their cooling systems. Quantities of copper associated with particles, colloids, and organic and inorganic ligands differed with the site, season, and mode of operation of the station. Under normal operating conditions, the differences between influent and effluent waters were generally small, and most of the copper was in bound (complexed) species. However, copper was high in concentration and present in labile species during start-up of water circulation through some cooling systems and during changeover from an open- to closed-cycle operation. Copper sensitivity of selected ecologically and economically important aquatic organisms was also evaluted. Our primary emphasis was on acute effects and most of the testing was performed under controlled laboratory conditions. However, sublethal effects of copper on a population of bluegills living in a power station cooling lake containing water of low pH were also assessed. The toxic response to copper differed with the species and life stage of the animal and with the chemical form of copper in the water

  2. Postmodern organization and new forms of organizational control

    Directory of Open Access Journals (Sweden)

    Lončar Dragan

    2005-01-01

    Full Text Available This article displays post bureaucratic organisational concept as an adequate representative of all emerging organizational forms which are natural result of persistent initiatives to flexibly and intensify working process. Under this term we assume all budding ‘sub-representatives' such as Total Quality Management (TQM, Just-in-time concept (JIT, network systems and joint ventures, virtual organizations, teamwork and other related structures. The author concludes that main virtues of new organizational paradigm are flexibility, decentralization, higher employee empowerment, knowledge and information sharing, responsibility for the system as a whole and permanent learning. On the other hand, some downsides become obvious. Those are danger from anarchy, responsibility and stress, greater employees' insecurity and resistance to new practices. Furthermore, the paper shed light on power and identity dynamics through the lens of improved and still intentional methods of organizational control. The main argument is that compulsive desire to control never fades away, only the methods of control takes different, more advanced forms through organizational culture, vocabulary and discourses monitoring at a distance, peer evaluation inside teams, employee selection and many others.

  3. Enterobacteriaceae and related organisms recovered from biofilms in a commercial shell egg processing facility.

    Science.gov (United States)

    During six visits, biofilms from egg contact and non-contact surfaces in a commercial shell egg processing facility were sampled. Thirty-five different sample sites were selected: Pre-wash and wash tanks (lids, screens, tank interiors, nozzle guards), post-wash spindles, blower filters, belts (far...

  4. Flexible 3D Fe@VO2 core-shell mesh: A highly efficient and easy-recycling catalyst for the removal of organic dyes.

    Science.gov (United States)

    Li, Jing; Wang, Ruoqi; Su, Zhen; Zhang, Dandan; Li, Heping; Yan, Youwei

    2018-10-01

    Nowadays, it is extremely urgent to search for efficient and effective catalysts for water purification due to the severe worldwide water-contamination crises. Here, 3D Fe@VO 2 core-shell mesh, a highly efficient catalyst toward removal of organic dyes with excellent recycling ability in the dark is designed and developed for the first time. This novel core-shell structure is actually 304 stainless steel mesh coated by VO 2 , fabricated by an electrophoretic deposition method. In such a core-shell structure, Fe as the core allows much easier separation from the water, endowing the catalyst with a flexible property for easy recycling, while VO 2 as the shell is highly efficient in degradation of organic dyes with the addition of H 2 O 2 . More intriguingly, the 3D Fe@VO 2 core-shell mesh exhibits favorable performance across a wide pH range. The 3D Fe@VO 2 core-shell mesh can decompose organic dyes both in a light-free condition and under visible irradiation. The possible catalytic oxidation mechanism of Fe@VO 2 /H 2 O 2 system is also proposed in this work. Considering its facile fabrication, remarkable catalytic efficiency across a wide pH range, and easy recycling characteristic, the 3D Fe@VO 2 core-shell mesh is a newly developed high-performance catalyst for addressing the universal water crises. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Organ transplant education: the way to form altruistic behaviors among secondary school students toward organ donation.

    Science.gov (United States)

    Milaniak, I; Przybylowski, P; Wierzbicki, K; Sadowski, J

    2010-01-01

    Organ shortage for transplantation is a crucial problem all over the world. Educational intervention may appeal to young people's altruism, increasing organ donation and decreasing the opposition. This study assessed the influence of an educational program, including organ donation and transplantation, to forming students' altruistic behaviors. A total 680 students of 25 secondary schools were asked about their attitudes, intentions, and knowledge about organ donation and transplantation from September 2008 to June 2009 during a 45-minute lesson. In this study, altruistic attitudes were measured through questions about the expression of will to give organs away after death; to give one kidney to relatives; to use the bone marrow from a foreign person; and to sign a donor card. Attitudes were assessed by questions about conversations with relatives, an evaluation of the educational project. More than 1500 donor card were distributed and more than 90% of students wanted to sign them; 73.6% agreed to sign a donor card with the ID card. Before the project, only 8% of students had a signed donor card. Almost everybody is ready to agree to give their organs after death (80.6% male; 92.2% female), or to relatives (100% male; 90.38% female), or bone marrow (80% male; 55.7% female). The students talked to their family, informing them about their decision (36.9% male; 45.9% female). The proposed educational project successfully encouraged teenagers to make well-considered choices with regard to organ donation and created altruistic behaviors.

  6. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    Science.gov (United States)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  7. Comparison of shell-and-tube with plate heat exchangers for the use in low-temperature organic Rankine cycles

    International Nuclear Information System (INIS)

    Walraven, Daniël; Laenen, Ben; D’haeseleer, William

    2014-01-01

    Highlights: • Binary cycles for low-temperature heat sources are investigated. • Shell-and-tube and plate heat exchangers are modeled. • System optimization of the cycle variables and heat exchanger geometry. • ORCs with plate heat exchangers obtain in most cases higher efficiencies. - Abstract: Organic Rankine cycles (ORCs) can be used for electricity production from low-temperature heat sources. These ORCs are often designed based on experience, but this experience will not always lead to the most optimal configuration. The ultimate goal is to design ORCs by performing a system optimization. In such an optimization, the configuration of the components and the cycle parameters (temperatures, pressures, mass flow rate) are optimized together to obtain the optimal configuration of power plant and components. In this paper, the configuration of plate heat exchangers or shell-and-tube heat exchangers is optimized together with the cycle configuration. In this way every heat exchanger has the optimum allocation of heat exchanger surface, pressure drop and pinch-point-temperature difference for the given boundary conditions. ORCs with plate heat exchangers perform mostly better than ORCs with shell-and-tube heat exchangers, but one disadvantage of plate heat exchangers is that the geometry of both sides is the same, which can result in an inefficient heat exchanger. It is also shown that especially the cooling-fluid inlet temperature and mass flow have a strong influence on the performance of the power plant

  8. A NEW ORGANIZATIONAL FORM: STARFISH ORGANIZATION IN BUSINESS MODEL PERSPECTIVE

    OpenAIRE

    Aygul Turan; Aysegul Ozbebek Tunc

    2013-01-01

    As we moved into new economy, decentralization is a very powerful strategy day by day. A large number of traditional organizations are decentralized- some of them decentralize a part of the organization, some of them decentralize whole of the organizations- because of being a winner of the competition. As a decentralized organization, starfish organization is a new concept of the organizational science literature. In this framework, we focus on the starfish organization’s structure. The aim o...

  9. Trypanosoma brucei mitochondrial respiratome: Composition and organization in procyclic form

    KAUST Repository

    Acestor, Nathalie

    2011-05-24

    The mitochondrial respiratory chain is comprised of four different protein complexes (I-IV), which are responsible for electron transport and generation of proton gradient in the mitochondrial intermembrane space. This proton gradient is then used by F oF 1-ATP synthase (complex V) to produce ATP by oxidative phosphorylation. In this study, the respiratory complexes I, II, and III were affinity purified from Trypanosoma brucei procyclic form cells and their composition was determined by mass spectrometry. The results along with those that we previously reported for complexes IV and V showed that the respiratome of Trypanosoma is divergent because many of its proteins are unique to this group of organisms. The studies also identified two mitochondrial subunit proteins of respiratory complex IV that are encoded by edited RNAs. Proteomics data from analyses of complexes purified using numerous tagged component proteins in each of the five complexes were used to generate the first predicted protein-protein interaction network of the Trypanosoma brucei respiratory chain. These results provide the first comprehensive insight into the unique composition of the respiratory complexes in Trypanosoma brucei, an early diverged eukaryotic pathogen. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors

    Directory of Open Access Journals (Sweden)

    Wei-Ting eLai

    2016-02-01

    Full Text Available We report the first-of-its-kind, self-organized gate-stack heterostructure of Ge-dot/SiO2/SiGe-shell on Si fabricated in a single step through the selective oxidation of a SiGe nano-patterned pillar over a Si3N4 buffer layer on a Si substrate. Process-controlled tunability of the Ge-dot size (7.5−90 nm, the SiO2 thickness (3−4 nm, and as well the SiGe-shell thickness (2−15 nm has been demonstrated, enabling a practically-achievable core building block for Ge-based metal-oxide-semiconductor (MOS devices. Detailed morphologies, structural, and electrical interfacial properties of the SiO2/Ge-dot and SiO2/SiGe interfaces were assessed using transmission electron microscopy, energy dispersive x-ray spectroscopy, and temperature-dependent high/low-frequency capacitance-voltage measurements. Notably, NiGe/SiO2/SiGe and Al/SiO2/Ge-dot/SiO2/SiGe MOS capacitors exhibit low interface trap densities of as low as 3-5x10^11 cm^-2·eV^-1 and fixed charge densities of 1-5x10^11 cm^-2, suggesting good-quality SiO2/SiGe-shell and SiO2/Ge-dot interfaces. In addition, the advantage of having single-crystalline Si1-xGex shell (x > 0.5 in a compressive stress state in our self-aligned gate-stack heterostructure has great promise for possible SiGe (or Ge MOS nanoelectronic and nanophotonic applications.

  11. Shell Venster

    International Nuclear Information System (INIS)

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  12. Characterization and prediction of the backscattered form function of an immersed cylindrical shell using hybrid fuzzy clustering and bio-inspired algorithms.

    Science.gov (United States)

    Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique

    2018-02-01

    The acoustic scattering of a plane wave by an elastic cylindrical shell is studied. A new approach is developed to predict the form function of an immersed cylindrical shell of the radius ratio b/a ('b' is the inner radius and 'a' is the outer radius). The prediction of the backscattered form function is investigated by a combined approach between fuzzy clustering algorithms and bio-inspired algorithms. Four famous fuzzy clustering algorithms: the fuzzy c-means (FCM), the Gustafson-Kessel algorithm (GK), the fuzzy c-regression model (FCRM) and the Gath-Geva algorithm (GG) are combined with particle swarm optimization and genetic algorithm. The symmetric and antisymmetric circumferential waves A, S 0 , A 1 , S 1 and S 2 are investigated in a reduced frequency (k 1 a) range extends over 0.1form functions. This representation is used as a comparison criterion between the calculated form function by the analytical method and that predicted by the proposed approach on the one hand and is used to extract the predicted cut-off frequencies on the other hand. Moreover, the transverse velocity of the material constituting the cylindrical shell is extracted. The computational results show that the proposed approach is very efficient to predict the form function and consequently, for acoustic characterization purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Application of walnut shell modified with Zinc Oxide (ZnO nanoparticles in removal of natural organic matters (NOMs from aqueous solution

    Directory of Open Access Journals (Sweden)

    ali naghizadeh

    2015-10-01

    Full Text Available Background & Aims of the Study: Natural organic matters (NOMs are a mixture of chemically complex polyelectrolytes produced mainly from the decomposition of plant and animal residues that are present in all surface and groundwater resources. This paper evaluates the aqueous NOMs adsorption efficiency on walnut shell modified with Zinc Oxide (ZnO. Materials & Methods: This study examined the feasibility of removing NOMs from aqueous solutions using walnut shell modified with ZnO. The effects of NOMs concentration, modified walnut shell with ZnO dosage, and pH on adsorption of NOMs by modified walnut shell with ZnO were evaluated. Results: The adsorption capacities of modified walnut shell with ZnO in the best conditions were 37.93 mg/g. The results also demonstrated that adsorption capacity of NOMs on modified walnut shell with ZnO was higher in lower pHs due to significantly high electrostatic attraction exists between the positively charged surface of the adsorbent and negatively charged NOMs. And finally adsorption capacity decreases as adsorbent dose increase. Conclusion: Walnut shell modified with ZnO can be proposed as a natural adsorbent in the removal of NOMs from aqueous solutions

  14. NON-STANDARD FORMS OF EMPLOYMENT IN BUSINESS ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    A. E. Chekanov

    2013-01-01

    Full Text Available The article discusses the emergence and development of non-standard forms of employment and flexible working. The causes of their use reflects the results of research conducted in the workplace. Non-standard forms of employment and attractive today as they allow to expand the circle of the workforce.

  15. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A; Putschew, A; Jekel, M [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  16. Estimation Of Young’s Modulus Of Elesticity By The Form Finding Of Grid Shell Structures By The Dynamic Relaxation Method

    Directory of Open Access Journals (Sweden)

    Grančičová Ivana

    2015-12-01

    Full Text Available The paper is basically focused on the process of form finding by the dynamic relaxation method (DRM with the aid of computational tools that enable us to make many calculations with different inputs. There are many important input values with a significant impact on the course of the calculations and the resulting displacement of a structure. One of these values is Young’s modulus of elasticity. This value has a considerable impact on the final displacement of a grid shell structure and the resulting internal forces.

  17. Biomineral repair of abalone shell apertures.

    Science.gov (United States)

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Assessment of density functional theory for bonds formed between rare gases and open-shell atoms: a computational study of small molecules containing He, Ar, Kr and Xe

    International Nuclear Information System (INIS)

    Bertolus, Marjorie; Major, Mohamed; Brenner, Valerie

    2012-01-01

    The validity of the description of the DFT approximations currently implemented in plane wave DFT codes (LDA, GGA, meta-GGA, hybrid, GGA + empirical dispersion correction) for interactions between rare gases and open-shell atoms which form materials is poorly known. We have performed a first assessment of the accuracy of these functionals for the description of the bonds formed by helium, argon, krypton and xenon with various open-shell atoms. This evaluation has been done on model molecular systems for which precise experimental data are available and reference post-Hartree-Fock calculations (CCSD(T) using large basis sets) are feasible. The results show that when the rare gas atom shares density with the neighbouring atoms, the GGA functionals yield good geometries and qualitatively correct binding energies, even if these are quite significantly overestimated. The use of hybrid functionals enables us to obtain good geometries and satisfactory binding energies. For compounds in which the rare gas atom forms weak dispersive-like bonding, the accuracy yielded by the various functionals is not as good. No functional gives satisfactory binding energies for all the compounds investigated. Several GGA and hybrid functionals yield correct geometries, even if some isomers are not obtained. One GGA functional (PBE) yields qualitatively correct results for the compounds of the three rare gases and several hybrid functionals give satisfactory energies for He compounds. The addition of an empirical dispersive correction improves the results on association compounds, but several isomers are not found. (authors)

  19. Assessment of density functional theory for bonds formed between rare gases and open-shell atoms: a computational study of small molecules containing He, Ar, Kr and Xe.

    Science.gov (United States)

    Bertolus, Marjorie; Major, Mohamed; Brenner, Valérie

    2012-01-14

    The validity of the description of the DFT approximations currently implemented in plane wave DFT codes (LDA, GGA, meta-GGA, hybrid, GGA + empirical dispersion correction) for interactions between rare gases and open-shell atoms which form materials is poorly known. We have performed a first assessment of the accuracy of these functionals for the description of the bonds formed by helium, argon, krypton and xenon with various open-shell atoms. This evaluation has been done on model molecular systems for which precise experimental data are available and reference post-Hartree-Fock calculations (CCSD(T) using large basis sets) are feasible. The results show that when the rare gas atom shares density with the neighbouring atoms, the GGA functionals yield good geometries and qualitatively correct binding energies, even if these are quite significantly overestimated. The use of hybrid functionals enables us to obtain good geometries and satisfactory binding energies. For compounds in which the rare gas atom forms weak dispersive-like bonding, the accuracy yielded by the various functionals is not as good. No functional gives satisfactory binding energies for all the compounds investigated. Several GGA and hybrid functionals yield correct geometries, even if some isomers are not obtained. One GGA functional (PBE) yields qualitatively correct results for the compounds of the three rare gases and several hybrid functionals give satisfactory energies for He compounds. The addition of an empirical dispersive correction improves the results on association compounds, but several isomers are not found.

  20. Hybrid shell engineering of animal cells for immune protections and regulation of drug delivery: towards the design of "artificial organs".

    Science.gov (United States)

    Dandoy, Philippe; Meunier, Christophe F; Michiels, Carine; Su, Bao-Lian

    2011-01-01

    With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient.

  1. Hybrid shell engineering of animal cells for immune protections and regulation of drug delivery: towards the design of "artificial organs".

    Directory of Open Access Journals (Sweden)

    Philippe Dandoy

    Full Text Available BACKGROUND: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. METHODOLOGY/PRINCIPAL FINDINGS: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8 to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes. The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. CONCLUSIONS/SIGNIFICANCE: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin, substituting the declining organ functions of the patient.

  2. Franchising as an Integrated Form of Business Organization

    Directory of Open Access Journals (Sweden)

    Goncharenko Margaryta L.

    2018-03-01

    Full Text Available The article is aimed at substantiating the possibilities of using franchising for effective integration of enterprises in the market economy. A study on the essence of franchising relations with consideration of their historical formation and the current legal representation was carried out. Features of such relationships for franchisor and franchisees in the form of two business models of franchising together with different types of payments for franchise have been provided. It has been identified that franchising allows for integrative relations, which are established between the representatives of big and small business over a certain period of time, forming for each party some positive and negative moments of interaction. It is proposed to carry out an analysis of economic problems leading to delays in the formation of franchising schemes at both the State and regional levels.

  3. Effects of crystalline grain size and packing ratio of self-forming core/shell nanoparticles on magnetic properties at up to GHz bands

    International Nuclear Information System (INIS)

    Suetsuna, Tomohiro; Suenaga, Seiichi; Sakurada, Shinya; Harada, Koichi; Tomimatsu, Maki; Takahashi, Toshihide

    2011-01-01

    Self-forming core/shell nanoparticles of magnetic metal/oxide with crystalline grain size of less than 40 nm were synthesized. The nanoparticles were highly concentrated in an insulating matrix to fabricate a nanocomposite, whose magnetic properties were investigated. The crystalline grain size of the nanoparticles strongly influenced the magnetic anisotropy field, magnetic coercivity, relative permeability, and loss factor (tan δ=μ''/μ') at high frequency. The packing ratio of the magnetic metallic phase in the nanocomposite also influenced those properties. High permeability with low tan δ of less than 1.5% at up to 1 GHz was obtained in the case of the nanoparticles with crystalline grain size of around 15 nm with large packing ratio of the nanoparticles. - Research highlights: → Self-forming core/shell nanoparticles of magnetic metal/oxide were synthesized. → Crystalline grain size of the nanoparticle and its packing ratio were controlled. → Magnetic properties changed according to the size and packing ratio.

  4. Effect of Hydrophobic Chain Length on the Stability and Guest Exchange Behavior of Shell-Sheddable Micelles Formed by Disulfide-Linked Diblock Copolymers.

    Science.gov (United States)

    Fan, Haiyan; Li, Yixia; Yang, Jinxian; Ye, Xiaodong

    2017-10-19

    Reduction-responsive micelles hold enormous promise for application as drug carriers due to the fast drug release triggered by reducing conditions and high anticancer activity. However, the effect of hydrophobic chain length on the stability and guest exchange of reduction-responsive micelles, especially for the micelles formed by diblock copolymers containing single disulfide group, is not fully understood. Here, shell-sheddable micelles formed by a series of disulfide-linked copolymer poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-SS-PCL) containing the same chain length of PEG but different chain lengths of hydrophobic block PCL were prepared and well characterized. The influence of the chain length of hydrophobic PCL block on the stability and guest exchange of PEG-SS-PCL micelles was studied by the use of both dynamic laser light scattering (DLS) and fluorescence resonance energy transfer (FRET). The results show that longer PCL chains lead to a slower aggregation rate and guest exchange of micelles in the aqueous solutions containing 10 mM dithiothreitol (DTT). The cell uptake of the shell-sheddable PEG-SS-PCL micelles in vitro shows that the amount of internalization of dyes loaded in PEG-SS-PCL micelles increases with the chain length of hydrophobic PCL block investigated by flow cytometric analysis and confocal fluorescence microscopy.

  5. Room-temperature synthesis of core-shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins.

    Science.gov (United States)

    Lin, Guo; Gao, Chaohong; Zheng, Qiong; Lei, Zhixian; Geng, Huijuan; Lin, Zian; Yang, Huanghao; Cai, Zongwei

    2017-03-28

    Core-shell structured magnetic covalent organic frameworks (Fe 3 O 4 @COFs) were synthesized via a facile approach at room temperature. Combining the advantages of high porosity, magnetic responsiveness, chemical stability and selectivity, Fe 3 O 4 @COFs can serve as an ideal absorbent for the highly efficient enrichment of peptides and the simultaneous exclusion of proteins from complex biological samples.

  6. Selection of pecan shell-based activated carbons for removal of organic and inorganic impurities from water.

    Science.gov (United States)

    Niandou, Mohamed A S; Novak, Jeffrey M; Bansode, Rishipal R; Yu, Jianmei; Rehrah, Djaafar; Ahmedna, Mohamed

    2013-01-01

    Activated carbons are a byproduct from pyrolysis and have value as a purifying agent. The effectiveness of activated carbons is dependent on feedstock selection and pyrolysis conditions that modify their surface properties. Therefore, pecan shell-based activated carbons (PSACs) were prepared by soaking shells in 50% (v/v) HPO or 25 to 50% of KOH-NaHCO followed by pyrolysis at 400 to 700°C under a N atmosphere. Physically activated PSACs were produced by pyrolysis at 700°C under N followed by activation with steam or CO at 700 to 900°C. Physicochemical, surface, and adsorption properties of the PSACs were compared with two commercially available activated carbons. The average mass yield of PSACs with respect to the initial mass of the biomass was about 20 and 34% for physically activated and chemically activated carbons, respectively. Acid-activated carbons exhibited higher surface area, higher bulk density, and lower ash content compared with steam- or CO-activated carbons and the two commercial products. Base activation led to the development of biochar with moderate to high surface area with surface charges suitable for adsorption of anionic species. Regardless of the activation method, PSACs had high total surface area ranging from 400 to 1000 m g, better pore size distribution, and more surface charges than commercial samples. Our results also showed that PSACs were effective in removing inorganic contaminants such as Cu and NO as well as organic contaminants such as atrazine and metolachlor. This study showed that pyrolysis conditions and activation had a large influence on the PSAC's surface characteristics, which can limit its effectiveness as a custom sorbent for targeted water contaminants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Insights into chromatographic separation using core-shell metal-organic frameworks: Size exclusion and polarity effects.

    Science.gov (United States)

    Qin, Weiwei; Silvestre, Martin E; Kirschhöfer, Frank; Brenner-Weiss, Gerald; Franzreb, Matthias

    2015-09-11

    Porous metal-organic frameworks (MOFs) [Cu3(BTC)2(H2O)3]n (also known as HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) were synthesized as homogeneous shell onto carboxyl functionalized magnetic microparticles through a liquid phase epitaxy (LPE) process. The as-synthesized core-shell HKUST-1 magnetic microparticles composites were characterized by XRD and SEM, and used as stationary phase in high performance liquid chromatography (HPLC). The effects of the unique properties of MOFs onto the chromatographic performance are demonstrated by the experiments. First, remarkable separation of pyridine and bipyridine is achieved, although both molecules show a strong interaction between the Cu-ions in HKUST-1 and the nitrogen atoms in their heterocyles. The difference can be explained due to size exclusion of bipyridine from the well defined pore structure of crystalline HKUST-1. Second, the enormous variety of possible interactions of sample molecules with the metal ions and linkers within MOFs allows for specifically tailored solid phases for challenging separation tasks. For example, baseline separation of three chloroaniline (CLA) isomers tested can be achieved without the need for gradient elution modes. Along with the experimental HPLC runs, in-depth modelling with a recently developed chromatography modelling software (ChromX) was applied and proofs the software to be a powerful tool for exploring the separation potential of thin MOF films. The pore diffusivity of pyridine and CLA isomers within HKUST-1 are found to be around 2.3×10(-15)m(2)s(-1). While the affinity of HKUST-1 to the tested molecules strongly differs, the maximum capacities are in the same range, with 0.37molL(-1) for pyridine and 0.23molL(-1) for CLA isomers, corresponding to 4.0 and 2.5 molecules per MOF unit cell, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Complex forming properties of natural organic acids. Pt. 2

    International Nuclear Information System (INIS)

    Ephraim, J.H.; Mathuthu, A.S.; Marinsky, J.A.

    1990-07-01

    An ultrafiltration technique combined with ion-selective-electrode and atomic absorption methods have been employed to obtain information on the complex forming properties of fulvic acid with iron and calcium. A model for interpreting complexation of metal ions to fulvic acid at any pH, medium ionic strength and metal to fulvic acid ratio developed earlier has been used in an attempt to predict the nature of iron and calcium interaction to Armadale Horizon Bh fulvic acid. Binding of calcium to fulvic acid which is enhanced at pHs greater than 6.0 has reasonably been predicted by the model taking into consideration complications due to the polyelectrolyte nature and the heterogeneity of the fulvic acid. The lack of agreement observed between the model predicted binding behavior and the experimentally observed results for the fulvic acid-iron system has been attributed to the formation of metal-induced aggregation. Reduction of Fe(III) to Fe(II) by the fulvic acid as reported by other workers is corroborated. (orig.)

  9. Microbial mineralization of organic nitrogen forms in poultry litters.

    Science.gov (United States)

    Rothrock, Michael J; Cook, Kimberly L; Warren, Jason G; Eiteman, Mark A; Sistani, Karamat

    2010-01-01

    Ammonia volatilization from the mineralization of uric acid and urea has a major impact on the poultry industry and the environment. Dry acids are commonly used to reduce ammonia emissions from poultry houses; however, little is known about how acidification affects the litter biologically. The goal of this laboratory incubation was to compare the microbiological and physiochemical effects of dry acid amendments (Al+Clear, Poultry Litter Treatment, Poultry Guard) on poultry litter to an untreated control litter and to specifically correlate uric acid and urea contents of these litters to the microbes responsible for their mineralization. Although all three acidifiers eventually produced similar effects within the litter, there was at least a 2-wk delay in the microbiological responses using Poultry Litter Treatment. Acidification of the poultry litter resulted in >3 log increases in total fungal concentrations, with both uricolytic (uric acid degrading) and ureolytic (urea degrading) fungi increasing by >2 logs within the first 2 to 4 wk of the incubation. Conversely, total, uricolytic, and ureolytic bacterial populations all significantly declined during this same time period. While uric acid and urea mineralization occurred within the first 2 wk in the untreated control litter, acidification resulted in delayed mineralization events for both uric acid and urea (2 and 4 wk delay, respectively) once fungal cell concentrations exceeded a threshold level. Therefore, fungi, and especially uricolytic fungi, appear to have a vital role in the mineralization of organic N in low-pH, high-N environments, and the activity of these fungi should be considered in best management practices to reduce ammonia volatilization from acidified poultry litter.

  10. Rainfall in the Negev Desert during the middle Holocene, based on 13C of organic matter in land snail shells

    Science.gov (United States)

    Goodfriend, Glenn A.

    1990-09-01

    Analysis of stable carbon isotope ratios ( {13C}/{12C}) of organic matter in land snail shells is used to infer middle Holocene rainfall amounts in the Negev Desert by reconstructing the distribution of C 4 plants in the family Chenopodiaceae. The organics are derived from the diet of the snails, which consists of plant material, and are enriched in 13C where C 4 plants are present. A survey of modern plant communities indicates that in areas receiving ≥300 mm mean annual rainfall, nearly all plant communities consist of C 3 species only (no C 4 chenopodes), whereas in areas under ≤230 mm rainfall, most plant communities contain one or more C 4 chenopode species. In between is a transition zone consisting of a mosaic of both pure C 3 and mixed C 3 + C 4 plant communities. Isotopic results for fossil land snails indicate a consistent geographic pattern throughout the middle Holocene, from ca. 6500 to 3000 yr B.P., with the transition zone located ca. 20 km south of its present position. This implies a near doubling of rainfall within this region as compared to present.

  11. Tetra- and hexavalent uranium forms bidentate-mononuclear complexes with particulate organic matter in a naturally uranium-enriched peatland

    International Nuclear Information System (INIS)

    Mikutta, Christian; Langner, Peggy; Bargar, John R.; Kretzschmar, Ruben

    2016-01-01

    Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work was to investigate the spatial distribution and molecular binding mechanisms of U in soils of an alpine minerotrophic peatland (pH 4.7–6.6, E_h = –127 to 463 mV) using microfocused X-ray fluorescence spectrometry and bulk and microfocused U L_3-edge X-ray absorption spectroscopy. The soils contained 2.3–47.4 wt % organic C, 4.1–58.6 g/kg Fe, and up to 335 mg/kg geogenic U. Uranium was found to be heterogeneously distributed at the micrometer scale and enriched as both U(IV) and U(VI) on fibrous and woody plant debris (48 ± 10% U(IV), x̄ ± σ, n = 22). Bulk U X-ray absorption near edge structure (XANES) spectroscopy revealed that in all samples U(IV) comprised 35–68% of total U (x̄ = 50%, n = 15). Shell-fit analyses of bulk U L_3-edge extended X-ray absorption fine structure (EXAFS) spectra showed that U was coordinated to 1.3 ± 0.2 C atoms at a distance of 2.91 ± 0.01 Å (x̄ ± σ), which implies the formation of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ~3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. As a result, our data indicates that U(IV/VI) complexation by natural organic matter prevents the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI).

  12. Tetra- and Hexavalent Uranium Forms Bidentate-Mononuclear Complexes with Particulate Organic Matter in a Naturally Uranium-Enriched Peatland.

    Science.gov (United States)

    Mikutta, Christian; Langner, Peggy; Bargar, John R; Kretzschmar, Ruben

    2016-10-04

    Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work was to investigate the spatial distribution and molecular binding mechanisms of U in soils of an alpine minerotrophic peatland (pH 4.7-6.6, E h = -127 to 463 mV) using microfocused X-ray fluorescence spectrometry and bulk and microfocused U L 3 -edge X-ray absorption spectroscopy. The soils contained 2.3-47.4 wt % organic C, 4.1-58.6 g/kg Fe, and up to 335 mg/kg geogenic U. Uranium was found to be heterogeneously distributed at the micrometer scale and enriched as both U(IV) and U(VI) on fibrous and woody plant debris (48 ± 10% U(IV), x̅ ± σ, n = 22). Bulk U X-ray absorption near edge structure (XANES) spectroscopy revealed that in all samples U(IV) comprised 35-68% of total U (x̅ = 50%, n = 15). Shell-fit analyses of bulk U L 3 -edge extended X-ray absorption fine structure (EXAFS) spectra showed that U was coordinated to 1.3 ± 0.2 C atoms at a distance of 2.91 ± 0.01 Å (x̅ ± σ), which implies the formation of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ∼3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. Our data indicates that U(IV/VI) complexation by natural organic matter prevents the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI).

  13. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  14. Production of Curved Precast Concrete Elements for Shell Structures and Free-form Architecture using the Flexible Mould Method

    NARCIS (Netherlands)

    Schipper, H.R.; Grünewald, S.; Eigenraam, P.; Raghunath, P.; Kok, M.A.D.

    2014-01-01

    Free-form buildings tend to be expensive. By optimizing the production process, economical and well-performing precast concrete structures can be manufactured. In this paper, a method is presented that allows producing highly accurate double curved-elements without the need for milling two expensive

  15. Influence of heat treatment on hole transfer dynamics in core-shell quantum dot/organic hole conductor hybrid films

    Science.gov (United States)

    Sun, Mingye; Zheng, Youjin; Zhang, Lei; Zhao, Liping; Zhang, Bing

    2017-08-01

    The influence of heat treatment on hole transfer (HT) processes from the CdSe/ZnS and CdSe/CdS/ZnS quantum dots (QDs) to 4,4‧,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) in QD/TCTA hybrid films has been researched with time-resolved photoluminescence (PL) spectroscopy. The PL dynamic results demonstrated a heat-treatment-temperature-dependent HT process from the core-shell CdSe QDs to TCTA. The HT rates and efficiencies can be effectively increased due to reduced distance between core-shell CdSe QDs and TCTA after heat treatment. The CdS shell exhibited a more obvious effect on HT from the core-shell CdSe QDs to TCTA than on electron transfer to TiO2, due to higher barrier for holes to tunnel through CdS shell and larger effective mass of holes in CdS than electrons. These results indicate that heat treatment would be an effective means to further optimize solid-state QD sensitized solar cells and rational design of CdS shell is significant.

  16. Form Characteristics of Regional Security Organizations - The Missing Link in the Explanation of the Democratic Peace

    OpenAIRE

    Dembinski, Matthias; Freistein, Katja; Weiffen, Brigitte

    2006-01-01

    This paper contributes both to the debate on the effects of regional security organizations and to the debate on democratic peace. It argues that even if international organizations as such may not be able to influence the conflict behavior of their member states, the subgroup of interdemocratic institutions is well suited to do so. The form of interdemocratic institutions differs in two significant respects from the form of traditional institutions: they are more densely connected via transn...

  17. Why New Hybrid Organizations Are Formed: Historical Perspectives on Epistemic and Academic Drift

    Science.gov (United States)

    Kaiserfeld, Thomas

    2013-01-01

    By comparing three types of hybrid organizations--18th-century scientific academies, 19th-century institutions of higher vocational education, and 20th-century industrial research institutes--it is the purpose here to answer the question of why new hybrid organizations are continuously formed. Traditionally, and often implicitly, it is often…

  18. THE DEVELOPMENT OF NEW ORGANIZATION FORMS OF WHOLESALE TRADE ENTERPRISES IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Andrey N. Vashchekin

    2015-01-01

    Full Text Available The new conditions of wholesale business in Russia, formed by the economicreforms, led the formation and development of qualitatively different tradingactivity forms, new organization types,which involves reconsideration of traditional wholesale enterprises modelingconcepts. In the near future market willbe dominated with wholesale and retail associations. Competing with each other, they will gradually grow by the additionof small commercial enterprises. Thereis also the emergence of not previouslyencountered universal dual-use forms of trade organization resulting from thepenetration of network technologies in management.

  19. Marine chemistry, fish / shell-fish surveys, benthic organisms, and marine toxic substances and pollutants data from current meter and other instruments in the Gulf of Mexico from 1993-01-26 to 1994-06-13 (NODC Accession 9500088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine chemistry, fish / shell-fish surveys, benthic organisms, and marine toxic substances and pollutants data were collected using current meter and other...

  20. The patient safety climate in healthcare organizations (PSCHO) survey: Short-form development.

    Science.gov (United States)

    Benzer, Justin K; Meterko, Mark; Singer, Sara J

    2017-08-01

    Measures of safety climate are increasingly used to guide safety improvement initiatives. However, cost and respondent burden may limit the use of safety climate surveys. The purpose of this study was to develop a 15- to 20-item safety climate survey based on the Patient Safety Climate in Healthcare Organizations survey, a well-validated 38-item measure of safety climate. The Patient Safety Climate in Healthcare Organizations was administered to all senior managers, all physicians, and a 10% random sample of all other hospital personnel in 69 private sector hospitals and 30 Veterans Health Administration hospitals. Both samples were randomly divided into a derivation sample to identify a short-form subset and a confirmation sample to assess the psychometric properties of the proposed short form. The short form consists of 15 items represented 3 overarching domains in the long-form scale-organization, work unit, and interpersonal. The proposed short form efficiently captures 3 important sources of variance in safety climate: organizational, work-unit, and interpersonal. The short-form development process was a practical method that can be applied to other safety climate surveys. This safety climate short form may increase response rates in studies that involve busy clinicians or repeated measures. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Legitimating New Forms of Organizing and New International Activities in the Eyes of Multiple Stakeholders

    DEFF Research Database (Denmark)

    Turcan, Romeo V.

    The research on new venture legitimation strategies is emerging; although, it is yet to form a central line of enquiry in entrepreneurship research. To contribute to this development, this paper explores the process of legitimation in a non-for-profit venture (hereafter as NGO, non-governmental...... organization). The paper explores (1) how this NGO acquired cognitive legitimacy, defined as knowledge about the new form of organizing and new activity and what is needed to succeed in respective sector, and socio-political legitimacy, defined as the value placed on the new form of organizing and new activity...... by its multiple stakeholders; and (2) what legitimation strategies it developed and adopted to legitimate itself in the eyes of its multiple stakeholders. Theoretically, the paper is grounded within legitimation theory. The empirical context is defined by a new, international NGO entering an established...

  2. Design aids for stiffened composite shells with cutouts

    CERN Document Server

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  3. Why New Hybrid Organizations are Formed: Historical Perspectives on Epistemic and Academic Drift.

    Science.gov (United States)

    Kaiserfeld, Thomas

    2013-06-01

    By comparing three types of hybrid organizations-18th-century scientific academies, 19th-century institutions of higher vocational education, and 20th-century industrial research institutes-it is the purpose here to answer the question of why new hybrid organizations are continuously formed. Traditionally, and often implicitly, it is often assumed that emerging groups of potential knowledge users have their own organizational preferences and demands influencing the setup of new hybrid organizations. By applying the concepts epistemic and academic drift, it will be argued here, however, that internal organizational dynamics are just as important as changing historical conjunctures in the uses of science when understanding why new hybrid organizations are formed. Only seldom have older hybrid organizations sought to make themselves relevant to new categories of knowledge users as the original ones have been marginalized. Instead, they have tended to accede to ideals supported by traditional academic organizations with higher status in terms of knowledge management, primarily universities. Through this process, demand has been generated for the founding of new hybrid organizations rather than the transformation of existing ones. Although this study focuses on Swedish cases, it is argued that since Sweden strove consistently to implement existing international policy trends during the periods in question, the observations may be generalized to apply to other national and transnational contexts.

  4. Room-temperature fabrication of core-shell nano-ZnO/pollen grain biocomposite for adsorptive removal of organic dye from water

    Energy Technology Data Exchange (ETDEWEB)

    Tzvetkov, George, E-mail: george.tzvetkov@gmail.com; Kaneva, Nina; Spassov, Tony

    2017-04-01

    Highlights: • Meso-/macro-porous nano-ZnO covered pollen grains are prepared at room temperature. • A possible formation mechanism of the core-shell microparticles was proposed. • Adsorptive removal of Malachite Green from water by the biocomposite is studied. - Abstract: A new core-shell nano-ZnO/pollen grain (n-ZnO/PG) biocomposite has been successfully synthesized via simple and low-temperature two-step liquid precipitation method. The synthetic strategy consists of grafting the surface of pine pollen grains (PG) with Zn{sup 2+}-organic complexes followed by a treatment in Zn(CH{sub 3}COO){sub 2}/NaOH solution, thus producing a closed n-ZnO shell around the organic core, with a thickness of ∼450 nm. Scanning electron microscopy, X-ray diffraction, FTIR, XPS and UV–vis spectroscopy measurements along with N{sub 2} adsorption/desorption were used to characterize the resulting n-ZnO/PG biocomposite. The as-prepared core-shell microparticles are meso-/macro-porous with BET surface area of 25 m{sup 2} g{sup −1} and total pore volume of 0.26 cm{sup 3} g{sup −1}. The adsorption properties of n-ZnO/PG were evaluated through adsorption of Malachite Green (MG) from aqueous medium at room temperature (25 °C). For the sake of comparison, the physico-chemical and adsorptive properties of the raw PG and pure n-ZnO were also examined. Results indicate that n-ZnO/PG is the most favorable for the adsorption of MG under the conditions used in this study. The adsorption kinetic data for PG, n-ZnO and n-ZnO/PG follow the pseudo-second order equation and the maximum adsorption capacity follows an order of n-ZnO/PG > n-ZnO > PG. For n-ZnO/PG an adsorption uptake up to 145.9 mg g{sup −1} is observed. The as-prepared core-shell biocomposite material is a promising cost-effective and environmentally friendly adsorbent due to its textural properties, surface chemistry, adsorption capacity and recyclability.

  5. Room-temperature fabrication of core-shell nano-ZnO/pollen grain biocomposite for adsorptive removal of organic dye from water

    International Nuclear Information System (INIS)

    Tzvetkov, George; Kaneva, Nina; Spassov, Tony

    2017-01-01

    Highlights: • Meso-/macro-porous nano-ZnO covered pollen grains are prepared at room temperature. • A possible formation mechanism of the core-shell microparticles was proposed. • Adsorptive removal of Malachite Green from water by the biocomposite is studied. - Abstract: A new core-shell nano-ZnO/pollen grain (n-ZnO/PG) biocomposite has been successfully synthesized via simple and low-temperature two-step liquid precipitation method. The synthetic strategy consists of grafting the surface of pine pollen grains (PG) with Zn"2"+-organic complexes followed by a treatment in Zn(CH_3COO)_2/NaOH solution, thus producing a closed n-ZnO shell around the organic core, with a thickness of ∼450 nm. Scanning electron microscopy, X-ray diffraction, FTIR, XPS and UV–vis spectroscopy measurements along with N_2 adsorption/desorption were used to characterize the resulting n-ZnO/PG biocomposite. The as-prepared core-shell microparticles are meso-/macro-porous with BET surface area of 25 m"2 g"−"1 and total pore volume of 0.26 cm"3 g"−"1. The adsorption properties of n-ZnO/PG were evaluated through adsorption of Malachite Green (MG) from aqueous medium at room temperature (25 °C). For the sake of comparison, the physico-chemical and adsorptive properties of the raw PG and pure n-ZnO were also examined. Results indicate that n-ZnO/PG is the most favorable for the adsorption of MG under the conditions used in this study. The adsorption kinetic data for PG, n-ZnO and n-ZnO/PG follow the pseudo-second order equation and the maximum adsorption capacity follows an order of n-ZnO/PG > n-ZnO > PG. For n-ZnO/PG an adsorption uptake up to 145.9 mg g"−"1 is observed. The as-prepared core-shell biocomposite material is a promising cost-effective and environmentally friendly adsorbent due to its textural properties, surface chemistry, adsorption capacity and recyclability.

  6. Linked-cluster perturbation theory for closed and open-shell systems: derivation of effective π-electron hamiltonians

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1977-01-01

    The Brueckner--Goldstone form of linked-cluster perturbation theory is derived, together with its open-shell analog, by an elementary time-independent approach. This serves to focus attention on the physical interpretation of the results. The open-shell expansion is used to provide a straightforward justification for the effective π-electron Hamiltonians of planar organic molecules

  7. Conceptualizations of Representation Forms and Knowledge Organization of High School Teachers in Finland: "Magnetostatics"

    Science.gov (United States)

    Majidi, Sharareh; Emden, Markus

    2013-01-01

    One of the main components of teachers' pedagogical content knowledge refers to their use of representation forms. In a similar vein, organizing concepts logically and meaningfully is an essential element of teachers' subject matter knowledge. Since subject matter and pedagogical content knowledge of teachers are tightly connected as categories…

  8. Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels

    NARCIS (Netherlands)

    Sachs, Norman; Tsukamoto, Yoshiyuki; Kujala, Pekka; Peters, Peter J; Clevers, Hans

    2017-01-01

    Multiple recent examples highlight how stem cells can self-organize in vitro to establish organoids that closely resemble their in vivo counterparts. Single Lgr5+ mouse intestinal stem cells can be cultured under defined conditions forming ever-expanding epithelial organoids that retain cell

  9. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  10. Effects of Diatomite Organic Fertilizer on Cd and Zn Forms and Availability of Cd-Zn Polluted Soil

    OpenAIRE

    LIN Ji; CHENG Chen; HAN Ming-qiang; LI Song-xing; MA Xiao-rui; LI Yan

    2014-01-01

    An indoor soil cultivation experiment was carried out to study the effects of diatomite organic fertilizer on the forms and the avail-ability of Cd, Zn in soil. The results showed that the soil pH increased, the soil available Cd and Zn reduced after diatomite organic fertilizer application in contaminated soil. Diatomite organic fertilizer application decreased the contents of exchangeable form and weakly-bound-to organic form of Cd and Zn significantly, but increased the contents of strongl...

  11. A self-organizing learning account of number-form synaesthesia.

    Science.gov (United States)

    Makioka, Shogo

    2009-09-01

    Some people automatically and involuntarily "see" mental images of numbers in spatial arrays when they think of numbers. This phenomenon, called number forms, shares three key characteristics with the other types of synaesthesia, within-individual consistency, between-individual variety, and mixture of regularity and randomness. A theoretical framework called SOLA (self-organizing learning account of number forms) is proposed, which explains the generation process of number forms and the origin of those three characteristics. The simulations replicated the qualitative properties of the shapes of number forms, the property that numbers are aligned in order of size, that discontinuity usually occurs at the point of carry, and that continuous lines tend to have many bends.

  12. Nanospherical inorganic α-Fe core-organic shell necklaces for the removal of arsenic(V) and chromium(VI) from aqueous solution

    Science.gov (United States)

    Azzam, Ahmed M.; Shenashen, Mohamed A.; Selim, Mahmoud M.; Yamaguchi, Hitoshi; El-Sewify, Islam M.; Kawada, Satoshi; Alhamid, Abdulaziz A.; El-Safty, Sherif A.

    2017-10-01

    Mesoporous nanospherical necklaces (NSN) of inorganic α-Fe core-organic shell and ethylenediaminetetraacetic acid (EDTA) were fabricated. The necklaces were 1 μm in length and 50 nm in thickness, with massive nanospherical particles connecting and overlapping in a neat micro-/nano-necklace archery cage for capturing/trapping of As(V) and Cr(VI) species from water sources. The α-Fe core and the dressing shell of EDTA provided numerous active sites for adsorption, which led to 100% adsorption uptake of these toxic ions. The adsorption isotherms revealed that NSN adsorbent with mesoporous caves and organic-decorated surfaces was promising and effective for the spontaneous and endothermic removal of both ions from contaminated water. The NSN structure exhibited long-term stability. The adsorption efficiency and uptake of the deleterious arsenic and chromium species were achieved after multi-particulate processing of reuse cycles. The pH-dependent removal of As(V) and Cr(VI) species is an emerging topic in selective adsorption assays among competitive ions. Furthermore, the ion-selective conditions at pH 5 for As(V) and pH 7 for Cr(VI) significantly affected the adsorption capacity and affinity of 306.7 and 406.5 mg g-1 into NSN cages, respectively. The obtained results could be used as a basis to provide effective and low-cost products for the purification of wastewater resources from toxic metals.

  13. Simulation of nonlinear benchmarks and sheet metal forming processes using linear and quadratic solid–shell elements combined with advanced anisotropic behavior models

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2016-01-01

    Full Text Available A family of prismatic and hexahedral solid‒shell (SHB elements with their linear and quadratic versions is presented in this paper to model thin 3D structures. Based on reduced integration and special treatments to eliminate locking effects and to control spurious zero-energy modes, the SHB solid‒shell elements are capable of modeling most thin 3D structural problems with only a single element layer, while describing accurately the various through-thickness phenomena. In this paper, the SHB elements are combined with fully 3D behavior models, including orthotropic elastic behavior for composite materials and anisotropic plastic behavior for metallic materials, which allows describing the strain/stress state in the thickness direction, in contrast to traditional shell elements. All SHB elements are implemented into ABAQUS using both standard/quasi-static and explicit/dynamic solvers. Several benchmark tests have been conducted, in order to first assess the performance of the SHB elements in quasi-static and dynamic analyses. Then, deep drawing of a hemispherical cup is performed to demonstrate the capabilities of the SHB elements in handling various types of nonlinearities (large displacements and rotations, anisotropic plasticity, and contact. Compared to classical ABAQUS solid and shell elements, the results given by the SHB elements show good agreement with the reference solutions.

  14. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Directory of Open Access Journals (Sweden)

    Beleze Fábio A.

    2001-01-01

    Full Text Available In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic resonance spectroscopy. The results showed that both polymers were formed in their oxidized form, with the CAA structure acting as a counter anion.

  15. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  16. Cylindrical thin-shell wormholes

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2004-01-01

    A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands forever, depending only on the sign of its initial velocity

  17. In situ distribution and characterization of the organic content of the oyster shell Crassostrea gigas (Mollusca, Bivalvia).

    Science.gov (United States)

    Dauphin, Yannicke; Ball, Alexander D; Castillo-Michel, Hiram; Chevallard, Corinne; Cuif, Jean-Pierre; Farre, Bastien; Pouvreau, Stéphane; Salomé, Murielle

    2013-01-01

    Cultivation of commercial oysters is now facing the possible influence of global change in sea water composition, commonly referred to as "ocean acidification". In order to test the potential consequence of the predicted environmental changes, a cultivation experiment was carried out. The left and right valves of the oyster shell Crassostrea gigas differ in their structure; moreover, lenses of non compact layers are irregular. The shell layers of juvenile C. gigas are studied using a variety of highly spatially resolved techniques to establish their composition and structure. Our results confirm the presence of three different calcitic structural types. The role of the lenses of chalky layers is not yet deciplered. Despite a common mineralogy, the elemental composition of the layers differs. The sulphur aminoacids and sulphated polysaccharide contents of the intracrystalline and intercrystalline matrices differ, as well as those of the structural types. The possible different sensitivity of these structures to environmental changes is still unknown. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. ORGANIZATIONAL DESIGN AND CHANGE. THE EVOLUTION OF TRADE UNIONS ORGANIZATION FORMS IN ROMANIA AFTER 1989

    Directory of Open Access Journals (Sweden)

    LUMINIŢA CRISTINA CIOCAN

    2012-05-01

    Full Text Available The study: „Management and organizational change. Evolution of union organization forms in Romania after 1989” propose as subject of analyze a type of organization which, through its affiliation to the civil society and through its role conferred by low, becomes the key for the proper functioning of the labor market. Along with the change of political regime from December 1989, the trade union organizations were put in a position to cope with a triple: reorganization, learning a new social role and public image reconfiguration, including cancellation of the association (inevitable with the “ancient” trade union. The study proposes three major subjects: defining the term union organization accompanied by possible interpretations of the role of this type of organization at the society level – „collective voice”, counter pole , political actor, collective negotiator, transnational and promoter of the class struggle, the last role not being characteristic to a democratic society; the description of the syndicate organizations evolution in Romania, after 1990; the argue of the necessity of an organizational change felt by the unions, under the impact of some factors depending on socio-economic and politic changes.

  19. Volunteer Tourism as a Sustainable Form of Tourism—The Case of Organized Events

    Directory of Open Access Journals (Sweden)

    Kristína Pompurová

    2018-05-01

    Full Text Available This paper focuses on volunteer tourism as a sustainable form of tourism relating to the volunteer service at a tourism destination and specific tourism activities. The aim of the paper is to explore volunteer tourism in Slovakia with examples of organized events, especially to search exactly how event’s organizers support the development of domestic and inbound volunteer tourism in Slovakia. This paper is based on a sociological survey. We addressed 653 heterogeneous event’s organizers in Slovakia. 18% of them participated in the questionnaire survey. The collected data were processed by selected mathematical and statistical methods in SPSS statistics program. As such, we found most events organizers team up with volunteers. Only half of the organizers cooperate with local volunteers, while the second half also support the development of volunteer tourism engaging in voluntourism. In the case of attractive events, the engagement of voluntourists could be more effective. The current situation has resulted from missing information about the management of volunteers but it could be improved through an e-manual for event organizers providing an outline guide for volunteer management.

  20. Organization of Experience: Examining Inaba Minoru’s Budo as a Form of Art

    Directory of Open Access Journals (Sweden)

    Campbell C. Edinborough

    2012-07-01

    Full Text Available This article examines how Japanese budo (martial arts, specifically the approach developed by Inaba Minoru (former headmaster of the Shiseikan Budojo, Tokyo, can be functionally understood as a form of art. Through referring to the aesthetic theories of Dennis Dutton, Ellen Dissanayake, and Joseph Carroll, the article examines budo as a means of organizing experience, recognizable alongside painting, dance, theater, and literature.

  1. Modeling of Possible Conditions for Origin of First Organic Forms in hot Mineral Water

    OpenAIRE

    Ignat Ignatov; Oleg Mosin

    2014-01-01

    The composition of water, its temperature and pH value was analyzed in experiments with modelling of primary hydrosphere and possible conditions for origin of first organic forms in hot mineral water. For this aim the authors performed experiments with hot mineral and seawater from Bulgaria by IR-spectrometry (DNES-method). As model systems were used cactus juice of Echinopsis pachanoi and Mediterranean jellyfish Cotylorhiza tuberculata. It was considered the reactions of condensation and deh...

  2. Equivalent sphere approximations for skin, eye, and blood-forming organs

    International Nuclear Information System (INIS)

    Maxson, W.L.; Townsend, L.W.; Bier, S.G.

    1996-01-01

    Throughout the manned spaceflight program, protecting astronauts from space radiation has been the subject of intense study. For interplanetary crews, two main sources of radiation hazards are solar particle events (SPEs) and galactic cosmic rays. For nearly three decades, crew doses and related shielding requirements have been assessed using the assumption that body organ exposures are well approximated by exposures at the center of tissue-equivalent spheres. For the skin and for blood-forming organs (BFOs), these spheres have radii of 0 and 5 cm, respectively. Recent studies indicate that significant overestimation of organ doses occurs if these models are used instead of realistic human geometry models. The use of the latter, however, requires much longer computational times. In this work, the authors propose preliminary revisions to these equivalent sphere approximations that yield more realistic dose estimates

  3. Low driving voltage simplified tandem organic light-emitting devices by using exciplex-forming hosts

    Science.gov (United States)

    Zhou, Dong-Ying; Cui, Lin-Song; Zhang, Ying-Jie; Liao, Liang-Sheng; Aziz, Hany

    2014-10-01

    Tandem organic light-emitting devices (OLEDs), i.e., OLEDs containing multiple electroluminescence (EL) units that are vertically stacked, are attracting significant interest because of their ability to realize high current efficiency and long operational lifetime. However, stacking multiple EL units in tandem OLEDs increases driving voltage and complicates fabrication process relative to their standard single unit counterparts. In this paper, we demonstrate low driving voltage tandem OLEDs via utilizing exciplex-forming hosts in the EL units instead of conventional host materials. The use of exciplex-forming hosts reduces the charge injection barriers and the trapping of charges on guest molecules, resulting in the lower driving voltage. The use of exciplex-forming hosts also allows using fewer layers, hence simpler EL configuration which is beneficial for reducing the fabrication complexity of tandem OLEDs.

  4. Flexible barrier film, method of forming same, and organic electronic device including same

    Science.gov (United States)

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  5. [Characteristics of organic carbon forms in the sediment of Wuliangsuhai and Daihai Lakes].

    Science.gov (United States)

    Mao, Hai-Fang; He, Jiang; Lü, Chang-Wei; Liang, Ying; Liu, Hua-Lin; Wang, Feng-Jiao

    2011-03-01

    The characteristics and differences of organic carbon forms in the sediments of the Wuliangsuhai and the Daihai Lakes with different eutrophication types were discussed in the present study. The results showed that the range of total organic carbon content (TOC) in Wuliangsuhai Lake was 4.50-22.83 g x kg(-1) with the average of 11.80 g x kg(-1). The range of heavy-fraction organic carbon content was 3.38-21.67 g x kg(-1) with the average of 10.76 g x kg(-1). The range of light-fraction organic carbon content was 0.46-1.80 g x kg(-1) with the average of 1.04 g x kg(-1); The range of ROC content was 0.62-3.64 g x kg(-1) with the average of 2.11 g x kg(-1), while the range of total organic carbon content in Daihai lake was 6.84-23.46 g x kg(-1) with the average of 14.94 g x kg(-1). The range of heavy-fraction organic carbon content was 5.27-22.23 g x kg(-1) with the average of 13.89 g x kg(-1). The range of light-fraction organic carbon content was 0.76-1.57 g x kg(-1). The range of ROC content was 1.54-7.08 g x kg(-1) with the average of 3.62 g x kg(-1). The results indicated that the heavy-fraction organic carbon was the major component of the organic carbon and plays an important role in the accumulation of organic carbon in the sediments of two Lakes. The content of light-fraction organic carbon was similar in the sediments of two lakes, whereas, the contents of total organic carbon and heavy-fraction organic carbon in the sediment of Wuliangsuhai Lake were less than those in the sediment of Daihai Lake, and the value of LFOC/TOC in the Wuliangsuhai Lake was larger than that in the Daihai Lake. The humin was the dominant component of the sediment humus, followed by fulvic acid in the two lakes. The values of HM/HS in the sediments of Wuliangsuhai lake range from 43.06% to 77.25% with the average of 62.15% and values of HM/HS in the sediments of Dahai lake range from 49.23% to 73.85% with the average of 65.30%. The tightly combined humus was the dominant form in

  6. Semiconductor@metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response.

    Science.gov (United States)

    Zhan, Wen-wen; Kuang, Qin; Zhou, Jian-zhang; Kong, Xiang-jian; Xie, Zhao-xiong; Zheng, Lan-sun

    2013-02-06

    Metal-organic frameworks (MOFs) and related material classes are attracting considerable attention for their applications in gas storage/separation as well as catalysis. In contrast, research concerning potential uses in electronic devices (such as sensors) is in its infancy, which might be due to a great challenge in the fabrication of MOFs and semiconductor composites with well-designed structures. In this paper, we proposed a simple self-template strategy to fabricate metal oxide semiconductor@MOF core-shell heterostructures, and successfully obtained freestanding ZnO@ZIF-8 nanorods as well as vertically standing arrays (including nanorod arrays and nanotube arrays). In this synthetic process, ZnO nanorods not only act as the template but also provide Zn(2+) ions for the formation of ZIF-8. In addition, we have demonstrated that solvent composition and reaction temperature are two crucial factors for successfully fabricating well-defined ZnO@ZIF-8 heterostructures. As we expect, the as-prepared ZnO@ZIF-8 nanorod arrays display distinct photoelectrochemical response to hole scavengers with different molecule sizes (e.g., H(2)O(2) and ascorbic acid) owing to the limitation of the aperture of the ZIF-8 shell. Excitingly, such ZnO@ZIF-8 nanorod arrays were successfully applied to the detection of H(2)O(2) in the presence of serous buffer solution. Therefore, it is reasonable to believe that the semiconductor@MOFs heterostructure potentially has promising applications in many electronic devices including sensors.

  7. Studies of dust shells around stars

    International Nuclear Information System (INIS)

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  8. Sample preparation for semivolatile organics analysis of Hanford single-shell tank waste with high nitrate/nitrite and water content

    International Nuclear Information System (INIS)

    Stromatt, R.W.; Hoppe, E.W.; Steele, M.J.

    1993-11-01

    This report describes research work carried out to solve sample preparation problems associated with applying gas chromatography with mass spectrometric detection (GC/MS) to the analysis of single shell tank (SST) samples from Hanford for semivolatile organic compounds. Poor performance was found when applying the procedures based on the U.S. Environmental Protection Agency (EPA), Contract Laboratory Program, Statement of Work (CLP SOW). Analysis work was carried out on simulated drainable liquid modeled after the SST core samples which had evidenced analysis problems. Some work was also conducted on true SST samples. It was found that the pH range was too broad in the original procedure. It was also found that by decreasing the amount of methanol used in the extraction process, problems associated with the formation of an azeotrope phase could be avoided. The authors suggest a new procedure, whose eventual application to a wide array of SST samples will lend itself to better quality control limits

  9. Forms, functions, and foibles of humor used in AIDS service organizations.

    Science.gov (United States)

    Kosenko, Kami A; Rintamaki, Lance S

    2010-01-01

    Research has indicated that HIV service providers commonly use humor to cope with work-related stress; however, little is known about the forms and functions of humor used by these professionals. In this study, 25 HIV service providers from five AIDS service organizations were interviewed about their use of humor. Participants described five primary types of humor as prevalent within AIDS service organizations and noted that humor served a variety of functions, which were either adaptive or maladaptive. Adaptive functions included boosting morale and reducing tension, whereas maladaptive functions ranged from masking emotions to alienating certain groups. Results emphasized the importance of context in the study of humor use and the need for continued investigations of the stress and coping of HIV service providers.

  10. REMOTE WORK AS A PROMISING FORM OF LABOUR ORGANIZATION FOR RUSSIAN ENTREPRENEURIAL STRUCTURES

    Directory of Open Access Journals (Sweden)

    I. Gurova

    2016-01-01

    Full Text Available Remote work (telecommuting is one of the modern technologies of the organization of the labor process, which is not yet widely used in domestic practice. However, in times of crisis, when entrepreneurial structures seek for the maximum reduction of expenses, it can be a tool to address many of the pressing issues related to the most effective use of production and labor resources.The article discusses the features of the remote work on a world level and in our country, detected its strengths and weaknesses for the participants of labour relations, as well as revealed the potential of this form of labor organization for achievement of optimum balance between expenses and efficiency of entrepreneurial structures.

  11. Organized Communities as a Hybrid Form of Data Sharing: Experiences from the Global STEP Project

    Directory of Open Access Journals (Sweden)

    Isabell Stamm

    2018-01-01

    Full Text Available With this article, I explore a new way of how social scientists can share primary qualitative data with each other. More specifically, I examine organized research communities, which are small membership groups of scholars. This hybrid form of data sharing is positioned between informal sharing through collaboration and institutionalized sharing through accessing research archives. Using the global "Successful Transgenerational Entrepreneurship Practices" (STEP project as an example, I draw attention to the pragmatic practices of data sharing in such communities. Through ongoing negotiations, organized communities can, at least temporarily, put forward sharing policies and create a culture of data sharing that elevates the re-use of qualitative data while being mindful of the data's intersubjective and processual character.

  12. Chemisorption of organic iodine compounds forming from fission isotopes of radioactive iodine

    International Nuclear Information System (INIS)

    Tot, G.; Galina, F.; Zel'd, E.

    1977-01-01

    Studied is ethyl iodine adsorption, labelled by iodine 131, on palladium black and on aluminium oxide activized by palladium. The desorption of adsorbed iodine in the temperature range of 20-600 deg C by the mass spectroscopy and thermal gravimetric methods was investigated. At the ethyl iodine and palladium interaction the bond between carbon and iodine in the ethyl iodine molecule breaks down and extracting iodine reacts with palladium, forming a stable compound at high temperatures. Desorption of adsorbed iodine is insignificant up to the temperatures of 250-300 deg C. Thus, sorbents, containing palladium, may be successfully applied for iodine absorption from the organic iodine compounds. These compounds spontaneously appear from the iodine fragment ratio isotopes during their interaction with some environmental organic impurities

  13. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs.

    Directory of Open Access Journals (Sweden)

    Nicky de Jonge

    Full Text Available AIMS: Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT. We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1. METHODS AND RESULTS: A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. CONCLUSIONS: Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.

  14. Chemical Composition of Vermicompost Made from Organic Wastes through the Vermicomposting and Composting with the Addition of Fish Meal and Egg Shells Flour

    Directory of Open Access Journals (Sweden)

    Nurhidayati

    2017-05-01

    Full Text Available Chemical composition of compost is an important indicator that determines the quality of compost. This study compared the chemical composition of vermicompost resulting from the process of vermicomposting alone with combined vermicomposting and composting with addition of egg shells flour and fish meal. Organic wastes used were the mixture of spent mushrooms waste, coconut husks, cow dung, vegetables residue, and leaf litter. Lumbricus rubellus was the species of earthworm used in the vermicomposting process. In the composting process, egg shells flour and fish meal are added into the vermicompost as additives materials. The results indicate that the combined vermicomposting and composting process with addition the additives materials improves the chemical composition of vermicompost compared to using vermicomposting process alone. The change of chemical composition was indicated by a decrease in C-organic content and C/N ratio by 29% and 99%, respectively, while the content of N, P, K and S increased by 52%, 67.5%, 29% and 25%, respectively due to the addition of additives material in the composting process. The largest increase of vermicompost nutrient content occurred in the Ca content by an average of up to 7-fold. While polyphenols, lignin and cellulose content of vermicompost decreased slightly. The treatment of two mixture (a spent mushrooms waste, cow dung and vegetables residue, and (b spent mushroom waste, cow dung, vegetables residue, and leaf litter gave the best chemical composition. However, to determine the quality, we need to test the product in a plant growth bioassay as a follow-up study.

  15. Complex organic molecules toward low-mass and high-mass star forming regions

    Science.gov (United States)

    Favre, C.; Ceccarelli, C.; Lefloch, B.; Bergin, E.; Carvajal, M.; Brouillet, N.; Despois, D.; Jørgensen, J.; Kleiner, I.

    2016-12-01

    One of the most important questions in molecular astrophysics is how, when, and where complex organic molecules, COMs (≥ 6 atoms) are formed. In the Interstellar-Earth connection context, could this have a bearing on the origin of life on Earth? Formation mechanisms of COMs, which include potentially prebiotic molecules, are still debated and may include grain-mantle and/or gas-phase chemistry. Understanding the mechanisms that lead to the interstellar molecular complexification, along with the involved physicochemical processes, is mandatory to answer the above questions. In that context, active researches are ongoing in theory, laboratory experiment, chemical modeling and observations. Thanks to recent progress in radioastronomy instrumentation for both single-dish and millimeter array (e.g. Herschel, NOEMA, ALMA), new results have been obtained. I will review some notable results on the detection of COMs, including prebiotic molecules, towards star forming regions.

  16. Dynamic spatial organization of the occipito-temporal word form area for second language processing.

    Science.gov (United States)

    Gao, Yue; Sun, Yafeng; Lu, Chunming; Ding, Guosheng; Guo, Taomei; Malins, Jeffrey G; Booth, James R; Peng, Danling; Liu, Li

    2017-08-01

    Despite the left occipito-temporal region having shown consistent activation in visual word form processing across numerous studies in different languages, the mechanisms by which word forms of second languages are processed in this region remain unclear. To examine this more closely, 16 Chinese-English and 14 English-Chinese late bilinguals were recruited to perform lexical decision tasks to visually presented words in both their native and second languages (L1 and L2) during functional magnetic resonance imaging scanning. Here we demonstrate that visual word form processing for L1 versus L2 engaged different spatial areas of the left occipito-temporal region. Namely, the spatial organization of the visual word form processing in the left occipito-temporal region is more medial and posterior for L2 than L1 processing in Chinese-English bilinguals, whereas activation is more lateral and anterior for L2 in English-Chinese bilinguals. In addition, for Chinese-English bilinguals, more lateral recruitment of the occipito-temporal region was correlated with higher L2 proficiency, suggesting higher L2 proficiency is associated with greater involvement of L1-preferred mechanisms. For English-Chinese bilinguals, higher L2 proficiency was correlated with more lateral and anterior activation of the occipito-temporal region, suggesting higher L2 proficiency is associated with greater involvement of L2-preferred mechanisms. Taken together, our results indicate that L1 and L2 recruit spatially different areas of the occipito-temporal region in visual word processing when the two scripts belong to different writing systems, and that the spatial organization of this region for L2 visual word processing is dynamically modulated by L2 proficiency. Specifically, proficiency in L2 in Chinese-English is associated with assimilation to the native language mechanisms, whereas L2 in English-Chinese is associated with accommodation to second language mechanisms. Copyright © 2017

  17. Cordierite containing ceramic membranes from smectetic clay using natural organic wastes as pore-forming agents

    Directory of Open Access Journals (Sweden)

    W. Misrar

    2017-06-01

    Full Text Available Cordierite ceramic membranes were manufactured from natural clay, oxides and organic wastes as pore forming agents. Mixtures aforementioned materials with the pore-forming agents (up to 10 wt.% were investigated in the range 1000–1200 °C using thermal analysis, X-ray diffraction, scanning electron microscopy, mercury porosimetry and filtration tests. Physical properties (density, water absorption and bending strength were correlated to the processing factors (pore-forming agent addition, firing temperature and soaking time. The results showed that cordierite together with spinel, diopside and clinoenstatite neoformed. SEM analysis revealed heterogeneous aspects. The results of the response surface methodology showed that the variations of physical properties versus processing parameters were well described by the used polynomial model. The addition of pore forming agent and temperature were the most influential factors. Filtration tests were performed on the best performing sample. The results allowed to testify that these membranes could be used in waste water treatment.

  18. Gas-shell-encapsulation of activated carbon to reduce fouling and increase the efficacy of volatile organic compound removal

    NARCIS (Netherlands)

    Poortinga, A.T.; van Rijn, C.J.M.

    2017-01-01

    A method to encapsulate activated carbon particles is presented that reduces fouling of these particles with Natural Organic Matter (NOM) to preserve their adsorption capacity for Volatile Organic Compounds (VOCs) from water in the presence of NOM. The encapsulation method uses an oil-in-water

  19. Gas-shell-encapsulation of Activated Carbon to Reduce Fouling and Increase the Efficacy of Volatile Organic Compound Removal

    NARCIS (Netherlands)

    Poortinga, Albert T.; Rijn, van Cees J.M.

    2017-01-01

    A method to encapsulate activated carbon particles is presented that reduces fouling of these particles with Natural Organic Matter (NOM) to preserve their adsorption capacity for Volatile Organic Compounds (VOCs) from water in the presence of NOM. The encapsulation method uses an oil-in-water

  20. 17 CFR 274.11b - Form N-3, registration statement of separate accounts organized as management investment companies.

    Science.gov (United States)

    2010-04-01

    ... statement of separate accounts organized as management investment companies. 274.11b Section 274.11b... accounts organized as management investment companies. Form N-3 shall be used as the registration statement... offer variable annuity contracts to register as management investment companies. This form shall also be...

  1. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Science.gov (United States)

    2010-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this chapter. This form shall be used by all self-regulatory...

  2. 32 CFR Appendix C to Part 77 - DD Form 2581-1, Public and Community Service Organization Validation

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false DD Form 2581-1, Public and Community Service Organization Validation C Appendix C to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY..., App. C Appendix C to Part 77—DD Form 2581-1, Public and Community Service Organization Validation...

  3. Enhancement of the core near-band-edge emission induced by an amorphous shell in coaxial one-dimensional nanostructure: the case of SiC/SiO{sub 2} core/shell self-organized nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Filippo; Rossi, Francesca; Attolini, Giovanni; Salviati, Giancarlo; Iannotta, Salvatore [IMEM-CNR Institute, Viale Usberti 37/A, I-43124 Parma (Italy); Aversa, Lucrezia; Verucchi, Roberto; Nardi, Marco [IFN-CNR Institute, Via alla Cascata 56/C-Povo, I-38123 Trento (Italy); Fukata, Naoki [International Center for Materials Nanoarchitectonics, National Institute for Materials Science and PRESTO JST, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Dierre, Benjamin; Sekiguchi, Takashi [Nano Device Characterization Group, Advanced Electronic Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2010-08-27

    We report the influence of the native amorphous SiO{sub 2} shell on the cathodoluminescence emission of 3C-SiC/SiO{sub 2} core/shell nanowires. A shell-induced enhancement of the SiC near-band-edge emission is observed and studied as a function of the silicon dioxide thickness. Since the diameter of the investigated SiC cores rules out any direct bandgap optical transitions due to confinement effects, this enhancement is ascribed to a carrier diffusion from the shell to the core, promoted by the alignment of the SiO{sub 2} and SiC bands in a type I quantum well. An accurate correlation between the optical emission and structural and SiO{sub 2}-SiC interface properties is also reported.

  4. Electron arc therapy: Influence of heterogeneities on dose to blood-forming organs

    International Nuclear Information System (INIS)

    Leavitt, D.D.; Gibbs, F.A.; Moeller, J.H.

    1986-01-01

    Electron arc therapy has been used successfully to treat extended chest wall surfaces after mastectomy. Treatment is frequently given simultaneously with chemotherapy. Although the primary electron arc treatment volume consists only of the chest wall and mediastinum, dose is accumulated at the isocenter of rotation due to the photon contamination of the arcing electron beam. Additionally, higher energy electron fields which are occasionally used over segments of the arc may contribute to the dose at isocenter if the electron range has been extended due to passage through a low-density heterogeneity such as lung. In some patient setups, the isocenter may intersect blood-forming organs, such as the vertebral bodies. Thermoluminescent dosimetry has been used to measure the dose at isocenter for the following setups: polystyrene phantom, polystyrene phantom covered by 1-cm-thick lead cast, polystyrene phantom with cork insert to simulate lung, and phantom plus cork insert plus lead cast. For the 9-MeV treatment mode, dose at isocenter per 90 0 of arc (as a percentage of maximum tumor dose) is as follows: phantom, 6.5%; phantom plus lead, 5%; phantom plus cork, 8%; and phantom plus cork plus lead, 6%. These values must be scaled by the size of the arc to estimate dose at isocenter in actual treatments. Computer calculation showed good agreement with these measured values, indicating that the computerized treatment plans can be used as a predictor of electron arc dose to blood-forming organs

  5. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds

    Directory of Open Access Journals (Sweden)

    V. Varutbangkul

    2006-01-01

    Full Text Available A series of experiments has been conducted in the Caltech indoor smog chamber facility to investigate the water uptake properties of aerosol formed by oxidation of various organic precursors. Secondary organic aerosol (SOA from simple and substituted cycloalkenes (C5-C8 is produced in dark ozonolysis experiments in a dry chamber (RH~5%. Biogenic SOA from monoterpenes, sesquiterpenes, and oxygenated terpenes is formed by photooxidation in a humid chamber (~50% RH. Using the hygroscopicity tandem differential mobility analyzer (HTDMA, we measure the diameter-based hygroscopic growth factor (GF of the SOA as a function of time and relative humidity. All SOA studied is found to be slightly hygroscopic, with smaller water uptake than that of typical inorganic aerosol substances. The aerosol water uptake increases with time early in the experiments for the cycloalkene SOA, but decreases with time for the sesquiterpene SOA. This behavior could indicate competing effects between the formation of more highly oxidized polar compounds (more hygroscopic, and formation of longer-chained oligomers (less hygroscopic. All SOA also exhibit a smooth water uptake with RH with no deliquescence or efflorescence. The water uptake curves are found to be fitted well with an empirical three-parameter functional form. The measured pure organic GF values at 85% RH are between 1.09–1.16 for SOA from ozonolysis of cycloalkenes, 1.01–1.04 for sesquiterpene photooxidation SOA, and 1.06–1.10 for the monoterpene and oxygenated terpene SOA. The GF of pure SOA (GForg in experiments in which inorganic seed aerosol is used is determined by assuming volume-weighted water uptake (Zdanovskii-Stokes-Robinson or 'ZSR' approach and using the size-resolved organic mass fraction measured by the Aerodyne Aerosol Mass Spectrometer. Knowing the water content associated with the inorganic fraction yields GForg values. However, for each precursor, the GForg values computed from different

  6. An early look at the Organ Procurement and Transplantation Network explant pathology form data.

    Science.gov (United States)

    Harper, Ann M; Edwards, Erick; Washburn, W Kenneth; Heimbach, Julie

    2016-06-01

    In April 2012, the Organ Procurement and Transplantation Network (OPTN) implemented an online explant pathology form for recipients of liver transplantation who received additional wait-list priority for their diagnosis of hepatocellular carcinoma (HCC). The purpose of the form was to standardize the data being reported to the OPTN, which had been required since 2002 but were submitted to the OPTN in a variety of formats via facsimile. From April 2012 to December 2014, over 4500 explant forms were submitted, allowing for detailed analysis of the characteristics of the explanted livers. Data from the explant pathology forms were used to assess agreement with pretransplant imaging. Explant data were also used to assess the risk of recurrence. Of those with T2 priority, 55.7% were found to be stage T2 on explant. Extrahepatic spread (odds ratio [OR] = 6.8; P based on the number and size of tumors on the explant form was T4 (OR = 2.4; P < 0.01) were the strongest predictors of recurrence. In conclusion, this analysis confirms earlier findings that showed an incomplete agreement between pretransplant imaging and posttransplant pathology in terms of HCC staging, though the number of patients with both no pretransplant treatment and no tumor in the explant was reduced from 20% to <1%. In addition, several factors were identified (eg, tumor burden, age, sex, region, ablative therapy, alpha-fetoprotein, Milan stage, vascular invasion, satellite lesions, etc.) that were predictive of HCC recurrence, allowing for more targeted surveillance of high-risk recipients. Continued evaluation of these data will help shape future guidelines or policy recommendations. Liver Transplantation 22 757-764 2016 AASLD. © 2016 American Association for the Study of Liver Diseases.

  7. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1-xZnxSe Shell.

    Science.gov (United States)

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-02-07

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd 1-x Zn x Se shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd 1-x Zn x Se core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.

  8. Controllable synthesis of hexagonal ZnO–carbon core–shell microrods and the removal of ZnO to form hexagonal carbon microtubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yong, E-mail: xy91007@163.com [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China); He, Wenqi; Gao, Chuang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zheng, Mingtao; Lie, Bingfu; Liu, Xiaotang [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China); Liu, Yingliang, E-mail: tliuyl@163.com [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China)

    2013-06-15

    A simple and efficient approach was developed to produce regular and uniform shaped hexagonal ZnO–C core–shell micro-rods and carbon micro-tubes. A single-source raw material, zinc acetate dihydrate, has been used for the in situ generation of the hexagonal ZnO–C micro-rods in a sealed autoclave system at 500 °C for 12 h without a catalyst. The resulting products were characterized by X-ray powder diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray analysis and room-temperature photoluminescence spectroscopy (PL). The partial or complete carbon coating on the ZnO surfaces plays an important role in modifying the PL properties. Impacting factors including thermolysis temperature, time and dose of the reactant on the evolution of the hexagonal shape were investigated. A possible formation diagram for the materials has been proposed and discussed based on the features of the reaction system. - Highlights: • Hexagonal ZnO–C core–shell microrods were synthesized by the lower temperature decomposition of zinc acetate. • The novel hexagonal carbon microtubes can gain by simply handling with dilute acid. • The partial or complete carbon coating on the ZnO surfaces plays an important role in modifying the PL properties. • A possible formation diagram for the materials has been proposed.

  9. The modern enterprise – successor of business organization forms in ancient Rome and medieval Europe

    Directory of Open Access Journals (Sweden)

    Anca Pacala

    2016-03-01

    Full Text Available In recent years, researchers and practitioners are increasingly interested in the role and influence of the forms of business organization on the economy and society. Interpretations of the role of companies in the modern period, ranging from enthusiastic support (as the most important invention of capitalism, an explanation of the Western civilization’s expansion to moderate and often critical positions, where the company is seen as a solution, not necessarily optimal, to market imperfections. On the other hand, we often ponder upon the explanation of political, administrative and infrastructural success of ancient Rome: the state or the enterprise (the private initiative? Closer to our time, we rediscover with amazement that the "dark" Middle Ages are not at all dark and lacking in progress, at least in terms of capitalist organization and logic. The development of trade in the two poles of medieval Europe (the Mediterranean and the BaltoScandinavian area, of industry and trade in the North-Western quadrant (Flanders and neighbouring regions, was concurrent with the improvement of organizational forms of business, with the diversity and flexibility of entrepreneurial or even corporate frameworks. Of course, the study of historical sources (ancient or medieval cannot provide direct answers or solutions to the questions of modern society, because the challenges of today are rather different to those of the past. On the other hand, understanding history can help companies to build a more complete and a wiser enterprise functionality and role in the modern society, to reformulate the questions and to find new solutions. Our paper, with a clear juridical perspective on economic history, focuses on the organization of firms in ancient Rome and medieval Europe, tries to provide examples, useful interpretations and diverse solutions to the problems of contemporary society and economy.

  10. [Bacterial biofilms as a natural form of existence of bacteria in the environment and host organism].

    Science.gov (United States)

    Romanova, Iu M; Gintsburg, A L

    2011-01-01

    Advances in microscopic analysis and molecular genetics research methods promoted the acquisition of evidence that natural bacteria populations exist predominately as substrate attached biofilms. Bacteria in biofilms are able to exchange signals and display coordinated activity that is inherent to multicellular organisms. Formation of biofilm communities turned out to be one of the main survival strategies of bacteria in their ecological niche. Bacteria in attached condition in biofilm are protected from the environmental damaging factors and effects of antibacterial substances in the environment and host organism during infection. According to contemporary conception, biofilm is a continuous layer of bacterial cells that are attached to a surface and each other, and contained in a biopolymer matrix. Such bacterial communities may be composed of bacteria of one or several species, and composed of actively functioning cells as well as latent and uncultured forms. Particular attention has recently been paid to the role of biofilms in the environment and host organism. Microorganisms form biofilm on any biotic and abiotic surfaces which creates serious problems in medicine and various areas of economic activity. Currently, it is established that biofilms are one of the pathogenetic factors of chronic inflection process formation. The review presents data on ubiquity of bacteria existence as biofilms, contemporary methods of microbial community analysis, structural-functional features of bacterial biofilms. Particular attention is paid to the role of biofilm in chronic infection process formation, heightened resistance to antibiotics of bacteria in biofilms and possible mechanisms of resistance. Screening approaches for agents against biofilms in chronic infections are discussed.

  11. Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Uk; Song, Yoon Seok [Department of Chemical and Biological Engineering, Korea University, 5 Ga, Anam-Dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Park, Chulhwan [Department of Chemical Engineering, Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Kim, Seung Wook, E-mail: kimsw@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, 5 Ga, Anam-Dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► A simple method was developed to synthesize Co-B/SiO{sub 2}/dye/SiO{sub 2} composite particles. ► The magnetic particle shows that highly luminescent and core/shell particles are formed. ► Such core/shell particles can be easily suspended in water. ► The magnetic particles could detect fluorescence for the application of biosensor. -- Abstract: A simple and reproducible method was developed to synthesize a novel class of Co-B/SiO{sub 2}/dye/SiO{sub 2} composite core/shell particles. Using a single cobalt core, Rhodamine 6G of organic dye molecules was entrapped in a silica shell, resulting in core/shell particles of ∼200 nm diameter. Analyses using a variety of techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometry, confocal laser scanning microscopy, and fluorescence intensity demonstrated that dye molecules were trapped inside the core/shell particles. A photoluminescence investigation showed that highly luminescent and photostable core/shell particles were formed. Such core/shell particles can be easily suspended in water. The synthesized magnetic particles could be used to detect fluorescence on glass substrate arrays for bioassay and biosensor applications.

  12. Fabrication of nano-mosquitocides using chitosan from crab shells: Impact on non-target organisms in the aquatic environment.

    Science.gov (United States)

    Murugan, Kadarkarai; Anitha, Jaganathan; Dinesh, Devakumar; Suresh, Udaiyan; Rajaganesh, Rajapandian; Chandramohan, Balamurugan; Subramaniam, Jayapal; Paulpandi, Manickam; Vadivalagan, Chitravel; Amuthavalli, Pandiyan; Wang, Lan; Hwang, Jiang-Shiou; Wei, Hui; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Kumar, Suresh; Pugazhendy, Kannaiyan; Higuchi, Akon; Nicoletti, Marcello; Benelli, Giovanni

    2016-10-01

    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    Energy Technology Data Exchange (ETDEWEB)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H. (Saskatchewan)

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  14. Selective laser pyrolysis of metallo-organics as a method of forming patterned thin film superconductors

    International Nuclear Information System (INIS)

    Mantese, J.V.; Catalan, A.B.; Sell, J.A.; Meyer, M.S.; Mance, A.M.

    1990-01-01

    This patent describes a method for forming patterned films of superconductive materials forming a solution from the neodecanoates of yttrium, barium and copper. The neodecanoates forming an oxide mixture exhibiting superconductive properties upon subsequent thermal decompositions wherein the oxide mixture is characterized by a ratio of yttrium:barium:copper of approximately 1:2:4, the solution comprising an organic solvent such as xylene; adding to the solution an appropriate dye, depositing a film of the solution having the dye onto a strontium titanate substrate; exposing selective regions of the film with an Argon laser emitting the wavelength of light, such that the exposed regions of the film become insoluble in the xylene; immersing the film into the xylene so that the soluble; unexposed regions of the film are removed from the substrate; heating the film to thermally decompose the neodecanoates into a film containing yttrium, barium and copper oxides; to promote recrystallization and grain growth of the metal oxides within the film and induce a change therein by which the film exhibits superconducting properties

  15. Expert system development (ESD) shell

    International Nuclear Information System (INIS)

    Padmini, S.; Diwakar, M.P.; Rathode, N.C.; Bairi, B.R.

    1991-01-01

    An Expert System Development (ESD) Shell design implementation is desribed in detail. The shell provides high-level generic facilities for Knowledge Representation (KR) and inferencing and tools for developing user interfaces. Powerful set of tools in the shell relieves much of the programming burden in the ES development. The shell is written in PROLOG under IBM PC/AT. KR facilities are based on two very powerful formalisms namely, frames and rules. Inference Engine (IE) draws most of its power from unification and backward reasoning strategy in PROLOG. This basic mechanism is enhanced further by incorporating both forward and backward chaining of rules and frame-based inferencing. Overall programming style integrates multiple paradigms including logic, object oriented, access-oriented and imperative programming. This permits ES designer a lot of flexibility in organizing inference control. Creation and maintainance of knowledge base is a major activity. The shell, therefore, provides number of facilities to simplify these tasks. Shell design also takes note of the fact that final success of any system depends on end-user satisfaction and hence provides features to build use-friendly interfaces. The shell also provides a set of interfacing predicates so that it can be embedded within any PROLOG program to incorporate functionalilty of the shell in the user program. (author). 10 refs., 8 figs

  16. Effects of Diatomite Organic Fertilizer on Cd and Zn Forms and Availability of Cd-Zn Polluted Soil

    Directory of Open Access Journals (Sweden)

    LIN Ji

    2014-08-01

    Full Text Available An indoor soil cultivation experiment was carried out to study the effects of diatomite organic fertilizer on the forms and the avail-ability of Cd, Zn in soil. The results showed that the soil pH increased, the soil available Cd and Zn reduced after diatomite organic fertilizer application in contaminated soil. Diatomite organic fertilizer application decreased the contents of exchangeable form and weakly-bound-to organic form of Cd and Zn significantly, but increased the contents of strongly-bound-to organic form and residual form of Cd and Zn in con-taminated soil. Statistics analysis showed that the contents of exchangeable and weakly-bound-to organic form of Cd and Zn had highly sig-nificant relation to the content of soil available Cd and Zn(P<0.01. The contents of Mn oxide-occluded Cd had significant relation to the con-tent of soil available Cd(P<0.05. Comparing the treatments of diatomite organic fertilizer with the rate of 5%and 10%soil weight, there was no significant difference in soil pH, the contents of soil available Cd, Zn and the forms of Cd, Zn.

  17. Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM).

    Science.gov (United States)

    Pang, Long; Yang, Peijie; Yang, Huiqiang; Ge, Liming; Xiao, Jingwen; Zhou, Yifan

    2018-06-01

    Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in many products and materials. Because of the potential biologic toxicity on human beings, OPEs are regarded as a class of emerging pollutants. Dissolved organic matters (DOM) have significant effects on the bioavailability and toxicity of the pollutants in the environment. Negligible-depletion solid-phase microextraction (nd-SPME) is an efficient way for measuring the freely dissolved pollutants but suffers from long equilibrium time. Metal-organic frameworks (MOFs) are a class of porous crystalline materials with unique properties such as high pore volume, regular porosity, and tunable pore size, being widely used for the extraction of various organic compounds. Here we developed a novel method for quick determination the sorption coefficients of OPEs to DOM in aquatic phase using Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres. The mesoporous structures of the as-synthesized microspheres hindered the extraction of OPEs which associated with humic acid due to the volume exclusion effect. However, the freely dissolved OPEs can access into the mesoporous and then were extracted by MIL-100 (Fe). Due to the small pore size (4.81 nm), large surface area (141 m 2  g -1 ), high pore volume (0.17 g 3  g -1 ), and ultra-thin MOFs layers, Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres have large contact area for the analytes in aqueous phase and therefore the diffusion distance was largely shortened. Besides, the microspheres can be collected conveniently after the extraction process by applying a magnetic field. Compared to the nd-SPME method with 35 h equilibration time (t 90% ), the proposed method for these studied OPEs only need 24 min to achieve equilibration. The sorption coefficients (logK DOC ) of the OPEs to humic acid were ranged from 3.84-5.28, which were highly consistent with the results by using polyacrylate-coated fiber and polydimethylsiloxane

  18. Form of the male and female corpus callosum internal organization at the mature age

    Directory of Open Access Journals (Sweden)

    Юрий Петрович Костиленко

    2016-04-01

    Full Text Available Aim: to study the special features of the male and female corpus callosum internal organization at the mature age.Materials and methods: the total preparations of the male and female corpus callosum (10 preparation of each sex at 45–60 years old were used as the material. The given preparations were used to get from it the plate cuts in the two mutually perpendicular planes with 2 mm. thick. Then the received tissue plates of the corpus callosum underwent plastination in the epoxy. Then the preparations were extracted from the non-polymerized epoxy and placed on the polyethylene film that was covered with the other film of the same size. Further this stratified block was placed amid the two glasses of the equal size that shrunk together by placing the small load on it. After the complete polymerization the received epoxy plates with the corpus callosum tissue contained in it underwent the gentle grinding and the accurate polish and as the result was obtained the surface denudation of its tissue structures that were colored with the 1 % solution of blue methylene for 1% borax solution.Results of research: at the study of the corpus callosum plastinated cuts in saggital plane was revealed that the transverse platen-form elevations of its higher surface are the cord-form tenias standing out from within and going through the corpus callosum. At its studying in the transverse cut was established that in adults can be separated two types of corpus callosum by its density: the dense one and disperse one.At the large increases of the binocular loupe (microscope MBS-9 can be seen the gaps between the adjacent commissural cords. Within it can be detected the blood vessels. On the transverse cut of commissural cords in its depth are revealed the thinnest streaks which totality consists of the two alternate dark and light lines that form the layered striation. Among the series of the light lines are visible the interlayer that separate the whole depth of

  19. Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents

    Science.gov (United States)

    Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh

    2011-12-01

    The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.

  20. Surface-initiated ring-opening metathesis polymerization (SI-ROMP) to attach a tethered organic corona onto CdSe/ZnS core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Vatansever, Fatma, E-mail: vatansever.fatma@mgh.harvard.edu; Hamblin, Michael R., E-mail: hamblin@helix.mgh.harvard.edu [Massachusetts General Hospital, Wellman Center for Photomedicine (United States)

    2016-10-15

    Core–shell CdSe/ZnS quantum dots (QDs) are useful as tunable photostable fluorophores for multiple applications in industry, biology, and medicine. However, to achieve the optimum optical properties, the surface of the QDs must be passivated to remove charged sites that might bind extraneous substances and allow aggregation. Here we describe a method of growing an organic polymer corona onto the QD surface using the bottom-up approach of surface-initiated ring-opening metathesis polymerization (SI-ROMP) with Grubbs catalyst. CdSe/ZnS QDs were first coated with mercaptopropionic acid by displacing the original tri-octylphosphine oxide layer, and then reacted with 7-octenyl dimethyl chlorosilane. The resulting octenyl double bonds allowed the attachment of ruthenium alkylidene groups as a catalyst. A subsequent metathesis reaction with strained bicyclic monomers (norbornene-dicarbonyl chloride (NDC), and a mixture of NDC and norbornenylethylisobutyl-polyhedral oligomeric silsesquioxane (norbornoPOSS)) allowed the construction of tethered organic homo-polymer or co-polymer layers onto the QD. Compounds were characterized by FT-IR, 1H-NMR, X-ray photoelectron spectroscopy, differential scanning calorimetry, and transmission electron microscopy. Atomic force microscopy showed that the coated QDs were separate and non-aggregated with a range of diameter of 48–53 nm.

  1. Malignancies in blood-forming organs following diagnostic and therapeutic procedures: a review

    International Nuclear Information System (INIS)

    Hodgin, J.D.; Webster, P.D.

    1976-01-01

    Ionizing radiation used for diagnosis or therapy has been associated with an increased incidence of malignancies of blood-forming organs. The increased incidence of hematopoietic malignancies following exposure to ionizing radiation obtained in the course of occupation, diagnosis and therapy of disease, or as a weapon of war is documented. The natural occurrence and the induced progression to acute leukemia of polycythemia rubra vera, Hodgkin's disease, multiple myeloma, Di Guglielmo's disease, and reticuloendothelial malignancies are discussed. The status of transplantation and immunodeficiency states and their relationship to acute leukemia is reviewed. Finally, drugs, toxins, and the use of cytotoxic radiomimetic agents for nonmalignant purposes are shown to lead to the development of acute leukemia. Background information relevant to the proper use of future diagnostic and therapeutic modalities is provided

  2. Contrasted response of colloidal, organic and inorganic dissolved phosphorus forms during rewetting of dried riparian soils

    Science.gov (United States)

    Gu, Sen; Gruau, Gérard; Malique, François; Dupas, Rémi; Gascuel-Odoux, Chantal; Petitjean, Patrice; Bouhnik-Le Coz, Martine

    2017-04-01

    Riparian vegetated buffer strip (RVBS) are currently used to protect surface waters from phosphorus (P) emissions because of their ability to retain P-enriched soil particles. However, this protection role may be counterbalanced by the development in these zones of conditions able to trigger the release of highly mobile dissolved or colloidal P forms. Rewetting after drying is one of these conditions. So far, the potential sources of P mobilized during rewetting after drying are not clearly identified, nor are clearly identified the chemical nature of the released dissolved P species, or the role of the soil P speciation on these forms. In this study, two riparian soils (G and K) showing contrasting soil P speciation (65% of inorganic P species in soil G, as against 70% of organic P) were submitted to three successive dry/wet cycles in the laboratory. Conventional colorimetric determination of P concentrations combined with ultrafiltration, and measurements of iron (Fe) and aluminum (Al) and dissolved organic carbon (DOC) contents using ICP-MS and TOC analyzers, respectively, were used to study the response of the different P forms to rewetting after drying and also their release kinetics during soil leaching. For both soils, marked P release peaks were observed at the beginning of each wet cycles, with the organic-rich K soils giving, however, larger peaks than the inorganic one (G soil). For both soils also, concentrations in molybdate reactive P (MRP) remained quite constant throughout each leaching episode, contrary to the molybdate unreactive P (MUP) concentrations which were high immediately after rewetting and then decreased rapidly during leaching. A speciation change was observed from the beginning to the end of all leaching cycles. Colloidal P was found to be a major fraction of the total P immediately after rewetting (up to 50-70%) and then decreased to the end of each wet cycle where most of the eluted P was true dissolved inorganic P. Colloidal

  3. Advanced characterization of dissolved organic matter released by bloom-forming marine algae

    KAUST Repository

    Rehman, Zahid Ur

    2017-06-01

    Algal organic matter (AOM), produced by marine phytoplankton during bloom periods, may adversely affect the performance of membrane processes in seawater desalination. The polysaccharide fraction of AOM has been related to (bio)fouling in micro-filtration and ultrafiltration, and reverse osmosis membranes. However, so far, the chemical structure of the polysaccharides released by bloom-forming algae is not well understood. In this study, dissolved fraction of AOM produced by three algal species (Chaetoceros affinis, Nitzschia epithemoides and Hymenomonas spp.) was characterized using liquid chromatography–organic carbon detection (LC-OCD) and fluorescence spectroscopy. Chemical structure of polysaccharides isolated from the AOM solutions at stationary phase was analyzed using proton nuclear magnetic resonance (H-NMR). The results showed that production and composition of dissolved AOM varied depending on algal species and their growth stage. AOM was mainly composed of biopolymers (BP; i.e., polysaccharides and proteins [PN]), but some refractory substances were also present.H-NMR spectra confirmed the predominance of carbohydrates in all samples. Furthermore, similar fingerprints were observed for polysaccharides of two diatom species, which differed considerably from that of coccolithophores. Based on the findings of this study,H-NMR could be used as a method for analyzing chemical profiles of algal polysaccharides to enhance the understanding of their impact on membrane fouling.

  4. Network communities as a new form of social organization in conditions of postmodern

    Directory of Open Access Journals (Sweden)

    N. V. Burmaha

    2016-03-01

    Full Text Available This article deals with the approach to interpretation of essence of the network community concept in which we propose to consider it as a new form of social organization that is substantiated by the specificity of how our society is functioning in conditions of Postmodern. There were explored two main approaches to network communities studying: the first approach considers social networks in a classic, traditional interpretation of modernity as a special kind of social structure, and the second one represents social networks as a specific virtual formation, a social structure of virtual Internet reality. There were revealed some common features of a social organization and a network community: presence of permanent communication between members of the group, united by certain common interests and goals, as well as presence of the certain hierarchy among all members of the community, and the rules of conduct, implementation of communication. Distinctive features: network community is more informal, offers its members considerable leeway in the implementation of their own goals and satisfying the needs, full virtualization of communication absence of direct interaction during communication, under conditions where the main resource for the interchange in network communities is information. It was shown that in the process of emergence, development and distribution of network communities, the fundamental role is played by modern communications - namely, unification them in a stable set of interconnected networks and, in particular network communities.

  5. Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene

    Directory of Open Access Journals (Sweden)

    J. E. Shilling

    2008-04-01

    Full Text Available The yield of particle mass in secondary organic aerosol (SOA formed by dark ozonolysis was measured for 0.3–22.8 ppbv of reacted α-pinene. Most experiments were conducted using a continuous-flow chamber, allowing nearly constant SOA concentration and chemical composition for several days. For comparison, some experiments were also conducted in batch mode. Reaction conditions were 25°C, 40% RH, dry (NH4SO4 seed particles, and excess 1-butanol. The organic particle loading was independently measured by an aerosol mass spectrometer and a scanning mobility particle sizer, and the two measurements agreed well. The observations showed that SOA formation occurred for even the lowest reacted α-pinene concentration of 0.3 ppbv. The particle mass yield was 0.09 at 0.15 μg m−3, increasing to 0.27 at 40 μg m−3. Compared to some results reported in the literature, the yields were 80 to 100% larger for loadings above 2 μg m−3. At lower loadings, the yields had an offset of approximately +0.07 from those reported in the literature. To as low as 0.15 μm−3, the yield curve had no inflection point toward null yield, implying the formation of one or several products having vapor pressures below this value. These observations of increased yields, especially for low loadings, are potentially important for accurate prediction by chemical transport models of organic particle concentrations in the ambient atmosphere.

  6. Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Shih, Chun-Jen; Lee, Chih-Chien; Chen, Ying-Hao; Biring, Sajal; Kumar, Gautham; Yeh, Tzu-Hung; Sen, Somaditya; Liu, Shun-Wei; Wong, Ken-Tsung

    2018-01-17

    An exciplex forming cohost system is employed to achieve a highly efficient organic light-emitting diode (OLED) with good electroluminescent lifetime. The exciplex is formed at the interfacial contact of a conventional star-shaped carbazole hole-transporting material, 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA), and a triazine electron-transporting material, 2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (3P-T2T). The excellent combination of TCTA and 3P-T2T is applied as the cohost of a common green phosphorescent emitter with almost zero energy loss. When Ir(ppy) 2 (acac) is dispersed in such exciplex cohost system, OLED device with maximum external quantum efficiency of 29.6%, the ultrahigh power efficiency of 147.3 lm/W, and current efficiency of 107 cd/A were successfully achieved. More importantly, the OLED device showed a low-efficiency roll-off and an operational lifetime (τ 80 ) of ∼1020 min with the initial brightness of 2000 cd/m 2 , which is 56 times longer than the reference device. The significant difference of device stability was attributed to the degradation of exciplex system for energy transfer process, which was investigated by the photoluminescence aging measurement at room temperature and 100 K, respectively.

  7. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-01-01

    linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts

  8. How rice roots form their surrounding: Distinctive sub-zones of oxides, silicates and organic matter

    Science.gov (United States)

    Koelbl, Angelika; Mueller, Carsten; Hoeschen, Carmen; Lugmeier, Johann; Said-Pullicino, Daniel; Romani, Marco; Koegel-Knabner, Ingrid

    2016-04-01

    Most of the rice (Oryza sativa) worldwide is grown under flooded conditions in bunded fields (paddies). Inundation during long periods of the year leads to anoxic conditions in the soil. The rice plant is well adapted to these conditions by being able to transport oxygen via aerenchyma from the atmosphere to the roots. This plant mediated O2 transport also influences the adjacent soil. Driven by the O2 leakage into the rhizosphere, reddish ferric oxides and ferric hydroxides precipitate along the root channels. Thus, radial gradients of ferric Fe and with it co-precipitated organic substances form. Detailed investigations of element gradients on a submicron scale within the oxide coatings are still missing. Nano-scale secondary ion mass spectrometry (NanoSIMS) analyses can help to visualize and study the interplay of the various soil components at a submicron scale like, e.g., the attachment of organic material to minerals or the architecture of microstructures. The aim of the present study was to evaluate the composition and size of oxide coatings around rice roots concerning the distribution of organic matter and its spatial relation to oxides and silicates. Samples were taken from the plough pan of a paddy field close to the National Rice Research Centre, Castello d'Agogna (Pavia, Italy). Intact soil aggregates were air-dried, embedded in epoxy resin and then cut and polished in order to obtain a surface with low topography. Reflected-light microscopy was used (mm to μm scale) to visualize the aggregate architecture and to identify root channels in the embedded aggregate. In the next step, scanning electron microscopy (SEM) was applied to obtain images of high resolution and to define distinctive spots for subsequent NanoSIMS analyses. Using the Cameca NanoSIMS 50L at TU München, we simultaneously detected 12C-, 12C14N-, 28Si-, 32S-, 27Al16O- and 56Fe16O- at several areas around root channels in order to distinguish between organic material and different

  9. 17 CFR 239.17a - Form N-3, registration statement for separate accounts organized as management investment companies.

    Science.gov (United States)

    2010-04-01

    ... statement for separate accounts organized as management investment companies. 239.17a Section 239.17a... accounts organized as management investment companies. Form N-3 shall be used for registration under the... register under the Investment Company Act of 1940 as management investment companies, and certain other...

  10. Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

    DEFF Research Database (Denmark)

    Huang, Wei; Li, Shuo; Cao, Xianyi

    2017-01-01

    of a redox conversion-type lithium-ion battery, this composite material has demonstrated high lithium-ion storage capacity at 1148 mA h g-1 under the current rate of 500 mA g-1 for 170 cycles and an impressive rate-retention capability at 657 mA h g-1 with a current density of 2000 mA g-1. On the basis......We report the design and nanoengineering of carbon-film-coated iron sulfide nanorods (C@Fe7S8) as an advanced conversion-type lithium-ion storage material. The structural advantages of the iron-based metal-organic framework (MIL-88-Fe) as both a sacrificed template and a precursor are explored...

  11. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.

    2015-04-01

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms.

  12. Smart construction of polyaniline shell on cobalt oxides as integrated core-shell arrays for enhanced lithium ion batteries

    International Nuclear Information System (INIS)

    Qi, Meili; Xie, Dong; Zhong, Yu; Chen, Minghua; Xia, Xinhui

    2017-01-01

    Smart construction of advanced anode materials is extremely critical to develop high-performance lithium ion batteries. In this work, we have reported a facile strategy for fabricating Co 3 O 4 /polyaniline (PANI) core–shell arrays (CSAs) by chemical bath deposition (CBD) + electrodeposition methods Electrodeposited PANI shell is intimately decorated on the CBD-Co 3 O 4 nanorods forming composite CSAs. Highly conductive network and stress buffer layer are achieved with the aid of tailored PANI shell. Due to these advantages above, the designed Co 3 O 4 /PANI CSA S exhibit good electrochemical performance with higher reversible capacity (787 mAh g −1 ) and better cycle stability than the unmodified Co 3 O 4 counterpart. Our results show a new way for preparing advanced inorganic-organic composite electrodes for electrochemical energy storage.

  13. External and internal shell formation in the ramshorn snail Marisa cornuarietis are extremes in a continuum of gradual variation in development.

    Science.gov (United States)

    Marschner, Leonie; Staniek, Julian; Schuster, Silke; Triebskorn, Rita; Köhler, Heinz-R

    2013-05-17

    Toxic substances like heavy metals can inhibit and disrupt the normal embryonic development of organisms. Exposure to platinum during embryogenesis has been shown to lead to a "one fell swoop" internalization of the shell in the ramshorn snail Marisa cornuarietis, an event which has been discussed to be possibly indicative of processes in evolution which may result in dramatic changes in body plans. Whereas at usual cultivation temperature, 26°C, platinum inhibits the growth of both shell gland and mantle edge during embryogenesis leading to an internalization of the mantle and, thus, also of the shell, higher temperatures induce a re-start of the differential growth of the mantle edge and the shell gland after a period of inactivity. Here, developing embryos exhibit a broad spectrum of shell forms: in some individuals only the ventral part of the visceral sac is covered while others develop almost "normal" shells. Histological studies and scanning electron microscopy images revealed platinum to inhibit the differential growth of the shell gland and the mantle edge, and elevated temperature (28 - 30°C) to mitigate this platinum effect with varying efficiency. We could show that the formation of internal, external, and intermediate shells is realized within the continuum of a developmental gradient defined by the degree of differential growth of the embryonic mantle edge and shell gland. The artificially induced internal and intermediate shells are first external and then partly internalized, similar to internal shells found in other molluscan groups.

  14. Core-shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Jia, Yuqian; Zhao, Yanfang; Zhao, Mei; Wang, Zhenhua; Chen, Xiangfeng; Wang, Minglin

    2018-05-25

    A core-shell discoid shaped indium (III) sulfide@metal-organic framework (MIL-125(Ti)) nanocomposite was synthesized by a solvothermal method and explored as an adsorbent material for dispersive solid-phase extraction (d-SPE). The as-synthesized sorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N 2 adsorption-desorption analysis, and Fourier transform infrared spectroscopy. The extraction performance was evaluated by the d-SPE of 16 nitro-polycyclic aromatic hydrocarbons (NPAHs) from water samples. The analysis was carried out by gas chromatography (GC) coupled with triple quadruple mass spectrometer in negative chemical ionization (NCI) mode. The selected ion monitoring (SIM) was used in the quantification of the target NPAHs. Extraction factors affecting the d-SPE, including the ionic strength, extraction temperature, and extraction time were optimized by the response surface methodology. The developed d-SPE method showed good linear correlations from 10 to 1000 ng L -1 (r > 0.99), low detection limits (2.9-83.0 ng L -1 ), satisfactory repeatability (relative standard deviation of <10%, n = 6), and acceptable recoveries (71.3%-112.2%) for water samples. The developed method was used for the food and environmental sample analysis. The results demonstrated that the method could be used for sample preparation of trace NPAHs in real samples. Copyright © 2018. Published by Elsevier B.V.

  15. Desorption of Reactive Red 198 from activated carbon prepared from walnut shells: effects of temperature, sodium carbonate concentration and organic solvent dose

    Directory of Open Access Journals (Sweden)

    Zohreh Alimohamadi

    2017-04-01

    Full Text Available This study investigated the effect of temperature, different concentrations of sodium carbonate,and the dose of organic solvent on the desorption of Reactive Red 198 dye from dye-saturated activated carbon using batch and continuous systems. The results of the batch desorption test showed 60% acetone in water as the optimum amount. However, when the concentration of sodium carbonate was raised, the dye desorption percentage increased from 26% to 42% due to economic considerations; 15 mg/L of sodium carbonate was selected to continue the processof desorption. Increasing the desorption temperature can improve the dye desorption efficiency.According to the column test results, dye desorption concentration decreased gradually with the passing of time. The column test results showed that desorption efficiency and the percentage of dye adsorbed decreased; however, it seemed to stabilize after three repeated adsorption/desorption cycles. The repeated adsorption–desorption column tests (3 cycles showed that the activated carbon which was prepared from walnut shell was a suitable and economical adsorbent for dye removal.

  16. Organic forms dominate hydrologic nitrogen export from a lowland tropical watershed.

    Science.gov (United States)

    Taylor, Philip G; Wieder, William R; Weintraub, Samantha; Cohen, Sagy; Cleveland, Cory C; Townsend, Alan R

    2015-05-01

    Observations of high dissolved inorganic nitrogen (DIN) concentrations in stream water have reinforced the notion that primary tropical rain forests cycle nitrogen (N) in relative excess compared to phosphorus. Here we test this notion by evaluating hydrologic N export from a small watershed on the Osa Peninsula, Costa Rica, where prior research has shown multiple indicators of conservative N cycling throughout the ecosystem. We repeatedly measured a host of factors known to influence N export for one year, including stream water chemistry and upslope litterfall, soil N availability and net N processing rates, and soil solution chemistry at the surface, 15- and 50-cm depths. Contrary to prevailing assumptions about the lowland N cycle, we find that dissolved organic nitrogen (DON) averaged 85% of dissolved N export for 48 of 52 consecutive weeks. For most of the year stream water nitrate (NO3-) export was very low, which reflected minimal net N processing and DIN leaching from upslope soils. Yet, for one month in the dry season, NO3- was the major component of N export due to a combination of low flows and upslope nitrification that concentrated NO3- in stream water. Particulate organic N (PON) export was much larger than dissolved forms at 14.6 kg N x ha(-1) x yr(-1), driven by soil erosion during storms. At this rate, PON export was slightly greater than estimated inputs from free-living N fixation and atmospheric N deposition, which suggests that erosion-driven PON export could constrain ecosystem level N stocks over longer timescales. This phenomenon is complimentary to the "DON leak" hypothesis, which postulates that the long-term accumulation of ecosystem N in unpolluted ecosystems is constrained by the export of organic N independently of biological N demand. Using an established global sediment generation model, we illustrate that PON erosion may be an important vector for N loss in tropical landscapes that are geomorphically active. This study supports an

  17. Octadecyl functionalized core-shell magnetic silica nanoparticle as a powerful nanocomposite sorbent to extract urinary volatile organic metabolites.

    Science.gov (United States)

    Qiao, Zheng; Perestrelo, Rosa; Reyes-Gallardo, Emilia M; Lucena, R; Cárdenas, S; Rodrigues, João; Câmara, José S

    2015-05-08

    In this present study, magnetic Fe3O4@SiO2 nanoparticles (MNPs) functionalized with octadecyl groups (Fe3O4@SiO2-C18 NPs) were synthesized, characterized and employed, for the first time, as powerful nanosorbent to extract endogenous volatile organic metabolites (EVOMs) namely, hexanal, heptanal, decanal, benzaldehyde, 4-heptanone, 5-methyl-2-furfural and phenol, described as potential biomarkers of cancer, from human urine. By using co-precipitation, surface modification methods, the carbon-ferromagnetic nanocomposite was synthesized and characterized by infrared spectrum (IR) and transmission electron microscopy (TEM). By coupling with gas chromatography-mass spectrometry (GC-qMS), a reliable, sensitive and cost-effective method was validated. To test the extraction efficiency of the carbon-ferromagnetic nanocomposite toward urinary EVOMs experimental variables affecting the extraction performance, including nanosorbent amount, adsorption time, elution time, and nature of elution solvent, were investigated in detail. The extraction process was performed by dispersing Fe3O4@SiO2-C18 NPs into working solution containing targeted VOMs, and into urine samples, and then eluted with an adequate organic solvent. The eluate was collected, concentrated and analyzed by GC-qMS. Under the optimized conditions, the LODs and LOQs achieved were in the range of 9.7-57.3 and 32.4-190.9ng/mL, respectively. Calibration curves were linear (r(2)≥0. 988) over the concentration ranges from 0.25 to 250ng/mL. In addition, a satisfying reproducibility was achieved by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) less than 3 and 11%, respectively. The method also afforded satisfactory results in terms of the matrix effect (72.8-96.1%) and recoveries (accuracy) higher than 75.1% for most of the studied EVOMs. The Fe3O4@SiO2-C18 NPs-based sorbent extraction combined with GC-qMS revealed that the new nanosorbent had a strong ability to retain the

  18. Organization of Gold Nanorods in Cylinder-Forming Block Copolymer Films

    Science.gov (United States)

    Jian, Guoquian; Riggleman, Robert; Composto, Russell

    2012-02-01

    The addition of gold nanorods (AuNRs) to copolymer films can impart unique optical and electrical properties. To take full advantage of this system, the AuNRs must be dispersed in a self-organizing copolymer that directs the orientation of the anisotropic particle. In the present work, AuNRs with aspect ratio 3.6 (8 nm x 29 nm) are grafted with poly(2-vinyl pyridine) (P2VP) brushes and dispersed in a cylindrical forming diblock copolymer of polystyrene-b-P2VP (180K-b-77K, 29.6 wt% P2VP). Films are spun cast and solvent annealed in chloroform to produce a perpendicular cylindrical morphology at the surface. Using TEM and UV-ozone etching combined with AFM, the AuNRs are well dispersed and co-locate (top down view) with the P2VP cylinders, ˜50nm diameter. However, the AuNRs mainly lie parallel to the surface indicating that they likely locate at the junction created at the intersection between P2VP cylinders and P2VP brush layer adjacent to the silicon oxide surface. Self-consistent field calculations of the Au:PS-b-P2VP morphology as well as the effect of adding P2VP homopolymer to the nanocomposite will be discussed.

  19. Surface characterization studies of walnut-shell biochar catalysts for simultaneously removing of organic sulfur from yellow phosphorus tail gas

    Science.gov (United States)

    Song, Xin; Li, Kai; Ning, Ping; Wang, Chi; Sun, Xin; Tang, Lihong; Ruan, Haotian; Han, Shuang

    2017-12-01

    The influences of different preparation conditions for surface characteristics on removing organic sulfur were studied. From BET, XRD, FTIR, DRIFTS, TG/DTA, CO2-TPD results, it can be seen that these preparation conditions had great influences on the pore structure, specific surface area, crystal structure and surface functional groups. The micropore volume, amorphous structure and alkalinity site strength played major roles in desulfurization process. H2S was oxidized by oxygen containing functional groups, such as sbnd COO, sbnd Cdbnd O. H2O molecule could be converted into some groups, such as sbnd CH and Csbnd OH groups, and promoted the hydrolysis reaction. The strong alkalinity site was the key factor for chemical adsorption and hydrolysis. H2O molecule, sbnd CH, Csbnd OH groups promoted the hydrolysis reaction and sbnd COO, sbnd Cdbnd O groups promoted the oxidation of H2S on the surface of WSB. Meanwhile, the main desulfurization process over WSB after carbonization was adsorption and it changed to hydrolysis reaction after activation on the surface of WSB. Furthermore, the reaction mechanism was investigated by DRIFTS measurement according to the change of surface functional groups.

  20. Acharan sulfate, the new glycosaminoglycan from Achatina fulica Bowdich 1822. Structural heterogeneity, metabolic labeling and localization in the body, mucus and the organic shell matrix.

    Science.gov (United States)

    Vieira, Tuane C R G; Costa-Filho, Adilson; Salgado, Norma C; Allodi, Silvana; Valente, Ana-Paula; Nasciutti, Luiz E; Silva, Luiz-Claudio F

    2004-02-01

    Acharan sulfate, a recently discovered glycosaminoglycan isolated from Achatina fulica, has a major disaccharide repeating unit of -->4)-2-acetyl,2-deoxy-alpha-d-glucopyranose(1-->4)-2-sulfo-alpha-l-idopyranosyluronic acid (1-->, making it structurally related to both heparin and heparan sulfate. It has been suggested that this glycosaminoglycan is polydisperse, with an average molecular mass of 29 kDa and known minor disaccharide sequence variants containing unsulfated iduronic acid. Acharan sulfate was found to be located in the body of this species using alcian blue staining and it was suggested to be the main constituent of the mucus. In the present work, we provide further information on the structure and compartmental distribution of acharan sulfate in the snail body. Different populations of acharan sulfate presenting charge and/or molecular mass heterogeneities were isolated from the whole body, as well as from mucus and from the organic shell matrix. A minor glycosaminoglycan fraction susceptible to degradation by nitrous acid was also purified from the snail body, suggesting the presence of N-sulfated glycosaminoglycan molecules. In addition, we demonstrate the in vivo metabolic labeling of acharan sulfate in the snail body after a meal supplemented with [35S]free sulfate. This simple approach might be applied to the study of acharan sulfate biosynthesis. Finally, we developed histochemical assays to localize acharan sulfate in the snail body by metachromatic staining and by histoautoradiography following metabolic radiolabeling with [35S]sulfate. Our results show that acharan sulfate is widely distributed among several organs.

  1. Effect of the ZnS shell layer on the charge storage capabilities of organic bistable memory devices fabricated utilizing CuInS2–ZnS core–shell quantum dots embedded in a poly(methylmethacrylate) layer

    International Nuclear Information System (INIS)

    Yun, Dong Yeol; Kim, Tae Whan; Kim, Sang Wook

    2013-01-01

    The electrical characteristics of organic bistable memory devices (OBDs) fabricated utilizing CuInS 2 (CIS) core or CIS–ZnS core–shell quantum dots (QDs) embedded in a poly(methylmethacrylate) (PMMA) layer on indium–tin-oxide (ITO) coated glass substrates were investigated. X-ray photoelectron spectroscopy spectra demonstrated that the stoichiometries of the QDs embedded in a PMMA layer were CIS or CIS–ZnS QDs. Current–voltage measurements on Al/CIS or CIS–ZnS QDs embedded in PMMA layer/ITO glass devices at 300 K showed current bistabilities. The maximum ON/OFF current ratios of the OBDs with CIS or CIS–ZnS QDs were approximately 1 × 10 3 and 1 × 10 5 , respectively. The retention number of ON and OFF states was measured by 1 × 10 5 . The memory mechanisms of the OBDs with CIS or CIS–ZnS QDs are described on the basis of the experimental results. - Highlights: • Organic bistable devices utilizing nanocomposites were fabricated. • Current–voltage results on organic bistable devices showed current bistabilities. • Maximum ON/OFF current ratio of the device with core–shell quantum dots was 1 × 10 5 . • Retention number of the device with core–shell quantum dots was 1 × 10 5

  2. Patterning of the turtle shell.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F

    2017-08-01

    Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ancient shell industry at Bet Dwarka island

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Sundaresh; Patankar, V.

    for the manufacture of beads, bangles, etc. 12 . Shell species found at the sites include T. pyrum (cha nk), Chicoreus ramosus , Fasciolaria trapezium , Cypraea (cowries), Arabica arabica (cowries), Babylonia spirata , dentalium, mussel and Arca... muscles are attached. Average length of a shell can be up to 15 to 20 cm and width 10 ? 15 cm 8 . It provides a unique structure for the manufacture of several bangles from a single shell. The organ ism living inside is also edible...

  4. Effect of organic matrices on the determination of the trace element chemistry (Mg, Sr, Mg/Ca, Sr/Ca) of aragonitic bivalve shells (Arctica islandica). Comparison of ICP-OES and LA-ICP-MS data

    International Nuclear Information System (INIS)

    Schoene, Bernd R.; Zhang, Zengjie; Jacob, Dorrit; Soldate, Analia; Gillikin, David P.; Tuetken, Thomas; Garbe-Shoenberg, Dieter; McConnaughey, Ted

    2010-01-01

    The element chemistry of biogenic carbonates can provide important data on past environments. However, the Sr/Ca and Mg/Ca ratios as well as the Mg and Sr concentrations of biological carbonates, especially aragonitic bivalves often depart from apparent thermodynamic equilibrium. When measured in situ by means of LA-ICP-MS, the Mg concentration is often substantially enriched (two- to threefold) near the organic-rich, annual growth lines. To test the hypothesis that some organic components exert a major influence on the skeletal metal content, the element chemistry of different shell components (insoluble organic matrix, IOM; dissolved CaCO 3 and soluble organics, SOM) of Arctica islandica was measured by means of ICP-OES and LA-ICP-MS. The ICP-OES data indicate that the IOM is strongly enriched in Mg (130 ppm) and depleted in Sr and Ca (10 ppm and 0.22 wt%, respectively) when compared to the whole biomineral (Mg: 68 to 99 ppm, Sr: 860 to 1,060 ppm, Ca: ∼35.72 wt%). Although the average relative abundance of the IOM barely exceeds 0.46 wt%, its chemical composition in combination with its heterogeneous distribution across the shell can significantly increase estimates of the Mg concentration if measured in situ by LA-ICP-MS. Depending on the distribution of the IOM, the Ca concentration may be significantly lower locally than the average Ca concentration of the whole shell (35.72 wt%). If this remains undetected, the Mg concentration of shell portions with higher than average IOM content is overestimated by LA-ICP-MS and, conversely, the Mg concentration is underestimated in shell portions with lower than average IOM content. Removal of the IOM prior to the chemical analysis by LA-ICP-MS or mathematical correction for the IOM-derived magnesium concentrations is therefore strongly advised. The different chemistry of the IOM may also exert a major control on the trace element to calcium ratios. Shell portions enriched in IOM will show up to 200 times higher Mg

  5. Development of an Extraterrestrial Organic Analyzer (EOA) for Highly Sensitive Organic Detection on an Ice Shell Impact Penetrator (IceShIP)

    Science.gov (United States)

    Stockton, A. M.; Duca, Z. A.; Cato, M.; Cantrell, T.; Kim, J.; Putman, P.; Schmidt, B. E.

    2016-12-01

    Kinetic penetrators have the potential to enable low cost in situ measurements of the ice of worlds including Europa and Enceladus [1]. Their small size and mass, critical to limiting their kinetic energy, makes them ideal small landers riding on primarily orbiter missions, while enabling sampling at several m depth due to burial and excavation. In situ microfluidic-based organic analysis systems are a powerful, miniaturized approach for detecting markers of habitability and recent biological activity. Development of microfluidic technology, like that of the Mars Organic Analyzer (MOA) [2,3] and Enceladus Organic Analyzer (EOA), has led to an instrument capable of in situ organic chemical analysis compatible with a kinetic penetrator platform. This technology uses an integrated microfluidic processor to prepare samples for analysis via fluorescent derivatization prior to highly sensitive laser-induced fluorescence (LIF) detection. Selective derivatization in the presence of a chiral selector enables distinction between amino acid enantiomers. Finite element analysis of the core microfluidic processing and analytical device indicated that the device itself is more than capable of surviving the stresses associated with an impact acceleration of >50,000g. However, a number of developments were still required to enable a flight-ready system. Preliminary experiments indicated that moving from a pneumatically-actuated to a hydraulically-actuated microvalve system may provide better impact resistance. A hydraulically-actuated microvalve system was developed and tested. A modification of an established microfabricated LIF detection system would use indium bump bonding to permanently weld optical components using standard microfabrication techniques with perfect alignment. Recent work has also focused on developing and characterizing impact-resistant electronics. This work shows the low-TRL development of EOA's LIF and microfluidic subsystems for future planetary impact

  6. Novel enhancement of thin-form-factor galvanic cells: Probing halogenated organic oxidizers and metal anodes

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas-Valencia, Andres M.; Adornato, Lori; Short, R. Timothy; Langebrake, Larry [SRI International, Engineering and Systems Division, Marine Technology Program, 140 Seventh Avenue South, St Petersburg, FL 33701 (United States)

    2008-09-15

    The work reported herein demonstrates a novel method to improve the overall performance of thin-form-factor galvanic cells, fabricated via micro-electromechanical systems (MEMS) processes. Use of solid, low cost, cyclic-halogenated, organic catholyte materials permits water activation of cells consisting of metal anode and catalytic platinum positive electrodes. Similar cells, employing aluminum and zinc anodes, have been activated using sodium hypochlorite (NaClO) solutions, i.e. bleach, in the past. The oxidizers chosen for this study (bromo-, chloro- and iodo-succinimides, and sodium dichloroisocyanuric acid) supply the cathode's oxy-halogenated ions when in contact with water. Zinc, magnesium and aluminum anodes are utilized to fabricate galvanic cells. A comparison between these anodes, coupled with various oxidizers, is included herein. Results using aluminum anode cells show that, even though the utilization efficiency of the catholyte reagents is low (faradic efficiencies between 16 and 19%), the performance of the new water-activated cells (6 cm x 6 cm x 0.25 cm) is superior when compared to those activated with bleach. For instance, operational lives of 6 h (activation with 10% NaClO solution) increase to more than 30 h using the new approach, with a 100-ohm-load. It is also shown that specific energies of 90-110 Wh kg{sup -1} (calculated to include both reagent and packaging mass) could be obtained using the described approach with current draws between 10 and 20 mA. The specific energies obtained suggest that novel MEMS-type cells could have much broader application than low-current, bleach-activated cells. (author)

  7. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-12-01

    Oxygen and Nitrogen containing compounds are of utmost importance due to their interesting and diverse biological activities. The construction of the C-O and C–N bonds is of significance as it opens avenues for the introduction of ether and amine linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts or ligands in many cases. Thus, it is a challenge to develop alternative, milder, cheaper and more reproducible methodologies for the construction of these types of bonds. Herein, we introduce a new efficient ligand free catalytic system for C-O and C-N bond formation reactions.

  8. Stable isotope ratios in freshwater mussel shells as high resolution recorders of riverine environmental variation

    Science.gov (United States)

    Kukolich, S.; Kendall, C.; Dettman, D. L.

    2017-12-01

    The geochemical record stored in growth increments of freshwater mussel shells reveals annual to sub-annual changes in environmental conditions during the lifetime of the organism. The carbon, nitrogen, and oxygen stable isotope composition of aragonite shells responds to changes in water chemistry, temperature, streamflow, turbidity, growth rate, size, age, and reproduction. The goals of this study are to determine how stable isotopes can be used to reconstruct the conditions in which the mussels lived and to illuminate any vital effects that might obscure the isotopic record of those conditions. Previous research has suggested that annual δ13C values decrease in older freshwater mussel shells due to lower growth rates and greater incorporation of dietary carbon into the shell with increasing age. However, a high-resolution, seasonal investigation of δ13C, δ15N, and δ18O as they relate to organism age has not yet been attempted in freshwater mussels. A total of 28 Unionid mussels of three different species were collected live in 2011 in the Tennessee River near Paducah, Kentucky, USA. In this study, we analyzed the shell nacre and external organic layers for stable carbon, nitrogen, and oxygen isotope ratios, focusing on growth bands formed between 2006 and 2011. We present a time series of shell δ13C, δ18O, and δ15N values with monthly resolution. We also compare the shell-derived geochemical time series to a time series of the δ13C and δ15N of particulate organic matter, δ13C of DIC, δ18OWater, and water temperature in which the mussels lived. Results show that environmental factors such as water temperature and primary productivity dominate shell chemistry while animal age has little or no effect.

  9. Acid-induced movements in the glycoprotein shell of an alphavirus turn the spikes into membrane fusion mode

    OpenAIRE

    Haag, Lars; Garoff, Henrik; Xing, Li; Hammar, Lena; Kan, Sin-Tau; Cheng, R.Holland

    2002-01-01

    In the icosahedral (T = 4) Semliki Forest virus, the envelope protomers, i.e. E1–E2 heterodimers, make one-to-one interactions with capsid proteins below the viral lipid bilayer, transverse the membrane and form an external glycoprotein shell with projections. The shell is organized by protomer domains interacting as hexamers and pentamers around shell openings at icosahedral 2- and 5-fold axes, respectively, and the projections by other domains associating as trimers at 3- and quasi 3-fold a...

  10. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    Science.gov (United States)

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  11. Spectroscopic quantification of soil phosphorus forms by {sup 31}P-NMR after nine years of organic or mineral fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Gatiboni, Luciano Colpo, E-mail: gatiboni@cav.udesc.br [Universidade Estadual de Santa Catarina (UDESC), Lages, SC (Brazil); Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz, E-mail: danilo.rheinheimer@pq.cnpq.br, E-mail: joao.kaminski@gmail.com, E-mail: acflores@quimica.ufsm.br, E-mail: masl32003@gmail.com, E-mail: girottosolos@gmail.com, E-mail: andrecopetti@yahoo.com.br [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Pandolfo, Carla Maria; Veiga, Milton, E-mail: pandolfo@epagri.sc.gov.br, E-mail: milveiga@epagri.sc.gov.br [Empresa de Pesquisa Agropecuaria e Extensao Rural de Santa Catarina (EPAGRI), Campos Novos, SC (Brazil)

    2013-05-15

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha{sup -1} year{sup -1} of moist poultry litter; 4) 60 m{sup 3} ha{sup -1} year{sup -1} of liquid cattle manure and 5) 40 m{sup 3} ha{sup -1} year{sup -1} of liquid swine manure. The {sup 31}P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  12. Spectroscopic quantification of soil phosphorus forms by 31P-NMR after nine years of organic or mineral fertilization

    International Nuclear Information System (INIS)

    Gatiboni, Luciano Colpo; Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz; Pandolfo, Carla Maria; Veiga, Milton

    2013-01-01

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha -1 year -1 of moist poultry litter; 4) 60 m 3 ha -1 year -1 of liquid cattle manure and 5) 40 m 3 ha -1 year -1 of liquid swine manure. The 31 P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  13. Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals.

    Science.gov (United States)

    Bae, Seo-Yoon; Kim, Dongwook; Shin, Dongbin; Mahmood, Javeed; Jeon, In-Yup; Jung, Sun-Min; Shin, Sun-Hee; Kim, Seok-Jin; Park, Noejung; Lah, Myoung Soo; Baek, Jong-Beom

    2017-11-17

    Solid-state reaction of organic molecules holds a considerable advantage over liquid-phase processes in the manufacturing industry. However, the research progress in exploring this benefit is largely staggering, which leaves few liquid-phase systems to work with. Here, we show a synthetic protocol for the formation of a three-dimensional porous organic network via solid-state explosion of organic single crystals. The explosive reaction is realized by the Bergman reaction (cycloaromatization) of three enediyne groups on 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene. The origin of the explosion is systematically studied using single-crystal X-ray diffraction and differential scanning calorimetry, along with high-speed camera and density functional theory calculations. The results suggest that the solid-state explosion is triggered by an abrupt change in lattice energy induced by release of primer molecules in the 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene crystal lattice.

  14. The Dual-Agency Problem Reconsidered: A Strategic Deviance Perspective on the Franchise Form of Organizing

    OpenAIRE

    Kidwel, Roland E.; Nygaard, Arne

    2010-01-01

    Drawing on various theoretical streams, including organizational deviance, we propose that a franchisor cannot assess and control opportunism without comparative information from plural form contractual arrangements provided by both franchisee relationships and operating its own units. Moving beyond dyadic perspectives, our strategic deviance model suggests why franchisors accept deviant behavior that results from vertical and horizontal agency problems. The plural form provides benchmark inf...

  15. Comparing Amide-Forming Reactions Using Green Chemistry Metrics in an Undergraduate Organic Laboratory

    Science.gov (United States)

    Fennie, Michael W.; Roth, Jessica M.

    2016-01-01

    In this laboratory experiment, upper-division undergraduate chemistry and biochemistry majors investigate amide-bond-forming reactions from a green chemistry perspective. Using hydrocinnamic acid and benzylamine as reactants, students perform three types of amide-forming reactions: an acid chloride derivative route; a coupling reagent promoted…

  16. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.; Ekowati, Yuli; Neu, Thomas R.; Kleijn, J. Mieke; Winters, Harvey; Amy, Gary L.; Schippers, Jan Cornelis; Kennedy, Maria Dolores

    2015-01-01

    , such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using

  17. LOGICAL-ORIENTED TASKS AS A FORM OF ORGANIZATION OF THE EDUCATIONAL MATERIAL CONTENT IN TEACHING MATHEMATICS TO STUDENTS

    Directory of Open Access Journals (Sweden)

    Oksana Smirnova

    2015-09-01

    Full Text Available The article substantiates the need to improve the logical preparation of students. The authors regard the logical-oriented tasks as a form of organization of the content of educational material in teaching Mathematics and discriminate the types of tasks aimed at the formation of logical methods and operations.

  18. Prediction of Path Deviation in Robot Based Incremental Sheet Metal Forming by Means of a New Solid-Shell Finite Element Technology and a Finite Elastoplastic Model with Combined Hardening

    Science.gov (United States)

    Kiliclar, Yalin; Laurischkat, Roman; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-08-01

    The presented project deals with a robot based incremental sheet metal forming process, which is called roboforming and has been developed at the Chair of Production Systems. It is characterized by flexible shaping using a freely programmable path-synchronous movement of two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the part contour in lateral direction. However, the resulting geometries formed in roboforming deviate several millimeters from the reference geometry. This results from the compliance of the involved machine structures and the springback effects of the workpiece. The project aims to predict these deviations caused by resiliences and to carry out a compensative path planning based on this prediction. Therefore a planning tool is implemented which compensates the robots's compliance and the springback effects of the sheet metal. The forming process is simulated by means of a finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM). It is based on the multiplicative split of the deformation gradient in the context of hyperelasticity and combines nonlinear kinematic and isotropic hardening. Low-order finite elements used to simulate thin sheet structures, such as used for the experiments, have the major problem of locking, a nonphysical stiffening effect. For an efficient finite element analysis a special solid-shell finite element formulation based on reduced integration with hourglass stabilization has been developed. To circumvent different locking effects, the enhanced assumed strain (EAS) and the assumed natural strain (ANS) concepts are included in this formulation. Having such powerful tools available we obtain more accurate geometries.

  19. The variation of organ doses with the particle size and chemical form of an inhaled radioactive aerosol

    International Nuclear Information System (INIS)

    Hunt, B.W.; Adams, N.; Reissland, J.A.

    1979-04-01

    In this report, radiation doses to organs are calculated as a function of the particle size of the inhaled radioactive material. Aerosols with an Activity Median Aerodynamic Diameter (AMAD) from 0.1 μm to 20 μm are considered and doses accumulated by various organs in periods ranging from 1 day to 70 years are given for 65 radionuclides. A computer program is used which calculates the transformations taking place in each organ per curie of inhaled nuclide from the basic radioactivity and metabolic data. The program also calculates the resulting doses both for the organ in which the transformations occur and from penetrating radiation emitted as a result of transformations in other organs. The effects of particle size and chemical form of the nuclides on the doses received by organs are discussed. Tables of doses accumulated by 10 specific organs and other organs together with effective whole body doses are given for particle sizes 0.1 μm, 1 μm and 10 μm (AMAD). (author)

  20. Core-Shell-Corona Micelles with a Responsive Shell.

    Science.gov (United States)

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  1. Strength Calculation of Locally Loaded Orthotropic Shells

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available The article studies laminated orthotropic cylindrical, conic, spherical, and toroidal shells, which are often locally loaded in the aircraft designs over small areas of their surfaces.The aim of this work is to determine stress concentration in shells versus structure of orthotropic composite material, shell form and parameters, forms of loading areas, which borders do not coincide with lines of main curvatures of shells. For this purpose, an analytical computing algorithm to estimate strength of shells in terms of stress is developed. It enables us to have solution results of the boundary value problem with a controlled error. To solve differential equations an analytical method is used. An algorithm of the boundary value problem solution is multiplicative.The main results of researches are graphs of stress concentration in the orthotropic shells versus their parameters and areas of loading lineated by circles and ellipses.Among the other works aimed at determination of stress concentration in shells, the place of this one is defined by the analytical solution of applied problems for strength estimation in terms of shell stresses of classical forms.The developed effective analytical algorithm to solve the boundary value problem and received results are useful in research and development.

  2. ORGANIZING OF MANAGERIAL ACCOUNTING IN THE FORMING OF INFORMATION BASE OF BUILDING ENTERPRISES PROVIDING DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Nadiia Pylypiv

    2017-03-01

    Full Text Available This article explores the impact of organization of managerial accounting on formation of informational base on the local (level of the individual enterprise, regional, disciplinary and national levels in the context of providing stable economic development for building enterprises. Based on our findings, we built a cognitive map of such an influence, which shows itself through different spheres, such as: economic, ecological and social, and will enjoy informational requests of management for improving of effectiveness of management system of such kind of  enterprises. Keywords: managerial accounting, organization, provision, stable economic development, building enterprises

  3. Single Shell Tank (SST) Program Plan

    International Nuclear Information System (INIS)

    HAASS, C.C.

    2000-01-01

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000

  4. Single Shell Tank (SST) Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    HAASS, C.C.

    2000-03-21

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000.

  5. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.

    Science.gov (United States)

    Smith, Jeremy D; Kinney, Haley; Anastasio, Cort

    2015-04-21

    Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.

  6. Survey of new forms of organization and financing constructions in the Dutch solar electricity market

    International Nuclear Information System (INIS)

    Meijer, M.; Laurensse, S.; Simon, T.

    2011-01-01

    In the title project the focus is on organizations and projects in the Dutch market for solar electricity, characterized by: minimal dependence on subsidies (state aid), the removal of high initial investments by users (financing), and structures that can easily be extended or replicated (scale) [nl

  7. Electrochemical Evaluation of Corrosion Inhibiting Layers Formed in a Defect from Lithium-Leaching Organic Coatings

    NARCIS (Netherlands)

    Visser, P.; Meeusen, M.; Gonzalez Garcia, Y.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    This work presents the electrochemical evaluation of protective layers generated in a coating defect from lithium-leaching organic coatings on AA2024-T3 aluminum alloys as a function of neutral salt spray exposure time. Electrochemical impedance spectroscopy was used to study the electrochemical

  8. THE ORGANIZATION OF OPERATIONAL CONTROL AND MANAGEMENT OF ROLL FORMING USING SCADA- SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. A. Teslenko

    2012-01-01

    Full Text Available It is shown that the use Scada-systems for the organization of various systems of automated processes is the most promising method of automation, that gives wide opportunities of control, analysis and management of compiex dynamic, real-time systems.

  9. Competencies in nursing students for organized forms of clinical moral deliberation and decision-making

    NARCIS (Netherlands)

    dr. Bart Cusveller; Jeanette den Uil-Westerlaken

    2014-01-01

    Bachelor-prepared nurses are expected to be competent in moral deliberation and decision-making (MDD) in clinical practice. It is unclear, however, how this competence develops in nursing students. This study explores the development of nursing students’ competence for participating in organized

  10. Impact of Sarbanes-Oxley and IRS Form 990 on Nonprofit Organizations in Pennsylvania

    Science.gov (United States)

    Kisow, Matthew R.

    2011-01-01

    The Sarbanes-Oxley Act, an attempt to reform publicly traded companies that suffered from a series of scandalous failures in the late 1990's, did not apply to nonprofit organizations. Several high-profile scandals which occurred in the nonprofit sector between 1996 and 2002 led lawmakers to make several unsuccessful attempts at mandating that the…

  11. Towards a spatial theory of organizations : Creating new organizational forms to improve business performance

    NARCIS (Netherlands)

    Tissen, R.J.; Lekanne Deprez, F.R.E.

    2008-01-01

    Research in the field of management and organizational theory generally indicates the absense of space in organizations. Space has largely been a neglected phenomenon, left implicite to practice as something ‘limiting’ without actually ‘existing’. The aim of this research paper is to explore and

  12. New environmentally friendly MSPD solid support based on golden mussel shell: characterization and application for extraction of organic contaminants from mussel tissue.

    Science.gov (United States)

    Rombaldi, Caroline; de Oliveira Arias, Jean Lucas; Hertzog, Gabriel Ianzer; Caldas, Sergiane Souza; Vieira, João P; Primel, Ednei Gilberto

    2015-06-01

    The use of golden mussel shells as a solid support in vortex-assisted matrix solid-phase dispersion (MSPD) was evaluated for the first time for extraction of residues of 11 pesticides and nine pharmaceutical and personal care products from mussel tissue samples. After they had been washed, dried, and milled, the mussel shells were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The MSPD procedure with analysis by liquid chromatography-tandem mass spectrometry allowed the determination of target analytes at trace concentrations (nanograms per gram), with mean recoveries ranging from 61 to 107 % and relative standard deviations lower than 18 %. The optimized method consisted of dispersion of 0.5 g of mussel tissue, 0.5 g of NaSO4, and 0.5 g of golden mussel shell for 5 min, and subsequent extraction with 5 mL of ethyl acetate. The matrix effect was evaluated, and a low effect was found for all compounds. The results showed that mussel shell is an effective material and a less expensive material than materials that have traditionally been used, i.e., it may be used in the MSPD dispersion step during the extraction of pesticides and pharmaceutical and personal care products from golden mussel tissues. Graphical Abstract Vortex-assited matrix solid-phase dispersion for extraction of 11 pesticides and 9 PPCPs care products from mussel tissue samples.

  13. Deproteinization potential and antioxidant property of haloalkalophilic organic solvent tolerant protease from marine Bacillus sp. APCMST-RS3 using marine shell wastes

    Directory of Open Access Journals (Sweden)

    Thirumalai Maruthiah

    2015-12-01

    Full Text Available The current increase in the vast amount of marine crustacean shell waste produced by the fish processing industries has led to the need to find new methods for its disposal. Hence, the present study was carried out via marine shell wastes as substrate for protease production. The maximum production (4000.65 U/ml from Bacillus sp. APCMST-RS3 was noticed in 3:1% shrimp and oyster shell powder (SOSP as substrate. Purified protease showed 53.22% and 22.66% enzyme yield; 3.48 and 8.49 fold purity with 40 kDa molecular weight; whereas, its Km and Vmax values were 0.6666 g/l, 1111.11 U/ml. This enzyme showed optimum activity at pH 9 and 60 °C temperature. Also, it retained maximum protease activity in the presence of NaCl (2.5 M, surfactants (Tween 20, 40, 60, 80 and SDS and metal ions (MnCl2, CaCl2, HgCl2 and BaCl2 and solvents. The candidate bacterium effectively deproteinized (84.35% shrimp shell and its antioxidant potentials.

  14. Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell

    Science.gov (United States)

    Heidarzadeh, Hamid

    2018-03-01

    Significant performance enhancement in an ultrathin perovskite (CH3NH3PbI3) solar cell is done using plasmonic embedded core–shell dimer nanoparticles. Three-dimensional finite difference time-domain (FDTD) method is used. A perovskite absorber with a volume of 400 × 400 × 200 nm3 is considered. At first, a cell with one embedded nanoparticle is simulated. Absorptance of CH3NH3PbI3 absorber and gold nanoparticle are obtained. An optimization is done. Then a cell with embedded dimer nanoparticles is evaluated. The results show higher photocurrent enhancement for that in compared to a cell with one embedded nanoparticle. To further photocurrent enhancement, gold-SiO2 core–shell nanoparticles are used. Photocurrents of 23.37 mA cm‑2, 23.3 mA cm‑2, 22.5 mA cm‑2 and 21.47 mA cm‑2 are obtained for a cell with two embedded core–shell nanoparticles with core radius of 60 nm and shell thickness of 2 nm, 5 nm, 10 nm and 20 nm, respectively. It is important to mention that the photocurrent is 17.9 mA cm‑2 for reference cell and 19.8 mA cm‑2 for a cell with one embedded nanoparticle. Higher photocurrent is due to the near-field plasmonic effect.

  15. The evolution of mollusc shells.

    Science.gov (United States)

    McDougall, Carmel; Degnan, Bernard M

    2018-05-01

    Molluscan shells are externally fabricated by specialized epithelial cells on the dorsal mantle. Although a conserved set of regulatory genes appears to underlie specification of mantle progenitor cells, the genes that contribute to the formation of the mature shell are incredibly diverse. Recent comparative analyses of mantle transcriptomes and shell proteomes of gastropods and bivalves are consistent with shell diversity being underpinned by a rapidly evolving mantle secretome (suite of genes expressed in the mantle that encode secreted proteins) that is the product of (a) high rates of gene co-option into and loss from the mantle gene regulatory network, and (b) the rapid evolution of coding sequences, particular those encoding repetitive low complexity domains. Outside a few conserved genes, such as carbonic anhydrase, a so-called "biomineralization toolkit" has yet to be discovered. Despite this, a common suite of protein domains, which are often associated with the extracellular matrix and immunity, appear to have been independently and often uniquely co-opted into the mantle secretomes of different species. The evolvability of the mantle secretome provides a molecular explanation for the evolution and diversity of molluscan shells. These genomic processes are likely to underlie the evolution of other animal biominerals, including coral and echinoderm skeletons. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties. © 2018 Wiley Periodicals, Inc.

  16. Organic and inorganic speciation of particulate matter formed during different combustion phases in an improved cookstove.

    Science.gov (United States)

    Leavey, Anna; Patel, Sameer; Martinez, Raul; Mitroo, Dhruv; Fortenberry, Claire; Walker, Michael; Williams, Brent; Biswas, Pratim

    2017-10-01

    Residential solid fuel combustion in cookstoves has established health impacts including bladder and lung cancers, cataracts, low birth weight, and pneumonia. The chemical composition of particulate matter (PM) from 4 commonly-used solid fuels (coal, dung, ambient/dry applewood, and oakwood pellets), emitted from a gasifier cookstove, as well as propane, were examined. Temporal changes between the different cookstove burn-phases were also explored. Normalized concentrations of non-refractory PM 1 , total organics, chloride, ammonium, nitrate, sulfate, and 41 particle-phase polycyclic aromatic hydrocarbons (PAHs) were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a Thermal desorption Aerosol Gas chromatograph (TAG), respectively. Coal demonstrated the highest fraction of organic matter in its particulate emission composition (98%), followed by dung (94%). Coal and dung also demonstrated the highest numbers and concentrations of PAHs. While dry applewood emitted ten times lower organic matter compared to ambient applewood, a higher fraction of these organics was composed of PAHs, especially the more toxic ones such as benzo(a)pyrene (9.63ng/L versus 0.04ng/L), and benzo(b)fluoranthene (31.32ng/L versus 0.19ng/L). Data from the AMS demonstrated no clear trends for any of the combustion fuels over the different combustion phases unlike the previously reported trends observed for the physical characteristics. Of the solid fuels, pellets demonstrated the lowest emissions. Emissions from propane were below the quantification limit of the instruments. This work highlights the benefits of incorporating additional metrics into the cookstove evaluation process, thus enriching the existing PM data inventory. Copyright © 2017. Published by Elsevier Inc.

  17. Does your organization use gender inclusive forms? Nurses' confusion about trans* terminology.

    Science.gov (United States)

    Carabez, Rebecca; Pellegrini, Marion; Mankovitz, Andrea; Eliason, Mickey; Scott, Megan

    2015-11-01

    To describe nurses confusion around trans* terminology and to provide a lesson in Trans* 101 for readers. Of the estimated 9 million persons in the United States of America who are identified as lesbian, gay, bisexual and transgender, about 950,000 (0.2-0.5% of adult population) are identified as trans* (a term that encompasses the spectrum, including transgender, transsexual, trans man, trans woman and other terms). The Institute of Medicine (2011, The health of lesbian, gay, bisexual and transgender people: Building a foundation for better understanding. The National Academies Press, Washington, DC) identified transgender persons as an understudied population with significant need for health research, yet the nursing literature contains little guidance for educating nurses on trans* issues. This is a mixed methods structured interview design with nurse key informants. The scripted interview was based on the Health Care Equality Index, which evaluates patient-centred care to lesbian, gay, bisexual and transgender patients and families. These data were part of a larger research study that explored the current state of lesbian, gay, bisexual and transgender-sensitive nursing practice. Undergraduate nursing students recruited and interviewed 268 nurse key informants about gender inclusive forms (capable of identifying trans* patients) at their agencies. Only 5% reported use of gender inclusive forms, 44% did not know about inclusive forms, 37% did not understand what a gender inclusive form was and 14% confused gender with sexual orientation. The study demonstrated a critical need for education in gender identity and sexual orientation terminology. The lack of understanding of concepts and terminology may affect basic care of lesbian, gay, bisexual and transgender patients especially those who identify as transgender. © 2015 John Wiley & Sons Ltd.

  18. Innovative Forms of Production Organization in the Context of High-Tech Meso-Economic Systems Sustainable Development

    OpenAIRE

    Shinkevich, Alexey I.; Lubnina, Alsu A.; Chikisheva, Natalia M.; Simonova, Lyudmila M.; Alenina, Elena E.; Khrustalev, Boris B.; Sadykova, Roza Sh.; Kharisova, Regina R.

    2016-01-01

    The article’s objectives involve the models’ development to stimulate joint innovation activities of enterprises of chemistry and technology of polymeric and composite materials based on new forms of co-competition relationships. The leading method to the problem study is a simulation method that allows this issue’s consideration as a focused and organized process to improve the innovative development management of industrial enterprises of chemistry and technology of polymeric and composite ...

  19. Porous Core-Shell Nanostructures for Catalytic Applications

    Science.gov (United States)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  20. Ocean acidification reduces the crystallographic control in juvenile mussel shells.

    Science.gov (United States)

    Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A

    2014-10-01

    Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Reduced Magnetism in Core–Shell Magnetite@MOF Composites

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K.; Sinnwell, Michael A.; Banerjee, Debasis; Devaraj, Arun; Kukkadapu, Ravi K.; Droubay, Timothy C.; Nie, Zimin; Kovarik, Libor; Murugesan, Vijayakumar; Manandhar, Sandeep; Nandasiri, Manjula I.; McGrail, Bernard P.; Thallapally, Praveen K.

    2017-10-17

    Rare-earth elements (REEs) have significant commercial and military uses.1-3 However, REE extraction through conventional mining processes is expensive and feasible at only a few locations worldwide. Alternative methods are needed to produce REEs from more geographically disperse resources and in a cost effective, environmental friendly manner.4,5 Among various sources, geothermal brine, used for generating geothermal energy can possess attractive concentrations (ppb to ppm level) of REEs along with other dissolved metal ions.6 A system that can selectively trap the REEs using an existing geothermal power plant infrastructure would be an attractive additional revenue stream for the plant operator that could accelerate the development and deployment of geothermal plants in the United States and rest of the world.7,8 Here, we demonstrate a magnetic core-shell approach that can effectively extract REEs in their ionic form from aqueous solution with up to 99.99% removal efficiency. The shell, composed of thermally and chemically stable functionalized metal-organic framework (MOF), is grown over a synthesized Fe3O4 magnetic core. Magnetic susceptibility of the particles was found to decline significantly after in situ growth of a MOF shell, which resulted from oxidation of Fe2+ species of the magnetite (Fe3O4) to Fe3+ species (maghemite). The core-shell particles can be completely removed from the mixture under an applied magnetic field, offering a practical, economic, and efficient REE-removal process.

  2. Alterations of Liver Histomorphology in Relation to Copper Supplementation in Inorganic and Organic Form in Growing Rats

    Directory of Open Access Journals (Sweden)

    Tomaszewska Ewa

    2014-10-01

    Full Text Available The aim of this study was to define the effects of diet containing the same mineral content of mineral salt or amino acid chelate, and diet containing various levels of Cu amino acid chelate on liver histomorphometry in growing rats. Male Wistar rats were used in the 12th week experiment. The control group (n = 12 was fed standard diet, which provided Cu in an inorganic form at the level required for rats. The experimental animals were divided into four groups (each n = 12 depending on different levels (100%, 75%, 50%, 25% covered daily demand of Cu supplementation in chelated form. Cu content was determined in the liver tissue and blood plasma. Immunohistochemical staining with caspase-3 antibody was performed. Microscopic assessment of the liver structure indicated that Cu supplementation did not change the liver architecture. However, histomorphometric analysis revealed a significant increase in the number of nuclei, total cell number, and multinucleated hepatocytes in rats supplemented with the organic form of Cu at the level of 25% compared with the control group. There was a considerable increase in the number of apoptotic cells and ballooning degeneration of hepatocytes, especially in groups supplemented with organic form of Cu covering the daily demand in 100% and 75%, in comparison to control group. Moreover, there was no Cu deposition in the liver and changes in Cu content in blood. Cu provided in the diet in organic form covering an amount of its minimum daily demand in 25% appears to be the least harmful with regard to the liver. It indicates that there is a need to establish the level of diet supplementation with Cu amino acid chelates.

  3. Optimal designs of mollusk shells from bivalves to snails.

    Science.gov (United States)

    Okabe, Takuya; Yoshimura, Jin

    2017-02-10

    Bivalve, ammonite and snail shells are described by a small number of geometrical parameters. Raup noted that the vast majority of theoretically possible shell forms do not occur in nature. The constraint factors that regulate the biased distribution of natural form have long since been an open problem in evolution. The problem of whether natural shell form is a result of optimization remains unsolved despite previous attempts. Here we solve this problem by considering the scaling exponent of shell thickness as a morphological parameter. The scaling exponent has a drastic effect on the optimal design of shell shapes. The observed characteristic shapes of natural shells are explained in a unified manner as a result of optimal utilization of shell material resources, while isometric growth in thickness leads to impossibly tight coiling.

  4. Biofilm formed from organic-inorganic hybrid tri-ureasil PPO for transdermal drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Eduardo F.; Jesus, Natana Aparecida; Oliveira, Pollyana Francielli; Furtado, Ricardo A.; Tavares, Denise Crispim, E-mail: eduardo.molina@unifran.edu.br [Universidade de Franca (UNIFRAN), SP (Brazil)

    2016-07-01

    Full text: In this work we evaluated the viability of the tri-ureasil PPO hybrid as biofilm forming for release of active substances such as lignans. The samples were characterized by X-ray diffraction (XRD) and infrared (FTIR). The swelling degree and the influence of the catalyst on time of formation of a hybrid biofilm were evaluated. The cytotoxicity of the materials were evaluated using the XTT colorimetric assay where GM07492A strain was treated with different concentrations of the hybrid. The time of film formation depends on the quantity of the catalyst used in the synthesis. By varying the catalyst quantity during the synthesis, a good flexible film can be obtained, which is easy to be coated on the skin surface and in situ formed a very thin and comfortable film with an aesthetical appearance. Moreover, the hybrid films were colorless and transparent. The toxicity/viability of all samples has also been studied using normal human cells for future applications. The hybrid matrices did not significantly reduce cell viability, demonstrating that siloxane-polyether materials were biocompatible. All the materials presenting a amorphous structure (XRD) and the characteristic bands of vibrations (FTIR) of the polymer chain do not change after incorporation of lignans. (author)

  5. Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion

    Directory of Open Access Journals (Sweden)

    Ana Chira

    2017-02-01

    Full Text Available Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctylaniline, 4-aminoantipyrine, 4-(4-aminophenylbutyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM. The electrodeposited mass varies between 26 ng/cm2 for 4-fluoroaniline formed during 30 s to 442 ng/cm2 for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenylbutyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found.

  6. Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion.

    Science.gov (United States)

    Chira, Ana; Bucur, Bogdan; Radu, Gabriel-Lucian

    2017-02-28

    Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctyl)aniline, 4-aminoantipyrine, 4-(4-aminophenyl)butyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM). The electrodeposited mass varies between 26 ng/cm² for 4-fluoroaniline formed during 30 s to 442 ng/cm² for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN) and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenyl)butyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found.

  7. Biofilm formed from organic-inorganic hybrid tri-ureasil PPO for transdermal drug delivery system

    International Nuclear Information System (INIS)

    Molina, Eduardo F.; Jesus, Natana Aparecida; Oliveira, Pollyana Francielli; Furtado, Ricardo A.; Tavares, Denise Crispim

    2016-01-01

    Full text: In this work we evaluated the viability of the tri-ureasil PPO hybrid as biofilm forming for release of active substances such as lignans. The samples were characterized by X-ray diffraction (XRD) and infrared (FTIR). The swelling degree and the influence of the catalyst on time of formation of a hybrid biofilm were evaluated. The cytotoxicity of the materials were evaluated using the XTT colorimetric assay where GM07492A strain was treated with different concentrations of the hybrid. The time of film formation depends on the quantity of the catalyst used in the synthesis. By varying the catalyst quantity during the synthesis, a good flexible film can be obtained, which is easy to be coated on the skin surface and in situ formed a very thin and comfortable film with an aesthetical appearance. Moreover, the hybrid films were colorless and transparent. The toxicity/viability of all samples has also been studied using normal human cells for future applications. The hybrid matrices did not significantly reduce cell viability, demonstrating that siloxane-polyether materials were biocompatible. All the materials presenting a amorphous structure (XRD) and the characteristic bands of vibrations (FTIR) of the polymer chain do not change after incorporation of lignans. (author)

  8. Dissolution of various metal oxides in different forms in dilute organic complexants

    International Nuclear Information System (INIS)

    Srinivasan, M.P.; Chandramohan, P.; Velmurugan, S.; Narasimhan, S.V.; Ranganathan, S.

    2002-01-01

    The dissolution of iron containing metal oxides is of importance in various power plant industries from the point of crud and scale removal for efficient operation and better performance of plant. The removal of these oxides has to be accomplished with minimum corrosion to the structural material, with minimum cost and removal duration and also with minimum waste generation for easy disposal. Activity build-up due to pick up of 60 Co and fission products occurs on PHT system surfaces of nuclear power plants. The dissolution kinetics of these oxides are influenced by pH, redox potential, chelating strength, concentration and temperature of the solution, constitution of oxides, and the physical form of existence of oxides. In this paper the influence of the existence of different forms of iron oxides on the ability of the dissolution characteristics of the different formulations have been brought out. How the change in dissolution characteristics can be ingenuously used to characterize both qualitatively and quantitatively the mixtures of oxides have been brought out. How the magnetite dissolution behaviour varies for base metal unaided condition in different formulation in static condition, in regenerative mode is also brought out. The OCP values and iron release behaviour for magnetite coated CS surface and magnetite pellet were also described. (authors)

  9. Dissolution of various metal oxides in different forms in dilute organic complexants

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.P.; Chandramohan, P.; Velmurugan, S.; Narasimhan, S.V. [Water and Steam Chemistry Lab., BARC Facilities, Tamilnadu (India); Ranganathan, S. [Madras Univ. (India). Research Scholar

    2002-07-01

    The dissolution of iron containing metal oxides is of importance in various power plant industries from the point of crud and scale removal for efficient operation and better performance of plant. The removal of these oxides has to be accomplished with minimum corrosion to the structural material, with minimum cost and removal duration and also with minimum waste generation for easy disposal. Activity build-up due to pick up of {sup 60}Co and fission products occurs on PHT system surfaces of nuclear power plants. The dissolution kinetics of these oxides are influenced by pH, redox potential, chelating strength, concentration and temperature of the solution, constitution of oxides, and the physical form of existence of oxides. In this paper the influence of the existence of different forms of iron oxides on the ability of the dissolution characteristics of the different formulations have been brought out. How the change in dissolution characteristics can be ingenuously used to characterize both qualitatively and quantitatively the mixtures of oxides have been brought out. How the magnetite dissolution behaviour varies for base metal unaided condition in different formulation in static condition, in regenerative mode is also brought out. The OCP values and iron release behaviour for magnetite coated CS surface and magnetite pellet were also described. (authors)

  10. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    Science.gov (United States)

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  11. Caracterização físico-química e microestrutural de conchas de moluscos bivalves provenientes de cultivos da região litorânea da ilha de Santa Catarina Physical chemistry and micro structural characterization of shells of bivalve mollusks from sea farmer around the Santa Catarina island

    Directory of Open Access Journals (Sweden)

    Denyo Silva

    2010-01-01

    Full Text Available Samples of shells of oysters and mussels from sea farm around the Santa Catarina Island in south Brazil were collected and analyzed by DRX, FRX, SEM, CHN-S, FTIR, TG, AAS/Flame and AAS /GF. The results showed that the crystalline structure of mussel's shells is mainly formed by aragonite and the oyster's shells by calcite. The calcium percentage in both shells species was in the range of 33 to 35% and also 850 and 1200 mg/kg of strontium was detected in the shells of oysters and mussels, respectively. The content of organic matter was larger in the mussel's shells and the thermal degradation of both shells species occurred by three events at different temperatures from 250 to 830 ºC.

  12. Cell-in-Shell Hybrids: Chemical Nanoencapsulation of Individual Cells.

    Science.gov (United States)

    Park, Ji Hun; Hong, Daewha; Lee, Juno; Choi, Insung S

    2016-05-17

    Nature has developed a fascinating strategy of cryptobiosis ("secret life") for counteracting the stressful, and often lethal, environmental conditions that fluctuate sporadically over time. For example, certain bacteria sporulate to transform from a metabolically active, vegetative state to an ametabolic endospore state. The bacterial endospores, encased within tough biomolecular shells, withstand the extremes of harmful stressors, such as radiation, desiccation, and malnutrition, for extended periods of time and return to a vegetative state by breaking their protective shells apart when their environment becomes hospitable for living. Certain ciliates and even higher organisms, for example, tardigrades, and others are also found to adopt a cryptobiotic strategy for survival. A common feature of cryptobiosis is the structural presence of tough sheaths on cellular structures. However, most cells and cellular assemblies are not "spore-forming" and are vulnerable to the outside threats. In particular, mammalian cells, enclosed with labile lipid bilayers, are highly susceptible to in vitro conditions in the laboratory and daily life settings, making manipulation and preservation difficult outside of specialized conditions. The instability of living cells has been a main bottleneck to the advanced development of cell-based applications, such as cell therapy and cell-based sensors. A judicious question arises: can cellular tolerance against harmful stresses be enhanced by simply forming cell-in-shell hybrid structures? Experimental results suggest that the answer is yes. A micrometer-sized "Iron Man" can be generated by chemically forming an ultrathin (cell. Since the report on silica nanoencapsulation of yeast cells, in which cytoprotective yeast-in-silica hybrids were formed, several synthetic strategies have been developed to encapsulate individual cells in a cytocompatible fashion, mimicking the cryptobiotic cell-in-shell structures found in nature, for example

  13. Social Movements and New Forms of Political Organization: Podemos as a Hybrid Party

    Directory of Open Access Journals (Sweden)

    Daniela Chironi

    2017-05-01

    Full Text Available In recent years, the restructuring of the party systems in several European countries was accompanied or preceded by massive waves of anti-austerity protests. Although the causal relation between these mobilizations and the rise of new parties has already been assessed, the organizational features remain understudied. To fill this gap, here we analyse the impact of the cycle of anti-austerity and pro-real democracy protests which emerged in 2011 with the birth and organizational development of the Spanish party Podemos. Bridging two subfields of social and political sciences—movement studies and party studies—we pay particular attention to the dichotomy between horizontality and verticality within Podemos' organization. In particular, we address the issues of social movement effects as well as party foundation and organizational development. Our main findings suggest that movement mobilization played a large role in shaping Podemos' foundational choices, particularly with reference to the fundamental principles of the party and its strategic positioning. Podemos is also experimenting new democratic methods internally. Nonetheless, empirical analysis shows that, overall, the influence of movements' organizational models on the organizational structure of the party has been limited. Yet, the result is a “hybrid” party that finds a balance between the horizontalism of social movements and the efficiency of parties.

  14. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: Evaluating the potential for a CO2 proxy

    Science.gov (United States)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy

    2015-07-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, hardly any data is available for organic cyst-forming dinoflagellates while this is an ecologically important group with a unique fossil record. We performed dilute batch experiments with four harmful dinoflagellate species known for their ability to form organic cysts: Alexandrium tamarense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum. Cells were grown at a range of dissolved CO2 concentrations characterizing past, modern and projected future values (∼5-50 μmol L-1), representing atmospheric pCO2 of 180, 380, 800 and 1200 μatm. In all tested species, 13C fractionation depends on CO2 with a slope of up to 0.17‰ (μmol L)-1. Even more consistent correlations were found between 13C fractionation and the combined effects of particulate organic carbon quota (POC quota; pg C cell-1) and CO2. Carbon isotope fractionation as well as its response to CO2 is species-specific. These results may be interpreted as a first step towards a proxy for past pCO2 based on carbon isotope ratios of fossil organic dinoflagellate cysts. However, additional culture experiments focusing on environmental variables other than pCO2, physiological underpinning of the recorded response, testing for possible offsets in 13C values between cells and cysts, as well as field calibration studies are required to establish a reliable proxy.

  15. Evaluation of some organic compounds on bloodstream forms of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    João S. Silva

    1992-09-01

    Full Text Available Accidental transmission of Chagas' disease to man by blood transfusion is a serious problem in Latin-America. This paper describes the testing of several synthetic, semi-synthetic, and natural compounds for their activity against blood trypomastigotes in vitro at 4-C. The compounds embody several types of chemical structures: benzoquinone, naphthoquinone, anthracenequinone, phenanthrenequinone, imidazole, piperazine, quinoline, xanthene, and simple benzenic and naphthalenic derivates. Some of them are for the first time tested against Trypanosoma cruzi. The toxic effect these compounds on this parasite was done by two quite distinct sets of experiments. In one set, the compounds were added to infected blood as ethanolic solution. In this situation the most active one was a furan-1, 2-naphthoquinone, in the same range as gentian violet, a new fact to be considered in the assessment of structure-activity relationships in this class of compounds. In other set, we tentatively evaluated the biological activity of water insoluble compounds by adding them in a pure form without solvent into infected blood. In this way some appear to be very active and it was postulated that the effectiveness of such compounds must result from interactions between them and specific blood components.

  16. Independent practice associations: Advantages and disadvantages of an alternative form of physician practice organization.

    Science.gov (United States)

    Casalino, Lawrence P; Chenven, Norman

    2017-03-01

    Value-based purchasing (VBP) favors provider organizations large enough to accept financial risk and develop care management infrastructure. Independent Practice Associations (IPAs) are a potential alternative for physicians to becoming employed by a hospital or large medical group. But little is known about IPAs. We selected four IPAs that vary in location, structure, and strategy, and conducted interviews with their president and medical director, as well as with a hospital executive and health plan executive familiar with that IPA. The IPAs studied vary in size and sophistication, but overall are performing well and are highly regarded by hospital and health plan executives. IPAs can grow rapidly without the cost of purchasing and operating physician practices and make it possible for physicians to remain independent in their own practices while providing the scale and care management infrastructure to make it possible to succeed in VBP. However, it can be difficult for IPAs to gain cooperation from hundreds to thousands of independent physicians, and the need for capital for growth and care management infrastructure is increasing as VBP becomes more prevalent and more demanding. Some IPAs are succeeding at VBP. As VBP raises the performance bar, IPAs will have to demonstrate that they can achieve results equal to more highly capitalized and tightly structured large medical groups and hospital-owned practices. Physicians should be aware of IPAs as a potential option for participating in VBP. Payers are aware of IPAs; the Medicare ACO program and health insurer ACO programs include many IPAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The precipitation, growth and stability of mercury sulfide nanoparticles formed in the presence of marine dissolved organic matter.

    Science.gov (United States)

    Mazrui, Nashaat M; Seelen, Emily; King'ondu, Cecil K; Thota, Sravan; Awino, Joseph; Rouge, Jessica; Zhao, Jing; Mason, Robert P

    2018-04-25

    The methylation of mercury is known to depend on the chemical forms of mercury (Hg) present in the environment and the methylating bacterial activity. In sulfidic sediments, under conditions of supersaturation with respect to metacinnabar, recent research has shown that mercury precipitates as β-HgS(s) nanoparticles (β-HgS(s)nano). Few studies have examined the precipitation of β-HgS(s)nano in the presence of marine dissolved organic matter (DOM). In this work, we used dynamic light scattering (DLS) coupled with UV-Vis spectroscopy and transmission electron microscopy (TEM) to investigate the formation and fate of β-HgS(s)nano formed in association with marine DOM extracted from the east and west of Long Island Sound, and at the shelf break of the North Atlantic Ocean, as well as with low molecular weight thiols. We found that while the β-HgS(s)nano formed in the presence of oceanic DOM doubled in size after 5 weeks, those forming in solutions with coastal DOM did not grow over time. In addition, when the HgII : DOM ratio was varied, β-HgS(s)nano only rapidly aggregated at high ratios (>41 μmol HgII per mg C) where the concentration of thiol groups was determined to be substantially low relative to HgII. This suggests that functional groups other than thiols could be involved in the stabilization of β-HgS(s)nano. Furthermore, we showed that β-HgS(s)nano forming under anoxic conditions remained stable and could therefore persist in the environment sufficiently to impact the methylation potential. Exposure of β-HgS(s)nano to sunlit and oxic environments, however, caused rapid aggregation and sedimentation of the nanoparticles, suggesting that photo-induced changes or oxidation of organic matter adsorbed on the surface of β-HgS(s)nano affected their stability in surface waters.

  18. Clinical outcomes of isolated renal failure compared to other forms of organ failure in patients with severe acute pancreatitis.

    Science.gov (United States)

    Gougol, Amir; Dugum, Mohannad; Dudekula, Anwar; Greer, Phil; Slivka, Adam; Whitcomb, David C; Yadav, Dhiraj; Papachristou, Georgios I

    2017-08-07

    To assess differences in clinical outcomes of isolated renal failure (RF) compared to other forms of organ failure (OF) in patients with severe acute pancreatitis (SAP). Using a prospectively maintained database of patients with acute pancreatitis admitted to a tertiary medical center between 2003 and 2016, those with evidence of persistent OF were classified to renal, respiratory, cardiovascular, or multi-organ (2 or more organs). Data regarding demographics, comorbidities, etiology of acute pancreatitis, and clinical outcomes were prospectively recorded. Differences in clinical outcomes after development of isolated RF in comparison to other forms of OF were determined using independent t and Mann-Whitney U tests for continues variables, and χ 2 test for discrete variables. Among 500 patients with acute pancreatitis, 111 patients developed persistent OF: mean age was 54 years, and 75 (67.6%) were male. Forty-three patients had isolated OF: 17 (15.3%) renal, 25 (21.6%) respiratory, and 1 (0.9%) patient with cardiovascular failure. No differences in demographics, etiology of acute pancreatitis, systemic inflammatory response syndrome scores, or development of pancreatic necrosis were seen between patients with isolated RF vs isolated respiratory failure. Patients with isolated RF were less likely to require nutritional support (76.5% vs 96%, P = 0.001), ICU admission (58.8% vs 100%, P = 0.001), and had shorter mean ICU stay (2.4 d vs 15.7 d, P pancreatitis.

  19. Fabrication of Foam Shells for ICF Experiments

    Science.gov (United States)

    Czechowicz, D. G.; Acenas, O.; Flowers, J. S.; Nikroo, A.; Paguio, R. R.; Schroen, D. G.; Streit, J.; Takagi, M.

    2004-11-01

    The General Atomics/Schafer team has developed processes to fabricate foam shells targets suitable for ICF experiments. The two most common chemical systems used to produce foam shells have been resorcinol-formaldehyde (R/F) aerogel and divinylbenzene (DVB). Spherical targets have been made in the form of shells and beads having diameters ranging from approximately 0.5 mm to 4.0 mm, and having densities from approximately 100 mg/cc to 250 mg/cc. The work on R/F foam shells has been concentrated on 1) shell fabrication process improvement to obtain high yields ( ˜25%) and 2) depositing a reliable permeation barrier to provide shells for ongoing direct drive experiments at LLE. Development of divinylbenzene foam shells has been mainly directed towards Inertial Fusion Energy applications (at densities as low as 30 mg/cc) and recently for shells for experiments at LLE. Details of the relevant metrology and properties of these foams as well as the range of targets currently available will be discussed.

  20. Organizations

    DEFF Research Database (Denmark)

    Hatch, Mary Jo

    and considers many more. Mary Jo Hatch introduces the concept of organizations by presenting definitions and ideas drawn from the a variety of subject areas including the physical sciences, economics, sociology, psychology, anthropology, literature, and the visual and performing arts. Drawing on examples from......Most of us recognize that organizations are everywhere. You meet them on every street corner in the form of families and shops, study in them, work for them, buy from them, pay taxes to them. But have you given much thought to where they came from, what they are today, and what they might become...... prehistory and everyday life, from the animal kingdom as well as from business, government, and other formal organizations, Hatch provides a lively and thought provoking introduction to the process of organization....

  1. Bending stresses in Facetted Glass Shells

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik

    2008-01-01

    A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...

  2. Atomic mass formula with linear shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami; Ando, Yoshihira; Tachibana, Takahiro.

    1981-01-01

    An atomic mass formula is constructed in the form of a sum of gross terms and empirical linear shell terms. Values of the shell parameters are determined after the statistical method of Uno and Yamada, Which is characterized by inclusion of the error inherent in the mass formula. The resulting formula reproduces the input masses with the standard deviation of 393 keV. A prescription is given for estimating errors of calculated masses. The mass formula is compared with recent experimental data of Rb, Cs and Fr isotopes, which are not included in the input data, and also with the constant-shell-term formula of Uno and Yamada. (author)

  3. Batch Scale Removal of an Organic Pollutant Amaranth Dye from Aqueous Solution using Pisum sativum Peels and Arachis hypogaea Shells as Adsorbents

    International Nuclear Information System (INIS)

    Rehman, R.; Afzal, A.

    2015-01-01

    The goal of this study was to utilize low cost and environmentally friendly adsorbents for batch scale removal of Amaranth dye from aqueous medium. Peels of Pisum sativum (Pea) and Arachis hypogaea (Peanut) were utilized to investigate their dye removing capacity. The optimized adsorption conditions for Pisum sativum (P.S.P) and Arachis hypogaea (A.H.S) were: adsorbent dose; 0.6 and 0.4 g, contact time; 45 and 10 minutes, pH; 2.0 for both, agitation speed; 150 and 100 rpm and temperature; 60 and 50 degree C for P.S.P and A.H.S respectively. The adsorption data well suited to Langmuir isotherm. Maximum adsorption capacities were found to be 144.93 and 10.53 mg/g for P.S.P and A.H.S respectively. Feasibility of the process was indicated by negative values of thermodynamic parameters delta G/sup 0/ for both adsorbents. Kinetic studies indicated that adsorption of Amaranth dye from aqueous medium by Pisum sativum peels and Arachis hypogaea shells followed pseudo-seconder order kinetics. It was concluded that Pisum sativum peels are more effective adsorbent for removal of Amaranth from aqueous solution as compared to Arachis hypogaea shells. (author)

  4. COMPETITION AS A FORM OF ORGANIZING CULTURAL ACTIVITIES OF THE KRASNOYARSK REGION POPULATION IN THE 1960-1980S

    Directory of Open Access Journals (Sweden)

    Ekaterina Ivanovna Lobyneva

    2014-08-01

    Full Text Available In the article the author deals with the socialist completion as demonstration of huge enthusiasm and creative initiative of the Krasnoyarsk region population in the 1960s. There were more than twenty shock Komsomol construction sites, which became an effective form of youth participating in the economy development.The aim of the work is to find out in what way socialist completion influences on developing different personal features, like abilities, knowledge, erudition, skills, experience, needs, call of duty, responsibility, etc.The methods of historical approach and objectivism are used in the article.The results of work are to considerate problems concerning with organization of the socialist competition in the Krasnoyarsk region. New materials and some documents of local archives are introduced during the research.The study of the socialist competition in the Krasnoyarsk region enables to make a conclusion that the socialist competition is a form of organizing cultural activities of the Krasnoyarsk region population in the 1960s.

  5. Studying volatility from composition, dilution, and heating measurements of secondary organic aerosols formed during α-pinene ozonolysis

    Science.gov (United States)

    Sato, Kei; Fujitani, Yuji; Inomata, Satoshi; Morino, Yu; Tanabe, Kiyoshi; Ramasamy, Sathiyamurthi; Hikida, Toshihide; Shimono, Akio; Takami, Akinori; Fushimi, Akihiro; Kondo, Yoshinori; Imamura, Takashi; Tanimoto, Hiroshi; Sugata, Seiji

    2018-04-01

    Traditional yield curve analysis shows that semi-volatile organic compounds are a major component of secondary organic aerosols (SOAs). We investigated the volatility distribution of SOAs from α-pinene ozonolysis using positive electrospray ionization mass analysis and dilution- and heat-induced evaporation measurements. Laboratory chamber experiments were conducted on α-pinene ozonolysis, in the presence and absence of OH scavengers. Among these, we identified not only semi-volatile products, but also less volatile highly oxygenated molecules (HOMs) and dimers. Ozonolysis products were further exposed to OH radicals to check the effects of photochemical aging. HOMs were also formed during OH-initiated photochemical aging. Most HOMs that formed from ozonolysis and photochemical aging had 10 or fewer carbons. SOA particle evaporation after instantaneous dilution was measured at fraction remaining of SOAs decreased with time and the equilibration timescale was determined to be 24-46 min for SOA evaporation. The experimental results of the equilibration timescale can be explained when the mass accommodation coefficient is assumed to be 0.1, suggesting that the existence of low-volatility materials in SOAs, kinetic inhibition, or some combined effect may affect the equilibration timescale measured in this study.

  6. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus camaldulensis Dehnh.

    Science.gov (United States)

    Ikka, Takashi; Ogawa, Tsuyoshi; Li, Donghua; Hiradate, Syuntaro; Morita, Akio

    2013-10-01

    Eucalyptus (Eucalyptus camaldulensis) has relatively high resistance to aluminum (Al) toxicity than the various herbaceous plants and model plant species. To investigate Al-tolerance mechanism, the metabolism of organic acids and the chemical forms of Al in the target site (root tips) in Eucalyptus was investigated. To do this, 2-year old rooted cuttings of E. camaldulensis were cultivated in half-strength Hoagland solution (pH 4.0) containing Al (0, 0.25, 0.5, 1.0, 2.5 and 5.0mM) salts for 5weeks; growth was not affected at concentrations up to 2.5mM even with Al concentration reaching 6000μgg(-1) DW. In roots, the citrate content also increased with increasing Al application. Concurrently, the activities of aconitase and NADP(+)-isocitrate dehydrogenase, which catalyze the decomposition of citrate, decreased. On the other hand, the activity of citrate synthase was not affected at concentrations up to 2.5mM Al. (27)Al-NMR spectroscopic analyses were carried out where it was found that Al-citrate complexes were a major chemical form present in cell sap of root tips. These findings suggested that E. camaldulensis detoxifies Al by forming Al-citrate complexes, and that this is achieved through Al-induced citrate accumulation in root tips via suppression of the citrate decomposition pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  8. Au/BiOCl heterojunction within mesoporous silica shell as stable plasmonic photocatalyst for efficient organic pollutants decomposition under visible light

    International Nuclear Information System (INIS)

    Yan, Xiaoqing; Zhu, Xiaohui; Li, Renhong; Chen, Wenxing

    2016-01-01

    Highlights: • A heterojunction of Au/BiOCl was fabricated within the mesoporous silica shell. • The compact contact between Au and BiOCl enables electrons back flow from Au to BiOCl. • Au/BiOCl@mSiO 2 plasmonic photocatalyst shows efficient visible light photoactivity. • Hydroxyl radicals are the main oxidants in formaldehyde and Rhodamine B decomposition. - Abstract: A new mesoporous silica protected plasmonic photocatalyst, Au/BiOCl@mSiO 2 , was prepared by a modified AcHE method and a subsequent UV light induced photodeposition process. The surfactant-free heterojunction allows the electrons spontaneously flow from Au to nearby BiOCl surface, leading to the accumulation of positive charges on Au surface, and negative charges on Bi species under visible light. Au/BiOCl@mSiO 2 exhibits high visible light photocatalytic efficiency in complete oxidation of aqueous formaldehyde and Rhodamin B. We showed that a positive relationship exists between the LSPR effect and rate enhancements, and leads to a hypothesis that the metallic Au LSPR enhances the photocatalytic rates on nearby semiconductors by transferring energetic electrons to BiOCl and increasing the steady-state concentration of active ·OH species by a multi-electron reduction of molecular oxygen. The ·OH species is the main oxidant in photocatalytic transformations, whose intensity is greatly enhanced in the dye-involving systems due to the synergetic effect between LSPR and dye sensitization processes. In addition, the mesoporous SiO 2 shell not only inhibits the over growth of BiOCl nanocrystals within the silica frameworks, but also protects the dissolution of chloride or Au species into aqueous solution, which ultimately makes the Au/BiOCl@mSiO 2 catalysts rather stable during photocatalysis.

  9. The effects of isoprene and NOx on secondary organic aerosols formed through reversible and irreversible uptake to aerosol water

    Science.gov (United States)

    El-Sayed, Marwa M. H.; Ortiz-Montalvo, Diana L.; Hennigan, Christopher J.

    2018-01-01

    Isoprene oxidation produces water-soluble organic gases capable of partitioning to aerosol liquid water. The formation of secondary organic aerosols through such aqueous pathways (aqSOA) can take place either reversibly or irreversibly; however, the split between these fractions in the atmosphere is highly uncertain. The aim of this study was to characterize the reversibility of aqSOA formed from isoprene at a location in the eastern United States under substantial influence from both anthropogenic and biogenic emissions. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was characterized in Baltimore, Maryland, USA, using measurements of particulate water-soluble organic carbon (WSOCp) in alternating dry and ambient configurations. WSOCp evaporation with drying was observed systematically throughout the late spring and summer, indicating reversible aqSOA formation during these times. We show through time lag analyses that WSOCp concentrations, including the WSOCp that evaporates with drying, peak 6 to 11 h after isoprene concentrations, with maxima at a time lag of 9 h. The absolute reversible aqSOA concentrations, as well as the relative amount of reversible aqSOA, increased with decreasing NOx / isoprene ratios, suggesting that isoprene epoxydiol (IEPOX) or other low-NOx oxidation products may be responsible for these effects. The observed relationships with NOx and isoprene suggest that this process occurs widely in the atmosphere, and is likely more important in other locations characterized by higher isoprene and/or lower NOx levels. This work underscores the importance of accounting for both reversible and irreversible uptake of isoprene oxidation products to aqueous particles.

  10. Nanogrids and Beehive-Like Nanostructures Formed by Plasma Etching the Self-Organized SiGe Islands

    Science.gov (United States)

    Chang, Yuan-Ming; Jian, Sheng-Rui; Juang, Jenh-Yih

    2010-09-01

    A lithography-free method for fabricating the nanogrids and quasi-beehive nanostructures on Si substrates is developed. It combines sequential treatments of thermal annealing with reactive ion etching (RIE) on SiGe thin films grown on (100)-Si substrates. The SiGe thin films deposited by ultrahigh vacuum chemical vapor deposition form self-assembled nanoislands via the strain-induced surface roughening (Asaro-Tiller-Grinfeld instability) during thermal annealing, which, in turn, serve as patterned sacrifice regions for subsequent RIE process carried out for fabricating nanogrids and beehive-like nanostructures on Si substrates. The scanning electron microscopy and atomic force microscopy observations confirmed that the resultant pattern of the obtained structures can be manipulated by tuning the treatment conditions, suggesting an interesting alternative route of producing self-organized nanostructures.

  11. Biological species is the only possible form of existence for higher organisms: the evolutionary meaning of sexual reproduction

    Directory of Open Access Journals (Sweden)

    Shcherbakov Victor P

    2010-03-01

    Full Text Available Abstract Consistent holistic view of sexual species as the highest form of biological existence is presented. The Weismann's idea that sex and recombination provide the variation for the natural selection to act upon is dominated in most discussions of the biological meaning of the sexual reproduction. Here, the idea is substantiated that the main advantage of sex is the opposite: the ability to counteract not only extinction but further evolution as well. Living systems live long owing to their ability to reproduce themselves with a high fidelity. Simple organisms (like bacteria reach the continued existence due to the high fidelity of individual genome replication. In organisms with a large genome and complex development, the achievable fidelity of DNA replication is not enough for the precise reproduction of the genome. Such species must be capable of surviving and must remain unchanged in spite of the continuous changes of their genes. This problem has no solution in the frame of asexual ("homeogenomic" lineages. They would rapidly degrade and become extinct or blurred out in the course of the reckless evolution. The core outcome of the transition to sexual reproduction was the creation of multiorganismic entity - biological species. Individual organisms forfeited their ability to reproduce autonomously. It implies that individual organisms forfeited their ability to substantive evolution. They evolve as a part of the biological species. In case of obligatory sexuality, there is no such a thing as synchronic multi-level selection. Natural selection cannot select anything that is not a unit of reproduction. Hierarchy in biology implies the functional predestination of the parts for the sake of the whole. A crucial feature of the sexual reproduction is the formation of genomes of individual organisms by random picking them over from the continuously shuffled gene pool instead of the direct replication of the ancestor's genome. A clear anti

  12. Shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Hennekes, B. [Shell Global Solutions (US) Inc. (United States). Technology Marketing

    2002-07-01

    The presentation, on which 17 slides/overheads are included in the papers, explained the principles of the Shell coal gasification process and the methods incorporated for control of sulfur dioxide, nitrogen oxides, particulates and mercury. The economics of the process were discussed. The differences between gasification and burning, and the differences between the Shell process and other processes were discussed.

  13. MF/UF rejection and fouling potential of algal organic matter from bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.

    2015-07-01

    Pretreatment with microfiltration (MF) or ultrafiltration (UF) membranes has been proposed for seawater reverse osmosis (SWRO) plants to address operational issues associated with algal blooms. Here, we investigated the MF/UF rejection and fouling potential of algal organic matter (AOM) released by common species of bloom-forming marine (Alexandrium tamarense and Chaetoceros affinis) and freshwater (Microcystis sp.) algae. Batch culture monitoring of the three algal species illustrated varying growth pattern, cell concentration, AOM released and membrane fouling potential. The high membrane fouling potential of the cultures can be directly associated (R2>0.85) with AOM such as transparent exopolymer particle (TEP) while no apparent relationship with algal cell concentration was observed. The AOM comprised mainly biopolymers (e.g., polysaccharides and proteins) and low molecular weight organic compounds (e.g., humic-like substances). The former were largely rejected by MF/UF membranes while the latter were poorly rejected. MF (0.4μm and 0.1μm pore size) rejected 14%-56% of biopolymers while conventional UF (100kDa) and tight UF (10kDa) rejected up to 83% and 97%, respectively. The retention of AOM resulted in a rapid increase in trans-membrane pressure (δP) over time, characterised by pore blocking followed by cake filtration with enhanced compression as illustrated by an exponential progression of δP. © 2015 Elsevier B.V.

  14. Factors of influencing dissolved organic carbon stabilization in two cambic forest soils with contrasting soil-forming processes

    Science.gov (United States)

    Kawasaki, M.; Ohte, N.; Asano, Y.; Uchida, T.; Kabeya, N.; Kim, S.

    2004-05-01

    Stabilization of Dissolved Organic Carbon (DOC) in forest soil is a major process of soil organic carbon formation. However, the factors influencing DOC stabilization are poorly understood. To clarify the factors that affect the stabilization of DOC in forest soil mantle, we measured DOC concentrations and soil properties which were DOC adsorption efficiency at two adjacent cambic forest soils with contrasting forest management histories in Tanakami Mountains, central Japan. Matsuzawa was devastated about 1,200 years ago by excessive timber use and remained denuded for a long period. Hillside restoration and reforestation work have been carried out over the last 100 years and soil loss has been reduced. Fudoji is covered with undisturbed forest (mixed stands of cypress and oaks) with developed forest soils (more than 2,600 years old). There was no apparent seasonal variation in DOC concentration in the soil solution in either catchment. In addition, there were no significant relationships between the DOC concentration, soil temperature, and new water ratio. These results indicate that temporal variation in biological activity and rainfall-runoff process have little effect on temporal variation in DOC. The vertical variation in the DOC adsorption efficiency and DOC concentration differed between Matsuzawa and Fudoji, and the highest DOC removal rate occurred at the lowest DOC adsorption efficiency in the 0 to 10-cm soil layer at Fudoji. These results suggest that DOC removal rate is independent of DOC adsorption efficiency. Below 60 cm soil depth, DOC fluxes were constant and dissolved organic Al concentrations were little or zero in either catchment. These results suggest that abiotic precipitation of DOC is a major mechanism for stabilization of DOC. Therefore, DOC content which is able to form metal complexes may be the most important factor of influencing DOC stabilization in cambic forest soil.

  15. Competition for inorganic and organic forms of nitrogen and phosphorous between phytoplankton and bacteria during an Emiliania huxleyi spring bloom

    Directory of Open Access Journals (Sweden)

    V. Martin-Jézéquel

    2008-03-01

    Full Text Available Using 15N and 33P, we measured the turnover of organic and inorganic nitrogen (N and phosphorus (P substrates, and the partitioning of N and P from these sources into two size fractions of marine osmotrophs during the course of a phytoplankton bloom in a nutrient manipulated mesocosm. The larger size fraction (>0.8 μm, mainly consisting of the coccolithophorid Emiliania huxleyi, but also including an increasing amount of large particle-associated bacteria as the bloom proceeded, dominated uptake of the inorganic forms NH4+, NO3−, and PO43−. The uptake of N from leucine, and P from ATP and dissolved DNA, was initially dominated by the 0.8–0.2 μm size fraction, but shifted towards dominance by the >0.8 μm size fraction as the system turned to an increasing degree of N-deficiency. Normalizing uptake to biomass of phytoplankton and heterotrophic bacteria revealed that organisms in the 0.8–0.2 μm size fraction had higher specific affinity for leucine-N than those in the >0.8 μm size fraction when N was deficient, whereas the opposite was the case for NH4+. There was no such difference regarding the specific affinity for P substrates. Since heterotrophic bacteria seem to acquire N from organic compounds like leucine more efficiently than phytoplankton, our results suggest different structuring of the microbial food chain in N-limited relative to P-limited environments.

  16. Quantitation and identification of organic N-chloramines formed in stomach fluid on ingestion of aqueous hypochlorite

    Energy Technology Data Exchange (ETDEWEB)

    Scully, F.E. Jr.; Mazina, K.; Sonenshine, D.; Kopfler, F.

    1986-11-01

    The chemical reactions that hypochlorite undergoes in the body when chlorinated water is ingested have received very little attention. Because amino nitrogen compounds are important components of the average diet, the reactions of hypochlorite with amino compounds in the stomach were investigated. Stomach fluid was recovered from Sprague-Dawley rats that had been fasted for 48 hr and administered 4 mL deionized water. The chlorine demand of the stomach fluid was determined. At least part of the chlorine demand is associated with amino acids present in the stomach fluid. Amino acids were identified and quantified in the stomach fluid by precolumn derivatization with o-phthalaldehyde and high-pressure liquid chromatography (HPLC). When stomach fluid is chlorinated to concentrations of chlorine between 200 and 1000 mg/L, organic N-chloramines are formed. After derivatization of chlorinated stomach fluid with dansyl sulfinic acid, fluorescent derivatives of chloramines were separated by HPLC. Three chloramino acid derivatives, N-chloroalanine, N-chloroglycine, and N-chlorophenylalanine, were identified by cochromatography with known standards using two chromatographic methods. The yield of a chloramine that would form in stomach fluid on administration of hypochlorite to animals as determined using tritiated piperidine and doses of 200 and 1000 mg/L chlorine. Yields of tritiated N-chloropiperidine in recovered stomach fluid were 70% and 42%, respectively, of the theoretical amount expected.

  17. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    International Nuclear Information System (INIS)

    Tamaki, Takashi; Tsujikawa, Shinji

    2008-01-01

    We derive analytic solutions of a chameleon scalar field φ that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m A inside of the body. The standard thin-shell field profile is recovered by taking the limit m A r c →∞, where r c is a radius of the body. We show the existence of ''no-shell'' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m A r c >>1, the effective coupling of φ with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value φ A at the extremum of an effective potential induced by the matter coupling.

  18. Nanoporous alumina formed by self-organized two-step anodization of Ni3Al intermetallic alloy in citric acid

    International Nuclear Information System (INIS)

    Stępniowski, Wojciech J.; Cieślak, Grzegorz; Norek, Małgorzata; Karczewski, Krzysztof; Michalska-Domańska, Marta; Zasada, Dariusz; Polkowski, Wojciech; Jóźwik, Paweł; Bojar, Zbigniew

    2013-01-01

    Highlights: ► Anodic porous alumina was formed by Ni 3 Al intermetallic alloy anodization. ► The anodizations were conducted in 0.3 M citric acid. ► Nanopores geometry depends on anodizing voltage. ► No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni 3 Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni 3 Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 μm/h was found for the anodization at 0 °C and 2.0 V. The highest one – 2.29 μm/h – was noticed for 10.0 V and 30 °C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 °C) to 32.0 nm (12.0 V, 0 °C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 °C) to 177.9 nm (12.0 V, 30 °C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/μm 2 (2.0 V, 0 °C) to 94.9 pores/μm 2 (12.0 V, 0 °C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni 3 Al intermetallic alloy are depending on the operating conditions.

  19. Effect of chemical modification on behavior of various organic vanadium forms during analysis by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kowalewska, Zofia

    2007-01-01

    The behavior of various organic V forms dissolved in xylene during analysis by electrothermal atomic absorption spectrometry (ETAAS) was compared. The investigated analyte forms included compounds with vanadium at the oxidation state III, IV or V, as well as N, O or S atoms in molecules. Another group consisted of petroleum products containing naturally-occurring V species. Although the characteristic mass determined under different analytical conditions was in the very wide range from 11 up to 55 pg, some rules of V behavior were found. In the case of porphyrins and petroleum products, the application of Pd as a chemical modifier (xylene solution of Pd(II) acetylacetonate) seemed to be crucial. It was shown that Pd must be introduced to a furnace together with a sample. Pd injected and thermally pretreated before the sample injection was less effective for porphyrins and the petroleum products, but it increased signals of V compounds containing O as donor atom. The iodine pretreatment followed by the methyltrioctylammonium chloride (MTOACl) pretreatment was advantageous for these V forms. The air ashing in a graphite tube appeared to be important to improve decomposition of the petroleum products. No significant influence of the V oxidation state on the analytical signal was observed. The behavior of V contained in two Conostan oil standards, the single-element and the S21 multielement standard, was different in many situations. Probably, the joint action of other elements is responsible for this effect. In general, chemical modification was applied in the work for two reasons: to reduce the V volatility (in some cases losses at about 300 deg. C were observed) and to enhance the atomization efficiency. For routine analysis air ashing, modification by Pd introduced into the furnace together with the sample solution and petroleum products with known V content as standard is recommended. Using this procedure the characteristic mass varied from 16 to 19 pg for

  20. Pair of null gravitating shells: III. Algebra of Dirac's observables

    International Nuclear Information System (INIS)

    Kouletsis, I; Hajicek, P

    2002-01-01

    The study of the two-shell system started in 'pair of null gravitating shells I and II' is continued. The pull back of the Liouville form to the constraint surface, which contains complete information about the Poisson brackets of Dirac observables, is computed in the singular double-null Eddington-Finkelstein (DNEF) gauge. The resulting formula shows that the variables conjugate to the Schwarzschild masses of the intershell spacetimes are simple combinations of the values of the DNEF coordinates on these spacetimes at the shells. The formula is valid for any number of in- and outgoing shells. After applying it to the two-shell system, the symplectic form is calculated for each component of the physical phase space; regular coordinates are found, defining it as a symplectic manifold. The symplectic transformation between the initial and final values of observables for the shell-crossing case is given

  1. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption

    Science.gov (United States)

    Mikutta, Robert; Lorenz, Dennis; Guggenberger, Georg; Haumaier, Ludwig; Freund, Anja

    2014-11-01

    Ferric oxyhydroxides play an important role in controlling the bioavailability of oxyanions such as arsenate and phosphate in soil. Despite this, little is known about the properties and reactivity of Fe(III)-organic matter phases derived from adsorption (reaction of organic matter (OM) to post-synthesis Fe oxide) versus coprecipitation (formation of Fe oxides in presence of OM). Coprecipitates and adsorption complexes were synthesized at pH 4 using two natural organic matter (NOM) types extracted from forest floor layers (Oi and Oa horizon) of a Haplic Podzol. Iron(III) coprecipitates were formed at initial molar metal-to-carbon (M/C) ratios of 1.0 and 0.1 and an aluminum (Al)-to-Fe(III) ratio of 0.2. Sample properties were studied by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, dynamic light scattering, and electrophoretic mobility measurements. Arsenic [As(V)] adsorption to Fe-OM phases was studied in batch experiments (168 h, pH 4, 100 μM As). The organic carbon (OC) contents of the coprecipitates (82-339 mg g-1) were higher than those of adsorption complexes (31 and 36 mg g-1), leading to pronounced variations in specific surface area (9-300 m2 g-1), average pore radii (1-9 nm), and total pore volumes (11-374 mm3 g-1) but being independent of the NOM type or the presence of Al. The occlusion of Fe solids by OM (XPS surface concentrations: 60-82 atom% C) caused comparable pHPZC (1.5-2) of adsorption complexes and coprecipitates. The synthesis conditions resulted in different Fe-OM association modes: Fe oxide particles in 'M/C 0.1' coprecipitates covered to a larger extent the outermost aggregate surfaces, for some 'M/C 1.0' coprecipitates OM effectively enveloped the Fe oxides, while OM in the adsorption complexes primarily covered the outer aggregate surfaces. Despite of their larger OC contents, adsorption of As(V) was fastest to coprecipitates formed at low Fe availability (M/C 0.1) and facilitated by desorption of weakly

  2. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    International Nuclear Information System (INIS)

    Zhai, Jing; Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei; Chen, Jian-Feng

    2011-01-01

    Highlights: → We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. → The as-formed particles with controllable size and morphology are antioxidant. → The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 o C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  3. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jing [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China); Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Jian-Feng, E-mail: chenjf@mail.buct.edu.cn [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China)

    2011-06-15

    Highlights: {yields} We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. {yields} The as-formed particles with controllable size and morphology are antioxidant. {yields} The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 {sup o}C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  4. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry

    OpenAIRE

    Ooi, Leslie C.-L.; Low, Eng-Ti L.; Abdullah, Meilina O.; Nookiah, Rajanaidu; Ting, Ngoot C.; Nagappan, Jayanthi; Manaf, Mohamad A. A.; Chan, Kuang-Lim; Halim, Mohd A.; Azizi, Norazah; Omar, Wahid; Murad, Abdul J.; Lakey, Nathan; Ordway, Jared M.; Favello, Anthony

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura p...

  5. Molluscan shell colour.

    Science.gov (United States)

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  6. MesonNet Workshop on Meson Transition Form Factors

    CERN Document Server

    Eidelman, S; Hanhart, C; Kubis, B; Kupsc, A; Leupold, S; Moskal, P; Schadmand, S

    2012-01-01

    The mini-proceedings of the Workshop on Meson Transition Form Factors held in Cracow from May 29th to 30th, 2012 introduce the meson transition form factor project with special emphasis on the interrelations between the various form factors (on-shell, single off-shell, double off-shell). Short summaries of the talks presented at the workshop follow.

  7. Controlling the exciton emission of gold coated GaAs-AlGaAs core-shell nanowires with an organic spacer layer

    Science.gov (United States)

    Kaveh, M.; Gao, Q.; Jagadish, C.; Ge, J.; Duscher, G.; Wagner, H. P.

    2016-12-01

    Excitons are the most prominent optical excitations and controlling their emission is an important step towards new optical devices. We have investigated the exciton emission from uncoated and gold/aluminum quinoline (Alq3) coated GaAs-AlGaAs-GaAs core-shell nanowires (NWs) using temperature-, intensity- and polarization dependent photoluminescence (PL). Plasmonic GaAs-AlGaAs-GaAs NWs with a ˜10 nm thick Au coating but without an Alq3 spacer layer reveal a significant reduction of the PL intensity of the exciton emission compared with the uncoated NW sample. Plasmonic NW samples with the same nominal Au coverage and an additional Alq3 interlayer of 3 or 6 nm thickness show a clearly stronger PL intensity which increases with rising Alq3 spacer thickness. Time-resolved (TR) PL measurements reveal an increase of the exciton decay rate by a factor of up to two with decreasing Alq3 spacer thickness suggesting the presence of Förster energy transfer from NW excitons to plasmon oscillations in the gold film. The weak change of the decay time, however, indicates that Förster energy-transfer is only partially responsible for the PL quenching in the gold coated NWs. The main reason for the reduction of the PL emission is attributed to a gold induced band-bending in the GaAs NW core which causes exciton dissociation. With increasing Alq3 spacer thickness the band-bending decreases leading to a reduction of the exciton dissociation and PL quenching. Our interpretation is supported by electron energy loss spectroscopy measurements which show a signal reduction and blue shift of defect (possibly EL2) transitions when gold particles are deposited on NWs compared with bare or Alq3 coated NWs.

  8. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?

    Science.gov (United States)

    Cotrufo, M Francesca; Wallenstein, Matthew D; Boot, Claudia M; Denef, Karolien; Paul, Eldor

    2013-04-01

    The decomposition and transformation of above- and below-ground plant detritus (litter) is the main process by which soil organic matter (SOM) is formed. Yet, research on litter decay and SOM formation has been largely uncoupled, failing to provide an effective nexus between these two fundamental processes for carbon (C) and nitrogen (N) cycling and storage. We present the current understanding of the importance of microbial substrate use efficiency and C and N allocation in controlling the proportion of plant-derived C and N that is incorporated into SOM, and of soil matrix interactions in controlling SOM stabilization. We synthesize this understanding into the Microbial Efficiency-Matrix Stabilization (MEMS) framework. This framework leads to the hypothesis that labile plant constituents are the dominant source of microbial products, relative to input rates, because they are utilized more efficiently by microbes. These microbial products of decomposition would thus become the main precursors of stable SOM by promoting aggregation and through strong chemical bonding to the mineral soil matrix. © 2012 Blackwell Publishing Ltd.

  9. Nuclear shell theory

    CERN Document Server

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  10. Type I Shell Galaxies as a Test of Gravity Models

    Energy Technology Data Exchange (ETDEWEB)

    Vakili, Hajar; Rahvar, Sohrab [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Kroupa, Pavel, E-mail: vakili@physics.sharif.edu [Helmholtz-Institut für Strahlen-und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2017-10-10

    Shell galaxies are understood to form through the collision of a dwarf galaxy with an elliptical galaxy. Shell structures and kinematics have been noted to be independent tools to measure the gravitational potential of the shell galaxies. We compare theoretically the formation of shells in Type I shell galaxies in different gravity theories in this work because this is so far missing in the literature. We include Newtonian plus dark halo gravity, and two non-Newtonian gravity models, MOG and MOND, in identical initial systems. We investigate the effect of dynamical friction, which by slowing down the dwarf galaxy in the dark halo models limits the range of shell radii to low values. Under the same initial conditions, shells appear on a shorter timescale and over a smaller range of distances in the presence of dark matter than in the corresponding non-Newtonian gravity models. If galaxies are embedded in a dark matter halo, then the merging time may be too rapid to allow multi-generation shell formation as required by observed systems because of the large dynamical friction effect. Starting from the same initial state, the observation of small bright shells in the dark halo model should be accompanied by large faint ones, while for the case of MOG, the next shell generation patterns iterate with a specific time delay. The first shell generation pattern shows a degeneracy with the age of the shells and in different theories, but the relative distance of the shells and the shell expansion velocity can break this degeneracy.

  11. “Pushing the Envelope” a modeling-based approach to the development of organic, responsive architectural form

    Directory of Open Access Journals (Sweden)

    David Yearley

    2012-11-01

    Full Text Available This paper tests design procedures for the development of complex, organic architectural forms. It illustrates a postgraduate student design process, implementing a development sequence based on the intelligent manipulation of architectural envelopes using a variety of existing modeling tools and emerging digital techniques. These stages of development respond to imposed spatial and environmental constraints. The tests began with full-scale modeling of small segments. The major constraints at this stage were spatial requirements and the physical characteristics of materials. The forms derived from the bending properties of prestressed green timber and the dimensions of shingle cladding. This was followed by digital 3D modeling using common commercial applications. At this stage initial models were derived from a traditional space requirement brief. The envelopes for these activities were then manipulated to respond to the spatial limitations imposed by surrounding buildings. This digital modeling process metaphorically “pushed the limits” as vertices of the envelope model were stretched and shifted to achieve a perceived “fit” between the two sets of spatial dimensions. The spatially manipulated geometry was then imported into Ecotect, an environmental analysis package. As an example, the envelope’s morphology and cladding material options on the acoustic qualities of the surrounding space were tested. The improved geometry was then imported into a Virtual Reality room, in which the spatial experience was simulated in presentations to the design team and potential occupants. This room utilized six projectors to create an immersive experience to users wearing stereoscopic goggles, and moving in a space surrounded by three large screens, creating a CAVE-like presentation space. Finally there was an attempt to complete the circle by returning from the simulated world to the physical worlds, by creating full-scale models from the digital

  12. Antifungal evaluation of shell pyrolysates of oil palm ( Elaeis ...

    African Journals Online (AJOL)

    The medicinal values of oil palm and coconut shells are not much known in herbal medicine and the two mostly constitute waste products. The antifungal effects of steam-distilled pyrolysates obtained from the two shells and the respective organic solvent fractions were evaluated against human pathogenic fungi ...

  13. Theory of elastic thin shells solid and structural mechanics

    CERN Document Server

    Gol'Denveizer, A L; Dryden, H L

    1961-01-01

    Theory of Elastic Thin Shells discusses the mathematical foundations of shell theory and the approximate methods of solution. The present volume was originally published in Russian in 1953, and remains the only text which formulates as completely as possible the different sets of basic equations and various approximate methods of shell analysis emphasizing asymptotic integration. The book is organized into five parts. Part I presents the general formulation and equations of the theory of shells, which are based on the well-known hypothesis of the preservation of the normal element. Part II is

  14. Stacking effect on the ferroelectric properties of PZT/PLZT multilayer thin films formed by photochemical metal-organic deposition

    International Nuclear Information System (INIS)

    Park, Hyeong-Ho; Park, Hyung-Ho; Hill, Ross H.

    2004-01-01

    The ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-doped lead zirconate titanate (PLZT) multilayer films formed by photochemical metal-organic deposition (PMOD) using photosensitive precursors have been characterized. The substitution of La for Pb was reported to induce improved ferroelectric properties, especially fatigue resistance, through the reduction of oxygen vacancies. The relation between La-substitution and the ferroelectric properties was investigated by characterization of the effect of the order of stacking four ferroelectric layers of PZT or PLZT in the multilayer films 4-PZT, PZT/2-PLZT/PZT, PLZT/2-PZT/PLZT, and 4-PLZT. The films with the PLZT layer at the top and bottom showed an improvement in the fatigue resistance. It was revealed that defect dipole such as O vacancy was reduced at the ferroelectric/Pt interface by doping with La. Also, the bottom layer, just on Pt substrate had a significant influence on the surface microstructure and growth orientation of ferroelectric film

  15. Improving the performance of organic thin film transistors formed on a vacuum flash-evaporated acrylate insulator

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Z., E-mail: ziqian.ding@materials.ox.ac.uk; Abbas, G. A.; Assender, H. E. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Morrison, J. J.; Sanchez-Romaguera, V.; Yeates, S. G. [School of Chemistry, University of Manchester, Manchester M13 9PL (United Kingdom); Taylor, D. M. [School of Electronic Engineering, Bangor University, Bangor LL57 1UT (United Kingdom)

    2013-12-02

    A systematic investigation has been undertaken, in which thin polymer buffer layers with different ester content have been spin-coated onto a flash-evaporated, cross-linked diacrylate gate-insulator to form bottom-gate, top-contact organic thin-film transistors. The highest device mobilities, ∼0.65 cm{sup 2}/V s and ∼1.00 cm{sup 2}/V s for pentacene and dinaphtho[2,3-b:2′,3′-f]-thieno[3,2-b]thiophene (DNTT), respectively, were only observed for a combination of large-grain (∼1–2 μm) semiconductor morphology coupled with a non-polar dielectric surface. No correlation was found between semiconductor grain size and dielectric surface chemistry. The threshold voltage of pentacene devices shifted from −10 V to −25 V with decreasing surface ester content, but remained close to 0 V for DNTT.

  16. Shell Buckling Knockdown Factors

    Data.gov (United States)

    National Aeronautics and Space Administration — The Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment #: 07-010-E, was established in March of 2007 by the NESC in...

  17. Shells and Patterns

    Science.gov (United States)

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  18. Hamiltonian treatment of the gravitational collapse of thin shells

    International Nuclear Information System (INIS)

    Crisostomo, Juan; Olea, Rodrigo

    2004-01-01

    A Hamiltonian treatment of the gravitational collapse of thin shells is presented. The direct integration of the canonical constraints reproduces the standard shell dynamics for a number of known cases. The formalism is applied in detail to three-dimensional spacetime and the properties of the (2+1)-dimensional charged black hole collapse are further elucidated. The procedure is also extended to deal with rotating solutions in three dimensions. The general form of the equations providing the shell dynamics implies the stability of black holes, as they cannot be converted into naked singularities by any shell collapse process

  19. Electromagnetic properties of off-shell particles and gauge invariance

    NARCIS (Netherlands)

    Nagorny, S. I.; Dieperink, A. E. L.

    1998-01-01

    Abstract: Electromagnetic properties of off-shell particles are discussed on the basis of a purely electromagnetic reaction: virtual Compton scattering off a proton. It is shown that the definition of off-shell electromagnetic form factors is not gauge invariant and that these cannot be investigated

  20. Gauge constraints and electromagnetic properties of off-shell particles

    NARCIS (Netherlands)

    Nagorny, S.I.; Dieperink, A.E.L.

    The consequences of the gauge constraints for off-shellness in the electromagnetic (EM) vertices have been considered, using Compton scattering as an example. We have found that even if the gauge constraint for the 3-point EM Green function allows for off-shell effects in the charge (Dirac) form

  1. Off-shell CHY amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  2. WHAT IS THE SHELL AROUND R CORONAE BOREALIS?

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, Edward J.; Clayton, Geoffrey C.; Marcello, Dominic C. [Dept. of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Lockman, Felix J., E-mail: emonti2@lsu.edu, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: dmarce1@tigers.lsu.edu, E-mail: jlockman@nrao.edu [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States)

    2015-07-15

    The hydrogen-deficient, carbon-rich R Coronae Borealis (RCB) stars are known for being prolific producers of dust which causes their large iconic declines in brightness. Several RCB stars, including R Coronae Borealis (R CrB), itself, have large extended dust shells seen in the far-infrared. The origin of these shells is uncertain but they may give us clues to the evolution of the RCB stars. The shells could form in three possible ways. (1) They are fossil Planetary Nebula (PN) shells, which would exist if RCB stars are the result of a final, helium-shell flash, (2) they are material left over from a white-dwarf (WD) merger event which formed the RCB stars, or (3) they are material lost from the star during the RCB phase. Arecibo 21 cm observations establish an upper limit on the column density of H I in the R CrB shell implying a maximum shell mass of ≲0.3 M{sub ☉}. A low-mass fossil PN shell is still a possible source of the shell although it may not contain enough dust. The mass of gas lost during a WD merger event will not condense enough dust to produce the observed shell, assuming a reasonable gas-to-dust ratio. The third scenario where the shell around R CrB has been produced during the star’s RCB phase seems most likely to produce the observed mass of dust and the observed size of the shell. But this means that R CrB has been in its RCB phase for ∼10{sup 4} years.

  3. ORGANIC CHEMISTRY OF LOW-MASS STAR-FORMING CORES. I. 7 mm SPECTROSCOPY OF CHAMAELEON MMS1

    International Nuclear Information System (INIS)

    Cordiner, Martin A.; Charnley, Steven B.; Wirström, Eva S.; Smith, Robert G.

    2012-01-01

    Observations are presented of emission lines from organic molecules at frequencies 32-50 GHz in the vicinity of Chamaeleon MMS1. This chemically rich dense cloud core harbors an extremely young, very low luminosity protostellar object and is a candidate first hydrostatic core. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon chains, and methanol. The polyyne emission peak lies about 5000 AU from the protostar, whereas methanol peaks about 15,000 AU away. Averaged over the telescope beam, the molecular hydrogen number density is calculated to be 10 6 cm –3 and the gas kinetic temperature is in the range 5-7 K. The abundances of long carbon chains are very large and are indicative of a non-equilibrium carbon chemistry; C 6 H and HC 7 N column densities are 5.9 +2.9 –1.3 × 10 11 cm –2 and 3.3 +8.0 –1.5 × 10 12 cm –2 , respectively, which are similar to the values found in the most carbon-chain-rich protostars and prestellar cores known, and are unusually large for star-forming gas. Column density upper limits were obtained for the carbon-chain anions C 4 H – and C 6 H – , with anion-to-neutral ratios [C 4 H – ]/[C 4 H] 6 H – ]/[C 6 H] 3 N and c-C 3 H 2 were detected. The [DC 3 N]/[HC 3 N] ratio of approximately 4% is consistent with the value typically found in cold interstellar gas.

  4. Application of the World Health Organization Quality of Life Instrument, Short Form (WHOQOL-BREF) to patients with cataract.

    Science.gov (United States)

    Gholami, Ali; Araghi, Mahmood Tavakoli; Shamsabadi, Fatemeh; Bayat, Mahdiye; Dabirkhani, Fatemeh; Moradpour, Farhad; Mansori, Kamyar; Moradi, Yousef; Rajabi, Abdolhalim

    2016-01-01

    Cataract is a prevalent disease in the elderly, and negatively influences patients' quality of life. This study was conducted to study the application of the World Health Organization Quality of Life Instrument, Short Form (WHOQOL-BREF) to patients with cataract. In this cross-sectional study, 300 patients with cataract were studied in Neyshabur, Iran from July to October 2014. The Iranian version of the WHOQOL-BREF questionnaire was used to measure their quality of life. Cronbach's alpha coefficient, Pearson's correlation coefficient, the paired t-test, the independent t-test, and a linear regression model were used to analyze the data in SPSS version 16.0 (SPSS Inc., Chicago, IL, USA). The mean age of the participants was 68.11±11.98 years, and most were female (53%). The overall observed Cronbach's alpha coefficient for the WHOQOL-BREF was 0.889, ranging from 0.714 to 0.810 in its four domains. The total mean score of the respondents on the WHOQOL-BREF was 13.19. The highest and lowest mean scores were observed in the social relationship domain (14.11) and the physical health domain (12.29), respectively. A backward multiple linear regression model found that duration of disease and marital status were associated with total WHOQOL scores, while age, duration of disease, marital status, and income level were associated with domains one through four, respectively (pmeasurement of the quality of life of patients with cataract. It was also found that the patients with cataract who were surveyed reported a relatively moderate quality of life.

  5. The TRPC2 channel forms protein-protein interactions with Homer and RTP in the rat vomeronasal organ

    Directory of Open Access Journals (Sweden)

    Brann Jessica H

    2010-05-01

    Full Text Available Abstract Background The signal transduction cascade operational in the vomeronasal organ (VNO of the olfactory system detects odorants important for prey localization, mating, and social recognition. While the protein machinery transducing these external cues has been individually well characterized, little attention has been paid to the role of protein-protein interactions among these molecules. Development of an in vitro expression system for the transient receptor potential 2 channel (TRPC2, which establishes the first electrical signal in the pheromone transduction pathway, led to the discovery of two protein partners that couple with the channel in the native VNO. Results Homer family proteins were expressed in both male and female adult VNO, particularly Homer 1b/c and Homer 3. In addition to this family of scaffolding proteins, the chaperones receptor transporting protein 1 (RTP1 and receptor expression enhancing protein 1 (REEP1 were also expressed. RTP1 was localized broadly across the VNO sensory epithelium, goblet cells, and the soft palate. Both Homer and RTP1 formed protein-protein interactions with TRPC2 in native reciprocal pull-down assays and RTP1 increased surface expression of TRPC2 in in vitro assays. The RTP1-dependent TRPC2 surface expression was paralleled with an increase in ATP-stimulated whole-cell current in an in vitro patch-clamp electrophysiological assay. Conclusions TRPC2 expression and channel activity is regulated by chaperone- and scaffolding-associated proteins, which could modulate the transduction of chemosignals. The developed in vitro expression system, as described here, will be advantageous for detailed investigations into TRPC2 channel activity and cell signalling, for a channel protein that was traditionally difficult to physiologically assess.

  6. Organic Chemistry of Low-Mass Star-Forming Cores. I. 7 mm Spectroscopy of Chamaeleon MMSl

    Science.gov (United States)

    Cordiner, Martn A.; Charnley, Steven B.; Wirtstroem, Eva S.; Smith, Robert G.

    2012-01-01

    Observations are presented of emission lines from organic molecules at frequencies 32-50 GHz in the vicinity of Chamaeleon MMS1. This chemically rich dense cloud core harbors an extremely young, very low luminosity protostellar object and is a candidate first hydrostatic core. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon chains, and methanol. The polyyne emission peak lies about 5000 AU from the protostar, whereas methanol peaks about 15,000 AU away. Averaged over the telescope beam, the molecular hydrogen number density is calculated to be 10(exp 6) / cubic cm and the gas kinetic temperature is in the range 5-7 K. The abundances of long carbon chains are very large and are indicative of a nonequilibrium carbon chemistry; C6H and HC7N column densities are 5.9(sup +2.9) (sub -1.3) x 10(exp 11) /cubic cm and 3.3 (sup +8.0)(sub -1.5) x 10(exp 12)/sq cm, respectively, which are similar to the values found in the most carbon-chain-rich protostars and prestellar cores known, and are unusually large for star-forming gas. Column density upper limits were obtained for the carbon chain anions C4H(-) and C6H(-), with anion-to-neutral ratios [C4H(-)]/[C4H] < 0.02% and [C6H(-l)]/[C6H] < 10%, consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC,3 and c-C3H2 were detected. The [DC3N]/[HC,N] ratio of approximately 4% is consistent with the value typically found in cold interstellar gas.

  7. Novel forms of colloidal self-organization in temporally and spatially varying external fields: from low-density network-forming fluids to spincoated crystals

    Science.gov (United States)

    Yethiraj, Anand

    2010-03-01

    External fields affect self-organization in Brownian colloidal suspensions in many different ways [1]. High-frequency time varying a.c. electric fields can induce effectively quasi-static dipolar inter-particle interactions. While dipolar interactions can provide access to multiple open equilibrium crystal structures [2] whose origin is now reasonably well understood, they can also give rise to competing interactions on short and long length scales that produce unexpected low-density ordered phases [3]. Farther from equilibrium, competing external fields are active in colloid spincoating. Drying colloidal suspensions on a spinning substrate produces a ``perfect polycrystal'' - tiny polycrystalline domains that exhibit long-range inter-domain orientational order [4] with resultant spectacular optical effects that are decoupled from single-crystallinity. High-speed movies of drying crystals yield insights into mechanisms of structure formation. Phenomena arising from multiple spatially- and temporally-varying external fields can give rise to further control of order and disorder, with potential application as patterned (photonic and magnetic) materials. [4pt] [1] A. Yethiraj, Soft Matter 3, 1099 (2007). [2] A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003). [3] A.K. Agarwal, A. Yethiraj, Phys. Rev. Lett ,102, 198301 (2009). [4] C. Arcos, K. Kumar, W. Gonz'alez-Viñas, R. Sirera, K. Poduska, A. Yethiraj, Phys. Rev. E ,77, 050402(R) (2008).

  8. Structural experiments with ice (composite) shells

    NARCIS (Netherlands)

    Belis, J.; Martens, K.; Van Lancker, B.; Pronk, A.; Zingoni, Alphose

    2016-01-01

    ABSTRACT: Ice can be a very suitable building material for temporary structures in a freezing environment. When water, mixed with small fibre reinforcements, is sprayed onto an inflatable membrane structure in suitable cold outdoor conditions, a thin shell is formed which increases thickness layer

  9. Wellposedness of a cylindrical shell model

    International Nuclear Information System (INIS)

    McMillan, C.

    1994-01-01

    We consider a well-known model of a thin cylindrical shell with dissipative feedback controls on the boundary in the form of forces, shears, and moments. We show that the resulting closed loop feedback problem generates a s.c. semigroup of contractions in the energy space

  10. Ni3Si(Al)/a-SiOx core shell nanoparticles: characterization, shell formation, and stability

    Science.gov (United States)

    Pigozzi, G.; Mukherji, D.; Gilles, R.; Barbier, B.; Kostorz, G.

    2006-08-01

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni3Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni3Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiOx). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  11. A Microarray Study of Carpet-Shell Clam (Ruditapes decussatus Shows Common and Organ-Specific Growth-Related Gene Expression Differences in Gills and Digestive Gland

    Directory of Open Access Journals (Sweden)

    Carlos Saavedra

    2017-11-01

    Full Text Available Growth rate is one of the most important traits from the point of view of individual fitness and commercial production in mollusks, but its molecular and physiological basis is poorly known. We have studied differential gene expression related to differences in growth rate in adult individuals of the commercial marine clam Ruditapes decussatus. Gene expression in the gills and the digestive gland was analyzed in 5 fast-growing and five slow-growing animals by means of an oligonucleotide microarray containing 14,003 probes. A total of 356 differentially expressed genes (DEG were found. We tested the hypothesis that differential expression might be concentrated at the growth control gene core (GCGC, i.e., the set of genes that underlie the molecular mechanisms of genetic control of tissue and organ growth and body size, as demonstrated in model organisms. The GCGC includes the genes coding for enzymes of the insulin/insulin-like growth factor signaling pathway (IIS, enzymes of four additional signaling pathways (Raf/Ras/Mapk, Jnk, TOR, and Hippo, and transcription factors acting at the end of those pathways. Only two out of 97 GCGC genes present in the microarray showed differential expression, indicating a very little contribution of GCGC genes to growth-related differential gene expression. Forty eight DEGs were shared by both organs, with gene ontology (GO annotations corresponding to transcription regulation, RNA splicing, sugar metabolism, protein catabolism, immunity, defense against pathogens, and fatty acid biosynthesis. GO term enrichment tests indicated that genes related to growth regulation, development and morphogenesis, extracellular matrix proteins, and proteolysis were overrepresented in the gills. In the digestive gland overrepresented GO terms referred to gene expression control through chromatin rearrangement, RAS-related small GTPases, glucolysis, and energy metabolism. These analyses suggest a relevant role of, among others

  12. Initiation and elimination of vacuoles in microencapsulated shells

    International Nuclear Information System (INIS)

    Du Kai; You Dan

    2000-01-01

    Two mechanisms of vacuole formation in microencapsulated micro-shells wall are introduced. It is verified that phase separation of trace amount of water in the organic solvent is the most possible course of vacuole formation

  13. Dyson shells: a retrospective

    Science.gov (United States)

    Bradbury, Robert J.

    2001-08-01

    More than 40 years have passed since Freeman Dyson suggested that advanced technological civilizations are likely to dismantle planets in their solar systems to harvest all of the energy their stars wastefully radiate into space. Clearly this was an idea that was ahead of its time. Since that time, dozens of SETI searches have been conducted and almost all of them have focused their attention on stars which by definition cannot be the advanced civilizations that Dyson envisioned. I will review the data that created the confusion between Dyson spheres and Dyson shells. The sources that disprove Dyson spheres while still allowing Dyson shells will be discussed. The use of outmoded ideas that have biased the few searches for Dyson Shells that have occurred will be pointed out. An update of the concept of Dyson shells to include our current knowledge of biotechnology, nanotechnology and computer science will be explored. Finally, an approach to setting limits on the abundance of Dyson shells in our galaxy using existing optical astronomical data and future optical satellites will be proposed.

  14. An IBM-3 hamiltonian from a multi-j-shell model

    International Nuclear Information System (INIS)

    Evans, J.A.; Elliott, J.P.; Lac, V.S.; Long, G.L.

    1995-01-01

    The number and isospin dependence of the hamiltonian in the isospin invariant form (IBM-3) of the boson model is deduced from a seniority mapping onto a shell-model system of several shells. The numerical results are compared with earlier work for a single j-shell. (orig.)

  15. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei; Cui, Yi

    2009-01-01

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires

  16. SHELL DISEASES AND TOXINS REGULATED BY LAW

    Directory of Open Access Journals (Sweden)

    Natalija Topić Popović

    1999-06-01

    Full Text Available There is a long tradition of cultivating shells in Croatia, and the shell industry has a good perspective of further development. Since shells are delicate organisms that require special breeding conditions and climate, they are also subject to many diseases. Bonamiosis, haplospioridiosis, marteiliosis, microcytosis and perkinsosis are stated by the International Bureau for Epizootics as shell diseases that, in keeping with law, must be reported, and iridovirosis as a disease of a potential international importance. The same diseases are regulated by the Veterinary Law from 1997 as infectious diseases prevention of which is of an interest for the Republic of Croatia. Although, according to the law, it does not have to be prevented, in this article the disease Mytilicola is also described. According to the Health Department Statute from 1994, eatable part of shells are being tested for toxins of some marine dinoflagelates that can damage human health, and these are PSP (Paralytic Shellfish Poison, DSP (Diarrhoeic Shellfish Poison and NSP (Neuroparalytic Shellfish Poison.

  17. 75 FR 5455 - Rescission of Form T-1, Trust Annual Report; Require Subsidiary Organization Reporting on the...

    Science.gov (United States)

    2010-02-02

    ... charitable organization with a separate not-for-profit tax status constituted a fund of a labor organization... statement signed by an independent public accountant certifying that the financial report presents fairly... to file a separate financial statement certified by a public accountant. The Department seeks comment...

  18. The Features of Forming and Using the Finansial and Material Resources of Socially Oriented Non-Profit Organizations of Volgograd Region

    Directory of Open Access Journals (Sweden)

    Oleynik Olga Stepanovna

    2014-12-01

    Full Text Available The article deals with the problem of interaction of regional authorities and the institute of socially oriented non-profit organizations that carry out the activity aimed at solving social problems, the development of civil society in Russia. The forms and activities of socially oriented non-profit organizations are systematically presented. The authors reveal the directions and tools for supporting the activities of socially oriented non-profit organizations by public authorities and local self-government bodies. The authors aimed at fixing the peculiarities of organization and conduct of statistical observation over the activity of socially-oriented organizations in Volgograd region. The organizational events were arranged. They were necessary for the conduct of qualitative statistical analysis of the activity of socially oriented organizations. For the first time the official data on the activity of socially oriented non-profit organizations in Volgograd region, including the information on formation and use of money and other property, was received as a result of the statistical observation. The authors focus on the analysis of the sources of money and other property, reveal the composition of income in non-profit organizations of various organizational and legal forms. The forms of work in socially oriented non-profit organizations of Volgograd region and its results as of 2013 are thoroughly studied. The conducted statistical analysis showed that the significant public sector has been established in the region. It provides the necessary public social services, financial or social assistance to the most vulnerable members of society.

  19. NO ORDINARY RULES. MORE ON ORGANIZATIONAL BEHAVIOUR: A DISCUSSION ON FORMS AND HIBRYDISMS OF POST-BUREAUCRATIC ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Pierfranco Malizia

    2014-02-01

    Full Text Available The topics discussed in this contribution are founded on two basic assumptions; the first considers a complex organization as a social subsystem in which all the specific characteristics of the “macrosystem” may be found.  The second (consequential to the first favours the interpretation of “organization-as-culture” (or as a sociocultural system. Assuming what has been said above, then, it follows (and this is the sense of this essay that complex organizations, in as much as they are sociocultural (subsystems, cannot be considered, perhaps today more than in the past, systems impervious to the sociocultural world of which they are a part, or in other words, it is not possible to speak of a culture of organizations as if it were a unique, coherent system of models and values: the plurality of cultural influences present in the highly differentiated contemporary societies is reflected also on the situations inside these organizations.

  20. Some Differential Geometric Relations in the Elastic Shell

    Directory of Open Access Journals (Sweden)

    Xiaoqin Shen

    2016-01-01

    Full Text Available The theory of the elastic shells is one of the most important parts of the theory of solid mechanics. The elastic shell can be described with its middle surface; that is, the three-dimensional elastic shell with equal thickness comprises a series of overlying surfaces like middle surface. In this paper, the differential geometric relations between elastic shell and its middle surface are provided under the curvilinear coordinate systems, which are very important for forming two-dimensional linear and nonlinear elastic shell models. Concretely, the metric tensors, the determinant of metric matrix field, the Christoffel symbols, and Riemann tensors on the three-dimensional elasticity are expressed by those on the two-dimensional middle surface, which are featured by the asymptotic expressions with respect to the variable in the direction of thickness of the shell. Thus, the novelty of this work is that we can further split three-dimensional mechanics equations into two-dimensional variation problems. Finally, two kinds of special shells, hemispherical shell and semicylindrical shell, are provided as the examples.

  1. New organic forms of preventive medicine and correction of neurotic and psichosomatic disorders for personnel of the Pripyat' and Spetsatom research and production joint enterprises

    International Nuclear Information System (INIS)

    Tabachnikov, S.I.; Snizhenko, Yu.N.; Aleksandrovskij, Yu.A.; Kazakov, V.N.; Bebeshko, E.G.; Mecheret, E.L.; Rymar', I.B.; Cherenkov, V.P.; Roslyakov, V.S.; Titievskij, S.V.

    1992-01-01

    The differentiated harmonious system of new organizing forms and methods, as well as necessary preventive and medical measures, which is introduced in the MSCh-26 rehabilitation department is discussed. The Antitabak and Antibakhus programs are developed and introduced. Modifications of emotional-stress psychotherapy and tabacco dependence reflexotherapy are used. The system of rehabilitation-sanitation measures (RSM) includes 4 stage, which are: RSM organization directly in the Chernobyl' NPP dispensary (manual therapy, massage, psychotherapy reflexotherapy); RSM organization on the basis of medical-sanitary departments; RSM during interduty period at a place of residence; rehabilitation under conditions of special sanatoria

  2. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems

    Directory of Open Access Journals (Sweden)

    Campbell F. Mackenzie

    2017-09-01

    Full Text Available The application domain of accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals is extended by calibration against density functional results for 1794 molecule/ion pairs extracted from 171 crystal structures. The mean absolute deviation of CE-B3LYP model energies from DFT values is a modest 2.4 kJ mol−1 for pairwise energies that span a range of 3.75 MJ mol−1. The new sets of scale factors determined by fitting to counterpoise-corrected DFT calculations result in minimal changes from previous energy values. Coupled with the use of separate polarizabilities for interactions involving monatomic ions, these model energies can now be applied with confidence to a vast number of molecular crystals. Energy frameworks have been enhanced to represent the destabilizing interactions that are important for molecules with large dipole moments and organic salts. Applications to a variety of molecular crystals are presented in detail to highlight the utility and promise of these tools.

  3. Stereo and scanning electron microscopy of in-shell Brazil nut (Bertholletia excelsa H.B.K.): part two-surface sound nut fungi spoilage susceptibility.

    Science.gov (United States)

    Scussel, Vildes M; Manfio, Daniel; Savi, Geovana D; Moecke, Elisa H S

    2014-11-01

    This work reports the in-shell Brazil nut spoilage susceptible morpho-histological characteristics and fungi infection (shell, edible part, and brown skin) through stereo and scanning electron microscopies (SEM). The following characteristics related to shell (a) morphology-that allow fungi and insects' entrance to inner nut, and (b) histology-that allow humidity absorption, improving environment conditions for living organisms development, were identified. (a.1) locule in testae-the nut navel, which is a cavity formed during nut detaching from pods (located at 1.0 to 2.0/4th of the shell B&C nut faces linkage). It allows the nut brown skin (between shell and edible part) first contact to the external environment, through the (a.2) nut channel-the locule prolongation path, which has the water/nutrients cambium function for their transport and distribution to the inner seed (while still on the tree/pod). Both, locule followed by the channel, are the main natural entrance of living organisms (fungi and insects), including moisture to the inner seed structures. In addition, the (a.3) nut shell surface-which has a crinkled and uneven surface morphology-allows water absorption, thus adding to the deterioration processes too. The main shell histological characteristic, which also allows water absorption (thus improving environment conditions for fungi proliferation), is the (b.1) cell wall porosity-the multilayered wall and porous rich cells that compose the shell faces double tissue layers and the (b.2) soft tissue-the mix of tissues 2 faces corner/linkage. This work also shows in details the SEM nut spoilage susceptible features highly fungi infected with hyphae and reproductive structures distribution. © 2014 Institute of Food Technologists®

  4. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells

    Directory of Open Access Journals (Sweden)

    Laurie Dolan

    Full Text Available Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control, 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermittent decreases in food efficiency (150 000 ppm males only that were not biologically relevant. All animals survived and no adverse clinical signs or functional changes were attributable to the test material. There were no toxicologically relevant changes in hematology, clinical chemistry or urinalysis parameters or organ weights in rats ingesting pecan shell fiber. Any macroscopic or microscopic findings were incidental, of normal variation and/or of minimal magnitude for test substance association. Pecan shell fiber was non-mutagenic in a bacterial reverse mutation test and non-clastogenic in a mouse peripheral blood micronucleus test. Based on these results, pecan shell fiber has an oral subchronic (13-week no observable adverse effect level (NOAEL of 150 000 ppm in rats and is not genotoxic at the doses analyzed. Keywords: Pecan shell, Fiber, Rat, Diet, Toxicity, Mutagenicity

  5. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  6. Brine Pockets in the Icy Shell on Europa: Distribution, Chemistry, and Habitability

    Science.gov (United States)

    Zolotov, M. Yu; Shock, E. L.; Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    On Earth, sea ice is rich in brine, salt, and gas inclusions that form through capturing of seawater during ice formation. Cooling of the ice over time leads to sequential freezing of captured sea-water, precipitation of salts, exsolution of gases, and formation of brine channels and pockets. Distribution and composition of brines in sea ice depend on the rate of ice formation, vertical temperature gradient, and the age of the ice. With aging, the abundance of brine pockets decreases through downward migration. De- spite low temperatures and elevated salinities, brines in sea ice provide a habitat for photosynthetic and chemosynthetic organisms. On Europa, brine pockets and channels could exist in the icy shell that may be from a few km to a few tens of km thick and is probably underlain by a water ocean. If the icy shell is relatively thick, convection could develop, affecting the temperature pattern in the ice. To predict the distribution and chemistry of brine pockets in the icy shell we have combined numerical models of the temperature distribution within a convecting shell, a model for oceanic chemistry, and a model for freezing of Europan oceanic water. Possible effects of brine and gas inclusions on ice rheology and tectonics are discussed.

  7. Shifts in mass-scaling of respiration, feeding, and growth rates across life-form transitions in marine pelagic organisms

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Hirst, Andrew G.

    2014-01-01

    The metabolic rate of organisms may be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law, or it may be considered a property of the organism that emerges as a result of the adaptation to the environ...... and be the result of the optimization of trade-offs that allow sufficient feeding and growth rates to balance mortality...

  8. Monolithic photonic crystals created by partial coalescence of core-shell particles.

    Science.gov (United States)

    Lee, Joon-Seok; Lim, Che Ho; Yang, Seung-Man; Kim, Shin-Hyun

    2014-03-11

    Colloidal crystals and their derivatives have been intensively studied and developed during the past two decades due to their unique photonic band gap properties. However, complex fabrication procedures and low mechanical stability severely limit their practical uses. Here, we report stable photonic structures created by using colloidal building blocks composed of an inorganic core and an organic shell. The core-shell particles are convectively assembled into an opal structure, which is then subjected to thermal annealing. During the heat treatment, the inorganic cores, which are insensitive to heat, retain their regular arrangement in a face-centered cubic lattice, while the organic shells are partially fused with their neighbors; this forms a monolithic structure with high mechanical stability. The interparticle distance and therefore stop band position are precisely controlled by the annealing time; the distance decreases and the stop band blue shifts during the annealing. The composite films can be further treated to give a high contrast in the refractive index. The inorganic cores are selectively removed from the composite by wet etching, thereby providing an organic film containing regular arrays of air cavities. The high refractive index contrast of the porous structure gives rise to pronounced structural colors and high reflectivity at the stop band position.

  9. Sidewall coring shell

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Ya A; Konstantinov, L P; Martyshin, A N

    1966-12-12

    A sidewall coring shell consists of a housing and a detachable core catcher. The core lifter is provided with projections, the ends of which are situated in another plane, along the longitudinal axis of the lifter. The chamber has corresponding projections.

  10. Polymorphism of CaCO{sub 3} and microstructure of the shell of a Brazilian invasive Mollusc (Limnoperna fortunei)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura Filho, Arnaldo; Almeida, Arthur Correa de; Riera, Hernan Espinoza; Cardoso, Antonio Valadao, E-mail: nakamuraaf@gmail.com [Rede Tematica em Engenharia de Materiais (REDEMAT), Ouro Preto, MG (Brazil); Araujo, Joao Locke Ferreira de [Centro de Bioengenharia de Especies Invasoras de Hidreletricas(CBEIH), Belo Horizonte, MG (Brazil); Gouveia, Vitor Jose Pinto [Fundacao Centro Tecnologico de Minas Gerais (CETEC), Belo Horizonte, MG (Brazil); Carvalho, Marcela David de [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    2014-08-15

    Applying the theories of Materials Science and Engineering to describe the composition and hierarchy of microstructures that comprise biological systems could help the search for new materials and results in a deeper insight into evolutionary processes. The layered microstructure that makes up the freshwater bivalve Limnoperna fortunei shell, an invasive specie in Brazil, was investigated utilizing SEM and AFM for the determination of the morphology and organization of the layers; and XRD was used to determine the crystalline phases of the calcium carbonate (CaCO{sub 3}) present in the shell. The presence of the polymorphs calcite and aragonite were confirmed and the calcite is present only on the external side of the shell. The shell of L. fortunei is composed of two layers of aragonite with distinct microstructures (the aragonite prismatic layer and the aragonite sheet nacreous layer) and the periostracum (a protein layer that covers and protects the ceramic part of the shell). A new morphology of the calcite layer was found, below the periostracum, without defined form, albeit crystal (author)

  11. Investigation into complexing of pentavalent actinide forms with some anions of organic acids by the coprecipitation method

    International Nuclear Information System (INIS)

    Moskvin, A.I.; Poznyakov, A.N.; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1979-01-01

    Complexing of pentavolent forms of Np, Pu, Am actinides with anions of acetic, oxalic acids and EDTA is studied using the method of coprecipitation with iron hydroxide. Composition and stability constants of the actinide complexes formed are determined. The acids anions are arranged in a row in the order of decrease of complexing tendency that is EDTA anion>C 2 O 4 2- >CH 3 COO -

  12. Time range for accumulation of shell middens from Higashimyo (western Japan) and Kimhae (southern Korea) by AMS radiocarbon dating

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Toshio, E-mail: nakamura@nendai.nagoya-u.ac.jp [Center for Chronological Research, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Matsui, Akira [National Research Institute for Cultural Properties, Nara, Nijyo-cho, Nara 630-8577 (Japan); Nishida, Iwao; Nakano, Mitsuru [Saga-City Board of Education, Sakae-machi, Saga 840-8501 (Japan); Omori, Takayuki [University Museum, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033 (Japan)

    2013-01-15

    Numerous large and small shell middens have been reported throughout the world. An interesting question is when the huge and thick shell middens were formed, and how many years were required to build up the whole midden. Shell middens contain not only shell fragments but also organic substances such as bones, nuts, acorn, and plant residues, which are suitable substances with which to establish {sup 14}C chronology of the middens. We have conducted {sup 14}C dating on terrestrial and marine materials collected from two lowland shell middens, the Higashimyo site in Japan (the Earliest Jomon period) and the Kimhae site in Korea (the Proto-Three Kingdom period), to establish high precision {sup 14}C chronologies and determine the time required for shell accumulation. According to Bayesian analysis of {sup 14}C ages from terrestrial samples, accumulation of Midden No. 1 at Higashimyo (altitude from -1.1 to -2.3 m a.s.l., {Delta}d = 1.2 m) started at around 8050-7950 cal BP and ended at 7950-7750 cal BP, lasting for ca. 100 cal yr, while accumulation of Midden No. 2 (altitude from -0.5 to -2.0 m a.s.l., {Delta}d = 1.5 m) started at around 8050-7800 cal BP and ended at 7800-7650 cal BP, lasting for ca. 200 cal yr. Thus the Midden No. 1 was abandoned a bit earlier than Midden No. 2, but the time range for sediment accumulation overlaps each other. Accumulation at the Kimhae shell midden (altitude from 5 to 14 m a.s.l., {Delta}d = 9 m) started at around the middle of the 1st C cal BC and ended at around the middle of the 3rd C cal AD, lasting for ca. 250 to 300 cal yr.

  13. Stability of charged thin shells

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-01-01

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  14. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  15. Process to make core-shell structured nanoparticles

    Science.gov (United States)

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  16. Pemex to acquire interest in Shell Texas refinery

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Petroleos Mexicanos and Shell Oil Co. have signed a memorandum of understanding to form a joint refining venture involving Shell's 225,000 b/d Deer Park, Tex., refinery. Under the agreement, Mexico's state owned oil company is to purchase a 50% interest in the refinery, and Shell is to sell Pemex unleaded gasoline on a long term basis. Under the venture, Shell and Pemex plan to add undisclosed conversion and upgrading units tailored to process heavy Mexican crude. The revamp will allow Pemex to place more than 100,000 b/d of Mayan heavy crude on the U.S. market. Mayan accounts for 70% of Mexico's crude oil exports. In turn, Shell will sell Pemex as much as 45,000 b/d of unleaded gasoline to help meet Mexico's rapidly growing demand

  17. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.

    Science.gov (United States)

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-09-14

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.

  18. A tetrapyridine ligand with a rigid tetrahedral core forms metal-organic frameworks with PtS type architecture.

    Science.gov (United States)

    Caputo, Christopher B; Vukotic, V Nicholas; Sirizzotti, Natalie M; Loeb, Stephen J

    2011-08-14

    A new tetradentate, pyridine ligand with a rigid tetrahedral core can be prepared in good yield by a cross-coupling methodology. Two metal organic framework structures of Cu(II) with PtS-type topology having a carbon atom as the tetrahedral node have been characterized utilising this ligand. This journal is © The Royal Society of Chemistry 2011

  19. FormCalc 9 and extensions

    International Nuclear Information System (INIS)

    Hahn, T.; Passehr, S.; Schappacher, C.

    2016-04-01

    We present Version 9 of the Feynman-diagram calculator FormCalc and a flexible new suite of shell scripts and Mathematica packages based on FormCalc, which can be adapted and used as a template for calculations.

  20. Gravity on-shell diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Enrico [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA 95616 (United States)

    2016-11-22

    We study on-shell diagrams for gravity theories with any number of supersymmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only dlog-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N=8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in http://dx.doi.org/10.1007/JHEP06(2015)202.

  1. Studies on Freezing of Shell-Fish-I

    Science.gov (United States)

    Song, Dae Jin; Konagaya, Shiro; Tanaka, Takeo

    Ark shell, Anadara broughtonii(Shrenk), are commonly eaten raw or under-done in Korea, Japan, and East Asian countries. Along with a recent remarkable development of culture fisheries, Ark shell has become one of the commercially important shell-fish species. Transportation and storage of large quantities of shell-fish is becoming increasingly important. This work was begun with this background to make clear the effects of temperature and length of storage time on the quality of frozen stored ark shell. Results are as follows : (1) There was little chang in amounts of free and expressible drip from ark shell flesh frozen stored at -40°CdegC for 6 months. Water holding capacity of the same meat was almost constant over 6 months storage. However, a mounts of both drip increased markedly after 2 months storage at -10°C. (2) Protein extractibility of ark shell flesh tended to decrease gradually from the begining when stored at -10°C, while at -20°C, the protein extractibility was stable for 3 months before decreasing gradually. However at -40°C, the protein extractibility was stable for 6 months. It was found that paramyosin was very stable even when the ark shell was frozen stored at -10°C. (3) It was observed that ark shell flesh became tough when frozen. The toughness of ark shell flesh as measured by an instrument increased with frozen storage time and increased temperature. (4) In the smooth muscle, it was histologically observed that initial small ice crystals formed between muscle bundles grew larger during frozen storage. It was found that the higher the storage temperature, the bigger the ice crystals formed. Aggregation of some muscle fiber and empty spaces between muscle bundles were observd after thawed muscles frozen stored at relatively high temperature such as -10°C.

  2. Controlled assembly of jammed colloidal shells on fluid droplets

    Science.gov (United States)

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A.

    2005-07-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.

  3. Insights from the Shell Proteome: Biomineralization to Adaptation.

    Science.gov (United States)

    Arivalagan, Jaison; Yarra, Tejaswi; Marie, Benjamin; Sleight, Victoria A; Duvernois-Berthet, Evelyne; Clark, Melody S; Marie, Arul; Berland, Sophie

    2017-01-01

    Bivalves have evolved a range of complex shell forming mechanisms that are reflected by their incredible diversity in shell mineralogy and microstructures. A suite of proteins exported to the shell matrix space plays a significant role in controlling these features, in addition to underpinning some of the physical properties of the shell itself. Although, there is a general consensus that a minimum basic protein tool kit is required for shell construction, to date, this remains undefined. In this study, the shell matrix proteins (SMPs) of four highly divergent bivalves (The Pacific oyster, Crassostrea gigas; the blue mussel, Mytilus edulis; the clam, Mya truncata, and the king scallop, Pecten maximus) were analyzed in an identical fashion using proteomics pipeline. This enabled us to identify the critical elements of a "basic tool kit" for calcification processes, which were conserved across the taxa irrespective of the shell morphology and arrangement of the crystal surfaces. In addition, protein domains controlling the crystal layers specific to aragonite and calcite were also identified. Intriguingly, a significant number of the identified SMPs contained domains related to immune functions. These were often are unique to each species implying their involvement not only in immunity, but also environmental adaptation. This suggests that the SMPs are selectively exported in a complex mix to endow the shell with both mechanical protection and biochemical defense. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. The theory of spherically symmetric thin shells in conformal gravity

    Science.gov (United States)

    Berezin, Victor; Dokuchaev, Vyacheslav; Eroshenko, Yury

    The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy-momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl-Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ( = massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl-Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.

  5. Snap-Through Buckling Problem of Spherical Shell Structure

    Directory of Open Access Journals (Sweden)

    Sumirin Sumirin

    2014-12-01

    Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.

  6. Shells on elastic foundations

    International Nuclear Information System (INIS)

    Das, Y.C.; Kedia, K.K.

    1977-01-01

    No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)

  7. Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form.

    Science.gov (United States)

    Palacios, Anabel; De Gracia, Alvaro; Haurie, Laia; Cabeza, Luisa F; Fernández, A Inés; Barreneche, Camila

    2018-01-12

    The implementation of organic phase change materials (PCMs) in several applications such as heating and cooling or building comfort is an important target in thermal energy storage (TES). However, one of the major drawbacks of organic PCMs implementation is flammability. The addition of flame retardants to PCMs or shape-stabilized PCMs is one of the approaches to address this problem and improve their final deployment in the building material sector. In this study, the most common organic PCM, Paraffin RT-21, and fatty acids mixtures of capric acid (CA), myristic acid (MA), and palmitic acid (PA) in bulk, were tested to improve their fire reaction. Several flame retardants, such as ammonium phosphate, melamine phosphate, hydromagnesite, magnesium hydroxide, and aluminum hydroxide, were tested. The properties of the improved PCM with flame retardants were characterized by thermogravimetric analyses (TGA), the dripping test, and differential scanning calorimetry (DSC). The results for the dripping test show that fire retardancy was considerably enhanced by the addition of hydromagnesite (50 wt %) and magnesium hydroxide (50 wt %) in fatty acids mixtures. This will help the final implementation of these enhanced PCMs in building sector. The influence of the addition of flame retardants on the melting enthalpy and temperatures of PCMs has been evaluated.

  8. Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form

    Directory of Open Access Journals (Sweden)

    Anabel Palacios

    2018-01-01

    Full Text Available The implementation of organic phase change materials (PCMs in several applications such as heating and cooling or building comfort is an important target in thermal energy storage (TES. However, one of the major drawbacks of organic PCMs implementation is flammability. The addition of flame retardants to PCMs or shape-stabilized PCMs is one of the approaches to address this problem and improve their final deployment in the building material sector. In this study, the most common organic PCM, Paraffin RT-21, and fatty acids mixtures of capric acid (CA, myristic acid (MA, and palmitic acid (PA in bulk, were tested to improve their fire reaction. Several flame retardants, such as ammonium phosphate, melamine phosphate, hydromagnesite, magnesium hydroxide, and aluminum hydroxide, were tested. The properties of the improved PCM with flame retardants were characterized by thermogravimetric analyses (TGA, the dripping test, and differential scanning calorimetry (DSC. The results for the dripping test show that fire retardancy was considerably enhanced by the addition of hydromagnesite (50 wt % and magnesium hydroxide (50 wt % in fatty acids mixtures. This will help the final implementation of these enhanced PCMs in building sector. The influence of the addition of flame retardants on the melting enthalpy and temperatures of PCMs has been evaluated.

  9. Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form

    Science.gov (United States)

    Palacios, Anabel; De Gracia, Alvaro

    2018-01-01

    The implementation of organic phase change materials (PCMs) in several applications such as heating and cooling or building comfort is an important target in thermal energy storage (TES). However, one of the major drawbacks of organic PCMs implementation is flammability. The addition of flame retardants to PCMs or shape-stabilized PCMs is one of the approaches to address this problem and improve their final deployment in the building material sector. In this study, the most common organic PCM, Paraffin RT-21, and fatty acids mixtures of capric acid (CA), myristic acid (MA), and palmitic acid (PA) in bulk, were tested to improve their fire reaction. Several flame retardants, such as ammonium phosphate, melamine phosphate, hydromagnesite, magnesium hydroxide, and aluminum hydroxide, were tested. The properties of the improved PCM with flame retardants were characterized by thermogravimetric analyses (TGA), the dripping test, and differential scanning calorimetry (DSC). The results for the dripping test show that fire retardancy was considerably enhanced by the addition of hydromagnesite (50 wt %) and magnesium hydroxide (50 wt %) in fatty acids mixtures. This will help the final implementation of these enhanced PCMs in building sector. The influence of the addition of flame retardants on the melting enthalpy and temperatures of PCMs has been evaluated. PMID:29329212

  10. The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant

    Science.gov (United States)

    Setiawati, Mieke Rochimi; Damayani, Maya; Herdiyantoro, Diyan; Suryatmana, Pujawati; Anggraini, Derisfha; Khumairah, Fiqriah Hanum

    2018-02-01

    The yield of rice plants is strongly influenced by N fertilizer. Nitrogen in rice plants has roles in vegetative growth, tiller formation and increasing yield through rice protein formation. Nitrogen supplied from organic fertilizers is better than inorganic fertilizers that may have environmental problem effects. Organic fertilizers from Azolla pinnata water fern contain higher N than other organic fertilizers. Symbiosis between A. pinnata and the N-fixing cyanobacteria results in high content of nitrogen, 3 to 5%. A. pinnata can be added to the rice field as organic fertilizer in form of fresh biomass or composted. Composted form can be ground into powder which passes through 100 mesh sieve. Preparation of compost powder of A. pinnata is done to reduce the constraints of voluminous application of organic fertilizers and to improve the efficiency of its use. The objective of this research was to compare the effect of the use of fresh A. pinnata and compost powder of A. pinnata on some soil and plant chemical properties and rice yield. The treatments applied were fresh A. pinnata at the dose of 0, 10 and 20 ton ha-1 and A. pinnata compost powder at 12.5 and 25 kg ha-1. The results showed that incorporation of fresh A. pinnata at 20 tons ha-1 and its compost powder at 25 kg ha-1 increased the available P of soil, plant P content and tiller number, but did not affect the content of organic-C, total soil N, plant N content and rice yield. This study suggested the benefits of A. pinnata compost powder technology in organic fertilization of soil to increase the nutrient content of soil and rice plants.

  11. Nanostructued core–shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yu; Li, Xifei; Zhang, Yong; Li, Ruying [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada); Cai, Mei [General Motors Research and Development Center, Warren, MI 48090-9055 (United States); Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2015-03-30

    Graphical abstract: - Highlights: • Sn nanowires encapsulated in CNTs directly grew on current collectors. • The thickness of CNTs were controlled via growth time, gas flow rate and synthesis temperature. • Thick CNTs contributed to a better capacity retention while thin CNTs led to a higher capacity. • The core–shell structures formed in one-step CVD process. - Abstract: Core–shell structure of Sn nanowires encapsulated in amorphous carbon nanotubes (Sn@CNTs) with controlled thickness of CNT shells was in situ prepared via chemical vapor deposition (CVD) method. The thickness of CNT shells was accurately controlled from 4 to 99 nm by using different growth time, flow rate of hydrocarbon gas (C{sub 2}H{sub 4}) and synthesis temperature. The microstructure and composition of the coaxial Sn@CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) techniques. Moreover, the Sn@CNTs were studied as anode materials for Li-ion batteries and showed excellent cycle performance. The capacity was affected by the thickness of outer CNT shells: thick CNT shells contributed to a better retention while thin CNT shells led to a higher capacity. The thin CNT shell of 6 nm presented the highest capacity around 630 mAh g{sup −1}.

  12. Nanostructued core–shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery

    International Nuclear Information System (INIS)

    Zhong, Yu; Li, Xifei; Zhang, Yong; Li, Ruying; Cai, Mei; Sun, Xueliang

    2015-01-01

    Graphical abstract: - Highlights: • Sn nanowires encapsulated in CNTs directly grew on current collectors. • The thickness of CNTs were controlled via growth time, gas flow rate and synthesis temperature. • Thick CNTs contributed to a better capacity retention while thin CNTs led to a higher capacity. • The core–shell structures formed in one-step CVD process. - Abstract: Core–shell structure of Sn nanowires encapsulated in amorphous carbon nanotubes (Sn@CNTs) with controlled thickness of CNT shells was in situ prepared via chemical vapor deposition (CVD) method. The thickness of CNT shells was accurately controlled from 4 to 99 nm by using different growth time, flow rate of hydrocarbon gas (C 2 H 4 ) and synthesis temperature. The microstructure and composition of the coaxial Sn@CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) techniques. Moreover, the Sn@CNTs were studied as anode materials for Li-ion batteries and showed excellent cycle performance. The capacity was affected by the thickness of outer CNT shells: thick CNT shells contributed to a better retention while thin CNT shells led to a higher capacity. The thin CNT shell of 6 nm presented the highest capacity around 630 mAh g −1

  13. DNA nanoparticles with core-shell morphology.

    Science.gov (United States)

    Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc

    2014-10-14

    Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.

  14. BOWOOSS: bionic optimized wood shells with sustainability

    Science.gov (United States)

    Pohl, Göran

    2011-04-01

    In architecture, shell construction is used for the most efficient, large spatial structures. Until now the use of wood rather played a marginal role, implementing those examples of architecture, although this material offers manifold advantages, especially against the background of accelerating shortage of resources and increasing requirements concerning the energy balance. Regarding the implementation of shells, nature offers a wide range of suggestions. The focus of the examinations is on the shells of marine plankton, especially of diatoms, whose richness in species promises the discovery of entirely new construction principles. The project is targeting at transferring advantageous features of these organisms on industrial produced, modular wood shell structures. Currently a transfer of these structures in CAD - models is taking place, helping to perform stress analysis by computational methods. Micro as well as macro structures are the subject of diverse consideration, allowing to draw the necessary conclusions for an architectural design. The insights of these tests are the basis for the development of physical models on different scales, which are used to verify the different approaches. Another important aim which is promoted in the project is to enhance the competitiveness of timber construction. Downsizing of the prefabricated structural elements leads to considerable lower transportation costs as abnormal loads can be avoided as far as possible and means of transportation can be loaded with higher efficiency so that an important contribution to the sustainability in the field of architecture can also be made.

  15. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Platero-Prats, Ana E.; League, Aaron; Bernales Candia, Sandra Varinia; Ye, Jingyun; Gallington, Leighanne C.; Vjunov, Aleksei; Schweitzer, Neil; Li, Zhanyong; Zheng, Jian; Mehdi, Beata L.; Stevens, Andrew J.; Dohnalkova, Alice; Balasubramanian, Mahalingam; Farha, Omar; Hupp, Joseph; Browning, Nigel D.; Fulton, John L.; Camaioni, Donald M.; Lercher, Johannes A.; Truhlar, Donald G.; Gagliardi, Laura; Cramer, Christopher; Chapman, Karena W.

    2017-07-24

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. We resolved the atomic structure of Ni-oxo species deposited in the MOF NU-1000 through atomic layer deposition using local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and difference envelope density analysis, with electron microscopy imaging and computational modeling.

  16. Synthesis and characterization of mesoporous silica core-shell particles

    Directory of Open Access Journals (Sweden)

    Milan Nikolić

    2010-06-01

    Full Text Available Core-shell particles were formed by deposition of primary silica particles synthesized from sodium silicate solution on functionalized silica core particles (having size of ~0.5 µm prepared by hydrolysis and condensation of tetraethylortosilicate. The obtained mesoporous shell has thickness of about 60 nm and consists of primary silica particles with average size of ~21 nm. Scanning electron microscopy and zeta potential measurements showed that continuous silica shell exists around functionalized core particles which was additionally proved by FTIR and TEM results.

  17. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  18. "Soft-shelled" monothalamid foraminifers as a modern analogue of early life

    Science.gov (United States)

    Kitazato, Hiroshi; Ohkawara, Nina; Gooday, Andrew

    2017-04-01

    According to the fossil record, the earliest undoubted foraminifers are found in the Early Cambrian, where they are represented by tubular agglutinated forms, thought to be the most primitive foraminiferal morphotypes. The numerous foraminifers with single-chambered, organic-walled tests (i.e. 'soft-shelled' monothalamids) exist in the deep sea and are difficult to preserve as fossils. Molecular phylogenetic data tell us that these 'primitive' taxa include the deepest foraminiferal clades, originating around 600 - 900 Ma. We found many soft-shelled monothalamids in sediment samples from deep trenches, including the Challenger Deep (Marianas Trench) and the Horizon Deep (Tonga Trench). Both deeps exceed 10,000 m water depth, well below the carbonate compensation depth, which represents an environmental barrier for calcareous foraminifera. The foraminifera at these extreme hadal sites include tubular and globular forms with organic walls, among which species of the genera Nodellum and Resigella are particularly abundant. Some forms selectively agglutinate minute flakes of clay minerals on the surface of the organic test. Many soft-shelled monothalamids, including most of those in deep tranches, contain stercomata, the function of which is currently unknown. Gromiids (a rhizarian group related to foraminifera) also accumulate stercomata in their sack-shaped tests. This suggests the possibility that the function of these waste particles is to add bulk, like the filling of soft bags or pillows. We suggest that the monothalamid foraminifera that dominate small-sized eukaryotes in extreme hadal settings may provide clues to understanding the biology and ecology of early life in Neoproterozoic sedimented habitats.

  19. Development of a Short Form of the Abridged Big Five-Dimensional Circumplex Model to Aid with the Organization of Personality Traits.

    Science.gov (United States)

    Bucher, Meredith A; Samuel, Douglas B

    2018-02-01

    Although there has been widespread consensus on the use of the Five-Factor Model (FFM) of general personality functioning in personality research, there are various, diverse models of the lower order traits of the FFM domains. Given the usefulness of these finer grained traits, it is imperative to integrate facets proposed across a variety of models and eventually reach consensus on the lower level traits of the FFM. Due to its depth and coverage, the Abridged Big Five-Dimensional Circumplex (AB5C) model potentially provides a useful framework for organizing various faceted models due to its conceptual organization and inclusiveness. The only measure of this model-the IPIP-AB5C-has shown promise, but is limited by its length (i.e., 485 items). This study developed an abbreviated version of the IPIP-AB5C using an iterative process including item response theory methods. The shorter version maintained key features of the long form including a factor structure that matched the full form as well as facets that correlated in expected ways with other FFM measures. Building on this support, the short form was used to contextualize and organize the facets from 2 commonly used measures.

  20. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells.

    Science.gov (United States)

    Dolan, Laurie; Matulka, Ray; Worn, Jeffrey; Nizio, John

    2016-01-01

    Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control), 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermittent decreases in food efficiency (150 000 ppm males only) that were not biologically relevant. All animals survived and no adverse clinical signs or functional changes were attributable to the test material. There were no toxicologically relevant changes in hematology, clinical chemistry or urinalysis parameters or organ weights in rats ingesting pecan shell fiber. Any macroscopic or microscopic findings were incidental, of normal variation and/or of minimal magnitude for test substance association. Pecan shell fiber was non-mutagenic in a bacterial reverse mutation test and non-clastogenic in a mouse peripheral blood micronucleus test. Based on these results, pecan shell fiber has an oral subchronic (13-week) no observable adverse effect level (NOAEL) of 150 000 ppm in rats and is not genotoxic at the doses analyzed.

  1. Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves

    Science.gov (United States)

    Warren, Stephen G.; Roesler, Collin S.; Morgan, Vincent I.; Brandt, Richard E.; Goodwin, Ian D.; Allison, Ian

    1993-01-01

    Although most icebergs are blue, green icebergs are seen occasionally in the Antarctic ocean. Chemical and isotopic analysis of samples from green icebergs indicate that the ice consists of desalinated frozen seawater, as does the basal ice from the Amery Ice Shelf. Spectral reflectance of a green iceberg measured near 67°S, 62°E, confirms that the color is inherent to the ice, not an artifact of the illumination. Pure ice appears blue owing to its absorption of red photons. Addition of a constituent that absorbs blue photons can shift the peak reflectance from blue to green. Such a constituent was identified by spectrophotometric analysis of core samples from this iceberg and from the Amery basal ice, and of seawater samples from Prydz Bay off the Amery Ice Shelf. Analysis of the samples by fluorescence spectroscopy indicates that the blue absorption, and hence the inherent green color, is due to the presence of marine-derived organic matter in the green iceberg, basal ice, and seawater. Thick accumulations of green ice, in icebergs and at the base of ice shelves, indicate that high concentrations of organic matter exist in seawater for centuries at the depth of basal freezing.

  2. Organics.

    Science.gov (United States)

    Chian, Edward S. K.; DeWalle, Foppe B.

    1978-01-01

    Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)

  3. Organizers.

    Science.gov (United States)

    Callison, Daniel

    2000-01-01

    Focuses on "organizers," tools or techniques that provide identification and classification along with possible relationships or connections among ideas, concepts, and issues. Discusses David Ausubel's research and ideas concerning advance organizers; the implications of Ausubel's theory to curriculum and teaching; "webbing," a…

  4. Teaching Form as Form

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2012-01-01

    understanding of form per se, or, to use an expression from this text, of form as form. This challenge can be reduced to one question: how can design teaching support students in achieving not only the ability to recognize and describe different form-related concepts in existing design (i.e. analytical...

  5. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., 90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation

  6. Toxicity and oxidative stress of different forms of organic selenium (Se) and dietary protein in mallard (Anas platyrhynchos) ducklings

    Science.gov (United States)

    Hoffman, D.; Heinz, G.; Eisemann, J.; Pendleton, G.

    1994-01-01

    High concentrations of Se have been found in aquatic food chains associated with irrigation drainwater and toxicity to fish and wildlife. Earlier studies have compared toxicities of Se as selenite and as seleno-DL-methionine (DL) in mallards. This study compares DL, seleno-L-methionine (L), selenized yeast (Y) and selenized wheat (W). Day-old mallard ducklings received an untreated diet (controls) containing 75% wheat (22% protein) or the same diet containing 15 or 30 ppm Se in the above forms. After 2 weeks blood and liver samples were collected for biochemical assays and Se analysis. All forms of selenium caused significant increases in plasma and hepatic glutathione peroxidase activities. Se as L was the most toxic, resulting in high mortality (64%) and impaired growth (>50%) and the greatest increase in ratio of oxidized to reduced glutathione with 30 ppm in the diet. Se as Y accumulated the least in liver. In a subsequent experiment with 30% dietary protein Se as L was less toxic.

  7. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.; Wang, Hanting; Gutié rrez, Leonardo A.; Romero-Maraccini, Ofelia C.; Niu, Xi-Zhi; Gin, Karina; Croue, Jean-Philippe; Nguyen, Thanh Ha

    2013-01-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3'-methoxyacetophenone (3'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  8. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.

    2013-09-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3\\'-methoxyacetophenone (3\\'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  9. The effect of inorganic and organic form of zinc on digestibility of nutrients in dairy cows in three stages of reproductive cycle

    Directory of Open Access Journals (Sweden)

    Marie Balabánová

    2011-01-01

    Full Text Available The aim of our experiment was to compare the effect of feeding inorganic and organic forms of zinc in premix on the coefficient of digestibility of nutrients in the feeding ration for cows in three stages of reproductive cycle – 14 d before calving and 30 and 60 d after calving. The experiment was carried out on 19 Holstein cows that were divided into two groups. A control group of nine cows designated as “Inorganic zinc form” (IZF was fed a diet supplemented with mineral premix containing inorganic form of zinc (ZnO. An experimental group of ten cows designated as “Organic zinc form” (OZF had zinc oxide replaced with zinc fixed to methionine (Khei-chelate Zn powder 15% by Kheiron. The experiment was divided into three periods - the first period lasted from 14th day before calving until 2nd day after calving, the second period lasted from 3rd day to 30th day after calving and the third period lasted from 31st day to 60th day after calving. Cows were fed the diet based on maize silage, lucerne haylage, sugar beet pulp silage, grass or lucerne hay and concentrate containing premix with either inorganic or organic zinc form. During the experiment samples of feeding ration and faeces were taken in 3 intervals, it si on 14th day before calving, on 30th day and on 60th day after calving to determine nutrients content. Digestibility of nutrients was calculated using indicator method (ash insoluble in 3 M HCl.After feeding organic forms of zinc a tendency to higher digestibility of crude protein, fat, crude fiber, nitrogen-free extracts, ash and zinc was observed in cows regardless of stage of reproductive cycle. The digestibility of the zinc and fiber were the most increased. Digestibility of zinc in OZF on 14th day before calving was higher than in IZF (P < 0.05. Feeding of organic zinc forms had downward effect only on the digestibility of copper.

  10. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals.

    Science.gov (United States)

    Tomizawa, Mayuka; Kurosu, Shunji; Kobayashi, Maki; Kawase, Yoshinori

    2016-12-01

    The decolorization and total organic carbon (TOC) removal of dark brown colored coffee effluent by zero-valent iron (ZVI) have been systematically examined with solution pH of 3.0, 4.0, 6.0 and 8.0 under oxic and anoxic conditions. The optimal decolorization and TOC removal were obtained at pH 8.0 with oxic condition. The maximum efficiencies of decolorization and TOC removal were 92.6 and 60.2%, respectively. ZVI presented potential properties for pollutant removal at nearly neutral pH because of its core-shell structure in which shell or iron oxide/hydroxide layer on ZVI surface dominated the decolorization and TOC removal of coffee effluent. To elucidate the contribution of the core-shell structure to removals of color and TOC at the optimal condition, the characterization of ZVI surface by scanning electron microscopy (SEM) with an energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) was conducted. It was confirmed that the core-shell structure was formed and the shell on ZVI particulate surface and the precipitates formed during the course of ZVI treatment consisted of iron oxides and hydroxides. They were significantly responsible for decolorization and TOC removal of coffee effluent via adsorption to shell on ZVI surface and inclusion into the precipitates rather than the oxidative degradation by OH radicals and the reduction by emitted electrons. The presence of dissolved oxygen (DO) enhanced the formation of the core-shell structure and as a result improved the efficiency of ZVI treatment for the removal of colored components in coffee effluents. ZVI was found to be an efficient material toward the treatment of coffee effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in- situ formed lanthanide complexes

    Science.gov (United States)

    Wang, Yige; Wang, Li; Li, Huanrong; Liu, Peng; Qin, Dashan; Liu, Binyuan; Zhang, Wenjun; Deng, Ruiping; Zhang, Hongjie

    2008-03-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data.

  12. Seismic analysis of axisymmetric shells

    International Nuclear Information System (INIS)

    Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.

    1984-01-01

    Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt

  13. Creep analysis of orthotropic shells

    International Nuclear Information System (INIS)

    Mehra, V.K.; Ghosh, A.

    1975-01-01

    A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)

  14. The direct manipulation shell

    International Nuclear Information System (INIS)

    Allen, M.E.; Christiansen, M.

    1992-01-01

    Accelerator controls systems provide parameter display pages which allow the operator to monitor and manipulate selected control points in the system. Display pages are generally implemented as either hand-crafted, purpose-built programs; or by using a specialized display page layout tool. These two methods of display page development exhibit the classic trade-off between functionality vs. ease of implementation. In the Direct Manipulation Shell we approach the process of developing a display page in a manifestly object-oriented manner. This is done by providing a general framework for interactively instantiating and manipulating display objects. (author)

  15. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    International Nuclear Information System (INIS)

    Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia; Ye, Jingyun; Gallington, Leighanne C.

    2017-01-01

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and difference envelope density analysis, with electron microscopy imag-ing and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO x H y clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield hetero-bimetallic metal-oxo nanowires. Finally, this bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering-resistance of these clusters during the hydrogenation of light olefins.

  16. Comparison of the quantitative determination of soil organic carbon in coastal wetlands containing reduced forms of Fe and S

    Science.gov (United States)

    Passos, Tassia R. G.; Artur, Adriana G.; Nóbrega, Gabriel N.; Otero, Xosé L.; Ferreira, Tiago O.

    2016-06-01

    The performance of the Walkley-Black wet oxidation chemical method for soil organic carbon (SOC) determination in coastal wetland soils (mangroves, coastal lagoons, and hypersaline tidal flats) was evaluated in the state of Ceará along the semiarid coast of Brazil, assessing pyrite oxidation and its effects on soil C stock (SCS) quantification. SOC determined by the chemical oxidation method (CWB) was compared to that assessed by means of a standard elemental analyzer (CEA) for surficial samples (mangroves, whereas lower values were found in the other settings. CWB values were higher than CEA values. Significant differences in SCS calculations based on CWB and CEA were recorded for the coastal lagoons and hypersaline tidal flats. Nevertheless, the CWB and CEA values were strongly correlated, indicating that the wet oxidation chemical method can be used in such settings. In contrast, the absence of correlation for the mangroves provides evidence of the inadequacy of this method for these soils. Air drying and oxidation decrease the pyrite content, with larger effects rooted in oxidation. Thus, the wet oxidation chemical method is not recommended for mangrove soils, but seems appropriate for SOC/SCS quantification in hypersaline tidal flat and coastal lagoon soils characterized by lower pyrite contents.

  17. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  18. Bioavailability and microbial adaptation to elevated levels of uranium in an acid, organic topsoil forming on an old mine spoil

    International Nuclear Information System (INIS)

    Joner, E.J.; Munier-Lamy, C.; Gouget, B.

    2007-01-01

    An old mine spoil at a 19. century mining site with considerable residues of uranium (400-800 mg U/kg) was investigated with respect to U concentrations in soil and plants and tolerance to U in the soil microbial community in order to describe the bioavailability of U. Measurements of soil fractions representing water-soluble U, easily exchangeable U, and U bound to humidified organic matter showed that all fractions contained elevated concentrations of U. Plant U concentrations were only 10 times higher at the mine spoil site compared to the reference site (3 mg U/kg vs 0.3 mg U/kg), while the most easily available soil fractions contained 0.18 to 0.86 mg U/kg soil at the mine spoil. An eco-toxicity bioassay using incorporation of [ 3 H]thymidine into the indigenous microbial communities of the two soils in the presence of increasing U concentrations showed that microorganisms at the mining site were sensitive to U but also that they had acquired a substantial tolerance toward U (EC50, the effective concentration reducing activity by 50% of UO 2 -citrate was similar to 120 μM as compared to 30 μM in the reference soil). In the assay, more than 40% of the microbial activity was maintained in the presence of 1 mM UO 2 -citrate versus 3% in the reference soil. We conclude that U-enriched mining waste can contain sufficiently elevated concentrations of bio-available U to affect indigenous microorganisms and that bio-available U imposes a selection pressure that favors the development of a highly uranium-tolerant microbial community, while plant uptake of U remains low. (authors)

  19. Bioavailability and microbial adaptation to elevated levels of uranium in an acid, organic topsoil forming on an old mine spoil

    Energy Technology Data Exchange (ETDEWEB)

    Joner, E.J. [BIOFORSK, Soil and Environm Div, N-1432 As, (Norway); Munier-Lamy, C. [Univ Nancy 1, Fac Sci, Natl Ctr Rech Sci, Unit Mixte Rech 7137 LIMOS, F-54506 Vandoeuvre Les Nancy, (France); Gouget, B. [CEA Saclay, Lab Pierre Sue, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    An old mine spoil at a 19. century mining site with considerable residues of uranium (400-800 mg U/kg) was investigated with respect to U concentrations in soil and plants and tolerance to U in the soil microbial community in order to describe the bioavailability of U. Measurements of soil fractions representing water-soluble U, easily exchangeable U, and U bound to humidified organic matter showed that all fractions contained elevated concentrations of U. Plant U concentrations were only 10 times higher at the mine spoil site compared to the reference site (3 mg U/kg vs 0.3 mg U/kg), while the most easily available soil fractions contained 0.18 to 0.86 mg U/kg soil at the mine spoil. An eco-toxicity bioassay using incorporation of [{sup 3}H]thymidine into the indigenous microbial communities of the two soils in the presence of increasing U concentrations showed that microorganisms at the mining site were sensitive to U but also that they had acquired a substantial tolerance toward U (EC50, the effective concentration reducing activity by 50% of UO{sub 2}-citrate was similar to 120 {mu}M as compared to 30 {mu}M in the reference soil). In the assay, more than 40% of the microbial activity was maintained in the presence of 1 mM UO{sub 2}-citrate versus 3% in the reference soil. We conclude that U-enriched mining waste can contain sufficiently elevated concentrations of bio-available U to affect indigenous microorganisms and that bio-available U imposes a selection pressure that favors the development of a highly uranium-tolerant microbial community, while plant uptake of U remains low. (authors)

  20. Bioavailability and microbial adaptation to elevated levels of uranium in an acid, organic topsoil forming on an old mine spoil.

    Science.gov (United States)

    Joner, Erik Jautris; Munier-Lamy, Colette; Gouget, Barbara

    2007-08-01

    An old mine spoil at a 19th-century mining site with considerable residues of uranium (400-800 mg U/kg) was investigated with respect to U concentrations in soil and plants and tolerance to U in the soil microbial community in order to describe the bioavailability of U. Measurements of soil fractions representing water-soluble U, easily exchangeable U, and U bound to humified organic matter showed that all fractions contained elevated concentrations of U. Plant U concentrations were only 10 times higher at the mine spoil site compared to the reference site (3 mg U/kg vs 0.3 mg U/kg), while the most easily available soil fractions contained 0.18 to 0.86 mg U/kg soil at the mine spoil. An ecotoxicity bioassay using incorporation of [3H]thymidine into the indigenous microbial communities of the two soils in the presence of increasing U concentrations showed that microorganisms at the mining site were sensitive to U but also that they had acquired a substantial tolerance toward U (EC50, the effective concentration reducing activity by 50% of UO2-citrate was approximately 120 microM as compared to 30 microM in the reference soil). In the assay, more than 40% of the microbial activity was maintained in the presence of 1 mM UO2-citrate versus 3% in the reference soil. We conclude that U-enriched mining waste can contain sufficiently elevated concentrations of bioavailable U to affect indigenous microorganisms and that bioavailable U imposes a selection pressure that favors the development of a highly uranium-tolerant microbial community, while plant uptake of U remains low.

  1. Control of the Biofilms Formed by Curli- and Cellulose-Expressing Shiga Toxin-Producing Escherichia coli Using Treatments with Organic Acids and Commercial Sanitizers.

    Science.gov (United States)

    Park, Yoen Ju; Chen, Jinru

    2015-05-01

    Biofilms are a mixture of bacteria and extracellular products secreted by bacterial cells and are of great concern to the food industry because they offer physical, mechanical, and biological protection to bacterial cells. This study was conducted to quantify biofilms formed by different Shiga toxin-producing Escherichia coli (STEC) strains on polystyrene and stainless steel surfaces and to determine the effectiveness of sanitizing treatments in control of these biofilms. STEC producing various amounts of cellulose (n = 6) or curli (n = 6) were allowed to develop biofilms on polystyrene and stainless steel surfaces at 28°C for 7 days. The biofilms were treated with 2% acetic or lactic acid and manufacturer-recommended concentrations of acidic or alkaline sanitizers, and residual biofilms were quantified. Treatments with the acidic and alkaline sanitizers were more effective than those with the organic acids for removing the biofilms. Compared with their counterparts, cells expressing a greater amount of cellulose or curli formed more biofilm mass and had greater residual mass after sanitizing treatments on polystyrene than on stainless steel. Research suggests that the organic acids and sanitizers used in the present study differed in their ability to control biofilms. Bacterial surface components and cell contact surfaces can influence both biofilm formation and the efficacy of sanitizing treatments. These results provide additional information on control of biofilms formed by STEC.

  2. Chemical properties of various organic electrolytes for lithium rechargeable batteries. Pt. 1.. Characterization of passivating layer formed on graphite in alkyl carbonate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoichiro; Asahina, Hitoshi; Suzuki, Hitoshi; Yonei, Ayako; Yokoto, Kiyomi [Tsukuba Research Center, Mitsubishi Chemical Corporation, Ibaraki (Japan)

    1997-09-01

    The characteristics and reaction mechanisms of the passivating film formed on the surface of graphite were investigated in ethylene carbonate-diethyl carbonate solutions containing LiClO{sub 4}, LiPF{sub 6} and LiN(SO{sub 2}CF{sub 3}){sub 2}. The electron consumption resulting on the irreversible capacity of graphite was almost equivalent to that used in the one-electron reduction of Li{sup +} found in the film. The electrochemical reactions in the first discharge process may be divided into the following steps: (i) `initial film formation step` from 1.4 to 0.55 V; (ii) `main film formation step` from 0.55 to 0.2 V, and (iii) `lithium intercalation step from 0.2 to 0.0 V. Most of the passivating film is formed together with the lithium intercalation reaction at step (ii). The passivating film formed at this step contained a significant amount of organic film such as EtOCO{sub 2}Li, (CH{sub 2}OCO{sub 2}Li){sub 2}, etc. Through the consecutive formation of passivating film at steps (i) and (ii), lithium intercalation into graphite proceeds smoothly without further decomposition of organic electrolyte. (orig.)

  3. Dossier Shell Eco-Marathon; Dossier Shell Eco-Marathon

    Energy Technology Data Exchange (ETDEWEB)

    Matla, P.

    2012-05-15

    Three articles address subjects concerning the annual race with highly energy efficient cars: the Shell Eco-Marathon. [Dutch] In 3 artikelen wordt aandacht besteed aan de ontwerpen voor de jaarlijkse race met superzuinige auto's, de Shell Eco-Marathon.

  4. A finite-element for the analysis of shell intersections

    International Nuclear Information System (INIS)

    Koves, W.J.; Nair, S.

    1994-01-01

    The analysis of discontinuity stresses at shell intersections is a problem of great importance in several major industries. Some of the major areas of interest are pressure-containing equipment, such as reactors and piping, in the nuclear and fossil power industry; pressure vessels and heat exchangers in the petrochemical industry; bracing in offshore oil platforms; and aerospace structures. A specialized shell-intersection finite element, which is compatible with adjoining shell elements, has been developed that has the capability of physically representing the complex three-dimensional geometry and stress state at shell intersections. The element geometry is a contoured shape that matches a wide variety of practical nozzle configurations used in ASME Code pressure vessel construction, and allows computational rigor. A closed-form theory of elasticity solution was used to compute the stress state and strain energy in the element. The concept of an energy-equivalent nodal displacement and force vector set was then developed to allow complete compatibility with adjoining shell elements and retain the analytical rigor within the element. This methodology provides a powerful and robust computation scheme that maintains the computational efficiency of shell element solutions. The shell-intersection element was then applied to the cylinder-sphere and cylinder-cylinder intersection problems

  5. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  6. Soil calcium availability influences shell ecophenotype formation in the sub-antarctic land snail, Notodiscus hookeri.

    Directory of Open Access Journals (Sweden)

    Maryvonne Charrier

    Full Text Available Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region. The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell and OS (organic shell. The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS-ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial

  7. Wilson lines, Grassmannians and gauge invariant off-shell amplitudes in N=4 SYM

    Energy Technology Data Exchange (ETDEWEB)

    Bork, L.V. [Institute for Theoretical and Experimental Physics,Moscow (Russian Federation); The Center for Fundamental and Applied Research,All-Russia Research Institute of Automatics, Moscow (Russian Federation); Onishchenko, A.I. [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow Institute of Physics and Technology State University,Dolgoprudny (Russian Federation); Skobeltsyn Institute of Nuclear Physics, Moscow State University,Moscow (Russian Federation)

    2017-04-04

    In this paper we consider tree-level gauge invariant off-shell amplitudes (Wilson line form factors) in N=4 SYM. For the off-shell amplitudes with one leg off-shell we present a conjecture for their Grassmannian integral representation in spinor helicity, twistor and momentum twistor parameterizations. The presented conjecture is successfully checked against BCFW results for MHV{sub n}, NMHV{sub 4} and NMHV{sub 5} off-shell amplitudes. We have also verified that our Grassmannian integral representation correctly reproduces soft (on-shell) limit for the off-shell gluon momentum. It is shown that the (deformed) off-shell amplitude expressions could be also obtained using quantum inverse scattering method for auxiliary gl(4|4) super spin chain.

  8. Waves on fluid-loaded shells and their resonance frequency spectrum

    DEFF Research Database (Denmark)

    Bao, X.L.; Uberall, H.; Raju, P.K.

    2005-01-01

    , or axially propagating waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am. 105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum shells; the present study extends this to fluid-filled shells in air......Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of air, or doubly fluid-loaded inside and out. They may support circumferential waves....... For practical applications, steel shells are most important and we have here obtained corresponding results for these. To find the natural frequencies of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are formed around the circumference, or in the axial...

  9. Hi shells, supershells, shell-like objects, and ''worms''

    International Nuclear Information System (INIS)

    Heiles, C.

    1984-01-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo

  10. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection?

    Science.gov (United States)

    Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2015-11-01

    Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.

  11. Production of hydroxyapatite from waste mussel shells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Mark I; Barakat, Haneen; Patterson, Darrell Alec, E-mail: mark.jones@auckland.ac.nz [Department Chemical and Materials Engineering, University of Auckland, New Zealand Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand)

    2011-10-29

    This work describes the formation of Hydroxyaptite, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, from waste mussel shells from the New Zealand aquaculture industry. The raw shells are first calcined to produce lime (CaO) and then reacted in a purpose built reactor to form the Hydroxyapatite (HA) in a low temperature batch process. The calcination was studied in terms of the effects of temperature, heating rate, holding time, nitrogen flow rate and particle size. The crystals formed in the batch reactor were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Photoelectron Spectroscopy (XPS). Optimised conditions in the calcination stage resulted in powder with around 95% conversion to lime. The as-produced HA showed poor crystallinity and the presence of impurities, although both of these features were improved by a suitable post heat treatment process. The post treated material showed good crystallinity and was comparable to commercially produced material. Preliminary biocompatibility experiments showed that the HA stimulated cell growth and promoted mineralization. The production of HA from mussel shells in a room temperature, ambient pressure process is not only a sustainable use of waste material, but also from an industrial point of view the process has considerable potential for reducing costs associated with both starting materials and energy.

  12. CONFLICT MANAGEMENT CRISIS THE SITUATION IN ORDER TO FORM THE PROPERTIES OF THE COMMERCIAL ORGANIZATION IN THE CONDITIONS OF MARKET: SURVIVAL

    Directory of Open Access Journals (Sweden)

    P. V. Sаmоilоv

    2015-01-01

    Full Text Available The need for conflict management in crisis poses questions about the decision of the leaders of emerging new challenges and dialogue in the team. Ignoring conflicts that arise in the collective unacceptable, because it can lead to wrong actions in the administration. Therefore, conflicts must be analyzed from the standpoint of the theory of organization, considering it as a set of relationships between organizational units. The experience of conflict resolution points to a sequence of actions for constructive management. The article discusses the strategy of effective interventions by the manager on the conflicts (personnel manager or psychologist for the purpose of settlement, and provides a sequence of structuring the conflict in block diagram form. In a crisis, the organization to minimize the time for conflict resolution is one of the most important requirements for its effective overcoming. In a crisis, the organization to minimize the time for conflict resolution is one of the most important requirements for its effective overcoming. Direction of action discussed above consultant on crisis management issues, refer to the table. The proposed approach of conflict resolution in crisis mode, considering the direction of formation of such an important organization in the commercial property market conditions as the survival rate. However, the manager of the proposed expansion of differentiated arsenal of interventions in the inevitable conflicts between organizational units.

  13. Organ and Tissue-specific Sucrose Transporters. Important Hubs in Gene and Metabolite Networks Regulating Carbon Use in Wood-forming Tissues of Populus

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Scott A. [Univ. of Georgia, Athens, GA (United States); Tsai, Chung-Jui [Univ. of Georgia, Athens, GA (United States)

    2016-01-04

    The overall project objective was to probe the relationship between sucrose transporters and plant productivity in the biomass for biofuels woody perennial, Populus. At the time the proposal was written, sucrose transporters had already been investigated in many plant model systems, primarily with respect to the export of photosynthate sucrose from source leaves, and the uptake of sucrose in storage organs and seeds. Preliminary findings by the PI found that in Populus, sucrose transporter genes (SUTs) were well expressed in wood-forming tissues that comprise the feedstock for biofuels production. Because sucrose comprises by far the predominant form in which photosynthate is delivered from source organs to sink organs like roots and wood-forming tissues, SUTs control a gate that nominally at least could impact the allocation or partitioning of sucrose for potentially competing end uses like growth (stem biomass) and storage. In addition, water use might be conditioned by the way in which sucrose is distributed throughout the plant, and/or by the way in which sucrose is partitioned intracellularly. Several dozen transgenic lines were produced in year 1 of the project to perturb the expression ratio of multiple plasma membrane (PM) SUTs (intercellular trafficking), versus the single tonoplast membrane (TM) sucrose transporter that effectively regulates intracellular trafficking of sucrose. It was possible to obtain transgenic lines with dual SUT gene knockdown using the 35S promoter, but not the wood-specific TUA1 promoter. By the end of project year 2, a decision was made to work with the 35S plants while archiving the TUA1 plants. The PhD candidate charged with producing the transgenic lines abandoned the project during its second year, substantially contributing to the decision to operate with just the 35S lines. That student’s interests ranged more toward evolutionary topics, and a report on SUT gene evolution was published (Peng et al 2014).

  14. Is liberal independent dental practice in danger? Assessing forms of dental practice in the European Regional Organization (ERO) zone of the FDI World Dental Federation.

    Science.gov (United States)

    Wolf, Thomas Gerhard; Seeberger, Gerhard Konrad; Callaway, Angelika; Briseño-Marroquín, Benjamín; Rusca, Philippe; Frank, Michael; Otterbach, Ernst-Jürgen

    2018-02-26

    A trend towards increasingly new forms of dental practice has been observed in the FDI World Dental Federation. Elementary foundations such as the free dentist and therapy choice, and independent, free, self-responsible professional practice may be undermined. The current study is aimed at analyzing the general training framework, organization, and professional types of dental practice in the European Regional Organization (ERO) zone and at critically discussing selected aspects of changes in the dental profession. A questionnaire was developed by the ERO Working-Group "Liberal Dental Practice." Information about dental schools, professional organizations, dental practice regulations, and ambulatory healthcare centers was analyzed. Self-employed dental practice is the most common type of practice (51.7%). Dentists are allowed to work independently immediately after graduation (72.7%). Approximately one-third are organized as compulsory members in chambers/corporations. The density of dentists has a mean of 1,570 inhabitants per dentist. In most countries, there are no special rules for founding dental ambulatory healthcare centers. In a total of 353 universities of the ERO countries surveyed, 16,619 dentists per year were trained, with a trend toward a higher percentage of female students (63%). Despite modern forms of dental practice, the charter of the individual liberal dental profession (CED et al, 2013) should be respected and taken into account on the basis of ethical principles. The commercialization of the dental profession can be neutralized only by establishing and following well-defined ethical principles; oral healthcare quality can thus be ensured without the influence of third parties.

  15. Shell Trumpets from Western Mexico

    Directory of Open Access Journals (Sweden)

    Robert Novella

    1991-11-01

    Full Text Available Marine shells have been used as musical instruments in almost all parts of the world (Izikowitz 1935, including Mesoamerica, where large univalves, also called conch shells in the literature, had a utilitarian function as trumpets. Their use is well documented in most cultural areas of Mesoamerica, as in Western Mexico, through their various occurrences in archaeological contexts and museums collections.

  16. Shell model and spectroscopic factors

    International Nuclear Information System (INIS)

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  17. Conventional shell model: some issues

    International Nuclear Information System (INIS)

    Vallieres, M.; Pan, X.W.; Feng, D.H.; Novoselsky, A.

    1997-01-01

    We discuss some important issues in shell-model calculations related to the effective interactions used in different regions of the periodic table; in particular the quality of different interactions is discussed, as well as the mass dependence of the interactions. Mention is made of the recently developed Drexel University shell-model (DUSM). (orig.)

  18. Exciplex-Forming Co-Host-Based Red Phosphorescent Organic Light-Emitting Diodes with Long Operational Stability and High Efficiency.

    Science.gov (United States)

    Lee, Jeong-Hwan; Shin, Hyun; Kim, Jae-Min; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2017-02-01

    The use of exciplex forming cohosts and phosphors incredibly boosts the efficiency of organic light-emitting diodes (OLEDs) by providing a barrier-free charge injection into an emitting layer and a broad recombination zone. However, most of the efficient OLEDs based on the exciplex forming cohosts has suffered from the short operational lifetime. Here, we demonstrated phosphorescent OLEDs (PhOLEDs) having both high efficiency and long lifetime by using a new exciplex forming cohost composed of N,N'-diphenyl-N,N'-bis(1,1'-biphenyl)-4,4'-diamine (NPB) and (1,3,5-triazine-2,4,6-triyl)tris(benzene-3,1-diyl))tris(diphenylphosphine oxide) (PO-T2T). The red-emitting PhOLEDs using the exciplex forming cohost achieved a maximum external quantum efficiency (EQE) of 34.1% and power efficiency of 62.2 lm W 1- with low operating voltages and low efficiency roll-offs. More importantly, the device demonstrated a long lifetime around 2249 h from 1000 cd m -2 to 900 cd m -2 (LT 90 ) under a continuous flow of constant current. The efficiencies of the devices are the highest for red OLEDs with an LT 90 > 1000 h.

  19. FASOR - A second generation shell of revolution code

    Science.gov (United States)

    Cohen, G. A.

    1978-01-01

    An integrated computer program entitled Field Analysis of Shells of Revolution (FASOR) currently under development for NASA is described. When completed, this code will treat prebuckling, buckling, initial postbuckling and vibrations under axisymmetric static loads as well as linear response and bifurcation under asymmetric static loads. Although these modes of response are treated by existing programs, FASOR extends the class of problems treated to include general anisotropy and transverse shear deformations of stiffened laminated shells. At the same time, a primary goal is to develop a program which is free of the usual problems of modeling, numerical convergence and ill-conditioning, laborious problem setup, limitations on problem size and interpretation of output. The field method is briefly described, the shell differential equations are cast in a suitable form for solution by this method and essential aspects of the input format are presented. Numerical results are given for both unstiffened and stiffened anisotropic cylindrical shells and compared with previously published analytical solutions.

  20. Preparation of hollow shell ICF targets using a depolymerizing model

    International Nuclear Information System (INIS)

    Letts, S.A.; Fearon, E.M.; Buckley, S.R.

    1994-11-01

    A new technique for producing hollow shell laser fusion capsules was developed that starts with a depolymerizable mandrel. In this technique we use poly(alpha-methylstyrene) (PAMS) beads or shells as mandrels which are overcoated with plasma polymer. The PAMS mandrel is thermally depolymerized to gas phase monomer, which diffuses through the permeable and thermally more stable plasma polymer coating, leaving a hollow shell. We have developed methods for controlling the size of the PAMS mandrel by either grinding to make smaller sizes or melt sintering to form larger mandrels. Sphericity and surface finish are improved by heating the PAMS mandrels in hot water using a surfactant to prevent aggregation. Using this technique we have made shells from 200 μm to 5 mm diameter with 15 to 100 μm wall thickness having sphericity better than 2 μm and surface finish better than 10 nm RMS

  1. Core-shell architectures as nano-size transporters

    International Nuclear Information System (INIS)

    Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.

    2006-01-01

    Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated

  2. Dynamic centering of liquid shells

    International Nuclear Information System (INIS)

    Tsamopoulos, J.A.; Brown, R.A.

    1987-01-01

    The moderate-amplitude axisymmetric oscillations of an inviscid liquid shell surrounding an incompressible gas bubble are calculated by a multiple-time-scale expansion for initial deformations composed of two-lobed perturbations of the shell and a displacement of the bubble from the center of mass of the liquid. Two types of small-amplitude motion are identified and lead to very different nonlinear dynamic interactions, as described by the results valid up to second order in the amplitude of the initial deformation. In the ''bubble mode,'' the oscillations of the captive bubble and the liquid shell are exactly in phase and the bubble vibrates about its initial eccentric location. The bubble moves toward the center of the drop when the shell is perturbed into a ''sloshing mode'' of oscillation where both interfaces move out of phase. These results explain the centering of liquid shells observed in several experiments

  3. Accumulation of Sellafield-derived radiocarbon ((14)C) in Irish Sea and West of Scotland intertidal shells and sediments.

    Science.gov (United States)

    Tierney, Kieran M; Muir, Graham K P; Cook, Gordon T; MacKinnon, Gillian; Howe, John A; Heymans, Johanna J; Xu, Sheng

    2016-01-01

    The nuclear energy industry produces radioactive waste at various stages of the fuel cycle. In the United Kingdom, spent fuel is reprocessed at the Sellafield facility in Cumbria on the North West coast of England. Waste generated at the site comprises a wide range of radionuclides including radiocarbon ((14)C) which is disposed of in various forms including highly soluble inorganic carbon within the low level liquid radioactive effluent, via pipelines into the Irish Sea. This (14)C is rapidly incorporated into the dissolved inorganic carbon (DIC) reservoir and marine calcifying organisms, e.g. molluscs, readily utilise DIC for shell formation. This study investigated a number of sites located in Irish Sea and West of Scotland intertidal zones. Results indicate (14)C enrichment above ambient background levels in shell material at least as far as Port Appin, 265 km north of Sellafield. Of the commonly found species (blue mussel (Mytilus edulis), common cockle (Cerastoderma edule) and common periwinkle (Littorina littorea)), mussels were found to be the most highly enriched in (14)C due to the surface environment they inhabit and their feeding behaviour. Whole mussel shell activities appear to have been decreasing in response to reduced discharge activities since the early 2000s but in contrast, there is evidence of continuing enrichment of the carbonate sediment component due to in-situ shell erosion, as well as indications of particle transport of fine (14)C-enriched material close to Sellafield. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shell formation mechanisms.

    Science.gov (United States)

    De Wit, Pierre; Durland, Evan; Ventura, Alexander; Langdon, Chris J

    2018-02-22

    Despite recent work to characterize gene expression changes associated with larval development in oysters, the mechanism by which the larval shell is first formed is still largely unknown. In Crassostrea gigas, this shell forms within the first 24 h post fertilization, and it has been demonstrated that changes in water chemistry can cause delays in shell formation, shell deformations and higher mortality rates. In this study, we use the delay in shell formation associated with exposure to CO 2 -acidified seawater to identify genes correlated with initial shell deposition. By fitting linear models to gene expression data in ambient and low aragonite saturation treatments, we are able to isolate 37 annotated genes correlated with initial larval shell formation, which can be categorized into 1) ion transporters, 2) shell matrix proteins and 3) protease inhibitors. Clustering of the gene expression data into co-expression networks further supports the result of the linear models, and also implies an important role of dynein motor proteins as transporters of cellular components during the initial shell formation process. Using an RNA-Seq approach with high temporal resolution allows us to identify a conceptual model for how oyster larval calcification is initiated. This work provides a foundation for further studies on how genetic variation in these identified genes could affect fitness of oyster populations subjected to future environmental changes, such as ocean acidification.

  5. Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability.

    Science.gov (United States)

    Pigozzi, G; Mukherji, D; Gilles, R; Barbier, B; Kostorz, G

    2006-08-28

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni(3)Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni(3)Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiO(x)). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  6. Gold/silver core-shell 20 nm nanoparticles extracted from citrate solution examined by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Engelhard, Mark H.; Smith, Jordan N.; Baer, Donald R.

    2016-06-01

    Silver nanoparticles of many types are widely used in consumer and medical products. The surface chemistry of particles and the coatings that form during synthesis or use in many types of media can significantly impact the behaviors of particles including dissolution, transformation and biological or environmental impact. Consequently it is useful to be able to extract information about the thickness of surface coatings and other attributes of nanoparticles produced in a variety of ways. It has been demonstrated that X-ray Photoelectron Spectroscopy (XPS) can be reliably used to determine the thickness of organic and other nanoparticles coatings and shells. However, care is required to produce reliable and consistent information. Here we report the XPS spectra from gold/silver core-shell nanoparticles of nominal size 20 nm removed from a citrate saturated solution after one and two washing cycles. The Simulation of Electron Spectra for Surface Analysis (SESSA) program had been used to model peak amplitudes to obtain information on citrate coatings that remain after washing and demonstrate the presence of the gold core. This data is provided so that others can compare use of SESSA or other modeling approaches to quantify the nature of coatings to those already published and to explore the impacts particle non-uniformities on XPS signals from core-shell nanoparticles.

  7. Triangular gold nanoparticles modify shell characteristics and increase antioxidant enzyme activities in the clam Ruditapes decussatus.

    Science.gov (United States)

    Abdelhafidh, Khazri; Badreddine, Sellami; Mezni, Amine; Mouhamed, Dellali; Wiem, Saidani; Imen, Bouzidi; David, Sheehan; Mahmoudi, Ezzeddine; Hamouda, Beyrem

    2018-04-19

    Nanoparticles may cause adverse environmental effects but there is limited information on their interactions with marine organisms. Our aim was to examine the effects of triangular gold nanoparticles (Tr-Au NPs) on the clam, Ruditapes decussatus. Clams were exposed to Tr-Au1 = 5 µg/L and Tr-Au2 = 10 µg/L for 2 and 7 days. Effects on shell structure were investigated. Superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST) activities, protein carbonyl levels and malondialdehyde content were used to assess biochemical status. Transmission electron microscopy (TEM) and electron dispersive X-ray microanalysis (EDX) showed that Tr-Au NPs modified shell structure and morphology. Tr-Au NPs size increased forming aggregate particles. Tr-Au NPs increased SOD, CAT and GST activities in gill and digestive gland in a concentration- and time-dependent manner indicating defence against oxidative stress. Enhanced lipid peroxidation and protein carbonyl levels confirmed oxidative stress. Tr-Au NPs cause oxidative stress and affect shell structure of clams. These findings may have relevance to other marine species.

  8. Accumulation of Sellafield-derived radiocarbon ("1"4C) in Irish Sea and West of Scotland intertidal shells and sediments

    International Nuclear Information System (INIS)

    Tierney, Kieran M.; Muir, Graham K.P.; Cook, Gordon T.; MacKinnon, Gillian; Howe, John A.; Heymans, Johanna J.; Xu, Sheng

    2016-01-01

    The nuclear energy industry produces radioactive waste at various stages of the fuel cycle. In the United Kingdom, spent fuel is reprocessed at the Sellafield facility in Cumbria on the North West coast of England. Waste generated at the site comprises a wide range of radionuclides including radiocarbon ("1"4C) which is disposed of in various forms including highly soluble inorganic carbon within the low level liquid radioactive effluent, via pipelines into the Irish Sea. This "1"4C is rapidly incorporated into the dissolved inorganic carbon (DIC) reservoir and marine calcifying organisms, e.g. molluscs, readily utilise DIC for shell formation. This study investigated a number of sites located in Irish Sea and West of Scotland intertidal zones. Results indicate "1"4C enrichment above ambient background levels in shell material at least as far as Port Appin, 265 km north of Sellafield. Of the commonly found species (blue mussel (Mytilus edulis), common cockle (Cerastoderma edule) and common periwinkle (Littorina littorea)), mussels were found to be the most highly enriched in "1"4C due to the surface environment they inhabit and their feeding behaviour. Whole mussel shell activities appear to have been decreasing in response to reduced discharge activities since the early 2000s but in contrast, there is evidence of continuing enrichment of the carbonate sediment component due to in-situ shell erosion, as well as indications of particle transport of fine "1"4C-enriched material close to Sellafield. - Highlights: • We measure "1"4C activity in shells and sediment at sites on the UK west coast. • Mussel shell activity varies in response to average "1"4C discharges from Sellafield. • Shell activities reflect species feeding habits and ecological niche. • NE Irish Sea inorganic sediment activity will gradually increase. • Increases in sediment activity will occur at remote sites on the Scottish west coast.

  9. Bioerosion of gastropod shells: with emphasis on effects of coralline algal cover and shell microstructure

    Science.gov (United States)

    Smyth, Miriam J.

    1989-12-01

    Organisms boring into fifty nine species of gastropod shells on reefs around Guam were the bryozoan Penetrantia clionoides; the acrothoracian barnacles Cryptophialus coronorphorus, Cryptophialus zulloi and Lithoglyptis mitis; the foraminifer Cymbaloporella tabellaeformis, the polydorid Polydora sp. and seven species of clionid sponge. Evidence that crustose coralline algae interfere with settlement of larvae of acrothoracian barnacles, clionid sponges, and boring polychaetes came from two sources: (1) low intensity of boring in limpet shells, a potentially penetrable substrate that remains largely free of borings by virtue of becoming fully covered with coralline algae at a young age and (2) the extremely low levels of boring in the algal ridge, a massive area of carbonate almost entirely covered by a layer of living crustose corallines. There was a strong negative correlation between microstructural hardness and infestation by acrothoracian barnacles and no correlation in the case of the other borers. It is suggested that this points to a mechanical rather than a chemical method of boring by the barnacles. The periostracum, a layer of organic material reputedly a natural inhibitor of boring organisms, was bored by acrothoracican barnacles and by the bryozoan. The intensity of acrothoracican borings is shown to have no correlation with the length of the gastropod shell.

  10. Water soluble organic carbon in aerosols (PM1, PM2.5, PM10) and various precipitation forms (rain, snow, mixed) over the southern Baltic Sea station.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita U

    2016-12-15

    In the urbanized coastal zone of the Southern Baltic, complex measurements of water soluble organic carbon (WSOC) were conducted between 2012 and 2015, involving atmospheric precipitation in its various forms (rain, snow, mixed) and PM1, PM2.5 and PM10 aerosols. WSOC constituted about 60% of the organic carbon mass in aerosols of various sizes. The average concentration of WSOC was equal to 2.6μg∙m -3 in PM1, 3.6μg∙m -3 in PM2.5 and 4.4μg∙m -3 in PM10. The lowest concentration of WSOC was noted in summer as a result of effective removal of this compound with rainfall. The highest WSOC concentrations in PM2.5 and PM10 aerosols were measured in spring, which should be associated with developing vegetation on land and in the sea. On the other hand, the highest WSOC concentrations in PM1 occurred in winter at low air temperatures and greatest atmospheric stability, when there were increased carbon emissions from fuel combustion in the communal-utility sector and from transportation. WSOC concentrations in precipitation were determined by its form. Mixed precipitation turned out to be the richest in soluble organic carbon (5.1mg·dm -3 ), while snow contained the least WSOC (1.7mg·dm -3 ). Snow and rain cleaned carbon compounds from the atmosphere more effectively when precipitation lasted longer than 24h, while in the case of mixed precipitation WSOC was removed most effectively within the first 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Buckling strength of spherical shells under combined loads

    International Nuclear Information System (INIS)

    Nagashima, H.; Kokubo, K.; Takayanagi, M.; Hayasaka, Y.; Kume, T.; Nagata, T.

    1995-01-01

    Many studies on buckling of cylindrical shells have been conducted, and many buckling evaluation equations have been proposed for actual plant designs; however, buckling of spherical shells under combined horizontal and vertical loads cannot be evaluated due to insufficient data. There is a particular lack of buckling data for spherical shells under lateral loads. To establish a method for estimating the buckling strength of spherical shells, we investigate the interactions between horizontal and vertical (compressive tensile) loads by conducting buckling tests. Applying several combinations of these loads in tests and using computer linear analysis, we obtain interaction curves. This study reports on the buckling tests conducted using spherical shell 1120 mm in dia., 0.7 mm thick and 696 mm high, which are shaped individually by press-forming and finally joined together by four meridional welds, using a specially made jig. Initial imperfections before testing and local deformations after each loading increment during testing are measured with special measuring equipment, and the interaction curve of horizontal and vertical loads and effect of imperfection on the buckling strength of spherical shells are obtained. Nonlinear FEM programs are developed using an 8-node isoparametric shell element and a four-node quadrilateral element of C 0 type with reduced integration based upon a Mindlin-Reissner theory which includes transverse shear. Actual initial imperfections are generally in irregular patterns. Thus, there may be several definitions of the equivalent magnitudes of initial imperfections related to buckling loads. Equivalent magnitudes have no practical meaning unless they can be obtained easily not only for small structures such as test shells but also for large actual structures. In the present study, we define the equivalent magnitude of initial imperfections as the maximum local ruggedness measured radially from a circular temperature having a radius equal

  12. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    Science.gov (United States)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  13. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    International Nuclear Information System (INIS)

    Wang Yige; Wang Li; Li Huanrong; Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-01-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex

  14. Unified description of pf-shell nuclei by the Monte Carlo shell model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio

    1998-03-01

    The attempts to solve shell model by new methods are briefed. The shell model calculation by quantum Monte Carlo diagonalization which was proposed by the authors is a more practical method, and it became to be known that it can solve the problem with sufficiently good accuracy. As to the treatment of angular momentum, in the method of the authors, deformed Slater determinant is used as the basis, therefore, for making angular momentum into the peculiar state, projected operator is used. The space determined dynamically is treated mainly stochastically, and the energy of the multibody by the basis formed as the result is evaluated and selectively adopted. The symmetry is discussed, and the method of decomposing shell model space into dynamically determined space and the product of spin and isospin spaces was devised. The calculation processes are shown with the example of {sup 50}Mn nuclei. The calculation of the level structure of {sup 48}Cr with known exact energy can be done with the accuracy of peculiar absolute energy value within 200 keV. {sup 56}Ni nuclei are the self-conjugate nuclei of Z=N=28. The results of the shell model calculation of {sup 56}Ni nucleus structure by using the interactions of nuclear models are reported. (K.I.)

  15. Molluscan shell evolution with review of shell calcification hypothesis

    Czech Academy of Sciences Publication Activity Database

    Furuhashi, T.; Schwarzinger, C.; Mikšík, Ivan; Smrž, Miloslav; Beran, A.

    2009-01-01

    Roč. 154, č. 3 (2009), s. 351-371 ISSN 1096-4959 Institutional research plan: CEZ:AV0Z50110509 Keywords : mollusca * shell * biomineralization Subject RIV: CE - Biochemistry Impact factor: 1.607, year: 2009

  16. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  17. Pion form factor

    Energy Technology Data Exchange (ETDEWEB)

    Ryong Ji, C.; Pang, A.; Szczepaniak, A. [North Carolina State Univ., Raleigh, NC (United States)

    1994-04-01

    It is pointed out that the correct criterion to define the legal PQCD contribution to the exclusive processes in the lightcone perturbative expansion should be based on the large off-shellness of the lightcone energy in the intermediate states. In the lightcone perturbative QCD calculation of the pion form factor, the authors find that the legal PQCD contribution defined by the lightcone energy cut saturates in the smaller Q{sup 2} region compared to that defined by the gluon four-momentum square cut. This is due to the contribution by the highly off-energy-shell gluons in the end point regions of the phase space, indicating that the gluon four-momentum-square cut may have cut too much to define the legal PQCD.

  18. Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products

    Directory of Open Access Journals (Sweden)

    Mehrdad Khatami

    2018-03-01

    Full Text Available Among an array of hybrid nanoparticles, core-shell nanoparticles comprise of two or more materials, such as metals and biomolecules, wherein one of them forms the core at the center, while the other material/materials that were located around the central core develops a shell. Core-shell nanostructures are useful entities with high thermal and chemical stability, lower toxicity, greater solubility, and higher permeability to specific target cells. Plant or natural products-mediated synthesis of nanostructures refers to the use of plants or its extracts for the synthesis of nanostructures, an emerging field of sustainable nanotechnology. Various physiochemical and greener methods have been advanced for the synthesis of nanostructures, in contrast to conventional approaches that require the use of synthetic compounds for the assembly of nanostructures. Although several biological resources have been exploited for the synthesis of core-shell nanoparticles, but plant-based materials appear to be the ideal candidates for large-scale green synthesis of core-shell nanoparticles. This review summarizes the known strategies for the greener production of core-shell nanoparticles using plants extract or their derivatives and highlights their salient attributes, such as low costs, the lack of dependence on the use of any toxic materials, and the environmental friendliness for the sustainable assembly of stabile nanostructures.

  19. The isotopic biosignatures of photo- vs. thiotrophic bivalves: are they preserved in fossil shells?

    Science.gov (United States)

    Dreier, A; Loh, W; Blumenberg, M; Thiel, V; Hause-Reitner, D; Hoppert, M

    2014-09-01

    Symbiont-bearing and non-symbiotic marine bivalves were used as model organisms to establish biosignatures for the detection of distinctive symbioses in ancient bivalves. For this purpose, the isotopic composition of lipids (δ13C) and bulk organic shell matrix (δ13C, δ34S, δ15N) from shells of several thiotrophic, phototrophic, or non-symbiotic bivalves were compared (phototrophic: Fragum fragum, Fragum unedo, Tridacna maxima; thiotrophic: Codakia tigerina, Fimbria fimbriata, Anodontia sp.; non-symbiotic: Tapes dorsatus, Vasticardium vertebratum, Scutarcopagia sp.). ∆13C values of bulk organic shell matrices, most likely representing mainly original shell protein/chitin biomass, were depleted in thio- and phototrophic bivalves compared to non-symbiotic bivalves. As the bulk organic shell matrix also showed a major depletion of δ15N (down to -2.2 ‰) for thiotrophic bivalves, combined δ13C and δ15N values are useful to differentiate between thio-, phototrophic, and non-symbiotic lifestyles. However, the use of these isotopic signatures for the study of ancient bivalves is limited by the preservation of the bulk organic shell matrix in fossils. Substantial alteration was clearly shown by detailed microscopic analyses of fossil (late Pleistocene) T. maxima and Trachycardium lacunosum shell, demonstrating a severe loss of quantity and quality of bulk organic shell matrix with time. Likewise, the composition and δ13C-values of lipids from empty shells indicated that a large part of these compounds derived from prokaryotic decomposers. The use of lipids from ancient shells for the reconstruction of the bivalve's life style therefore appears to be restricted. © 2014 John Wiley & Sons Ltd.

  20. Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells

    International Nuclear Information System (INIS)

    Tămăşan, M.; Ozyegin, L.S.; Oktar, F.N.; Simon, V.

    2013-01-01

    The study reports the preparation and characterization of powders consisting of the different phases of calcium phosphates that were obtained from the naturally derived raw materials of sea-shell origins reacted with H 3 PO 4 . Species of sea origin, such as corals and nacres, attracted a special interest in bone tissue engineering area. Nacre shells are built up of calcium carbonate in aragonite form crystallized in an organic matrix. In this work two natural marine origin materials (shells of echinoderm Sputnik sea urchin — Phyllacanthus imperialis and Trochidae Infundibulum concavus mollusk) were involved in the developing powders of calcium phosphate based biomaterials (as raw materials for bone-scaffolds) by hotplate and ultrasound methods. Thermal analyses of the as-prepared materials were made for an assessment of the thermal behavior and heat treatment temperatures. Samples from both sea shells each of them prepared by the above mentioned methods were subjected to thermal treatments at 450 °C and 850 °C in order to evaluate the crystalline transformations of the calcium phosphate structures in the heating process. By X-ray diffraction analyses various calcium phosphate phases were identified. In Sputnik sea urchins originated samples were found predominantly brushite and calcite as a small secondary phase, while in Trochidae I. concavus samples mainly monetite and HA phases were identified. Thermal treatment at 850 °C resulted flat-plate whitlockite crystals — β-MgTCP [(Ca, Mg) 3 (PO 4 ) 2 ] for both samples regardless the preparation method (ultrasound or hotplate) or the targeted Ca/P molar ratio according with XRD patterns. Scanning electron microscopy and Fourier transformed infrared spectroscopy were involved more in the characterization of these materials and the good correlations of the results of these methods were made. - Highlights: ► Calcium phosphate powders are obtained from the crushed shells of 2 “marine” species and H 3 PO 4

  1. Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells

    Energy Technology Data Exchange (ETDEWEB)

    Tămăşan, M., E-mail: monica.tamasan@phys.ubbcluj.ro [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, Cluj-Napoca (Romania); Ozyegin, L.S. [Marmara University, Istanbul (Turkey); Oktar, F.N. [Marmara University, Faculty of Engineering, Department of Bioengineering, Göztepe Campus, Kadıköy 34722, Istanbul (Turkey); Marmara University, School of Health Related Professions, Department of Medical Imaging Technics, Haydarpaşa Campus, Tıbbiye Street, 49, Üsküdar 34668, Istanbul (Turkey); Marmara University, Nanotechnology and Biomaterials Application and Research Centre, Göztepe Campus, Kadıköy 34722, Istanbul (Turkey); Simon, V. [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, Cluj-Napoca (Romania)

    2013-07-01

    The study reports the preparation and characterization of powders consisting of the different phases of calcium phosphates that were obtained from the naturally derived raw materials of sea-shell origins reacted with H{sub 3}PO{sub 4}. Species of sea origin, such as corals and nacres, attracted a special interest in bone tissue engineering area. Nacre shells are built up of calcium carbonate in aragonite form crystallized in an organic matrix. In this work two natural marine origin materials (shells of echinoderm Sputnik sea urchin — Phyllacanthus imperialis and Trochidae Infundibulum concavus mollusk) were involved in the developing powders of calcium phosphate based biomaterials (as raw materials for bone-scaffolds) by hotplate and ultrasound methods. Thermal analyses of the as-prepared materials were made for an assessment of the thermal behavior and heat treatment temperatures. Samples from both sea shells each of them prepared by the above mentioned methods were subjected to thermal treatments at 450 °C and 850 °C in order to evaluate the crystalline transformations of the calcium phosphate structures in the heating process. By X-ray diffraction analyses various calcium phosphate phases were identified. In Sputnik sea urchins originated samples were found predominantly brushite and calcite as a small secondary phase, while in Trochidae I. concavus samples mainly monetite and HA phases were identified. Thermal treatment at 850 °C resulted flat-plate whitlockite crystals — β-MgTCP [(Ca, Mg){sub 3} (PO{sub 4}){sub 2}] for both samples regardless the preparation method (ultrasound or hotplate) or the targeted Ca/P molar ratio according with XRD patterns. Scanning electron microscopy and Fourier transformed infrared spectroscopy were involved more in the characterization of these materials and the good correlations of the results of these methods were made. - Highlights: ► Calcium phosphate powders are obtained from the crushed shells of 2

  2. Evaluation quantitative des produits formés lors de l'évolution géochimique de la matière organique Quantitative Evaluation of Products Formed During the Geochemical Evolution of Organic Matter

    Directory of Open Access Journals (Sweden)

    Pelet R.

    2006-11-01

    Full Text Available L'évaluation quantitative des produits mobiles formés lors de l'évolution géochimique de la matière organique est nécessaire parce qu'on ne peut jamais retrouver ces produits en place dans. la roche où ils ont pris naissance. Ils ont, en effet, pu migrer durant l'histoire géologique, et de toute manière une fraction, importante et non connue, se perd lors de la prise des échantillons puis de leur conservation avant analyse. La connaissance de l'analyse d'un état E et d'un état plus évolué E' ne suffit pas pour reconstituer les quantités de produits formés. La pyrolyse type Rock-Eval sur kérogènes, avec détermination du carbone résiduel, permet par contre, à partir d'une hypothèse raisonnable, de calculer les hydrocarbures produits. L'analyse élémentaire permet d'y ajouter CO2, H2O, H2S et N2 (considérés comme seuls produits à côté des hydrocarbures. Une analyse chromatographique sommaire supplémentaire permet d'estimer la composition globale des hydrocarbures. Dans le cas des roches, on propose des techniques de correction de l'effet de matrice pratiquement utilisables et qui permettent de retrouver les résultats précédents, au prix d'une incertitude accrue. The mobile products formed during the geochemical evolution of organic matter must be quantitatively evaluated because these products can never be found in place in the rock where they were formed. Indeed, they may have migrated during geological history, and in any case a large and unknown fraction gets lost when samples are taken and then stored before being analysed. Knowing the elemental analysis of a state E and of a more evolved state E' does not suffice for recreating the amounts of products formed. On the other hand Rock-Eval type pyrolysis of kerogens, including the determination of the residual carbon, can be used to compute the hydrocarbons produced, on the basis of a reasonable hypothesis. Elemental analysis then enables the evaluation of CO2, H2O

  3. Atomic mass prediction from the mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami

    1982-08-01

    The mass-excess prediction of about 8000 nuclides was calculated from two types of the atomic mass formulas with empirical shell terms of Uno and Yamada. The theoretical errors to accompany the calculated mass excess are also presented. These errors have been obtained by a new statistical method. The mass-excess prediction includes the term of the gross feature of a nuclear mass surface, the shell terms and a small correction term for odd-odd nuclei. Two functional forms for the shell terms were used. The first is the constant form, and the sencond is the linear form. In determining the values of shell parameters, only the data of even-even and odd-A nuclei were used. A new statistical method was applied, in which the error inherent to the mass formula was taken account. The obtained shell parameters and the values of mass excess are shown in tables. (Kato, T.)

  4. Instant Windows PowerShell

    CERN Document Server

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  5. Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit.

    Science.gov (United States)

    Shin, Hyun; Lee, Sunghun; Kim, Kwon-Hyeon; Moon, Chang-Ki; Yoo, Seung-Jun; Lee, Jeong-Hwan; Kim, Jang-Joo

    2014-07-16

    A high-efficiency blue-emitting organic light-emitting diode (OLED) approaching theoretical efficiency using an exciplex-forming co-host composed of N,N'-dicarbazolyl-3,5-benzene (mCP) and bis-4,6-(3,5-di-3-pyridylphenyl)- 2-methylpyrimidine (B3PYMPM) is fabricated. Iridium(III)bis[(4,6-difluorophenyl)- pyridinato-N,C2']picolinate (FIrpic) is used as the emitter, which turns out to have a preferred horizontal dipole orientation in the emitting layer. The OLED shows a maximum external quantum efficiency of 29.5% (a maximum current efficiency of 62.2 cd A(-1) ), which is in perfect agreement with the theoretical prediction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Off-shell Poincaré supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Daniel Z. [SITP and Department of Physics, Stanford University,Stanford, California 94305 (United States); Center for Theoretical Physics and Department of Mathematics,Massachusetts Institute of Technology,Cambridge, Massachusetts 02139 (United States); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Proeyen, Antoine Van [KU Leuven, Institute for Theoretical Physics,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2017-02-21

    We present the action and transformation rules of Poincaré supergravity coupled to chiral multiplets (z{sup α},χ{sup α},h{sup α}) with off-shell auxiliary fields. Starting from the geometric formulation of the superconformal theory with auxiliary fields, we derive the Poincaré counterpart by gauge-fixing the Weyl and chiral symmetry and S-supersymmetry. We show how this transition is facilitated by retaining explicit target-space covariance. Our results form a convenient starting point to study models with constrained superfields, including general matter-coupled de Sitter supergravity.

  7. Understanding to Hierarchical Microstructures of Crab (Chinese hairy) Shell as a Natural Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chuanqiang, Zhou [Testing Center, Yangzhou University, No. 48 Wenhui East Road, Yangzhou (China); Xiangxiang, Gong [Testing Center, Yangzhou University, No. 48 Wenhui East Road, Yangzhou (China); School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou (China); Jie, Han [School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou (China)

    2016-03-07

    This work was done to better understand the microstructures, composition and mechanical properties of Chinese hairy crab shell. For fully revealing its hierarchical microstructure, the crab shell was observed with electron microscope under different magnifications from different facets. XRD, EDS, FTIR and TGA techniques have been used to characterize the untreated and chemically-treated crab shells, which provided enough information to determine the species and relative content of components in this biomaterial. Combined the microstructures with constituents analysis, the structural principles of crab shell was detailedly realized from different structural levels beyond former reports. To explore the relationship between structure and function, the mechanical properties of shell have been measured through performing tensile tests. The contributions of organics and minerals in shell to the mechanical properties were also discussed by measuring the tensile strength of de-calcification samples treated with HCl solution.

  8. Understanding to Hierarchical Microstructures of Crab (Chinese hairy) Shell as a Natural Architecture

    International Nuclear Information System (INIS)

    Chuanqiang, Zhou; Xiangxiang, Gong; Jie, Han

    2016-01-01

    This work was done to better understand the microstructures, composition and mechanical properties of Chinese hairy crab shell. For fully revealing its hierarchical microstructure, the crab shell was observed with electron microscope under different magnifications from different facets. XRD, EDS, FTIR and TGA techniques have been used to characterize the untreated and chemically-treated crab shells, which provided enough information to determine the species and relative content of components in this biomaterial. Combined the microstructures with constituents analysis, the structural principles of crab shell was detailedly realized from different structural levels beyond former reports. To explore the relationship between structure and function, the mechanical properties of shell have been measured through performing tensile tests. The contributions of organics and minerals in shell to the mechanical properties were also discussed by measuring the tensile strength of de-calcification samples treated with HCl solution

  9. 40 Years of Shell Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Shell has been using scenario planning for four decades. During that time these scenarios have helped the company and governments across the world to make better strategic choices. Scenarios provide lenses that help see future prospects more clearly, make richer judgments and be more sensitive to uncertainties. Discover how the Shell Scenarios team has helped guide decision makers at major moments in history and get a peek at the team future focus, including the intricate relationship between energy, water and food.

  10. Emulsion preparation for novel micro-porous polymeric hemi-shells

    CSIR Research Space (South Africa)

    Naidoo, Kersch

    2008-01-01

    Full Text Available -dichloromethane (DCM) oil phase , micro-porous hemi-shells formed as solvent evaporated. CO2 gas ) 252–254 www.elsevier.com/locate/matlet Polycaprolactone hemi-shells were prepared by using an O/W technique. PCL (15% w/v) was fully dissolved in 10ml DCM (oil 253K...-averaged particle size and hemi-shell yield with solvent evaporation time. (ImageJ, NIH), the number-average particle size and yield of hemi-shells were obtained with increasing time intervals (n=200). Scanning electron microscopy (LEO 1525 field emis- sion SEM...

  11. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  12. Multibody dynamic analysis using a rotation-free shell element with corotational frame

    Science.gov (United States)

    Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen

    2018-03-01

    Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.

  13. Skeletal remodelling suggests the turtle's shell is not an evolutionary straitjacket.

    Science.gov (United States)

    Cordero, Gerardo Antonio; Quinteros, Kevin

    2015-04-01

    Recent efforts to decipher the enigma of the turtle's shell revealed that distantly related turtle species deploy diverse processes during shell development. Even so, extant species share in common a shoulder blade (scapula) that is encapsulated within the shell. Thus, evolutionary change in the correlated development of the shell and scapula probably underpins the evolution of highly derived shell morphologies. To address this expectation, we conducted one of the most phylogenetically comprehensive surveys of turtle development, focusing on scapula growth and differentiation in embryos, hatchlings and adults of 13 species. We report, to our knowledge, the first description of secondary differentiation owing to skeletal remodelling of the tetrapod scapula in turtles with the most structurally derived shell phenotypes. Remodelling and secondary differentiation late in embryogenesis of box turtles (Emys and Terrapene) yielded a novel skeletal segment (i.e. the suprascapula) of high functional value to their complex shell-closing system. Remarkably, our analyses suggest that, in soft-shelled turtles (Trionychidae) with extremely flattened shells, a similar transformation is linked to truncated scapula growth. Skeletal remodelling, as a form of developmental plasticity, might enable the seemingly constrained turtle body plan to diversify, suggesting the shell is not an evolutionary straitjacket. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Revealing the properties of defects formed by CH3NH2 molecules in organic-inorganic hybrid perovskite MAPbBr3

    Science.gov (United States)

    Wang, Ji; Zhang, Ao; Yan, Jun; Li, Dan; Chen, Yunlin

    2017-03-01

    The properties of defects in organic-inorganic hybrid perovskite are widely studied from the first-principles calculation. However, the defects of methylamine (methylamine = CH3NH2), which would be easily formed during the preparation of the organic-inorganic hybrid perovskite, are rarely investigated. Thermodynamic properties as well as defect states of methylamine embedded MAPbX3 (MA = methyl-ammonium = CH3NH3, X = Br, I) are studied based on first-principles calculations of density functional theory. It was found that there is a shallow defect level near the highest occupied molecular orbital, which induced by the interstitial methylamine defect in MAPbBr3, will lead to an increase of photoluminescence. The calculation results showed that interstitial defect states of methylamine may move deeper due to the interaction between methylamine molecules and methyl-ammonium cations. It was also showed that the interstitial methylamine defect is stable at room temperature, and the defect can be removed easily by annealing.

  15. Assessment of female sexual function among women with pelvic organ prolapse or urinary incontinence via an Arabic validated short-form sexual questionnaire.

    Science.gov (United States)

    Shaaban, Mohamed M; Abdelwahab, Hassan A; Ahmed, Magdy R; Shalaby, Essam

    2014-01-01

    To assess female sexual function among women with pelvic organ prolapse or urinary incontinence via an Arabic, validated, short-form sexual questionnaire (PISQ-12). The present study was conducted among women attending Suez Canal University Hospital, Ismailia, Egypt, between September 2009 and August 2011. In the pilot study, 42 women completed the final version of the Arabic PISQ-12 at recruitment and then 2 weeks later, and the data were compared to evaluate reliability and internal consistency. The formal comparative study included 154 premenopausal sexually active women: 80 control women, and 74 women with some degree of pelvic prolapse with or without stress incontinence. All participants had a vaginal examination and completed the questionnaire. The main outcome measures were the mean questionnaire scores within its 3 domains (behavioral, physical, and partner-related). The test-retest reliability and internal consistency of the Arabic PISQ-12 were excellent. Validity was approved by an expert panel. The case group had a significantly lower mean total questionnaire score (31.07 ± 4.2 vs 34.7 ± 6.2; P<0.05) but a higher partner-related score (9.0 ± 2.4 vs 8.4 ± 2.5; P<0.05). The Arabic version of PISQ-12 was shown to be an effective and objective method of evaluating sexual function among patients with pelvic organ prolapse. © 2013.

  16. Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene.

    Science.gov (United States)

    Tong, Haijie; Lakey, Pascale S J; Arangio, Andrea M; Socorro, Joanna; Kampf, Christopher J; Berkemeier, Thomas; Brune, William H; Pöschl, Ulrich; Shiraiwa, Manabu

    2017-08-24

    Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H 2 O 2 with Fe 2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H 2 O 2 and Fe 2+ . In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.

  17. Nuclear graphite waste's behaviour under disposal conditions: Study of the release and repartition of organic and inorganic forms of carbon 14 and tritium in alkaline media

    International Nuclear Information System (INIS)

    Vende, L.

    2012-01-01

    23000 tons of graphite wastes will be generated during dismantling of the first generation of French reactors (9 gas cooled reactors). These wastes are classified as Long Lived Low Level wastes (LLW-LL). As requested by the law, the French National Radioactive Waste Management Agency (Andra) is studying concepts of low-depth disposals.In this work we focus on carbon 14, the main long-lived radionuclide in graphite waste (5730 y), but also on tritium, which is the main contributor to the radioactivity in the short term. Carbon 14 and tritium may be released from graphite waste in many forms in gaseous phase ( 14 CO 2 , HT...) or in solution ( 14 CO 3 2- , HTO...). Their speciation will strongly affect their migration from the disposal site to the environment. Leaching experiments, in alkaline solution (0.1 M NaOH simulating repository conditions) have been performed on irradiated graphite, from Saint-Laurent A2 and G2 reactors, in order to quantify their release and characterize their speciation. The studies show that carbon 14 exists in both gaseous and aqueous phases. In the gaseous phase, release is weak (≤0.1%) and corresponds to oxidizable species. Carbon 14 is mainly released into liquid phase, as both inorganic and organic species. 65% of released fraction is inorganic and 35% organic carbon. Two tritiated species have been identified in gaseous phase: HTO and HT/Organically Bond Tritium. More than 90% of tritium in that phase corresponds to HT/OBT. But release is weak (≤0.1%). HTO is mainly in the liquid phase. (author)

  18. Solubility measurement and correlation of the form A of ibrutinib in organic solvents from 278.15 to 323.15 K

    International Nuclear Information System (INIS)

    Chen, Zhenzhen; Zhai, Jinghuan; Liu, Xijian; Mao, Shimin; Zhang, Lijuan; Rohani, Sohrab; Lu, Jie

    2016-01-01

    Highlights: • The solubility of ibrutinib (form A) in organic solvents was firstly reported. • Apelblat, λh, empirical polynomial equations were used to correlate the solubility. • The solubility order: MEK > acetone > EA > 1-butanol > acetonitrile ≈ IPA > MTBE. - Abstract: In this work, the solubility of the form A of ibrutinib in isopropanol (IPA), 1-butanol, ethyl acetate (EA), acetonitrile, acetone, methyl ethyl ketone (MEK) and methyl tertiary butyl ether (MTBE) was firstly experimentally determined by a gravimetric method in the temperature range from 278.15 to 323.15 K at atmospheric pressure. The experimental solubility data were correlated by several commonly used models including the modified Apelblat equation, the Buchowski-Ksiazczak λh equation and an empirical quartic polynomial equation. The results showed that, in the temperature range investigated, the solubility of ibrutinib generally increased with the increasing temperature, and the solubility order at the room temperature in the studied solvents was: MEK > acetone > ethyl acetate > 1-butanol > acetonitrile ≈ isopropanol > MTBE. In addition, all the models gave satisfactory correlation results, in which the empirical quartic polynomial equation stood out to be more suitable with a higher accuracy than the other two equations.

  19. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  20. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    Science.gov (United States)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  1. Grassmannian integral for general gauge invariant off-shell amplitudes in N=4 SYM

    Energy Technology Data Exchange (ETDEWEB)

    Bork, L.V. [Institute for Theoretical and Experimental Physics,Moscow (Russian Federation); The Center for Fundamental and Applied Research,All-Russia Research Institute of Automatics, Moscow (Russian Federation); Onishchenko, A.I. [Bogoliubov Laboratory of Theoretical Physics,JointInstitute for Nuclear Research, Dubna (Russian Federation); Moscow Institute of Physics and Technology, State University,Dolgoprudny (Russian Federation); Skobeltsyn Institute of Nuclear Physics, Moscow State University,Moscow (Russian Federation)

    2017-05-08

    In this paper we consider tree-level gauge invariant off-shell amplitudes (Wilson line form factors) in N=4 SYM with arbitrary number of off-shell gluons or equivalently Wilson line operator insertions. We make a conjecture for the Grassmannian integral representation for such objects and verify our conjecture on several examples. It is remarkable that in our formulation one can consider situation when on-shell particles are not present at all, i.e. we have Grassmannian integral representation for purely off-shell object. In addition we show that off-shell amplitude with arbitrary number of off-shell gluons could be also obtained using quantum inverse scattering method for auxiliary gl(4|4) super spin chain.

  2. Rigid-Plastic Approximations for Predicting Plastic Deformation of Cylindrical Shells Subject to Dynamic Loading

    Directory of Open Access Journals (Sweden)

    Michelle S. Hoo Fatt

    1996-01-01

    Full Text Available A theoretical approach was developed for predicting the plastic deformation of a cylindrical shell subject to asymmetric dynamic loads. The plastic deformation of the leading generator of the shell is found by solving for the transverse deflections of a rigid-plastic beam/string-on-foundation. The axial bending moment and tensile force in the beam/string are equivalent to the longitudinal bending moments and membrane forces of the shell, while the plastic foundation force is equivalent to the shell circumferential bending moment and membrane resistances. Closed-form solutions for the transient and final deformation profile of an impulsive loaded shell when it is in a “string” state were derived using the eigenfunction expansion method. These results were compared to DYNA 3D predictions. The analytical predictions of the transient shell and final centerline deflections were within 25% of the DYNA 3D results.

  3. Single-Shell Tank (SST) Interim Stabilization Project Plan

    International Nuclear Information System (INIS)

    VLADIMIROFF, D.T.; BOYLES, V.C.

    2000-01-01

    This project plan establishes the management framework for the conduct of the CHG Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organization structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline

  4. Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries

    Science.gov (United States)

    Kowalski, Damian; Mallet, Jeremy; Thomas, Shibin; Nemaga, Abirdu Woreka; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2017-09-01

    Silicon negative electrode for lithium ion battery was designed in the form of self-organized 1D core-shell nanotubes to overcome shortcomings linked to silicon volume expansion upon lithiation/delithiation typically occurring with Si nanoparticles. The negative electrode was formed on TiO2 nanotubes in two step electrochemical synthesis by means of anodizing of titanium and electrodeposition of silicon using ionic liquid electrolytes. Remarkably, it was found that the silicon grows perpendicularly to the z-axis of nanotube and therefore its thickness can be precisely controlled by the charge passed in the electrochemical protocol. Deposited silicon creates a continuous Si network on TiO2 nanotubes without grain boundaries and particle-particle interfaces, defining its electrochemical characteristics under battery testing. In the core-shell system the titania nanotube play a role of volume expansion stabilizer framework holding the nanostructured silicon upon lithiation/delithiation. The nature of Si shell and presence of titania core determine stable performance as negative electrode tested in half cell of CR2032 coin cell battery.

  5. Interfacial redox reaction-directed synthesis of silver@cerium oxide core-shell nanocomposites as catalysts for rechargeable lithium-air batteries

    Science.gov (United States)

    Liu, Ying; Wang, Man; Cao, Lu-Jie; Yang, Ming-Yang; Ho-Sum Cheng, Samson; Cao, Chen-Wei; Leung, Kwan-Lan; Chung, Chi-Yuen; Lu, Zhou-Guang

    2015-07-01

    A facile oxidation-reduction reaction method has been implemented to prepare pomegranate-like Ag@CeO2 multicore-shell structured nanocomposites. Under Ar atmosphere, redox reaction automatically occurs between AgNO3 and Ce(NO3)3 in an alkaline solution, where Ag+ is reduced to Ag nanopartilces and Ce3+ is simultaneously oxidized to form CeO2, followed by the self-assembly to form the pomegranate-like multicore-shell structured Ag@CeO2 nanocomposites driven by thermodynamic equilibrium. No other organic amines or surfactants are utilized in the whole reaction system and only NaOH instead of organic reducing agent is used to prevent the introduction of a secondary reducing byproduct. The as-obtained pomegranate-like Ag@CeO2 multicore-shell structured nanocomposites have been characterized as electro-catalysts for the air cathode of lithium-air batteries operated in a simulated air environment. Superior electrochemical performance with high discharge capacity of 3415 mAh g-1 at 100 mA g-1, stable cycling and small charge/discharge polarization voltage is achieved, which is much better than that of the CeO2 or simple mixture of CeO2 and Ag. The enhanced properties can be primarily attributed to the synergy effect between the Ag core and the CeO2 shell resulting from the unique pomegranate-like multicore-shell nanostructures possessing plenty of active sites to promote the facile formation and decomposition of Li2O2.

  6. Nonplanar on-shell diagrams and leading singularities of scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoyi; Cheung, Yeuk-Kwan E.; Li, Yunxuan; Xie, Ruofei; Xin, Yuan [Nanjing University, Department of Physics, Nanjing (China); Chen, Gang [Zhejiang Normal University, Department of Physics, Jinhua, Zhejiang (China); Nanjing University, Department of Physics, Nanjing (China)

    2017-02-15

    Bipartite on-shell diagrams are the latest tool in constructing scattering amplitudes. In this paper we prove that a Britto-Cachazo-Feng-Witten (BCFW) decomposable on-shell diagram process a rational top form if and only if the algebraic ideal comprised the geometrical constraints are shifted linearly during successive BCFW integrations. With a proper geometric interpretation of the constraints in the Grassmannian manifold, the rational top form integration contours can thus be obtained, and understood, in a straightforward way. All rational top form integrands of arbitrary higher loops leading singularities can therefore be derived recursively, as long as the corresponding on-shell diagram is BCFW decomposable. (orig.)

  7. Prediction of Vibrational Behavior of Grid-Stiffened Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    G. H. Rahimi

    2014-01-01

    Full Text Available A unified analytical approach is applied to investigate the vibrational behavior of grid-stiffened cylindrical shells with different boundary conditions. A smeared method is employed to superimpose the stiffness contribution of the stiffeners with those of shell in order to obtain the equivalent stiffness parameters of the whole panel. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stoke's transformation. A 3D finite element model is also built using ABAQUS software which takes into consideration the exact geometric configuration of the stiffeners and the shell. The achievements from the two types of analyses are compared with each other and good agreement has been obtained. The Influences of variations in shell geometrical parameters, boundary condition, and changes in the cross stiffeners angle on the natural frequencies are studied. The results obtained are novel and can be used as a benchmark for further studies. The simplicity and the capability of the present method are also discussed.

  8. Nanoporous alumina formed by self-organized two-step anodization of Ni{sub 3}Al intermetallic alloy in citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stepniowski, Wojciech J., E-mail: wstepniowski@wat.edu.pl [Department of Advanced Materials and Technology, Faculty of New Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa (Poland); Cieslak, Grzegorz; Norek, Malgorzata; Karczewski, Krzysztof; Michalska-Domanska, Marta; Zasada, Dariusz; Polkowski, Wojciech; Jozwik, Pawel; Bojar, Zbigniew [Department of Advanced Materials and Technology, Faculty of New Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa (Poland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Anodic porous alumina was formed by Ni{sub 3}Al intermetallic alloy anodization. Black-Right-Pointing-Pointer The anodizations were conducted in 0.3 M citric acid. Black-Right-Pointing-Pointer Nanopores geometry depends on anodizing voltage. Black-Right-Pointing-Pointer No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni{sub 3}Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni{sub 3}Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 {mu}m/h was found for the anodization at 0 Degree-Sign C and 2.0 V. The highest one - 2.29 {mu}m/h - was noticed for 10.0 V and 30 Degree-Sign C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 Degree-Sign C) to 32.0 nm (12.0 V, 0 Degree-Sign C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 Degree-Sign C) to 177.9 nm (12.0 V, 30 Degree-Sign C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/{mu}m{sup 2} (2.0 V, 0 Degree-Sign C) to 94.9 pores/{mu}m{sup 2} (12.0 V, 0 Degree-Sign C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni{sub 3}Al intermetallic alloy are depending on the

  9. Creep buckling of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading

  10. In vitro growth of flat aragonite crystals between the layers of the insoluble organic matrix of the abalone Haliotis laevigata

    Science.gov (United States)

    Gries, Katharina I.; Heinemann, Fabian; Rosenauer, Andreas; Fritz, Monika

    2012-11-01

    Nacre of abalone shells consists of aragonite platelets and organic material, the so-called organic matrix. During the growth process of the shell the aragonite platelets grow into a scaffold formed by the organic matrix. In this work we tried to mimic this growth process by placing a piece of the insoluble organic matrix (which is a part of the organic matrix) of the abalone Haliotis laevigata in a crystallization device which was flowed through by CaCl2 and NaHCO3 solutions. Using this setup amongst others flat aragonite crystals grow on the insoluble organic matrix. When investigating these crystals in a transmission electron microscope it is possible to recognize similarities to the structure of nacre, like the formation of mineral bridges and growth between layers of the insoluble organic matrix. These similarities are presented in this paper.

  11. A novel Rapid Additive Manufacturing concept for architectural composite shell construction inspired by the shell formation in land snails.

    Science.gov (United States)

    Felbrich, Benjamin; Wulle, Frederik; Allgaier, Christoph; Menges, Achim; Verl, Alexander; Wurst, Karl-Heinz; Nebelsick, James

    2018-01-04

    State of the art rapid additive manufacturing (RAM), specifically Fused Filament Fabrication (FFF) has gained popularity among architects, engineers and designers for quick prototyping of technical devices, rapid production of small series and even construction scale fabrication of architectural elements. The spectrum of producible shapes and the resolution of detail, however, are determined and constrained by the layer-based nature of the fabrication process. These aspects significantly limit FFF-based approaches for the prefabrication and in-situ fabrication of freeform shells at the architectural scale. Snails exhibit a shell building process that suggests ways to overcome these limits. They produce a soft, pliable proteinaceous film - the periostracum - which later hardens and serves, among other functions, as a form-giving surface for an inner calcium carbonate layer. Snail shell formation behavior is interpreted from a technical point of view to extract potentially useful aspects for a biomimetic transfer. A RAM concept for continuous extrusion of thin free form composite shells inspired by the snail shell formation is presented. © 2018 IOP Publishing Ltd.

  12. Bursts and shocks in a continuum shell model

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...

  13. Evolutionary change in Cepaea nemoralis shell colour over 43 years

    NARCIS (Netherlands)

    Ozgo, Malgorzata; Schilthuizen, Menno

    We compared shell colour forms in the land snail Cepaea nemoralis at 16 sites in a 7 x 8 km section of the Province of Groningen, the Netherlands, between 1967 and 2010. To do so, we used stored samples in a natural history collection and resampled the exact collection localities. We found that

  14. In-cloud processes of methacrolein under simulated conditions – Part 3: Hygroscopic and volatility properties of the formed secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    A. Monod

    2009-07-01

    Full Text Available The hygroscopic and volatility properties of secondary organic aerosol (SOA produced from the nebulization of solutions after aqueous phase photooxidation of methacrolein was experimentally studied in a laboratory, using a Volatility-Hygroscopicity Tandem DMA (VHTDMA. The obtained SOA were 80% 100°C-volatile after 5 h of reaction and only 20% 100°C-volatile after 22 h of reaction. The Hygroscopic Growth Factor (HGF of the SOA produced from the nebulization of solutions after aqueous-phase photooxidation of methacrolein is 1.34–1.43, which is significantly higher than the HGF of SOA formed by gas-phase photooxidation of terpenes, usually found almost hydrophobic. These hygroscopic properties were confirmed for SOA formed by the nebulization of the same solutions where NaCl was added. The hygroscopic properties of the cloud droplet residuals decrease with the reaction time, in parallel with the formation of more refractory compounds. This decrease was mainly attributed to the 250°C-refractive fraction (presumably representative of the highest molecular weight compounds, which evolved from moderately hygroscopic (HGF of 1.52 to less hygroscopic (HGF of 1.36. Oligomerization is suggested as a process responsible for the decrease of both volatility and hygroscopicity with time. The NaCl seeded experiments enabled us to show that 19±4 mg L−1 of SOA was produced after 9.5 h of reaction and 41±9 mg L−1 after 22 h of in-cloud reaction. Because more and more SOA is formed as the reaction time increases, our results show that the reaction products formed during the aqueous-phase OH-oxidation of methacrolein may play a major role in the properties of residual particles upon the droplet's evaporation. Therefore, the specific physical properties of SOA produced during cloud processes should be taken into account for a global estimation of SOA and their atmospheric impacts.

  15. Core–shell quantum dots: Properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, D., E-mail: vasudevand@rediffmail.com [Electrodics and electrocatalysis division, CSIR-CECRI, Karaikudi 630006 (India); Gaddam, Rohit Ranganathan [Amity Institute of Nanotechnology, Amity University, Noida 201301 (India); Trinchi, Adrian; Cole, Ivan [CSIRO Materials Science and Engineering, Clayton South MDC, 3169 (Australia)

    2015-07-05

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis.

  16. Core–shell quantum dots: Properties and applications

    International Nuclear Information System (INIS)

    Vasudevan, D.; Gaddam, Rohit Ranganathan; Trinchi, Adrian; Cole, Ivan

    2015-01-01

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis

  17. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    International Nuclear Information System (INIS)

    Chae, Jae Ou; Knak, S P; Knak, A N; Koo, H J; Ravi, V

    2006-01-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases

  18. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    Science.gov (United States)

    Jae, Ou Chae; Knak, S. P.; Knak, A. N.; Koo, H. J.; Ravi, V.

    2006-11-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases.

  19. Experimental diagenesis: insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment

    Science.gov (United States)

    Casella, Laura A.; Griesshaber, Erika; Yin, Xiaofei; Ziegler, Andreas; Mavromatis, Vasileios; Müller, Dirk; Ritter, Ann-Christine; Hippler, Dorothee; Harper, Elizabeth M.; Dietzel, Martin; Immenhauser, Adrian; Schöne, Bernd R.; Angiolini, Lucia; Schmahl, Wolfgang W.

    2017-03-01

    Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralisation take place. In generating their mineralised hard parts, most marine invertebrates produce metastable aragonite rather than the stable polymorph of CaCO3, calcite. After death of the organism the physiological conditions, which were present during biomineralisation, are not sustained any further and the system moves toward inorganic equilibrium with the surrounding inorganic geological system. Thus, during diagenesis the original biogenic structure of aragonitic tissue disappears and is replaced by inorganic structural features. In order to understand the diagenetic replacement of biogenic aragonite to non-biogenic calcite, we subjected Arctica islandica mollusc shells to hydrothermal alteration experiments. Experimental conditions were between 100 and 175 °C, with the main focus on 100 and 175 °C, reaction durations between 1 and 84 days, and alteration fluids simulating meteoric and burial waters, respectively. Detailed microstructural and geochemical data were collected for samples altered at 100 °C (and at 0.1 MPa pressure) for 28 days and for samples altered at 175 °C (and at 0.9 MPa pressure) for 7 and 84 days. During hydrothermal alteration at 100 °C for 28 days most but not the entire biopolymer matrix was destroyed, while shell aragonite and its characteristic microstructure was largely preserved. In all experiments up to 174 °C, there are no signs of a replacement reaction of shell aragonite to calcite in X-ray diffraction bulk analysis. At 175 °C the replacement reaction started after a dormant time of 4 days, and the original shell microstructure was almost completely overprinted by the aragonite to calcite replacement reaction after 10 days

  20. Energy transfer in nanowire solar cells with photon-harvesting shells

    KAUST Repository

    Peters, C. H.; Guichard, A. R.; Hryciw, A. C.; Brongersma, M. L.; McGehee, M. D.

    2009-01-01

    The concept of a nanowire solar cell with photon-harvesting shells is presented. In this architecture, organic molecules which absorb strongly in the near infrared where silicon absorbs weakly are coupled to silicon nanowires (SiNWs). This enables

  1. Energy transfer in nanowire solar cells with photon-harvesting shells

    KAUST Repository

    Peters, C. H.

    2009-01-01

    The concept of a nanowire solar cell with photon-harvesting shells is presented. In this architecture, organic molecules which absorb strongly in the near infrared where silicon absorbs weakly are coupled to silicon nanowires (SiNWs). This enables an array of 7-μm -long nanowires with a diameter of 50 nm to absorb over 85% of the photons above the bandgap of silicon. The organic molecules are bonded to the surface of the SiNWs forming a thin shell. They absorb the low-energy photons and subsequently transfer the energy to the SiNWs via Förster resonant energy transfer, creating free electrons and holes within the SiNWs. The carriers are then separated at a radial p-n junction in a nanowire and extracted at the respective electrodes. The shortness of the nanowires is expected to lower the dark current due to the decrease in p-n junction surface area, which scales linearly with wire length. The theoretical power conversion efficiency is 15%. To demonstrate this concept, we measure a 60% increase in photocurrent from a planar silicon-on-insulator diode when a 5 nm layer of poly[2-methoxy-5-(2′ -ethyl-hexyloxy)-1,4-phenylene vinylene is applied to the surface of the silicon. This increase is in excellent agreement with theoretical predictions. © 2009 American Institute of Physics.

  2. Foam shell project: Progress report

    International Nuclear Information System (INIS)

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-01-01

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 μm thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D 2 or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE

  3. Creep buckling of shell structures

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Hagihara, Seiya

    2015-01-01

    The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)

  4. Inorganic and organic structures as interleavers among [bis(1-methyl-3-(p-carboxylatephenyl)triazenide 1-oxide)Ni(II)] complexes to form supramolecular arrangements

    Science.gov (United States)

    Santos, Aline Joana Rolina Wohlmuth Alves; dos Santos Hackbart, Helen Cristina; Giacomini, Gabriela Xavier; Bersch, Patrícia; Paraginski, Gustavo Luiz; Hörner, Manfredo

    2016-12-01

    Alternative compounds to capture metal ions are triazenes 1-oxide since they are basic compounds O(N) with negative charge in the deprotonated form. The proximity of both coordination sites (O and N) enables these compounds to have good chelating ability and a tendency to stabilize in the formation of rings with soft and hard transition metal ions. The structure analysis by single crystal X-ray diffraction of compounds (1) and (2) demonstrate the formation of 3D supramolecular arrangements through ion-ion, ion-dipolo and dipolo-dipolo interactions. In one of them, there are [(H2O)2(CH3CH3SO)K2]2+ as linkers of polymerization and, in another complex, there are [(H2O)(CH3CH3SO)Ni(H2O)6]2+ as a linker of polymerization. These linkers act in the polymerization of the novel mononuclear complex [bis(1-methyl (p-carboxylatephenyl) triazenide 1-oxide) NiII] (3). The crystallography analysis of (1) and (2) showed distorted quadratic geometry for Ni (II), thus, there are two axial positions available in Ni (II) to be used in catalysis studies and as sensor or biosensor. In addition, this study shows the support of this novel mononuclear complex of Ni (II) (3) on protonated chitosan chains (4). The compounds (3) and (4) were characterized by spectroscopic analysis, infrared (IR) and energy dispersive X-ray detector (EDS), and by differential scanning calorimetry analysis (DSC). The specificity of ligand 1-methyl (p-carboxyphenyl) triazene 1-oxide to capture potassium and nickel ions will be tested at different pH values, as well as the capacity of the triazenide 1-oxide of Ni (II) complex, supported on chitosan polymer, or not, to act as a catalyst for organic reactions and biomimetic organic reactions.

  5. Shell model test of the Porter-Thomas distribution

    International Nuclear Information System (INIS)

    Grimes, S.M.; Bloom, S.D.

    1981-01-01

    Eigenvectors have been calculated for the A=18, 19, 20, 21, and 26 nuclei in an sd shell basis. The decomposition of these states into their shell model components shows, in agreement with other recent work, that this distribution is not a single Gaussian. We find that the largest amplitudes are distributed approximately in a Gaussian fashion. Thus, many experimental measurements should be consistent with the Porter-Thomas predictions. We argue that the non-Gaussian form of the complete distribution can be simply related to the structure of the Hamiltonian

  6. Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.

    Science.gov (United States)

    Gangil, Sandip

    2014-03-01

    Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Ammonia in simulated Hanford double-shell tank wastes: Solubility and effects on surface tension

    International Nuclear Information System (INIS)

    Norton, J.D.; Pederson, L.R.

    1994-09-01

    Radioactive and wastes left from defense materials production activities are temporarily stored in large underground tanks at the Hanford Site in south central Washington State (Tank Waste Science Panel 1991). Some of these wastes are in the form of a thick slurry (''double-shell slurry'') containing sodium nitrate, sodium nitrite, sodium aluminate, sodium hydroxide, sodium carbonate, organic complexants and buffering agents, complexant fragments and other minor components (Herting et al. 1992a; Herting et al. 1992b; Campbell et al. 1994). As a result of thermal and radiolytic processes, a number of gases are known to be produced by some of these stored wastes, including ammonia, nitrous oxide, nitrogen, hydrogen, and methane (Babad et al. 1991; Ashby et al. 1992; Meisel et al. 1993; Ashby et al. 1993; Ashby et al. 1994; Bryan et al. 1993; US Department of Energy 1994). Before the emplacement of a mixer pump, these gases were retained in and periodically released from Tank 241-SY-101, a double-shell tank at the Hanford Site (Babad et al. 1992; US Department of Energy 1994). Gases are believed to be retained primarily in the form of bubbles attached to solid particles (Bryan, Pederson, and Scheele 1992), with very little actually dissolved in the liquid. Ammonia is an exception. The relation between the concentration of aqueous ammonia in such concentrated, caustic mixtures and the ammonia partial pressure is not well known, however

  8. The shells of BMC-type microcompartment organelles in bacteria.

    Science.gov (United States)

    Yeates, Todd O; Jorda, Julien; Bobik, Thomas A

    2013-01-01

    Bacterial microcompartments are large proteinaceous structures that act as metabolic organelles in many bacterial cells. A shell or capsid, which is composed of a few thousand protein subunits, surrounds a series of sequentially acting enzymes and controls the diffusion of substrates and products into and out of the lumen. The carboxysome and the propanediol utilization microcompartment represent two well-studied systems among seven or more distinct types that can be delineated presently. Recent structural studies have highlighted a number of sophisticated mechanisms that underlie the function of bacterial microcompartment shell proteins. This review updates our understanding of bacterial microcompartment shells, how they are assembled, and how they carry out their functions in molecular transport and enzyme organization. Copyright © 2013 S. Karger AG, Basel.

  9. Double-shell target fabrication workshop-2016 report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. Morris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oertel, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Farrell, Michael [General Atomics, San Diego, CA (United States); Baumann, Ted [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Huang, Haibo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikroo, Abbas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-10

    On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activities at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.

  10. Swimming of a Sea Butterfly with an Elongated Shell

    Science.gov (United States)

    Karakas, Ferhat; Maas, Amy E.; Murphy, David W.

    2017-11-01

    Sea butterflies (pteropods) are small, zooplanktonic marine snails which swim by flapping highly flexible parapodia. Previous studies show that the swimming hydrodynamics of Limacina helicina, a polar pteropod with a spiraled shell, is similar to tiny insect flight aerodynamics and that forward-backward pitching is key for lift generation. However, swimming by diverse pteropod species with different shell shapes has not been examined. We present measurements of the swimming of Cuvierina columnella, a warm water species with an elongated non-spiraled shell collected off the coast of Bermuda. With a body length of 9 mm, wing beat frequency of 4-6 Hz and swimming speed of 35 mm/s, these organisms swim at a Reynolds number of approximately 300, larger than that of L. helicina. High speed 3D kinematics acquired via two orthogonal cameras reveals that the elongated shell correlates with reduced body pitching and that the wings bend approximately 180 degrees in each direction, overlapping at the end of each half-stroke. Time resolved 2D flow measurements collected with a micro-PIV system reveal leading edge vortices present in both power and recovery strokes. Interactions between the overlapping wings and the shell also likely play a role in lift generation.

  11. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.; Dean, D.J.; Langanke, K.

    1997-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)

  12. Cask for concrete shells transportation

    International Nuclear Information System (INIS)

    Labergri, F.

    2001-01-01

    Nowadays, nuclear plant radioactive waste are conditioned in situ into concrete shells. Most of them enter in the industrial waste category defined by the regulations of radioactive material transportation. However, the content of a few ones exceeds the limits set for low specific activity substances. Thus, these shells must be transported into type B packagings. To this end, Robatel has undertaken, for EDF (Electricite de France), the development of a container, named ROBATEL TM R68, for further licensing. The particularity of this packaging is that the lid must have a wide opening to allow the usual handling operations of the concrete shells. This leads to a non-conventional conception, and makes the package more vulnerable to drop test solicitations. In order to define a minimal drop test program on a reduced scale model, we use a simple method to find the most damageable drop angle. (author)

  13. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.

    1996-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs

  14. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  15. The influence of MOVPE growth conditions on the shell of core-shell GaN microrod structures

    Science.gov (United States)

    Schimpke, Tilman; Avramescu, Adrian; Koller, Andreas; Fernando-Saavedra, Amalia; Hartmann, Jana; Ledig, Johannes; Waag, Andreas; Strassburg, Martin; Lugauer, Hans-Jürgen

    2017-05-01

    A core-shell geometry is employed for most next-generation, three-dimensional opto-electric devices based on III-V semiconductors and grown by metal organic vapor phase epitaxy (MOVPE). Controlling the shape of the shell layers is fundamental for device optimization, however no detailed analysis of the influence of growth conditions has been published to date. We study homogeneous arrays of gallium nitride core-shell microrods with height and diameter in the micrometer range and grown in a two-step selective area MOVPE process. Changes in shell shape and homogeneity effected by deliberately altered shell growth conditions were accurately assessed by digital analysis of high-resolution scanning electron microscope images. Most notably, two temperature regimes could be established, which show a significantly different behavior with regard to material distribution. Above 900 °C of wafer carrier temperature, the shell thickness along the growth axis of the rods was very homogeneous, however variations between vicinal rods increase. In contrast, below 830 °C the shell thickness is higher close to the microrod tip than at the base of the rods, while the lateral homogeneity between neighboring microrods is very uniform. This temperature effect could be either amplified or attenuated by changing the remaining growth parameters such as reactor pressure, structure distance, gallium precursor, carrier gas composition and dopant materials. Possible reasons for these findings are discussed with respect to GaN decomposition as well as the surface and gas phase diffusion of growth species, leading to an improved control of the functional layers in next-generation 3D V-III devices.

  16. [Effect of cultivation in zinc media on the growth of and the degree of zinc in organic form in transgenic metallothionein mushroom].

    Science.gov (United States)

    Sheng, Ji-Ping; Shen, Lin; Ru, Bing-Gen

    2009-03-01

    Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich and metal-binding functional proteins. Transgenic MT mushroom can be used as functional food additives, but its zinc-enriching ability has not been studied systemically until now. The zinc contents in mycelia of transgenic MT mushroom (Pleurotus ostreatus) and wild type mushroom mycelia cultivated in different zinc concentration media were analyzed by ICP-OES. The growth status, zinc-enriching ability and degree of zinc in organic form (DZOF) were also analyzed. Results showed that MT mushroom mycelia grew rapidly, but the growth was inhibited when the zinc content in solid media was higher than 1.6 mmol x L(-1). MT mushroom mycelia could enrich more zinc than that of wild type, and the zinc content in MT mushroom mycelia could be 2.56-27.49 mg x kg(-1) when it was cultivated in a liquid media with 0.6-1.2 mmol x L(-1) zinc. DZOF of MT mushroom mycelia in a liquid media with 0.6 mmol x L(-1) zinc at 7 d was significantly higher (88.7%) than that in the wild type (82.1%, alpha = 0.05), but there was no significant difference in DZOF when the MT mushroom mycelia was cultivated in a liquid media with different zinc content at 7 d.

  17. Academic Medical Centers Forming Accountable Care Organizations and Partnering With Community Providers: The Experience of the Johns Hopkins Medicine Alliance for Patients.

    Science.gov (United States)

    Berkowitz, Scott A; Ishii, Lisa; Schulz, John; Poffenroth, Matt

    2016-03-01

    Academic medical centers (AMCs)--which include teaching hospital(s) and additional care delivery entities--that form accountable care organizations (ACOs) must decide whether to partner with other provider entities, such as community practices. Indeed, 67% (33/49) of AMC ACOs through the Medicare Shared Savings Program through 2014 are believed to include an outside community practice. There are opportunities for both the AMC and the community partners in pursuing such relationships, including possible alignment around shared goals and adding ACO beneficiaries. To create the Johns Hopkins Medicine Alliance for Patients (JMAP), in January 2014, Johns Hopkins Medicine chose to partner with two community primary care groups and one cardiology practice to support clinical integration while adding approximately 60 providers and 5,000 Medicare beneficiaries. The principal initial interventions within JMAP included care coordination for high-risk beneficiaries and later, in 2014, generating dashboards of ACO quality measures to facilitate quality improvement and early efforts at incorporating clinical pathways and Choosing Wisely recommendations. Additional interventions began in 2015.The principal initial challenges JMAP faced were data integration, generation of quality measure reports among disparate electronic medical records, receiving and then analyzing claims data, and seeking to achieve provider engagement; all these affected timely deployment of the early interventions. JMAP also created three regional advisory councils as a forum promoting engagement of local leadership. Network strategies among AMCs, including adding community practices in a nonemployment model, will continue to require thoughtful strategic planning and a keen understanding of local context.

  18. Influences of surface charge, size, and concentration of colloidal nanoparticles on fabrication of self-organized porous silica in film and particle forms.

    Science.gov (United States)

    Nandiyanto, Asep Bayu Dani; Suhendi, Asep; Arutanti, Osi; Ogi, Takashi; Okuyama, Kikuo

    2013-05-28

    Studies on preparation of porous material have attracted tremendous attention because existence of pores can provide material with excellent performances. However, current preparation reports described successful production of porous material with only partial information on charges, interactions, sizes, and compositions of the template and host materials. In this report, influences of self-assembly parameters (i.e., surface charge, size, and concentration of colloidal nanoparticles) on self-organized porous material fabrication were investigated. Silica nanoparticles (as a host material) and polystyrene (PS) spheres (as a template) were combined to produce self-assembly porous materials in film and particle forms. The experimental results showed that the porous structure and pore size were controllable and strongly depended on the self-assembly parameters. Materials containing highly ordered pores were effectively created only when process parameters fall within appropriate conditions (i.e., PS surface charge ≤ -30 mV; silica-to-PS size ratio ≤0.078; and silica-to-PS mass ratio of about 0.50). The investigation of the self-assembly parameter landscape was also completed using geometric considerations. Because optimization of these parameters provides significant information in regard to practical uses, results of this report could be relevant to other functional properties.

  19. Clarin-1, encoded by the Usher Syndrome III causative gene, forms a membranous microdomain: possible role of clarin-1 in organizing the actin cytoskeleton.

    Science.gov (United States)

    Tian, Guilian; Zhou, Yun; Hajkova, Dagmar; Miyagi, Masaru; Dinculescu, Astra; Hauswirth, William W; Palczewski, Krzysztof; Geng, Ruishuang; Alagramam, Kumar N; Isosomppi, Juha; Sankila, Eeva-Marja; Flannery, John G; Imanishi, Yoshikazu

    2009-07-10

    Clarin-1 is the protein product encoded by the gene mutated in Usher syndrome III. Although the molecular function of clarin-1 is unknown, its primary structure predicts four transmembrane domains similar to a large family of membrane proteins that include tetraspanins. Here we investigated the role of clarin-1 by using heterologous expression and in vivo model systems. When expressed in HEK293 cells, clarin-1 localized to the plasma membrane and concentrated in low density compartments distinct from lipid rafts. Clarin-1 reorganized actin filament structures and induced lamellipodia. This actin-reorganizing function was absent in the modified protein encoded by the most prevalent North American Usher syndrome III mutation, the N48K form of clarin-1 deficient in N-linked glycosylation. Proteomics analyses revealed a number of clarin-1-interacting proteins involved in cell-cell adhesion, focal adhesions, cell migration, tight junctions, and regulation of the actin cytoskeleton. Consistent with the hypothesized role of clarin-1 in actin organization, F-actin-enriched stereocilia of auditory hair cells evidenced structural disorganization in Clrn1(-/-) mice. These observations suggest a possible role for clarin-1 in the regulation and homeostasis of actin filaments, and link clarin-1 to the interactive network of Usher syndrome gene products.

  20. Various forms of organic and inorganic P fertilizers did not negatively affect soil- and root-inhabiting AM fungi in a maize-soybean rotation system.

    Science.gov (United States)

    Beauregard, M S; Gauthier, M-P; Hamel, C; Zhang, T; Welacky, T; Tan, C S; St-Arnaud, M

    2013-02-01

    Arbuscular mycorrhizal (AM) fungi are key components of most agricultural ecosystems. Therefore, understanding the impact of agricultural practices on their community structure is essential to improve nutrient mobilization and reduce plant stress in the field. The effects of five different organic or mineral sources of phosphorus (P) for a maize-soybean rotation system on AM fungal diversity in roots and soil were assessed over a 3-year period. Total DNA was extracted from root and soil samples collected at three different plant growth stages. An 18S rRNA gene fragment was amplified and taxa were detected and identified using denaturing gradient gel electrophoresis followed by sequencing. AM fungal biomass was estimated by fatty acid methyl ester analysis. Soil P fertility parameters were also monitored and analyzed for possible changes related with fertilization or growth stages. Seven AM fungal ribotypes were detected. Fertilization significantly modified soil P flux, but had barely any effect on AM fungi community structure or biomass. There was no difference in the AM fungal community between plant growth stages. Specific ribotypes could not be significantly associated to P treatment. Ribotypes were associated with root or soil samples with variable detection frequencies between seasons. AM fungal biomass remained stable throughout the growing seasons. This study demonstrated that roots and soil host distinct AM fungal communities and that these are very temporally stable. The influence of contrasting forms of P fertilizers was not significant over 3 years of crop rotation.

  1. The solid-state structures of organic salts formed by calix[4]arene dihydroxyphosphonic acid with nucleic bases cations: adeninium, cytosinium, guaninium and uracilium

    KAUST Repository

    Shkurenko, Aleksander

    2018-02-19

    Calix[4]arene dihydroxyphosphonic acid has been demonstrated to possess an interesting range of biological properties, including atypical anti-cancer activity. The robustness of calix[4]arene dihydroxyphosphonic acid and its ubiquitous dimeric motif offers perspectives for pre-defined solid state complexation with small molecules. In the current article we describe co-crystals (organic salts) of calix[4]arene dihydroxyphosphonic acid with four nucleic base cations: adeninium, cytosinium, guaninium and uracilium. A number of characteristic interactions between the components in the four co-crystals are pointed out also using the Hirshfeld surface analysis. All the four co-crystals are based on layers of calix[4]arene dimers, alternating with layers of nucleic acid molecules. Two of the reported crystal structures (cytosinium and guaninium) are 1D channel-type structures, while the two others (adeninium and uracilium) represent 2D channel-type structures. In three out of four reported structures, interactions between the cations of nucleic bases are present generating 1D chains of cations. A constant motif is that the nucleic base is present in a type of cavity formed by one aromatic ring and a phosphonic acid moiety.

  2. Zero-point energy effects in anion solvation shells.

    Science.gov (United States)

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  3. Curvature-driven morphing of non-Euclidean shells

    Science.gov (United States)

    Pezzulla, Matteo; Stoop, Norbert; Jiang, Xin; Holmes, D. P.

    2017-05-01

    We investigate how thin structures change their shape in response to non-mechanical stimuli that can be interpreted as variations in the structure's natural curvature. Starting from the theory of non-Euclidean plates and shells, we derive an effective model that reduces a three-dimensional stimulus to the natural fundamental forms of the mid-surface of the structure, incorporating expansion, or growth, in the thickness. Then, we apply the model to a variety of thin bodies, from flat plates to spherical shells, obtaining excellent agreement between theory and numerics. We show how cylinders and cones can either bend more or unroll, and eventually snap and rotate. We also study the nearly isometric deformations of a spherical shell and describe how this shape change is ruled by the geometry of a spindle. As the derived results stem from a purely geometrical model, they are general and scalable.

  4. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past.

    Science.gov (United States)

    Der Sarkissian, Clio; Pichereau, Vianney; Dupont, Catherine; Ilsøe, Peter C; Perrigault, Mickael; Butler, Paul; Chauvaud, Laurent; Eiríksson, Jón; Scourse, James; Paillard, Christine; Orlando, Ludovic

    2017-09-01

    Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management. © 2017 John Wiley & Sons Ltd.

  5. Learning Shell scripting with Zsh

    CERN Document Server

    Festari, Gaston

    2014-01-01

    A step-by-step tutorial that will teach you, through real-world examples, how to configure and use Zsh and its various features. If you are a system administrator, developer, or computer professional involved with UNIX who are looking to improve on their daily tasks involving the UNIX shell, ""Learning Shell Scripting with Zsh"" will be great for you. It's assumed that you have some familiarity with an UNIX command-line interface and feel comfortable with editors such as Emacs or vi.

  6. Singular problems in shell theory. Computing and asymptotics

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Palencia, Evariste [Institut Jean Le Rond d' Alembert, Paris (France); Millet, Olivier [La Rochelle Univ. (France). LEPTIAB; Bechet, Fabien [Metz Univ. (France). LPMM

    2010-07-01

    It is known that deformations of thin shells exhibit peculiarities such as propagation of singularities, edge and internal layers, piecewise quasi inextensional deformations, sensitive problems and others, leading in most cases to numerical locking phenomena under several forms, and very poor quality of computations for small relative thickness. Most of these phenomena have a local and often anisotropic character (elongated in some directions), so that efficient numerical schemes should take them in consideration. This book deals with various topics in this context: general geometric formalism, analysis of singularities, numerical computing of thin shell problems, estimates for finite element approximation (including non-uniform and anisotropic meshes), mathematical considerations on boundary value problems in connection with sensitive problems encountered for very thin shells; and others. Most of numerical computations presented here use an adaptive anisotropic mesh procedure which allows a good computation of the physical peculiarities on one hand, and the possibility to perform automatic computations (without a previous mathematical description of the singularities) on the other. The book is recommended for PhD students, postgraduates and researchers who want to improve their knowledge in shell theory and in particular in the areas addressed (analysis of singularities, numerical computing of thin and very thin shell problems, sensitive problems). The lecture of the book may not be continuous and the reader may refer directly to the chapters concerned. (orig.)

  7. Axisymmetric bifurcations of thick spherical shells under inflation and compression

    KAUST Repository

    deBotton, G.; Bustamante, R.; Dorfmann, A.

    2013-01-01

    Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic and incompressible material are summarized and then specialized to a form suitable for the analysis of a spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during inflation is analyzed using four different material models. Specifically, one and two terms in the Ogden energy formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate the existence of local pressure maxima and minima and the dependence of the corresponding stretches on the material model and on shell thickness. These results are then used to investigate axisymmetric bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled spherical shell subject to an external pressure. We find that the results of the two terms Ogden formulation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we identify additional critical stretches, which have not been reported in the literature before.© 2012 Published by Elsevier Ltd.

  8. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti; Collier, Nathan; Dalcí n, Lisandro D.; Ghommem, Mehdi; Calo, Victor M.

    2012-01-01

    The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  9. Three-dimensional flat shell-to-shell coupling: numerical challenges

    Science.gov (United States)

    Guo, Kuo; Haikal, Ghadir

    2017-11-01

    The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  10. Three-dimensional flat shell-to-shell coupling: numerical challenges

    Directory of Open Access Journals (Sweden)

    Guo Kuo

    2017-11-01

    Full Text Available The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love plate and thick (Reissner-Mindlin plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  11. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough

    Science.gov (United States)

    Zeng, Zhigang; Ma, Yao; Wang, Xiaoyuan; Chen, Chen-Tung Arthur; Yin, Xuebo; Zhang, Suping; Zhang, Junlong; Jiang, Wei

    2018-04-01

    To reveal differences in the behavior of benthic vent animals, and the sources and sinks of biogeochemical and fluid circulations, it is necessary to constrain the chemical characteristics of benthic animals from seafloor hydrothermal fields. We measured the abundances of 27 elements in shells of the crab Xenograpsus testudinatus and the snail Anachis sp., collected from the Kueishantao hydrothermal field (KHF) in the southwestern Okinawa Trough, with the aim of improving our understanding of the compositional variations between individual vent organisms, and the sources of the rare earth elements (REEs) in their shells. The Mn, Hg, and K concentrations in the male X. testudinatus shells are found to be higher than those in female crab shells, whereas the reverse is true for the accumulation of B, implying that the accumulation of K, Mn, Hg, and B in the crab shells is influenced by sex. This is inferred to be a result of the asynchronous molting of the male and female crab shells. Snail shells are found to have higher Ca, Al, Fe, Ni, and Co concentrations than crab shells. This may be attributed to different metal accumulation times. The majority of the light rare earth element (LREE) distribution patterns in the crab and snail shells are similar to those of Kueishantao vent fluids, with the crab and snail shells also exhibiting LREE enrichment, implying that the LREEs contained in crab and snail shells in the KHF are derived from vent fluids.

  12. Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Lewicka Katarzyna

    2017-06-01

    Full Text Available Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN, walnut shells (WN and peanut shells (PN. Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g and WN900 at 25°C (4.34 mmol/g. All of the samples had a well-developed microporous structure.

  13. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-01-01

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal

  14. Adaptative mixed methods to axisymmetric shells

    International Nuclear Information System (INIS)

    Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.

    1989-09-01

    The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt

  15. Octahedral core–shell cuprous oxide/carbon with enhanced electrochemical activity and stability as anode for lithium ion batteries

    International Nuclear Information System (INIS)

    Xiang, Jiayuan; Chen, Zhewei; Wang, Jianming

    2015-01-01

    Highlights: • Core–shell octahedral Cu 2 O/C is prepared by a one-step method. • Carbon shell is amorphous and uniformly decorated at the Cu 2 O octahedral core. • Core–shell Cu 2 O/C exhibits markedly enhanced capability and reversibility. • Carbon shell provides fast ion/electron transfer channel. • Core–shell structure is stable during cycling. - Abstract: Core–shell Cu 2 O/C octahedrons are synthesized by a simple hydrothermal method with the help of carbonization of glucose, which reduces Cu(II) to Cu(I) at low temperature and further forms carbon shell coating at high temperature. SEM and TEM images indicate that the carbon shell is amorphous with thickness of ∼20 nm wrapping the Cu 2 O octahedral core perfectly. As anode of lithium ion batteries, the core–shell Cu 2 O/C composite exhibits high and stable columbic efficiency (98%) as well as a reversible capacity of 400 mAh g −1 after 80 cycles. The improved electrochemical performance is attributed to the novel core–shell structure, in which the carbon shell reduces the electrode polarization and promotes the charge transfer at active material/electrolyte interface, and also acts as a stabilizer to keep the octahedral structure integrity during discharge–charge processes

  16. Tube in shell heat exchangers

    International Nuclear Information System (INIS)

    Hayden, O.; Willby, C.R.; Sheward, G.E.; Ormrod, D.T.; Firth, G.F.

    1980-01-01

    An improved tube-in-shell heat exchanger to be used between liquid metal and water is described for use in the liquid metal coolant system of fast breeder reactors. It is stated that this design is less prone to failures which could result in sodium water reactions than previous exchangers. (UK)

  17. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  18. Nonlinear theory of elastic shells

    International Nuclear Information System (INIS)

    Costa Junior, J.A.

    1979-08-01

    Nonlinear theory of elastic shells is developed which incorporates both geometric and physical nonlinearities and which does not make use of the well known Love-Kirchhoff hypothesis. The resulting equations are formulated in tensorial notation and are reduced to the ones of common use when simplifying assumptions encountered in the especific litterature are taken. (Author) [pt

  19. Shell energy scenarios to 2050

    International Nuclear Information System (INIS)

    2008-01-01

    Shell developed two scenarios that describe alternative ways the energy future may develop. In the first scenario (Scramble) policymakers pay little attention to more efficient energy use until supplies are tight. Likewise, greenhouse gas emissions are not seriously addressed until there are major climate shocks. In the second scenario (Blueprints) growing local actions begin to address the challenges of economic development, energy security and environmental pollution. A price is applied to a critical mass of emissions giving a huge stimulus to the development of clean energy technologies, such as carbon dioxide capture and storage, and energy efficiency measures. The result is far lower carbon dioxide emissions. Both these scenarios can help Shell to test their strategy against a range of possible developments over the long-term. However, according to Shell, the Blueprints' outcomes offer the best hope for a sustainable future, whether or not they arise exactly in the way described. However, with the right combination of policy, technology and commitment from governments, industry and society globally, Shell believes it can be realized. But achieving the targets will not be easy, and time is short. Clear thinking, huge investment, and effective leadership are required

  20. Collapse analysis of toroidal shell

    International Nuclear Information System (INIS)

    Pomares, R.J.

    1990-01-01

    This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation