WorldWideScience

Sample records for shell parameters consistent

  1. Final Report Fermionic Symmetries and Self consistent Shell Model

    International Nuclear Information System (INIS)

    Zamick, Larry

    2008-01-01

    In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with 'anomoulous' magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them. The importance of a self consistent shell model was emphasized.

  2. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  3. Analysis of axisymmetric shells subjected to asymmetric loads using field consistent shear flexible curved element

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishna, C; Sarma, B S [Defence Research and Development Laboratory, Hyderabad (India)

    1989-02-01

    A formulation for axisymmetric shell analysis under asymmetric load based on Fourier series representation and using field consistent 3 noded curved axisymmetric shell element is presented. Different field inconsistent/consistent interpolations for an element based on shear flexible theory have been studied for thick and thin shells under asymmetric loads. Various examples covering axisymmetric as well as asymmetric loading cases have been analyzed and numerical results show a good agreement with the available results in the case of thin shells. 12 refs.

  4. Improving the performance parameters of metal cylindrical grid shell ...

    African Journals Online (AJOL)

    Improving the performance parameters of metal cylindrical grid shell structures. ... Finite element models are designed taking into account minimization of production and ... The force factors and deformation parameters of the basic circuits of a ...

  5. Scanning the parameter space of collapsing rotating thin shells

    Science.gov (United States)

    Rocha, Jorge V.; Santarelli, Raphael

    2018-06-01

    We present results of a comprehensive study of collapsing and bouncing thin shells with rotation, framing it in the context of the weak cosmic censorship conjecture. The analysis is based on a formalism developed specifically for higher odd dimensions that is able to describe the dynamics of collapsing rotating shells exactly. We analyse and classify a plethora of shell trajectories in asymptotically flat spacetimes. The parameters varied include the shell’s mass and angular momentum, its radial velocity at infinity, the (linear) equation-of-state parameter and the spacetime dimensionality. We find that plunges of rotating shells into black holes never produce naked singularities, as long as the matter shell obeys the weak energy condition, and so respects cosmic censorship. This applies to collapses of dust shells starting from rest or with a finite velocity at infinity. Not even shells with a negative isotropic pressure component (i.e. tension) lead to the formation of naked singularities, as long as the weak energy condition is satisfied. Endowing the shells with a positive isotropic pressure component allows for the existence of bouncing trajectories satisfying the dominant energy condition and fully contained outside rotating black holes. Otherwise any turning point occurs always inside the horizon. These results are based on strong numerical evidence from scans of numerous sections in the large parameter space available to these collapsing shells. The generalisation of the radial equation of motion to a polytropic equation-of-state for the matter shell is also included in an appendix.

  6. Pathological behavior of the open-shell restricted self-consistent-field equations

    International Nuclear Information System (INIS)

    Moscardo, F.; Alvarez-Collado, J.R.

    1979-01-01

    The possible solutions of open-shell restricted self-consistent-field equations for a doublet are studied for Li and Na atoms, according to the values of the parameters implied in those equations. A similar behavior, characterized by the presence of several variational solutions is observed in both atoms. Some of these solutions can be assigned to excited configurations. Excitation energies are in good agreement with experimental data. Doublet stability for the solutions obtained has been studied, discussing the saddle-point character present in those solutions associated to excited configurations

  7. Pathological behavior of the open-shell restricted self-consistent-field equations

    Energy Technology Data Exchange (ETDEWEB)

    Moscardo, F.; Alvarez-Collado, J.R.

    1979-02-01

    The possible solutions of open-shell restricted self-consistent-field equations for a doublet are studied for Li and Na atoms, according to the values of the parameters implied in those equations. A similar behavior, characterized by the presence of several variational solutions is observed in both atoms. Some of these solutions can be assigned to excited configurations. Excitation energies are in good agreement with experimental data. Doublet stability for the solutions obtained has been studied, discussing the saddle-point character present in those solutions associated to excited configurations.

  8. Consistent on shell renormalisation of electroweakinos in the complex MSSM. LHC and LC predictions

    International Nuclear Information System (INIS)

    Bharucha, Aoife; Weiglein, Georg

    2012-11-01

    We extend the formalism developed earlier (A. C. Fowler and G. Weiglein, 2010) for the renormalisation of the chargino-neutralino sector to the most general case of the MSSM with complex parameters. We show that products of imaginary parts arising from MSSM parameters and from absorptive parts of loop integrals can already contribute to predictions for physical observables at the one-loop level, and demonstrate that the consistent treatment of such contributions gives rise to non-trivial structure, either in the field renormalisation constants or the corrections associated with the external legs of the considered diagrams. We furthermore show that the phases of the parameters in the chargino-neutralino sector do not need to be renormalised at the one-loop level, and demonstrate that the appropriate choice for the mass parameters used as input for the on-shell conditions depends both on the process and the region of MSSM parameter space under consideration. As an application, we compute the complete one-loop results in the MSSM with complex parameters for the process h a →χ + i χ - j (Higgs-propagator corrections have been incorporated up to the two-loop level), which may be of interest for SUSY Higgs searches at the LHC, and for chargino pair-production at an e + e - Linear Collider, e + e - →χ + i χ - j . We investigate the dependence of the theoretical predictions on the phases of the MSSM parameters, analysing in particular the numerical relevance of the absorptive parts of loop integrals.

  9. Consistent on shell renormalisation of electroweakinos in the complex MSSM. LHC and LC predictions

    Energy Technology Data Exchange (ETDEWEB)

    Bharucha, Aoife [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Fowler, Alison [Durham Univ. (United Kingdom). IPPP, Dept. of Physics; Moortgat-Pick, Gudrid [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-11-15

    We extend the formalism developed earlier (A. C. Fowler and G. Weiglein, 2010) for the renormalisation of the chargino-neutralino sector to the most general case of the MSSM with complex parameters. We show that products of imaginary parts arising from MSSM parameters and from absorptive parts of loop integrals can already contribute to predictions for physical observables at the one-loop level, and demonstrate that the consistent treatment of such contributions gives rise to non-trivial structure, either in the field renormalisation constants or the corrections associated with the external legs of the considered diagrams. We furthermore show that the phases of the parameters in the chargino-neutralino sector do not need to be renormalised at the one-loop level, and demonstrate that the appropriate choice for the mass parameters used as input for the on-shell conditions depends both on the process and the region of MSSM parameter space under consideration. As an application, we compute the complete one-loop results in the MSSM with complex parameters for the process h{sub a}{yields}{chi}{sup +}{sub i}{chi}{sup -}{sub j} (Higgs-propagator corrections have been incorporated up to the two-loop level), which may be of interest for SUSY Higgs searches at the LHC, and for chargino pair-production at an e{sup +}e{sup -} Linear Collider, e{sup +}e{sup -}{yields}{chi}{sup +}{sub i}{chi}{sup -}{sub j}. We investigate the dependence of the theoretical predictions on the phases of the MSSM parameters, analysing in particular the numerical relevance of the absorptive parts of loop integrals.

  10. Impact parameter dependence of inner-shell ionization probabilities

    International Nuclear Information System (INIS)

    Cocke, C.L.

    1974-01-01

    The probability for ionization of an inner shell of a target atom by a heavy charged projectile is a sensitive function of the impact parameter characterizing the collision. This probability can be measured experimentally by detecting the x-ray resulting from radiative filling of the inner shell in coincidence with the projectile scattered at a determined angle, and by using the scattering angle to deduce the impact parameter. It is conjectured that the functional dependence of the ionization probability may be a more sensitive probe of the ionization mechanism than is a total cross section measurement. Experimental results for the K-shell ionization of both solid and gas targets by oxygen, carbon and fluorine projectiles in the MeV/amu energy range will be presented, and their use in illuminating the inelastic collision process discussed

  11. Covarying Shell Growth Parameters and the Regulation of Shell Shape in Marine Bivalves: A Case Study on Tellinoidea

    Directory of Open Access Journals (Sweden)

    Jean Béguinot

    2014-01-01

    Full Text Available Specific parameters characterising shell shape may arguably have a significant role in the adaptation of bivalve molluscs to their particular environments. Yet, such functionally relevant shape parameters (shell outline elongation, dissymmetry, and ventral convexity are not those parameters that the animal may directly control. Rather than shell shape, the animal regulates shell growth. Accordingly, an alternative, growth-based description of shell-shape is best fitted to understand how the animal may control the achieved shell shape. The key point is, in practice, to bring out the link between those two alternative modes of shell-shape descriptions, that is, to derive the set of equations which connects the growth-based shell-shape parameters to the functionally relevant shell-shape parameters. Thus, a preliminary object of this note is to derive this set of equations as a tool for further investigations. A second object of this work is to provide an illustrative example of implementation of this tool. I report on an unexpected negative covariance between growth-based parameters and show how this covariance results in a severe limitation of the range of interspecific variability of the degree of ventral convexity of the shell outline within the superfamily Tellinoidea. Hypotheses are proposed regarding the constraints possibly at the origin of this limitation of interspecific variability.

  12. Consistency in color parameters of a commonly used shade guide.

    Science.gov (United States)

    Tashkandi, Esam

    2010-01-01

    The use of shade guides to assess the color of natural teeth subjectively remains one of the most common means for dental shade assessment. Any variation in the color parameters of the different shade guides may lead to significant clinical implications. Particularly, since the communication between the clinic and the dental laboratory is based on using the shade guide designation. The purpose of this study was to investigate the consistency of the L∗a∗b∗ color parameters of a sample of a commonly used shade guide. The color parameters of a total of 100 VITAPAN Classical Vacuum shade guide (VITA Zahnfabrik, Bad Säckingen, Germany(were measured using a X-Rite ColorEye 7000A Spectrophotometer (Grand Rapids, Michigan, USA). Each shade guide consists of 16 tabs with different designations. Each shade tab was measured five times and the average values were calculated. The ΔE between the average L∗a∗b∗ value for each shade tab and the average of the 100 shade tabs of the same designation was calculated. Using the Student t-test analysis, no significant differences were found among the measured sample. There is a high consistency level in terms of color parameters of the measured VITAPAN Classical Vacuum shade guide sample tested.

  13. Multi-parameter actuation of a neutrally stable shell: a flexible gear-less motor.

    Science.gov (United States)

    Hamouche, W; Maurini, C; Vidoli, S; Vincenti, A

    2017-08-01

    We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multi-parameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disc, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, having a continuous set of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fibre-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully nonlinear inextensible uniform-curvature shell model. We report on the fabrication, identification and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a 'gear-less motor', which is, in reality, a precession of the axis of principal curvature.

  14. OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION

    International Nuclear Information System (INIS)

    Inserra, C.; Sim, S. A.; Smartt, S. J.; Nicholl, M.; Jerkstrand, A.; Chen, T.-W.; Wyrzykowski, L.; Fraser, M.; Blagorodnova, N.; Campbell, H.; Shen, K. J.; Gal-Yam, A.; Howell, D. A.; Valenti, S.; Maguire, K.; Mazzali, P.; Bersier, D.; Taubenberger, S.; Benitez-Herrera, S.; Elias-Rosa, N.

    2015-01-01

    We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M I ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data are broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell

  15. OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION

    Energy Technology Data Exchange (ETDEWEB)

    Inserra, C.; Sim, S. A.; Smartt, S. J.; Nicholl, M.; Jerkstrand, A.; Chen, T.-W. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Wyrzykowski, L. [University of Warsaw, Astronomical Observatory, Al. Ujazdowskie 400-478 Warszawa (Poland); Fraser, M.; Blagorodnova, N.; Campbell, H. [Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA Cambridge (United Kingdom); Shen, K. J. [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Howell, D. A.; Valenti, S. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102 Goleta, CA 93117 (United States); Maguire, K. [European Southern Observatory for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, 85748 Garching b. Munchen (Germany); Mazzali, P.; Bersier, D. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool (United Kingdom); Taubenberger, S.; Benitez-Herrera, S. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Elias-Rosa, N., E-mail: c.inserra@qub.ac.uk [INAF - Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2015-01-20

    We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M{sub I} ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data are broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.

  16. Consistent calculation of the polarization electric dipole moment by the shell-correction method

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    1992-01-01

    Macroscopic calculations of the polarization electric dipole moment which arises in nuclei with an octupole deformation are discussed in detail. This dipole moment is shown to depend on the position of the center of gravity. The conditions of consistency of the radii of the proton and neutron potentials and the radii of the proton and neutron surfaces, respectively, are discussed. These conditions must be incorporated in a shell-correction calculation of this dipole moment. A correct calculation of this moment by the shell-correction method is carried out. Dipole transitions between (on the one hand) levels belonging to an octupole vibrational band and (on the other) the ground state in rare-earth nuclei with a large quadrupole deformation are studied. 19 refs., 3 figs

  17. Consistent Parameter and Transfer Function Estimation using Context Free Grammars

    Science.gov (United States)

    Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten

    2017-04-01

    This contribution presents a method for the inference of transfer functions for rainfall-runoff models. Here, transfer functions are defined as parametrized (functional) relationships between a set of spatial predictors (e.g. elevation, slope or soil texture) and model parameters. They are ultimately used for estimation of consistent, spatially distributed model parameters from a limited amount of lumped global parameters. Additionally, they provide a straightforward method for parameter extrapolation from one set of basins to another and can even be used to derive parameterizations for multi-scale models [see: Samaniego et al., 2010]. Yet, currently an actual knowledge of the transfer functions is often implicitly assumed. As a matter of fact, for most cases these hypothesized transfer functions can rarely be measured and often remain unknown. Therefore, this contribution presents a general method for the concurrent estimation of the structure of transfer functions and their respective (global) parameters. Note, that by consequence an estimation of the distributed parameters of the rainfall-runoff model is also undertaken. The method combines two steps to achieve this. The first generates different possible transfer functions. The second then estimates the respective global transfer function parameters. The structural estimation of the transfer functions is based on the context free grammar concept. Chomsky first introduced context free grammars in linguistics [Chomsky, 1956]. Since then, they have been widely applied in computer science. But, to the knowledge of the authors, they have so far not been used in hydrology. Therefore, the contribution gives an introduction to context free grammars and shows how they can be constructed and used for the structural inference of transfer functions. This is enabled by new methods from evolutionary computation, such as grammatical evolution [O'Neill, 2001], which make it possible to exploit the constructed grammar as a

  18. On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Nielsen, Heino Bohn; Rahbek, Anders

    2017-01-01

    It is well known that with a parameter on the boundary of the parameter space, such as in the classic cases of testing for a zero location parameter or no autoregressive conditional heteroskedasticity (ARCH) effects, the classic nonparametric bootstrap – based on unrestricted parameter estimates...... – leads to inconsistent testing. In contrast, we show here that for the two aforementioned cases, a nonparametric bootstrap test based on parameter estimates obtained under the null – referred to as ‘restricted bootstrap’ – is indeed consistent. While the restricted bootstrap is simple to implement...... in practice, novel theoretical arguments are required in order to establish consistency. In particular, since the bootstrap is analysed both under the null hypothesis and under the alternative, non-standard asymptotic expansions are required to deal with parameters on the boundary. Detailed proofs...

  19. Pearl-necklace structures in core-shell molecular brushes: Experiments, Monte Carlo simulations and self-consistent field modeling

    NARCIS (Netherlands)

    Polotsky, A.; Charlaganov, M.; Xu, Y.P.; Leermakers, F.A.M.; Daoud, M.; Muller, A.H.E.; Dotera, T.; Borisov, O.V.

    2008-01-01

    We present theoretical arguments and experimental evidence for a longitudinal instability in core-shell cylindrical polymer brushes with a solvophobic inner (core) block and a solvophilic outer (shell) block in selective solvents. The two-gradient self-consistent field Scheutjens-Fleer (SCF-SF)

  20. Bistable near field and bistable transmittance in 2D composite slab consisting of nonlocal core-Kerr shell inclusions.

    Science.gov (United States)

    Huang, Yang; Wu, Ya Min; Gao, Lei

    2017-01-23

    We carry out a theoretical study on optical bistability of near field intensity and transmittance in two-dimensional nonlinear composite slab. This kind of 2D composite is composed of nonlocal metal/Kerr-type dielectric core-shell inclusions randomly embedded in the host medium, and we derivate the nonlinear relation between the field intensity in the shell of inclusions and the incident field intensity with self-consistent mean field approximation. Numerical demonstration has been performed to show the viable parameter space for the bistable near field. We show that nonlocality can provide broader region in geometric parameter space for bistable near field as well as bistable transmittance of the nonlocal composite slab compared to local case. Furthermore, we investigate the bistable transmittance in wavelength spectrum, and find that besides the input intensity, the wavelength operation could as well make the transmittance jump from a high value to a low one. This kind of self-tunable nano-composite slab might have potential application in optical switching devices.

  1. Nuclear ground state properties and self-consistent calculations with the Skyrme interaction. II. S-D shell nuclei

    International Nuclear Information System (INIS)

    Flocard, H.

    1975-04-01

    Hartree-Fock results concerning the ground state properties of some S-D shell nuclei are discussed. Two different Skyrme interactions have been used. They both lead to good agreement with the experimental total binding energies, charge radii and multipole moments. In particular the observed prolate-oblate transitions occuring in the S-D shell are reproduced. The calculated spectroscopic factors are also shown to be consistent with experimental data [fr

  2. Measurements of egg shell plasma parameters using laser-induced ...

    Indian Academy of Sciences (India)

    In LIBS, a high-intensity laser is focussed onto the sample, which is strong ... Compared to the production of plasma, qualitative and quantitative analyses are ... In this paper, the elemental composition of the egg shell crushed to a size of about.

  3. Off-shell effects and consistency of many-body treatments of dense matter

    International Nuclear Information System (INIS)

    Krippa, Boris; Birse, Michael C.; McGovern, Judith A.; Walet, Niels R.

    2003-01-01

    Effective field theory requires all observables to be independent of the representation used for the quantum field operators. It means that off-shell properties of the interactions should not lead to any observable effects. We analyze this issue in the context of many-body approaches to nuclear matter, where it should be possible to shift the contributions of lowest order in purely off-shell two-body interactions into three-body forces. We show that none of the commonly used truncations of the two-body scattering amplitude such as the ladder, Brueckner-Hartree-Fock, or parquet approximations respect this requirement

  4. Nuclear level densities with pairing and self-consistent ground-state shell effects

    CERN Document Server

    Arnould, M

    1981-01-01

    Nuclear level density calculations are performed using a model of fermions interacting via the pairing force, and a realistic single particle potential. The pairing interaction is treated within the BCS approximation with different pairing strength values. The single particle potentials are derived in the framework of an energy-density formalism which describes self-consistently the ground states of spherical nuclei. These calculations are extended to statistically deformed nuclei, whose estimated level densities include rotational band contributions. The theoretical results are compared with various experimental data. In addition, the level densities for several nuclei far from stability are compared with the predictions of a back-shifted Fermi gas model. Such a comparison emphasizes the possible danger of extrapolating to unknown nuclei classical level density formulae whose parameter values are tailored for known nuclei. (41 refs).

  5. Distributed microscopic actuation analysis of paraboloidal membrane shells of different geometric parameters

    Science.gov (United States)

    Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen

    2018-03-01

    Paraboloidal membrane shells of revolution are commonly used as key components for advanced aerospace structures and aviation mechanical systems. Due to their high flexibility and low damping property, active vibration control is of significant importance for these in-orbit membrane structures. To explore the dynamic control behavior of space flexible paraboloidal membrane shells, precision distributed actuation and control effectiveness of free-floating paraboloidal membrane shells with piezoelectric actuators are investigated. Governing equations of the shell structronic system are presented first. Then, distributed control forces and control actions are formulated. A transverse mode shape function of the paraboloidal shell based on the membrane approximation theory and specified boundary condition is assumed in the modal control force analysis. The actuator induced modal control forces on the paraboloidal shell are derived. The expressions of microscopic local modal control forces are obtained by shrinking the actuator area into infinitesimal and the four control components are investigated respectively to predict the spatial microscopic actuation behavior. Geometric parameter (height-radius ratio and shell thickness) effects on the modal actuation behavior are explored when evaluating the micro-control efficiency. Four different cases are discussed and the results reveal the fact that shallow (e.g., antennas/reflectors) and deep (e.g., rocket/missile fairing) paraboloidal shells exhibit totally different modal actuation behaviors due to their curvature differences. Analytical results in this paper can serve as guidelines for optimal actuator placement for vibration control of different paraboloidal structures.

  6. Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Finzel, Kati, E-mail: kati.finzel@liu.se [Linköpings University, IFM Department of Physics, 58183 Linköping (Sweden)

    2016-01-21

    The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.

  7. Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Chernysheva, L V [Ioffe Physical-Technical Institute, St-Petersburg 194021 (Russian Federation)

    2006-11-28

    We present the results of calculations of outer and next to outer shell non-dipole angular anisotropy parameters of photoelectrons for semi-filled shell atoms in the Hartree-Fock (HF) one-electron approximation and in the frame of the spin polarized random phase approximation with exchange (SP RPAE) which takes into account inter-electron correlations. We demonstrate for the first time that this characteristic of the photoionization process is essentially sensitive to whether the photoelectron has the same or opposite spin orientation to that of the semi-filled shell.

  8. Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V

    2006-01-01

    We present the results of calculations of outer and next to outer shell non-dipole angular anisotropy parameters of photoelectrons for semi-filled shell atoms in the Hartree-Fock (HF) one-electron approximation and in the frame of the spin polarized random phase approximation with exchange (SP RPAE) which takes into account inter-electron correlations. We demonstrate for the first time that this characteristic of the photoionization process is essentially sensitive to whether the photoelectron has the same or opposite spin orientation to that of the semi-filled shell

  9. Theoretical and experimental determination of K - and L -shell x-ray relaxation parameters in Ni

    Science.gov (United States)

    Guerra, M.; Sampaio, J. M.; Parente, F.; Indelicato, P.; Hönicke, P.; Müller, M.; Beckhoff, B.; Marques, J. P.; Santos, J. P.

    2018-04-01

    Fluorescence yields (FY) for the Ni K and L shells were determined by a theoretical and an experimental group within the framework of the International Initiative on X-ray Fundamental Parameters (FPs) collaboration. Coster-Kronig (CK) parameters were also measured for the L shell of Ni. Theoretical calculations of the same parameters were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental values for the FY and CK were determined at the PTB laboratory in the synchrotron radiation facility BESSY II, Berlin, Germany, and are compared to the corresponding calculated values.

  10. The effect of selected feed additives on the shell qualitative parameters of table eggs

    Directory of Open Access Journals (Sweden)

    Henrieta Arpášová

    2015-05-01

    Full Text Available Herbs, spices and their extracts (botanicals have a wide range of activities. May have a beneficial effect on the gastrointestinal microflora of animals, performance and quality of animal products. In this experiment the effects of supplementation of the diet for laying hens with different doses of thyme or oregano essential oil addition on egg shell quality parameters were studied. Hens of laying hybrid Hy-Line Brown (n=50 were randomly divided into 5 groups (n=10 and fed for 20 weeks with diets with thyme or oregano essential oil. supplemented. In the control group hens received feed mixture with no additions. The diets in the first and  second experimental groups were supplemented with 0.5 ml/kg or 1.0 ml/kg thyme essential oil. The diets in the third and fourth experimental groups were supplemented with 0.5 ml/kg or 1.0 ml/kg oregano essential oil.  The egg shell weight (g, specific egg shell weight (g/cm3, percentage of egg shell (%, egg shell strength (N/cm2 and egg shell thickness (mm were evaluated. The egg shell weight for the whole period was in the order of the groups 5.70±0.52; 5.65±0.44; 5.54±0.42; 5.62±0.38 and 5.49±0.48 g±S.D (P>0.05. Egg shell strength during the reporting period was in order of the groups: 27.81±6.00; 27.63±6.43; 27.17±6.36; 27.76±6.27 and 28.41±6.36 (N/cm2±S.D. Similarly, in the egg shell specific weight (g/cm3, egg shell percentage ratio (% and egg shell thickness (mm were observed statistically non-significant differences compared to the control group (P>0.05. The results suggest that the qualitative parameters of egg shell were not significantly influenced with thyme or oregano oil addition (P>0.05.

  11. IBM parameters derived from realistic shell-model Hamiltonian via Hn-cooling method

    International Nuclear Information System (INIS)

    Nakada, Hitoshi

    1997-01-01

    There is a certain influence of non-collective degrees-of-freedom even in lowest-lying states of medium-heavy nuclei. This influence seems to be significant for some of the IBM parameters. In order to take it into account, several renormalization approaches have been applied. It has been shown in the previous studies that the influence of the G-pairs is important, but does not fully account for the fitted values. The influence of the non-collective components may be more serious when we take a realistic effective nucleonic interaction. To incorporate this influence into the IBM parameters, we employ the recently developed H n -cooling method. This method is applied to renormalize the wave functions of the states consisting of the SD-pairs, for the Cr-Fe nuclei. On this ground, the IBM Hamiltonian and transition operators are derived from corresponding realistic shell-model operators, for the Cr-Fe nuclei. Together with some features of the realistic interaction, the effects of the non-SD degrees-of-freedom are presented. (author)

  12. Impact parameter dependence of K-shell ionization in Cu-Cu collisions

    International Nuclear Information System (INIS)

    Frank, W.; Jaracz, P.; Kaun, K.-H.; Lenk, M.; Rudiger, J.; Stachura, Z.

    1980-01-01

    The impact parameter dependence of the yield of K-shell vacancy production in 1 MeV/ a.m.u. Cu-Cu collisions has been studied in an X-ray-scattered ion coincidence experiment. The results are compared with existing models for K-vacancy production

  13. On-shell gauge-parameter independence of contributions to electroweak quark self-energies

    International Nuclear Information System (INIS)

    Ahmady, M.R.; Elias, V.; Mendel, R.R.; Scadron, M.D.; Steele, T.

    1989-01-01

    We allow an external condensate to enter standard SU(2) x U(1) electroweak theory via the vacuum expectation value , as in QCD sum-rule applications. For a given flavor, we then find that any gauge-parameter dependence of quark self-energies on the ''mass shell'' is eliminated provided that the mass shell is made to coincide with both the expansion-parameter mass occurring in the operator-product expansion of and the standard electroweak mass acquired via the Yukawa coupling to the usual scalar vacuum expectation value of spontaneous symmetry breaking. This result indicates that if the QCD-generated order parameter and associated dynamical mass(es) m/sub q//sup dyn/ are utilized as external input parameters in electroweak calculations involving hadrons, then new corrections must be introduced into the q-barqW and q-barqZ vertices in order to preserve SU(2) x U(1) Ward identities

  14. Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations

    International Nuclear Information System (INIS)

    Civalek, Ö.

    2014-01-01

    In the present study nonlinear static and dynamic responses of shallow spherical shells resting on Winkler–Pasternak elastic foundations are carried out. The formulation of the shells is based on the Donnell theory. The nonlinear governing equations of motion of shallow shells are discretized in space and time domains using the discrete singular convolution and the differential quadrature methods, respectively. The validity of the present method is demonstrated by comparing the present results with those available in the open literature. The effects of the Winkler and Pasternak foundation parameters on nonlinear static and dynamic response of shells are investigated. Some results are also presented for circular plate as special case. Damping effect on nonlinear dynamic response of shells is studied. It is important to state that the increase in damping parameter causes decrease in the dynamic response of the shells. It is shown that the shear parameter of the foundation has a significant influence on the dynamic and static response of the shells. Also, the response of the shell is decreased with the increasing value of the shear parameter of the foundation. Parametric studies considering different geometric variables have also been investigated. -- Highlights: • Nonlinear responses of shallow spherical shells are presented. • The effects of foundation parameters are investigated. • Damping effect on nonlinear dynamic response of shells is also studied

  15. A review of 20 Ne structure in a full microscopic self-consistent shell ...

    African Journals Online (AJOL)

    A set of single-particle energies together with a set of two-body matrix- elements derived in a self –consistent manner from the Reid soft–core potential are used to calculate the energy levels of 20Ne. We used a harmonic oscillator wave function folded with two-body correlation functions in our calculation. It is found that the ...

  16. Self-consistent nonlinearly polarizable shell-model dynamics for ferroelectric materials

    International Nuclear Information System (INIS)

    Mkam Tchouobiap, S.E.; Kofane, T.C.; Ngabireng, C.M.

    2002-11-01

    We investigate the dynamical properties of the polarizable shellmodel with a symmetric double Morse-type electron-ion interaction in one ionic species. A variational calculation based on the Self-Consistent Einstein Model (SCEM) shows that a theoretical ferroelectric (FE) transition temperature can be derive which demonstrates the presence of a first-order phase transition for the potassium selenate (K 2 SeO 4 ) crystal around Tc 91.5 K. Comparison of the model calculation with the experimental critical temperature yields satisfactory agreement. (author)

  17. Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring

    Science.gov (United States)

    Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.

    2017-10-01

    In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.

  18. Random Sampling of Correlated Parameters – a Consistent Solution for Unfavourable Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Žerovnik, G., E-mail: gasper.zerovnik@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Trkov, A. [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); International Atomic Energy Agency, PO Box 100, A-1400 Vienna (Austria); Kodeli, I.A. [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Capote, R. [International Atomic Energy Agency, PO Box 100, A-1400 Vienna (Austria); Smith, D.L. [Argonne National Laboratory, 1710 Avenida del Mundo, Coronado, CA 92118-3073 (United States)

    2015-01-15

    Two methods for random sampling according to a multivariate lognormal distribution – the correlated sampling method and the method of transformation of correlation coefficients – are briefly presented. The methods are mathematically exact and enable consistent sampling of correlated inherently positive parameters with given information on the first two distribution moments. Furthermore, a weighted sampling method to accelerate the convergence of parameters with extremely large relative uncertainties is described. However, the method is efficient only for a limited number of correlated parameters.

  19. A Consistent Methodology Based Parameter Estimation for a Lactic Acid Bacteria Fermentation Model

    DEFF Research Database (Denmark)

    Spann, Robert; Roca, Christophe; Kold, David

    2017-01-01

    Lactic acid bacteria are used in many industrial applications, e.g. as starter cultures in the dairy industry or as probiotics, and research on their cell production is highly required. A first principles kinetic model was developed to describe and understand the biological, physical, and chemical...... mechanisms in a lactic acid bacteria fermentation. We present here a consistent approach for a methodology based parameter estimation for a lactic acid fermentation. In the beginning, just an initial knowledge based guess of parameters was available and an initial parameter estimation of the complete set...... of parameters was performed in order to get a good model fit to the data. However, not all parameters are identifiable with the given data set and model structure. Sensitivity, identifiability, and uncertainty analysis were completed and a relevant identifiable subset of parameters was determined for a new...

  20. Fine tuning of process parameters for improving briquette production from palm kernel shell gasification waste.

    Science.gov (United States)

    Bazargan, Alireza; Rough, Sarah L; McKay, Gordon

    2018-04-01

    Palm kernel shell biochars (PKSB) ejected as residues from a gasifier have been used for solid fuel briquette production. With this approach, palm kernel shells can be used for energy production twice: first, by producing rich syngas during gasification; second, by compacting the leftover residues from gasification into high calorific value briquettes. Herein, the process parameters for the manufacture of PKSB biomass briquettes via compaction are optimized. Two possible optimum process scenarios are considered. In the first, the compaction speed is increased from 0.5 to 10 mm/s, the compaction pressure is decreased from 80 Pa to 40 MPa, the retention time is reduced from 10 s to zero, and the starch binder content of the briquette is halved from 0.1 to 0.05 kg/kg. With these adjustments, the briquette production rate increases by more than 20-fold; hence capital and operational costs can be reduced and the service life of compaction equipment can be increased. The resulting product satisfactorily passes tensile (compressive) crushing strength and impact resistance tests. The second scenario involves reducing the starch weight content to 0.03 kg/kg, while reducing the compaction pressure to a value no lower than 60 MPa. Overall, in both cases, the PKSB biomass briquettes show excellent potential as a solid fuel with calorific values on par with good-quality coal. CHNS: carbon, hydrogen, nitrogen, sulfur; FFB: fresh fruit bunch(es); HHV: higher heating value [J/kg]; LHV: lower heating value [J/kg]; PKS: palm kernel shell(s); PKSB: palm kernel shell biochar(s); POME: palm oil mill effluent; RDF: refuse-derived fuel; TGA: thermogravimetric analysis.

  1. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters

    International Nuclear Information System (INIS)

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. - Highlights: • This work regard the K shell absorption jump ratios and jump factors of Ti, Cr, Fe, Co, Ni and Cu. • This paper presents the first measurement of these parameters using the experimental K shell fluorescence parameters. • A good agreement was found between experimental and theoretical values. • The EDXRF technique was suitable, precise and reliable for the measurement of these atomic parameters

  2. Evaluation of physical, chemical and irradiation parameters on crab shell's chitosan obtention process

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maiara S.; Moura, Eduardo de; Geraldo, Aurea B.C., E-mail: maiaraferreira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Chitin it is found in exoskeletons of crustaceans and in the cellular wall of fungi. Chitosan is obtained through the stages of deproteinization, demineralization and deacetylation. Specially, crab shells present in their composition 15-20% of chitin, 25-40% of proteins and 40-55% calcium carbonate. The demineralization step aims to reduce the inorganic ions content and is realized under hydrochloric acid dissolution. The deproteinization has the function of reducing the proteins and aminoacids by sodium hydroxide solution added to the raw material. In this work, the experimental design used to determine the best steps conditions for the production of final product - chitosan from chitin of crab shells - had been time (10, 30, 60 and 120 minutes), concentration, relation reagent solution/raw material quantity and irradiation parameters (radiation font, dose and dose rate). The results are discussed in terms of total inorganic materials and proteins quantification and of thermal analysis. (author)

  3. Evaluation of physical, chemical and irradiation parameters on crab shell's chitosan obtention process

    International Nuclear Information System (INIS)

    Ferreira, Maiara S.; Moura, Eduardo de; Geraldo, Aurea B.C.

    2015-01-01

    Chitin it is found in exoskeletons of crustaceans and in the cellular wall of fungi. Chitosan is obtained through the stages of deproteinization, demineralization and deacetylation. Specially, crab shells present in their composition 15-20% of chitin, 25-40% of proteins and 40-55% calcium carbonate. The demineralization step aims to reduce the inorganic ions content and is realized under hydrochloric acid dissolution. The deproteinization has the function of reducing the proteins and aminoacids by sodium hydroxide solution added to the raw material. In this work, the experimental design used to determine the best steps conditions for the production of final product - chitosan from chitin of crab shells - had been time (10, 30, 60 and 120 minutes), concentration, relation reagent solution/raw material quantity and irradiation parameters (radiation font, dose and dose rate). The results are discussed in terms of total inorganic materials and proteins quantification and of thermal analysis. (author)

  4. Dependences of optical properties of spherical two-layered nanoparticles on parameters of gold core and material shell

    International Nuclear Information System (INIS)

    Pustovalov, V.K.; Astafyeva, L.G.; Zharov, V.P.

    2013-01-01

    Modeling of nonlinear dependences of optical properties of spherical two-layered gold core and some material shell nanoparticles (NPs) placed in water on parameters of core and shell was carried out on the basis of the extended Mie theory. Efficiency cross-sections of absorption, scattering and extinction of radiation with wavelength 532 nm by core–shell NPs in the ranges of core radii r 00 =5–40 nm and of relative NP radii r 1 /r 00 =1–8 were calculated (r 1 —radius of two-layered nanoparticle). Shell materials were used with optical indexes in the ranges of refraction n 1 =0.2–1.5 and absorption k 1 =0–3.5 for the presentation of optical properties of wide classes of shell materials (including dielectrics, metals, polymers, vapor shell around gold core). Results show nonlinear dependences of optical properties of two-layered NPs on optical indexes of shell material, core r 00 and relative NP r 1 /r 00 radii. Regions with sharp decrease and increase of absorption, scattering and extinction efficiency cross-sections with changing of core and shell parameters were investigated. These dependences should be taken into account for applications of two-layered NPs in laser nanomedicine and optical diagnostics of tissues. The results can be used for experimental investigation of shell formation on NP core and optical determination of geometrical parameters of core and shell of two-layered NPs. -- Highlights: • Absorption, scattering and extinction of two-layered nanoparticles are studied. • Shell materials change in wide regions of materials (metals, dielectrics, vapor). • Effect of sharp decrease and increase of optical characteristics is established. • Explanation of sharp decreasing and increasing optical characteristics is presented

  5. Optimization of process parameters in precipitation for consistent quality UO{sub 2} powder production

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N., E-mail: misra@nfc.gov.in [Nuclear Fuel Complex, Hyderabad (India)

    2013-07-01

    Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO{sub 2} powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO{sub 2} powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO{sub 2} powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)

  6. Optimization of process parameters in precipitation for consistent quality UO2 powder production

    International Nuclear Information System (INIS)

    Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N.

    2013-01-01

    Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO 2 powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO 2 powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO 2 powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)

  7. Instantaneous, parameter-free methods to define a solute’s hydration shell

    International Nuclear Information System (INIS)

    Chatterjee, Anupam; Higham, Jonathan; Henchman, Richard H.

    2015-01-01

    A range of methods are presented to calculate a solute’s hydration shell from computer simulations of dilute solutions of monatomic ions and noble gas atoms. The methods are designed to be parameter-free and instantaneous so as to make them more general, accurate, and consequently applicable to disordered systems. One method is a modified nearest-neighbor method, another considers solute-water Lennard-Jones overlap followed by hydrogen-bond rearrangement, while three methods compare various combinations of water-solute and water-water forces. The methods are tested on a series of monatomic ions and solutes and compared with the values from cutoffs in the radial distribution function, the nearest-neighbor distribution functions, and the strongest-acceptor hydrogen bond definition for anions. The Lennard-Jones overlap method and one of the force-comparison methods are found to give a hydration shell for cations which is in reasonable agreement with that using a cutoff in the radial distribution function. Further modifications would be required, though, to make them capture the neighboring water molecules of noble-gas solutes if these weakly interacting molecules are considered to constitute the hydration shell

  8. A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology

    KAUST Repository

    Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim

    2016-01-01

    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface ground-water models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKF(OSA). Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25% more accurate state and parameter estimations than the joint and dual approaches.

  9. A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology

    KAUST Repository

    Ait-El-Fquih, Boujemaa

    2016-08-12

    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface ground-water models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model\\'s state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKF(OSA). Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25% more accurate state and parameter estimations than the joint and dual approaches.

  10. The Influence on Modal Parameters of Thin Cylindrical Shell under Bolt Looseness Boundary

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-01-01

    Full Text Available The influence on modal parameters of thin cylindrical shell (TCS under bolt looseness boundary is investigated. Firstly, bolt looseness boundary of the shell is divided into two types, that is, different bolt looseness numbers and different bolt looseness levels, and natural frequencies and mode shapes are calculated by finite element method to roughly master vibration characteristics of TCS under these conditions. Then, the following measurements and identification techniques are used to get precise frequency, damping, and shape results; for example, noncontact laser Doppler vibrometer and vibration shaker with excitation level being precisely controlled are used in the test system; “preexperiment” is adopted to determine the required tightening torque and verify fixed constraint boundary; the small-segment FFT processing technique is employed to accurately measure nature frequency and laser rotating scanning technique is used to get shape results with high efficiency. Finally, based on the measured results obtained by the above techniques, the influence on modal parameters of TCS under two types of bolt looseness boundaries is analyzed and discussed. It can be found that bolt looseness boundary can significantly affect frequency and damping results which might be caused by changes of nonlinear stiffness and damping and in bolt looseness positions.

  11. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    Science.gov (United States)

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The corneoscleral shell of the eye: potentials of assessing biomechanical parameters in normal and pathological conditions

    Directory of Open Access Journals (Sweden)

    E. N. Iomdina

    2016-01-01

    Full Text Available The paper reviews modern methods of evaluating the biomechanical properties of the corneoscleral shell of the eye that can be used both in the studies of the pathogenesis of various ophthalmic pathologies and in clinical practice. The biomechanical parameters of the cornea and the sclera have been shown to be diagnostically significant in assessing the risk of complications and the effectiveness of keratorefractive interventions, in the diagnosis and the prognosis of keratoconus, progressive myopia, or glaucoma. In clinical practice, a special device, Ocular Response Analyzer (ORA, has been used on a large scale. The analyzer is used to assess two parameters that characterize viscoelastic properties of the cornea — corneal hysteresis (CH and corneal resistance factor (CRF. Reduced levels of CH and CRF have been noted after eximer laser surgery, especially that administered to patients who demonstrate a regression in the refraction effect or suffer from keratoconus. This fact justifies the use of these biomechanical parameters as additional diagnostic criteria in the evaluation of the state of the cornea. At the same time, ORA data are shown to reflect the biomechanical response to the impact of the air pulse not only from the cornea alone but also from the whole corneoscleral capsule. This is probably the cause of reduced CH in children with progressive myopia and a weakened supportive function of the sclera, as well as such reduction in glaucomatous adult patients. It is hypothesized that a low CH value is a result of remodeling of the connective tissue matrix of the corneoscleral shell of the eye and can be an independent factor testifying to a risk of glaucoma progression. Reduced CH in primary open-angle glaucoma occurs in parallel with the development of pathological structural changes of the optic disc, and deterioration of visual fields, which is an evidence of a specific character and sensitivity of this parameter. The

  13. Phenomenology of on-shell Higgs production in the MSSM with complex parameters

    Energy Technology Data Exchange (ETDEWEB)

    Liebler, Stefan; Patel, Shruti; Weiglein, Georg [DESY, Hamburg (Germany)

    2017-05-15

    A computation of inclusive cross sections for neutral Higgs boson production through gluon fusion and bottom-quark annihilation is presented in the MSSM with complex parameters. The predictions for the gluon-fusion process are based on an explicit calculation of the leading-order cross section for arbitrary complex parameters which is supplemented by higher-order corrections: massive top- and bottom-quark contributions at NLO QCD, in the heavy top-quark effective theory the top-quark contribution up to N{sup 3}LO QCD including a soft expansion for the CP-even component of the light Higgs boson. For its CP-odd component and the heavy Higgs bosons the contributions are incorporated up to NNLO QCD. Two-loop electroweak effects are also incorporated, and SUSY QCD corrections at NLO are interpolated from the MSSM with real parameters. Finite wave function normalisation factors ensuring correct on-shell properties of the external Higgs bosons are incorporated from the code FeynHiggs. For the typical case of a strong admixture of the two heavy Higgs bosons it is demonstrated that squark effects are strongly dependent on the phases of the complex parameters. The remaining theoretical uncertainties for cross sections are discussed. The results have been implemented into an extension of the numerical code SusHi called SusHiMi. (orig.)

  14. On-shell neutral Higgs bosons in the NMSSM with complex parameters

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, Florian [Universidad Autonoma de Madrid, Instituto de Fisica Teorica (UAM/CSIC), Cantoblanco, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Drechsel, Peter; Passehr, Sebastian [Deutsches Elektronensynchrotron DESY, Hamburg (Germany)

    2017-08-15

    The Next-to-Minimal Supersymmetric Standard model (NMSSM) appears as an interesting candidate for the interpretation of the Higgs measurement at the LHC and as a rich framework embedding physics beyond the Standard Model. We consider the renormalization of the Higgs sector of this model in its CP-violating version, and propose a renormalization scheme for the calculation of on-shell Higgs masses. Moreover, the connection between the physical states and the tree-level ones is no longer trivial at the radiative level: a proper description of the corresponding transition thus proves necessary in order to calculate Higgs production and decays at a consistent loop order. After discussing these formal aspects, we compare the results of our mass calculation to the output of existing tools. We also study the relevance of the on-shell transition matrix in the example of the h{sub i} → τ{sup +}τ{sup -} width. We find deviations between our full prescription and popular approximations that can exceed 10%. (orig.)

  15. Effects of extraction parameters on physicochemical and functional characteristics of chitosan from Penaeus monodon shell

    Directory of Open Access Journals (Sweden)

    Jubril Olayinka Akolade

    2016-11-01

    Full Text Available Objective: To investigate the effect of extraction parameters with particular interest during the microwave deacetylation process on the characteristics of chitosan produced from Penaeus monodon (P. monodon sourced within the coastal region of Lagos, Nigeria for applications of controlled release systems for pharmaceutical industries. Methods: Chitosan was extracted from shrimp (P. monodon shell and evaluated as a controlled release system for curcumin. Effects of relevant processing parameters on physicochemical and functional characteristics of the extracted chitosan were assessed. The crude chitosan was purified and used to prepare controlled release formulations for curcumin via ionic gelation with tripolyphosphate. Results: Data from the study showed that increasing time and temperature during deproteinization significantly improved the removal of protein bound to the shell matrix. Also, the ratio of the weight of the deproteinized sample to the volume of HCl used for demineralization influenced the process. During microwave-assisted production of chitosan from chitin, increase in the concentration of the deacetylating medium significantly increased solubility, viscosity and degree of deacetylation, whereas increasing temperature and time during deacetylation of chitin degraded the biopolymer to give low molecular weight chitosan. Optimized extraction and purification process yielded absolutely soluble medium to low molecular weight chitosan. The encapsulation efficiency, loading capacity, percentage yield, release efficiencies in simulated gastric and intestinal fluids of curcumin loaded in the formulations of chitosan from P. monodon were compared favorably to encapsulation and release characteristics of the encapsulated curcumin in commercially available chitosan used as the reference. Conclusions: Valorization of shrimp waste into pharmaceutically graded medium molecular weight chitosan was achieved. The chitosan obtained can be used as

  16. Effect of closed shells on the multipole mixing parameter δ(E2/M1)

    International Nuclear Information System (INIS)

    Morozov, V.A.

    1992-01-01

    The behavior of the magnitude and sign of the mixing parameter δ(E2/M1) in even-even nuclei has been studied in a number of papers. The most extensive data has been given for transitions of the type 3 γ + , 2 γ + , 2 β + →2 g + . The data on δ are relatively scarce for mixed transitions in odd nuclei with magic or semimagic cores. However, certain conclusions can be drawn about the behavior of δ in transitions in odd nuclei near magic numbers, and also in transitions in even-even nuclei when passing through quasishells: (1) the absolute value of the reduced mixing parameter in transitions between particle and cluster-vibrational states in odd nuclei decreases as a closed shell is approached; (2) δ has the same sign for transitions between particle and cluster-vibrational levels in nuclei with Z=83 and 85 and N=83, 85, and 87; (3) in odd nuclei the sign of δ is positive for transitions between positive-parity states s 1/2 -d 3/2 in Cd, Sm, and Tl isotopes and is negative for transitions between negative-parity states f 7/2 π and h 9/2 π in Sm, Gd, Bi, and At isotopes, independently of whether these transitions are neutron or proton transitions; (4) the removal of ±2 nucleons in an even shell from a magic core (and in certain nuclei a larger number of pairs of nucleons) does not lead to a change in sign of δ in transitions producing an odd nucleus; (5) the closure of quasishells at N=96 and 104 in even-even nuclei is associated with an increase in the absolute value of δ(E2/M1)/E γ , but the sign of δ does not change

  17. A new bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(IV) oxide support

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuichi [Department of Applied Chemistry, School of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Naya, Shin-ichi [Environmental Research Laboratory, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Tada, Hiroaki, E-mail: h-tada@apch.kindai.ac.jp [Department of Applied Chemistry, School of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Environmental Research Laboratory, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan)

    2015-10-01

    Ultrathin Cu layers (∼2 atomic layers) have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO{sub 2} (Au@Cu/TiO{sub 2}) by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO{sub 2} for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm). Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO{sub 2}.

  18. A new bimetallic plasmonic photocatalyst consisting of gold(core-copper(shell nanoparticle and titanium(IV oxide support

    Directory of Open Access Journals (Sweden)

    Yuichi Sato

    2015-10-01

    Full Text Available Ultrathin Cu layers (∼2 atomic layers have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO2 (Au@Cu/TiO2 by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO2 for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm. Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO2.

  19. Phenomenology of on-shell Higgs production in the MSSM with complex parameters

    Energy Technology Data Exchange (ETDEWEB)

    Liebler, Stefan; Patel, Shruti; Weiglein, Georg

    2016-11-15

    A computation of inclusive cross sections for the production of neutral Higgs bosons through gluon fusion and bottom-quark annihilation is presented in the MSSM with complex parameters. The predictions for the gluon-fusion process are based on an explicit calculation of the leading-order cross section for the general case of arbitrary complex parameters which is supplemented by higher-order corrections. Massive top- and bottom-quark contributions are included at NLO QCD. In the effective theory of a heavy top-quark the top-quark contribution is taken into account up to N{sup 3}LO QCD in an expansion around the threshold of Higgs production for the CP-even component of the light Higgs boson. For the CP-odd component of the light Higgs boson and the heavy Higgs bosons the contributions in the effective field theory are incorporated up to NNLO QCD. Two-loop electroweak effects mediated through light quarks are also incorporated, and SUSY QCD corrections at NLO are interpolated from the MSSM with real parameters. Finite wave function normalisation factors for the external Higgs bosons ensuring the correct on-shell properties are incorporated from the code FeynHiggs. In the numerical analysis for the typical case of a strong admixture of the two heavy Higgs bosons it is demonstrated that squark effects are strongly dependent on the phases of the complex parameters, and the relevance of the resummation of squark effects in the bottom-quark Yukawa coupling is emphasised. The remaining theoretical uncertainties in the cross section predictions are discussed. The results have been implemented into an extension of the numerical code SusHi called SusHiMi.

  20. Phenomenology of on-shell Higgs production in the MSSM with complex parameters

    International Nuclear Information System (INIS)

    Liebler, Stefan; Patel, Shruti; Weiglein, Georg

    2016-11-01

    A computation of inclusive cross sections for the production of neutral Higgs bosons through gluon fusion and bottom-quark annihilation is presented in the MSSM with complex parameters. The predictions for the gluon-fusion process are based on an explicit calculation of the leading-order cross section for the general case of arbitrary complex parameters which is supplemented by higher-order corrections. Massive top- and bottom-quark contributions are included at NLO QCD. In the effective theory of a heavy top-quark the top-quark contribution is taken into account up to N"3LO QCD in an expansion around the threshold of Higgs production for the CP-even component of the light Higgs boson. For the CP-odd component of the light Higgs boson and the heavy Higgs bosons the contributions in the effective field theory are incorporated up to NNLO QCD. Two-loop electroweak effects mediated through light quarks are also incorporated, and SUSY QCD corrections at NLO are interpolated from the MSSM with real parameters. Finite wave function normalisation factors for the external Higgs bosons ensuring the correct on-shell properties are incorporated from the code FeynHiggs. In the numerical analysis for the typical case of a strong admixture of the two heavy Higgs bosons it is demonstrated that squark effects are strongly dependent on the phases of the complex parameters, and the relevance of the resummation of squark effects in the bottom-quark Yukawa coupling is emphasised. The remaining theoretical uncertainties in the cross section predictions are discussed. The results have been implemented into an extension of the numerical code SusHi called SusHiMi.

  1. Relation between textural and energetic parameters of activated carbon monoliths from coconut shells

    International Nuclear Information System (INIS)

    Vargas, Diana Paola; Giraldo, Liliana; Moreno, Juan C.

    2009-01-01

    Structural characteristics and the energetic parameters of five monoliths of activated carbon were compared. The samples were obtained from coconut shells by means of chemical activation using different concentrations of phosphoric acid. The samples are characterized by means of physical adsorption of N 2 at 77K, CO 2 at 273K, and immersion calorimetry in benzene. From the data obtained the volumes of micropore, mesopore, narrow micro porosity and energy parameters of immersion enthalpy were calculated. Also were calculated, K of the Langmuir model and characteristic energies, Eo, of the Dubinin-Radushkevich model. The experimental results show that the activation with phosphoric acid develops micro porosity, giving a micropore volume between 0,36 and 0,45 cm 3 g-1, area BET between 975 and 1320 m 2 g-1 and immersion enthalpy between 112,9 and 147,7 Jg-1. It was found that for higher BET area, there is a greater immersion enthalpy in benzene, lower characteristic energy and smaller value of K.

  2. Determination of K shell absorption jump factors and jump ratios in the elements between Tm( Z = 69) and Os( Z = 76) by measuring K shell fluorescence parameters

    Science.gov (United States)

    Kaya, N.; Tıraşoğlu, E.; Apaydın, G.

    2008-04-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.

  3. Preparation of Cotton-Wool-Like Poly(lactic acid-Based Composites Consisting of Core-Shell-Type Fibers

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2015-11-01

    Full Text Available In previous works, we reported the fabrication of cotton-wool-like composites consisting of siloxane-doped vaterite and poly(l-lactic acid (SiVPCs. Various irregularly shaped bone voids can be filled with the composite, which effectively supplies calcium and silicate ions, enhancing the bone formation by stimulating the cells. The composites, however, were brittle and showed an initial burst release of ions. In the present work, to improve the mechanical flexibility and ion release, the composite fiber was coated with a soft, thin layer consisting of poly(d,l-lactic-co-glycolic acid (PLGA. A coaxial electrospinning technique was used to prepare a cotton-wool-like material comprising “core-shell”-type fibers with a diameter of ~12 µm. The fibers, which consisted of SiVPC coated with a ~2-µm-thick PLGA layer, were mechanically flexible; even under a uniaxial compressive load of 1.5 kPa, the cotton-wool-like material did not exhibit fracture of the fibers and, after removing the load, showed a ~60% recovery. In Tris buffer solution, the initial burst release of calcium and silicate ions from the “core-shell”-type fibers was effectively controlled, and the ions were slowly released after one day. Thus, the mechanical flexibility and ion-release behavior of the composites were drastically improved by the thin PLGA coating.

  4. Estimating long-term volatility parameters for market-consistent models

    African Journals Online (AJOL)

    Contemporary actuarial and accounting practices (APN 110 in the South African context) require the use of market-consistent models for the valuation of embedded investment derivatives. These models have to be calibrated with accurate and up-to-date market data. Arguably, the most important variable in the valuation of ...

  5. A consistent homogenization procedure to obtain few-group cell parameters

    International Nuclear Information System (INIS)

    Pierini, G.

    1979-01-01

    The criterion, according to which one heterogeneous and one homogeneous cell are equivalent if they have the same boundary values of both the flux and the normal components of the current, is used to homogenize radially an axially infinite cylindrical cell, with azimuth independent properties and moderatur adequately described by diffusion theory. The method, which leads to the definition of a full matrix of diffusion coefficients, provides a new and simple definition of the few-group cell parameters, which are nearly independent of the environment. (orig.) [de

  6. Adsorption of a cationic dye (Yellow Basic 28 ontothe calcined mussel shells: Kinetics, Isotherm and Thermodynamic Parameters

    Directory of Open Access Journals (Sweden)

    Imane EL Ouahabi

    2015-11-01

    Full Text Available The aim of this study is to valorise the mussel shells and evaluate the adsorption capacity of calcined mussel shells for the cationic dyes.  The adsorbent was characterized by DRX, FTIR, BET and SEM, respectively. The adsorption of Yellow Basic28 on calcined mussel shells was investigated using the parameters such as concentrations (10-50mg/L, pH (3-10, ionic strength (0-2 mol / L and temperature (288 - 318 °C.  The adsorption rate data were analysed according to the first and second-order kinetic models.  The adsorption kinetics was found to be best represented by the pseudo-second-order kinetic model.  The experimental isotherm data were analyzed using Langmuir, Freundlich, Temkin, Elovich and Dubinin–Radushkevich isotherm equations on the dye-adsorbent system. The experimental data yielded excellent fits with Freundlich isotherm equation (R² = 0.966. It was indicative of the heterogeneity of the adsorption sites on the CMS particles.  Various thermodynamic parameters such as enthalpy of adsorption ΔH°, free energy change ΔG°and entropy ΔS° were estimated.  The positive value of ΔH°(30.321 kJ/mol and negative values of ΔG° (from -5.392 to -2.873 kJ/mol show the process is endothermic and spontaneous.  The negative value of entropy ΔS° (-87.172 J/mol K suggest the decreased randomness at the solid-liquid interface during the adsorption of dyes onto calcined mussel shells.

  7. A consistent approach for the development of a comprehensive data base of time-dependent parameters for concrete engineered barriers

    Energy Technology Data Exchange (ETDEWEB)

    Seetharam, Suresh C; Perko, Janez; Jacques, Diederik [Belgian Nuclear Research Centre SCK-CEN, Mol (Belgium); Mallants, Dirk [CSIRO Land and Water, Urrbrae (Australia)

    2013-07-01

    This paper presents a consistent approach for the development of a comprehensive data base of time-dependent hydraulic and transport parameters for concrete engineered barriers of the future Dessel near surface repository for low level waste. The parameter derivation is based on integration of selected data obtained through an extensive literature review, data from experimental studies on cementitious materials specific for the Dessel repository and numerical modelling using physically-based models of water and mass transport. Best estimate parameter values for assessment calculations are derived, together with source and expert range and their probability density function wherever the data was sufficient. We further discuss a numerical method for up-scaling laboratory derived parameter values to the repository scale; the resulting large-scale effective parameters are commensurate with numerical grids used in models for radionuclide migration. To accommodate different levels of conservatism in the various assessment calculations defined by ONDRAF/NIRAS, several sets of parameter values have been derived based on assumptions that introduce different degrees of conservatism. For pertinent parameters, the time evolution of such properties due to the long-term concrete degradation is also addressed. The implementation of the consistent approach is demonstrated by considering the pore water diffusion coefficient as an example. (authors)

  8. Aqueous-phase synthesis and color-tuning of core/shell/shell inorganic nanocrystals consisting of ZnSe, (Cu, Mn)-doped ZnS, and ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongwan; Yoon, Sujin [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Felix Sunjoo, E-mail: fskim@cau.ac.kr [School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, 156-756 (Korea, Republic of); Kim, Nakjoong, E-mail: kimnj@hanyang.ac.kr [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-06-25

    We report synthesis of colloidal nanocrystals based on ZnSe core, (Cu,Mn)-doped ZnS inner-shell, and ZnS outer-shell by using an eco-friendly method and their optical properties. Synthesis of core/shell/shell nanocrystals was performed by using a one-pot/three-step colloidal method with 3-mercaptopropionic acid as a stabilizer in aqueous phase at low temperature. A double-shell structure was employed with inner-shell as a host for doping and outer-shell as a passivation layer for covering surface defects. Copper and manganese were introduced as single- or co-dopants during inner-shell formation, providing an effective means to control the emission color of the nanocrystals. The synthesized nanocrystals showed fluorescent emission ranging from blue to green, to white, and to orange, adjusted by doping components, amounts, and ratios. The photoluminescence quantum yields of the core/doped-shell/shell nanocrystals approached 36%. - Highlights: • ZnSe/ZnS:(Cu,Ms)/ZnS core/(doped)shell/shell nanocrystals were synthesized in an aqueous phase. • Emission color of nanocrystals was controlled from blue to white to orange by adjusting the atomic ratio of Cu and Mn co-dopants. • Photoluminescence quantum yields of the colloidal nanocrystals approached 36%.

  9. Experimental study on the strength parameter of Quarry Dust mixed Coconut Shell Concrete adding Coconut Fibre

    Science.gov (United States)

    Matangulu Shrestha, Victor; Anandh, S.; Sindhu Nachiar, S.

    2017-07-01

    Concrete is a heterogeneous mixture constitute of cement as the main ingredient with a different mix of fine and coarse aggregate. The massive use of conventional concrete has a shortfall in its key ingredients, natural sand and coarse aggregate, due to increased industrialisation and globalisation. To overcome the shortage of material, an alternate material with similar mechanical properties and composition has to be studied, as replacement of conventional concrete. Coconut shell concrete is a prime option as replacement of key ingredients of conventional concrete as coconut is produced in massive quantity in south East Asia. Coconut shell concrete is lightweight concrete and different research is still ongoing concerning about its mix design and composition in the construction industry. Concrete is weak in tension as compared to compression, hence the fibre is used to refrain the crack in the concrete. Coconut fibre is one of many fibres which can be used in concrete. The main aim of this project is to analyse the use of natural by-products in the construction industry, make light weight concrete and eco-friendly construction. This project concerns with the comparison of the mechanical properties of coconut shell concrete and conventional concrete, replacing fine aggregate with quarry dust using coconut fibre. M25 grade of concrete was adopted and testing of concrete was done at the age of 3, 7 and 28 days. In this concrete mix, sand was replaced completely in volumetric measurement by quarry dust. The result was analysed and compared with addition of coconut fibre at varying percentage of 1%, 2%, 3%, 4% and 5%. From the test conducted, coconut shell concrete with quarry dust has the maximum value at 4% of coconut fibre while conventional concrete showed the maximum value at 2% of coconut fibre.

  10. A Study on the Pyrolysis of Peanut Shells at Different Isothermal Conditions and Determination of the Kinetic Parameters

    Directory of Open Access Journals (Sweden)

    Şeyda Taşar

    2015-12-01

    Full Text Available The pyrolysis process, which is applied for the aim of producing energy and raw materials which are implemented for the chemical industry from biomass sources, is a thermal conversion process. Determination of the pyrolysis kinetic parameters are important In order to suitable equipment and process design. In this target, in the study the pyrolysis of peanut shells was conducted in a muffle furnace at static atmosphere with temperatures ranging from 300-700 °C. The effects of various parameters on the rate of thermal decomposition rate and the solid yield were determined. The parameters of interest were temperature 300-700 °C, particle size 4-50 mesh, pelletizing, and pelletizing pressure 1.103-5.103 kgf/cm2. Regression coefficients for the total decomposition step were obtained using the thermographs were obtained as a result of the pyrolysis of the peanut shells, and 20 different theoretical model equations that represented the degradation by the Coast-Redfern method. According to regression coefficients of the theoretical model equations, we determined the kinetic model that best represented the degradation. Using this model to represent the degradation, the activation energy (Ea and Arhenius frequency factor ln(A for the total reaction were calculated to be 38.245 kJ/mol and 8.124, respectively.

  11. On the SCA-description of the energy- and impact parameter dependence of K-shell ionization cross sections

    International Nuclear Information System (INIS)

    Trautmann, D.; Kauer, T.

    1989-01-01

    We present the application of the SCA-model to impact-parameter and energy-dependent K-shell ionization cross sections for several projectile-target combinations. Then we discuss the successes and failures of the SCA-description and investigate the additional approximations still existing in this approach. It is shown that after the introduction of a fully time-dependent perturbed electronic boundstate wave function many of the former discrepancies between experiment and theory can be resolved and in general very good agreement is obtained. (orig.)

  12. Shell Effect and Temperature Influence on Nuclear Level Density Parameter: the role of the effective mass interaction

    International Nuclear Information System (INIS)

    Queipo-Ruiz, J.; Guzman-Martinez, F.; Rodriguez-Hoyos, O.

    2011-01-01

    The level density parameter is a very important ingredient in statistic study of nuclear reaction, it has been studied to low energies excitation E < 2MeV where it values is approximately constant, experimental results to energies of excitation more than 2 MeV has been obtained of evaporation spectrum, to nuclei with A=160. In this work we present a calculation of densities level parameter, for a wide range of mass and temperature, taking in accounts the shell effects and the mass effective interaction. The result has been carried out within the semi classical approximation, for the single particle level densities. We results have a reasonable agreement with the experimental data available. (Author)

  13. Pre-shelling parameters and conditions that influence the whole kernel out-turn of steam-boiled cashew nuts

    Directory of Open Access Journals (Sweden)

    Babatunde Sunday Ogunsina

    2014-01-01

    Full Text Available This work investigates the effect of moisture content (MC, nut size distribution and steam exposure time (SET on the whole kernel out turn (WKO of cashew nuts during shelling using a 3 x 5 x 4 factorial experiment. Three nut sizes: small (18–22 mm, medium (23–25 mm and large (26–35 mm; five levels of MC: 8.34%, 11.80%, 12.57%, 15.40%, 16.84% (wet basis and four levels of steam exposure time (SET: 28, 30, 32, and 34 min were considered. Nuts were conditioned with warm water to the desired moisture content of 8.34%,11.80%, 12.57%, 15.40% and 16.84% (wb; and steam-boiled at 700 kPa for 28, 30,32, and 34 min. The pre-treated nuts were shelled using a hand-operated cashew nuts shelling machine. The results showed that the single effect of MC, steam exposure time (SET or nut size distribution is not enough for estimating WKO; it is rather by an interaction of these parameters. The optimum WKO of steam-boiled nuts was 91.74%, 90.94% and 87.98% for large, medium and small sized nuts at MC∗SET combination of 8.34%∗30 min, 11.80%∗32 min and 8.34%∗30 min, respectively. Pre-treatment of cashew nuts by steam boiling was found to improve whole kernel out-turn of the cashew nut. Whole kernel out-turn decreased as MC increased, thereby limiting the need for moisture adjustment when nuts are to be processed by steam boiling.

  14. Optimisation of process parameters on thin shell part using response surface methodology (RSM)

    Science.gov (United States)

    Faiz, J. M.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.

    2017-09-01

    This study is carried out to focus on optimisation of process parameters by simulation using Autodesk Moldflow Insight (AMI) software. The process parameters are taken as the input in order to analyse the warpage value which is the output in this study. There are some significant parameters that have been used which are melt temperature, mould temperature, packing pressure, and cooling time. A plastic part made of Polypropylene (PP) has been selected as the study part. Optimisation of process parameters is applied in Design Expert software with the aim to minimise the obtained warpage value. Response Surface Methodology (RSM) has been applied in this study together with Analysis of Variance (ANOVA) in order to investigate the interactions between parameters that are significant to the warpage value. Thus, the optimised warpage value can be obtained using the model designed using RSM due to its minimum error value. This study comes out with the warpage value improved by using RSM.

  15. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Science.gov (United States)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  16. Buckling of thermally fluctuating spherical shells: Parameter renormalization and thermally activated barrier crossing

    Science.gov (United States)

    Baumgarten, Lorenz; Kierfeld, Jan

    2018-05-01

    We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy

  17. Strategy for a consistent selection of radionuclide migration parameters for the Belgian safety and feasibility case-1

    International Nuclear Information System (INIS)

    Bruggeman, C.; Maes, N.; Salah, S.; Brassinnes, S.; Van Geet, M.

    2010-01-01

    ;best estimates'. The 'source range' is the range outside of which the involved parameter is almost certainly not expected to lay, while the 'expert range' is the range inside of which the involved parameter is judged to lay by experts. The expert range is therefore by definition more narrow than the source range, and represents the most 'realistically foreseeable' parameter set based on current knowledge. The source range on the other hand, represents a more 'pessimistic' or 'conservative' parameter set. Given the complexity of the geochemical environment, and the sheer multitude of different well- and ill-defined geochemical processes taking place under such conditions, a complete thermodynamic understanding and description is in reality impossible to achieve. Moreover, the currently considered PA conceptual models are very simple from a geochemical point-of-view, and are not capable to account for this multitude of processes. Therefore, the translation of all these processes to a limited, but relevant, parameter database, is not straightforward. The above observations and limitations make it necessary to derive a sound methodology that can be used for the selection of retention and migration parameters for safety-relevant nuclides. This methodology will strive for thermodynamic consistency, but will take into account practical limitations with regard to the understanding of geochemical processes, the ability to describe them, and the simplifications needed to describe these processes with parameters used for PA. The cornerstone of this methodology involves the drafting of so-called 'phenomenological models'. These models are based on the combined insights gained from: 1) experimental observations of the geochemical behaviour of the different considered radionuclides, 2) thermodynamical reflections with regard to their general geochemical characteristics, 3) geochemical modelling which is used to predict the major

  18. Impact parameter dependence of inner-shell vacancy production in fast ion--atom collisions

    International Nuclear Information System (INIS)

    Randall, R.R.

    1975-01-01

    The impact parameter dependence of the probability for production of K x rays has been measured for oxygen projectiles on copper, chlorine projectiles on aluminum, titanium and copper, and carbon and fluorine projectiles on argon at scaled velocities near 0.5. The O + Cu data was taken at incident energies of 1.56, 1.88 and 2.69 MeV/amu for the O bombardment of thin Cu foils. The Cl ions had incident energies of 0.6 and 0.85 MeV/amu upon thin foils of Al, Ti, and Cu. A thin Ar gas target was used for 1.58 MeV/amu C and F beams, permitting measurements to be made for charge-pure C 4+ , C 6+ , F 5+ and F 9+ projectiles. Cu, Cl and Ar K x rays were observed with a Si(Li) detector and scattered particles were counted using a masked surface-barrier detector. Comparison of the shapes of the measured probability curves with predictions of the semiclassical Coulomb approximation (SCA) shows adequate agreement for the O + Cu system. For the higher ratio of projectile to target nuclear charge (Z 1 /Z 2 ) of the Cl + Al, Ti, Cu and C, F + Ar systems, the SCA and Brinkman--Kramers (BK) model for charge transfer fail to predict the measured curves. In particular, the SCA and BK fail to account for large vacancy production probabilities at large impact parameters (larger than the Slater-screened Bohr radii of the K electrons). Further, the dependence of the shapes of the measured curves on the charge state of the incident projectile is pronounced for the cases having the larger Z 1 /Z 2 values. Alternative models are discussed in an attempt to account for the observed behavior

  19. Comparison of Pixel-Based and Object-Based Classification Using Parameters and Non-Parameters Approach for the Pattern Consistency of Multi Scale Landcover

    Science.gov (United States)

    Juniati, E.; Arrofiqoh, E. N.

    2017-09-01

    Information extraction from remote sensing data especially land cover can be obtained by digital classification. In practical some people are more comfortable using visual interpretation to retrieve land cover information. However, it is highly influenced by subjectivity and knowledge of interpreter, also takes time in the process. Digital classification can be done in several ways, depend on the defined mapping approach and assumptions on data distribution. The study compared several classifiers method for some data type at the same location. The data used Landsat 8 satellite imagery, SPOT 6 and Orthophotos. In practical, the data used to produce land cover map in 1:50,000 map scale for Landsat, 1:25,000 map scale for SPOT and 1:5,000 map scale for Orthophotos, but using visual interpretation to retrieve information. Maximum likelihood Classifiers (MLC) which use pixel-based and parameters approach applied to such data, and also Artificial Neural Network classifiers which use pixel-based and non-parameters approach applied too. Moreover, this study applied object-based classifiers to the data. The classification system implemented is land cover classification on Indonesia topographic map. The classification applied to data source, which is expected to recognize the pattern and to assess consistency of the land cover map produced by each data. Furthermore, the study analyse benefits and limitations the use of methods.

  20. Grüneisen Parameter and Thermal Expansion by the Self-Consistent Renormalization Theory of Spin Fluctuations

    Science.gov (United States)

    Watanabe, Shinji; Miyake, Kazumasa

    2018-03-01

    The thermal expansion coefficient α and the Grüneisen parameter Γ near the magnetic quantum critical point (QCP) are derived on the basis of the self-consistent renormalization (SCR) theory of spin fluctuations. From the SCR entropy, the specific heat CV, α, and Γ are shown to be expressed in a simple form as CV = Ca - Cb, α = αa + αb, and Γ = Γa + Γb, respectively, where Ci, αi, and Γi (i = a, b) are related with each other. As the temperature T decreases, Ca, αb, and Γb become dominant in CV, α, and Γ, respectively. The inverse susceptibility of spin fluctuation coupled to the volume V in Γb is found to give rise to the divergence of Γ at the QCP for each class of ferromagnetism and antiferromagnetism (AFM) in spatial dimensions d = 3 and 2. This V-dependent inverse susceptibility in αb and Γb contributes to the T dependences of α and Γ, and even affects their criticality in the case of the AFM QCP in d = 2. Γa is expressed as Γ a(T = 0) = - V/T0( {partial T0}/{partial V} )T = 0 with T0 being the characteristic temperature of spin fluctuation, which has an enhanced value in heavy electron systems.

  1. VERIFYING ASTEROSEISMICALLY DETERMINED PARAMETERS OF KEPLER STARS USING HIPPARCOS PARALLAXES: SELF-CONSISTENT STELLAR PROPERTIES AND DISTANCES

    Energy Technology Data Exchange (ETDEWEB)

    Silva Aguirre, V.; Chaplin, W. J.; Bedding, T. R.; Christensen-Dalsgaard, J.; Kjeldsen, H. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Casagrande, L. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Basu, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Campante, T. L.; Monteiro, M. J. P. F. G. [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Huber, D. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Miglio, A.; Elsworth, Y.; Hekker, S. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Serenelli, A. M.; Garcia, R. A.; Mathur, S. [Kavli Institute for Theoretical Physics, Santa Barbara, CA 93106 (United States); Ballot, J. [CNRS, Institut de Recherche en Astrophysique et Planetologie, 14 avenue Edouard Belin, F-31400 Toulouse (France); Creevey, O. L. [Laboratoire Lagrange, UMR 7293, Universite de Nice Sophia-Antipolis, CNRS, Observatoire de la Cote dAzur, F-06304 Nice Cedex 4 (France); Gilliland, R. L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA (United States); Metcalfe, T. S. [Space Science Institute, Boulder, CO 80301 (United States); and others

    2012-09-20

    Accurately determining the properties of stars is of prime importance for characterizing stellar populations in our Galaxy. The field of asteroseismology has been thought to be particularly successful in such an endeavor for stars in different evolutionary stages. However, to fully exploit its potential, robust methods for estimating stellar parameters are required and independent verification of the results is mandatory. With this purpose, we present a new technique to obtain stellar properties by coupling asteroseismic analysis with the InfraRed Flux Method. By using two global seismic observables and multi-band photometry, the technique allows us to obtain masses, radii, effective temperatures, bolometric fluxes, and hence distances for field stars in a self-consistent manner. We apply our method to 22 solar-like oscillators in the Kepler short-cadence sample, that have accurate Hipparcos parallaxes. Our distance determinations agree to better than 5%, while measurements of spectroscopic effective temperatures and interferometric radii also validate our results. We briefly discuss the potential of our technique for stellar population analysis and models of Galactic Chemical Evolution.

  2. Determination of K shell absorption jump factors and jump ratios in the elements between Tm(Z = 69) and Os(Z = 76) by measuring K shell fluorescence parameters

    International Nuclear Information System (INIS)

    Kaya, N.; Tirasoglu, E.; Apaydin, G.

    2008-01-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm (Z = 69) and Os(Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57 Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number

  3. Protein-stabilized fluorescent nanocrystals consisting of a gold core and a silver shell for detecting the total amount of cysteine and homocysteine

    International Nuclear Information System (INIS)

    Gui, Rijun; Wang, Yanfeng; Sun, Jie

    2014-01-01

    We report on a simple and sensitive method for the determination of the total amount of cysteine (Cys) and homocysteine (hCys), [Cys plus hCys], by exploiting the effect of Cys and hCys on the photoluminescence of human serum albumin-stabilized gold-core silver-shell nanocrystals (NCs). If Cys (or hCys) are added to these NCs, Cys (or hCys) will be adsorbed on the surface due to ligand exchange with human serum albumin, and this results in the quenching of the luminescence of the NCs. The addition of mixtures of Cys and hCys in different molar ratios also induces a decrease in luminescence whose intensity is linearly related to the concentration of [Cys plus hCys] in the range from 0.1 – 5.0 μM, with a correlation coefficient (R 2 ) of 0.9953 and a detection limit of 15 nM. The method is highly selective and sensitive over other α-amino acids, water-soluble thiols, and biomolecules. It has been successfully applied to the determination of the concentration of [Cys plus hCys] in spiked solutions of biomolecules and in real biological samples (author)

  4. Shell Venster

    International Nuclear Information System (INIS)

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  5. The effects of moisture content, particle size and binding agent content on oil palm shell pellet quality parameters

    Directory of Open Access Journals (Sweden)

    Nelson Arzola

    2012-01-01

    Full Text Available Waste-to-energy represents a challenge for the oil palm industry worldwide. Bio-pellet production is an alternative way of adding value to oil palm biomass. This would mean that a product having major energy density becomes more mechanically stable and achieves better performance during combustion. This paper deals with oil palm shell pelleting; using binding agents having up to 25% mass keeping average particle size less than 1mm and moisture content up to 18.7% (d.b. were evaluated. An experimental factorial design used binding agent mass percentage, milled shell particle size and moisture content as factors. Pellet density response surfaces and durability index were obtained. Pellet performance during thermal-chemical transformation was also evaluated by using thermogravimetry equipment. The results led to technical evaluation of scale-up at industrial production level.

  6. Physical inversion of the full IASI spectra: Assessment of atmospheric parameters retrievals, consistency of spectroscopy and forward modelling

    International Nuclear Information System (INIS)

    Liuzzi, G.; Masiello, G.; Serio, C.; Venafra, S.; Camy-Peyret, C.

    2016-01-01

    Spectra observed by the Infrared Atmospheric Sounder Interferometer (IASI) have been used to assess both retrievals and the spectral quality and consistency of current forward models and spectroscopic databases for atmospheric gas line and continuum absorption. The analysis has been performed with thousands of observed spectra over sea surface in the Pacific Ocean close to the Mauna Loa (Hawaii) validation station. A simultaneous retrieval for surface temperature, atmospheric temperature, H_2O, HDO, O_3 profiles and gas average column abundance of CO_2, CO, CH_4, SO_2, N_2O, HNO_3, NH_3, OCS and CF_4 has been performed and compared to in situ observations. The retrieval system considers the full IASI spectrum (all 8461 spectral channels on the range 645–2760 cm"−"1). We have found that the average column amount of atmospheric greenhouse gases can be retrieved with a precision better than 1% in most cases. The analysis of spectral residuals shows that, after inversion, they are generally reduced to within the IASI radiometric noise. However, larger residuals still appear for many of the most abundant gases, namely H_2O, CH_4 and CO_2. The H_2O ν_2 spectral region is in general warmer (higher radiance) than observations. The CO_2ν_2 and N_2O/CO_2ν_3 spectral regions now show a consistent behavior for channels, which are probing the troposphere. Updates in CH_4 spectroscopy do not seem to improve the residuals. The effect of isotopic fractionation of HDO is evident in the 2500–2760 cm"−"1 region and in the atmospheric window around 1200 cm"−"1. - Highlights: • This is the first work that uses the full IASI spectrum. This aspect is new and unique. • Simultaneous retrieval of the average amount of CO_2, N_2O, CO, CH_4, SO_2, HNO_3, NH_3, OCS and CF_4, T, H_2O, HDO, O_3 profiles, and T_s. • Assessment of spectroscopy consistency over the full IASI spectrum (645 to 2760 cm"−"1). • Two-year record of IASI retrievals are available on request, compared

  7. Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for Tc.

    Science.gov (United States)

    Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon

    2015-07-24

    Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between d(x(2)-y(2)) and d(3z(2)-r(2)) is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc.

  8. Effect of ultrasonic treatment on reduction of Esherichia coli ATCC 25922 and egg quality parameters in experimentally contaminated hens' shell eggs.

    Science.gov (United States)

    Sert, Durmus; Aygun, Ali; Torlak, Emrah; Mercan, Emin

    2013-09-01

    In this study, hen eggs which were experimentally contaminated with Esherichia coli ATCC 25922 were used. Contaminated eggs were washed statically (S5 to S30; 0 kHz) and by ultrasonic waves (U5 to U30; 35 kHz) for given applications of time (5, 15 and 30 min), then the eggs were stored at 22°C for 14 days. Depending on the time of ultrasonic application, a significant increase in egg shell strength (P eggs which were washed by ultrasonic waves. Yolk width values of ultrasonic washed eggs diminished. E. coli was completely removed by 30 min of ultrasonic application. During storage E. coli growth was not detected on the eggs which were washed by ultrasonic waves except the eggs in U5 group (2.04 log CFU eggshell⁻¹) on the first day of storage. Depending on the time of ultrasonic application a significant increase in egg quality parameters (shell strength, albumen height, Haugh units, and yolk height) were observed. The application of ultrasound led to a significant reduction in E. coli numbers on egg shells. © 2013 Society of Chemical Industry.

  9. Interface Consistency

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen

    1998-01-01

    This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....

  10. Optimisation of process parameters on thin shell part using response surface methodology (RSM) and genetic algorithm (GA)

    Science.gov (United States)

    Faiz, J. M.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    This study conducts the simulation on optimisation of injection moulding process parameters using Autodesk Moldflow Insight (AMI) software. This study has applied some process parameters which are melt temperature, mould temperature, packing pressure, and cooling time in order to analyse the warpage value of the part. Besides, a part has been selected to be studied which made of Polypropylene (PP). The combination of the process parameters is analysed using Analysis of Variance (ANOVA) and the optimised value is obtained using Response Surface Methodology (RSM). The RSM as well as Genetic Algorithm are applied in Design Expert software in order to minimise the warpage value. The outcome of this study shows that the warpage value improved by using RSM and GA.

  11. The effect of multi-directional nanocomposite materials on the vibrational response of thick shell panels with finite length and rested on two-parameter elastic foundations

    Science.gov (United States)

    Tahouneh, Vahid; Naei, Mohammad Hasan

    2016-03-01

    The main purpose of this paper is to investigate the effect of bidirectional continuously graded nanocomposite materials on free vibration of thick shell panels rested on elastic foundations. The elastic foundation is considered as a Pasternak model after adding a shear layer to the Winkler model. The panels reinforced by randomly oriented straight single-walled carbon nanotubes are considered. The volume fractions of SWCNTs are assumed to be graded not only in the radial direction, but also in axial direction of the curved panel. This study presents a 2-D six-parameter power-law distribution for CNTs volume fraction of 2-D continuously graded nanocomposite that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. The benefit of using generalized power-law distribution is to illustrate and present useful results arising from symmetric, asymmetric and classic profiles. The material properties are determined in terms of local volume fractions and material properties by Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient numerical tool is used to discretize governing equations and to implement boundary conditions. The fast rate of convergence of the method is shown and results are compared against existing results in literature. Some new results for natural frequencies of the shell are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded nanocomposite volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded nanocomposite materials.

  12. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    Science.gov (United States)

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  13. TU-FG-201-03: Automatic Pre-Delivery Verification Using Statistical Analysis of Consistencies in Treatment Plan Parameters by the Treatment Site and Modality

    International Nuclear Information System (INIS)

    Liu, S; Wu, Y; Chang, X; Li, H; Yang, D

    2016-01-01

    Purpose: A novel computer software system, namely APDV (Automatic Pre-Delivery Verification), has been developed for verifying patient treatment plan parameters right prior to treatment deliveries in order to automatically detect and prevent catastrophic errors. Methods: APDV is designed to continuously monitor new DICOM plan files on the TMS computer at the treatment console. When new plans to be delivered are detected, APDV checks the consistencies of plan parameters and high-level plan statistics using underlying rules and statistical properties based on given treatment site, technique and modality. These rules were quantitatively derived by retrospectively analyzing all the EBRT treatment plans of the past 8 years at authors’ institution. Therapists and physicists will be notified with a warning message displayed on the TMS computer if any critical errors are detected, and check results, confirmation, together with dismissal actions will be saved into database for further review. Results: APDV was implemented as a stand-alone program using C# to ensure required real time performance. Mean values and standard deviations were quantitatively derived for various plan parameters including MLC usage, MU/cGy radio, beam SSD, beam weighting, and the beam gantry angles (only for lateral targets) per treatment site, technique and modality. 2D-based rules of combined MU/cGy ratio and averaged SSD values were also derived using joint probabilities of confidence error ellipses. The statistics of these major treatment plan parameters quantitatively evaluate the consistency of any treatment plans which facilitates automatic APDV checking procedures. Conclusion: APDV could be useful in detecting and preventing catastrophic errors immediately before treatment deliveries. Future plan including automatic patient identify and patient setup checks after patient daily images are acquired by the machine and become available on the TMS computer. This project is supported by the

  14. TU-FG-201-03: Automatic Pre-Delivery Verification Using Statistical Analysis of Consistencies in Treatment Plan Parameters by the Treatment Site and Modality

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S; Wu, Y; Chang, X; Li, H; Yang, D [Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: A novel computer software system, namely APDV (Automatic Pre-Delivery Verification), has been developed for verifying patient treatment plan parameters right prior to treatment deliveries in order to automatically detect and prevent catastrophic errors. Methods: APDV is designed to continuously monitor new DICOM plan files on the TMS computer at the treatment console. When new plans to be delivered are detected, APDV checks the consistencies of plan parameters and high-level plan statistics using underlying rules and statistical properties based on given treatment site, technique and modality. These rules were quantitatively derived by retrospectively analyzing all the EBRT treatment plans of the past 8 years at authors’ institution. Therapists and physicists will be notified with a warning message displayed on the TMS computer if any critical errors are detected, and check results, confirmation, together with dismissal actions will be saved into database for further review. Results: APDV was implemented as a stand-alone program using C# to ensure required real time performance. Mean values and standard deviations were quantitatively derived for various plan parameters including MLC usage, MU/cGy radio, beam SSD, beam weighting, and the beam gantry angles (only for lateral targets) per treatment site, technique and modality. 2D-based rules of combined MU/cGy ratio and averaged SSD values were also derived using joint probabilities of confidence error ellipses. The statistics of these major treatment plan parameters quantitatively evaluate the consistency of any treatment plans which facilitates automatic APDV checking procedures. Conclusion: APDV could be useful in detecting and preventing catastrophic errors immediately before treatment deliveries. Future plan including automatic patient identify and patient setup checks after patient daily images are acquired by the machine and become available on the TMS computer. This project is supported by the

  15. A systematic approach to evaluate parameter consistency in the inlet stream of source separated biowaste composting facilities: A case study in Colombia.

    Science.gov (United States)

    Oviedo-Ocaña, E R; Torres-Lozada, P; Marmolejo-Rebellon, L F; Torres-López, W A; Dominguez, I; Komilis, D; Sánchez, A

    2017-04-01

    Biowaste is commonly the largest fraction of municipal solid waste (MSW) in developing countries. Although composting is an effective method to treat source separated biowaste (SSB), there are certain limitations in terms of operation, partly due to insufficient control to the variability of SSB quality, which affects process kinetics and product quality. This study assesses the variability of the SSB physicochemical quality in a composting facility located in a small town of Colombia, in which SSB collection was performed twice a week. Likewise, the influence of the SSB physicochemical variability on the variability of compost parameters was assessed. Parametric and non-parametric tests (i.e. Student's t-test and the Mann-Whitney test) showed no significant differences in the quality parameters of SSB among collection days, and therefore, it was unnecessary to establish specific operation and maintenance regulations for each collection day. Significant variability was found in eight of the twelve quality parameters analyzed in the inlet stream, with corresponding coefficients of variation (CV) higher than 23%. The CVs for the eight parameters analyzed in the final compost (i.e. pH, moisture, total organic carbon, total nitrogen, C/N ratio, total phosphorus, total potassium and ash) ranged from 9.6% to 49.4%, with significant variations in five of those parameters (CV>20%). The above indicate that variability in the inlet stream can affect the variability of the end-product. Results suggest the need to consider variability of the inlet stream in the performance of composting facilities to achieve a compost of consistent quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Experimental impact-parameter--dependent probabilities for K-shell vacancy production by fast heavy-ion projectiles

    International Nuclear Information System (INIS)

    Randall, R.R.; Bednar, J.A.; Curnutte, B.; Cocke, C.L.

    1976-01-01

    The impact-parameter dependence of the probability for production of target K x rays has been measured for oxygen projectiles on copper and for carbon and fluorine projectiles on argon at scaled velocities near 0.5. The O-on-Cu data were taken for 1.56-, 1.88-, and 2.69-MeV/amu O beams incident upon thin Cu foils. A thin Ar-gas target was used for 1.56-MeV/amu C and F beams, permitting measurements to be made for charge-pure C +4 , C +6 , F +9 and F +5 projectiles. Ar and Cu K x rays were observed with a Si(Li) detector and scattered projectiles with a collimated surface-barrier detector. Comparison of the shapes of the measured K-vacancy--production probability curves with predictions of the semiclassical Coulomb approximation (SCA) shows adequate agreement for the O-on-Cu system. For the higher ratio of projectile-to-target nuclear charge (Z 1 /Z 2 ) characterizing the C-on-Ar and F-on-Ar systems, the SCA predictions are entirely inadequate in describing the observed impact-parameter dependence. In particular, they cannot account for large probabilities found at large impact parameters. Furthermore, the dependence of the shapes on the projectile charge state is found to become pronounced at larger Z 1 /Z 2 . Attempts to account for this behavior in terms of alternative vacancy-production processes are discussed

  17. An Improved Cognitive Model of the Iowa and Soochow Gambling Tasks With Regard to Model Fitting Performance and Tests of Parameter Consistency

    Directory of Open Access Journals (Sweden)

    Junyi eDai

    2015-03-01

    Full Text Available The Iowa Gambling Task (IGT and the Soochow Gambling Task (SGT are two experience-based risky decision-making tasks for examining decision-making deficits in clinical populations. Several cognitive models, including the expectancy-valence learning model (EVL and the prospect valence learning model (PVL, have been developed to disentangle the motivational, cognitive, and response processes underlying the explicit choices in these tasks. The purpose of the current study was to develop an improved model that can fit empirical data better than the EVL and PVL models and, in addition, produce more consistent parameter estimates across the IGT and SGT. Twenty-six opiate users (mean age 34.23; SD 8.79 and 27 control participants (mean age 35; SD 10.44 completed both tasks. Eighteen cognitive models varying in evaluation, updating, and choice rules were fit to individual data and their performances were compared to that of a statistical baseline model to find a best fitting model. The results showed that the model combining the prospect utility function treating gains and losses separately, the decay-reinforcement updating rule, and the trial-independent choice rule performed the best in both tasks. Furthermore, the winning model produced more consistent individual parameter estimates across the two tasks than any of the other models.

  18. A generic double-curvature piezoelectric shell energy harvester: Linear/nonlinear theory and applications

    Science.gov (United States)

    Zhang, X. F.; Hu, S. D.; Tzou, H. S.

    2014-12-01

    Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.

  19. Use of Covariances in a Consistent Data Assimilation for Improvement of Basic Nuclear Parameters in Nuclear Reactor Applications: From Meters to Femtometers

    International Nuclear Information System (INIS)

    Herman, Mike; Hoblit, Sam; Gustavo, Nobre; Palumbo, Annalia; Pigni, M.T.; Palmiotti, G.; Hiruta, H.; Salvatores

    2013-01-01

    neutron energy spectrum that are adopted in the assimilation (adjustment). In fact, after such an adjustment is performed, neutronic designers are then tied to this energy group structure and neutron energy spectrum when carrying out further calculations. In reality, this can be quite a limiting factor in view of the complex spectral issues that are involved in most reactor physics. This work combines novel, but proven, methodologies for overcoming these limitations. In fact, this is the first attempt to build up a link between the wealth of precise integral experiments and a basic theory of nuclear reactions. Essential ingredients of such a procedure, denominated here as assimilation, are covariances for model parameters and sensitivity matrices. The latter provide direct link between reaction theory and integral experiments. The result is a consistent data assimilation performed directly on the basic nuclear physics parameters that are being used in a variety of nuclear reaction mechanisms. The resulting improvement in their performance will consequently reduce related uncertainties when employed in reactor calculations. By using integral reactor physics experiments (meter scale), information is propagated back to the nuclear physics level (femtometers) covering a range of more than 13 orders of magnitude. The assimilation procedure should result in more accurate and more reliable evaluated data files of universal validity rather than tailored to a particular application. In fact, after data assimilation is carried out, the basic nuclear data file can be processed by a dedicated code into any energy group structure that the reactor physicist deems to be useful. On the other hand, integral experiments used in the assimilation should provide additional, possibly quite strict, constraints on the parameters entering nuclear reaction modeling, as well as the reaction models themselves. This report describes three years of combined research by Brookhaven National Lab (BNL

  20. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  1. Self-consistent study of nuclei far from stability with the energy density method

    CERN Document Server

    Tondeur, F

    1981-01-01

    The self-consistent energy density method has been shown to give good results with a small number of parameters for the calculation of nuclear masses, radii, deformations, neutron skins, shell and sub- shell effects. It is here used to study the properties of nuclei far from stability, like densities, shell structure, even-odd mass differences, single-particle potentials and nuclear deformations. A few possible consequences of the results for astrophysical problems are briefly considered. The predictions of the model in the super- heavy region are summarised. (34 refs).

  2. Post buckling of three dimensional shells

    International Nuclear Information System (INIS)

    Hoffmann, A.; Combescure, A.; Verpeaux, A.

    1984-10-01

    The paper presented here gives a general description of the methods currently used in the CEASEMT System Computer Codes for the non linear analysis of thin shells. For post buckling two methods are presented: the first one is a controlled step by step calculation in order to obtain the load-displacement curve. The second consist of the calculation of a global parameter based on energetic consideration, which can be easily interpreted as a time of collapse of the structure. When dynamic loads are concerned like seismic loads this parameter can be very useful. Some examples are given and compared with experimental values

  3. Thin-shell wormholes in dilaton gravity

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2005-01-01

    In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed

  4. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  5. Sidewall coring shell

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Ya A; Konstantinov, L P; Martyshin, A N

    1966-12-12

    A sidewall coring shell consists of a housing and a detachable core catcher. The core lifter is provided with projections, the ends of which are situated in another plane, along the longitudinal axis of the lifter. The chamber has corresponding projections.

  6. A parameter optimization tool for evaluating the physical consistency of the plot-scale water budget of the integrated eco-hydrological model GEOtop in complex terrain

    Science.gov (United States)

    Bertoldi, Giacomo; Cordano, Emanuele; Brenner, Johannes; Senoner, Samuel; Della Chiesa, Stefano; Niedrist, Georg

    2017-04-01

    In mountain regions, the plot- and catchment-scale water and energy budgets are controlled by a complex interplay of different abiotic (i.e. topography, geology, climate) and biotic (i.e. vegetation, land management) controlling factors. When integrated, physically-based eco-hydrological models are used in mountain areas, there are a large number of parameters, topographic and boundary conditions that need to be chosen. However, data on soil and land-cover properties are relatively scarce and do not reflect the strong variability at the local scale. For this reason, tools for uncertainty quantification and optimal parameters identification are essential not only to improve model performances, but also to identify most relevant parameters to be measured in the field and to evaluate the impact of different assumptions for topographic and boundary conditions (surface, lateral and subsurface water and energy fluxes), which are usually unknown. In this contribution, we present the results of a sensitivity analysis exercise for a set of 20 experimental stations located in the Italian Alps, representative of different conditions in terms of topography (elevation, slope, aspect), land use (pastures, meadows, and apple orchards), soil type and groundwater influence. Besides micrometeorological parameters, each station provides soil water content at different depths, and in three stations (one for each land cover) eddy covariance fluxes. The aims of this work are: (I) To present an approach for improving calibration of plot-scale soil moisture and evapotranspiration (ET). (II) To identify the most sensitive parameters and relevant factors controlling temporal and spatial differences among sites. (III) Identify possible model structural deficiencies or uncertainties in boundary conditions. Simulations have been performed with the GEOtop 2.0 model, which is a physically-based, fully distributed integrated eco-hydrological model that has been specifically designed for mountain

  7. Active constrained layer damping treatments for shell structures: a deep-shell theory, some intuitive results, and an energy analysis

    Science.gov (United States)

    Shen, I. Y.

    1997-02-01

    This paper studies vibration control of a shell structure through use of an active constrained layer (ACL) damping treatment. A deep-shell theory that assumes arbitrary Lamé parameters 0964-1726/6/1/011/img1 and 0964-1726/6/1/011/img2 is first developed. Application of Hamilton's principle leads to the governing Love equations, the charge equation of electrostatics, and the associated boundary conditions. The Love equations and boundary conditions imply that the control action of the ACL for shell treatments consists of two components: free-end boundary actuation and membrane actuation. The free-end boundary actuation is identical to that of beam and plate ACL treatments, while the membrane actuation is unique to shell treatments as a result of the curvatures of the shells. In particular, the membrane actuation may reinforce or counteract the boundary actuation, depending on the location of the ACL treatment. Finally, an energy analysis is developed to determine the proper control law that guarantees the stability of ACL shell treatments. Moreover, the energy analysis results in a simple rule predicting whether or not the membrane actuation reinforces the boundary actuation.

  8. Nonsynonymous substitution rate (Ka is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2011-02-01

    /Ks, can be used as a parameter to sort genes by evolution rate and can also provide a way to categorize common protein functions and define their interaction networks, either pair-wise or in defined lineages or subgroups. Evaluating gene evolution based on Ka and Ks calculations can be done with large datasets, such as mammalian genomes. Reviewers This article has been reviewed by Drs. Anamaria Necsulea (nominated by Nicolas Galtier, Subhajyoti De (nominated by Sarah Teichmann and Claus O. Wilke.

  9. Shells on elastic foundations

    International Nuclear Information System (INIS)

    Das, Y.C.; Kedia, K.K.

    1977-01-01

    No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)

  10. Post buckling of three dimensional shells

    International Nuclear Information System (INIS)

    Hoffman, A.; Combescure, A.; Verpeaux, A.

    1984-01-01

    The paper presented here gives a general description of the methods currently used in the CEASEMT System Computer Codes for the non linear analysis of thin shells. For post buckling two methods are presented: the first one is a controlled step by step calculation in order to obtain the load-displacement curve. The second consist of the calculation of a global parameter based on energetic consideration, which can be easily interpreted as a time of collapse of the structure. Some examples are given and compared with experimental values. (Author) [pt

  11. Pressure Shell Approach to Integrated Environmental Protection

    Science.gov (United States)

    Kennedy, Kriss J.

    2011-01-01

    The next generation of exploration mission human systems will require environmental protection such as radiation protection that is effective and efficient. In order to continue human exploration, habitat systems will require special shells to protect astronauts from hostile environments. The Pressure Shell Approach to integrated environmental (radiation) protection is a multi-layer shell that can be used for multifunctional environmental protection. Self-healing, self-repairing nano technologies and sensors are incorporated into the shell. This shell consists of multiple layers that can be tailored for specific environmental protection needs. Mainly, this innovation focuses on protecting crew from exposure to micrometeorites, thermal, solar flares, and galactic cosmic ray (GCR) radiation. The Pressure Shell Approach consists of a micrometeoroid and secondary ejecta protection layer; a thin, composite shell placed in between two layers that is non-structural; an open cavity layer that can be filled with water, regolith, or polyethylene foam; a thicker composite shell that is a structural load bearing that is placed between two layers; and a bladder coating on the interior composite shell. This multi-layer shell creates an effective radiation protection system. Most of its layers can be designed with the materials necessary for specific environments. In situ materials such as water or regolith can be added to the shell design for supplemental radiation protection.

  12. Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2016-01-01

    Highlights: • The parameter effect on the performance of PCTES unit using fins is reported. • The configurations of PCTES unit using fins in optimum performance are suggested. • Two parameters to indicate the effects of PCM and tube material properties are found. • The working conditions of PCTES unit using fins in optimum performance are analyzed. - Abstract: The performance of a phase change thermal energy storage (PCTES) unit using circular finned tube is affected by many parameters. Thorough studies of the parameter effect on the performance of PCTES unit are strongly required in its optimum design process. Based on a reported energy efficiency ratio and a newly defined parameter named the heat storage rate, the parameter effect on the performance of PCTES unit using circular finned tube is numerically investigated. When the fin pitch is greater than 4 times of the inner radius of the tube, the fin height and the fin thickness have little effect on the energy efficiency ratio and the heat storage rate. When the fin pitch is small, the performance of PCTES unit becomes better using large fin height and width. The energy efficiency ratio and the heat storage rate are more sensitive to the outer tube diameter. The performance of PCTES unit using circular finned tube is best when water is used as the heat transfer fluid (HTF). When the fluid flow of HTF is in a laminar state, the energy efficiency ratio and the heat storage rate are larger than that in a turbulent state.

  13. Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: A multi-institution clinical study

    International Nuclear Information System (INIS)

    Tao, Chang-Juan; Yi, Jun-Lin; Chen, Nian-Yong; Ren, Wei; Cheng, Jason; Tung, Stewart; Kong, Lin; Lin, Shao-Jun; Pan, Jian-Ji; Zhang, Guang-Shun; Hu, Jiang; Qi, Zhen-Yu; Ma, Jun; Lu, Jia-De; Yan, Di; Sun, Ying

    2015-01-01

    Background and purpose: To assess whether consensus guideline-based atlas-based auto-segmentation (ABAS) reduces interobserver variation and improves dosimetric parameter consistency for organs at risk (OARs) in nasopharyngeal carcinoma (NPC). Materials and methods: Eight radiation oncologists from 8 institutes contoured 20 OARs on planning CT images of 16 patients via manual contouring and manually-edited ABAS contouring. Interobserver variation [volume coefficient of variation (CV), Dice similarity coefficient (DSC), three-dimensional isocenter difference (3D-ICD)] and dosimetric parameters were compared between the two methods of contouring for each OAR. Results: Interobserver variation was significant for all OARs in manual contouring, resulting in significant dosimetric parameter variation (P < 0.05). Edited ABAS significantly improved multiple metrics and reduced dosimetric parameter variation for most OARs; brainstem, spinal cord, cochleae, temporomandibular joint (TMJ), larynx and pharyngeal constrictor muscle (PCM) obtained most benefit (range of mean DSC, volume CV and main ICD values was 0.36–0.83, 12.1–84.3%, 2.2–5.0 mm for manual contouring and 0.42–0.86, 7.2–70.6%, 1.2–3.5 mm for edited ABAS contouring, respectively; range of dose CV reduction: 1.0–3.0%). Conclusion: Substantial objective interobserver differences occur during manual contouring, resulting in significant dosimetric parameter variation. Edited ABAS reduced interobserver variation and improved dosimetric parameter consistency, particularly for brainstem, spinal cord, cochleae, TMJ, larynx and PCM

  14. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  15. Determination of shell energies. Nuclear deformations and fission barriers

    International Nuclear Information System (INIS)

    Koura, Hiroyuki; Tachibana, Takahiro; Uno, Masahiro; Yamada, Masami.

    1996-01-01

    We have been studying a method of determining nuclear shell energies and incorporating them into a mass formula. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies. We adopt three assumptions, from which the shell energy of a deformed nucleus is deduced to be a weighted sum of spherical shell energies of its neighboring nuclei. This shell energy should be called intrinsic shell energy since the average deformation energy also acts as an effective shell energy. The ground-state shell energy of a deformed nucleus and its equilibrium shape can be obtained by minimizing the sum of these two energies with respect to variation of deformation parameters. In addition, we investigate the existence of fission isomers for heavy nuclei with use of the obtained shell energies. (author)

  16. The direct manipulation shell

    International Nuclear Information System (INIS)

    Allen, M.E.; Christiansen, M.

    1992-01-01

    Accelerator controls systems provide parameter display pages which allow the operator to monitor and manipulate selected control points in the system. Display pages are generally implemented as either hand-crafted, purpose-built programs; or by using a specialized display page layout tool. These two methods of display page development exhibit the classic trade-off between functionality vs. ease of implementation. In the Direct Manipulation Shell we approach the process of developing a display page in a manifestly object-oriented manner. This is done by providing a general framework for interactively instantiating and manipulating display objects. (author)

  17. Maximally localized Wannier functions in LaMnO3 within PBE + U, hybrid functionals and partially self-consistent GW: an efficient route to construct ab initio tight-binding parameters for eg perovskites.

    Science.gov (United States)

    Franchini, C; Kováčik, R; Marsman, M; Murthy, S Sathyanarayana; He, J; Ederer, C; Kresse, G

    2012-06-13

    Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e(g) states of the prototypical Jahn-Teller magnetic perovskite LaMnO(3) at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without the additional on-site Hubbard U term, hybrid DFT and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e(g) tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise 'noninteracting' TB parameters and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.

  18. Region of validity of the Thomas–Fermi model with quantum, exchange and shell corrections

    International Nuclear Information System (INIS)

    Dyachkov, S A; Levashov, P R; Minakov, D V

    2016-01-01

    A novel approach to calculate thermodynamically consistent shell corrections in wide range of parameters is used to predict the region of validity of the Thomas-Fermi approach. Calculated thermodynamic functions of electrons at high density are consistent with the more precise density functional theory. It makes it possible to work out a semi-classical model applicable both at low and high density. (paper)

  19. Core-Shell-Corona Micelles with a Responsive Shell.

    Science.gov (United States)

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  20. Strength Calculation of Locally Loaded Orthotropic Shells

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available The article studies laminated orthotropic cylindrical, conic, spherical, and toroidal shells, which are often locally loaded in the aircraft designs over small areas of their surfaces.The aim of this work is to determine stress concentration in shells versus structure of orthotropic composite material, shell form and parameters, forms of loading areas, which borders do not coincide with lines of main curvatures of shells. For this purpose, an analytical computing algorithm to estimate strength of shells in terms of stress is developed. It enables us to have solution results of the boundary value problem with a controlled error. To solve differential equations an analytical method is used. An algorithm of the boundary value problem solution is multiplicative.The main results of researches are graphs of stress concentration in the orthotropic shells versus their parameters and areas of loading lineated by circles and ellipses.Among the other works aimed at determination of stress concentration in shells, the place of this one is defined by the analytical solution of applied problems for strength estimation in terms of shell stresses of classical forms.The developed effective analytical algorithm to solve the boundary value problem and received results are useful in research and development.

  1. Foam shell project: Progress report

    International Nuclear Information System (INIS)

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-01-01

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 μm thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D 2 or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE

  2. The evolution of mollusc shells.

    Science.gov (United States)

    McDougall, Carmel; Degnan, Bernard M

    2018-05-01

    Molluscan shells are externally fabricated by specialized epithelial cells on the dorsal mantle. Although a conserved set of regulatory genes appears to underlie specification of mantle progenitor cells, the genes that contribute to the formation of the mature shell are incredibly diverse. Recent comparative analyses of mantle transcriptomes and shell proteomes of gastropods and bivalves are consistent with shell diversity being underpinned by a rapidly evolving mantle secretome (suite of genes expressed in the mantle that encode secreted proteins) that is the product of (a) high rates of gene co-option into and loss from the mantle gene regulatory network, and (b) the rapid evolution of coding sequences, particular those encoding repetitive low complexity domains. Outside a few conserved genes, such as carbonic anhydrase, a so-called "biomineralization toolkit" has yet to be discovered. Despite this, a common suite of protein domains, which are often associated with the extracellular matrix and immunity, appear to have been independently and often uniquely co-opted into the mantle secretomes of different species. The evolvability of the mantle secretome provides a molecular explanation for the evolution and diversity of molluscan shells. These genomic processes are likely to underlie the evolution of other animal biominerals, including coral and echinoderm skeletons. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties. © 2018 Wiley Periodicals, Inc.

  3. Structural Consistency, Consistency, and Sequential Rationality.

    OpenAIRE

    Kreps, David M; Ramey, Garey

    1987-01-01

    Sequential equilibria comprise consistent beliefs and a sequentially ra tional strategy profile. Consistent beliefs are limits of Bayes ratio nal beliefs for sequences of strategies that approach the equilibrium strategy. Beliefs are structurally consistent if they are rationaliz ed by some single conjecture concerning opponents' strategies. Consis tent beliefs are not necessarily structurally consistent, notwithstan ding a claim by Kreps and Robert Wilson (1982). Moreover, the spirit of stru...

  4. Optimal designs of mollusk shells from bivalves to snails.

    Science.gov (United States)

    Okabe, Takuya; Yoshimura, Jin

    2017-02-10

    Bivalve, ammonite and snail shells are described by a small number of geometrical parameters. Raup noted that the vast majority of theoretically possible shell forms do not occur in nature. The constraint factors that regulate the biased distribution of natural form have long since been an open problem in evolution. The problem of whether natural shell form is a result of optimization remains unsolved despite previous attempts. Here we solve this problem by considering the scaling exponent of shell thickness as a morphological parameter. The scaling exponent has a drastic effect on the optimal design of shell shapes. The observed characteristic shapes of natural shells are explained in a unified manner as a result of optimal utilization of shell material resources, while isometric growth in thickness leads to impossibly tight coiling.

  5. Isospin symmetry breaking in sd shell nuclei

    International Nuclear Information System (INIS)

    Lam, Y.W.

    2011-12-01

    In the thesis, we develop a microscopic approach to describe the isospin-symmetry breaking effects in sd-shell nuclei. The work is performed within the nuclear shell model. A realistic isospin-conserving Hamiltonian is perfected by a charge-dependent part consisting of the Coulomb interaction and Yukawa-type meson exchange potentials to model charge-dependent forces of nuclear origin. The extended database of the experimental isobaric mass multiplet equation coefficients was compiled during the thesis work and has been used in a fit of the Hamiltonian parameters. The constructed Hamiltonian provides an accurate theoretical description of the isospin mixing nuclear states. A specific behaviour of the IMME (Isobaric Multiplet Mass Equation) coefficients have been revealed. We present two important applications: (i) calculations of isospin-forbidden proton emission amplitudes, which is often of interest for nuclear astrophysics, and (ii) calculation on corrections to nuclear Fermi beta decay, which is crucial for the tests of fundamental symmetries of the weak interaction. (author)

  6. Nested shell superconducting magnet designs

    International Nuclear Information System (INIS)

    Bromberg, L.; Williams, J.E.C.; Titus, P.

    1992-01-01

    A new concept for manufacturing the toroidal field coil is described in this paper. Instead of structural plates, the magnet is wound in interlocking shells. The magnet configuration is described and the advantages explored. Structural analysis of the concept is performed using the ARIES tokamak reactor parameters. The effectiveness of a structural cap, placed above and below the toroidal field coils and used only to balance opposing torques generated in different places of the coil, is quantified

  7. Thin shells joining local cosmic string geometries

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F. [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Rubin de Celis, Emilio; Simeone, Claudio [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Ciudad Universitaria Pabellon I, IFIBA-CONICET, Buenos Aires (Argentina)

    2016-10-15

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)

  8. Thin shells joining local cosmic string geometries

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Rubin de Celis, Emilio; Simeone, Claudio

    2016-01-01

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)

  9. Atomic mass formula with linear shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami; Ando, Yoshihira; Tachibana, Takahiro.

    1981-01-01

    An atomic mass formula is constructed in the form of a sum of gross terms and empirical linear shell terms. Values of the shell parameters are determined after the statistical method of Uno and Yamada, Which is characterized by inclusion of the error inherent in the mass formula. The resulting formula reproduces the input masses with the standard deviation of 393 keV. A prescription is given for estimating errors of calculated masses. The mass formula is compared with recent experimental data of Rb, Cs and Fr isotopes, which are not included in the input data, and also with the constant-shell-term formula of Uno and Yamada. (author)

  10. The dorsal shell wall structure of Mesozoic ammonoids

    Directory of Open Access Journals (Sweden)

    Gregor Radtke

    2017-03-01

    Full Text Available The study of pristine preserved shells of Mesozoic Ammonoidea shows different types of construction and formation of the dorsal shell wall. We observe three major types: (i The vast majority of Ammonoidea, usually planispirally coiled, has a prismatic reduced dorsal shell wall which consists of an outer organic component (e.g., wrinkle layer, which is the first layer to be formed, and the subsequently formed dorsal inner prismatic layer. The dorsal mantle tissue suppresses the formation of the outer prismatic layer and nacreous layer. With the exception of the outer organic component, secretion of a shell wall is omitted at the aperture. A prismatic reduced dorsal shell wall is always secreted immediately after the hatching during early teleoconch formation. Due to its broad distribution in (planispiral Ammonoidea, the prismatic reduced dorsal shell wall is probably the general state. (ii Some planispirally coiled Ammonoidea have a nacreous reduced dorsal shell wall which consists of three mineralized layers: two prismatic layers (primary and secondary dorsal inner prismatic layer and an enclosed nacreous layer (secondary dorsal nacreous layer. The dorsal shell wall is omitted at the aperture and was secreted in the rear living chamber. Its layers are a continuation of an umbilical shell doubling (reinforcement by additional shell layers that extends towards the ventral crest of the preceding whorl. The nacreous reduced dorsal shell wall is formed in the process of ontogeny following a prismatic reduced dorsal shell wall. (iii Heteromorph and some planispirally coiled taxa secrete a complete dorsal shell wall which forms a continuation of the ventral and lateral shell layers. It is formed during ontogeny following a prismatic reduced dorsal shell wall or a priori. The construction is identical with the ventral and lateral shell wall, including a dorsal nacreous layer. The wide distribution of the ability to form dorsal nacre indicates that it is

  11. Is cosmology consistent?

    International Nuclear Information System (INIS)

    Wang Xiaomin; Tegmark, Max; Zaldarriaga, Matias

    2002-01-01

    We perform a detailed analysis of the latest cosmic microwave background (CMB) measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the 'standard' adiabatic inflationary cosmological model. Our best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favor 'small-field' inflation models

  12. Strontium clusters: electronic and geometry shell effects

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2008-01-01

    charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, and spectra of the density of electronic states (DOS). It is demonstrated that the size-evolution of structural and electronic properties of strontium clusters...... is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It is shown that the excessive charge essentially affects the optimized geometry...

  13. Shell Models of Superfluid Turbulence

    International Nuclear Information System (INIS)

    Wacks, Daniel H; Barenghi, Carlo F

    2011-01-01

    Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.

  14. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  15. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  16. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  17. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  18. Wireless energy transfer between anisotropic metamaterials shells

    International Nuclear Information System (INIS)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-01-01

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted

  19. Shell stabilization of super- and hyperheavy nuclei without magic gaps

    International Nuclear Information System (INIS)

    Bender, M.; Nazarewicz, W.; Oak Ridge National Lab., TN; Warsaw Univ.; Reinhard, P.G.; Oak Ridge National Lab., TN

    2001-05-01

    Quantum stabilization of superheavy elements is quantified in terms of the shell-correction energy. We compute the shell correction using self-consistent nuclear models: the non-relativistic Skyrme-Hartree-Fock approach and the relativistic mean-field model, for a number of parametrizations. All the forces applied predict a broad valley of shell stabilization around Z = 120 and N = 172-184. We also predict two broad regions of shell stabilization in hyperheavy elements with N ∼ 258 and N ∼ 308. Due to the large single-particle level density, shell corrections in the superheavy elements differ markedly from those in lighter nuclei. With increasing proton and neutron numbers, the regions of nuclei stabilized by shell effects become poorly localized in particle number, and the familiar pattern of shells separated by magic gaps is basically gone. (orig.)

  20. What is hiding behind ontogenic d13C variations in mollusk shells: New insights from scallops.

    Science.gov (United States)

    Chauvaud, L.; Lorrain, A.; Gillikin, D. P.; Thebault, J.; Paulet, Y.; Strand, O.; Blamart, D.; Guarini, J.; Clavier, J.

    2008-12-01

    We examined d13Ccalcite variations along scallop shells (Pecten maximus) sampled in Norway, France and Spain. Time series of shell calcite d13C show a consistent pattern of decreasing d13C with age. This almost linear d13C trend reflects an increasing contribution of metabolic CO2 to skeletal carbonate throughout ontogeny. We have removed this ontogenic trend to try to extract other information from our shell calcite d13C dataset. Scallops from the Bay of Brest (western Brittany, France) were then used to interpret the data as many environmental parameters were available for this site. d13Ccalcite variations were compared to d13C of dissolved inorganic carbon (DIC) and Chl a. The detrended calcite d13C profiles seem to follow a seasonal pattern, but surprisingly are inversely related to the d13C DIC and chlorophyll a concentrations measured within the water column. Theses results suggest that shell d13C variations are not controlled by isotopic variation of DIC. Since scallops eat phytoplankton and microphytobenthos cells, and, as a consequence respire organic mater largely depleted in 13C, we therefore suggest that in mollusk suspension feeders the shell d13Ccalcite might still be used to track the annual number of phytoplankton blooms when d13C values of calcite are detrended. We must consider this trend as a potential biological filter hiding precious environmental records.

  1. Shell alterations in limpets as putative biomarkers for multi-impacted coastal areas.

    Science.gov (United States)

    Begliomini, Felipe Nincao; Maciel, Daniele Claudino; de Almeida, Sérgio Mendonça; Abessa, Denis Moledo; Maranho, Luciane Alves; Pereira, Camilo Seabra; Yogui, Gilvan Takeshi; Zanardi-Lamardo, Eliete; Castro, Ítalo Braga

    2017-07-01

    During the last years, shell alterations in gastropods have been proposed as tools to be used in monitoring programs. However, no studies were so far performed investigating the relationships among shell parameters and classical biomarkers of damage. The relationship between shell alterations (biometrics, shape and elemental composition) and biomarkers (LPO and DNA strand break) was evaluated in the limpet L. subrugosa sampled along a contamination gradient in a multi-impacted coastal zone from southeastern Brazil. Statistically significant differences were detected among sites under different pollution levels. The occurrence of shell malformations was consistent with environmental levels of several hazardous substances reported for the studied area and related to lipid peroxidation and DNA damage. In addition, considering the low mobility, wide geographic distribution, ease of collection and abundance of limpets in coastal zones, this putative tool may be a cost-effective alternative to traditional biomarkers. Thus, shell alterations in limpets seem to be good proxies for assessing biological adverse effects in multi-impacted coastal zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Hennekes, B. [Shell Global Solutions (US) Inc. (United States). Technology Marketing

    2002-07-01

    The presentation, on which 17 slides/overheads are included in the papers, explained the principles of the Shell coal gasification process and the methods incorporated for control of sulfur dioxide, nitrogen oxides, particulates and mercury. The economics of the process were discussed. The differences between gasification and burning, and the differences between the Shell process and other processes were discussed.

  3. Triggered Snap-Through of Bistable Shells

    Science.gov (United States)

    Cai, Yijie; Huang, Shicheng; Trase, Ian; Hu, Nan; Chen, Zi

    Elastic bistable shells are common structures in nature and engineering, such as the lobes of the Venus flytrap or the surface of a toy jumping poppers. Despite their ubiquity, the parameters that control the bistability of such structures are not well understood. In this study, we explore how the geometrical features of radially symmetric elastic shells affect the shape and potential energy of a shell's stable states, and how to tune certain parameters in order to generate a snap-through transition from a convex semi-stable state to concave stable state. We fabricated a series of elastic shells with varying geometric parameters out of silicone rubber and measured the resulting potential energy in the semi-stable state. Finite element simulations were also conducted in order to determine the deformation and stress in the shells during snap-through. It was found that the energy of the semi-stable state is controlled by only two geometric parameters and a dimensionless ratio. We also noted two distinct transitions during snap-through, one between monostability and semi-bistability (the state a popper toy is in before it snaps-through and jumps), and a second transition between semi-bistability and true bistability. This work shows that it is possible to use a set of simple parameters to tailor the energy landscape of an elastic shell in order to generate complex trigger motions for their potential use in smart applications. Z.C. acknowledge support from Society in Science-Branco Weiss Fellowship, administered by ETH Zurich.

  4. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    International Nuclear Information System (INIS)

    Tamaki, Takashi; Tsujikawa, Shinji

    2008-01-01

    We derive analytic solutions of a chameleon scalar field φ that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m A inside of the body. The standard thin-shell field profile is recovered by taking the limit m A r c →∞, where r c is a radius of the body. We show the existence of ''no-shell'' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m A r c >>1, the effective coupling of φ with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value φ A at the extremum of an effective potential induced by the matter coupling.

  5. Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

    Directory of Open Access Journals (Sweden)

    Bartosz Bartosewicz

    2017-10-01

    Full Text Available Core–shell nanostructures have found applications in many fields, including surface enhanced spectroscopy, catalysis and solar cells. Titania-coated noble metal nanoparticles, which combine the surface plasmon resonance properties of the core and the photoactivity of the shell, have great potential for these applications. However, the controllable synthesis of such nanostructures remains a challenge due to the high reactivity of titania precursors. Hence, a simple titania coating method that would allow better control over the shell formation is desired. A sol–gel based titania coating method, which allows control over the shell thickness, was developed and applied to the synthesis of Ag@TiO2 and Au@TiO2 with various shell thicknesses. The morphology of the synthesized structures was investigated using scanning electron microscopy (SEM. Their sizes and shell thicknesses were determined using tunable resistive pulse sensing (TRPS technique. The optical properties of the synthesized structures were characterized using UV–vis spectroscopy. Ag@TiO2 and Au@TiO2 structures with shell thickness in the range of ≈40–70 nm and 90 nm, for the Ag and Au nanostructures respectively, were prepared using a method we developed and adapted, consisting of a change in the titania precursor concentration. The synthesized nanostructures exhibited significant absorption in the UV–vis range. The TRPS technique was shown to be a very useful tool for the characterization of metal–metal oxide core–shell nanostructures.

  6. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-01-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells

  7. Self consistent field theory of virus assembly

    Science.gov (United States)

    Li, Siyu; Orland, Henri; Zandi, Roya

    2018-04-01

    The ground state dominance approximation (GSDA) has been extensively used to study the assembly of viral shells. In this work we employ the self-consistent field theory (SCFT) to investigate the adsorption of RNA onto positively charged spherical viral shells and examine the conditions when GSDA does not apply and SCFT has to be used to obtain a reliable solution. We find that there are two regimes in which GSDA does work. First, when the genomic RNA length is long enough compared to the capsid radius, and second, when the interaction between the genome and capsid is so strong that the genome is basically localized next to the wall. We find that for the case in which RNA is more or less distributed uniformly in the shell, regardless of the length of RNA, GSDA is not a good approximation. We observe that as the polymer-shell interaction becomes stronger, the energy gap between the ground state and first excited state increases and thus GSDA becomes a better approximation. We also present our results corresponding to the genome persistence length obtained through the tangent-tangent correlation length and show that it is zero in case of GSDA but is equal to the inverse of the energy gap when using SCFT.

  8. Oscillating shells: A model for a variable cosmic object

    OpenAIRE

    Nunez, Dario

    1997-01-01

    A model for a possible variable cosmic object is presented. The model consists of a massive shell surrounding a compact object. The gravitational and self-gravitational forces tend to collapse the shell, but the internal tangential stresses oppose the collapse. The combined action of the two types of forces is studied and several cases are presented. In particular, we investigate the spherically symmetric case in which the shell oscillates radially around a central compact object.

  9. Statistical properties of the nuclear shell-model Hamiltonian

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Oliveira, N.A. de

    1986-01-01

    The statistical properties of realistic nuclear shell-model Hamiltonian are investigated in sd-shell nuclei. The probability distribution of the basic-vector amplitude is calculated and compared with the Porter-Thomas distribution. Relevance of the results to the calculation of the giant resonance mixing parameter is pointed out. (Author) [pt

  10. Mechanical stability of cylindrical thin-shell wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2013-04-15

    In this paper, we apply the cut and paste procedure to the charged black string for the construction of a thin-shell wormhole. We consider the Darmois-Israel formalism to determine the surface stresses of the shell. We take the Chaplygin gas to deal with the matter distribution on shell. The radial perturbation approach (preserving the symmetry) is used to investigate the stability of static solutions. We conclude that stable static solutions exist both for uncharged and charged black string thin-shell wormholes for particular values of the parameters. (orig.)

  11. Molluscan shell colour.

    Science.gov (United States)

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  12. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  13. Nuclear shell theory

    CERN Document Server

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  14. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  15. Bitcoin Meets Strong Consistency

    OpenAIRE

    Decker, Christian; Seidel, Jochen; Wattenhofer, Roger

    2014-01-01

    The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...

  16. Consistent classical supergravity theories

    International Nuclear Information System (INIS)

    Muller, M.

    1989-01-01

    This book offers a presentation of both conformal and Poincare supergravity. The consistent four-dimensional supergravity theories are classified. The formulae needed for further modelling are included

  17. Novel fluorescent core-shell nanocontainers for cell membrane transport.

    Science.gov (United States)

    Yin, Meizhen; Kuhlmann, Christoph R W; Sorokina, Ksenia; Li, Chen; Mihov, George; Pietrowski, Eweline; Koynov, Kaloian; Klapper, Markus; Luhmann, Heiko J; Müllen, Klaus; Weil, Tanja

    2008-05-01

    The synthesis and characterization of novel core-shell macromolecules consisting of a fluorescent perylene-3,4,9,10-tetracarboxdiimide chromophore in the center surrounded by a hydrophobic polyphenylene shell as a first and a flexible hydrophilic polymer shell as a second layer was presented. Following this strategy, several macromolecules bearing varying polymer chain lengths, different polymer shell densities, and increasing numbers of positive and negative charges were achieved. Because all of these macromolecules reveal a good water solubility, their ability to cross cellular membranes was investigated. In this way, a qualitative relationship between the molecular architecture of these macromolecules and the biological response was established.

  18. Shell Buckling Knockdown Factors

    Data.gov (United States)

    National Aeronautics and Space Administration — The Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment #: 07-010-E, was established in March of 2007 by the NESC in...

  19. Consistent force fields for saccharides

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld

    1999-01-01

    Consistent force fields for carbohydrates were hitherto developed by extensive optimization ofpotential energy function parameters on experimental data and on ab initio results. A wide range of experimental data is used: internal structures obtained from gas phase electron diffraction and from x......-anomeric effects are accounted for without addition of specific terms. The work is done in the framework of the Consistent Force Field which originatedin Israel and was further developed in Denmark. The actual methods and strategies employed havebeen described previously. Extensive testing of the force field...

  20. Consistency of orthodox gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1997-01-01

    A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.

  1. Quasiparticles and thermodynamical consistency

    International Nuclear Information System (INIS)

    Shanenko, A.A.; Biro, T.S.; Toneev, V.D.

    2003-01-01

    A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)

  2. Shells and Patterns

    Science.gov (United States)

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  3. Electrochemical synthesis of CORE-shell magnetic nanowires

    KAUST Repository

    Ovejero, Jesú s G.; Bran, Cristina; Vidal, Enrique Vilanova; Kosel, Jü rgen; Morales, Marí a P.; Vazquez, Manuel

    2015-01-01

    (Fe, Ni, CoFe) @ Au core-shell magnetic nanowires have been synthesized by optimized two-step potentiostatic electrodeposition inside self-assembled nanopores of anodic aluminium templates. The optimal electrochemical parameters (e.g., potential

  4. Off-shell CHY amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  5. Consistency and Communication in Committees

    OpenAIRE

    Inga Deimen; Felix Ketelaar; Mark T. Le Quement

    2013-01-01

    This paper analyzes truthtelling incentives in pre-vote communication in heterogeneous committees. We generalize the classical Condorcet jury model by introducing a new informational structure that captures consistency of information. In contrast to the impossibility result shown by Coughlan (2000) for the classical model, full pooling of information followed by sincere voting is an equilibrium outcome of our model for a large set of parameter values implying the possibility of ex post confli...

  6. Plasma-column instabilities in a reversed-field pinch without a shell

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, P.G.

    1988-01-01

    Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell.

  7. Plasma-column instabilities in a reversed-field pinch without a shell

    International Nuclear Information System (INIS)

    Schmid, P.G.

    1988-01-01

    Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell

  8. Interplay of spherical closed shells and N /Z asymmetry in quasifission dynamics

    Science.gov (United States)

    Mohanto, G.; Hinde, D. J.; Banerjee, K.; Dasgupta, M.; Jeung, D. Y.; Simenel, C.; Simpson, E. C.; Wakhle, A.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.

    2018-05-01

    Background: Quasifission (QF) has gained tremendous importance in heavy-ion nuclear physics research because of its strong influence on superheavy-element synthesis. Collisions involving closed-shell nuclei in the entrance channel are found to affect the QF reaction mechanism. Hence, it is important to improve the understanding of their effect on QF. Apart from that, some recent studies show that the difference in N /Z of reaction partners influences the reaction dynamics. Since heavier doubly magic nuclei have different N /Z than lighter doubly magic nuclei, it is important to understand the effect of N /Z mismatch as well as the effect of shell closures. Purpose: To investigate the effect of entrance-channel shell closures and N /Z asymmetry on QF. The reactions were chosen to decouple these effects from the contributions of other entrance-channel parameters. Method: Fission fragment mass-angle distributions were measured using the CUBE fission spectrometer, consisting of two large area position-sensitive multi-wire proportional counters (MWPCs), for five reactions, namely, 50Cr+208Pb , 52Cr+Pb,208206 , 54Cr+Pb,208204 . Result: Two components were observed in the measured fragment mass angle distribution, a fast mass-asymmetric quasifission and a slow mass-symmetric component having a less significant mass-angle correlation. The ratio of these components was found to depend on spherical closed shells in the entrance channel nuclei and the magnitude of the N /Z mismatch between the two reaction partners, as well as the beam energy. Conclusions: Entrance-channel spherical closed shells can enhance compound nucleus formation provided the N /Z asymmetry is small. Increase in the N /Z asymmetry is expected to destroy the effect of entrance-channel spherical closed shells, through nucleon transfer reactions.

  9. Multi-shell model of ion-induced nucleic acid condensation

    Energy Technology Data Exchange (ETDEWEB)

    Tolokh, Igor S. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Drozdetski, Aleksander V. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853-3501 (United States); Baker, Nathan A. [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States); Onufriev, Alexey V. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(III) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent

  10. TWO-DIMENSIONAL APPROXIMATION OF EIGENVALUE PROBLEMS IN SHELL THEORY: FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The eigenvalue problem for a thin linearly elastic shell, of thickness 2e, clamped along its lateral surface is considered. Under the geometric assumption on the middle surface of the shell that the space of inextensional displacements is non-trivial, the authors obtain, as ε→0,the eigenvalue problem for the two-dimensional"flexural shell"model if the dimension of the space is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the spectra of both flexural and membrane shells. The method consists of rescaling the variables and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable a priori estimates for the scaled eigenvalues.

  11. Discovery of an old nova shell surrounding the cataclysmic variable V1315 Aql

    Science.gov (United States)

    Sahman, D. I.; Dhillon, V. S.; Littlefair, S. P.; Hallinan, G.

    2018-04-01

    Following our tentative discovery of a faint shell around V1315 Aql reported in Sahman et al. (2015), we undertook deep Hα imaging and intermediate-resolution spectroscopy of the shell. We find that the shell has its geometric centre located on V1315 Aql. The mass, spectral features and density of the shell are consistent with other nova shells, rather than planetary nebulae or supernova remnants. The radial velocity of the shell is consistent with the systemic velocity of V1315 Aql. We believe this evidence strongly suggests that the shell originates from an earlier nova event. This is the first nova shell discovered around a novalike, and supports the theory of nova-induced cycles in mass transfer rates (hibernation theory) first proposed by Shara et al. (1986).

  12. Bandgap engineered reverse type-I CdTe/InP/ZnS core-shell nanocrystals for the near-infrared.

    Science.gov (United States)

    Kim, Sunghoon; Shim, Wooyoung; Seo, Heonjin; Hyun Bae, Je; Sung, Jaeyoung; Choi, Seung Hong; Moon, Woo Kyung; Lee, Gwang; Lee, Bunyeoul; Kim, Sang-Wook

    2009-03-14

    New quantum dots were fabricated with a core/shell/shell structure consisting of CdTe core/InP shell/ZnS shell of which the InP shell causes a red-shift to the NIR region and the ZnS shell imparts photo-stability; toxicity tests on mammalian cells and NIR imaging of a mouse highlight their potential applications in biomedical imaging.

  13. CIRCUMSTELLAR SHELL FORMATION IN SYMBIOTIC RECURRENT NOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin; Bildsten, Lars [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-12-20

    We present models of spherically symmetric recurrent nova shells interacting with circumstellar material (CSM) in a symbiotic system composed of a red giant (RG) expelling a wind and a white dwarf accreting from this material. Recurrent nova eruptions periodically eject material at high velocities ({approx}> 10{sup 3} km s{sup -1}) into the RG wind profile, creating a decelerating shock wave as CSM is swept up. High CSM densities cause the shocked wind and ejecta to have very short cooling times of days to weeks. Thus, the late-time evolution of the shell is determined by momentum conservation instead of energy conservation. We compute and show evolutionary tracks of shell deceleration, as well as post-shock structure. After sweeping up all the RG wind, the shell coasts at a velocity {approx}100 km s{sup -1}, depending on system parameters. These velocities are similar to those measured in blueshifted CSM from the symbiotic nova RS Oph, as well as a few Type Ia supernovae that show evidence of CSM, such as 2006X, 2007le, and PTF 11kx. Supernovae occurring in such systems may not show CSM interaction until the inner nova shell gets hit by the supernova ejecta, days to months after the explosion.

  14. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.

    Science.gov (United States)

    Chan, Juliana M; Zhang, Liangfang; Yuet, Kai P; Liao, Grace; Rhee, June-Wha; Langer, Robert; Farokhzad, Omid C

    2009-03-01

    Current approaches to encapsulate and deliver therapeutic compounds have focused on developing liposomal and biodegradable polymeric nanoparticles (NPs), resulting in clinically approved therapeutics such as Doxil/Caelyx and Genexol-PM, respectively. Our group recently reported the development of biodegradable core-shell NP systems that combined the beneficial properties of liposomal and polymeric NPs for controlled drug delivery. Herein we report the parameters that alter the biological and physicochemical characteristics, stability, drug release properties and cytotoxicity of these core-shell NPs. We further define scalable processes for the formulation of these NPs in a reproducible manner. These core-shell NPs consist of (i) a poly(D,L-lactide-co-glycolide) hydrophobic core, (ii) a soybean lecithin monolayer, and (iii) a poly(ethylene glycol) shell, and were synthesized by a modified nanoprecipitation method combined with self-assembly. Preparation of the NPs showed that various formulation parameters such as the lipid/polymer mass ratio and lipid/lipid-PEG molar ratio controlled NP physical stability and size. We encapsulated a model chemotherapy drug, docetaxel, in the NPs and showed that the amount of lipid coverage affected its drug release kinetics. Next, we demonstrated a potentially scalable process for the formulation, purification, and storage of NPs. Finally, we tested the cytotoxicity using MTT assays on two model human cell lines, HeLa and HepG2, and demonstrated the biocompatibility of these particles in vitro. Our data suggest that the PLGA-lecithin-PEG core-shell NPs may be a useful new controlled release drug delivery system.

  15. Dyson shells: a retrospective

    Science.gov (United States)

    Bradbury, Robert J.

    2001-08-01

    More than 40 years have passed since Freeman Dyson suggested that advanced technological civilizations are likely to dismantle planets in their solar systems to harvest all of the energy their stars wastefully radiate into space. Clearly this was an idea that was ahead of its time. Since that time, dozens of SETI searches have been conducted and almost all of them have focused their attention on stars which by definition cannot be the advanced civilizations that Dyson envisioned. I will review the data that created the confusion between Dyson spheres and Dyson shells. The sources that disprove Dyson spheres while still allowing Dyson shells will be discussed. The use of outmoded ideas that have biased the few searches for Dyson Shells that have occurred will be pointed out. An update of the concept of Dyson shells to include our current knowledge of biotechnology, nanotechnology and computer science will be explored. Finally, an approach to setting limits on the abundance of Dyson shells in our galaxy using existing optical astronomical data and future optical satellites will be proposed.

  16. Consistency in PERT problems

    OpenAIRE

    Bergantiños, Gustavo; Valencia-Toledo, Alfredo; Vidal-Puga, Juan

    2016-01-01

    The program evaluation review technique (PERT) is a tool used to schedule and coordinate activities in a complex project. In assigning the cost of a potential delay, we characterize the Shapley rule as the only rule that satisfies consistency and other desirable properties.

  17. Micromagnetic studies of three-dimensional pyramidal shell structures

    International Nuclear Information System (INIS)

    Knittel, A; Franchin, M; Fischbacher, T; Fangohr, H; Nasirpouri, F; Bending, S J

    2010-01-01

    We present a systematic numerical analysis of the magnetic properties of pyramidal-shaped core-shell structures in a size range below 400 nm. These are three-dimensional structures consisting of a ferromagnetic shell which is grown on top of a non-magnetic core. The standard micromagnetic model without the magnetocrystalline anisotropy term is used to describe the properties of the shell. We vary the thickness of the shell between the limiting cases of an ultra-thin shell and a conventional pyramid and delineate different stable magnetic configurations. We find different kinds of single-domain states, which predominantly occur at smaller system sizes. In analogy to equivalent states in thin square films we term these onion, flower, C and S states. At larger system sizes, we also observe two types of vortex states, which we refer to as symmetric and asymmetric vortex states. For a classification of the observed states, we derive a phase diagram that specifies the magnetic ground state as a function of structure size and shell thickness. The transitions between different ground states can be understood qualitatively. We address the issue of metastability by investigating the stability of all occurring configurations for different shell thicknesses. For selected geometries and directions hysteresis measurements are analysed and discussed. We observe that the magnetic behaviour changes distinctively in the limit of ultra-thin shells. The study has been motivated by the recent progress made in the growth of faceted core-shell structures.

  18. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells

    Directory of Open Access Journals (Sweden)

    Laurie Dolan

    Full Text Available Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control, 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermittent decreases in food efficiency (150 000 ppm males only that were not biologically relevant. All animals survived and no adverse clinical signs or functional changes were attributable to the test material. There were no toxicologically relevant changes in hematology, clinical chemistry or urinalysis parameters or organ weights in rats ingesting pecan shell fiber. Any macroscopic or microscopic findings were incidental, of normal variation and/or of minimal magnitude for test substance association. Pecan shell fiber was non-mutagenic in a bacterial reverse mutation test and non-clastogenic in a mouse peripheral blood micronucleus test. Based on these results, pecan shell fiber has an oral subchronic (13-week no observable adverse effect level (NOAEL of 150 000 ppm in rats and is not genotoxic at the doses analyzed. Keywords: Pecan shell, Fiber, Rat, Diet, Toxicity, Mutagenicity

  19. Reporting consistently on CSR

    DEFF Research Database (Denmark)

    Thomsen, Christa; Nielsen, Anne Ellerup

    2006-01-01

    This chapter first outlines theory and literature on CSR and Stakeholder Relations focusing on the different perspectives and the contextual and dynamic character of the CSR concept. CSR reporting challenges are discussed and a model of analysis is proposed. Next, our paper presents the results...... of a case study showing that companies use different and not necessarily consistent strategies for reporting on CSR. Finally, the implications for managerial practice are discussed. The chapter concludes by highlighting the value and awareness of the discourse and the discourse types adopted...... in the reporting material. By implementing consistent discourse strategies that interact according to a well-defined pattern or order, it is possible to communicate a strong social commitment on the one hand, and to take into consideration the expectations of the shareholders and the other stakeholders...

  20. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  1. Plasmonic Nanodiamonds – Targeted Core-shell Type Nanoparticles for Cancer Cell Thermoablation

    Science.gov (United States)

    Rehor, Ivan; Lee, Karin L.; Chen, Kevin; Hajek, Miroslav; Havlik, Jan; Lokajova, Jana; Masat, Milan; Slegerova, Jitka; Shukla, Sourabh; Heidari, Hamed; Bals, Sara

    2015-01-01

    Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, core-shell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell is designed and synthesized. The architecture of particles is analyzed and confirmed in detail using 3-dimensional transmission electron microscope tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor is demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser. PMID:25336437

  2. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  3. Isospin invariant boson models for fp-shell nuclei

    International Nuclear Information System (INIS)

    Van Isacker, P.

    1994-01-01

    Isospin invariant boson models, IBM-3 and IBM-4, applicable in nuclei with neutrons and protons in the same valence shell, are reviewed. Some basic results related to these models are discussed: the mapping onto the shell model, the relation to Wigner's supermultiplet scheme, the boson-number and isospin dependence of parameters, etc. These results are examined for simple single-j shell situations (e.g. f 7/2 ) and their extension to the f p shell is investigated. Other extensions discussed here concern the treatment of odd-mass nuclei and the classification of particle-hole excitations in light nuclei. The possibility of a pseudo-SU(4) supermultiplet scheme in f p -shell nuclei is discussed. (author) 4 figs., 3 tabs., 23 refs

  4. The Rucio Consistency Service

    CERN Document Server

    Serfon, Cedric; The ATLAS collaboration

    2016-01-01

    One of the biggest challenge with Large scale data management system is to ensure the consistency between the global file catalog and what is physically on all storage elements. To tackle this issue, the Rucio software which is used by the ATLAS Distributed Data Management system has been extended to automatically handle lost or unregistered files (aka Dark Data). This system automatically detects these inconsistencies and take actions like recovery or deletion of unneeded files in a central manner. In this talk, we will present this system, explain the internals and give some results.

  5. Parameter measurement of target

    International Nuclear Information System (INIS)

    Gao Dangzhong

    2001-01-01

    The progress of parameter measurement of target (ICF-15) in 1999 are presented, including the design and contract of the microsphere equator profiler, the precise air bearing manufacturing, high-resolution X-ray image of multi-layer shells and the X-ray photos processed with special image and data software, some plastic shells measured in precision of 0.3 μm, the high-resolution observation and photograph system of 'dew-point method', special fixture of target and its temperature distribution measuring, the dew-point temperature and fuel gas pressure of shells measuring with internal pressure of 5 - 15 (x10 5 ) Pa D 2 and wall thickness of 1.5∼3 μm

  6. Consistent Quantum Theory

    Science.gov (United States)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  7. Control of Compact-Toroid Characteristics by External Copper Shell

    Science.gov (United States)

    Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Roche, T.; Allfrey, I.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    A collaborative research project by Tri Alpha Energy and Nihon University has been conducted for several years, which led to the development of a new compact toroid (CT) injector for efficient FRC particle refueling in the C-2U experiment. The CT is formed by a magnetized coaxial plasma gun (MCPG), consisting of coaxial cylindrical electrodes. In CT formation via MCPG, the magnetic helicity content of the generated CT is one of the critical parameters. A bias coil is inserted into the inner electrode to generate a poloidal flux. The resultant bias magnetic field is spread out of MCPG with time due to its low-frequency bias current. To obtain a more effectively distributed bias magnetic field as well as to improve the voltage breakdown between electrodes, the MCPG incorporates a novel ~ 1 mm thick copper shell mounted outside of the outer electrode. This allows for reliable and controlled operation and more robust CT generation. A detailed discussion of the copper shell and experimental test results will be presented.

  8. Vibrationally resolved photoionization of the 1σg and 1σu shells of N2 molecule

    International Nuclear Information System (INIS)

    Semenov, S K; Cherepkov, N A; Matsumoto, M; Fujiwara, K; Ueda, K; Kukk, E; Tahara, F; Sunami, T; Yoshida, H; Tanaka, T; Nakagawa, K; Kitajima, M; Tanaka, H; De Fanis, A

    2006-01-01

    Theoretical and experimental study of vibrationally resolved partial photoionization cross sections and angular asymmetry parameter β for the 1σ g and 1σ u shells of N 2 molecule in the region of the σ* shape resonance is reported. The measurements were made at the synchrotron radiation facility SPring-8 in Japan. The calculations in the random phase approximation have been performed using the relaxed core Hartree-Fock wavefunctions with the fractional charge of the ion core equal to 0.7. With its help, the role of interchannel coupling between the closely spaced 1σ g and 1σ u shells was studied. The experiment demonstrates the existence of a correlational maximum in the 1σ u shell photoionization cross section induced by the σ* shape resonance in the 1σ g shell. This maximum reveals itself even more clearly in the angular asymmetry parameter β for the v' = 0 and v' = 1 vibrational states of the ion. The calculation in the random phase approximation gives a consistent interpretation of the experimental data

  9. Stability of charged thin shells

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-01-01

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  10. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  11. Inner-shell couplings in transiently formed superheavy quasimolecules

    Energy Technology Data Exchange (ETDEWEB)

    Verma, P [Kalindi College, University of Delhi, New Delhi 110008 (India); Mokler, P H [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Braeuning-Demian, A; Kozhuharov, C; Braeuning, H; Bosch, F; Hagmann, S; Liesen, D [GSI Helmholzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Anton, J; Fricke, B [Universitaet Kassel, 34109 Kassel (Germany); Stachura, Z [Institute for Nuclear Physics, Cracow PL 31342 (Poland); Wahab, M A, E-mail: p.verma.du@gmail.com [Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 (India)

    2011-06-15

    The inner-shell couplings for U{sup q+}-ions (73{<=}q{<=}91) moving moderately slow at {approx}69 MeV u{sup -1} and bombarding thin Au targets have been investigated. Having established the definite survival probability of incoming projectile K vacancies in these targets in an earlier publication, the transfer of these vacancies to the target K-shell due to inner-shell couplings has been studied. As the system is in the quasiadiabatic collision regime for the K-shell of collision partners, advanced SCF-DFS (self-consistent field-Dirac-Fock-Slater) multielectron level diagrams have been used for interpretation. Using a simple model, the L-K shell coupling interaction distance has been estimated and compared with level diagram calculations.

  12. Snap-Through Buckling Problem of Spherical Shell Structure

    Directory of Open Access Journals (Sweden)

    Sumirin Sumirin

    2014-12-01

    Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.

  13. Flammable gas project expert elicitation results for Hanford Site double-shell tanks

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    This report documents the results of the second phase of parameter quantification by the flammable gas expert panel. This second phase is focused on the analysis of flammable gas accidents in the Hanford Site double-shell tanks. The first phase of parameter quantification, performed in 1997 was focused on the analysis of Hanford single-shell tanks

  14. Half-life calculation of one-proton emitters with a shell model potential

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, M. M.; Duarte, S. B. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCT Rua Dr. Xavier Sigaud, 150, 22290-180, Rio de Janeiro-RJ (Brazil); Teruya, N. [Departamento de Fisica, Universidade Federal da Paraiba - UFPB Campus de Joao Pessoa, 58051-970, Joao Pessoa - PB (Brazil)

    2013-03-25

    The accumulated amount of data for half-lives of proton emitters still remains a challenge to the ability of nuclear models to reproduce them consistently. These nuclei are far from beta stability line in a region where the validity of current nuclear models is not guaranteed. A nuclear shell model is introduced to the calculation of the nuclear barrier of less deformed proton emitters. The predictions using the proposed model are in good agreement with the data, with the advantage of have used only a single parameter in the model.

  15. On the stability of a radiating fluid in a porous spherical shell

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1987-09-01

    The onset of thermal instability in a fluid filled porous spherical shell is investigated when the temperatures of the walls are large enough for thermal radiation to be significant. Assuming that the gravitational field is radially symmetric and the porous medium consists of fluid which is optically thin, non-grey and near equilibrium, the problem is reduced to the determination of the eigenvalues for a set of linear homogeneous equations with variable coefficients. The effect of porosity and radiation on the stability parameter is discussed quantitatively. (author). 6 refs, 1 tab

  16. Self-consistent description of the isospin mixing

    International Nuclear Information System (INIS)

    Gabrakov, S.I.; Pyatov, N.I.; Baznat, M.I.; Salamov, D.I.

    1978-03-01

    The properties of collective 0 + states built of unlike particle-hole excitations in spherical nuclei have been investigated in a self-consistent microscopic approach. These states arise when the broken isospin symmetry of the nuclear shell model Hamiltonian is restored. The numerical calculations were performed with Woods-Saxon wave functions

  17. Plastic limit loads for cylindrical shell intersections under combined loading

    International Nuclear Information System (INIS)

    Skopinsky, V.N.; Berkov, N.A.; Vogov, R.A.

    2015-01-01

    In this research, applied methods of nonlinear analysis and results of determining the plastic limit loads for shell intersection configurations under combined internal pressure, in-plane moment and out-plane moment loadings are presented. The numerical analysis of shell intersections is performed using the finite element method, geometrically nonlinear shell theory in quadratic approximation and plasticity theory. For determining the load parameter of proportional combined loading, the developed maximum criterion of rate of change of relative plastic work is employed. The graphical results for model of cylindrical shell intersection under different two-parameter combined loadings (as generalized plastic limit load curves) and three-parameter combined loading (as generalized plastic limit load surface) are presented on the assumption that the internal pressure, in-plane moment and out-plane moment loads were applied in a proportional manner. - Highlights: • This paper presents nonlinear two-dimensional FE analysis for shell intersections. • Determining the plastic limit loads under combined loading is considered. • Developed maximum criterion of rate of change of relative plastic work is employed. • Plastic deformation mechanism in shell intersections is discussed. • Results for generalized plastic limit load curves of branch intersection are presented

  18. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells.

    Science.gov (United States)

    Dolan, Laurie; Matulka, Ray; Worn, Jeffrey; Nizio, John

    2016-01-01

    Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control), 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermittent decreases in food efficiency (150 000 ppm males only) that were not biologically relevant. All animals survived and no adverse clinical signs or functional changes were attributable to the test material. There were no toxicologically relevant changes in hematology, clinical chemistry or urinalysis parameters or organ weights in rats ingesting pecan shell fiber. Any macroscopic or microscopic findings were incidental, of normal variation and/or of minimal magnitude for test substance association. Pecan shell fiber was non-mutagenic in a bacterial reverse mutation test and non-clastogenic in a mouse peripheral blood micronucleus test. Based on these results, pecan shell fiber has an oral subchronic (13-week) no observable adverse effect level (NOAEL) of 150 000 ppm in rats and is not genotoxic at the doses analyzed.

  19. Synthesis and characterization of mesoporous silica core-shell particles

    Directory of Open Access Journals (Sweden)

    Milan Nikolić

    2010-06-01

    Full Text Available Core-shell particles were formed by deposition of primary silica particles synthesized from sodium silicate solution on functionalized silica core particles (having size of ~0.5 µm prepared by hydrolysis and condensation of tetraethylortosilicate. The obtained mesoporous shell has thickness of about 60 nm and consists of primary silica particles with average size of ~21 nm. Scanning electron microscopy and zeta potential measurements showed that continuous silica shell exists around functionalized core particles which was additionally proved by FTIR and TEM results.

  20. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  1. Coulomb ionization of inner shells by heavy charged particles

    International Nuclear Information System (INIS)

    Lapicki, G.

    1975-01-01

    The theory of inner-shell Coulomb ionization by heavy charged particles, of atomic number small compared to the target atomic number, is developed through the extension of work by Brandt and his coworkers for K shells to L shells. In slow collisions relative to the characteristic times of the inner shell electrons, the quantum-mechanical predictions in the plane-wave Born approximation (PWBA) can exceed experimental cross sections by orders of magnitude. The effects of the perturbation of the atom by and the Coulomb deflection of the particle during collisions are included in the theory. The perturbed atomic states amount to a binding of the inner-shell electrons to the moving particle in slow collisions, and to a polarization of the inner shells by the particle passing at large impact parameters during nonadiabatic collisions. These effects, not contained in the PWBA, are treated in the framework of the perturbed stationary state (PSS) theory for slow collisions and in terms of the harmonic oscillator model of Ashley, Brandt, and Ritchie for stopping powers in fast collisions. The effect of the Coulomb deflection of the particle in the field of the target nucleus on the cross sections is incorporated in the semiclassical approximation of Bang and Hansteen. Except for the lightest target atoms, the contribution of electron capture by the particles to inner-shell ionizations is shown to be negligible. The theory as developed earlier for the K shell, and here for L shells, agrees well with the vast body of experimental data on inner-shell Coulomb ionization by heavy charged particles

  2. DNA nanoparticles with core-shell morphology.

    Science.gov (United States)

    Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc

    2014-10-14

    Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.

  3. Self-consistency corrections in effective-interaction calculations

    International Nuclear Information System (INIS)

    Starkand, Y.; Kirson, M.W.

    1975-01-01

    Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)

  4. Casimir effect in spherical shells

    International Nuclear Information System (INIS)

    Ruggiero, J.R.

    1985-01-01

    The analytic regularization method is applied to study the Casimir effect for spherical cavities. Although many works have been presented in the past few years, problems related to the elimination of the regulator parameter still remain. A way to calculate the zero point energy of a perfectly conducting spherical shell which is a miscellaneous of those presented early is here proposed, How a cancelation of divergent terms occurs and how a finite parte is obtained after the elimination of the regulator parameter is shown. As a by-product the zero point energy of the interior vibration modes is obtained and this has some relevance to the quarks bag model. This relev ance is also discussed. The calculation of the energy fom the density view is also discussed. Some works in this field are criticized. The logarithmic divergent terms in the zero point energy are studied when the interior and exterior of the sphere are considered as a medium not dispersive and characterized by a dielectric constants ε 1 and ε 2 and peermeability constants μ 1 and μ 2 respectivelly. The logarithmic divergent terms are not present in the case of ε i μ i =K, with K some constant and i=1,2. (author) [pt

  5. Reinforcement of Underground Excavation with Expansion Shell Rock Bolt Equipped with Deformable Component

    Directory of Open Access Journals (Sweden)

    Korzeniowski Waldemar

    2017-03-01

    Full Text Available The basic type of rock mass reinforcement method for both preparatory and operational workings in underground metal ore mines, both in Poland and in different countries across the world, is the expansion shell or adhesive-bonded rock bolt. The article discusses results of static loading test of the expansion shell rock bolts equipped with originally developed deformable component. This component consists of two profiled rock bolt washers, two disk springs, and three guide bars. The disk spring and disk washer material differs in stiffness. The construction materials ensure that at first the springs under loading are partially compressed, and then the rock bolt washer is plastically deformed. The rock bolts tested were installed in blocks simulating a rock mass with rock compressive strength of 80 MPa. The rock bolt was loaded statically until its ultimate loading capacity was exceeded. The study presents the results obtained under laboratory conditions in the test rig allowing testing of the rock bolts at their natural size, as used in underground metal ore mines. The stress-strain/displacement characteristics of the expansion shell rock bolt with the deformable component were determined experimentally. The relationships between the geometric parameters and specific strains or displacements of the bolt rod were described, and the percentage contribution of those values in total displacements, resulting from the deformation of rock bolt support components (washer, thread and the expansion shell head displacements, were estimated. The stiffness of the yielded and stiff bolts was empirically determined, including stiffness parameters of every individual part (deformable component, steel rod. There were two phases of displacement observed during the static tension of the rock bolt which differed in their intensity.

  6. Slow expansion of the shell of the recurrent nova T Pyxidis and detection of a faint extended envelope

    International Nuclear Information System (INIS)

    Shara, M.M.; Moffat, A.F.J.; Williams, R.E.; Cohen, J.G.

    1989-01-01

    New H-alpha narrow-based CCD imaging of the recurrent nova T Pyxidis and the detection of a very faint, extended H-alpha halo surrounding the already known shell are reported. A forbidden O III image containing an emitting shell with a morphology different from that of the H-alpha shell is presented, and measurements of the H-alpha shell expansion are reported which rule out the 1966 eruption date for the shell origin, assuming uniform expansion. It is proposed that the observed shell consists of slowly moving, solar abundance ejecta which are photoionized. 18 references

  7. In-vitro investigations of skin closure using diode laser and protein solder containing gold nano shells

    International Nuclear Information System (INIS)

    Nourbakhsh, M. S.; Etrati Khosroshahi, M.

    2011-01-01

    Laser tissue soldering is a new technique for repair of various tissues including the skin, liver, articular cartilage and nerves and is a promising alternative to suture. To overcome the problems of thermal damage to surrounding tissues and low laser penetration depth, some exogenous chromophores such as gold nano shells, a new class of nanoparticles consisting of a dielectric core surrounded by a thin metal shell, are used. The aims of this study were to use two different concentrations of gold nano shells as the exogenous material for skin tissue soldering and also to examine the effects of laser soldering parameters on the properties of the repaired skin. Material and Methods: Two mixtures of albumin solder and different concentrations of gold nano shells were prepared. A full thickness incision of 2*20 mm 2 was made on the surface and after placing 50 μ1 of the solder mixture on the incision, an 810 nm diode laser was used to irradiate it at different power densities. The changes of tensile strength, σt, due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. Results: The results showed that the tensile strength of the repaired skin increased with increasing irradiance for both gold nano shell concentrations. In addition, at constant laser irradiance (I), the tensile strength of the repaired incision increased with increasing Ns and decreasing Vs. In our case, this corresponded to σt = 1610 g/cm 2 at I ∼ 60 W cm-2, T ∼ 65 d egree C , Ns = 10 and Vs = 0.2 mms-1. Discussion and Conclusion: Gold nano shells can be used as an indocyanine green dye alterative for laser tissue soldering. Although by increasing the laser power density, the tensile strength of the repaired skin increases, an optimum power density must be considered due to the resulting increase in tissue temperature.

  8. Fabrication of Ni@Ti core-shell nanoparticles by modified gas aggregation source

    Science.gov (United States)

    Hanuš, J.; Vaidulych, M.; Kylián, O.; Choukourov, A.; Kousal, J.; Khalakhan, I.; Cieslar, M.; Solař, P.; Biederman, H.

    2017-11-01

    Ni@Ti core-shell nanoparticles were prepared by a vacuum based method using the gas aggregation source (GAS) of nanoparticles. Ni nanoparticles fabricated in the GAS were afterwards coated by a Ti shell. The Ti shell was deposited by means of magnetron sputtering. The Ni nanoparticles were decelerated in the vicinity of the magnetron to the Ar drift velocity in the second deposition chamber. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy analysis of the nanoparticles showed the core-shell structure. It was shown that the thickness of the shell can be easily tuned by the process parameters with a maximum achieved thickness of the Ti shell ~2.5 nm. The core-shell structure was confirmed by the STEM analysis of the particles.

  9. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  10. Seismic analysis of axisymmetric shells

    International Nuclear Information System (INIS)

    Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.

    1984-01-01

    Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt

  11. Creep analysis of orthotropic shells

    International Nuclear Information System (INIS)

    Mehra, V.K.; Ghosh, A.

    1975-01-01

    A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)

  12. Protein profiles of hatchery egg shell membrane.

    Science.gov (United States)

    Rath, N C; Liyanage, R; Makkar, S K; Lay, J O

    2016-01-01

    Eggshells which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of microbial and environmental origins. As feed supplements, during post hatch growth, the hatchery egg shell membranes (HESM) have shown potential for imparting resistance of chickens to endotoxin stress and exert positive health effects. Considering that these effects are mediated by the bioactive proteins and peptides present in the membrane, the objective of the study was to identify the protein profiles of hatchery eggshell membranes (HESM). Hatchery egg shell membranes were extracted with acidified methanol and a guanidine hydrochloride buffer then subjected to reduction/alkylation, and trypsin digestion. The methanol extract was additionally analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The tryptic digests were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS-MS) to identify the proteins. Our results showed the presence of several proteins that are inherent and abundant in egg white such as, ovalbumin, ovotransferrin, ovocleidin-116, and lysozyme, and several proteins associated with cytoskeletal, cell signaling, antimicrobial, and catalytic functions involving carbohydrate, nucleic acid, and protein metabolisms. There were some blood derived proteins most likely originating from the embryos and several other proteins identified with different aerobic, anaerobic, gram positive, gram negative, soil, and marine bacterial species some commensals and others zoonotic. The variety of bioactive proteins, particularly the cell signaling and enzymatic proteins along with the diverse microbial proteins, make the HESM suitable for nutritional and biological application to improve post hatch immunity of poultry.

  13. Searching for nova shells around cataclysmic variables

    Science.gov (United States)

    Sahman, D. I.; Dhillon, V. S.; Knigge, C.; Marsh, T. R.

    2015-08-01

    We present the results of a search for nova shells around 101 cataclysmic variables (CVs), using H α images taken with the 4.2-m William Herschel Telescope (WHT) and the 2.5-m Isaac Newton Telescope Photometric H α Survey of the Northern Galactic Plane (IPHAS). Both telescopes are located on La Palma. We concentrated our WHT search on nova-like variables, whilst our IPHAS search covered all CVs in the IPHAS footprint. We found one shell out of the 24 nova-like variables we examined. The newly discovered shell is around V1315 Aql and has a radius of ˜2.5 arcmin, indicative of a nova eruption approximately 120 yr ago. This result is consistent with the idea that the high mass-transfer rate exhibited by nova-like variables is due to enhanced irradiation of the secondary by the hot white dwarf following a recent nova eruption. The implications of our observations for the lifetime of the nova-like variable phase are discussed. We also examined four asynchronous polars, but found no new shells around any of them, so we are unable to confirm that a recent nova eruption is the cause of the asynchronicity in the white dwarf spin. We find tentative evidence of a faint shell around the dwarf nova V1363 Cyg. In addition, we find evidence for a light echo around the nova V2275 Cyg, which erupted in 2001, indicative of an earlier nova eruption ˜300 yr ago, making V2275 Cyg a possible recurrent nova.

  14. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  15. Electrochemical synthesis of CORE-shell magnetic nanowires

    KAUST Repository

    Ovejero, Jesús G.

    2015-04-16

    (Fe, Ni, CoFe) @ Au core-shell magnetic nanowires have been synthesized by optimized two-step potentiostatic electrodeposition inside self-assembled nanopores of anodic aluminium templates. The optimal electrochemical parameters (e.g., potential) have been firstly determined for the growth of continuous Au nanotubes at the inner wall of pores. Then, a magnetic core was synthesized inside the Au shells under suitable electrochemical conditions for a wide spectrum of single elements and alloy compositions (e.g., Fe, Ni and CoFe alloys). Novel opportunities offered by such nanowires are discussed particularly the magnetic behavior of (Fe, Ni, CoFe) @ Au core-shell nanowires was tested and compared with that of bare TM nanowires. These core-shell nanowires can be released from the template so, opening novel opportunities for biofunctionalization of individual nanowires.

  16. Dossier Shell Eco-Marathon; Dossier Shell Eco-Marathon

    Energy Technology Data Exchange (ETDEWEB)

    Matla, P.

    2012-05-15

    Three articles address subjects concerning the annual race with highly energy efficient cars: the Shell Eco-Marathon. [Dutch] In 3 artikelen wordt aandacht besteed aan de ontwerpen voor de jaarlijkse race met superzuinige auto's, de Shell Eco-Marathon.

  17. PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA

    International Nuclear Information System (INIS)

    NIKROO, A; CZECHOWICZ, DG; CASTILLO, ER; PONTELANDOLFO, JM

    2002-01-01

    OAK A271 PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA. Thin walled polymer shells are needed for OMEGA cryogenic laser experiments. These capsules need to be about 900 (micro)m in diameter and as thin as possible (approx 1-2 (micro)m), while having enough strength to be filled with DT as fast as possible to about 1000 atm. The authors have found that by optimizing the coating parameters in the glow discharge polymer (GDP) deposition system, traditionally used for making ICF targets, they can routinely make robust, ∼ 1.5 (micro)m thick, 900 (micro)m diameter GDP shells with buckle strengths of over 0.3 atm. This is twice the strength of shells made prior to the optimization and is comparable to values quoted for polyimide shells. In addition, these shells were found to be approximately three times more permeable and over 20% denser than previously made GDP shells. The combination of higher strength and permeability is ideal for direct drive cryogenic targets at OMEGA. Shells as thin as 0.5 (micro)m have been made. In this paper, the authors discuss the shell fabrication process, effects of modifying various GDP deposition parameters on shell properties and chemical composition

  18. Hi shells, supershells, shell-like objects, and ''worms''

    International Nuclear Information System (INIS)

    Heiles, C.

    1984-01-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo

  19. Effects of alga polysaccharide capsule shells on in-vivo bioavailability and disintegration

    Science.gov (United States)

    Li, Ting; Guo, Shuju; Ma, Lin; Yuan, Yi; Han, Lijun

    2012-01-01

    Gelatin has been used in hard capsule shells for more than a century, and some shortcomings have appeared, such as high moisture content and risk of transmitting diseases of animal origin to people. Based on available studies regarding gelatin and vegetable shells, we developed a new type of algal polysaccharide capsule (APPC) shells. To test whether our products can replace commercial gelatin shells, we measured in-vivo plasma concentration of 12 selected volunteers with a model drug, ibuprofen, using high performance liquid chromatography (HPLC), by calculating the relative bioavailability of APPC and Qualicaps® referenced to gelatin capsules and assessing bioequivalence of the three types of shells, and calculated pharmacokinetic parameters with the software DAS 2.0 (China). The results show that APPC shells possess bioequivalence with Qualicaps® and gelatin shells. Moreover, the disintegration behavior of four types of shells (APPC, Vegcaps®, Qualicaps® and gelatin shells) with the content of lactose and radioactive element (99mTc) was observed via gamma-scintigraphic images. The bioavailability and gamma-scintigraphic studies showed that APPC was not statistically different from other vegetable and gelatin capsule shells with respect to in-vivo behavior. Hence, it can be concluded that APPCs are exchangeable with other vegetable and gelatin shells.

  20. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    Science.gov (United States)

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  1. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    Science.gov (United States)

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa

    2017-04-26

    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  2. Shell Trumpets from Western Mexico

    Directory of Open Access Journals (Sweden)

    Robert Novella

    1991-11-01

    Full Text Available Marine shells have been used as musical instruments in almost all parts of the world (Izikowitz 1935, including Mesoamerica, where large univalves, also called conch shells in the literature, had a utilitarian function as trumpets. Their use is well documented in most cultural areas of Mesoamerica, as in Western Mexico, through their various occurrences in archaeological contexts and museums collections.

  3. Cylindrical thin-shell wormholes

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2004-01-01

    A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands forever, depending only on the sign of its initial velocity

  4. Shell model and spectroscopic factors

    International Nuclear Information System (INIS)

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  5. Conventional shell model: some issues

    International Nuclear Information System (INIS)

    Vallieres, M.; Pan, X.W.; Feng, D.H.; Novoselsky, A.

    1997-01-01

    We discuss some important issues in shell-model calculations related to the effective interactions used in different regions of the periodic table; in particular the quality of different interactions is discussed, as well as the mass dependence of the interactions. Mention is made of the recently developed Drexel University shell-model (DUSM). (orig.)

  6. Expert system development (ESD) shell

    International Nuclear Information System (INIS)

    Padmini, S.; Diwakar, M.P.; Rathode, N.C.; Bairi, B.R.

    1991-01-01

    An Expert System Development (ESD) Shell design implementation is desribed in detail. The shell provides high-level generic facilities for Knowledge Representation (KR) and inferencing and tools for developing user interfaces. Powerful set of tools in the shell relieves much of the programming burden in the ES development. The shell is written in PROLOG under IBM PC/AT. KR facilities are based on two very powerful formalisms namely, frames and rules. Inference Engine (IE) draws most of its power from unification and backward reasoning strategy in PROLOG. This basic mechanism is enhanced further by incorporating both forward and backward chaining of rules and frame-based inferencing. Overall programming style integrates multiple paradigms including logic, object oriented, access-oriented and imperative programming. This permits ES designer a lot of flexibility in organizing inference control. Creation and maintainance of knowledge base is a major activity. The shell, therefore, provides number of facilities to simplify these tasks. Shell design also takes note of the fact that final success of any system depends on end-user satisfaction and hence provides features to build use-friendly interfaces. The shell also provides a set of interfacing predicates so that it can be embedded within any PROLOG program to incorporate functionalilty of the shell in the user program. (author). 10 refs., 8 figs

  7. Financial model calibration using consistency hints.

    Science.gov (United States)

    Abu-Mostafa, Y S

    2001-01-01

    We introduce a technique for forcing the calibration of a financial model to produce valid parameters. The technique is based on learning from hints. It converts simple curve fitting into genuine calibration, where broad conclusions can be inferred from parameter values. The technique augments the error function of curve fitting with consistency hint error functions based on the Kullback-Leibler distance. We introduce an efficient EM-type optimization algorithm tailored to this technique. We also introduce other consistency hints, and balance their weights using canonical errors. We calibrate the correlated multifactor Vasicek model of interest rates, and apply it successfully to Japanese Yen swaps market and US dollar yield market.

  8. Dynamic centering of liquid shells

    International Nuclear Information System (INIS)

    Tsamopoulos, J.A.; Brown, R.A.

    1987-01-01

    The moderate-amplitude axisymmetric oscillations of an inviscid liquid shell surrounding an incompressible gas bubble are calculated by a multiple-time-scale expansion for initial deformations composed of two-lobed perturbations of the shell and a displacement of the bubble from the center of mass of the liquid. Two types of small-amplitude motion are identified and lead to very different nonlinear dynamic interactions, as described by the results valid up to second order in the amplitude of the initial deformation. In the ''bubble mode,'' the oscillations of the captive bubble and the liquid shell are exactly in phase and the bubble vibrates about its initial eccentric location. The bubble moves toward the center of the drop when the shell is perturbed into a ''sloshing mode'' of oscillation where both interfaces move out of phase. These results explain the centering of liquid shells observed in several experiments

  9. Multibody dynamic analysis using a rotation-free shell element with corotational frame

    Science.gov (United States)

    Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen

    2018-03-01

    Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.

  10. Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics

    Science.gov (United States)

    McClelland, Ryan S.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.

  11. Nuclear shell effects at high temperatures

    International Nuclear Information System (INIS)

    Davidson, N.J.; Miller, H.G.

    1993-01-01

    In discussing the disappearance of nuclear shell effects at high temperatures, it is important to distinguish between the ''smearing out'' of the single-particle spectrum with increasing temperature and the vanishing of shell related structures in many-body quantities such as the excitation energy per nucleon. We propose a semiempirical method to obtain an upper bound on the temperature required to smooth the single-particle spectrum, and point out that shell effects in many-body parameters may persist above this temperature. We find that the temperature required to smear out the single-particle spectrum is approximately 1 MeV for heavy nuclei (A approx-gt 150) and about 3--4 MeV for light nuclei (A approx-lt 50), in reasonable agreement with the estimate of 41/πA 1/3 obtained from calculations with harmonic oscillator potentials. These temperatures correspond to many-body excitation energies of approximately 20 and 60 MeV, respectively

  12. Determining characteristics of oscillations of elastic spherical shell filled using semiconductor laser autodyne

    Science.gov (United States)

    Dobdin, S. Yu.; Usanov, D. A.; Skripal, A. V.

    2012-06-01

    The experimental results to determine the motion characteristics of oscillations of elastic spherical shell filled under the pneumopulse action have been presented. The required characteristics of motion were determined by analysis of the autodyne signal. The relationship between the parameters of motion of the spherical shell and the internal pressure measured using a contact tonometer has been shown.

  13. K-shell ionization by antiprotons

    International Nuclear Information System (INIS)

    Mehler, G.; Mueller, B.; Greiner, W.; Soff, G.

    1987-01-01

    We present first calculations for the impact parameter dependence of K-shell ionization rates in anti pCu and in anti pAg collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the anti-binding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross-sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross-sections for protons. (orig.)

  14. Vibrations of composite circular shell structures due to transient loads

    International Nuclear Information System (INIS)

    Schrader, K.-H.; Krutzik, N.; Winkel, G.

    1975-01-01

    Referring to a container consisting of different shell structures - such as spherical, cylindrical and conical shells - the dynamic behavior of coupled spatial shell structures due to transient loads will be investigated. The spatial structure including the filling of water will be idealized as a three-dimensional model consisting of ring elements. The influence of the water filling on the vibrations will be considered by virtual masses added to the shell structures. In circular direction as well as in meridional direction a consistent mass model has been used. By variation of the virtual masses it will be clarified, how these additional masses influence the vibrational behavior of the composed system. Another aspect which will be investigated is the influence of different stiffnesses of substructures or parts of substructures on the natural frequencies, and on their affiliated eigensystems. Furthermore, the maximum and minimum stresses in the structures caused by transient loads acting on the inner surface of the shells will be explored. Here it seems to be possible to locate an area of maximum strain. Rotational loads as well as nonrotational loads will be considered

  15. Competition of multiplet and spin-orbit splitting in open-shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian; Koch, Erik [Institute for Advanced Simulation, Forschungszentrum Juelich (Germany)

    2016-07-01

    To study the trends in the spectra of open-shells across the periodic table, we perform density functional calculations for atoms and ions. We collect the Slater-Condon and spin-orbit parameters from the resulting self-consistent radial wave functions and potentials. To make these easily accessible, we provide a simple least squares fitting formula in the spirit of Slater's rules. Given these parameters we calculate the many-body spectra in LS-, intermediate-, and jj-coupling. To assess the relative importance of Coulomb and spin-orbit interactions, we estimate the width of the spectra by calculating the eigen-energy variance of the corresponding Hamiltonian using a simple formula that does not require diagonalizing a complicated many-body Hamiltonian.

  16. Study of Shell Zone Formation in Lithographic and Anodizing Quality Aluminum Alloys: Experimental and Numerical Approach

    Science.gov (United States)

    Brochu, Christine; Larouche, André; Hark, Robert

    Shell thickness is an important quality factor for lithographic and anodizing quality aluminum alloys. Increasing pressure is placed on casting plants to produce a thinner shell zone for these alloys. This study, based on plant trials and mathematical modelling highlights the most significant parameters influencing shell zone formation. Results obtained show the importance of metal temperature and distribution and mould metal level on shell zone formation. As an answer to specific plant problems, this study led to the development of improved metal distribution systems for DC casting of litho and anodizing quality alloys.

  17. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.

    Science.gov (United States)

    Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-02-21

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.

  18. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity

    International Nuclear Information System (INIS)

    Li Qian; Tu Juan; Guo Xiasheng; Zhang Dong; Matula, Thomas J

    2013-01-01

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear ‘Cross law’ to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius–time curves and the numerical simulations demonstrate that the ‘compression-only’ behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., ‘shear-thinning’ and ‘strain-softening’) in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity. (paper)

  19. Molluscan shell evolution with review of shell calcification hypothesis

    Czech Academy of Sciences Publication Activity Database

    Furuhashi, T.; Schwarzinger, C.; Mikšík, Ivan; Smrž, Miloslav; Beran, A.

    2009-01-01

    Roč. 154, č. 3 (2009), s. 351-371 ISSN 1096-4959 Institutional research plan: CEZ:AV0Z50110509 Keywords : mollusca * shell * biomineralization Subject RIV: CE - Biochemistry Impact factor: 1.607, year: 2009

  20. Host susceptibility hypothesis for shell disease in American lobsters.

    Science.gov (United States)

    Tlusty, Michael F; Smolowitz, Roxanna M; Halvorson, Harlyn O; DeVito, Simone E

    2007-12-01

    Epizootic shell disease (ESD) in American lobsters Homarus americanus is the bacterial degradation of the carapace resulting in extensive irregular, deep erosions. The disease is having a major impact on the health and mortality of some American lobster populations, and its effects are being transferred to the economics of the fishery. While the onset and progression of ESD in American lobsters is undoubtedly multifactorial, there is little understanding of the direct causality of this disease. The host susceptibility hypothesis developed here states that although numerous environmental and pathological factors may vary around a lobster, it is eventually the lobster's internal state that is permissive to or shields it from the final onset of the diseased state. To support the host susceptibility hypothesis, we conceptualized a model of shell disease onset and severity to allow further research on shell disease to progress from a structured model. The model states that shell disease onset will occur when the net cuticle degradation (bacterial degradation, decrease of host immune response to bacteria, natural wear, and resorption) is greater than the net deposition (growth, maintenance, and inflammatory response) of the shell. Furthermore, lesion severity depends on the extent to which cuticle degradation exceeds deposition. This model is consistent with natural observations of shell disease in American lobster.

  1. A login shell interface for INFN-GRID

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, S [INFN - Sezione di Napoli, Complesso di Monte S.Angelo - Via Cintia 80126 Napoli (Italy); Calloni, E; Rosa, R De; Garufi, F; Milano, L; Russo, G [Universita degli Studi di Napoli ' Federico M' , Dipartimento di Scienze Fisiche, Complesso di Monte S.Angelo - Via Cintia 80126 Napoli (Italy)], E-mail: silvio.pardi@na.infn.it

    2008-12-15

    The user interface is a crucial service to guarantee the Grid accessibility. The goal to achieve, is the implementation of an environment able to hide the grid complexity and offer a familiar interface to the final user. Currently many graphical interfaces have been proposed to simplify the grid access, but the GUI approach appears not very congenital to UNIX developers and users accustomed to work with command line interface. In 2004 the GridShell project proposed an extension of popular UNIX shells such as TCSH and BASH with features supporting Grid computing. Starting from the ideas included in GridShell, we propose IGSH (INFN-GRID SHELL) a new login shell for the INFN-GRID middleware, that interact with the Resource Broker services and integrates in a 'naturally way' the grid functionality with a familiar interface. The architecture of IGSH is very simple, it consist of a software layer on the top of the INFN-GRID middleware layer. When some operation is performed by the user, IGSH takes in charge to parse the syntax and translate it in the correspondents INFN-GRID commands according to some semantic rules specified in the next sections. The final user interacts with the underlying distributed infrastructure by using IGSH instead of his default login shell, with the sensation to work on a local machine.

  2. A login shell interface for INFN-GRID

    International Nuclear Information System (INIS)

    Pardi, S; Calloni, E; Rosa, R De; Garufi, F; Milano, L; Russo, G

    2008-01-01

    The user interface is a crucial service to guarantee the Grid accessibility. The goal to achieve, is the implementation of an environment able to hide the grid complexity and offer a familiar interface to the final user. Currently many graphical interfaces have been proposed to simplify the grid access, but the GUI approach appears not very congenital to UNIX developers and users accustomed to work with command line interface. In 2004 the GridShell project proposed an extension of popular UNIX shells such as TCSH and BASH with features supporting Grid computing. Starting from the ideas included in GridShell, we propose IGSH (INFN-GRID SHELL) a new login shell for the INFN-GRID middleware, that interact with the Resource Broker services and integrates in a 'naturally way' the grid functionality with a familiar interface. The architecture of IGSH is very simple, it consist of a software layer on the top of the INFN-GRID middleware layer. When some operation is performed by the user, IGSH takes in charge to parse the syntax and translate it in the correspondents INFN-GRID commands according to some semantic rules specified in the next sections. The final user interacts with the underlying distributed infrastructure by using IGSH instead of his default login shell, with the sensation to work on a local machine.

  3. Axial strain in GaAs/InAs core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Pietsch, Ullrich [Universitaet Siegen, Festkoerperphysik, 57068 Siegen (Germany); Rieger, Torsten; Gruetzmacher, Detlev; Ion Lepsa, Mihail [Peter Gruenberg Institute (PGI-9), Forschungszentrum, 52425 Juelich (Germany); JARA-Fundamentals of Future Information Technology, 52425 Juelich (Germany); Bussone, Genziana [Universitaet Siegen, Festkoerperphysik, 57068 Siegen (Germany); ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble Cedex (France)

    2013-01-28

    We study the axial strain relaxation in GaAs/InAs core-shell nanowire heterostructures grown by molecular beam epitaxy. Besides a gradual strain relaxation of the shell material, we find a significant strain in the GaAs core, increasing with shell thickness. This strain is explained by a saturation of the dislocation density at the core-shell interface. Independent measurements of core and shell lattice parameters by x-ray diffraction reveal a relaxation of 93% in a 35 nm thick InAs shell surrounding cores of 80 nm diameter. The compressive strain of -0.5% compared to bulk InAs is accompanied by a tensile strain up to 0.9% in the GaAs core.

  4. Analysis on Forced Vibration of Thin-Wall Cylindrical Shell with Nonlinear Boundary Condition

    Directory of Open Access Journals (Sweden)

    Qiansheng Tang

    2016-01-01

    Full Text Available Forced vibration of thin-wall cylindrical shell under nonlinear boundary condition was discussed in this paper. The nonlinear boundary was modeled as supported clearance in one end of shell and the restraint was assumed as linearly elastic in the radial direction. Based on Sanders’ shell theory, Lagrange equation was utilized to derive the nonlinear governing equations of cylindrical shell. The displacements in three directions were represented by beam functions and trigonometric functions. In the study of nonlinear dynamic responses of thin-wall cylindrical shell with supported clearance under external loads, the Newmark method is used to obtain time history, frequency spectrum plot, phase portraits, Poincare section, bifurcation diagrams, and three-dimensional spectrum plot with different parameters. The effects of external loads, supported clearance, and support stiffness on nonlinear dynamics behaviors of cylindrical shell with nonlinear boundary condition were discussed.

  5. Prediction of Vibrational Behavior of Grid-Stiffened Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    G. H. Rahimi

    2014-01-01

    Full Text Available A unified analytical approach is applied to investigate the vibrational behavior of grid-stiffened cylindrical shells with different boundary conditions. A smeared method is employed to superimpose the stiffness contribution of the stiffeners with those of shell in order to obtain the equivalent stiffness parameters of the whole panel. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stoke's transformation. A 3D finite element model is also built using ABAQUS software which takes into consideration the exact geometric configuration of the stiffeners and the shell. The achievements from the two types of analyses are compared with each other and good agreement has been obtained. The Influences of variations in shell geometrical parameters, boundary condition, and changes in the cross stiffeners angle on the natural frequencies are studied. The results obtained are novel and can be used as a benchmark for further studies. The simplicity and the capability of the present method are also discussed.

  6. Quantum chaos in the two-center shell model

    Energy Technology Data Exchange (ETDEWEB)

    Milek, B; Noerenberg, W; Rozmej, P [Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany, F.R.)

    1989-11-01

    Within an axially symmetric two-center shell model single-particle levels with {Omega}=1/2 are analyzed with respect to their level-spacing distributions and avoided level crossings as functions of the shape parameters. Only for shapes sufficiently far from any additional symmetry, ideal Wigner distributions are found as signature for quantum chaos. (orig.).

  7. Quantum chaos in the two-center shell model

    Energy Technology Data Exchange (ETDEWEB)

    Milek, B; Noerenberg, W; Rozmej, P

    1989-03-01

    Within an axially symmetric two-center shell model single-particle levels with ..cap omega.. = 1/2 are analyzed with respect to their level-spacing distributions and avoided level crossings as functions of the shape parameters. Only for shapes sufficiently far from any additional symmetry, ideal Wigner distributions are found as signature for quantum chaos.

  8. Methodology of shell structure reinforcement layout optimization

    Science.gov (United States)

    Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof

    2018-01-01

    This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.

  9. Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight

    Science.gov (United States)

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…

  10. Instant Windows PowerShell

    CERN Document Server

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  11. Patterning of the turtle shell.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F

    2017-08-01

    Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Measuring process and knowledge consistency

    DEFF Research Database (Denmark)

    Edwards, Kasper; Jensen, Klaes Ladeby; Haug, Anders

    2007-01-01

    When implementing configuration systems, knowledge about products and processes are documented and replicated in the configuration system. This practice assumes that products are specified consistently i.e. on the same rule base and likewise for processes. However, consistency cannot be taken...... for granted; rather the contrary, and attempting to implement a configuration system may easily ignite a political battle. This is because stakes are high in the sense that the rules and processes chosen may only reflect one part of the practice, ignoring a majority of the employees. To avoid this situation......, this paper presents a methodology for measuring product and process consistency prior to implementing a configuration system. The methodology consists of two parts: 1) measuring knowledge consistency and 2) measuring process consistency. Knowledge consistency is measured by developing a questionnaire...

  13. 40 Years of Shell Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Shell has been using scenario planning for four decades. During that time these scenarios have helped the company and governments across the world to make better strategic choices. Scenarios provide lenses that help see future prospects more clearly, make richer judgments and be more sensitive to uncertainties. Discover how the Shell Scenarios team has helped guide decision makers at major moments in history and get a peek at the team future focus, including the intricate relationship between energy, water and food.

  14. On the dynamics of relativistic multi-layer spherical shell systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Merse E; Racz, Istvan, E-mail: merse@rmki.kfki.hu, E-mail: iracz@rmki.kfki.hu [RMKI, H-1121 Budapest, Konkoly Thege Miklos ut 29-33, Budapest (Hungary)

    2011-04-21

    The relativistic time evolution of multi-layer spherically symmetric shell systems-consisting of infinitely thin shells separated by vacuum regions-is examined. Whenever two shells collide the evolution is continued with the assumption that the collision is totally transparent. The time evolution of various multi-layer shell systems-comprising large number of shells thereby mimicking the behavior of a thick shell making it possible to study the formation of acoustic singularities-is analyzed numerically and compared in certain cases to the corresponding Newtonian time evolution. The analytic setup is chosen such that the developed code is capable of following the evolution even inside the black hole region. This, in particular, allowed us to investigate the mass inflation phenomenon in the chosen framework.

  15. Do I stand out or blend in? Conspicuousness awareness and consistent behavioural differences in hermit crabs.

    Science.gov (United States)

    Briffa, Mark; Twyman, Claire

    2011-06-23

    Animals titrate their behaviour against the level of risk and an individual's conspicuousness should influence decisions such as when to flee and for how long to hide. Conspicuousness will vary with variation in substrate colour. Since hermit crabs frequently change the shells they occupy, shell colour will also influence conspicuousness and to be aware of their conspicuousness would require information on both of these factors to be integrated. Reduced boldness in high-contrast shell and substrate combinations compared with situations of low contrast indicates that hermit crabs are aware of current conspicuousness. Differences between individuals remained consistent across conspicuousness levels indicating the presence of animal personalities.

  16. Atomic mass prediction from the mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami

    1982-08-01

    The mass-excess prediction of about 8000 nuclides was calculated from two types of the atomic mass formulas with empirical shell terms of Uno and Yamada. The theoretical errors to accompany the calculated mass excess are also presented. These errors have been obtained by a new statistical method. The mass-excess prediction includes the term of the gross feature of a nuclear mass surface, the shell terms and a small correction term for odd-odd nuclei. Two functional forms for the shell terms were used. The first is the constant form, and the sencond is the linear form. In determining the values of shell parameters, only the data of even-even and odd-A nuclei were used. A new statistical method was applied, in which the error inherent to the mass formula was taken account. The obtained shell parameters and the values of mass excess are shown in tables. (Kato, T.)

  17. MECHANICAL PROPERTIES OF THIN GDP SHELLS USED AS CRYOGENIC DIRECT DRIVE TARGETS AT OMEGA

    International Nuclear Information System (INIS)

    NIKROO, A.; CZECHOWICZ, D.; CHEN, K.C.; DICKEN, M.; MORRIS, C.; ANDREWS, R.; GREENWOOD, A.L; CASTILLO, E.

    2003-09-01

    OAK-B135 Thin glow discharge polymer (GDP) shells are currently used as the targets for cryogenic direct drive laser fusion experiments. These shells need to be filled with nearly 1000 atm of D 2 and cooled to cryogenic temperatures without failing due to buckling and bursting pressures they experience in this process. Therefore, the mechanical and permeation properties of these shells are of utmost importance in successful and rapid filling with D 2 . In this paper, they present an overview of buckle and burst pressures of several different types of GDP shells. These include those made using traditional GDP deposition parameters (standard GDP) using a high deposition pressure and using modified parameters (strong GDP) of low deposition pressure that leads to more robust shells

  18. The estimation of sample size required in chemical limnology and autecology of shelled invertebrates

    National Research Council Canada - National Science Library

    Delorme, L. D; El-Shaarawi, A. H

    1978-01-01

    .... The confidence coefficient is 1 - 2alpha. In the field of chemical limnology and autecology of shelled invertebrates, most chemical parameters must be transformed to obtain a normal distribution...

  19. Spectra theory for nuclei with closed shells (1962)

    International Nuclear Information System (INIS)

    Gillet, V.

    1962-01-01

    A unified theory for the spectra of nuclei with closed shells, based on the elementary particle-hole excitation of these systems, is applied to a study of carbon-12, oxygen-16 and calcium-40. Two approximations are made. The first consists in diagonalizing the residual two-body interaction in a limited sub-space having one particle and one hole configurations. Its validity depends on the high energy necessary for exciting a particle-hole pair. The second approximation consists in re-summing the infinite sub-series of the particle-hole diagrams. It is equivalent to the Hartree-Fock method depending on the time, or to Quasi-Boson method. Its domain of validity in the nuclear case is not thoroughly Understood. The summed diagrams are preponderant at the high density limit, when the nuclear density is about unity. The violation of the Pauli principle in this approximation is only justified if the number of excited pairs is small with respect to the number of particle states available; in the case of light nuclei the degeneracies of the shells are small. Nevertheless this approximation, which postulates the existence of an average nuclear field, varying slowly with time with respect to the nucleons periods has the merit of being self-consistent, of giving orthogonal proper states in the non-physical state of the mass centre, and of improving the calculation of the summation rules. In order to determine and to limit the role of phenomenology in the results obtained using these approximations, a maximum amount of experimental data is calculated. By applying method of least squares to fourteen energy levels of oxygen and carbon, the region of optimum agreement in the effective interaction parameters is determined. This region is in part a function of the numerical approximations made. We hope that it will keep its significance when the theory is improved. It is compatible with certain characteristics of free nucleon-nucleon scattering. The present research favours the

  20. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  1. An Energy Decaying Scheme for Nonlinear Dynamics of Shells

    Science.gov (United States)

    Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.

  2. Charged thin-shell gravastars in noncommutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Oevguen, Ali [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Eastern Mediterranean University, Physics Department, Famagusta, Northern Cyprus (Turkey); Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Jusufi, Kimet [State University of Tetovo, Physics Department, Tetovo (Macedonia, The Former Yugoslav Republic of); Institute of Physics, Ss. Cyril and Methodius University, Faculty of Natural Sciences and Mathematics, Skopje (Macedonia, The Former Yugoslav Republic of)

    2017-08-15

    In this paper we construct a charged thin-shell gravastar model within the context of noncommutative geometry. To do so, we choose the interior of the nonsingular de Sitter spacetime with an exterior charged noncommutative solution by cut-and-paste technique and apply the generalized junction conditions. We then investigate the stability of a charged thin-shell gravastar under linear perturbations around the static equilibrium solutions as well as the thermodynamical stability of the charged gravastar. We find the stability regions, by choosing appropriate parameter values, located sufficiently close to the event horizon. (orig.)

  3. L-shell radiative transition rates by selective synchrotron ionization

    International Nuclear Information System (INIS)

    Bonetto, R D; Carreras, A C; Trincavelli, J; Castellano, G

    2004-01-01

    Relative L-shell radiative transition rates were obtained for a number of decays in Gd, Dy, Er, Yb, Hf, Ta and Re by means of a method for refining atomic and experimental parameters involved in the spectral analysis of x-ray irradiated samples. For this purpose, pure samples were bombarded with monochromatic synchrotron radiation tuning the incident x-ray energy in order to allow selective ionization of the different atomic shells. The results presented are compared to experimental and theoretical values published by other authors. A good general agreement was found and some particular discrepancies are discussed

  4. Major shell centroids in the symplectic collective model

    International Nuclear Information System (INIS)

    Draayer, J.P.; Rosensteel, G.; Tulane Univ., New Orleans, LA

    1983-01-01

    Analytic expressions are given for the major shell centroids of the collective potential V(#betta#, #betta#) and the shape observable #betta# 2 in the Sp(3,R) symplectic model. The tools of statistical spectroscopy are shown to be useful, firstly, in translating a requirement that the underlying shell structure be preserved into constraints on the parameters of the collective potential and, secondly, in giving a reasonable estimate for a truncation of the infinite dimensional symplectic model space from experimental B(E2) transition strengths. Results based on the centroid information are shown to compare favorably with results from exact calculations in the case of 20 Ne. (orig.)

  5. Fast neutron scattering near shell closures: Scandium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1992-08-01

    Neutron differential elastic- and inelastic-scattering cross sections are measured from ∼ 1.5 to 10 MeV with sufficient detail to define the energy-averaged behavior of the scattering processes. Neutrons corresponding to excitations of 465 ± 23, 737 ± 20, 1017 ± 34, 1251 ± 20, 1432 ± 23 and 1692 ± 25 keV are observed. It is shown that the observables, including the absorption cross section, are reasonably described with a conventional optical-statistical model having energy-dependent geometric parameters. These energy dependencies are alleviated when the model is extended to include the contributions of the dispersion relationship. The model parameters are conventional, with no indication of anomalous behavior of the neutron interaction with 45 Sc, five nucleons from the doubly closed shell at 40 Ca

  6. Topological magnetic solitons on a paraboloidal shell

    Energy Technology Data Exchange (ETDEWEB)

    Vilas-Boas, Priscila S.C. [Universidade do Estado da Bahia, Campus VII, BR 402, 48970-000, Senhor do Bonfim, BA (Brazil); Elias, Ricardo G.; Altbir, Dora [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Fonseca, Jakson M. [Universidade Federal de Viçosa, Departamento de Física, Avenida Peter Henry Rolfs s/n, 36570-000, Viçosa, MG (Brazil); Carvalho-Santos, Vagson L., E-mail: vagson.carvalho@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil)

    2015-01-02

    We study the influence of curvature on the exchange energy of skyrmions and vortices on a paraboloidal surface. It is shown that such structures appear as excitations of the Heisenberg model, presenting topological stability, unlike what happens on other simply-connected geometries such as pseudospheres. We also show that the skyrmion width depends on the geometrical parameters of the paraboloid. The presence of a magnetic field leads to the appearance of 2π-skyrmions, introducing a new characteristic length into the system. Regarding vortices, the geometrical parameters of the paraboloid play an important role in the exchange energy of this excitation. - Highlights: • Curvature-induced change in the width of a skyrmion on a paraboloid. • Presence of 2π-skyrmions due to the interaction with external fields. • Changes in the width of a skyrmion induced by magnetic fields. • Coupling between magnetic field and curvature. • Prediction of vortex repulsion due to a paraboloidal shell.

  7. Design of Breadfruit Shelling Machine | Nwigbo | African Research ...

    African Journals Online (AJOL)

    In the engineering design of this machine, the action zone consisted essentially of two rollers; one adjustable and the other rotating. A separating unit that cleans the seed while pneumatically separating it from the shell was incorporated. The design of this separating unit was such that practically 80% cleaning was achieved ...

  8. On The Origin Of Two-Shell Supernova Remnants

    Science.gov (United States)

    Gvaramadze, Vasilii

    2007-07-01

    The proper motion of massive stars could cause them to explode far from the geometric centers of their wind-driven bubbles and thereby could affect the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. Cygnus Loop, 3C 400.2, etc.).

  9. Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, K. K.; Aziz, Z. A.; Javed, Saira; Yaacob, Y. [Universiti Teknologi Malaysia, Johor Bahru (Malaysia); Pullepu, Babuji [S R M University, Chennai (India)

    2015-05-15

    Free vibration of symmetric angle-ply laminated truncated conical shell is analyzed to determine the effects of frequency parameter and angular frequencies under different boundary condition, ply angles, different material properties and other parameters. The governing equations of motion for truncated conical shell are obtained in terms of displacement functions. The displacement functions are approximated by cubic and quintic splines resulting into a generalized eigenvalue problem. The parametric studies have been made and discussed.

  10. Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method

    International Nuclear Information System (INIS)

    Viswanathan, K. K.; Aziz, Z. A.; Javed, Saira; Yaacob, Y.; Pullepu, Babuji

    2015-01-01

    Free vibration of symmetric angle-ply laminated truncated conical shell is analyzed to determine the effects of frequency parameter and angular frequencies under different boundary condition, ply angles, different material properties and other parameters. The governing equations of motion for truncated conical shell are obtained in terms of displacement functions. The displacement functions are approximated by cubic and quintic splines resulting into a generalized eigenvalue problem. The parametric studies have been made and discussed.

  11. Creep buckling of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading

  12. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  13. Neutrinoless double-β decay matrix elements in large shell-model spaces with the generator-coordinate method

    Science.gov (United States)

    Jiao, C. F.; Engel, J.; Holt, J. D.

    2017-11-01

    We use the generator-coordinate method (GCM) with realistic shell-model interactions to closely approximate full shell-model calculations of the matrix elements for the neutrinoless double-β decay of 48Ca, 76Ge, and 82Se. We work in one major shell for the first isotope, in the f5 /2p g9 /2 space for the second and third, and finally in two major shells for all three. Our coordinates include not only the usual axial deformation parameter β , but also the triaxiality angle γ and neutron-proton pairing amplitudes. In the smaller model spaces our matrix elements agree well with those of full shell-model diagonalization, suggesting that our Hamiltonian-based GCM captures most of the important valence-space correlations. In two major shells, where exact diagonalization is not currently possible, our matrix elements are only slightly different from those in a single shell.

  14. Thermogravimetric characterization and gasification of pecan nut shells.

    Science.gov (United States)

    Aldana, Hugo; Lozano, Francisco J; Acevedo, Joaquín; Mendoza, Alberto

    2015-12-01

    This study focuses on the evaluation of pecan nut shells as an alternative source of energy through pyrolysis and gasification. The physicochemical characteristics of the selected biomass that can influence the process efficiency, consumption rates, and the product yield, as well as create operational problems, were determined. In addition, the thermal decomposition kinetics necessary for prediction of consumption rates and yields were determined. Finally, the performance of a downdraft gasifier fed with pecan nut shells was analyzed in terms of process efficiency and exit gas characteristics. It was found that the pyrolytic decomposition of the nut shells can be modeled adequately using a single equation considering two independent parallel reactions. The performance of the gasification process can be influenced by the particle size and air flow rate, requiring a proper combination of these parameters for reliable operation and production of a valuable syngas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Nonlinear problems of the theory of heterogeneous slightly curved shells

    Science.gov (United States)

    Kantor, B. Y.

    1973-01-01

    An account if given of the variational method of the solution of physically and geometrically nonlinear problems of the theory of heterogeneous slightly curved shells. Examined are the bending and supercritical behavior of plates and conical and spherical cupolas of variable thickness in a temperature field, taking into account the dependence of the elastic parameters on temperature. The bending, stability in general and load-bearing capacity of flexible isotropic elastic-plastic shells with different criteria of plasticity, taking into account compressibility and hardening. The effect of the plastic heterogeneity caused by heat treatment, surface work hardening and irradiation by fast neutron flux is investigated. Some problems of the dynamic behavior of flexible shells are solved. Calculations are performed in high approximations. Considerable attention is given to the construction of a machine algorithm and to the checking of the convergence of iterative processes.

  16. Shell model test of the Porter-Thomas distribution

    International Nuclear Information System (INIS)

    Grimes, S.M.; Bloom, S.D.

    1981-01-01

    Eigenvectors have been calculated for the A=18, 19, 20, 21, and 26 nuclei in an sd shell basis. The decomposition of these states into their shell model components shows, in agreement with other recent work, that this distribution is not a single Gaussian. We find that the largest amplitudes are distributed approximately in a Gaussian fashion. Thus, many experimental measurements should be consistent with the Porter-Thomas predictions. We argue that the non-Gaussian form of the complete distribution can be simply related to the structure of the Hamiltonian

  17. Delayed neutron emission near the shell-closures

    Directory of Open Access Journals (Sweden)

    Borzov Ivan

    2016-01-01

    Full Text Available The self-consistent Density Functional + Continuum QRPA approach (DF+CQRPA provides a good description of the recent experimental beta-decay half-lives and delayed neutron emission branchings for the nuclei approaching to (and beyond the neutron closed shells N = 28; 50; 82. Predictions of beta-decay properties are more reliable than the ones of standard global approaches traditionally used for the r-process modelling. An impact of the quasi-particle phonon coupling on the delayed multi-neutron emission rates P2n, P3n,… near the closed shells is also discussed.

  18. Consistent Estimation of Partition Markov Models

    Directory of Open Access Journals (Sweden)

    Jesús E. García

    2017-04-01

    Full Text Available The Partition Markov Model characterizes the process by a partition L of the state space, where the elements in each part of L share the same transition probability to an arbitrary element in the alphabet. This model aims to answer the following questions: what is the minimal number of parameters needed to specify a Markov chain and how to estimate these parameters. In order to answer these questions, we build a consistent strategy for model selection which consist of: giving a size n realization of the process, finding a model within the Partition Markov class, with a minimal number of parts to represent the process law. From the strategy, we derive a measure that establishes a metric in the state space. In addition, we show that if the law of the process is Markovian, then, eventually, when n goes to infinity, L will be retrieved. We show an application to model internet navigation patterns.

  19. Modal sensing and control of paraboloidal shell structronic system

    Science.gov (United States)

    Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen

    2018-02-01

    Paraboloidal shells of revolution are commonly used as important components in the field of advanced aerospace structures and aviation mechanical systems. This study is to investigate the modal sensing behavior and the modal vibration control effect of distributed PVDF patches laminated on the paraboloidal shell. A paraboloidal shell sensing and control testing platform is set up first. Frequencies of lower order modes of the shell are obtained with the PVDF sensor and compared with the previous testing results to prove its accuracy. Then sensor patches are laminated on different positions (or different sides) of the shell and tested to reveal the relation between the sensing behaviors and their locations. Finally, a mathematical model of the structronic system is built by parameter identifications and the transfer function is derived. Independent and coupled modal controllers are designed based on the pole placement method and modal vibration control experiments are performed. The amplitude suppression ratio of each mode controlled by the pole placement controller is calculated and compared with the results obtained by using a PPF controller. Advantages of both methods are concluded and suggestions are given on how to choose control algorithm for different purpose.

  20. Experiments on vibration control of a piezoelectric laminated paraboloidal shell

    Science.gov (United States)

    Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen

    2017-01-01

    A paraboloidal shell plays a key role in aerospace and optical structural systems applied to large optical reflector, communications antenna, rocket fairing, missile radome, etc. Due to the complexity of analytical procedures, an experimental study of active vibration control of a piezoelectric laminated paraboloidal shell by positive position feedback is carried out. Sixteen PVDF patches are laminated inside and outside of the shell, in which eight of them are used as sensors and eight as actuators to control the vibration of the first two natural modes. Lower natural frequencies and vibration modes of the paraboloidal shell are obtained via the frequency response function analysis by Modal VIEW software. A mathematical model of the control system is formulated by means of parameter identification. The first shell mode is controlled as well as coupled the first and second modes based on the positive position feedback (PPF) algorithm. To minimize the control energy consumption in orbit, an adaptive modal control method is developed in this study by using the PPF in laboratory experiments. The control system collects vibration signals from the piezoelectric sensors to identify location(s) of the largest vibration amplitudes and then select the best two from eight PVDF actuators to apply control forces so that the modal vibration suppression could be accomplished adaptively and effectively.

  1. Gamma ray attenuation studies in concrete reinforced with coconut shells

    International Nuclear Information System (INIS)

    Vishnu, C.V.; Joseph, Antony

    2017-01-01

    Gamma ray absorption studies on wood in general is an area of interest. In Kerala, though coconut tree is a common plantation, a systematic study of gamma ray attenuation in coconut shell has not been reported. In the present study, we have made an attempt to carry out such measurements on coconut shells collected from Trichur district. Coconut shells in to the size of 4cm × 4cm was used in these studies and 662 KeV gamma ray counts were measured using 8K channel NaI(Tl) detector. Subsequently we extended these studies by reinforcing concrete with crushed coconut shells, arranged in a layer by layer fashion. Concrete is usually a choice for shielding nuclear radiations. The effect of reinforcing them with coconut shell is also an area of interest. We have carried out absorption studies by using two types of sand also in the concrete mixture. Common sand is not amply available and people use M-sand (Manufactured sand) instead. In the concrete blocks we selectively used common sand and m-sand and its effects on gamma absorption were also investigated. We have estimated both linear and mass attenuation coefficients and the half value layer (HVL) parameter was determined from them. We have noticed an increase in µ/ρ with increase in density of concrete, achieved through the reinforcement. (author)

  2. Consistency argued students of fluid

    Science.gov (United States)

    Viyanti; Cari; Suparmi; Winarti; Slamet Budiarti, Indah; Handika, Jeffry; Widyastuti, Fatma

    2017-01-01

    Problem solving for physics concepts through consistency arguments can improve thinking skills of students and it is an important thing in science. The study aims to assess the consistency of the material Fluid student argmentation. The population of this study are College students PGRI Madiun, UIN Sunan Kalijaga Yogyakarta and Lampung University. Samples using cluster random sampling, 145 samples obtained by the number of students. The study used a descriptive survey method. Data obtained through multiple-choice test and interview reasoned. Problem fluid modified from [9] and [1]. The results of the study gained an average consistency argmentation for the right consistency, consistency is wrong, and inconsistent respectively 4.85%; 29.93%; and 65.23%. Data from the study have an impact on the lack of understanding of the fluid material which is ideally in full consistency argued affect the expansion of understanding of the concept. The results of the study as a reference in making improvements in future studies is to obtain a positive change in the consistency of argumentations.

  3. Creep buckling of shell structures

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Hagihara, Seiya

    2015-01-01

    The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)

  4. The influence of MOVPE growth conditions on the shell of core-shell GaN microrod structures

    Science.gov (United States)

    Schimpke, Tilman; Avramescu, Adrian; Koller, Andreas; Fernando-Saavedra, Amalia; Hartmann, Jana; Ledig, Johannes; Waag, Andreas; Strassburg, Martin; Lugauer, Hans-Jürgen

    2017-05-01

    A core-shell geometry is employed for most next-generation, three-dimensional opto-electric devices based on III-V semiconductors and grown by metal organic vapor phase epitaxy (MOVPE). Controlling the shape of the shell layers is fundamental for device optimization, however no detailed analysis of the influence of growth conditions has been published to date. We study homogeneous arrays of gallium nitride core-shell microrods with height and diameter in the micrometer range and grown in a two-step selective area MOVPE process. Changes in shell shape and homogeneity effected by deliberately altered shell growth conditions were accurately assessed by digital analysis of high-resolution scanning electron microscope images. Most notably, two temperature regimes could be established, which show a significantly different behavior with regard to material distribution. Above 900 °C of wafer carrier temperature, the shell thickness along the growth axis of the rods was very homogeneous, however variations between vicinal rods increase. In contrast, below 830 °C the shell thickness is higher close to the microrod tip than at the base of the rods, while the lateral homogeneity between neighboring microrods is very uniform. This temperature effect could be either amplified or attenuated by changing the remaining growth parameters such as reactor pressure, structure distance, gallium precursor, carrier gas composition and dopant materials. Possible reasons for these findings are discussed with respect to GaN decomposition as well as the surface and gas phase diffusion of growth species, leading to an improved control of the functional layers in next-generation 3D V-III devices.

  5. Coordinating user interfaces for consistency

    CERN Document Server

    Nielsen, Jakob

    2001-01-01

    In the years since Jakob Nielsen's classic collection on interface consistency first appeared, much has changed, and much has stayed the same. On the one hand, there's been exponential growth in the opportunities for following or disregarding the principles of interface consistency-more computers, more applications, more users, and of course the vast expanse of the Web. On the other, there are the principles themselves, as persistent and as valuable as ever. In these contributed chapters, you'll find details on many methods for seeking and enforcing consistency, along with bottom-line analys

  6. Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.

    Science.gov (United States)

    Gangil, Sandip

    2014-03-01

    Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The alpha-particle and shell models of the nucleus

    International Nuclear Information System (INIS)

    Perring, J.K.; Skyrme, T.H.R.

    1994-01-01

    It is shown that it is possible to write down α-particle wave functions for the ground states of 8 Be, 12 C and 16 O, which become, when antisymmetrized, identical with shell-model wave functions. The α-particle functions are used to obtain potentials which can then be used to derive wave functions and energies of excited states. Most of the low-lying states of 16 O are obtained in this way, qualitative agreement with experiment being found. The shell structure of the 0 + level at 6·06 MeV is analyzed, and is found to consist largely of single-particle excitations. The lifetime for pair-production is calculated, and found to be comparable with the experimental value. The validity of the method is discussed, and comparison made with shell-model calculations. (author). 5 refs, 1 tab

  8. Zero-point energy effects in anion solvation shells.

    Science.gov (United States)

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  9. Gravitational entropy of nonstationary black holes and spherical shells

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1989-01-01

    The problem of defining the gravitational entropy of a nonstationary black hole is considered in a simple model consisting of a spherical shell which collapses into a preexisting black hole. The second law of black-hole mechanics strongly suggests identifying one-quarter of the area of the event horizon as the gravitational entropy of the system. It is, however, impossible to accurately locate the position of the global event horizon using only local measurements. In order to maintain a local thermodynamics, it is suggested that the entropy of the black hole be identified with one-quarter the area of the apparent horizon. The difference between the event-horizon entropy (to the extent it can be determined) and the apparent-horizon entropy may then be interpreted as the gravitational entropy of the collapsing shell. The total (event-horizon) gravitational entropy evolves in a smooth (C 0 ) fashion, even in the presence of δ-functional shells of matter

  10. Theoretical study of inner-shell ionization by heavy-particle impact

    International Nuclear Information System (INIS)

    Sarkadi, L.

    2000-01-01

    Complete text of publication follows. In our previous theoretical studies of inner-shell ionization of atoms by heavy-particle impact we applied the so-called coupled-states model. This theory was constructed to account for the intra-shell coupling effects in L-shell ionization. The model satisfactory reproduced the main tendencies of the measured L-shell ionization data (cross sections, L 3 -subshell alignment parameters) in a broad range of the collision energy, target and projectile atomic number. However, the accuracy of these calculations was uncertain, because the coupled-states model contained a series of approximation. The most questionable assumption was that the changes of the cross sections due to the subshell coupling effects were expressed by correction factors. The correction factors were derived considering only some representative transitions between the bound and continuum states, namely transitions into states of energy E f = 0 and angular momentum l f = 0.1. As a first step to improve the coupled-states model, a computer program was developed to calculate the matrix elements of the Coulomb interaction between a charged particle and an atomic electron, ∫ ψ* f (r) /R - r/ -1 ψ i (r)dr, for arbitrary final state energy E f and angular momentum l f . The ψ k (r)'s are non-relativistic hydrogenic wave functions. The program consists of subroutines that compute matrix elements between eigenstates of both the total angular momentum j, and the orbital angular momentum l. As further output quantities, the radial components of the multipole series expansion of the matrix elements (the so-called G functions) can be obtained, as well. The structure of the program is such that the hydrogenic wave functions can be replaced by arbitrary one-electron wave functions. The program was tested in calculations of K-, L- and M-shell ionization probabilities and cross sections within the framework of the straight-line version of the (first-order) semiclassical

  11. Choice, internal consistency, and rationality

    OpenAIRE

    Aditi Bhattacharyya; Prasanta K. Pattanaik; Yongsheng Xu

    2010-01-01

    The classical theory of rational choice is built on several important internal consistency conditions. In recent years, the reasonableness of those internal consistency conditions has been questioned and criticized, and several responses to accommodate such criticisms have been proposed in the literature. This paper develops a general framework to accommodate the issues raised by the criticisms of classical rational choice theory, and examines the broad impact of these criticisms from both no...

  12. Self-consistent quark bags

    International Nuclear Information System (INIS)

    Rafelski, J.

    1979-01-01

    After an introductory overview of the bag model the author uses the self-consistent solution of the coupled Dirac-meson fields to represent a bound state of strongly ineteracting fermions. In this framework he discusses the vivial approach to classical field equations. After a short description of the used numerical methods the properties of bound states of scalar self-consistent Fields and the solutions of a self-coupled Dirac field are considered. (HSI) [de

  13. Preparation and Characterization of Silicone Liquid Core/Polymer Shell Microcapsules via Internal Phase Separation

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Kostrzewska, Malgorzata; Ma, Baoguang

    2014-01-01

    Microcapsules with a silicone liquid core surrounded by a polymeric shell were synthesisedthrough the controlled phase separation. The dispersed silicone phase consisted of the shellpolymer PMMA, a good solvent for the PMMA (dichloromethane, DCM) and a poor solvent(methylhydrosiloxane dimethylsil......Microcapsules with a silicone liquid core surrounded by a polymeric shell were synthesisedthrough the controlled phase separation. The dispersed silicone phase consisted of the shellpolymer PMMA, a good solvent for the PMMA (dichloromethane, DCM) and a poor solvent...

  14. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.; Dean, D.J.; Langanke, K.

    1997-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)

  15. Cask for concrete shells transportation

    International Nuclear Information System (INIS)

    Labergri, F.

    2001-01-01

    Nowadays, nuclear plant radioactive waste are conditioned in situ into concrete shells. Most of them enter in the industrial waste category defined by the regulations of radioactive material transportation. However, the content of a few ones exceeds the limits set for low specific activity substances. Thus, these shells must be transported into type B packagings. To this end, Robatel has undertaken, for EDF (Electricite de France), the development of a container, named ROBATEL TM R68, for further licensing. The particularity of this packaging is that the lid must have a wide opening to allow the usual handling operations of the concrete shells. This leads to a non-conventional conception, and makes the package more vulnerable to drop test solicitations. In order to define a minimal drop test program on a reduced scale model, we use a simple method to find the most damageable drop angle. (author)

  16. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.

    1996-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs

  17. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  18. Study Added of Waste Chicken Egg Shell in Soils

    Directory of Open Access Journals (Sweden)

    Keng Wong Irwan Lie

    2016-01-01

    Full Text Available Soil is the foundation of structure or construction that will receive the load transfer through to foundation. If the soil has a carrying capacity of small and cannot withstand the load transfer can result in the failure of construction. If the soil has a carrying capacity of small ground it is necessary to stabilize or improve the soil so that an increase in the carrying capacity of the land so that it can be used for construction. One material is commonly used for soil stabilization with the addition of lime. Waste chicken egg shell is waste that is still rarely used, the results of research [1], states that composition egg shell broadly consists of water (1,6% and dry material (98,4%. The total dry ingredients are there, in shell eggs contained mineral elements (95,1% and protein (3,3%. Based on the existing mineral composition, then the egg shells are composed of crystalline CaCO3 (98,43%, MgCO3 (0,84% and Ca3(PO42 (0,75%. This research was done by adding powdered chicken egg shell waste in clay with a composition of 5%, 7,5%, 10% and 14% with physical properties test and soil compaction test.

  19. Factors controlling carbon isotopic composition of land snail shells estimated from lab culturing experiment

    Science.gov (United States)

    Zhang, Naizhong; Yamada, Keita; Yoshida, Naohiro

    2014-05-01

    Carbon isotopic composition (δ13C) of land snail shell carbonate is widely applied in reconstructing the C3/C4 vegetation distribution of paleo-environment, which is considered to reflect variations of some environmental parameters [1][2][3]. Land snail shell carbon has three potential sources: diet, atmospheric CO2 and ingested carbonate (limestone) [4]. However, their relative contributions to shell carbonate have not been understood well yet [4][5][6][7][8]. More researches are necessary before we could apply this tool in paleo-environment reconstruction, especially inter-lab culturing experiment. A kind of land snail species, Acusta despecta sieboldiana, was collected at Yokohama, Japan and cultured under suitable environment to lay eggs. The second generations were growing up from eggs to adults around 6-12 months at the temperature of 20°, 25° and 30°, respectively. All of the snails at 25° and 30° and most of those at 20° were fed by cabbage (C3 plant) during their life span while others were fed by corn (C4 plant). To investigate the effect of ingested carbonate, some of them were fed by Ca3(PO4)2 powder while others were fed by CaCO3 powder. δ13C of shells were analyzed by an Isotope Ratio Mass Spectrometry (Thermo Finnigan MAT 253); δ13C of food and snail tissue were measured by a Cavity Ring-Down Spectroscopy (Picarro G1121-i). At the same time, δ13C of eggshell and new born snails were analyzed by a Continuous Flow Isotope Ratio Mass Spectrometry (GasBench II). We confirmed that diet, atmospheric CO2 and ingested limestone could be important sources controlling shell δ13C values. And the temperature could affect shell carbonate δ13C values, too. A simple but credible frame was raised to discuss the mechanism of how each possible source and environmental parameter could affect shell carbonate δ13C values based on previous works [4][6][8] and this study. According to this frame and some reasonable assumptions, we have estimated the

  20. Time-consistent and market-consistent evaluations

    NARCIS (Netherlands)

    Pelsser, A.; Stadje, M.A.

    2014-01-01

    We consider evaluation methods for payoffs with an inherent financial risk as encountered for instance for portfolios held by pension funds and insurance companies. Pricing such payoffs in a way consistent to market prices typically involves combining actuarial techniques with methods from

  1. Learning Shell scripting with Zsh

    CERN Document Server

    Festari, Gaston

    2014-01-01

    A step-by-step tutorial that will teach you, through real-world examples, how to configure and use Zsh and its various features. If you are a system administrator, developer, or computer professional involved with UNIX who are looking to improve on their daily tasks involving the UNIX shell, ""Learning Shell Scripting with Zsh"" will be great for you. It's assumed that you have some familiarity with an UNIX command-line interface and feel comfortable with editors such as Emacs or vi.

  2. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti; Collier, Nathan; Dalcí n, Lisandro D.; Ghommem, Mehdi; Calo, Victor M.

    2012-01-01

    The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  3. Stability of the Regular Hayward Thin-Shell Wormholes

    Directory of Open Access Journals (Sweden)

    M. Sharif

    2016-01-01

    Full Text Available The aim of this paper is to construct regular Hayward thin-shell wormholes and analyze their stability. We adopt Israel formalism to calculate surface stresses of the shell and check the null and weak energy conditions for the constructed wormholes. It is found that the stress-energy tensor components violate the null and weak energy conditions leading to the presence of exotic matter at the throat. We analyze the attractive and repulsive characteristics of wormholes corresponding to ar>0 and ar<0, respectively. We also explore stability conditions for the existence of traversable thin-shell wormholes with arbitrarily small amount of fluid describing cosmic expansion. We find that the space-time has nonphysical regions which give rise to event horizon for 0parameter l=0.9. It is concluded that the Hayward and Van der Waals quintessence parameters increase the stability of thin-shell wormholes.

  4. Laser Heating of the Core-Shell Nanowires

    Science.gov (United States)

    Astefanoaei, Iordana; Dumitru, Ioan; Stancu, Alexandru

    2016-12-01

    The induced thermal stress in a heating process is an important parameter to be known and controlled in the magnetization process of core-shell nanowires. This paper analyses the stress produced by a laser heating source placed at one end of a core-shell type structure. The thermal field was computed with the non-Fourier heat transport equation using a finite element method (FEM) implemented in Comsol Multiphysics. The internal stresses are essentially due to thermal gradients and different expansion characteristics of core and shell materials. The stress values were computed using the thermo elastic formalism and are depending on the laser beam parameters (spot size, power etc.) and system characteristics (dimensions, thermal characteristics). Stresses in the GPa range were estimated and consequently we find that the magnetic state of the system can be influenced significantly. A shell material as the glass which is a good thermal insulator induces in the magnetic core, the smaller stresses and consequently the smaller magnetoelastic energy. These results lead to a better understanding of the switching process in the magnetic materials.

  5. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    International Nuclear Information System (INIS)

    Guo, S.C.; Chu, M.S.

    2002-01-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω -2 <<1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX

  6. Polypropylenes foam consisting of thermally expandable microcapsule as blowing agent

    Science.gov (United States)

    Jeoung, Sun Kyung; Hwang, Ye Jin; Lee, Hyun Wook; Kwak, Sung Bok; Han, In-Soo; Ha, Jin Uk

    2016-03-01

    The structure of thermally expandable microcapsule (TEMs) is consisted of a thermoplastic shell which is filled with liquid hydrocarbon at core. The shell of TEMs becomes soft when the temperature is higher than boiling temperature of liquid hydrocarbon. The shell of TEMs is expanded under the high temperature because the inner pressure of TEMs is increased by vaporization of hydrocarbon core. Therefore, the TEMs are applicable for blowing agents and light weight fillers. In this research, we fabricated the polypropylene (PP) foam by using the TEMs and chemical blowing agents and compared to their physical properties. The density of the specimen was decreased when the contents of chemical blowing agents and TEMs were increased. In addition, the mechanical properties (i.e. tensile strength and impact strength) of specimens were deteriorated with increasing amount of chemical blowing agents and TEMs. However, PP foam produced with TEMs showed higher impact strength than the one with the chemical blowing agent. In order to clarify the dependence of impact strength of PP foam as the blowing agent, the morphology difference of the PP foams was investigated. Expanding properties of PP foams produced with TEMs was changed with TEMs content of PP foams. Processing conditions also influenced the mechanical properties of PP foam containing TEMs.

  7. Market-consistent actuarial valuation

    CERN Document Server

    Wüthrich, Mario V

    2016-01-01

    This is the third edition of this well-received textbook, presenting powerful methods for measuring insurance liabilities and assets in a consistent way, with detailed mathematical frameworks that lead to market-consistent values for liabilities. Topics covered are stochastic discounting with deflators, valuation portfolio in life and non-life insurance, probability distortions, asset and liability management, financial risks, insurance technical risks, and solvency. Including updates on recent developments and regulatory changes under Solvency II, this new edition of Market-Consistent Actuarial Valuation also elaborates on different risk measures, providing a revised definition of solvency based on industry practice, and presents an adapted valuation framework which takes a dynamic view of non-life insurance reserving risk.

  8. Charged shells in Lovelock gravity: Hamiltonian treatment and physical implications

    International Nuclear Information System (INIS)

    Dias, Goncalo A. S.; Gao, Sijie; Lemos, Jose P. S.

    2007-01-01

    Using a Hamiltonian treatment, charged thin shells, static and dynamic, in spherically symmetric spacetimes, containing black holes or other specific types of solutions, in d dimensional Lovelock-Maxwell theory are studied. The free coefficients that appear in the Lovelock theory are chosen to obtain a sensible theory, with a negative cosmological constant appearing naturally. Using an Arnowitt-Deser-Misner (ADM) description, one then finds the Hamiltonian for the charged shell system. Variation of the Hamiltonian with respect to the canonical coordinates and conjugate momenta, and the relevant Lagrange multipliers, yields the dynamic and constraint equations. The vacuum solutions of these equations yield a division of the theory into two branches, namely d-2k-1>0 (which includes general relativity, Born-Infeld type theories, and other generic gravities) and d-2k-1=0 (which includes Chern-Simons type theories), where k is the parameter giving the highest power of the curvature in the Lagrangian. There appears an additional parameter χ=(-1) k+1 , which gives the character of the vacuum solutions. For χ=1 the solutions, being of the type found in general relativity, have a black hole character. For χ=-1 the solutions, being of a new type not found in general relativity, have a totally naked singularity character. Since there is a negative cosmological constant, the spacetimes are asymptotically anti-de Sitter (AdS), and AdS when empty (for zero cosmological constant the spacetimes are asymptotically flat). The integration from the interior to the exterior vacuum regions through the thin shell takes care of a smooth junction, showing the power of the method. The subsequent analysis is divided into two cases: static charged thin shell configurations, and gravitationally collapsing charged dust shells (expanding shells are the time reversal of the collapsing shells). In the collapsing case, into an initially nonsingular spacetime with generic character or an empty

  9. The Principle of Energetic Consistency

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  10. Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Lewicka Katarzyna

    2017-06-01

    Full Text Available Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN, walnut shells (WN and peanut shells (PN. Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g and WN900 at 25°C (4.34 mmol/g. All of the samples had a well-developed microporous structure.

  11. Consistent guiding center drift theories

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1982-04-01

    Various guiding-center drift theories are presented that are optimized in respect of consistency. They satisfy exact energy conservation theorems (in time-independent fields), Liouville's theorems, and appropriate power balance equations. A theoretical framework is given that allows direct and exact derivation of associated drift-kinetic equations from the respective guiding-center drift-orbit theories. These drift-kinetic equations are listed. Northrop's non-optimized theory is discussed for reference, and internal consistency relations of G.C. drift theories are presented. (orig.)

  12. Weak consistency and strong paraconsistency

    Directory of Open Access Journals (Sweden)

    Gemma Robles

    2009-11-01

    Full Text Available In a standard sense, consistency and paraconsistency are understood as, respectively, the absence of any contradiction and as the absence of the ECQ (“E contradictione quodlibet” rule that allows us to conclude any well formed formula from any contradiction. The aim of this paper is to explain the concepts of weak consistency alternative to the standard one, the concepts of paraconsistency related to them and the concept of strong paraconsistency, all of which have been defined by the author together with José M. Méndez.

  13. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  14. On Perturbation Solutions for Axisymmetric Bending Boundary Values of a Deep Thin Spherical Shell

    Directory of Open Access Journals (Sweden)

    Rong Xiao

    2014-01-01

    Full Text Available On the basis of the general theory of elastic thin shells and the Kirchhoff-Love hypothesis, a fundamental equation for a thin shell under the moment theory is established. In this study, the author derives Reissner’s equation with a transverse shear force Q1 and the displacement component w. These basic unknown quantities are derived considering the axisymmetry of the deep, thin spherical shell and manage to constitute a boundary value question of axisymmetric bending of the deep thin spherical shell under boundary conditions. The asymptotic solution is obtained by the composite expansion method. At the end of this paper, to prove the correctness and accuracy of the derivation, an example is given to compare the numerical solution by ANSYS and the perturbation solution. Meanwhile, the effects of material and geometric parameters on the nonlinear response of axisymmetric deep thin spherical shell under uniform external pressure are also analyzed in this paper.

  15. Sensitivity study of buckling strength for cylindrical shells

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Hideo; Sasaki, Toru [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Aiming at making clear buckling behavior of cylindrical shells under earthquake loadings, we investigated procedure of recent elastic-plastic buckling analysis by finite element method (FEM). Thereby it is confirmed that the buckling strength becomes as well as that of a shell with a cross section of a perfect cylinder, if we apply the first buckling eigenvector to imperfection mode and assume the maximum imperfection amplitude to be 1% of the wall thickness. And then, by carrying out sensitivity study of buckling with geometrical parameters, such as length (L), radius (R), wall thickness (t), and load parameter, such as pressure, we obtained several characteristics about buckling strength and buckling mode for cylindrical shells. From the geometrical parameter analysis, it is seen that bending buckling occurs for small R/t (thick wall) and elastic buckling occurs for 2{<=}L/R{<=}4 and R/t{>=}400. And from the load parameter analysis, it is shown that hoop stress caused by the inner pressure increases shear buckling strength but decreases bending buckling strength, and hoop stress by hydrostatic pressure changes buckling mode and generates local deformation. (author)

  16. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-01-01

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal

  17. Adaptative mixed methods to axisymmetric shells

    International Nuclear Information System (INIS)

    Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.

    1989-09-01

    The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt

  18. Time-consistent actuarial valuations

    NARCIS (Netherlands)

    Pelsser, A.A.J.; Salahnejhad Ghalehjooghi, A.

    2016-01-01

    Time-consistent valuations (i.e. pricing operators) can be created by backward iteration of one-period valuations. In this paper we investigate the continuous-time limits of well-known actuarial premium principles when such backward iteration procedures are applied. This method is applied to an

  19. Dynamically consistent oil import tariffs

    International Nuclear Information System (INIS)

    Karp, L.; Newbery, D.M.

    1992-01-01

    The standard theory of optimal tariffs considers tariffs on perishable goods produced abroad under static conditions, in which tariffs affect prices only in that period. Oil and other exhaustable resources do not fit this model, for current tariffs affect the amount of oil imported, which will affect the remaining stock and hence its future price. The problem of choosing a dynamically consistent oil import tariff when suppliers are competitive but importers have market power is considered. The open-loop Nash tariff is solved for the standard competitive case in which the oil price is arbitraged, and it was found that the resulting tariff rises at the rate of interest. This tariff was found to have an equilibrium that in general is dynamically inconsistent. Nevertheless, it is shown that necessary and sufficient conditions exist under which the tariff satisfies the weaker condition of time consistency. A dynamically consistent tariff is obtained by assuming that all agents condition their current decisions on the remaining stock of the resource, in contrast to open-loop strategies. For the natural case in which all agents choose their actions simultaneously in each period, the dynamically consistent tariff was characterized, and found to differ markedly from the time-inconsistent open-loop tariff. It was shown that if importers do not have overwhelming market power, then the time path of the world price is insensitive to the ability to commit, as is the level of wealth achieved by the importer. 26 refs., 4 figs

  20. Calculation of the electronic structure optical transitions and contact hyperfine parameters of interstitial hydrogen in alkaline halogen crystals

    International Nuclear Information System (INIS)

    Maciel, A.K.A.

    1977-03-01

    The electronic structure of the interstitial hydrogen atom in KF, NaCl, KCl, and RbCl cristals has been studied using the self-consistent-field multiple-scattering Xα method. In the present calculation a cluster constituted by the hydrogen atom surrounded by its first anion and cation neighbors in a cubic shell has been used. The optical transition energies and hyperfine contact parameters with the interstitial proton and the first shell nuclei have been evaluated. The agreement obtained with the experimental data and the relative independence of the method under variations of its intrinsic parameters, indicate that this method can be adequate to the study of defects in ionic cristals. (author) [pt

  1. Tube in shell heat exchangers

    International Nuclear Information System (INIS)

    Hayden, O.; Willby, C.R.; Sheward, G.E.; Ormrod, D.T.; Firth, G.F.

    1980-01-01

    An improved tube-in-shell heat exchanger to be used between liquid metal and water is described for use in the liquid metal coolant system of fast breeder reactors. It is stated that this design is less prone to failures which could result in sodium water reactions than previous exchangers. (UK)

  2. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  3. Nonlinear theory of elastic shells

    International Nuclear Information System (INIS)

    Costa Junior, J.A.

    1979-08-01

    Nonlinear theory of elastic shells is developed which incorporates both geometric and physical nonlinearities and which does not make use of the well known Love-Kirchhoff hypothesis. The resulting equations are formulated in tensorial notation and are reduced to the ones of common use when simplifying assumptions encountered in the especific litterature are taken. (Author) [pt

  4. Shell energy scenarios to 2050

    International Nuclear Information System (INIS)

    2008-01-01

    Shell developed two scenarios that describe alternative ways the energy future may develop. In the first scenario (Scramble) policymakers pay little attention to more efficient energy use until supplies are tight. Likewise, greenhouse gas emissions are not seriously addressed until there are major climate shocks. In the second scenario (Blueprints) growing local actions begin to address the challenges of economic development, energy security and environmental pollution. A price is applied to a critical mass of emissions giving a huge stimulus to the development of clean energy technologies, such as carbon dioxide capture and storage, and energy efficiency measures. The result is far lower carbon dioxide emissions. Both these scenarios can help Shell to test their strategy against a range of possible developments over the long-term. However, according to Shell, the Blueprints' outcomes offer the best hope for a sustainable future, whether or not they arise exactly in the way described. However, with the right combination of policy, technology and commitment from governments, industry and society globally, Shell believes it can be realized. But achieving the targets will not be easy, and time is short. Clear thinking, huge investment, and effective leadership are required

  5. Collapse analysis of toroidal shell

    International Nuclear Information System (INIS)

    Pomares, R.J.

    1990-01-01

    This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation

  6. Studies of dust shells around stars

    International Nuclear Information System (INIS)

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  7. Reaction rate of a composite core-shell nanoreactor with multiple nanocatalysts.

    Science.gov (United States)

    Galanti, Marta; Fanelli, Duccio; Angioletti-Uberti, Stefano; Ballauff, Matthias; Dzubiella, Joachim; Piazza, Francesco

    2016-07-27

    We present a detailed theory for the total reaction rate constant of a composite core-shell nanoreactor, consisting of a central solid core surrounded by a hydrogel layer of variable thickness, where a given number of small catalytic nanoparticles are embedded at prescribed positions and are endowed with a prescribed surface reaction rate constant. Besides the precise geometry of the assembly, our theory accounts explicitly for the diffusion coefficients of the reactants in the hydrogel and in the bulk as well as for their transfer free energy jump upon entering the hydrogel shell. Moreover, we work out an approximate analytical formula for the overall rate constant, which is valid in the physically relevant range of geometrical and chemical parameters. We discuss in depth how the diffusion-controlled part of the rate depends on the essential variables, including the size of the central core. In particular, we derive some simple rules for estimating the number of nanocatalysts per nanoreactor for an efficient catalytic performance in the case of small to intermediate core sizes. Our theoretical treatment promises to provide a very useful and flexible tool for the design of superior performing nanoreactor geometries with optimized nanoparticle load.

  8. Plasmonic nanodiamonds: targeted core-shell type nanoparticles for cancer cell thermoablation.

    Science.gov (United States)

    Rehor, Ivan; Lee, Karin L; Chen, Kevin; Hajek, Miroslav; Havlik, Jan; Lokajova, Jana; Masat, Milan; Slegerova, Jitka; Shukla, Sourabh; Heidari, Hamed; Bals, Sara; Steinmetz, Nicole F; Cigler, Petr

    2015-02-18

    Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, core-shell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multiconfigurational self-consistent reaction field theory for nonequilibrium solvation

    DEFF Research Database (Denmark)

    Mikkelsen, Kurt V.; Cesar, Amary; Ågren, Hans

    1995-01-01

    electronic structure whereas the inertial polarization vector is not necessarily in equilibrium with the actual electronic structure. The electronic structure of the compound is described by a correlated electronic wave function - a multiconfigurational self-consistent field (MCSCF) wave function. This wave......, open-shell, excited, and transition states. We demonstrate the theory by computing solvatochromatic shifts in optical/UV spectra of some small molecules and electron ionization and electron detachment energies of the benzene molecule. It is shown that the dependency of the solvent induced affinity...

  10. 3D CENTRAL LINE EXTRACTION OF FOSSIL OYSTER SHELLS

    Directory of Open Access Journals (Sweden)

    A. Djuricic

    2016-06-01

    Full Text Available Photogrammetry provides a powerful tool to digitally document protected, inaccessible, and rare fossils. This saves manpower in relation to current documentation practice and makes the fragile specimens more available for paleontological analysis and public education. In this study, high resolution orthophoto (0.5 mm and digital surface models (1 mm are used to define fossil boundaries that are then used as an input to automatically extract fossil length information via central lines. In general, central lines are widely used in geosciences as they ease observation, monitoring and evaluation of object dimensions. Here, the 3D central lines are used in a novel paleontological context to study fossilized oyster shells with photogrammetric and LiDAR-obtained 3D point cloud data. 3D central lines of 1121 Crassostrea gryphoides oysters of various shapes and sizes were computed in the study. Central line calculation included: i Delaunay triangulation between the fossil shell boundary points and formation of the Voronoi diagram; ii extraction of Voronoi vertices and construction of a connected graph tree from them; iii reduction of the graph to the longest possible central line via Dijkstra’s algorithm; iv extension of longest central line to the shell boundary and smoothing by an adjustment of cubic spline curve; and v integration of the central line into the corresponding 3D point cloud. The resulting longest path estimate for the 3D central line is a size parameter that can be applied in oyster shell age determination both in paleontological and biological applications. Our investigation evaluates ability and performance of the central line method to measure shell sizes accurately by comparing automatically extracted central lines with manually collected reference data used in paleontological analysis. Our results show that the automatically obtained central line length overestimated the manually collected reference by 1.5% in the test set, which

  11. D Central Line Extraction of Fossil Oyster Shells

    Science.gov (United States)

    Djuricic, A.; Puttonen, E.; Harzhauser, M.; Mandic, O.; Székely, B.; Pfeifer, N.

    2016-06-01

    Photogrammetry provides a powerful tool to digitally document protected, inaccessible, and rare fossils. This saves manpower in relation to current documentation practice and makes the fragile specimens more available for paleontological analysis and public education. In this study, high resolution orthophoto (0.5 mm) and digital surface models (1 mm) are used to define fossil boundaries that are then used as an input to automatically extract fossil length information via central lines. In general, central lines are widely used in geosciences as they ease observation, monitoring and evaluation of object dimensions. Here, the 3D central lines are used in a novel paleontological context to study fossilized oyster shells with photogrammetric and LiDAR-obtained 3D point cloud data. 3D central lines of 1121 Crassostrea gryphoides oysters of various shapes and sizes were computed in the study. Central line calculation included: i) Delaunay triangulation between the fossil shell boundary points and formation of the Voronoi diagram; ii) extraction of Voronoi vertices and construction of a connected graph tree from them; iii) reduction of the graph to the longest possible central line via Dijkstra's algorithm; iv) extension of longest central line to the shell boundary and smoothing by an adjustment of cubic spline curve; and v) integration of the central line into the corresponding 3D point cloud. The resulting longest path estimate for the 3D central line is a size parameter that can be applied in oyster shell age determination both in paleontological and biological applications. Our investigation evaluates ability and performance of the central line method to measure shell sizes accurately by comparing automatically extracted central lines with manually collected reference data used in paleontological analysis. Our results show that the automatically obtained central line length overestimated the manually collected reference by 1.5% in the test set, which is deemed

  12. Dynamics of two coaxial cylindrical shells containing viscous fluid

    International Nuclear Information System (INIS)

    Yeh, T.T.; Chen, S.S.

    1976-09-01

    This study was motivated by the need to design the thermal shield in reactor internals and other system components to avoid detrimental flow-induced vibrations. The system component is modeled as two coaxial shells separated by a viscous fluid. In the analysis, Flugge's shell equations of motion and linearized Navier-Stokes equation for viscous fluid are employed. First, a traveling-wave type solution is taken for shells and fluid. Then, from the interface conditions between the shells and fluid, the solution for the fluid medium is expressed in terms of shell displacements. Finally, using the shell equations of motion gives the frequency equation, from which the natural frequency, mode shape, and modal damping ratio of coupled modes can be calculated. The analytical results show a fairly good qualitative agreement with the published experimental data. Some important conclusions are as follows: (1) In computing the natural frequencies and mode shapes of uncoupled modes and coupled modes, the fluid may be considered inviscid and incompressible. (2) There exists out-of-phase and in-phase modes. The lowest natural frequency is always associated with the out-of-phase mode. (3) The lowest natural frequency of coupled modes is lower than the uncoupled modes. (4) The fluid viscosity contributes significantly to damping, in particular, the modal damping of the out-of-phase modes isrelatively large for small gaps. (5) If the fluid gap is small, or the fluid viscosity is relatively high, the simulation of the vibration Reynolds number should be included to ensure that modal damping of the model is properly accounted for. With the presented analysis and results, the frequency and damping characteristics can be analyzed and design parameters can be related to frequency and damping

  13. Consistently violating the non-Gaussian consistency relation

    International Nuclear Information System (INIS)

    Mooij, Sander; Palma, Gonzalo A.

    2015-01-01

    Non-attractor models of inflation are characterized by the super-horizon evolution of curvature perturbations, introducing a violation of the non-Gaussian consistency relation between the bispectrum's squeezed limit and the power spectrum's spectral index. In this work we show that the bispectrum's squeezed limit of non-attractor models continues to respect a relation dictated by the evolution of the background. We show how to derive this relation using only symmetry arguments, without ever needing to solve the equations of motion for the perturbations

  14. 7 CFR 983.29 - Shelled pistachios.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means pistachio...

  15. Shell film- and video catalogue 1996

    International Nuclear Information System (INIS)

    1996-01-01

    An overview is given of films and videos that are available through 'Shell Nederland Filmcentrale' (Shell Netherlands Film Center), subdivided into the subjects (1) About Shell; (2) Health, Safety and Environment; (3) Science and Technology; (4) The History of Car(racing); and (5) Historical Overview. 5 ills

  16. A finite element for plates and shells

    International Nuclear Information System (INIS)

    Muller, A.; Feijoo, R.A.; Bevilacqua, L.

    1981-08-01

    A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt

  17. Vibrations of Thin Piezoelectric Shallow Shells

    Indian Academy of Sciences (India)

    Abstract. In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  18. 7 CFR 981.6 - Shelled almonds.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds after...

  19. Synthesis of soft shell poly(styrene) colloids for filtration experiments

    DEFF Research Database (Denmark)

    Hinge, Mogens

    Separating a solid from a liquid is an important unit operation in many different industries e.g. mining, chemical, pharmaceutical and food industries. Solid liquid separation can roughly be divided into three groups. 1) Separation by gravity forces e.g. sedimentation, centrifugation, 2) Separation...... consisting of a solid poly(styrene) (PS) core with a water swollen shell have been employed in investigating the effect from varying amounts and type of water swollen material on filtration dewatering properties. Three series of model material have been used in this investigation 1) poly......(styrene-co-acrylic acid) core-shell colloids with varying thickness of the poly(acrylic acid) (PAA) shell. 2) poly(styrene-co-acrylic acid) core-shell colloids with varying diameter of the PS core and 3) poly(styrene-co-N-isopropylacrylamide) core-shell colloids with varying thickness of the poly...

  20. An experimental determination of the drag coefficient of a Mens 8+ racing shell.

    Science.gov (United States)

    Buckmann, James G; Harris, Samuel D

    2014-01-01

    This study centered around an experimental analysis of a Mens Lightweight Eight racing shell and, specifically, determining an approximation for the drag coefficient. A testing procedure was employed that used a Global Positioning System (GPS) unit in order to determine the acceleration and drag force on the shell, and through calculations yield a drag coefficient. The testing was run over several days in numerous conditions, and a 95% confidence interval was established to capture the results. The results obtained, over these varying trials, maintained a successful level of consistency. The significance of this study transcends the determination an approximation for the drag coefficient of the racing shell; it defined a successful means of quantifying performance of the shell itself. The testing procedures outlined in the study represent a uniform means of evaluating the factors that influence drag on the shell, and thus influence speed.

  1. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  2. Consistence of Network Filtering Rules

    Institute of Scientific and Technical Information of China (English)

    SHE Kun; WU Yuancheng; HUANG Juncai; ZHOU Mingtian

    2004-01-01

    The inconsistence of firewall/VPN(Virtual Private Network) rule makes a huge maintainable cost.With development of Multinational Company,SOHO office,E-government the number of firewalls/VPN will increase rapidly.Rule table in stand-alone or network will be increased in geometric series accordingly.Checking the consistence of rule table manually is inadequate.A formal approach can define semantic consistence,make a theoretic foundation of intelligent management about rule tables.In this paper,a kind of formalization of host rules and network ones for auto rule-validation based on SET theory were proporsed and a rule validation scheme was defined.The analysis results show the superior performance of the methods and demonstrate its potential for the intelligent management based on rule tables.

  3. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  4. Lagrangian multiforms and multidimensional consistency

    Energy Technology Data Exchange (ETDEWEB)

    Lobb, Sarah; Nijhoff, Frank [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2009-10-30

    We show that well-chosen Lagrangians for a class of two-dimensional integrable lattice equations obey a closure relation when embedded in a higher dimensional lattice. On the basis of this property we formulate a Lagrangian description for such systems in terms of Lagrangian multiforms. We discuss the connection of this formalism with the notion of multidimensional consistency, and the role of the lattice from the point of view of the relevant variational principle.

  5. Deep Feature Consistent Variational Autoencoder

    OpenAIRE

    Hou, Xianxu; Shen, Linlin; Sun, Ke; Qiu, Guoping

    2016-01-01

    We present a novel method for constructing Variational Autoencoder (VAE). Instead of using pixel-by-pixel loss, we enforce deep feature consistency between the input and the output of a VAE, which ensures the VAE's output to preserve the spatial correlation characteristics of the input, thus leading the output to have a more natural visual appearance and better perceptual quality. Based on recent deep learning works such as style transfer, we employ a pre-trained deep convolutional neural net...

  6. Geometric screening of core/shell hydrogel microcapsules using a tapered microchannel with interdigitated electrodes.

    Science.gov (United States)

    Niu, Ye; Qi, Lin; Zhang, Fen; Zhao, Yi

    2018-07-30

    Core/shell hydrogel microcapsules attract increasing research attention due to their potentials in tissue engineering, food engineering, and drug delivery. Current approaches for generating core/shell hydrogel microcapsules suffer from large geometric variations. Geometrically defective core/shell microcapsules need to be removed before further use. High-throughput geometric characterization of such core/shell microcapsules is therefore necessary. In this work, a continuous-flow device was developed to measure the geometric properties of microcapsules with a hydrogel shell and an aqueous core. The microcapsules were pumped through a tapered microchannel patterned with an array of interdigitated microelectrodes. The geometric parameters (the shell thickness and the diameter) were derived from the displacement profiles of the microcapsules. The results show that this approach can successfully distinguish all unencapsulated microparticles. The geometric properties of core/shell microcapsules can be determined with high accuracy. The efficacy of this method was demonstrated through a drug releasing experiment where the optimization of the electrospray process based on geometric screening can lead to controlled and extended drug releasing profiles. This method does not require high-speed optical systems, simplifying the system configuration and making it an indeed miniaturized device. The throughput of up to 584 microcapsules per minute was achieved. This study provides a powerful tool for screening core/shell hydrogel microcapsules and is expected to facilitate the applications of these microcapsules in various fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey)

    Science.gov (United States)

    Lugovoi, P. Z.; Meish, V. F.

    2017-09-01

    Experimental works on the determination of dynamics of smooth and stiffened cylindrical shells contacting with a soil medium under various non-stationary loading are reviewed. The results of studying three-layer shells of revolution whose motion equations are obtained within the framework of the hypotheses of the Timoshenko geometrically nonlinear theory are stated. The numerical results for shells with a piecewise or discrete filler enable the analysis of estimation of the influence of geometrical and physical-mechanical parameters of structures on their dynamics and reveal new mechanical effects. Basing on the classical theory of shells and rods, the effect of the discrete arrangement of ribs and coefficients of the Winkler or Pasternak elastic foundation on the normal frequencies and modes of rectangular planar cylindrical and spherical shells is studied. The number and shape of dispersion curves for longitudinal harmonic waves in a stiffened cylindrical shell are determined. The equations of vibrations of ribbed shells of revolution on Winkler or Pasternak elastic foundation are obtained using the geometrically nonlinear theory and the Timoshenko hypotheses. On applying the integral-interpolational method, numerical algorithms are developed and the corresponding non-stationary problems are solved. The special attention is paid to the statement and solution of coupled problems on the dynamical interaction of cylindrical or spherical shells with the soil water-saturated medium of different structure.

  8. Growth of InAs/InP core-shell nanowires with various pure crystal structures.

    Science.gov (United States)

    Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Wernersson, Lars-Erik; Lehmann, Sebastian; Dick, Kimberly A

    2012-07-20

    We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.

  9. Growth of InAs/InP core–shell nanowires with various pure crystal structures

    International Nuclear Information System (INIS)

    Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Lehmann, Sebastian; Dick, Kimberly A; Wernersson, Lars-Erik

    2012-01-01

    We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal–organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420–460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures. (paper)

  10. Self-consistent asset pricing models

    Science.gov (United States)

    Malevergne, Y.; Sornette, D.

    2007-08-01

    We discuss the foundations of factor or regression models in the light of the self-consistency condition that the market portfolio (and more generally the risk factors) is (are) constituted of the assets whose returns it is (they are) supposed to explain. As already reported in several articles, self-consistency implies correlations between the return disturbances. As a consequence, the alphas and betas of the factor model are unobservable. Self-consistency leads to renormalized betas with zero effective alphas, which are observable with standard OLS regressions. When the conditions derived from internal consistency are not met, the model is necessarily incomplete, which means that some sources of risk cannot be replicated (or hedged) by a portfolio of stocks traded on the market, even for infinite economies. Analytical derivations and numerical simulations show that, for arbitrary choices of the proxy which are different from the true market portfolio, a modified linear regression holds with a non-zero value αi at the origin between an asset i's return and the proxy's return. Self-consistency also introduces “orthogonality” and “normality” conditions linking the betas, alphas (as well as the residuals) and the weights of the proxy portfolio. Two diagnostics based on these orthogonality and normality conditions are implemented on a basket of 323 assets which have been components of the S&P500 in the period from January 1990 to February 2005. These two diagnostics show interesting departures from dynamical self-consistency starting about 2 years before the end of the Internet bubble. Assuming that the CAPM holds with the self-consistency condition, the OLS method automatically obeys the resulting orthogonality and normality conditions and therefore provides a simple way to self-consistently assess the parameters of the model by using proxy portfolios made only of the assets which are used in the CAPM regressions. Finally, the factor decomposition with the

  11. Manufacturing of the canister shells T54 and T55

    International Nuclear Information System (INIS)

    Raiko, H.

    2008-10-01

    This report constitutes a summary of the manufacturing test of the disposal canister copper shells T54 and T55. The copper billets were manufactured at Luvata Pori Oy, Finland. The hot-forming and machining of the copper shells were made at Vallourec and Mannesmann Tubes, Reisholz mill, Germany. The shells were manufactured with the pierce and draw method. Both of the pipes were manufactured separately in two phases. The first phase consisted of following steps: preheating of the billet, upsetting, piercing and the first draw with mandrel through drawing ring. After cooling down the block is measured and machined in case of excessive eccentricity or surface defects. In the second phase the block is heated up again and expanded and drawn in 6 sequences. In this process the pipe inside dimension is expanded and the length is increased in each step. Before the last, the 6th step, the bottom of the pipe is deformed in a sequence of special processes. During the manufacture of the first pipe, T54, some difficulties were detected with the centralization of the billet before upsetting. For the second manufacture of the T55, an additional steering ring was made and the result was remarkably more coaxial. After the manufacture and non-destructive inspections the shells were cut in pieces and three parts of each shell were taken for destructive testing. The three inspected parts were the bottom plate, a ring from the middle of the cylinder and a ring from the top of the cylinder. The destructive testing was made by Luvata Pori Oy. In spite of some practical difficulties and accidents during the manufacturing process, the results of the examinations showed that both of the test produced copper shells fulfilled all the specified requirements as for soundness (integrity), mechanical properties, chemical composition, dimensions, hardness and grain size. (orig.)

  12. Coulomb excitations for a short linear chain of metallic shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhemchuzhna, Liubov, E-mail: lzhemchuzhna@unm.edu [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii [Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Gao, Bo [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States)

    2015-03-15

    A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantum number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.

  13. Inner shell transitions of BrI in the EUV

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoni, M [Florence Univ. (Italy). Ist. di Astronomia; Pettini, M [Osservatorio Astrofisico di Arcetri, Florence (Italy)

    1981-10-12

    The EUV line spectrum originating from transitions of the inner 3d shell of neutral atomic bromine has been observed in absorption. Fano parameters have been derived for the three autoionized resonances nd/sup 10/(n + 1)s/sup 2/(n + 1)p/sup 5/ /sup 2/P-nd/sup 9/(n + 1)s/sup 2/(n + 1)p/sup 62/D observed in both bromine (n = 3) and iodine (n = 4) spectra.

  14. Consistent thermodynamic properties of lipids systems

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    different pressures, with azeotrope behavior observed. Available thermodynamic consistency tests for TPx data were applied before performing parameter regressions for Wilson, NRTL, UNIQUAC and original UNIFAC models. The relevance of enlarging experimental databank of lipids systems data in order to improve......Physical and thermodynamic properties of pure components and their mixtures are the basic requirement for process design, simulation, and optimization. In the case of lipids, our previous works[1-3] have indicated a lack of experimental data for pure components and also for their mixtures...... the performance of predictive thermodynamic models was confirmed in this work by analyzing the calculated values of original UNIFAC model. For solid-liquid equilibrium (SLE) data, new consistency tests have been developed [2]. Some of the developed tests were based in the quality tests proposed for VLE data...

  15. Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole

    Science.gov (United States)

    Storozhuk, E. A.; Chernyshenko, I. S.; Pigol', O. V.

    2017-11-01

    Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff-Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.

  16. Effects of Boundary Conditions on the Parametric Resonance of Cylindrical Shells under Axial Loading

    Directory of Open Access Journals (Sweden)

    T.Y. Ng

    1998-01-01

    Full Text Available In this paper, a formulation for the dynamic stability analysis of circular cylindrical shells under axial compression with various boundary conditions is presented. The present study uses Love’s first approximation theory for thin shells and the characteristic beam functions as approximate axial modal functions. Applying the Ritz procedure to the Lagrangian energy expression yields a system of Mathieu–Hill equations the stability of which is analyzed using Bolotin’s method. The present study examines the effects of different boundary conditions on the parametric response of homogeneous isotropic cylindrical shells for various transverse modes and length parameters.

  17. MHD computation of feedback of resistive-shell instabilities in the reversed field pinch

    International Nuclear Information System (INIS)

    Zita, E.J.; Prager, S.C.

    1992-05-01

    MHD computation demonstrates that feedback can sustain reversal and reduce loop voltage in resistive-shell reversed field pinch (RFP) plasmas. Edge feedback on ∼2R/a tearing modes resonant near axis is found to restore plasma parameters to nearly their levels with a close-fitting conducting shell. When original dynamo modes are stabilized, neighboring tearing modes grow to maintain the RFP dynamo more efficiently. This suggests that experimentally observed limits on RFP pulselengths to the order of the shell time can be overcome by applying feedback to a few helical modes

  18. Symplectic no-core shell-model approach to intermediate-mass nuclei

    Science.gov (United States)

    Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.

    2014-03-01

    We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.

  19. Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique

    Science.gov (United States)

    Mercan, Kadir; Demir, Çiǧdem; Civalek, Ömer

    2016-01-01

    In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.

  20. Mass and Inertia Parameters for Nuclear Fission

    International Nuclear Information System (INIS)

    Damgaard, J.; Pauli, H.C.; Strutinsky, V.M.; Wong, C.Y.; Brack, M.; Stenholm-Jensen, A.

    1969-01-01

    The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)

  1. Temporal variability in shell mound formation at Albatross Bay, northern Australia.

    Directory of Open Access Journals (Sweden)

    Simon J Holdaway

    Full Text Available We report the results of 212 radiocarbon determinations from the archaeological excavation of 70 shell mound deposits in the Wathayn region of Albatross Bay, Australia. This is an intensive study of a closely co-located group of mounds within a geographically restricted area in a wider region where many more shell mounds have been reported. Valves from the bivalve Tegillarca granosa (Linnaeus, 1758 were dated. The dates obtained are used to calculate rates of accumulation for the shell mound deposits. These demonstrate highly variable rates of accumulation both within and between mounds. We assess these results in relation to likely mechanisms of shell deposition and show that rates of deposition are affected by time-dependent processes both during the accumulation of shell deposits and during their subsequent deformation. This complicates the interpretation of the rates at which shell mound deposits appear to have accumulated. At Wathayn, there is little temporal or spatial consistency in the rates at which mounds accumulated. Comparisons between the Wathayn results and those obtained from shell deposits elsewhere, both in the wider Albatross Bay region and worldwide, suggest the need for caution when deriving behavioural inferences from shell mound deposition rates, and the need for more comprehensive sampling of individual mounds and groups of mounds.

  2. Study of shrimp shell derivatives for treating of low-level radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hayeripour, S. [Tonkabon Islamic Azad Univ., Tonkabon (Iran, Islamic Republic of). College of the Environment; Malmasi, S. [North Tehran Islamic Azad Univ., Tehran (Iran, Islamic Republic of). College of the Environment

    2006-07-01

    Chitin derivatives can be used to treat liquid wastes that include heavy metals of radionuclides. In this study, 4 types of chitin derivatives from shrimp shell waste were investigated for their potential in decontaminating and treating low-level radioactive liquid waste (LLW). The adsorption of caesium (Cs); cobalt (Co); and manganese (Mn) isotopes on chitin derivatives were investigated using a batch and column system with variations in diameter, pH, and length of treatment. Chitin derivatives included shrimp shells; de-mineralized shrimp shells; chitin extracted from shrimp shells; and chitosan extracted from shrimp shell waste. Three types of simulated solutions were prepared to study and compare adsorption performance: (1) a mono cationic solution consisting of stable isotopes; (2) a solution containing 3 stable cations; and (3) a simulated radioactive waste containing Cs-137, Co-60, and Mn-54. Results of the experiments showed that all 4 chitin derivatives were capable of adsorbing the isotopes. Despite its low pH, chitosan showed the highest adsorption efficiency. It was concluded that shrimps shells provided unreliable results under different operating conditions. The demineralized shells were suitable for removing Co from solutions. Row shells were not recommended as a suitable adsorbent for radionuclides removal. 14 refs., 2 tabs., 6 figs.

  3. Design and optimization of the large span dry-coal-shed latticed shell in Liyuan of Henan province

    Directory of Open Access Journals (Sweden)

    Du Wenfeng

    2017-01-01

    Full Text Available The design and optimization about the large span dry-coal-shed latticed shell in Liyuan of Henan province were studied. On the basis of the structural scheme of double-layer cylindrical reticulated shell, the optimization scheme of the folding double-layer cylindrical reticulated shell was proposed. Through the analysis of a plurality of calculation models, the optimal geometric parameters were obtained after discussing the influence of different slopes of folding lines and shell thickness on the structural bearing capacity and the amount of steel. The research results show that in the case of the same amount of steel, the ultimate bearing capacity of the double-layer folding cylindrical reticulated shell whose folding line slope is 9% and the shell thickness is about 4.4m can be increased 27.3% compared with the original design scheme.

  4. Design aids for stiffened composite shells with cutouts

    CERN Document Server

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  5. Stability of Thin Shell Wormholes in Born-Infeld Theory Supported by Polytropic Phantom Energy

    Energy Technology Data Exchange (ETDEWEB)

    Eid, Ali [Cairo University, Giza (Egypt)

    2017-02-15

    In the framework of the Darmois-Israel formalism, the dynamical equations of motion of spherically-symmetric thin-shell wormholes supported by a polytropic phantom energy in Einstein-Born-Infeld theory are constructed. A stability analysis of the spherically-symmetric thin-shell wormhole by using the standard potential method is carried out. The existence of stable, static solutions depends on the values of some parameters.

  6. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  7. Double containment shell for nuclear power plants

    International Nuclear Information System (INIS)

    Sykora, D.

    1977-01-01

    A double containment shell is proposed for nuclear power plants, especially those equipped with pressurized water reactors. The shell offers increased environmental protection from primary circuit accidents. The inner shell is built of steel or concrete while the outer shell is always built of concrete. The space between the two shells is filled with water and is provided with several manholes and with stiffeners designed for compensation for load due to the water hydrostatic pressure. Water serves the airtight separation of the containment shell inside from the environment and the absorption of heat released in a primary circuit accident. In case the inner shell is made of concrete, it is provided with heat-removal tubes in-built in its walls ensuring rapid heat transfer from the inside of the containment to the water in the interwall space. (Z.M.)

  8. Recent developments in anisotropic heterogeneous shell theory

    CERN Document Server

    Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G

    2016-01-01

    This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.

  9. Charge symmetry of the nuclear force as off-shell constraint

    International Nuclear Information System (INIS)

    Sauer, P.U.

    1975-01-01

    Off-shell changes are generated in the 1 S 0 nucleon-nucleon interaction using the Reid soft-core potential and unitary transformations of short range. Charge symmetry is assumed for the nuclear force. The same off-shell variations of the Reid potential are employed as the hadronic part of the proton-proton interaction and as neutron-neutron interaction. The Reid potential fits the experimental proton-proton data. It also accounts for the neutron-neutron scattering length with satisfying accuracy. The off-shell behavior of the Reid potential is varied in two different ways. First, off-shell changes consistent with the experimental proton-proton data can be selected. (auth) are performed which preserve the fit to the proton-proton data. Most transformed potentials of the type attempted here are unable to yield the correct experimental value of the neutron-neutron scattering length and have to be rejected. A simple practical rule is given according to which the off-shell changes consistent with the neutron-neutron scattering length can be selected. Second, off-shell changes are performed which leave the neutron-neutron scattering length unaltered. Transformed potentials of this type have usually been employed in nuclear-structure calculations. The potentials which exhibit large off-shell effects in nuclear structure are unable to account for the experimental proton-proton data. Their off-shell effects are therefore of no physical significance, and the potentials have to be rejected. A simple practical rule is given according to which the off-shell changes consistent with the experimental proton-proton data can be selected. (U.S.)

  10. Radon and the seal offered by the building shell

    International Nuclear Information System (INIS)

    Crameri, R.; Furrer, D.; Burkart, W.

    1992-01-01

    Long term measurements of the radon level before and after the building shell is sealed were carried out in 25 apartment buildings and 7 houses. The average values of the most important meteorological parameters of wind speed, external temperature and barometric pressure which may influence the radon level, were absolutely comparable during the measurement periods before and after the energy renovation of the buildings. Both in houses and in apartment buildings the radon level remained practically unchanged after the building shell was sealed. The lack of any increase in the radon level after reducing the air exchange rate can be explained by virtue of the fact that the balance between the infiltration and elimination of the radon before and after the energy renovation of the buildings remained unchanged. In addition to reducing the air exchange rate, sealing the building shell therefore also results in a reduction in radon infiltration from the soil. Although it is possible in certain cases for the radon level to increase after the building shell has been sealed, a general increase in radon levels inside living areas as a result of energy renovation work can be dismissed. 2 figs., 3 tabs., 30 refs

  11. Electrostatics-driven shape transitions in soft shells.

    Science.gov (United States)

    Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica

    2014-09-02

    Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.

  12. Atomic inner-shell physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1985-01-01

    This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions

  13. Slow pyrolysis of pistachio shell

    Energy Technology Data Exchange (ETDEWEB)

    Apaydin-Varol, Esin; Putun, Ersan; Putun, Ayse E [Anadolu University, Eskisehir (Turkey). Department of Chemical Engineering

    2007-08-15

    In this study, pistachio shell is taken as the biomass sample to investigate the effects of pyrolysis temperature on the product yields and composition when slow pyrolysis is applied in a fixed-bed reactor at atmospheric pressure to the temperatures of 300, 400, 500, 550, 700{sup o}C. The maximum liquid yield was attained at about 500-550{sup o}C with a yield of 20.5%. The liquid product obtained under this optimum temperature and solid products obtained at all temperatures were characterized. As well as proximate and elemental analysis for the products were the basic steps for characterization, column chromatography, FT-IR, GC/MS and SEM were used for further characterization. The results showed that liquid and solid products from pistachio shells show similarities with high value conventional fuels. 31 refs., 9 figs., 1 tab.

  14. Shell trips over its reserves

    International Nuclear Information System (INIS)

    Jemain, A.

    2004-01-01

    Some mistakes in the evaluation of the proven reserves of Royal Dutch Shell group, the second world petroleum leader, will oblige the other oil and gas companies to be more transparent and vigilant in the future. The proven reserves ('P90' in petroleum professionals' language) are the most important indicators of the mining patrimony of companies. These strategic data are reported each year in the annual reports of the companies and are examined by the security exchange commission. The evaluation of reserves is perfectly codified by the US energy policy and conservation act and its accountable translation using the FAS 69 standard allows to establish long-term cash-flow forecasts. The revision announced by Shell on January 9 leads to a 20% reduction of its proven reserves. Short paper. (J.S.)

  15. Læren fra Shell

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders

    2017-01-01

    Hvad kan afsløringerne om Shells mere end 25 år gamle viden om klimaforandringer lære virksomheder om disruption og strategi? Først og fremmest at undgå at se disruption som en mulig trussel, men i stedet som en fremtidig realitet og chance for vækst......Hvad kan afsløringerne om Shells mere end 25 år gamle viden om klimaforandringer lære virksomheder om disruption og strategi? Først og fremmest at undgå at se disruption som en mulig trussel, men i stedet som en fremtidig realitet og chance for vækst...

  16. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  17. Fast ignition upon the implosion of a thin shell onto a precompressed deuterium-tritium ball

    Science.gov (United States)

    Gus'kov, S. Yu.; Zmitrenko, N. V.

    2012-11-01

    Fast ignition of a precompressed inertial confinement fusion (ICF) target by a hydrodynamic material flux is investigated. A model system of hydrodynamic objects consisting of a central deuterium-tritium (DT) ball and a concentric two-layer shell separated by a vacuum gap is analyzed. The outer layer of the shell is an ablator, while the inner layer consists of DT ice. The igniting hydrodynamic flux forms as a result of laser-driven acceleration and compression of the shell toward the system center. A series of one-dimensional numerical simulations of the shell implosion, the collision of the shell with the DT ball, and the generation and propagation of thermonuclear burn waves in both parts of the system are performed. Analytic models are developed that describe the implosion of a thin shell onto a central homogeneous ball of arbitrary radius and density and the initiation and propagation of a thermonuclear burn wave induced by such an implosion. Application of the solution of a model problem to analyzing the implosion of a segment of a spherical shell in a conical channel indicates the possibility of fast ignition of a spherical ICF target from a conical target driven by a laser pulse with an energy of 500-700 kJ.

  18. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  19. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    International Nuclear Information System (INIS)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  20. Maintaining consistency in distributed systems

    Science.gov (United States)

    Birman, Kenneth P.

    1991-01-01

    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.

  1. Plastic buckling of cylindrical shells

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-01-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads

  2. Buckling shells are also swimmers

    Science.gov (United States)

    Quilliet, Catherine; Dyfcom Bubbleboost Team

    We present an experimental and numerical study on the displacement of shells undergoing deformations in a fluid. When submitted to cycles of pressure difference between outside and inside, a shell buckles and debuckles, showing a succession of shapes and a dynamics that are different during the two phases. Hence such objects are likely to swim, including at low Reynolds (microscopic scale). We studied the swimming of buckling/debuckling shells at macroscopic scale using different approaches (force quantization, shape recording, displacement along a frictionless rail, study of external flow using PIV), and showed that inertia plays a role in propulsion, even in situations where dimensionless numbers correspond also to microswimmers in water. Different fluid viscosities were explored, showing an optimum for the displacement. Interestingly, the most favorable cases lead to displacements in the same direction and sense during both motor stroke (buckling phase) and recovery stroke (de-buckling phase). This work opens the route for the synthesis with high throughput of abusively simple synthetic swimmers, possibly gathered into nanorobots, actuated by a scalar field such as the pressure in echographic devices. Universite Grenoble Alpes, CNRS, European Research Council.

  3. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  4. Shell-and-tube heat exchanger selection aid

    International Nuclear Information System (INIS)

    Lupton, L.R.; Basso, R.A.J.

    1989-11-01

    A prototype has been developed to investigate the feasibility of using expert systems to aid junior process system designers with the selection of components for shell-and-tube heat exchangers. The selection criteria for heat exchanger design were based on process, environmental and administrative constraints. The system was developed using EXSYS and consists of approximately 140 rules. This paper describes the development process and the lessons learned

  5. HI shells in the Leiden-Dwingeloo HI survey

    Czech Academy of Sciences Publication Activity Database

    Ehlerová, Soňa; Palouš, Jan; Wünsch, Richard

    2004-01-01

    Roč. 289, 3-4 (2004), s. 279-282 ISSN 0004-640X. [From observations to self-consistent modelling of the ISM in galaxies. Porto, 02.09.2002-07.09.2002] R&D Projects: GA AV ČR IAB3003106 Institutional research plan: CEZ:AV0Z1003909 Keywords : HI shells * HI holes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.597, year: 2004

  6. Development of General Purpose Data Acquisition Shell (GPDAS)

    International Nuclear Information System (INIS)

    Chung, Y.; Kim, K.

    1995-01-01

    This note is intended as an abbreviated introduction to the concept and the structure of General Purpose Data Acquisitions Shell (GPDAS) and assumes the reader has a certain level of familiarity with programming in general. The structure of the following sections consists of brief explanations of the concepts and commands of GPDAS, followed by several examples. Some of these are tabulated in the appendices at the end of this note

  7. Effect of shells on photoluminescence of aqueous CdTe quantum dots

    International Nuclear Information System (INIS)

    Yuan, Zhimin; Yang, Ping

    2013-01-01

    Graphical abstract: Size-tunable CdTe coated with several shells using an aqueous solution synthesis. CdTe/CdS/ZnS quantum dots exhibited high PL efficiency up to 80% which implies the promising applications for biomedical labeling. - Highlights: • CdTe quantum dots were fabricated using an aqueous synthesis. • CdS, ZnS, and CdS/ZnS shells were subsequently deposited on CdTe cores. • Outer ZnS shells provide an efficient confinement of electron and hole inside the QDs. • Inside CdS shells can reduce the strain on the QDs. • Aqueous CdTe/CdS/ZnS QDs exhibited high stability and photoluminescence efficiency of 80%. - Abstract: CdTe cores with various sizes were fabricated in aqueous solutions. Inorganic shells including CdS, ZnS, and CdS/ZnS were subsequently deposited on the cores through a similar aqueous procedure to investigate the effect of shells on the photoluminescence properties of the cores. In the case of CdTe/CdS/ZnS quantum dots, the outer ZnS shell provides an efficient confinement of electron and hole wavefunctions inside the quantum dots, while the middle CdS shell sandwiched between the CdTe core and ZnS shell can be introduced to obviously reduce the strain on the quantum dots because the lattice parameters of CdS is situated at the intermediate-level between those of CdTe and ZnS. In comparison with CdTe/ZnS core–shell quantum dots, the as-prepared water-soluble CdTe/CdS/ZnS quantum dots in our case can exhibit high photochemical stability and photoluminescence efficiency up to 80% in an aqueous solution, which implies the promising applications in the field of biomedical labeling

  8. Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy

    Science.gov (United States)

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  9. Continuum shell-model with complicated configurations

    International Nuclear Information System (INIS)

    Barz, H.W.; Hoehn, J.

    1977-05-01

    The traditional shell model has been combined with the coupled channels method in order to describe resonance reactions. For that purpose the configuration space is divided into two subspaces (Feshbach projection method). Complicated shell-model configurations can be included into the subspace of discrete states which contains the single particle resonance states too. In the subspace of scattering states the equation of motion is solved by using the coupled channels method. Thereby the orthogonality between scattering states and discrete states is ensured. Resonance states are defined with outgoing waves in all channels. By means of simple model calculations the special role of the continuum is investigated. In this connection the energy dependence of the resonance parameters, the isospin mixture via the continuum, threshold effect, as well as the influence of the number of channels taken into account on the widths, positions and dipole strengths of the resonance are discussed. The model is mainly applied to the description of giant resonances excited by the scattering of nucleons and photo-nucleus processes (source term method) found in reactions on light nuclei. The giant resonance observed in the 15 N(p,n) reaction is explained by the inclusion of 2p-2h states. The same is true for the giant resonance in 13 C(J = 1/2, 3/2) as well as for the giant resonance built on the first 3 - state in 16 O. By means of a correlation analysis for the reduced widths amplitudes an access to the doorway conception is found. (author)

  10. Decentralized Consistent Updates in SDN

    KAUST Repository

    Nguyen, Thanh Dang

    2017-04-10

    We present ez-Segway, a decentralized mechanism to consistently and quickly update the network state while preventing forwarding anomalies (loops and blackholes) and avoiding link congestion. In our design, the centralized SDN controller only pre-computes information needed by the switches during the update execution. This information is distributed to the switches, which use partial knowledge and direct message passing to efficiently realize the update. This separation of concerns has the key benefit of improving update performance as the communication and computation bottlenecks at the controller are removed. Our evaluations via network emulations and large-scale simulations demonstrate the efficiency of ez-Segway, which compared to a centralized approach, improves network update times by up to 45% and 57% at the median and the 99th percentile, respectively. A deployment of a system prototype in a real OpenFlow switch and an implementation in P4 demonstrate the feasibility and low overhead of implementing simple network update functionality within switches.

  11. Comment on self-consistent model of black hole formation and evaporation

    International Nuclear Information System (INIS)

    Ho, Pei-Ming

    2015-01-01

    In an earlier work, Kawai et al. proposed a model of black-hole formation and evaporation, in which the geometry of a collapsing shell of null dust is studied, including consistently the back reaction of its Hawking radiation. In this note, we illuminate the implications of their work, focusing on the resolution of the information loss paradox and the problem of the firewall.

  12. Numerical simulations of thermal convection in a rotating spherical fluid shell at high Taylor and Rayleigh numbers

    International Nuclear Information System (INIS)

    Sun, Z.; Schubert, G.

    1995-01-01

    In this study, we carry out numerical simulations of thermal convection in a rapidly rotating spherical fluid shell at high Taylor number Ta and Rayleigh number R with a nonlinear, three-dimensional, time-dependent, spectral-transform code. The parameters used in the simulations are chosen to be in a range which allows us to study two different types of convection, i.e., single column and multi-layered types, and the transition between them. Numerical solutions feature highly time-dependent north--south open columnar convective cells. The cells occur irregularly in longitude, are quasi-layered in cylindrical radius, and maintain alternating bands of mean zonal flow. The complex convective structure and the banded mean zonal flow are results of the high Taylor and Rayleigh numbers. The transition between the two types of convection appears to occur gradually with increasing Rayleigh and Taylor numbers. At a Taylor number of 10 7 the differential rotation pattern consists of an inner cylindrical region of subrotation and an outer cylindrical shell of superrotation manifest at the outer boundary as an equatorial superrotation and a high latitude subrotation. The differential rotation pattern is similar at Ta=10 8 and low Rayleigh number. Cylindrical shells of alternately directed mean zonal flow begin to develop at Ta=10 8 and R=50R c and at Ta=10 9 and R=25R c . This pattern is seen on the outer surface as a latitudinally-banded zonal flow consisting of an equatorial superrotation, a middle and high latitude subrotation, and a polar superrotation. At Ta=10 9 and R=50R c the differential rotation appears at the surface as a broad eastward flow in the equatorial region with alternating bands of westward and eastward flow at high latitudes. copyright 1995 American Institute of Physics

  13. r-Adaptive mesh generation for shell finite element analysis

    International Nuclear Information System (INIS)

    Cho, Maenghyo; Jun, Seongki

    2004-01-01

    An r-adaptive method or moving grid technique relocates a grid so that it becomes concentrated in the desired region. This concentration improves the accuracy and efficiency of finite element solutions. We apply the r-adaptive method to computational mesh of shell surfaces, which is initially regular and uniform. The r-adaptive method, given by Liao and Anderson [Appl. Anal. 44 (1992) 285], aggregate the grid in the region with a relatively high weight function without any grid-tangling. The stress error estimator is calculated in the initial uniform mesh for a weight function. However, since the r-adaptive method is a method that moves the grid, shell surface geometry error such as curvature error and mesh distortion error will increase. Therefore, to represent the exact geometry of a shell surface and to prevent surface geometric errors, we use the Naghdi's shell theory and express the shell surface by a B-spline patch. In addition, using a nine-node element, which is relatively less sensitive to mesh distortion, we try to diminish mesh distortion error in the application of an r-adaptive method. In the numerical examples, it is shown that the values of the error estimator for a cylinder, hemisphere, and torus in the overall domain can be reduced effectively by using the mesh generated by the r-adaptive method. Also, the reductions of the estimated relative errors are demonstrated in the numerical examples. In particular, a new functional is proposed to construct an adjusted mesh configuration by considering a mesh distortion measure as well as the stress error function. The proposed weight function provides a reliable mesh adaptation method after a parameter value in the weight function is properly chosen

  14. A full-field residual stress estimation scheme for fitness-for-service assessment of pipe girth welds: Part II – A shell theory based implementation

    International Nuclear Information System (INIS)

    Song, Shaopin; Dong, Pingsha; Pei, Xianjun

    2015-01-01

    With the two key controlling parameters identified and their effectiveness demonstrated in Part I of this study series for constructing a continuous residual stress profile at weld region, a classical shell theory based model is proposed in this paper (Part II) for describing through-thickness residual stress distributions of both axial and hoop components at any axial location beyond weld region. The shell theory based model is analytically constructed through an assembly of two parts: One represents weld region and the other represents the remaining component section away from weld. The final assembly of the two parts leads to a closed form solution to both axial and hoop residual stress components as a function of axial distance from weld toe position. The effectiveness of the full-field residual stress estimation scheme is demonstrated by comparing with a series of finite element modeling results over a broad range of pipe weld geometries and welding conditions. The present development should provide a consistent and effective means for estimating through-thickness residual stress profile as a continuous function of pipe geometry, welding heat input, as well as material characteristics. - Highlights: • A shell theory based two-part assembly model is developed for generalizing residual stress distributions. • A full-field estimation of through-thickness residual stress profiles can be achieved. • The proposed estimation scheme offers both consistency and mechanics basis in residual stress profile generation. • An estimation scheme for welding-induced plastic zone size is proposed and validated. • The shell theory based estimation scheme can also provide a reasonable estimate on distortion in radial direction

  15. Thin-shell wormholes from the regular Hayward black hole

    Energy Technology Data Exchange (ETDEWEB)

    Halilsoy, M.; Ovgun, A.; Mazharimousavi, S.H. [Eastern Mediterranean University, Department of Physics, Mersin 10 (Turkey)

    2014-03-15

    We revisit the regular black hole found by Hayward in 4-dimensional static, spherically symmetric spacetime. To find a possible source for such a spacetime we resort to the nonlinear electrodynamics in general relativity. It is found that a magnetic field within this context gives rise to the regular Hayward black hole. By employing such a regular black hole we construct a thin-shell wormhole for the case of various equations of state on the shell. We abbreviate a general equation of state by p = ψ(σ) where p is the surface pressure which is a function of the mass density (σ). In particular, linear, logarithmic, Chaplygin, etc. forms of equations of state are considered. In each case we study the stability of the thin shell against linear perturbations.We plot the stability regions by tuning the parameters of the theory. It is observed that the role of the Hayward parameter is to make the TSW more stable. Perturbations of the throat with small velocity condition are also studied. The matter of our TSWs, however, remains exotic. (orig.)

  16. Shells, orbit bifurcations, and symmetry restorations in Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V. [NASU, Institute for Nuclear Research (Ukraine); Arita, K. [Nagoya Institute of Technology, Department of Physics (Japan)

    2016-11-15

    The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of the oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.

  17. Effects of cluster-shell competition and BCS-like pairing in 12C

    Science.gov (United States)

    Matsuno, H.; Itagaki, N.

    2017-12-01

    The antisymmetrized quasi-cluster model (AQCM) was proposed to describe α-cluster and jj-coupling shell models on the same footing. In this model, the cluster-shell transition is characterized by two parameters, R representing the distance between α clusters and Λ describing the breaking of α clusters, and the contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α-cluster model wave function. Not only the closure configurations of the major shells but also the subclosure configurations of the jj-coupling shell model can be described starting with the α-cluster model wave functions; however, the particle-hole excitations of single particles have not been fully established yet. In this study we show that the framework of AQCM can be extended even to the states with the character of single-particle excitations. For ^{12}C, two-particle-two-hole (2p2h) excitations from the subclosure configuration of 0p_{3/2} corresponding to a BCS-like pairing are described, and these shell model states are coupled with the three α-cluster model wave functions. The correlation energy from the optimal configuration can be estimated not only in the cluster part but also in the shell model part. We try to pave the way to establish a generalized description of the nuclear structure.

  18. Design and optimization of Ag-dielectric core-shell nanostructures for silicon solar cells

    Directory of Open Access Journals (Sweden)

    Feng-Xiang Chen

    2015-09-01

    Full Text Available Metal-dielectric core-shell nanostructures have been proposed as a light trapping scheme for enhancing the optical absorption of silicon solar cells. As a potential application of such enhanced effects, the scattering efficiencies of three core-shell structures (Ag@SiO2, Ag@TiO2, and Ag@ZrO2 are discussed using the Mie Scattering theory. For compatibility with experiment results, the core diameter and shell thickness are limited to 100 and 30 nm, respectively, and a weighted scattering efficiency is introduced to evaluate the scattering abilities of different nanoparticles under the solar spectrum AM 1.5. The simulated results indicate that the shell material and thickness are two key parameters affecting the weighted scattering efficiency. The SiO2 is found to be an unsuitable shell medium because of its low refractive index. However, using the high refractive index mediumTiO2 in Ag@TiO2 nanoparticles, only the thicker shell (30 nm is more beneficial for light scattering. The ZrO2 is an intermediate refractive index material, so Ag@ZrO2 nanoparticles are the most effective core-shell nanostructures in these silicon solar cells applications.

  19. Transient response of rotating laminated functionally graded cylindrical shells in thermal environment

    International Nuclear Information System (INIS)

    Malekzadeh, P.; Heydarpour, Y.; Haghighi, M.R. Golbahar; Vaghefi, M.

    2012-01-01

    Based on the elasticity theory, the transient analysis of dynamically pressurized rotating multi-layered functionally graded (FG) cylindrical shells in thermal environment is presented. The variations of the field variables across the shell thickness are accurately modeled by dividing the shell into a set of co-axial mathematical layers in the radial direction. The initial thermo-mechanical stresses are obtained by solving the thermoelastic equilibrium equations. The differential quadrature method and Newmark's time integration scheme are employed to discretize the obtained governing equations of each mathematical layer. After performing the convergence and comparison studies, parametric studies for two common types of FG sandwich shells, namely, the shell with homogeneous inner/outer layers and FG core and the shell with FG inner/outer layers and homogeneous core are carried out. The influences of the temperature dependence of material properties, material graded index, the convective heat transfer coefficient, the angular velocity, the boundary condition and the geometrical parameters (length and thickness to outer radius ratios) on the dynamic response of the FG shells are investigated. Highlights: ► As a first endeavor, transient analysis of rotating laminated functionally graded cylinders. ► Employing an elasticity based discrete layer-differential quadrature method. ► Evaluating and including the initial thermo-mechanical stresses accurately. ► Considering the temperature-dependence of the material properties. ► Presenting some new results, which can be used as benchmark solution for future works.

  20. Mussel Shell Impaction in the Esophagus

    Directory of Open Access Journals (Sweden)

    Sunmin Kim

    2013-03-01

    Full Text Available Mussels are commonly used in cooking around the world. The mussel shell breaks more easily than other shells, and the edge of the broken mussel shell is sharp. Impaction can ultimately cause erosion, perforation and fistula. Aside from these complications, the pain can be very intense. Therefore, it is essential to verify and remove the shell as soon as possible. In this report we describe the process of diagnosing and treating mussel shell impaction in the esophagus. Physicians can overlook this unusual foreign body impaction due to lack of experience. When physicians encounter a patient with severe chest pain after a meal with mussels, mussel shell impaction should be considered when diagnosing and treating the patient.

  1. Vibration of liquid-filled thin shells

    International Nuclear Information System (INIS)

    Kalnins, A.

    1979-01-01

    This paper describes the analysis of free and forced vibration of a thin, axisymmetric shell, which contains some liquid. The axis of symmetry is vertical. Only such vibration is considered which can be produced by a horizontal movement of the base of shell. The objective of this paper is to examine the response of the coupled shell-liquid system for a frequency range lying between zero and the lowest natural sloshing frequency of the liquid. The mass of the liquid is modeled by a stationary and one or more sloshing masses. It is shown how the stationary mass can be incorporated in the vibration analysis of the shell and how to natural frequency of the coupled shell-liquid system can be obtained from a simple formula, if the lowest natural frequency of the shell, plus the stationary mass of the liquid, can be determined. A numerical example is given. (orig.)

  2. Theory of hydrogen shell flashes on accreting white dwarfs. II. The stable shell burning and the recurrence period of shell flashes

    International Nuclear Information System (INIS)

    Fujimoto, M.Y.

    1982-01-01

    By means of analytical solutions of the envelope, thermal properties of hydrogen shell burning on accreting white dwarfs are studied and a general picture for their progress is presented which is described by two parameters, the accretion rate and the mass of the white dwarf. On a white dwarf, the thermal behavior of gas in the burning shell depends on the configuration of the envelope, which gives birth to two distinct types of stable configurations in thermal equilibrium, a high and a low state. In the high state, the nuclear shell burning makes up for the energy loss from the surface. There exists the lower limit to the envelope mass for this state. The nuclear burning rate lies in a narrow range of about a factor of 2.5, irrespective of the mass of the white dwarf, while the range itself varies greatly with the latter. In the low state, the nuclear burning is extinct, and yet the compressional heating by accreted gas balances with the cooling through the diffusion of heat. Therefore, the structure depends on the accretion rate. Thermal instability of nuclear burning sets the upper limit to the envelope mass of this state

  3. Risk aversion vs. the Omega ratio : Consistency results

    NARCIS (Netherlands)

    Balder, Sven; Schweizer, Nikolaus

    This paper clarifies when the Omega ratio and related performance measures are consistent with second order stochastic dominance and when they are not. To avoid consistency problems, the threshold parameter in the ratio should be chosen as the expected return of some benchmark – as is commonly done

  4. Ancient shell industry at Bet Dwarka island

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Sundaresh; Patankar, V.

    for the manufacture of beads, bangles, etc. 12 . Shell species found at the sites include T. pyrum (cha nk), Chicoreus ramosus , Fasciolaria trapezium , Cypraea (cowries), Arabica arabica (cowries), Babylonia spirata , dentalium, mussel and Arca... muscles are attached. Average length of a shell can be up to 15 to 20 cm and width 10 ? 15 cm 8 . It provides a unique structure for the manufacture of several bangles from a single shell. The organ ism living inside is also edible...

  5. Integrable structure in discrete shell membrane theory.

    Science.gov (United States)

    Schief, W K

    2014-05-08

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.

  6. Shell launches its Claus off-gas desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Groenendaal, W; van Meurs, H C.A.

    1972-01-01

    The Shell Flue Gas Desulfurization (SFGD) Process was developed for removal of sulfur oxides from flue gases originating from oil-fired boilers or furnaces. It can also be used to remove sulfur dioxide from Claus sulfur recovery tail gases if they are combined with boiler/furnace flue gases. For Claus tail gas only, the Shell Claus off-gas desulfurization process was developed. Claus unit operation and desulfurization by low temperature Claus processes and conversion/concentration processes are discussed. The new Shell process consists of a conversion/concentration process involving a reduction section and an amine absorption section. In the reduction section, all sulfur compounds and free sulfur are completely reduced to hydrogen sulfide with hydrogen, or hydrogen plus carbon monoxide, over a cobalt/molybdenum-on-alumina catalyst at a temperature of about 300/sup 0/C. Extensive bench scale studies on the reduction system have been carried out. A life test of more than 4000 hr showed a stable activity of the reduction catalyst, which means that in commercial units, very long catalyst lives can be expected. The commercial feasibility of the reduction section was further demonstrated in the Godorf refinery of Deutsche Shell AG. More than 80 absorption units using alkanolamine (AIDP) solutions have been installed. Bench scale studies of the ADIP absorption units were compared to commercial experience.The total capital investment of the new Shell process is 0.7, 2.0, and 3.2 $ times 10 to the 6th power for 100, 500, and 1000 tons of sulfur/sd capacity Claus units, respectively. The total operating costs for these units are, respectively, 610, 1930 and 3310 $/stream day. The capital investment corresponds to about 75% of the capital investment of the preceding Claus unit.

  7. Shell structure and orbit bifurcations in finite fermion systems

    Science.gov (United States)

    Magner, A. G.; Yatsyshyn, I. S.; Arita, K.; Brack, M.

    2011-10-01

    We first give an overview of the shell-correction method which was developed by V.M. Strutinsky as a practicable and efficient approximation to the general self-consistent theory of finite fermion systems suggested by A.B. Migdal and collaborators. Then we present in more detail a semiclassical theory of shell effects, also developed by Strutinsky following original ideas of M.C. Gutzwiller. We emphasize, in particular, the influence of orbit bifurcations on shell structure. We first give a short overview of semiclassical trace formulae, which connect the shell oscillations of a quantum system with a sum over periodic orbits of the corresponding classical system, in what is usually called the "periodic orbit theory". We then present a case study in which the gross features of a typical double-humped nuclear fission barrier, including the effects of mass asymmetry, can be obtained in terms of the shortest periodic orbits of a cavity model with realistic deformations relevant for nuclear fission. Next we investigate shell structures in a spheroidal cavity model which is integrable and allows for far-going analytical computation. We show, in particular, how period-doubling bifurcations are closely connected to the existence of the so-called "superdeformed" energy minimum which corresponds to the fission isomer of actinide nuclei. Finally, we present a general class of radial power-law potentials which approximate well the shape of a Woods-Saxon potential in the bound region, give analytical trace formulae for it and discuss various limits (including the harmonic oscillator and the spherical box potentials).

  8. First-Ply-Failure Performance of Composite Clamped Spherical Shells

    Science.gov (United States)

    Ghosh, A.; Chakravorty, D.

    2018-05-01

    The failure aspects of composites are available for plates, but studies of the literature on shells unveils that similar reports on them are very limited in number. The aim of this work was to investigate the first-ply-failure of industrially and aesthetically important spherical shells under uniform loadings. Apart from solving benchmark problems, numerical experiments were carried out with different variations of their parameters to obtain the first-ply-failure stresses by using the finite-element method. The load was increased in steps, and the lamina strains and stresses were put into well-established failure criteria to evaluate their first-ply-failure stress, the failed ply, the point of initiation of failure, and failure modes and tendencies. The results obtained are analyzed to extract the points of engineering significance.

  9. Stability of Brans-Dicke thin-shell wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xiaojun, E-mail: yuexiaojun@mail.bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China); Gao, Sijie, E-mail: sijie@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2011-06-06

    Recently, a class of spherically symmetric thin-shell wormholes in Brans-Dicke gravity have been introduced. Such wormholes can be supported by matter satisfying the weak energy condition (WEC). In this Letter, we first obtain all the exact solutions satisfying the WEC. Then we show these solutions can be stable for certain parameters. A general requirement for stability is that β{sup 2}>1, which may imply that the speed of sound exceeds the speed of light. -- Highlights: → Brans-Dicke thin-shell wormholes can be stable and satisfy the energy condition. → Solutions exist for ω<-2. → The speed of sound in the matter exceeds the speed of light.

  10. Inner-shell photoionization of group-IIB atoms

    International Nuclear Information System (INIS)

    Kutzner, M.; Tidwell, C.; Vance, S.E.; Radojevic, V.

    1994-01-01

    Total and partial photoionization cross sections, branching ratios, and angular-distribution asymmetry parameters for inner subshells (nl,l≥2) of the group-IIB elements zinc, cadmium, and mercury have been calculated in both the relativistic random-phase approximation and the relativistic random-phase approximation modified to include relaxation. Comparisons are made between the results of the two theoretical methods and with experiment where available. The present theoretical results for the 3d inner-shell photoionization of zinc are not in accord with experiment. We confirm previous work [S. L. Carter and H. P. Kelly, J. Phys. B 11, 2467 (1978)] which demonstrated that relaxation is an important effect in photoionization of the 4d subshell of atomic cadmium. It is also found that the inclusion of relaxation effects resolves a discrepancy between theory and experiment for the 4f inner-shell photoionization of atomic mercury

  11. Phases and phase transitions in the algebraic microscopic shell model

    Directory of Open Access Journals (Sweden)

    Georgieva A. I.

    2016-01-01

    Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  12. Connections between the dynamical symmetries in the microscopic shell model

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, A. I., E-mail: anageorg@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Drumev, K. P. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria)

    2016-03-25

    The dynamical symmetries of the microscopic shell model appear as the limiting cases of a symmetry adapted Pairing-Plus-Quadrupole Model /PQM/, with a Hamiltonian containing isoscalar and isovector pairing and quadrupole interactions. We establish a correspondence between each of the three types of pairing bases and Elliott’s SU(3) basis, that describes collective rotation of nuclear systems with quadrupole deformation. It is derived from their complementarity to the same LS coupling chain of the shell model number conserving algebra. The probability distribution of the S U(3) basis states within the pairing eigenstates is also obtained through a numerical diagonalization of the PQM Hamiltonian in each limit. We introduce control parameters, which define the phase diagram of the model and determine the role of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  13. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.

  14. Statistics and the shell model

    International Nuclear Information System (INIS)

    Weidenmueller, H.A.

    1985-01-01

    Starting with N. Bohr's paper on compound-nucleus reactions, we confront regular dynamical features and chaotic motion in nuclei. The shell-model and, more generally, mean-field theories describe average nuclear properties which are thus identified as regular features. The fluctuations about the average show chaotic behaviour of the same type as found in classical chaotic systems upon quantisation. These features are therefore generic and quite independent of the specific dynamics of the nucleus. A novel method to calculate fluctuations is discussed, and the results of this method are described. (orig.)

  15. Electron Shell as a Resonator

    International Nuclear Information System (INIS)

    Karpeshin, F. F.

    2002-01-01

    Main principles of the resonance effect arising in the electron shells in interaction of the nuclei with electromagnetic radiation are analyzed and presented in the historical aspect. Principles of NEET are considered from a more general position, as compared to how this is usually presented. Characteristic features of NEET and its reverse, TEEN, as internal conversion processes are analyzed, and ways are offered of inducing them by laser radiation. The ambivalent role of the Pauli exclusion principles in NEET and TEEN processes is investigated.

  16. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  17. Fano-like resonance and scattering in dielectric(core)–metal(shell) composites embedded in active host matrices

    CSIR Research Space (South Africa)

    Jule, L

    2015-07-01

    Full Text Available We investigate light scattering by core–shell consisting of metal/dielectric composites considering spherical and cylindrical nanoinclusions, within the framework of the conventional Rayleigh approximation. By writing the electric potential...

  18. Synthesis of low density foam shells for inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Lattaud, Cecile

    2011-01-01

    This work deals with the fabrication process of low density foam shells and the sharp control of their shape (diameter, thickness, density, sphericity, non-concentricity). During this PhD we focused on the non-concentricity criterion which has to be lower than 1%. The shells are synthesized using a microencapsulation process leading to a double emulsion and followed by a thermal polymerization at 60 C. According to the literature, three major parameters, the density of the three phases, the deformations of the shells along the process and the kinetics of the polymerization have a direct influence on the shells non-concentricity. The results obtained showed that when the density gap between the internal water phase and the organic phase increases, the TMPTMA shells non-concentricity improves. A density gap of 0.078 g.cm -3 at 60 C, leads to an average non-concentricity of 2.4% with a yield of shells of 58%. It was also shown that the synthesis process can be considered as reproducible. While using the same internal water phase, equivalent non-concentricity results are obtained using either a straight tube, a tube with areas of constriction or a short wound tube. The time required to fix the shell's shape is at least 20 minutes with thermal polymerization. So, it seems that the time spent by the shells inside the rotating flask allows the centering of the internal water phase inside the organic phase, whatever the circulation process used. In order to get higher polymerization rates and to avoid destabilization phenomena, we then focused our study on photo polymerization. When the synthesis is performed using a UV lamp with an efficient light intensity, the shells have a slightly higher thickness than the shells synthesized by thermal polymerization. Moreover, a really higher yield, around 80%, is achieved with UV polymerization. However, the average non-concentricity of the shells synthesized lays around 20%, which is really high compared to the 2.4% average

  19. Shell model calculations for stoichiometric Na β-alumina

    International Nuclear Information System (INIS)

    Wang, J.C.

    1985-01-01

    Walker and Catlow recently reported the results of their shell model calculations for the structure and transport of Na β-alumina (Naβ). The main computer programs used by Walker and Catlow for their calculations are PLUTO and HADES III. The latter, a recent version of HADES II written for cubic crystals, is believed to be applicable to defects in crystals of both cubic and hexagonal symmetry. PLUTO is usually used in calculating properties of perfect crystals before defects are introduced into the structure. Walker and Catlow claim that, in some respects, their models are superior to those of Wang et al. Yet, their results are quite different from those observed experimentally. In this work these differences are investigated by using a computer program designed to calculate lattice energies for s Naβ using the same shell model parameters adopted by Walker and Catlow. The core and shell positions of all ions, as well as the lattice parameters, were fully relaxed. The calculated energy difference between aBR and BR sites (0.33 eV) is about twice as large as that reported by Walker and Catlow. The present results also show that the relaxed oxygen ion positions next to the conduction plane in this case are displaced from their observed sites reported. When the core-shell spring constant of the oxygen ion was adjusted to minimize these displacements, the above-mentioned energy difference increased to about 0.56 eV. These results cast doubt on the fluid conduction plane structure suggested by Walker and Catlow and on the defect structure and activation energy obtained from their calculations

  20. Molluskan fauna in two shell mounds in the State of Parana coast, Brazil

    Directory of Open Access Journals (Sweden)

    Marcos de Vasconcellos Gernet

    2011-09-01

    Full Text Available The shell mounds are artificial formations consisting mostly of mollusk shells used in the feeding of the prehistoric peoples which inhabited our coast. These sites are found throughout the Brazilian coast, and hundreds of them were cataloged in the State of Paraná since the 1940s. The fragility of these sites, their importance as evidences of our prehistoric period, and its abrupt disappearance, justify the need for new researches which contribute to contextualize and draw up plans to preserve this heritage. The works related to the molluskan fauna found in the shell mounds are restricted to refer to the most common species and, sometimes, just their popular names. A greater knowledge on these prehistoric inhabitants’ diet allows a better understanding of ancient natural ecosystems. The survey of mollusks was carried out in the shell mounds Guaraguaçu and Boguaçu, in the towns of Pontal do Parana and Guaratuba, respectively, and performed through visual inspection, reading of specialized bibliography and comparison to previous works on the fauna of the shell mounds in the State of Parana coast. Altogether, 29 species were observed in the shell mound Guaraguaçu and 17 species were observed in the shell mound Boguaçu, resulting in a total of 31 species.

  1. Gastropod shell size and architecture influence the applicability of methods used to estimate internal volume.

    Science.gov (United States)

    Ragagnin, Marilia Nagata; Gorman, Daniel; McCarthy, Ian Donald; Sant'Anna, Bruno Sampaio; de Castro, Cláudio Campi; Turra, Alexander

    2018-01-11

    Obtaining accurate and reproducible estimates of internal shell volume is a vital requirement for studies into the ecology of a range of shell-occupying organisms, including hermit crabs. Shell internal volume is usually estimated by filling the shell cavity with water or sand, however, there has been no systematic assessment of the reliability of these methods and moreover no comparison with modern alternatives, e.g., computed tomography (CT). This study undertakes the first assessment of the measurement reproducibility of three contrasting approaches across a spectrum of shell architectures and sizes. While our results suggested a certain level of variability inherent for all methods, we conclude that a single measure using sand/water is likely to be sufficient for the majority of studies. However, care must be taken as precision may decline with increasing shell size and structural complexity. CT provided less variation between repeat measures but volume estimates were consistently lower compared to sand/water and will need methodological improvements before it can be used as an alternative. CT indicated volume may be also underestimated using sand/water due to the presence of air spaces visible in filled shells scanned by CT. Lastly, we encourage authors to clearly describe how volume estimates were obtained.

  2. Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation

    International Nuclear Information System (INIS)

    Penninkhof, J.J.; Dillen, T. van; Roorda, S.; Graf, C.; Blaaderen, A. van; Vredenberg, A.M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO 2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks

  3. Anisotropic deformation of metallo-dielectric core shell colloids under MeV ion irradiation

    Science.gov (United States)

    Penninkhof, J. J.; van Dillen, T.; Roorda, S.; Graf, C.; van Blaaderen, A.; Vredenberg, A. M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks.

  4. Simple proteomics data analysis in the object-oriented PowerShell.

    Science.gov (United States)

    Mohammed, Yassene; Palmblad, Magnus

    2013-01-01

    Scripting languages such as Perl and Python are appreciated for solving simple, everyday tasks in bioinformatics. A more recent, object-oriented command shell and scripting language, Windows PowerShell, has many attractive features: an object-oriented interactive command line, fluent navigation and manipulation of XML files, ability to consume Web services from the command line, consistent syntax and grammar, rich regular expressions, and advanced output formatting. The key difference between classical command shells and scripting languages, such as bash, and object-oriented ones, such as PowerShell, is that in the latter the result of a command is a structured object with inherited properties and methods rather than a simple stream of characters. Conveniently, PowerShell is included in all new releases of Microsoft Windows and therefore already installed on most computers in classrooms and teaching labs. In this chapter we demonstrate how PowerShell in particular allows easy interaction with mass spectrometry data in XML formats, connection to Web services for tools such as BLAST, and presentation of results as formatted text or graphics. These features make PowerShell much more than "yet another scripting language."

  5. Consistent Regulation of Infrastructure Businesses: Some Economic Issues

    OpenAIRE

    Flavio M. Menezes

    2008-01-01

    This paper examines some important economic aspects associated with the notion that consistency in the regulation of infrastructure businesses is a desirable feature. It makes two important points. First, it is not easy to measure consistency. In particular, one cannot simply point to different regulatory parameters as evidence of inconsistent regulatory policy. Second, even if one does observe consistency emerging from decisions made by different regulators, it does not necessarily mean that...

  6. ESR-dating of subfossil mollusc shells: the problem of absorbed paleodose fading

    International Nuclear Information System (INIS)

    Molod'kov, A.

    1988-01-01

    Detailed investigation of paleodosimetric prperties of subfossil mollusc shells has been carried out with respect to their dating by ESR-spectroscopy. Attention has been paid to the connection between the absorbed paleodose value and factors on the upper dating limit. Energetic parameters of the CO 3 3- centres have been determined in the calcareous shell skeleton serving as a paleodetector: E=1.515 eV, ν 0 =8x10 13 s -1 , τ=1.14x10 6 years at 5 deg C. Mathematical models have been elaborated for the accumulation of paleodose in natural conditions. New paleodosimetric equations proposed for calculating the age of shells and some minerals may be applied both to ESR- and thermoluminescence-dating. The proposed method enables one to date the shells within the time span of nx10 2 -nx10 6 years

  7. The lifetime of a long cylindrical shell under external pressure at elevated temperature

    CERN Document Server

    Bargmann, H W

    1972-01-01

    This paper is concerned with creep collapse of a long, thin walled, circular, cylindrical shell subjected to external pressure. The problem has been studied by Hoff et al. (1959), where elasticity has been neglected in the material equations. In the present paper it is pointed out that elasticity must not be neglected in stability problems as it may reduce the lifetime considerably. The improved equation for the lifetime of the shell is presented. Moreover, a procedure is indicated to derive the necessary creep parameters easily from usually available creep data. Numerical values of the lifetime of thin-walled, circular, cylindrical shells under external atmospheric pressure are presented for a wide range of shells of different geometrical characteristics for a number of high-temperature alloys and the temperature range up to 1000 degrees C. Experimental results are reported which are in good agreement with the theoretical prediction. (11 refs).

  8. Thin-shell wormhole solutions in Einstein-Hoffmann-Born-Infeld theory

    Energy Technology Data Exchange (ETDEWEB)

    Mazharimousavi, S. Habib, E-mail: habib.mazhari@emu.edu.tr [Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10 (Turkey); Halilsoy, M., E-mail: mustafa.halilsoy@emu.edu.tr [Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10 (Turkey); Amirabi, Z., E-mail: zahra.amirabi@emu.edu.tr [Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10 (Turkey)

    2011-10-03

    We adopt the Hoffmann-Born-Infeld's (HBI) double Lagrangian approach in general relativity to find black holes and investigate the possibility of viable thin-shell wormholes. By virtue of the non-linear electromagnetic parameter, the matching hypersurfaces of the two regions with two Lagrangians provide a natural, lower-bound radius for the thin-shell wormholes which provides the main motivation to the present study. In particular, the stability of thin-shell wormholes supported by normal matter in higher-dimensional Einstein-HBI-Gauss-Bonnet (EHBIGB) gravity is highlighted. -- Highlights: → We extend the Hoffmann-Born-Infeld Lagrangian to higher dimensions. → We found higher-dimensional black hole solutions for Einstein-Hoffmann-Born-Infeld-Gauss-Bonnet (EHBIGB) gravity. → We obtained thin-shell wormholes in the EHBIGB gravity which are supported by ordinary matter and stable.

  9. Off-shell sensitivity, repulsive correlations and the pion-nucleus optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Keister, B D [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics

    1977-07-01

    Repulsive nucleon-nucleon correlations tend to reduce the dependence of pion-nucleus elastic scattering upon the off-shell pion-nucleon dynamics. However, optical potential calculations can in practice be quite sensitive to the particular choice of off-shell model parameters. It is argued that this sensitivity results from the nature of the optical potential as a one-body operator which introduces extra off-shell dependence not found in physical many-body process itself. Thus, one must be very careful in any attempt to extract correlation or off-shell information, or to predict pion-nucleus phase shifts, by means of an optical potential theory. Results of model calculations are presented for purposes of illustration.

  10. Biodiesel Production from Castor Oil by Using Calcium Oxide Derived from Mud Clam Shell

    Directory of Open Access Journals (Sweden)

    S. Ismail

    2016-01-01

    Full Text Available The catalytic potential of calcium oxide synthesized from mud clam shell as a heterogeneous catalyst for biodiesel production was studied. The mud clam shell calcium oxide was characterized using particle size analyzer, Fourier transform infrared spectroscopy, scanning electron microscopy, and BET gas sorption analyzer. The catalyst performance of mud clam shell calcium oxide was studied in the transesterification of castor oil as biodiesel. Catalyst characterization and transesterification study results of synthesized catalyst proved the efficiency of the natural derived catalyst for biodiesel production. A highest biodiesel yield of 96.7% was obtained at optimal parameters such as 1 : 14 oil-to-methanol molar ratio, 3% w/w catalyst concentration, 60°C reaction temperature, and 2-hour reaction time. Catalyst reusability test shows that the synthesized calcium oxide from mud clam shell is reusable up to 5 times.

  11. Wavefunction effects in inner shell ionization of light atoms by protons

    International Nuclear Information System (INIS)

    Aashamar, K.; Amundsen, P.A.

    An efficient computer code for calculating the impact parameter distribution of atomic ionization probabilities caused by charged particle impact, has been developed. The programme is based on the semiclassical approximation, and it allows the use of an arbitrary atomic central potential for deriving the one-electron orbitals that form the basis for the description of the atomic states. Extensive calculations are reported for proton induced K-shell ionization in carbon and neon, covering energies in the range 0.1-10 MeV. Some calculations on proton-argon L-shell ionization are also reported. Comparison of the results obtained using (screened) hydrogenic potentials and the recently reported energy- optimized effective atomic central potentials, respectively demonstrates that wavefunction effects are generally important for inner-shell ionization of light atoms. The agreement between theory and experiment in the K-shell case is improved for fast collisions upon using better wavefunctions. (Auth.)

  12. A design chart for long vacuum pipes and shells

    International Nuclear Information System (INIS)

    Krempetz, K.; Grimson, J.; Kelly, P.

    1986-01-01

    This paper presents a design chart to aid designers in the selection of a wall thickness for long cylindrical shells having atmospheric pressure outside the shell and a pressure less than atmospheric inside the shell. The chart indicates a conservative value for the minimum wall thickness for a given shell diameter and material when the shell is completely evacuated

  13. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    Science.gov (United States)

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  14. Transitional nuclei near shell closures

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  15. Sludge characterization: the role of physical consistency

    Energy Technology Data Exchange (ETDEWEB)

    Spinosa, Ludovico; Wichmann, Knut

    2003-07-01

    The physical consistency is an important parameter in sewage sludge characterization as it strongly affects almost all treatment, utilization and disposal operations. In addition, in many european Directives a reference to the physical consistency is reported as a characteristic to be evaluated for fulfilling the regulations requirements. Further, in many analytical methods for sludge different procedures are indicated depending on whether a sample is liquid or not, is solid or not. Three physical behaviours (liquid, paste-like and solid) can be observed with sludges, so the development of analytical procedures to define the boundary limit between liquid and paste-like behaviours (flowability) and that between solid and paste-like ones (solidity) is of growing interest. Several devices can be used for evaluating the flowability and solidity properties, but often they are costly and difficult to be operated in the field. Tests have been carried out to evaluate the possibility to adopt a simple extrusion procedure for flowability measurements, and a Vicat needle for solidity ones. (author)

  16. Consistent biokinetic models for the actinide elements

    International Nuclear Information System (INIS)

    Leggett, R.W.

    2001-01-01

    The biokinetic models for Th, Np, Pu, Am and Cm currently recommended by the International Commission on Radiological Protection (ICRP) were developed within a generic framework that depicts gradual burial of skeletal activity in bone volume, depicts recycling of activity released to blood and links excretion to retention and translocation of activity. For other actinide elements such as Ac, Pa, Bk, Cf and Es, the ICRP still uses simplistic retention models that assign all skeletal activity to bone surface and depicts one-directional flow of activity from blood to long-term depositories to excreta. This mixture of updated and older models in ICRP documents has led to inconsistencies in dose estimates and interpretation of bioassay for radionuclides with reasonably similar biokinetics. This paper proposes new biokinetic models for Ac, Pa, Bk, Cf and Es that are consistent with the updated models for Th, Np, Pu, Am and Cm. The proposed models are developed within the ICRP's generic model framework for bone-surface-seeking radionuclides, and an effort has been made to develop parameter values that are consistent with results of comparative biokinetic data on the different actinide elements. (author)

  17. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    Science.gov (United States)

    Yang, Chungja

    3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material. Experiments further examined shell thickness and particle concentration (chapter 6) dependencies on ~530 nm CSnp dielectrophoretic and electrorotational responses with ~30nm and ~80 nm shell thicknesses and at particle concentration count rates of 5000 +/- 500, 10000 +/- 500, and 15000 +/- 500 counts per second. Using similar experimental conditions, both dielectrophoretic and electrorotational CSnp responses were compiled versus frequency, shell thickness, and particle concentration. Knowledge gained from this study includes a unique resonance-like dielectrophoretic and electrorotational spectrum, which is significantly distinct from other cells and particles. CSnp dielectric properties were then calculated by parametrically fitting parameters to an existing core-shell model. The optimum conductivity and relative permittivity for the core and the shell are 1E-15 S/m, 1, 0.6 S/m, and 90, respectively. These properties can be exploited to rapidly assemble these unique core-shell particles for future structural color production in fabrics, vehicle, and wall painting.

  18. Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or physiological control?

    Science.gov (United States)

    Freitas, Pedro S.; Clarke, Leon J.; Kennedy, Hilary; Richardson, Christopher A.

    2016-12-01

    Manganese in the shell calcite of marine bivalves has been suggested to reflect ambient seawater Mn concentrations, thus providing a high-resolution archive of past seawater Mn concentrations. However, a quantitative relationship between seawater Mn and shell Mn/Ca ratios, as well as clear understanding of which process(es) control(s) shell Mn/Ca, are still lacking. Blue mussels, Mytilus edulis, were grown in a one-year duration field experiment in the Menai Strait, U.K., to study the relationship between seawater particulate and dissolved Mn2+ concentrations and shell calcite Mn/Ca ratios. Shell Mn/Ca showed a well-defined intra-annual double-peak, with maximum values during early spring and early summer and low values during autumn and winter. Seawater particulate Mn peaked during winter and autumn, with a series of smaller peaks during spring and summer, whereas dissolved Mn2+ exhibited a marked single maximum during late-spring to early-summer, being low during the remainder of the year. Consequently, neither seawater particulate Mn nor dissolved Mn2+ concentrations explain the intra-annual variation of shell Mn/Ca ratios. A physiological control on shell Mn/Ca ratios is evident from the strong similarity and timing of the double-peaked intra-annual variations of Mn/Ca and shell growth rate (SGR), the latter corresponding to periods of increased metabolic activity (as indicated by respiration rate). It is thus likely that in M. edulis SGR influences shell Mn/Ca by altering the concentration or activity of Mn2+ within the extra-pallial fluid (EPF), by changing the flux of Mn into or the proportion of protein bound Mn within the EPF. By linking shell Mn/Ca ratios to the endogenous and environmental factors that determine growth and metabolic activity, this study helps to explain the lack of a consistent relationship between shell Mn/Ca in marine bivalve shell calcite and seawater particulate and dissolved Mn2+ concentrations. The use of Mn content from M. edulis

  19. Carbon fiber reinforced magnesium alloy in a Ti-6Al-4V shell

    Directory of Open Access Journals (Sweden)

    Astanin Vasily

    2017-01-01

    Full Text Available Continuous carbon fiber reinforced magnesium alloy pieces in SMC Ti-6Al-4V shell have been fabricated using pressure infiltration. Similar temperatures (~700°C for superplastic formation of the shell and melting of the alloy allow this to be done in one step. The quality of infiltration of the molten alloys is found to be proportional to load. A limiting parameter in increasing the infiltration pressure is the strength of the welded bonds. Structure, fracture parameters and mechanical properties are discussed.

  20. Simplified vibrocreep buckling analysis of circular cylindrical shells

    International Nuclear Information System (INIS)

    Simeonova, K.; Hadjikov, L.; Georgiev, K.; Iotov, I.

    1981-01-01

    The circular cylindrical shells are used as a mathematical model in the investigation of the reactions of the supporting elements in nuclear reactor core, airplane designing etc. The buckling in the process of vibrocreep is one of the possible catastrophes during the exploitation of those elements. The paper presents a simplified investigation of the vibro-creep stability of a shell axially pressed. The main simplification consists of the fact that the average process of vibro-creep is considered stationary. The modified constitutive equations of Maxwell-Gurevitch-Rabinovitch, concerning elasto-viscous and elasto-plastic material is used. The critical time is calculated after two criteria. Theoretical relations between the critical time and the dynamic loading velocity amplitude are obtained. Those relations are compared to relations experimentally proved. (orig.)

  1. Core–Shell Electrospun Hollow Aluminum Oxide Ceramic Fibers

    Directory of Open Access Journals (Sweden)

    Jonathan W. Rajala

    2015-10-01

    Full Text Available In this work, core–shell electrospinning was employed as a simple method for the fabrication of composite coaxial polymer fibers that became hollow ceramic tubes when calcined at high temperature. The shell polymer solution consisted of polyvinyl pyrollidone (PVP in ethanol mixed with an aluminum acetate solution to act as a ceramic precursor. The core polymer was recycled polystyrene to act as a sacrificial polymer that burned off during calcination. The resulting fibers were analyzed with X-ray diffraction (XRD and energy dispersive spectroscopy (EDS to confirm the presence of gamma-phase aluminum oxide when heated at temperatures above 700 °C. The fiber diameter decreased from 987 ± 19 nm to 382 ± 152 nm after the calcination process due to the polymer material being burned off. The wall thickness of these fibers is estimated to be 100 nm.

  2. Inventory parameters

    CERN Document Server

    Sharma, Sanjay

    2017-01-01

    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  3. RHFPPP, SCF-LCAO-MO Calculation for Closed Shell and Open Shell Organic Molecules

    International Nuclear Information System (INIS)

    Bieber, A.; Andre, J.J.

    1987-01-01

    1 - Nature of physical problem solved: Complete program performs SCF-LCAO-MO calculations for both closed and open-shell organic pi-molecules. The Pariser-Parr-People approximations are used with- in the framework of the restricted Hartree-Fock method. The SCF calculation is followed, if desired, by a variational configuration interaction (CI) calculation including singly excited configurations. 2 - Method of solution: A standard procedure is used; at each step a real symmetric matrix has to be diagonalized. The self-consistency is checked by comparing the eigenvectors between two consecutive steps. 3 - Restrictions on the complexity of the problem: i) The calculations are restricted to planar molecules. ii) In order to avoid accumulation of round-off errors, in the iterative procedure, double precision arithmetic is used. iii) The program is restricted to systems up to about 16 atoms; however the size of the systems can easily be modified if required

  4. Point-like structure and off-shell dual strings

    International Nuclear Information System (INIS)

    Green, M.B.

    1977-01-01

    It is argued that in a consistent off-shell dual formalism the amplitude for the emission of a scalar off-shell state by a string consists of two components. One of these contains the particle poles in the off-shell leg and the other is intimately related to the insertion of a point-like energy density on the string. As a result, the amplitude for a string to emit a zero momentum scalar state into the vacuum (which may be relevant for spontaneous symmetry breaking) is described by the amplitude for a finite fraction of the energy in the string to collapse to a spatial point at some time (this fraction and its space-time position being integrated over). The off-shell amplitudes have an elegant formulation in terms of a set of 'confined modes' which can be assigned quark flavour quantum numbers to reproduce the Chan-Paton scheme. It is suggested that the dual model be modified by allowing for the coupling of scalar closed strings to the vacuum and the resulting effect on the space-time structure of dual Green functions is described. It is found that even the emission of a single zero-momentum closed string modifies the elastic amplitude in a significant manner, leading to a power-behaved fixed-angle cross section in contrast to the usual exponential decrease of the dual model. This arises from point-like scattering between energy densities accumulating in the colliding strings. The relationship between the fixed angle and Regge limits is discussed. The fixed angle behaviour is found to be the asymptotic limit in momentum transfer of a fixed pole that arises in the Regge limit. (Auth.)

  5. Biofiltration of methanol in an organic biofilter using peanut shells as medium.

    Science.gov (United States)

    Ramirez-Lopez, E M; Corona-Hernandez, J; Avelar-Gonzalez, F J; Omil, F; Thalasso, F

    2010-01-01

    Biofiltration consists of a filter-bed of organic matter serving both as carrier for the active biomass and as nutrient supply, through which the polluted gas passes. The selection of a suitable medium material is of major importance to ensure optimum biofilter efficiency. Peanut shells are an agricultural byproduct locally available in large quantities at a low price in most tropical and sub-tropical countries. A previous study showed that peanut shells are physically and chemically suitable for biofiltration. This paper presents the results obtained during a six month biofiltration experiment using peanut shells as medium and methanol as air pollutant. It is shown that peanut shells are potentially suitable as biofiltration medium, since degradation rates of up to 30 kg MeOH/m(3)d with an empty bed residence time of 19s was obtained. The biofilter showed a good resistance to shock load and no operational problems were observed.

  6. Stability of inner baffle-shell of pool type LMFBR - experimental and theoretical studies

    International Nuclear Information System (INIS)

    Lebey, J.; Combescure, A.

    1987-01-01

    I pool type LMFBR, the primary coolant circuit, inside the main vessel, comprises a hot plenum separated from a cold plenum by an inner baffle. For Superphenix 1 reactor, it was judged advisable to built a double-shell baffle, each shell withstanding only one type of loading (primary loading for one shell, secondary loading for the other). Due to the size and intricacy of the structure, this design involves unnegligible supplementary costs and manufacturing difficulties. Thus, an alternative solution has been studied for future plants projects. It consists of a single shell baffle having a shape especially studied to sustain the two types of applied loadings (thermal plus primary loadings). Such a shape was calculated by NOVATOME, and it was decided to check the ability of methods of analysis to predict the ruin of this structure under primary loading. For this purpose, a mock-up has been tested, and the experimental results compared with the calculated ones. (orig./GL)

  7. Simplified magnetic circuit for the calculation of the stray magnetic flux through the shell gaps

    Energy Technology Data Exchange (ETDEWEB)

    Collarin, P.; Piovan, R. [Associazioni EURATOM-ENEA-CNR-Univ. di Padova (Italy). Gruppo di Padova per Ricerche sulla Fusione

    1995-12-31

    Significant toroidal magnetic field perturbations, stray flux at the shell gaps and current mismatching in the coils of the toroidal field winding are measured during the start-up and the flat-top phases of RFX. These phenomena are consistent with large and wall locked MHD modes: at first some m = 1 modes evolve separately one after the other, afterwards they concur to a wide and localized plasma perturbation that persists during the flat-top. These perturbations are heavily influenced by the stray magnetic flux through the shell gaps. Hence a magnetic circuit that mainly considers the magnetic reluctance of the conducting shell gaps has been developed in order to estimate this stray flux and, therefore, to evaluate the stabilizing capability of the shell. The observation of the MHD modes, the description of the equivalent magnetic network, the estimation of the stray flux and the comparison with the experimental measurements are reported in the paper.

  8. Simplified magnetic circuit for the calculation of the stray magnetic flux through the shell gaps

    International Nuclear Information System (INIS)

    Collarin, P.; Piovan, R.

    1995-01-01

    Significant toroidal magnetic field perturbations, stray flux at the shell gaps and current mismatching in the coils of the toroidal field winding are measured during the start-up and the flat-top phases of RFX. These phenomena are consistent with large and wall locked MHD modes: at first some m = 1 modes evolve separately one after the other, afterwards they concur to a wide and localized plasma perturbation that persists during the flat-top. These perturbations are heavily influenced by the stray magnetic flux through the shell gaps. Hence a magnetic circuit that mainly considers the magnetic reluctance of the conducting shell gaps has been developed in order to estimate this stray flux and, therefore, to evaluate the stabilizing capability of the shell. The observation of the MHD modes, the description of the equivalent magnetic network, the estimation of the stray flux and the comparison with the experimental measurements are reported in the paper

  9. Unique morphology and gradient arrangement of nacre's platelets in green mussel shells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun; Zhang, Gangsheng, E-mail: zhanggs@gxu.edu.cn

    2015-07-01

    Nacre has long served as a classic model in biomineralization and the synthesis of biomimetic materials. However, the morphology and arrangement of its basic building blocks, the aragonite platelets, are still under hot debate. In this study, using a field emission scanning electron microscope (SEM), a high-resolution transmission electron microscope (HRTEM), and an X-ray diffractometer (XRD), we investigate the platelets at the edges and centers of green mussel shells. We find that 1) flat and curved platelets coexist in green mussel shells; 2) the immature platelets at the shell edge are aggregates of aragonite nanoparticles, whereas the immature ones at the shell center are single crystals; and 3) the morphology and thickness of the platelets exhibit a gradient arrangement. Based on these findings, we hypothesize that the gradient in the thickness and curvature of the platelets may probably result from the difference in growth rate between the edge and the center of the shell and from the gradient in compressive stress imposed by the closing of the shells by the adductor muscles or the withdrawal of the periostracum by the mantle. We expect that the presented results will shed new light on the formation mechanisms of natural composite materials. - Highlights: • Flat and curved platelets coexist in green mussel shells. • The immature platelets at the shell edge consist of aragonite nanoparticles. • The immature platelets at the shell center are single crystals. • The morphology and thickness of platelets exhibit a gradient arrangement. • The gradient arrangement of platelets may result from the stress gradient.

  10. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.

    Science.gov (United States)

    Tsai, Shin-Hung; Chang, Hung-Chih; Wang, Hsin-Hua; Chen, Szu-Ying; Lin, Chin-An; Chen, Show-An; Chueh, Yu-Lun; He, Jr-Hau

    2011-12-27

    A novel strategy employing core-shell nanowire arrays (NWAs) consisting of Si/regioregular poly(3-hexylthiophene) (P3HT) was demonstrated to facilitate efficient light harvesting and exciton dissociation/charge collection for hybrid solar cells (HSCs). We experimentally demonstrate broadband and omnidirectional light-harvesting characteristics of core-shell NWA HSCs due to their subwavelength features, further supported by the simulation based on finite-difference time domain analysis. Meanwhile, core-shell geometry of NWA HSCs guarantees efficient charge separation since the thickness of the P3HT shells is comparable to the exciton diffusion length. Consequently, core-shell HSCs exhibit a 61% improvement of short-circuit current for a conversion efficiency (η) enhancement of 31.1% as compared to the P3HT-infiltrated Si NWA HSCs with layers forming a flat air/polymer cell interface. The improvement of crystal quality of P3HT shells due to the formation of ordering structure at Si interfaces after air mass 1.5 global (AM 1.5G) illumination was confirmed by transmission electron microscopy and Raman spectroscopy. The core-shell geometry with the interfacial improvement by AM 1.5G illumination promotes more efficient exciton dissociation and charge separation, leading to η improvement (∼140.6%) due to the considerable increase in V(oc) from 257 to 346 mV, J(sc) from 11.7 to 18.9 mA/cm(2), and FF from 32.2 to 35.2%, which is not observed in conventional P3HT-infiltrated Si NWA HSCs. The stability of the Si/P3HT core-shell NWA HSCs in air ambient was carefully examined. The core-shell geometry should be applicable to many other material systems of solar cells and thus holds high potential in third-generation solar cells.

  11. Evolution of shell gaps with neutron richness

    International Nuclear Information System (INIS)

    Basu, Moumita Ray; Ray, I.; Kshetri, Ritesh; Saha Sarkar, M.; Sarkar, S.

    2006-01-01

    In the present work, an attempt has been made to coordinate the recent data available over the periodic table, specially near the shell gaps and studied the evolution of the shell gaps as function of neutron numbers and/or other related quantities

  12. Microsoft Exchange Server PowerShell cookbook

    CERN Document Server

    Andersson, Jonas

    2015-01-01

    This book is for messaging professionals who want to build real-world scripts with Windows PowerShell 5 and the Exchange Management Shell. If you are a network or systems administrator responsible for managing and maintaining Exchange Server 2013, you will find this highly useful.

  13. Shell effects in the nuclear deformation energy

    International Nuclear Information System (INIS)

    Ross, C.K.

    1973-01-01

    A new approach to shell effects in the Strutinsky method for calculating nuclear deformation energy is evaluated and the suggestion of non-conservation of angular momentum in the same method is resolved. Shell effects on the deformation energy in rotational bands of deformed nuclei are discussed. (B.F.G.)

  14. Intershell correlations in photoionization of outer shells

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Chernysheva, L.V. [A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Drukarev, E.G. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg 188300 (Russian Federation)

    2016-02-15

    We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.

  15. Radiometric measuring method for egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Forberg, S; Svaerdstroem, K

    1973-02-01

    A description is given of a fast nondestructive radiometric method for registration of the thickness of egg shells of the tawny owl, hen, osprey, and Canada goose. Certain errors are discussed. Measurement of the thickness of egg shells (mineral content per cm/sup 2/) with an accuracy better than 1% is possible in less than one minute under field conditions. (auth)

  16. Statistical Mechanics of Thin Spherical Shells

    Directory of Open Access Journals (Sweden)

    Andrej Košmrlj

    2017-01-01

    Full Text Available We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated “pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.

  17. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  18. Fabrication of Foam Shells for ICF Experiments

    Science.gov (United States)

    Czechowicz, D. G.; Acenas, O.; Flowers, J. S.; Nikroo, A.; Paguio, R. R.; Schroen, D. G.; Streit, J.; Takagi, M.

    2004-11-01

    The General Atomics/Schafer team has developed processes to fabricate foam shells targets suitable for ICF experiments. The two most common chemical systems used to produce foam shells have been resorcinol-formaldehyde (R/F) aerogel and divinylbenzene (DVB). Spherical targets have been made in the form of shells and beads having diameters ranging from approximately 0.5 mm to 4.0 mm, and having densities from approximately 100 mg/cc to 250 mg/cc. The work on R/F foam shells has been concentrated on 1) shell fabrication process improvement to obtain high yields ( ˜25%) and 2) depositing a reliable permeation barrier to provide shells for ongoing direct drive experiments at LLE. Development of divinylbenzene foam shells has been mainly directed towards Inertial Fusion Energy applications (at densities as low as 30 mg/cc) and recently for shells for experiments at LLE. Details of the relevant metrology and properties of these foams as well as the range of targets currently available will be discussed.

  19. Intershell correlations in photoionization of outer shells

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.; Drukarev, E.G.

    2016-01-01

    We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.

  20. Statistical mechanics of microscopically thin thermalized shells

    Science.gov (United States)

    Kosmrlj, Andrej

    Recent explosion in fabrication of microscopically thin free standing structures made from graphene and other two-dimensional materials has led to a renewed interest in the mechanics of such structures in presence of thermal fluctuations. Since late 1980s it has been known that for flat solid sheets thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli in a scale-dependent fashion. However, much is still unknown about the mechanics of thermalized flat sheets of complex geometries and about the mechanics of thermalized shells with non-zero background curvature. In this talk I will present recent development in the mechanics of thermalized ribbons, spherical shells and cylindrical tubes. Long ribbons are found to behave like hybrids between flat sheets with renormalized elastic constants and semi-flexible polymers, and these results can be used to predict the mechanics of graphene kirigami structures. Contrary to the anticipated behavior for ribbons, the non-zero background curvature of shells leads to remarkable novel phenomena. In shells, thermal fluctuations effectively generate negative surface tension, which can significantly reduce the critical buckling pressure for spherical shells and the critical axial load for cylindrical tubes. For large shells this thermally generated load becomes big enough to spontaneously crush spherical shells and cylindrical tubes even in the absence of external loads. I will comment on the relevance for crushing of microscopic shells (viral capsids, bacteria, microcapsules) due to osmotic shocks and for crushing of nanotubes.

  1. Biomineral repair of abalone shell apertures.

    Science.gov (United States)

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.; Isobata, O.; Kawamata, S.

    1977-01-01

    A new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. Because of the compressive and shearing resistance of the concrete core, the layers behave as a composite solid shell. Membrane forces are shared by steel plates and partly by concrete core. Bending moment is effectively resisted by the section with extreme layers of steel. Therefore, both surfaces can be designed as extremely thin plates: the inner plate, which is a load carrying members as well as a liner, can be welded without the laborious process of stress-relieving, and various jointing methods can be applied to the outer plate which is free from the need for leak tightness. The capability of the composite layers of behaving as a unified solid shell section depends largely on the shearing rigidity of the concrete core. However, as its resisting capacity to transverse shearing force is comparatively low, a device for reducing the shearing stress at the junction to the base mat is needed. In the new scheme, this part of the cylindrical shell is divided into multiple layers of the same kind of composite shell. This device makes the stiffness of the bottom of the cylindrical shell to lateral movement minimum while maintaining the proper resistance to membrane forces. The analysis shows that the transverse shearing stress can be reduced to less than 1√n of the ordinary case by dividing the thickness of the shell into n layers which are able to slip against each other at the contact surface. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented

  3. Nuclear masses, deformations and shell effects

    International Nuclear Information System (INIS)

    Hirsch, Jorge G; Barbero, César A; Mariano, Alejandro E

    2011-01-01

    We show that the Liquid Drop Model is best suited to describe the masses of prolate deformed nuclei than of spherical nuclei. To this end three Liquid Drop Mass formulas are employed to describe nuclear masses of eight sets of nuclei with similar quadrupole deformations. It is shown that they are able to fit the measured masses of prolate deformed nuclei with an RMS smaller than 750 keV, while for the spherical nuclei the RMS is, in the three cases, larger than 2000 keV. The RMS of the best fit of the masses of semi-magic nuclei is also larger than 2000 keV. The parameters of the three models are studied, showing that the surface symmetry term is the one which varies the most from one group of nuclei to another. In one model, isospin dependent terms are also found to exhibit strong changes. The inclusion of shell effects allows for better fits, which continue to be better in the prolate deformed nuclei region.

  4. Localization in f-shell metals

    International Nuclear Information System (INIS)

    Harrison, W.A.

    1984-01-01

    Anderson's theory of local moments is applied to the f-shell metals with the use of parameters for the electronic structure given earlier. A criterion for localization (abrupt in this theory) of Z/sub f/ levels per atom is that the resonance width be less than 2U sin 2 (πZ/sub f//14), with U the intra-atomic repulsion associated with s-f transfer. Americium and the heavier actinides satisfy this criterion, as do all the rare earths except cerium; plutonium is borderline. The traditional term ''localized state'' is used here though ''correlated state'' would be more appropriate. For the cases considered the localized states are found to have net spin (or moment) but that is not a necessary condition. They are found to contribute to the f-band pressure on the crystal, but reduced by a factor of about W/sub f//3U, equal to 0.09 for americium, where W/sub f/ is the itinerant f-band width. The localized f levels may themselves be thought to form bands, but with reduced width, and they may even have Fermi surface, though that was not found for the systems considered. A comparison of this state with band ferromagnetism is made. An approximate calculation of the total energy of the localized and delocalized states as a function of volume correctly predicted the large volume and localization for americium

  5. Obtainment of calcium carbonate from mussels shell

    International Nuclear Information System (INIS)

    Hamester, M.R.R.; Becker, D.

    2010-01-01

    The mussels and oyster shell are discarded at environment, and this accumulation is causing negative consequences to ecosystem. Calcium carbonate is main constituent of the shell chemical composition. Aiming to reduce environmental aggression and generate income to shellfish producer, there was the possibility of using these shells as an alternative to commercial calcium carbonate. For this physics, chemicals and thermal properties were evaluated, using X-ray fluorescence, thermogravimetric analysis, size distribution, abrasiveness and scanning electronic microscopy. The results indicate that mussels shells have an initial degradation temperature higher than commercial calcium carbonate e same lost weight behavior and 95% of shell chemical composition is calcium carbonate. The sample size distribution was influenced by grinding condition and time as well as its abrasiveness. (author)

  6. Structural shell analysis understanding and application

    CERN Document Server

    Blaauwendraad, Johan

    2014-01-01

    The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...

  7. Semiclassical shell structure in rotating Fermi systems

    International Nuclear Information System (INIS)

    Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.

    2010-01-01

    The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.

  8. Optical properties of core-shell and multi-shell nanorods

    Science.gov (United States)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  9. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  10. Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on elastic foundation by a combination of harmonic differential quadrature-finite difference methods

    International Nuclear Information System (INIS)

    Civalek, Oemer

    2005-01-01

    The nonlinear dynamic response of doubly curved shallow shells resting on Winkler-Pasternak elastic foundation has been studied for step and sinusoidal loadings. Dynamic analogues of Von Karman-Donnel type shell equations are used. Clamped immovable and simply supported immovable boundary conditions are considered. The governing nonlinear partial differential equations of the shell are discretized in space and time domains using the harmonic differential quadrature (HDQ) and finite differences (FD) methods, respectively. The accuracy of the proposed HDQ-FD coupled methodology is demonstrated by numerical examples. The shear parameter G of the Pasternak foundation and the stiffness parameter K of the Winkler foundation have been found to have a significant influence on the dynamic response of the shell. It is concluded from the present study that the HDQ-FD methodolgy is a simple, efficient, and accurate method for the nonlinear analysis of doubly curved shallow shells resting on two-parameter elastic foundation

  11. Faraday Wave Turbulence on a Spherical Liquid Shell

    Science.gov (United States)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  12. Gravity on-shell diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Enrico [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA 95616 (United States)

    2016-11-22

    We study on-shell diagrams for gravity theories with any number of supersymmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only dlog-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N=8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in http://dx.doi.org/10.1007/JHEP06(2015)202.

  13. Stability of accelerated metal shells

    International Nuclear Information System (INIS)

    Tahsiri, H.

    1976-01-01

    A systematic treatment has been developed for the Rayleigh-Taylor instability of an accelerated liner. It is applicable to one-dimensional models either compressible or incompressible. With this model several points have been clarified. For an incompressible liner model, the Rayleigh-Taylor instability will have about five e-folding periods and the usual growth rate is independent of the current distribution or current rise time. Adequate stability will therefore depend on the magnitude of the initial perturbations or the precision of the initial liner and the thickness over which the shell is accelerated. However, for a compressible model, theory predicts that the current rise time is important and the Rayleigh-Taylor instability is suppressed if the current rise time is less than the shock transit time

  14. Local and global Casimir energies for a semitransparent cylindrical shell

    International Nuclear Information System (INIS)

    Cavero-Pelaez, Ines; Milton, Kimball A; Kirsten, Klaus

    2007-01-01

    The local Casimir energy density and the global Casimir energy for a massless scalar field associated with a λδ-function potential in a (3 + 1)-dimensional circular cylindrical geometry are considered. The global energy is examined for both weak and strong coupling, the latter being the well-studied Dirichlet cylinder case. For weak coupling, through O(λ 2 ), the total energy is shown to vanish by both analytic and numerical arguments, based both on Green's-function and zeta-function techniques. Divergences occurring in the calculation are shown to be absorbable by renormalization of physical parameters of the model. The global energy may be obtained by integrating the local energy density only when the latter is supplemented by an energy term residing precisely on the surface of the cylinder. The latter is identified as the integrated local energy density of the cylindrical shell when the latter is physically expanded to have finite thickness. Inside and outside the δ-function shell, the local energy density diverges as the surface of the shell is approached; the divergence is weakest when the conformal stress tensor is used to define the energy density. A real global divergence first occurs in O(λ 3 ), as anticipated, but the proof is supplied here for the first time; this divergence is entirely associated with the surface energy and does not reflect divergences in the local energy density as the surface is approached

  15. Multistage process for the production of bioethanol from almond shell.

    Science.gov (United States)

    Kacem, Imen; Koubaa, Mohamed; Maktouf, Sameh; Chaari, Fatma; Najar, Taha; Chaabouni, Moncef; Ettis, Nadia; Ellouz Chaabouni, Semia

    2016-07-01

    This work describes the feasibility of using almond shell as feedstock for bioethanol production. A pre-treatment step was carried out using 4% NaOH for 60min at 121°C followed by 1% sulfuric acid for 60min at 121°C. Enzymatic saccharification of the pre-treated almond shell was performed using Penicillium occitanis enzymes. The process was optimized using a hybrid design with four parameters including the incubation time, temperature, enzyme loads, and polyethylene glycol (PEG) concentration. The optimum hydrolysis conditions led to a sugar yield of 13.5%. A detoxification step of the enzymatic hydrolysate was carried out at pH 5 using 1U/ml of laccase enzyme produced by Polyporus ciliatus. Fermenting efficiency of the hydrolysates was greatly improved by laccase treatment, increasing the ethanol yield from 30% to 84%. These results demonstrated the efficiency of using almond shell as a promising source for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dry Separation of Palm Kernel and Palm Shell Using a Novel Five-Stage Winnowing Column System

    Directory of Open Access Journals (Sweden)

    Rohaya Mohamed Halim

    2016-04-01

    Full Text Available The conventional separation system for the recovery of palm kernel from its palm shell–kernel mixture using water as process media generates a considerable amount of waste effluent that harms the environment. The aim of this study is to develop a dry separation process for the recovery of palm kernel by using winnowing columns. A commercial system consisting of a series of five winnowing columns was developed and installed at a local palm oil mill. The system parameters, including column height, blower capacity, airflow rate and mesh screen size for shell removal, were studied and optimized to ensure good separation of kernel and shell in the column to enable collection of different sizes of kernel and shell at each column outlet. The performance of the separation process was evaluated in terms of its kernel losses, dirt content and kernel recovery rate. The average kernel losses based on oil palm fresh fruit bunches processed were found to vary from 0.11 to 0.30 wt %, with most of the values obtained being below the targeted limit of 0.30 wt %. The dirt content was in the range 4.56–6.03 wt %, which was mostly below the targeted limit of 5.5 wt %. The kernel recovery rate was in the range 5.69–6.89 wt %, with most of the values achieving the minimum targeted limit of 6.00 wt %. The system operates under completely dry conditions and, therefore, produces zero waste effluent.

  17. Quantization of physical parameters

    International Nuclear Information System (INIS)

    Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    Dynamical models are described with parameters (mass, coupling strengths) which must be quantized for quantum mechanical consistency. These and related topological ideas have physical application to phenomenological descriptions of high temperature and low energy quantum chromodynamics, to the nonrelativistic dynamics of magnetic monopoles, and to the quantum Hall effect. (author)

  18. Numerical simulations of bistable flows in precessing spheroidal shells

    Science.gov (United States)

    Vormann, J.; Hansen, U.

    2018-05-01

    Precession of the rotation axis is an often neglected mechanical driving mechanism for flows in planetary interiors, through viscous coupling at the boundaries and topographic forcing in non-spherical geometries. We investigate precession-driven flows in spheroidal shells over a wide range of parameters and test the results against theoretical predictions. For Ekman numbers down to 8.0 × 10-7, we see a good accordance with the work of Busse, who assumed the precession-driven flow to be dominated by a rigid rotation component that is tilted to the main rotation axis. The velocity fields show localized small-scale structures for lower Ekman numbers and clear signals of inertial waves for some parameters. For the case of moderate viscosity and strong deformation, we report the realization of multiple solutions at the same parameter combination, depending on the initial condition.

  19. Reversed-field pinch experiments in EXTRAP T2R with a resistive shell boundary

    International Nuclear Information System (INIS)

    Malmberg, J.-A.; Cecconello, M.; Brunsell, P.R.; Yadikin, D.; Drake, J.R.

    2003-01-01

    The EXTRAP T2R reversed-field pinch has a resistive shell with a magnetic penetration time of 6 ms. This time is intermediate between the dynamo/relaxation cycle time scale (<2ms) and the pulse length (∼20ms). The resonant tearing modes do not wall-lock. They rotate with angular phase velocities in the range of 20 to 600 krad/s. As a result of the rotation the radial component of the perturbations at the shell from the resonant modes is suppressed. Non-resonant (resistive-wall) kink modes are unstable and their linear growth rates have been measured. The measured growth rates follow the trend expected from theoretical estimates for a range of equilibrium parameters. Furthermore, when the resonant modes are rotating, the loop voltage and confinement parameters have values comparable to those of a conducting shell RFP. The poloidal beta is around 10% for a range of current and density. (author)

  20. Buckling Analysis for Stiffened Anisotropic Circular Cylinders Based on Sanders Nonlinear Shell Theory

    Science.gov (United States)

    Nemeth, Michael P.

    2014-01-01

    Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.

  1. The microwave properties of composites including lightweight core–shell ellipsoids

    International Nuclear Information System (INIS)

    Yuan, Liming; Xu, Yonggang; Dai, Fei; Liao, Yi; Zhang, Deyuan

    2016-01-01

    In order to study the microwave properties of suspensions including lightweight core–shell ellipsoids, the calculation formula was obtained by substituting an equivalent ellipsoid for the original core–shell ellipsoid. Simulations for Fe-coated diatomite/paraffin suspensions were performed. Results reveal that the calculated results fitted the measured results very well when the inclusion concentration was no more than 15 vol%, but there was an obvious deviation when the inclusion concentration reached 24 vol%. By comparisons, the formula for less diluted suspensions was more suitable for calculating the electromagnetic parameter of suspensions especially when the ratio was smaller between the electromagnetic parameter of the inclusion and that of the host medium. - Highlights: • The microwave properties of suspensions with core-shell inclusions were studied. • Less diluted suspensions were considered. • Flaky Fe-coated diatomite/paraffin suspensions were studied. • The microwave properties could be simulated successfully.

  2. K-shell ionization probability in energetic nearly symmetric heavy-ion collisions

    International Nuclear Information System (INIS)

    Tserruya, I.; Schmidt-Boecking, H.; Schuch, R.

    1977-01-01

    Impact parameter dependent K-x-ray emission probabilities for the projectile and target atoms have been measured in 35 MeV Cl on Cl, Cl on Ti and Cl on Ni collisions. The sum of projectile plus target K-shell ionization probability is taken as a measure of the total 2psigma ionization probability. The 2pπ-2psigma totational coupling model is in clear disagreement with the present results. On the other hand the sum of probabilities is reproduced both in shape and absolute magnitude by the statistical model for inner-shell ionization. The K-shell ionization probability of the higher -Z collision partner is well described by this model including the 2psigma-1ssigma vacancy sharing probability calculated as a function of the impact parameter. (author)

  3. The microwave properties of composites including lightweight core–shell ellipsoids

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liming, E-mail: lming_y@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China); Xu, Yonggang; Dai, Fei; Liao, Yi [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China); Zhang, Deyuan [School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2016-12-01

    In order to study the microwave properties of suspensions including lightweight core–shell ellipsoids, the calculation formula was obtained by substituting an equivalent ellipsoid for the original core–shell ellipsoid. Simulations for Fe-coated diatomite/paraffin suspensions were performed. Results reveal that the calculated results fitted the measured results very well when the inclusion concentration was no more than 15 vol%, but there was an obvious deviation when the inclusion concentration reached 24 vol%. By comparisons, the formula for less diluted suspensions was more suitable for calculating the electromagnetic parameter of suspensions especially when the ratio was smaller between the electromagnetic parameter of the inclusion and that of the host medium. - Highlights: • The microwave properties of suspensions with core-shell inclusions were studied. • Less diluted suspensions were considered. • Flaky Fe-coated diatomite/paraffin suspensions were studied. • The microwave properties could be simulated successfully.

  4. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.

    Science.gov (United States)

    Kuai, Long; Geng, Baoyou; Wang, Shaozhen; Sang, Yan

    2012-07-23

    In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au-Au, Au-Pd, and Au-Pt core-shell nanostructures with typical porous shells. Moreover, the Au-Au isomeric core-shell nanostructure is reported for the first time. The lower oxidation states of Au(I), Pd(II), and Pt(II) are supposed to contribute to the formation of porous core-shell nanostructures instead of yolk-shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au-Pd core-shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core-shell nanostructures. As expected, the Au-Pd core-shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (I(f)/I(b) is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au-M (M = Au, Pd, and Pt) core-shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface-enhanced Raman scattering, and so forth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins.

    Science.gov (United States)

    Cheng, Liyuan; Zhou, Xuegang; Zhong, Hong; Deng, Xuliang; Cai, Qing; Yang, Xiaoping

    2014-01-01

    A kind of core-shell nanofibers containing sodium fluoride (NaF) was produced and used as reinforcing materials for dimethacrylate-based dental restorative resins in this study. The core-shell nanofibers were prepared by coaxial-electrospinning with polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) solutions as core and shell fluids, respectively. The produced PAN-PMMA nanofibers varied in fiber diameter and the thickness of PMMA shell depending on electrospinning parameters. NaF-loaded nanofibers were obtained by incorporating NaF nanocrystals into the core fluid at two loadings (0.8 or 1.0wt.%). Embedment of NaF nanocrystals into the PAN core did not damage the core-shell structure. The addition of PAN-PMMA nanofibers into Bis-GMA/TEGDMA clearly showed the reinforcement due to the good interfacial adhesion between fibers and resin. The flexural strength (Fs) and flexural modulus (Ey) of the composites decreased slightly as the thickness of PMMA shell increasing. Sustained fluoride releases with minor initial burst release were achieved from NaF-loaded core-shell nanofibers and the corresponding composites, which was quite different from the case of embedding NaF nanocrystals into the dental resin directly. The study demonstrated that NaF-loaded PAN-PMMA core-shell nanofibers were not only able to improve the mechanical properties of restorative resin, but also able to provide sustained fluoride release to help in preventing secondary caries. © 2013.

  6. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    International Nuclear Information System (INIS)

    Devi, Jutika; Datta, Pranayee; Saikia, Rashmi

    2016-01-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications. (paper)

  7. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    Science.gov (United States)

    Devi, Jutika; Saikia, Rashmi; Datta, Pranayee

    2016-10-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.

  8. Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R

    Science.gov (United States)

    Brunsell, P. R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J. R.; Rachlew, E.

    2006-11-01

    Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size.

  9. Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R

    International Nuclear Information System (INIS)

    Brunsell, P.R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J.R.; Rachlew, E.

    2006-01-01

    Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size

  10. The transverse shear deformation behaviour of magneto-electro-elastic shell

    Energy Technology Data Exchange (ETDEWEB)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H. [UniversitiTeknologi PETRONAS, Perak (Malaysia); Faris, Waleed [International Islamic University Malaysia, Perak (Malaysia)

    2016-01-15

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour.

  11. The transverse shear deformation behaviour of magneto-electro-elastic shell

    International Nuclear Information System (INIS)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H.; Faris, Waleed

    2016-01-01

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour

  12. Core-shell designed scaffolds for drug delivery and tissue engineering.

    Science.gov (United States)

    Perez, Roman A; Kim, Hae-Won

    2015-07-01

    Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core-shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core-shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core-shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Elastic-plastic transition on rotating spherical shells in dependence of compressibility

    Directory of Open Access Journals (Sweden)

    Thakur Pankaj

    2017-01-01

    Full Text Available The purpose of this paper is to establish the mathematical model on the elastic-plastic transitions occurring in the rotating spherical shells based on compressibility of materials. The paper investigates the elastic-plastic stresses and angular speed required to start yielding in rotating shells for compressible and incompressible materials. The paper is based on the non-linear transition theory of elastic-plastic shells given by B.R. Seth. The elastic-plastic transition obtained is treated as an asymptotic phenomenon at critical points & the solution obtained at these points generates stresses. The solution obtained does not require the use of semi-empirical yield condition like Tresca or Von Mises or other certain laws. Results are obtained numerically and depicted graphically. It has been observed that Rotating shells made of the incompressible material are on the safer side of the design as compared to rotating shells made of compressible material. The effect of density variation has been discussed numerically on the stresses. With the effect of density variation parameter, rotating spherical shells start yielding at the internal surface with the lower values of the angular speed for incompressible/compressible materials.

  14. An Experimental Study on Effect of Palm – Shell Waste Additive to Cement Strenght Enhancement

    Directory of Open Access Journals (Sweden)

    Adi Novriansyah

    2017-03-01

    Full Text Available Enhancing the cement strength through attaching chemical additive has been popular to meet the required condition for a particular well-cementing job. However, due to a low oil-price phenomenon, pouring and additive should be reconsidered because it can raise the cost and make the project become uneconomic. Another additive material in nanocomposite form will be introduced through this experimental study. The nanocomposite material consist of silica nanoparticle, known as “Nanosilica” and a palm-shell-waste, which is abundant in Indonesia. Before making a nanocomposite, the palm-shell should be burned to obtain a charcoal form, ground and sieved to attain a uniform size.   The study focuses on the two parameters, compressive strength and shear bond strength, which can reflect the strength of the cement. These values are obtained by performing a biaxial loading test to the cement sample. Various samples with different concentration of nanocomposite should be prepared and following the mixing, drying, and hardening process before the loading test is carried out. The result from the test shows a positive indication for compressive strength and shear bond strength values, according to the representative well cementing standards. Increasing the nanocomposite concentration on the cement will increase these values. Furthermore, an investigation on the temperature effect confirms that the sample with 700oC burning temperature have highest compressive-strength and shear-bond-strength values. This is a potential opportunity utilizing a waste-based material to produce another product with higher economic value.

  15. Linking partial and quasi dynamical symmetries in rotational nuclei and shell evolution in {sup 96}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Christoph

    2016-01-27

    The first part of this thesis revolves around symmetries in the sd-IBA-1. A region of approximate O(6) symmetry for the ground-state band, a partial dynamical symmetry (PDS) of type III, in the parameter space of the extended consistent-Q formalism is identified through quantum number fluctuations. The simultaneous occurrence of a SU(3) quasi dynamical symmetry for nuclei in the region of O(6) PDS is explained via the β=1, γ=0 intrinsic state underlying the ground-state band. The previously unrelated concepts of PDS and QDS are connected for the first time and many nuclei in the rare earth region that approximately satisfy both symmetry requirements are identified. Ground-state to ground-state (p, t) transfer reactions are presented as an experimental signature to identify pairs of nuclei that both exhibit O(6) PDS. In the second part of this thesis inelastic electron scattering off {sup 96}Zr is studied. The experiment was performed at the high resolution Lintott spectrometer at the S-DALINAC and covered a momentum-transfer range of 0.28 - 0.59 fm{sup -1}. Through a relative analysis using Plane Wave Born Approximation (PWBA) the B(E2;2{sup +}{sub 2}→0{sup +}{sub 1}) value is extracted without incurring the additional model dependence of a Distorted Wave Born Approximation (DWBA). By combining this result with known multipole mixing ratios and branching ratios all decay strengths of the 2{sup +}{sub 2} state are determined. A mixing calculation establishes very weak mixing (V{sub mix}=76 keV) between states of the ground-state band and those of the band build on top of the 0{sup +}{sub 2} state which includes the 2{sup +}{sub 2} state. The occurrence of these two isolated bands is interpreted within the shell model in terms of type II shell evolution.

  16. Internal conversion theory of gamma radiation in unfilled atomic shells

    International Nuclear Information System (INIS)

    Anderson, Eh.M.; Trusov, V.F.; Ehglajs, M.O.

    1980-01-01

    The internal conversion theory of gamma radiation in unfilled shells, when the atom is in a state with certain energy and momentum, is considered. A formula for the conversion coefficient between the atom and ion levels is obtained. This coefficient turns to be dependent on genealogic characteristics of the atom. It is discussed when the conversion coefficients are proportional to the numbers of filling subshells in the atom. Exact calculations have been carried out in the multiconfigurational approximation taking into account intermediate coupling for the d-shell of the Fe atom Single-electron radial wave functions have been calculated on the basis of the relativistic method of the Hartree-Fock-Dirak self-consistent field. Conversion coefficients on certain subshells as well as submatrix elements of the production operator are calculated. The electric coefficient of internal conversion (CIC) in the calculation for one electron does not depend on spin orientation. That is why the electric CIC from the level will not depend on filling number distribution by subshells. For magnetic CIC the dependence on the atom state is significant. Using multiconfiguration basis for calculating energy matrix and its succeeding diagonalization means the account of the intermediate coupling type, which takes place for the unfilled shells

  17. The Shell Collapsar—A Possible Alternative to Black Holes

    Directory of Open Access Journals (Sweden)

    Trevor W. Marshall

    2016-10-01

    Full Text Available This article argues that a consistent description is possible for gravitationally collapsed bodies, in which collapse stops before the object reaches its gravitational radius, the density reaching a maximum close to the surface and then decreasing towards the centre. The way towards such a description was indicated in the classic Oppenheimer-Snyder (OS 1939 analysis of a dust star. The title of that article implied support for a black-hole solution, but the present article shows that the final OS density distribution accords with gravastar and other shell models. The parallel Oppenheimer-Volkoff (OV study of 1939 used the equation of state for a neutron gas, but could consider only stationary solutions of the field equations. Recently we found that the OV equation of state permits solutions with minimal rather than maximal central density, and here we find a similar topology for the OS dust collapsar; a uniform dust-ball which starts with large radius, and correspondingly small density, and collapses to a shell at the gravitational radius with density decreasing monotonically towards the centre. Though no longer considered central in black-hole theory, the OS dust model gave the first exact, time-dependent solution of the field equations. Regarded as a limiting case of OV, it indicates the possibility of neutron stars of unlimited mass with a similar shell topology. Progress in observational astronomy will distinguish this class of collapsars from black holes.

  18. Radiocarbon dating of planktonic foraminifer shells: A cautionary tale

    Science.gov (United States)

    Mekik, Figen

    2014-01-01

    rate, bioturbation, winnowing, and calcite dissolution produce significant radiocarbon age offsets among multiple species of coexisting planktonic foraminifers and pteropod fragments. We compare the radiocarbon age of foraminifer species and pteropod fragments with estimates of percent calcite dissolved made with a sedimentary proxy (Globorotalia menardii fragmentation index—MFI) to delineate the effect of dissolution on radiocarbon age of foraminifers. Data from two core top transects on the Rio Grande Rise (RIO) and Ontong Java Plateau (OJP) and from down core sediments of varying sedimentation rates in the tropical Pacific (ME-27, MD98 2177, and MW91-9 56GGC) reveal that sediments with the greatest accumulation rates produce the least age offsets among coexisting species. Age offsets among coexisting foraminifers are about 3500 years on RIO, and 1000 years on OJP. Two core tops from RIO yield an age of the Last Glacial Maximum possibly due to mass displacement of younger sediments downslope. Foraminifer age increases with increasing dissolution and there is a consistent pattern of older foraminifer fragments coexisting with younger whole shells of the same species. The only exception is sediments which have experienced high dissolution where fragments are younger than whole shells. The age offset between fragments of G. menardii and its coexisting whole shells does not exceed the age offset among other coexisting foraminifer species in the same core tops.

  19. Axisymmetric vibrations of thick shells of revolution

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)

  20. Importance-truncated shell model for multi-shell valence spaces

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.