WorldWideScience

Sample records for shell model spectra

  1. Calculations of the energy spectra of Zn, Ga and Ge isotopes by the shell model

    Sakakura, M.; Shikata, Y.; Arima, A.; Sebe, T.

    1979-01-01

    The effective Hamiltonian which was determined empirically by Koops and Glaudemans is tested in shell model calculations for the 65-68 Zn, 67-69 Ga, and 68-70 Ge nuclei in the full (1p 3 / 2 , 0f 5 / 2 , 1p 1 / 2 )n space. The resulting energy spectra are compared with the experimental spectra and results of previous calculations. The overall agreement with experiment is as satisfactory for these nuclei as for the Ni and Cu isotopes, by which the Hamiltonian was determined. It is noticed that the spectra of 67 Zn and 67 , 69 Ga calculated in this work are similar to those provided by the Alaga model. (orig.) [de

  2. Shell Models of Superfluid Turbulence

    Wacks, Daniel H; Barenghi, Carlo F

    2011-01-01

    Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.

  3. Closed N-shell alkali spectra

    Ellis, D.G.; Curtis, L.J.

    1982-01-01

    Term values and ionization potentials have been calculated for several ions in the promethium (N = 61) isoelectronic sequence. As the nuclear charge is increased, the ground configuration changes from 4f 13 5s 2 to 4f 14 5s giving the upper portion of the sequence an alkali-like character. According to our most recent Hartree-Fock calculations with first-order relativistic corrections, the ground term is 5s 2 S for Z > 77 (Ir XVII) and the first excited term is 5p 2 P 0 for Z > 84 (P 0 XXIV). Comparisons are made with calculations of Cowan in W XIV. The prospects for observation of these spectra in fast ion beams are discussed. (orig.)

  4. Temporal structures in shell models

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  5. Shell model and spectroscopic factors

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  6. Conventional shell model: some issues

    Vallieres, M.; Pan, X.W.; Feng, D.H.; Novoselsky, A.

    1997-01-01

    We discuss some important issues in shell-model calculations related to the effective interactions used in different regions of the periodic table; in particular the quality of different interactions is discussed, as well as the mass dependence of the interactions. Mention is made of the recently developed Drexel University shell-model (DUSM). (orig.)

  7. Shell model description of Ge isotopes

    Hirsch, J G; Srivastava, P C

    2012-01-01

    A shell model study of the low energy region of the spectra in Ge isotopes for 38 ≤ N ≤ 50 is presented, analyzing the excitation energies, quadrupole moments, B(E2) values and occupation numbers. The theoretical results have been compared with the available experimental data. The shell model calculations have been performed employing three different effective interactions and valence spaces. We have used two effective shell model interactions, JUN45 and jj44b, for the valence space f 5/2 pg 9/2 without truncation. To include the proton subshell f 7/2 in valence space we have employed the fpg effective interaction due to Sorlin et al., with 48 Ca as a core and a truncation in the number of excited particles.

  8. Spectra theory for nuclei with closed shells (1962)

    Gillet, V.

    1962-01-01

    A unified theory for the spectra of nuclei with closed shells, based on the elementary particle-hole excitation of these systems, is applied to a study of carbon-12, oxygen-16 and calcium-40. Two approximations are made. The first consists in diagonalizing the residual two-body interaction in a limited sub-space having one particle and one hole configurations. Its validity depends on the high energy necessary for exciting a particle-hole pair. The second approximation consists in re-summing the infinite sub-series of the particle-hole diagrams. It is equivalent to the Hartree-Fock method depending on the time, or to Quasi-Boson method. Its domain of validity in the nuclear case is not thoroughly Understood. The summed diagrams are preponderant at the high density limit, when the nuclear density is about unity. The violation of the Pauli principle in this approximation is only justified if the number of excited pairs is small with respect to the number of particle states available; in the case of light nuclei the degeneracies of the shells are small. Nevertheless this approximation, which postulates the existence of an average nuclear field, varying slowly with time with respect to the nucleons periods has the merit of being self-consistent, of giving orthogonal proper states in the non-physical state of the mass centre, and of improving the calculation of the summation rules. In order to determine and to limit the role of phenomenology in the results obtained using these approximations, a maximum amount of experimental data is calculated. By applying method of least squares to fourteen energy levels of oxygen and carbon, the region of optimum agreement in the effective interaction parameters is determined. This region is in part a function of the numerical approximations made. We hope that it will keep its significance when the theory is improved. It is compatible with certain characteristics of free nucleon-nucleon scattering. The present research favours the

  9. Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires

    Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel

    2017-06-01

    We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.

  10. Time-dependent density functional methods for Raman spectra in open-shell systems.

    Aquino, Fredy W; Schatz, George C

    2014-01-16

    We present an implementation of a time-dependent density functional theory (TD-DFT) linear response module in NWChem for unrestricted DFT calculations and apply it to the calculation of resonant Raman spectra in open-shell molecular systems using the short-time approximation. The new source code was validated and applied to simulate Raman spectra on several doublet organic radicals (e.g., benzyl, benzosemiquinone, TMPD, trans-stilbene anion and cation, and methyl viologen) and the metal complex copper phthalocyanine. We also introduce a divide-and-conquer approach for the evaluation of polarizabilities in relatively large systems (e.g., copper phthalocyanine). The implemented tool gives comparisons with experiment that are similar to what is commonly found for closed-shell systems, with good agreement for most features except for small frequency shifts, and occasionally large deviations for some modes that depend on the molecular system studied, experimental conditions not being accounted in the modeling such as solvation effects and extra solvent-based peaks, and approximations in the underlying theory. The approximations used in the quantum chemical modeling include (i) choice of exchange-correlation functional and basis set; (ii) harmonic approximation used in the frequency analysis to determine vibrational normal modes; and (iii) short-time approximation (omission of nuclear motion effects) used in calculating resonant Raman spectra.

  11. On the shell model connection of the cluster model

    Cseh, J.; Levai, G.; Kato, K.

    2000-01-01

    values. The present results show that te simple and transparent SU(3) connection between the spherical shell model and the cluster model is valid not only for the harmonic oscillator interactions, but for much more general (SU(3) dynamically symmetric) Hamiltonians as well, which result in realistic energy spectra. Via the shell model, the cluster picture is connected to the quadrupole collective model, too. (author)

  12. Shell model Monte Carlo methods

    Koonin, S.E.; Dean, D.J.; Langanke, K.

    1997-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)

  13. Shell model Monte Carlo methods

    Koonin, S.E.

    1996-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs

  14. On the shell-model-connection of the cluster model

    Cseh, J.

    2000-01-01

    Complete text of publication follows. The interrelation of basic nuclear structure models is a longstanding problem. The connection between the spherical shell model and the quadrupole collective model has been studied extensively, and symmetry considerations proved to be especially useful in this respect. A collective band was interpreted in the shell model language long ago [1] as a set of states (of the valence nucleons) with a specific SU(3) symmetry. Furthermore, the energies of these rotational states are obtained to a good approximation as eigenvalues of an SU(3) dynamically symmetric shell model Hamiltonian. On the other hand the relation of the shell model and cluster model is less well explored. The connection of the harmonic oscillator (i.e. SU(3)) bases of the two approaches is known [2] but it was established only for the unrealistic harmonic oscillator interactions. Here we investigate the question: Can an SU(3) dynamically symmetric interaction provide a similar connection between the spherical shell model and the cluster model, like the one between the shell and collective models? In other words: whether or not the energy of the states of the cluster bands, defined by a specific SU(3) symmetries, can be obtained from a shell model Hamiltonian (with SU(3) dynamical symmetry). We carried out calculations within the framework of the semimicroscopic algebraic cluster model [3,4] in order to find an answer to this question, which seems to be affirmative. In particular, the energies obtained from such a Hamiltonian for several bands of the ( 12 C, 14 C, 16 O, 20 Ne, 40 Ca) + α systems turn out to be in good agreement with the experimental values. The present results show that the simple and transparent SU(3) connection between the spherical shell model and the cluster model is valid not only for the harmonic oscillator interactions, but for much more general (SU(3) dynamically symmetric) Hamiltonians as well, which result in realistic energy spectra. Via

  15. Infrared Model Spectra for Evolving Red Supergiants

    Kyung-Won Suh

    1993-06-01

    Full Text Available The space and ground based infrared spectra of red supergiants are modeled and arranged in order of their evolutionary status with their theoretical model parameters. The chemical compositions of the dust shells around red supergiants are affected by the nuclear reaction and dredge-up processes of the cental stars. The processes are sensitively dependent on the initial mass, the initial chemical composition, and the evolutionary status. Miras, infrared carbon stars, and OH/IR stars have close link in their evolution in manu aspects, i,e., the chemical composition, the optical depths and the mass loss rates. The evolutionary tracks for the three classes of red supergiants on infrared two-color diagrams have been made from model calculations and IRAS observational data.

  16. Spectroscopic modeling for tungsten EUV spectra

    Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Suzuki, Chihiro; Morita, Shigeru; Goto, Motoshi; Sasaki, Akira; Nakamura, Nobuyuki; Yamamoto, Norimasa; Koike, Fumihiro

    2014-01-01

    We have constructed an atomic model for tungsten extreme ultraviolet (EUV) spectra to reconstruct characteristic spectral feature of unresolved transition array (UTA) observed at 4-7 nm for tungsten ions. In the tungsten atomic modeling, we considered fine-structure levels with the quantum principal number n up to 6 as the atomic structure and calculated the electron-impact collision cross sections by relativistic distorted-wave method, using HULLAC atomic code. We measured tungsten EUV spectra in Large Helical Device (LHD) and Compact Electron Beam Ion Trap device (CoBIT) and compared them with the model calculation. The model successfully explain series of emission peaks at 1.5-3.5 nm as n=5-4 and 6-4 transitions of W"2"4"+ - W"3"2"+ measured in CoBIT and LHD and the charge state distributions were estimated for LHD plasma. The UTA feature observed at 4-7 nm was also successfully reconstructed with our model. The peak at ∼5 nm is produced mainly by many 4f-4d transition of W"2"2"+ - W"3"5"+ ions, and the second peak at ∼6 nm is produced by 4f-4d transition of W"2"5"+ - W"2"8"+ ions, and 4d-4p inner-shell transitions, 4p"54d"n"+"1 - 4p"64d"n, of W"2"9"+ - W"3"5"+ ions. These 4d-4p inner-shell transitions become strong since we included higher excited states such as 4p"54d"n4f state, which ADAS atomic data set does not include for spectroscopic modeling with fine structure levels. (author)

  17. Isogeometric shell formulation based on a classical shell model

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  18. Statistics and the shell model

    Weidenmueller, H.A.

    1985-01-01

    Starting with N. Bohr's paper on compound-nucleus reactions, we confront regular dynamical features and chaotic motion in nuclei. The shell-model and, more generally, mean-field theories describe average nuclear properties which are thus identified as regular features. The fluctuations about the average show chaotic behaviour of the same type as found in classical chaotic systems upon quantisation. These features are therefore generic and quite independent of the specific dynamics of the nucleus. A novel method to calculate fluctuations is discussed, and the results of this method are described. (orig.)

  19. Isogeometric shell formulation based on a classical shell model

    Niemi, Antti; Collier, Nathan; Dalcí n, Lisandro D.; Ghommem, Mehdi; Calo, Victor M.

    2012-01-01

    The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  20. High-resolution K-shell spectra from laser excited molybdenum plasmas

    Szabo C.I.

    2013-11-01

    Full Text Available X-ray spectra from Molybdenum plasmas were recorded by a Cauchois-type cylindrically bent Transmission Crystal Spectrometer (TCS. The absolutely calibrated spectrometer provides an unprecedented resolution of inner shell transitions (K x-ray radiation. This tool allows us to resolve individual lines from different charge states existing inside the laser-produced plasma. The inner shell transitions from highly charged Molybdenum shown in this report have never been resolved before in such detail in a laser-produced plasma.

  1. A study of the valence shell photoelectron and photoabsorption spectra of CF3SF5

    Holland, D M P; Shaw, D A; Walker, I C; McEwen, I J; Apra, E; Guest, M F

    2005-01-01

    The outer valence shell photoelectron spectrum of CF 3 SF 5 has been studied experimentally and theoretically. Synchrotron radiation has been used to record angle-resolved outer valence shell photoelectron spectra of CF 3 SF 5 in the photon energy range 18-60 eV. These spectra have allowed photoelectron asymmetry parameters and branching ratios to be derived. The Outer Valence Green's Function approach has been employed to calculate the molecular orbital configuration and associated binding energies. A charge distribution analysis has also been obtained. Assignments have been proposed for the peaks observed in the photoelectron spectrum. The absolute photoabsorption cross section of CF 3 SF 5 has been measured from threshold to 40 eV, and strongly resembles that of SF 6 . Assignments, involving intravalence transitions, have been proposed for some of the principal features appearing in the photoabsorption spectrum of CF 3 SF 5

  2. Measurement of D-T neutron penetration probability spectra for iron ball shell systems

    Duan Shaojie

    1998-06-01

    The D-T neutron penetration probability spectra are measured for iron ball shell systems of the series of samples used in the experiments, and the penetration curves are presented. As the detector is near to samples, the measured results being approximately corrected are compared with those in the literature, and it is shown that the former is compatible with the latter in the range of the experimental error

  3. Compressed shell conditions extracted from spectroscopic analysis of Ti K-shell absorption spectra with evaluation of line self-emission

    Johns, H. M.; Mancini, R. C.; Hakel, P.; Nagayama, T. [Physics Department, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557 (United States); Smalyuk, V. A.; Regan, S. P.; Delettrez, J. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States)

    2014-08-15

    Ti-doped tracer layers embedded in the shell at varying distances from the fuel-shell interface serve as a spectroscopic diagnostic for direct-drive experiments conducted at OMEGA. Detailed modeling of Ti K-shell absorption spectra produced in the tracer layer considers n = 1–2 transitions in F- through Li-like Ti ions in the 4400–4800 eV range, both including and excluding line self-emission. Testing the model on synthetic spectra generated from 1-D LILAC hydrodynamic simulations reveals that the model including self-emission best reproduces the simulation, while the model excluding self-emission overestimates electron temperature T{sub e} and density N{sub e} to a higher degree for layers closer to the core. The prediction of the simulation that the magnitude of T{sub e} and duration of Ti absorption will be strongly tied to the distance of the layer from the core is consistent with the idea that regions of the shell close to the core are more significantly heated by thermal transport out of the hot dense core, but more distant regions are less affected by it. The simulation predicts more time variation in the observed T{sub e}, N{sub e} conditions in the compressed shell than is observed in the experiment, analysis of which reveals conditions remain in the range T{sub e} = 400–600 eV and N{sub e} = 3.0–10.0 × 10{sup 24} cm{sup −3} for all but the most distant Ti-doped layer, with error bars ∼5% T{sub e} value and ∼10% N{sub e} on average. The T{sub e}, N{sub e} conditions of the simulation lead to a greater degree of ionization for zones close to the core than occurs experimentally, and less ionization for zones far from the core.

  4. Energy spectra in $p$-shell $\\Lambda$ hypernuclei and $^{19}_{\\Lambda}\\textrm{F}$ and spin-dependent $\\Lambda N$ interactions

    Kanada-En'yo, Yoshiko; Isaka, Masahiro; Motoba, Toshio

    2018-01-01

    Energy spectra of $0s$-orbit $\\Lambda$ states in $p$-shell $\\Lambda$ hypernuclei ($^{A}_\\Lambda Z$) and those in $^{19}_{\\Lambda}\\textrm{F}$ are studied with the microscopic cluster model and antisymmetrized molecular dynamics using the $G$-matrix effective $\\Lambda N$ ($\\Lambda NG$) interactions. Spin-dependent terms of the ESC08a version of the $\\Lambda NG$ interactions are tested and phenomenologically tuned to reproduce observed energy spectra in $p$-shell $^{A}_\\Lambda Z$. Spin-dependent...

  5. Krypton K-shell X-ray spectra recorded by the HENEX spectrometer

    Seely, J.F. [Naval Research Laboratory, Space Science Division, Washington DC 20375 (United States)]. E-mail: john.seely@nrl.navy.mil; Back, C.A. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Constantin, C. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Lee, R.W. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Chung, H.-K. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Hudson, L.T. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Szabo, C.I. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Henins, A. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Holland, G.E. [SFA Inc., 9315 Largo Drive West Suite 200, Largo MD 20774 (United States); Atkin, R. [Tiger Innovations, L.L.C., 3610 Vacation Lane, Arlington VA 22207 (United States); Marlin, L. [Naval Research Laboratory, Space Science Division, Washington DC 20375 (United States)

    2006-05-15

    High-resolution X-ray spectra were recorded by the High-Energy Electronic X-ray (HENEX) spectrometer from a variety of targets irradiated by the Omega laser at the Laboratory for Laser Energetics. The HENEX spectrometer utilizes four reflection crystals covering the 1-20keV energy range and one quartz(10-11) transmission crystal (Laue geometry) covering the 11-40keV range. The time-integrated spectral images were recorded on five CMOS X-ray detectors. In the spectra recorded from krypton-filled gasbag and hohlraum targets, the helium-like K-shell transitions n=1-2, 1-3, and 1-4 appeared in the 13-17keV energy range. A number of additional spectral features were observed at energies lower than the helium-like n=1-3 and n=1-4 transitions. Based on computational simulations of the spectra using the FLYCHK/FLYSPEC codes, which included opacity effects, these additional features are identified to be inner-shell transitions from the Li-like through N-like krypton charge states. The comparisons of the calculated and observed spectra indicate that these transitions are characteristic of the plasma conditions immediately after the laser pulse when the krypton density is 2x10{sup 18}cm{sup -3} and the electron temperature is in the range 2.8-3.2keV. These spectral features represent a new diagnostic for the charge state distribution, the density and electron temperature, and the plasma opacity. Laboratory experiments indicate that it is feasible to record K-shell spectra from gold and higher Z targets in the >60keV energy range using a Ge(220) transmission crystal.

  6. Cluster shell model: I. Structure of 9Be, 9B

    Della Rocca, V.; Iachello, F.

    2018-05-01

    We calculate energy spectra, electromagnetic transition rates, longitudinal and transverse electron scattering form factors and log ft values for beta decay in 9Be, 9B, within the framework of a cluster shell model. By comparing with experimental data, we find strong evidence for the structure of these nuclei to be two α-particles in a dumbbell configuration with Z2 symmetry, plus an additional nucleon.

  7. Many-body forces in nuclear shell-model

    Rath, P.K.

    1985-01-01

    In the microscopic derivation of the effective Hamiltonian for the nuclear shell model many-body forces between the valence nucleons occur. These many-body forces can be discriminated in ''real'' many-body forces, which can be related to mesonic and internal degrees of freedom of the nucleons, and ''effective'' many-body forces, which arise by the confinement of the nucleonic Hilbert space to the finite-dimension shell-model space. In the present thesis the influences of such three-body forces on the spectra of sd-shell nuclei are studied. For this the two common techniques for shell-model calculations (Oak Ridge-Rochester and Glasgow representation) are extended in such way that a general three-body term in the Hamiltonian can be regarded. The studies show that the repulsive contributions of the considered three-nucleon forces become more important with increasing number of valence nucleons. By this the particle-number dependence of empirical two-nucleon forces can be qualitatively explained. A special kind of effective many-body force occurs in the folded diagram expansion of the energy-dependent effective Hamiltonian for the shell model. Thereby it is shown that the contributions of the folded diagrams with three nucleons are just as important as those with two nucleons. Thus it is to be suspected that the folded diagram expansion contains many-particle terms with arbitrary particle number. The present studies however show that four nucleon effects are neglegible so that the folded diagram expansion can be confined to two- and three-particle terms. In shell-model calculations which extend over several main shells the influences of the spurious center-of-mass motion must be regarded. A procedure is discussed by which these spurious degrees of freedom can be exactly separated. (orig.) [de

  8. Spectra of conformal sigma models

    Tlapak, Vaclav

    2015-04-01

    In this thesis the spectra of conformal sigma models defined on (generalized) symmetric spaces are analysed. The spaces where sigma models are conformal without the addition of a Wess-Zumino term are supermanifolds, in other words spaces that include fermionic directions. After a brief review of the general construction of vertex operators and the background field expansion, we compute the diagonal terms of the one-loop anomalous dimensions of sigma models on semi-symmetric spaces. We find that the results are formally identical to the symmetric case. However, unlike for sigma models on symmetric spaces, off diagonal terms that lead to operator mixing are also present. These are not computed here. We then present a detailed analysis of the one-loop spectrum of the supersphere S 3 vertical stroke 2 sigma model as one of the simplest examples. The analysis illustrates the power and simplicity of the construction. We use this data to revisit a duality with the OSP(4 vertical stroke 2) Gross-Neveu model that was proposed by Candu and Saleur. With the help of a recent all-loop result for the anomalous dimension of (1)/(2)BPS operators of Gross-Neveu models, we are able to recover the entire zero-mode spectrum of the supersphere model. We also argue that the sigma model constraints and its equations of motion are implemented correctly in the Gross-Neveu model, including the one-loop data. The duality is further supported by a new all-loop result for the anomalous dimension of the ground states of the sigma model. However, higher-gradient operators cannot be completely recovered. It is possible that this discrepancy is related to a known instability of the sigma model. The instability of sigma models is due to symmetry preserving high-gradient operators that become relevant at arbitrarily small values of the coupling. This feature has been observed long ago in one-loop calculations of the O(N)-vector model and soon been realized to be a generic property of sigma models

  9. Quark shell model using projection operators

    Ullah, N.

    1988-01-01

    Using the projection operators in the quark shell model, the wave functions for proton are calculated and expressions for calculating the wave function of neutron and also magnetic moment of proton and neutron are derived. (M.G.B.)

  10. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  11. Open source integrated modeling environment Delta Shell

    Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.

    2012-04-01

    In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.

  12. Shell model calculations for exotic nuclei

    Brown, B.A.; Wildenthal, B.H.

    1991-01-01

    A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs

  13. Modeling of microencapsulated polymer shell solidification

    Boone, T.; Cheung, L.; Nelson, D.; Soane, D.; Wilemski, G.; Cook, R.

    1995-01-01

    A finite element transport model has been developed and implemented to complement experimental efforts to improve the quality of ICF target shells produced via controlled-mass microencapsulation. The model provides an efficient means to explore the effect of processing variables on the dynamics of shell dimensions, concentricity, and phase behavior. Comparisons with experiments showed that the model successfully predicts the evolution of wall thinning and core/wall density differences. The model was used to efficiently explore and identify initial wall compositions and processing temperatures which resulted in concentricity improvements from 65 to 99%. The evolution of trace amounts of water entering into the shell wall was also tracked in the simulations. Comparisons with phase envelope estimations from modified UNIFAP calculations suggest that the water content trajectory approaches the two-phase region where vacuole formation via microphase separation may occur

  14. Electronic structure and intersubband magnetoabsorption spectra of CdSe/CdS core-shell nanowires

    Xiong, Wen

    2016-10-01

    The electronic structures of CdSe/CdS core-shell nanowires are calculated based on the effective-mass theory, and it is found that the hole states in CdSe/CdS core-shell nanowires are strongly mixed, which are very different from the hole states in CdSe or CdS nanowires. In addition, we find the three highest hole states at the Γ point are almost localized in the CdSe core and the energies of the hole states in CdSe/CdS core-shell nanowires can be enhanced greatly when the core radius Rc increases and the total radius R is fixed. The degenerate hole states are split by the magnetic field, and the split energies will increase when |Jh | increases from 1/2 to 7/2, while they are almost not influenced by the change of the core radius Rc. The absorption spectra of CdSe/CdS core-shell nanowires at the Γ point are also studied in the magnetic field when the temperature T is considered, and we find there are only two peaks will arise if the core radius Rc and the temperature T increase. The intensity of each optical absorption can be considerably enhanced by increasing the core radius Rc when the temperature T is fixed, it is due to the increase of their optical transition matrix element. Meanwhile, the intensity of each optical absorption can be decreased when the temperature T increases and the core radius Rc is fixed, and this is because the Fermi-Dirac distribution function of the corresponding hole states will increase as the increase of the temperature T.

  15. Pair shell model description of collective motions

    Chen Hsitseng; Feng Dahsuan

    1996-01-01

    The shell model in the pair basis has been reviewed with a case study of four particles in a spherical single-j shell. By analyzing the wave functions according to their pair components, the novel concept of the optimum pairs was developed which led to the proposal of a generalized pair mean-field method to solve the many-body problem. The salient feature of the method is its ability to handle within the framework of the spherical shell model a rotational system where the usual strong configuration mixing complexity is so simplified that it is now possible to obtain analytically the band head energies and the moments of inertia. We have also examined the effects of pair truncation on rotation and found the slow convergence of adding higher spin pairs. Finally, we found that when the SDI and Q .Q interactions are of equal strengths, the optimum pair approximation is still valid. (orig.)

  16. Electron shell contributions to gamma-ray spectra of positron annihilation in noble gases

    Wang, Feng; Selvam, Lalitha [Centre for Molecular Simulation, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122 (Australia); Gribakin, Gleb F [Department of Applied Mathematics and Theoretical Physics, Queen' s University Belfast BT7 1NN (United Kingdom); Surko, Clifford M, E-mail: fwang@swin.edu.a [Physics Department, University of California, San Diego, La Jolla, CA 92093-0319 (United States)

    2010-08-28

    Gamma-ray positron annihilation spectra of the noble gases are simulated using computational chemistry tools for the bound electron wavefunctions and plane-wave approximation for the low-energy positron. The present annihilation line shapes, i.e. the full width at half maximum, {Delta}{epsilon}, of the {gamma}-ray annihilation spectra for He and Ar (valence) agree well with available independent atomic calculations using a different algorithm. For other noble gases they achieve moderate agreement with the experimental measurements. It is found that the contributions of various atomic electron shells to the spectra depend significantly on their principal quantum number n and orbital angular momentum quantum number l. The present study further reveals that the outermost ns electrons of the noble gases exhibit spectral line shapes in close agreement with those measured, indicating (as expected) that the measurements are not due to a simple sum over the momentum densities for all atomic electrons. The robust nature of the present approach makes it possible for us to proceed to more complex molecular systems using the tools of modern computational chemistry.

  17. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine

    Holland, D. M. P.; Powis, I.; Trofimov, A. B.; Menzies, R. C.; Potts, A. W.; Karlsson, L.; Badsyuk, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J.

    2017-10-01

    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σN LP) has been found to be different to that for the corresponding chlorine lone-pair (σCl LP). For the σN LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine πCl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σCl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the

  18. K-shell spectra from hot dense aluminum layers buried in carbon and heated by ultrashort laser pulses

    Eidmann, K.; Andiel, U.; Pisani, F.; Hakel, P.; Mancini, R.C.; Junkel-Vives, G.C.; Abdallah, J.; Witte, K.

    2003-01-01

    Ultrashort laser pulses allow for the generation of hot plasmas near solid state densities. For this purpose a Ti:Sapphire laser was used, which delivers after frequency doubling, pulses of high contrast with an energy of about 60 mJ and a duration of 150 fs at 395 nm. The typical intensity on the target was a few 10 17 W/cm 2 . To achieve a high degree of uniformity we used targets consisting of a 25 nm thin Al tracer layer buried at different depths up to 400 nm in solid carbon. Time-integrated Al K-shell spectra are presented. Characteristic features of the spectra are significant high-order satellite line emission, strong line broadening and a center-of-mass line shift to the red, which was observed in transitions from principal quantum number n=2 or 3 to 1. Accurate measurement of the shift was made possible by using the cold Si K α line as an absolute wavelength calibration. In addition to time-integrated measurements, we used an ultrafast X-ray streak camera to obtain time and spectrally resolved spectra. Typical durations of the Ly α and He α lines are in the range 2-4 ps. The experimental results are compared with a time-dependent model, which combines hydrodynamic simulations, time-dependent atomic kinetics, detailed spectral line shapes including line shifts, and radiation transport

  19. Wellposedness of a cylindrical shell model

    McMillan, C.

    1994-01-01

    We consider a well-known model of a thin cylindrical shell with dissipative feedback controls on the boundary in the form of forces, shears, and moments. We show that the resulting closed loop feedback problem generates a s.c. semigroup of contractions in the energy space

  20. The effect of quadrupole force to the spectra of nuclei in the f7/2 shell

    Zhang Qingying

    1992-01-01

    The effect of quadrupole force on the spectra of nuclei in the f 7/2 shell is tested. The nuclear spectra are calculated by using the surface delta interaction plus quadrupole interaction and the modified surface delta interaction respectively. The results calculated with the former are much better than those with the latter, the role of the isospin modified term in the modified surface delta interaction can be substituted by the quadrupole interaction term. It is also shown that the effect of quadrupole interaction in the f 7/2 shell is important although the quadrupole deformations of nuclei in this region are not large

  1. PCA: Principal Component Analysis for spectra modeling

    Hurley, Peter D.; Oliver, Seb; Farrah, Duncan; Wang, Lingyu; Efstathiou, Andreas

    2012-07-01

    The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components. This code, written in IDL, classifies principal components of IRS spectra to define a new classification scheme using 5D Gaussian mixtures modelling. The five PCs and average spectra for the four classifications to classify objects are made available with the code.

  2. Spectra of coset sigma models

    Candu, Constantin [Institut fuer Theoretische Physik, Zuerich (Switzerland); Mitev, Vladimir [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2013-08-15

    We compute the complete 1-loop spectrum of anomalous dimensions for the bulk fields of non-linear sigma models on symmetric coset (super)spaces G/H, both with and without world-sheet supersymmetry. In addition, we provide two new methods for the construction of partition functions in the infinite radius limit and demonstrate their efficiency in the case of (super)sphere sigma models. Our results apply to a large number of target spaces including superspheres and superprojective spaces such as the N=2 sigma model on CP{sup 3} {sup vertical} {sup stroke} {sup 4}.

  3. Spectra of coset sigma models

    Candu, Constantin; Mitev, Vladimir; Humboldt-Universitaet, Berlin; Schomerus, Volker

    2013-08-01

    We compute the complete 1-loop spectrum of anomalous dimensions for the bulk fields of non-linear sigma models on symmetric coset (super)spaces G/H, both with and without world-sheet supersymmetry. In addition, we provide two new methods for the construction of partition functions in the infinite radius limit and demonstrate their efficiency in the case of (super)sphere sigma models. Our results apply to a large number of target spaces including superspheres and superprojective spaces such as the N=2 sigma model on CP 3 vertical stroke 4 .

  4. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    Zheng, Y.; Brion, C.E.; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E.; Chakravorty, S.J.; Davidson, E.R.; Sgamellotti, A.; von Niessen, W.

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green's function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs

  5. Importance-truncated shell model for multi-shell valence spaces

    Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.

  6. Shell model truncation schemes for rotational nuclei

    Halse, P.; Jaqua, L.; Barrett, B.R.

    1990-01-01

    The suitability of the pair condensate approach for rotational states is studied in a single j = 17/2 shell of identical nucleons interacting through a quadrupole-quadrupole hamiltonian. The ground band and a K = 2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the SD and SDG subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; S and D pairs are the major constituents of the low-spin ground band levels, while G pairs are needed for those in the γ-band. Energy spectra are obtained for each truncated subspace. SDG pairs allow accurate reproduction of the binding energy and K = 2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels

  7. Extensions to a nonlinear finite element axisymmetric shell model based on Reissner's shell theory

    Cook, W.A.

    1981-01-01

    A finite element shell-of-revolution model has been developed to analyze shipping containers under severe impact conditions. To establish the limits for this shell model, I studied the basic assumptions used in its development; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress. (orig./HP)

  8. Neutrino nucleosynthesis in supernovae: Shell model predictions

    Haxton, W.C.

    1989-01-01

    Almost all of the 3 · 10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. I will argue that these neutrinos interact with nuclei in the ejected shells of the supernovae to produce new elements. It appears that this nucleosynthesis mechanism is responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, and 180 Ta, and contributes significantly to the abundances of about 15 other light nuclei. I discuss shell model predictions for the charged and neutral current allowed and first-forbidden responses of the parent nuclei, as well as the spallation processes that produce the new elements. 18 refs., 1 fig., 1 tab

  9. Shell model for warm rotating nuclei

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  10. No-Core Shell Model and Reactions

    Navratil, P; Ormand, W E; Caurier, E; Bertulani, C

    2005-01-01

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+ 6 Li and 6 He+p scattering as well as a calculation of the astrophysically important 7 Be(p, γ) 8 B S-factor

  11. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    Zheng, Y.; Brion, C.E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemistry; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Chakravorty, S.J.; Davidson, E.R. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry; Sgamellotti, A. [Univ di Perugia (Italy). Dipartimento di Chimica; von Niessen, W. [Technische Univ. Braunschweig (Germany). Inst fuer Physikalische

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green`s function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs.

  12. Dynamical symmetries of the shell model

    Van Isacker, P.

    2000-01-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  13. Note on off-shell relations in nonlinear sigma model

    Chen, Gang; Du, Yi-Jian; Li, Shuyi; Liu, Hanqing

    2015-01-01

    In this note, we investigate relations between tree-level off-shell currents in nonlinear sigma model. Under Cayley parametrization, all odd-point currents vanish. We propose and prove a generalized U(1) identity for even-point currents. The off-shell U(1) identity given in http://dx.doi.org/10.1007/JHEP01(2014)061 is a special case of the generalized identity studied in this note. The on-shell limit of this identity is equivalent with the on-shell KK relation. Thus this relation provides the full off-shell correspondence of tree-level KK relation in nonlinear sigma model.

  14. Finite element model for nonlinear shells of revolution

    Cook, W.A.

    1979-01-01

    Nuclear material shipping containers have shells of revolution as basic structural components. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Existing models are limited to large displacements, small rotations, and nonlinear materials. The paper presents a finite element model for a nonlinear shell of revolution that will account for large displacements, large strains, large rotations, and nonlinear materials

  15. Shell model in large spaces and statistical spectroscopy

    Kota, V.K.B.

    1996-01-01

    For many nuclear structure problems of current interest it is essential to deal with shell model in large spaces. For this, three different approaches are now in use and two of them are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the shell model Monte Carlo method. A brief overview of these two methods is given. Large space shell model studies raise fundamental questions regarding the information content of the shell model spectrum of complex nuclei. This led to the third approach- the statistical spectroscopy methods. The principles of statistical spectroscopy have their basis in nuclear quantum chaos and they are described (which are substantiated by large scale shell model calculations) in some detail. (author)

  16. Angular momentum dependence of the distribution of shell model eigenenergies

    Yen, M.K.

    1974-01-01

    In the conventional shell model calculation the many-particle energy matrices are constructed and diagonalized for definite angular momentum and parity. However the resulting set of eigenvalues possess a near normal behavior and hence a simple statistical description is possible. Usually one needs only about four parameters to capture the average level densities if the size of the set is not too small. The parameters are essentially moments of the distribution. But the difficulty lies in the yet unsolved problem of calculating moments in the fixed angular momentum subspace. We have derived a formula to approximate the angular momentum projection dependence of any operator averaged in a shell model basis. This approximate formula which is a truncated series in Hermite polynomials has been proved very good numerically and justified analytically for large systems. Applying this formula to seven physical cases we have found that the fixed angular momentum projection energy centroid, width and higher central moments can be obtained accurately provided for even-even nuclei the even and odd angular momentum projections are treated separately. Using this information one can construct the energy distribution for fixed angular momentum projection assuming normal behavior. Then the fixed angular momentum level densities are deduced and spectra are extracted. Results are in reasonably good agreement with the exact values although not as good as those obtained using exact fixed angular momentum moments. (Diss. Abstr. Int., B)

  17. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    2017-09-19

    NUWC-NPT Technical Report 12,236 19 September 2017 Structural Acoustic Physics -Based Modeling of Curved Composite Shells Rachel E. Hesse...SUBTITLE Structural Acoustic Physics -Based Modeling of Curved Composite Shells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...study was to use physics -based modeling (PBM) to investigate wave propagations through curved shells that are subjected to acoustic excitation. An

  18. Type I Shell Galaxies as a Test of Gravity Models

    Vakili, Hajar; Rahvar, Sohrab [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Kroupa, Pavel, E-mail: vakili@physics.sharif.edu [Helmholtz-Institut für Strahlen-und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2017-10-10

    Shell galaxies are understood to form through the collision of a dwarf galaxy with an elliptical galaxy. Shell structures and kinematics have been noted to be independent tools to measure the gravitational potential of the shell galaxies. We compare theoretically the formation of shells in Type I shell galaxies in different gravity theories in this work because this is so far missing in the literature. We include Newtonian plus dark halo gravity, and two non-Newtonian gravity models, MOG and MOND, in identical initial systems. We investigate the effect of dynamical friction, which by slowing down the dwarf galaxy in the dark halo models limits the range of shell radii to low values. Under the same initial conditions, shells appear on a shorter timescale and over a smaller range of distances in the presence of dark matter than in the corresponding non-Newtonian gravity models. If galaxies are embedded in a dark matter halo, then the merging time may be too rapid to allow multi-generation shell formation as required by observed systems because of the large dynamical friction effect. Starting from the same initial state, the observation of small bright shells in the dark halo model should be accompanied by large faint ones, while for the case of MOG, the next shell generation patterns iterate with a specific time delay. The first shell generation pattern shows a degeneracy with the age of the shells and in different theories, but the relative distance of the shells and the shell expansion velocity can break this degeneracy.

  19. Nuclear spectroscopy in large shell model spaces: recent advances

    Kota, V.K.B.

    1995-01-01

    Three different approaches are now available for carrying out nuclear spectroscopy studies in large shell model spaces and they are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the recently introduced Monte Carlo method for the shell model; (iii) the spectral averaging theory, based on central limit theorems, in indefinitely large shell model spaces. The various principles, recent applications and possibilities of these three methods are described and the similarity between the Monte Carlo method and the spectral averaging theory is emphasized. (author). 28 refs., 1 fig., 5 tabs

  20. Absolute, time-resolved emission of non-LTE L-shell spectra from Ti-doped aerogels

    Back, C.A.; Feldman, U.; Weaver, J.L.; Seely, J.F.; Constantin, C.; Holland, G.; Lee, R.W.; Chung, H.-K.; Scott, H.A.

    2006-01-01

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, λ/δλ of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics

  1. Absolute, time-resolved emission of non-LTE L-shell spectra from Ti-doped aerogels

    Back, C.A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States)]. E-mail: tinaback@llnl.gov; Feldman, U. [Artep Inc. 2922 Excelsior Ct., Ellicott City, MD 21042 (United States); Weaver, J.L. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Seely, J.F. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Constantin, C. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Holland, G. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Lee, R.W. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Chung, H.-K. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Scott, H.A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States)

    2006-05-15

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, {lambda}/{delta}{lambda} of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics.

  2. Transition sum rules in the shell model

    Lu, Yi; Johnson, Calvin W.

    2018-03-01

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.

  3. Continuum shell-model with complicated configurations

    Barz, H.W.; Hoehn, J.

    1977-05-01

    The traditional shell model has been combined with the coupled channels method in order to describe resonance reactions. For that purpose the configuration space is divided into two subspaces (Feshbach projection method). Complicated shell-model configurations can be included into the subspace of discrete states which contains the single particle resonance states too. In the subspace of scattering states the equation of motion is solved by using the coupled channels method. Thereby the orthogonality between scattering states and discrete states is ensured. Resonance states are defined with outgoing waves in all channels. By means of simple model calculations the special role of the continuum is investigated. In this connection the energy dependence of the resonance parameters, the isospin mixture via the continuum, threshold effect, as well as the influence of the number of channels taken into account on the widths, positions and dipole strengths of the resonance are discussed. The model is mainly applied to the description of giant resonances excited by the scattering of nucleons and photo-nucleus processes (source term method) found in reactions on light nuclei. The giant resonance observed in the 15 N(p,n) reaction is explained by the inclusion of 2p-2h states. The same is true for the giant resonance in 13 C(J = 1/2, 3/2) as well as for the giant resonance built on the first 3 - state in 16 O. By means of a correlation analysis for the reduced widths amplitudes an access to the doorway conception is found. (author)

  4. Oscillating shells: A model for a variable cosmic object

    Nunez, Dario

    1997-01-01

    A model for a possible variable cosmic object is presented. The model consists of a massive shell surrounding a compact object. The gravitational and self-gravitational forces tend to collapse the shell, but the internal tangential stresses oppose the collapse. The combined action of the two types of forces is studied and several cases are presented. In particular, we investigate the spherically symmetric case in which the shell oscillates radially around a central compact object.

  5. Edge profiles in K shell photoabsorption spectra of gaseous hydrides of 3p elements and homologues

    Hauko, R.; Gomilšek, J. Padežnik; Kodre, A.; Arčon, I.; Aquilanti, G.

    2017-10-01

    Photoabsorption spectra of gaseous hydrides of 3p elements (PH3, H2S, HCl) are measured in the energy region of photoexcitations pertaining to K edge. The analysis of the edge profile is extended to hydrides of 4p series (GeH4, AsH3, H2Se, HBr) from an earlier experiment, and to published spectra of 2p hydrides (CH4, NH3, H2O, HF) and noble gases Ar, Kr and Ne and SiH4. The edge profiles are modelled with a linear combination of lorentzian components, describing excitations to individual bound states and to continuum. Transition energies and probabilities are also calculated in the non-relativistic molecular model of the ORCA code, in good agreement with the experiment. Edge profiles in the heavier homologues are closely similar, the symmetry of the molecule governs the transitions to the lowest unoccupied orbitals. In 2p series the effect of the strong nuclear potential prevails. Transitions to higher, atomic-like levels remain very much the same as in free atoms.

  6. Shell model the Monte Carlo way

    Ormand, W.E.

    1995-01-01

    The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined

  7. Shell model the Monte Carlo way

    Ormand, W.E.

    1995-03-01

    The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined.

  8. Perturbation theory instead of large scale shell model calculations

    Feldmeier, H.; Mankos, P.

    1977-01-01

    Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de

  9. Ground state energy fluctuations in the nuclear shell model

    Velazquez, Victor; Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Zuker, Andres P.

    2005-01-01

    Statistical fluctuations of the nuclear ground state energies are estimated using shell model calculations in which particles in the valence shells interact through well-defined forces, and are coupled to an upper shell governed by random 2-body interactions. Induced ground-state energy fluctuations are found to be one order of magnitude smaller than those previously associated with chaotic components, in close agreement with independent perturbative estimates based on the spreading widths of excited states

  10. Boundary spectra in superspace σ-models

    Quella, T.; Schomerus, V.; Creutzig, T.

    2007-12-01

    In this note we compute exact boundary spectra for D-instantons in σ-models on the supergroup PSL(22). Our results are obtained through an explicit summation of the perturbative expansion for conformal dimensions to all orders in the curvature radius. The analysis exploits several remarkable properties of the perturbation series that arises from rescalings of the metric on PSL(22) relative to a fixed Wess- Zumino term. According to Berkovits, Vafa and Witten, the models are relevant in the context of string theory on AdS 3 with non-vanishing RR-flux. The note concludes with a number of comments on various possible generalizations to other supergroups and higher dimensional supercoset theories. (orig.)

  11. Modeling degradation in SOEC impedance spectra

    Jensen, Søren Højgaard; Hauch, Anne; Knibbe, Ruth

    2013-01-01

    Solid oxide cell (SOC) performance is limited by various processes. One way to investigate these processes is by electrochemical impedance spectroscopy. In order to quantify and characterize the processes, an equivalent circuit can be used to model the SOC impedance spectra (IS). Unfortunately......, the optimal equivalent circuit is often unknown and to complicate matters further, several processes contribute to the SOC impedance - making detailed process characterization difficult. In this work we analyze and model a series of IS measured during steam electrolysis operation of an SOC. During testing......, degradation is only observed in the Ni/YSZ electrode and not in the electrolyte or the LSM/YSZ electrode. A batch fit of the differences between the IS shows that a modified Gerischer element provides a better fit to the Ni/YSZ electrode impedance than the frequently used RQ element - albeit neither...

  12. Shell model studies in the N = 54 isotones 99Rh, 100Pd

    Ghugre, S.S.; Sarkar, S.; Chintalapudi, S.N.

    1996-01-01

    The shell model in reproducing the observed level is used to investigate the observed level sequences in 99 Rh and 100 Pd within the spherical shell model framework. Shell model calculations have been performed using the code OXBASH

  13. Isospin invariant boson models for fp-shell nuclei

    Van Isacker, P.

    1994-01-01

    Isospin invariant boson models, IBM-3 and IBM-4, applicable in nuclei with neutrons and protons in the same valence shell, are reviewed. Some basic results related to these models are discussed: the mapping onto the shell model, the relation to Wigner's supermultiplet scheme, the boson-number and isospin dependence of parameters, etc. These results are examined for simple single-j shell situations (e.g. f 7/2 ) and their extension to the f p shell is investigated. Other extensions discussed here concern the treatment of odd-mass nuclei and the classification of particle-hole excitations in light nuclei. The possibility of a pseudo-SU(4) supermultiplet scheme in f p -shell nuclei is discussed. (author) 4 figs., 3 tabs., 23 refs

  14. Statistical properties of the nuclear shell-model Hamiltonian

    Dias, H.; Hussein, M.S.; Oliveira, N.A. de

    1986-01-01

    The statistical properties of realistic nuclear shell-model Hamiltonian are investigated in sd-shell nuclei. The probability distribution of the basic-vector amplitude is calculated and compared with the Porter-Thomas distribution. Relevance of the results to the calculation of the giant resonance mixing parameter is pointed out. (Author) [pt

  15. Shell model description of band structure in 48Cr

    Vargas, Carlos E.; Velazquez, Victor M.

    2007-01-01

    The band structure for normal and abnormal parity bands in 48Cr are described using the m-scheme shell model. In addition to full fp-shell, two particles in the 1d3/2 orbital are allowed in order to describe intruder states. The interaction includes fp-, sd- and mixed matrix elements

  16. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi

    2015-01-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap

  17. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  18. Comparing several boson mappings with the shell model

    Menezes, D.P.; Yoshinaga, Naotaka; Bonatsos, D.

    1990-01-01

    Boson mappings are an essential step in establishing a connection between the successful phenomenological interacting boson model and the shell model. The boson mapping developed by Bonatsos, Klein and Li is applied to a single j-shell and the resulting energy levels and E2 transitions are shown for a pairing plus quadrupole-quadrupole Hamiltonian. The results are compared to the exact shell model calculation, as well as to these obtained through use of the Otsuka-Arima-Iachello mapping and the Zirnbauer-Brink mapping. In all cases good results are obtained for the spherical and near-vibrational cases

  19. Deriving the nuclear shell model from first principles

    Barrett, Bruce R.; Dikmen, Erdal; Vary, James P.; Maris, Pieter; Shirokov, Andrey M.; Lisetskiy, Alexander F.

    2014-09-01

    The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. Supported by the US NSF under Grant No. 0854912, the US DOE under

  20. Clustering of 1p-shell nuclei in the framework of the shell model

    Kwasniewicz, E.

    1991-01-01

    The two- and three-fragment clustering of the 1p-shell nuclei has been studied in the framework of the shell model. The absolute probabilities of the required types of clustering in a given nucleus have been obtained by projecting its realistic shell-model wavefunction onto the suitable subspace of the orthonormal, completely antisymmetric two- or three-cluster states. With the aid of these data the selectivity in population of final states produced in multinucleon transfer reactions has been discussed. This problem has also been considered in the approach where the exchange of nucleons between clusters has been neglected. This has enabled to demonstrate the role of the complete antisymmetrization in predicting the intensities of states populated in multinucleon transfer reactions. The compact theory of the multinucleon one- and two-cluster spectroscopic amplitudes has been formulated. The examples of studying the nuclear structure and reactions with the aid of these spectroscopic amplitudes have been presented. (author)

  1. Unified description of pf-shell nuclei by the Monte Carlo shell model calculations

    Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio

    1998-03-01

    The attempts to solve shell model by new methods are briefed. The shell model calculation by quantum Monte Carlo diagonalization which was proposed by the authors is a more practical method, and it became to be known that it can solve the problem with sufficiently good accuracy. As to the treatment of angular momentum, in the method of the authors, deformed Slater determinant is used as the basis, therefore, for making angular momentum into the peculiar state, projected operator is used. The space determined dynamically is treated mainly stochastically, and the energy of the multibody by the basis formed as the result is evaluated and selectively adopted. The symmetry is discussed, and the method of decomposing shell model space into dynamically determined space and the product of spin and isospin spaces was devised. The calculation processes are shown with the example of {sup 50}Mn nuclei. The calculation of the level structure of {sup 48}Cr with known exact energy can be done with the accuracy of peculiar absolute energy value within 200 keV. {sup 56}Ni nuclei are the self-conjugate nuclei of Z=N=28. The results of the shell model calculation of {sup 56}Ni nucleus structure by using the interactions of nuclear models are reported. (K.I.)

  2. A finite element model for nonlinear shells of revolution

    Cook, W.A.

    1979-01-01

    A shell-of-revolution model was developed to analyze impact problems associated with the safety analysis of nuclear material shipping containers. The nonlinear shell theory presented by Eric Reissner in 1972 was used to develop our model. Reissner's approach includes transverse shear deformation and moments turning about the middle surface normal. With these features, this approach is valid for both thin and thick shells. His theory is formulated in terms of strain and stress resultants that refer to the undeformed geometry. This nonlinear shell model is developed using the virtual work principle associated with Reissner's equilibrium equations. First, the virtual work principle is modified for incremental loading; then it is linearized by assuming that the nonlinear portions of the strains are known. By iteration, equilibrium is then approximated for each increment. A benefit of this approach is that this iteration process makes it possible to use nonlinear material properties. (orig.)

  3. Modeling the carbon isotope composition of bivalve shells (Invited)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., 90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation

  4. Recent shell-model results for exotic nuclei

    Utsuno Yusuke

    2014-03-01

    Full Text Available We report on our recent advancement in the shell model and its applications to exotic nuclei, focusing on the shell evolution and large-scale calculations with the Monte Carlo shell model (MCSM. First, we test the validity of the monopole-based universal interaction (VMU as a shell-model interaction by performing large-scale shell-model calculations in two different mass regions using effective interactions which partly comprise VMU. Those calculations are successful and provide a deeper insight into the shell evolution beyond the single-particle model, in particular showing that the evolution of the spin-orbit splitting due to the tensor force plays a decisive role in the structure of the neutron-rich N ∼ 28 region and antimony isotopes. Next, we give a brief overview of recent developments in MCSM, and show that it is applicable to exotic nuclei that involve many valence orbits. As an example of its applications to exotic nuclei, shape coexistence in 32Mg is examined.

  5. Novel extrapolation method in the Monte Carlo shell model

    Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio

    2010-01-01

    We propose an extrapolation method utilizing energy variance in the Monte Carlo shell model to estimate the energy eigenvalue and observables accurately. We derive a formula for the energy variance with deformed Slater determinants, which enables us to calculate the energy variance efficiently. The feasibility of the method is demonstrated for the full pf-shell calculation of 56 Ni, and the applicability of the method to a system beyond the current limit of exact diagonalization is shown for the pf+g 9/2 -shell calculation of 64 Ge.

  6. Projected shell model study of odd-odd f-p-g shell proton-rich nuclei

    Palit, R.; Sheikh, J.A.; Sun, Y.; Jain, H.C.

    2003-01-01

    A systematic study of two-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A∼70-80 region is performed using the projected shell model approach. The study includes Br, Rb, and Y isotopes with N=Z+2 and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N=Z nucleus 74 Rb, using the concept of spontaneous symmetry breaking is also presented

  7. Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy

    Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.

    2016-09-01

    Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.

  8. Theoretical modelling of actinide spectra in solution

    Danilo, Cecile

    2009-01-01

    The framework of this PhD is the interpretation of Nuclear Magnetic Relaxation Dispersion experiments performed on solvated U"4"+, NpO_2"+ and PuO_2"2"+, which all have a f"2 configuration. Unexpectedly the two actinyl ions have a much higher relaxivity than U"4"+,. One possible explanation is that the electronic relaxation rate is faster for Uranium(IV) than for the actinyl ions. We address this problem by exploring the electronic spectrum of the three compounds in gas phase and in solution with a two-step SOCI (Spin-Orbit Configuration-Interaction) method. The influence of electron correlation (treated in the first step) and spin-orbit relaxation effects (considered in the second step) has been discussed thoroughly. Solvent effects have been investigated as well. Another issue that has been questioned is the accuracy of Density Functional Theory for the study of actinide species. This matter has been discussed by comparing its performance to wave-function based correlated methods. The chemical problem chosen was the water exchange in [UO_2"2"+ (H_2O)_5]. We looked at the associative and at the dissociative mechanisms using a model with one additional water in the second hydration sphere. The last part of the thesis dealt with the spectroscopy of coordinated Uranyl(V). Absorption spectrum of Uranyl(V) with various ligands has been recorded. The first sharp absorption bands in the Near-Infrared region were assigned to the Uranium centered 5f-5f transitions, but uncertainties remained for the assignment of transitions observed in the Visible region. We computed the spectra of naked UO_2"+ and [UO_2(CO_3)_3]"5"- to elucidate the spectral changes induced by the carbonate ligands. (author) [fr

  9. Shell-model predictions for Lambda Lambda hypernuclei

    Gal, A.; Millener, D.

    2011-01-01

    It is shown how the recent shell-model determination of ΛN spin-dependent interaction terms in Λ hypernuclei allows for a reliable deduction of ΛΛ separation energies in ΛΛ hypernuclei across the nuclear p shell. Comparison is made with the available data, highlighting # Lambda# # Lambda# 11 Be and # Lambda# # Lambda# 12 Be which have been suggested as possible candidates for the KEK-E373 HIDA event.

  10. Raman spectra of lignin model compounds

    Umesh P. Agarwal; Richard S. Reiner; Ashok K. Pandey; Sally A. Ralph; Kolby C. Hirth; Rajai H. Atalla

    2005-01-01

    To fully exploit the value of Raman spectroscopy for analyzing lignins and lignin containing materials, a detailed understanding of lignins’ Raman spectra needs to be achieved. Although advances made thus far have led to significant growth in application of Raman techniques, further developments are needed to improve upon the existing knowledge. Considering that lignin...

  11. Ab Initio Symmetry-Adapted No-Core Shell Model

    Draayer, J P; Dytrych, T; Launey, K D

    2011-01-01

    A multi-shell extension of the Elliott SU(3) model, the SU(3) symmetry-adapted version of the no-core shell model (SA-NCSM), is described. The significance of this SA-NCSM emerges from the physical relevance of its SU(3)-coupled basis, which – while it naturally manages center-of-mass spuriosity – provides a microscopic description of nuclei in terms of mixed shape configurations. Since typically configurations of maximum spatial deformation dominate, only a small part of the model space suffices to reproduce the low-energy nuclear dynamics and hence, offers an effective symmetry-guided framework for winnowing of model space. This is based on our recent findings of low-spin and high-deformation dominance in realistic NCSM results and, in turn, holds promise to significantly enhance the reach of ab initio shell models.

  12. Experimental Damage Identification of a Model Reticulated Shell

    Jing Xu

    2017-04-01

    Full Text Available The damage identification of a reticulated shell is a challenging task, facing various difficulties, such as the large number of degrees of freedom (DOFs, the phenomenon of modal localization and transition, and low modeling accuracy. Based on structural vibration responses, the damage identification of a reticulated shell was studied. At first, the auto-regressive (AR time series model was established based on the acceleration responses of the reticulated shell. According to the changes in the coefficients of the AR model between the damaged conditions and the undamaged condition, the damage of the reticulated shell can be detected. In addition, the damage sensitive factors were determined based on the coefficients of the AR model. With the damage sensitive factors as the inputs and the damage positions as the outputs, back-propagation neural networks (BPNNs were then established and were trained using the Levenberg–Marquardt algorithm (L–M algorithm. The locations of the damages can be predicted by the back-propagation neural networks. At last, according to the experimental scheme of single-point excitation and multi-point responses, the impact experiments on a K6 shell model with a scale of 1/10 were conducted. The experimental results verified the efficiency of the proposed damage identification method based on the AR time series model and back-propagation neural networks. The proposed damage identification method can ensure the safety of the practical engineering to some extent.

  13. Solving the nuclear shell model with an algebraic method

    Feng, D.H.; Pan, X.W.; Guidry, M.

    1997-01-01

    We illustrate algebraic methods in the nuclear shell model through a concrete example, the fermion dynamical symmetry model (FDSM). We use this model to introduce important concepts such as dynamical symmetry, symmetry breaking, effective symmetry, and diagonalization within a higher-symmetry basis. (orig.)

  14. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-01-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  15. Late time optical spectra from the /sup 56/Ni model for Type I supernovae

    Axelrod, T.S.

    1980-07-01

    The hypothesis that the optical luminosity of Type I supernovae results from the radioactive decay of /sup 56/Ni synthesized and ejected by the explosion has been investigated by numerical simulation of the optical spectrum resulting from a homologously expanding shell composed initially of pure /sup 56/Ni core. This model, which neglects the effects of material external to the /sup 56/Ni core, is expected to provide a reasonable representation of the supernova at late times when the star is nearly transparent to optical photons. The numerical simulation determines the temperature, ionization state, and non-LTE level populations which result from energy deposition by the radioactive decay products of /sup 56/Ni and /sup 56/Co. The optical spectrum includes the effects of both allowed and forbidden lines. The optical spectra resulting from the simulation are found to be sensitive to the mass and ejection velocity of the /sup 56/Ni shell. A range of these parameters has been found which results in good agreement with the observed spectra of SN1972e over a considerable range of time. In particular, evidence for the expected decaying abundance of /sup 56/Co has been found in the spectra of SN1972e. These results are used to assess the validity of the /sup 56/Ni model and set limits on the mass and explosion mechanism of the Type I progenitor. The possibilities for improvement of the numerical model are discussed and future atomic data requirements defined.

  16. Late time optical spectra from the 56Ni model for Type I supernovae

    Axelrod, T.S.

    1980-07-01

    The hypothesis that the optical luminosity of Type I supernovae results from the radioactive decay of 56 Ni synthesized and ejected by the explosion has been investigated by numerical simulation of the optical spectrum resulting from a homologously expanding shell composed initially of pure 56 Ni core. This model, which neglects the effects of material external to the 56 Ni core, is expected to provide a reasonable representation of the supernova at late times when the star is nearly transparent to optical photons. The numerical simulation determines the temperature, ionization state, and non-LTE level populations which result from energy deposition by the radioactive decay products of 56 Ni and 56 Co. The optical spectrum includes the effects of both allowed and forbidden lines. The optical spectra resulting from the simulation are found to be sensitive to the mass and ejection velocity of the 56 Ni shell. A range of these parameters has been found which results in good agreement with the observed spectra of SN1972e over a considerable range of time. In particular, evidence for the expected decaying abundance of 56 Co has been found in the spectra of SN1972e. These results are used to assess the validity of the 56 Ni model and set limits on the mass and explosion mechanism of the Type I progenitor. The possibilities for improvement of the numerical model are discussed and future atomic data requirements defined

  17. Mayer–Jensen Shell Model and Magic Numbers

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Mayer-Jensen Shell Model and Magic Numbers - An Independent Nucleon Model with Spin-Orbit Coupling. R Velusamy. General Article Volume 12 Issue 12 December 2007 pp 12-24 ...

  18. Decaying and kicked turbulence in a shell model

    Hooghoudt, Jan Otto; Lohse, Detlef; Toschi, Federico

    2001-01-01

    Decaying and periodically kicked turbulence are analyzed within the Gledzer–Ohkitani–Yamada shell model, to allow for sufficiently large scaling regimes. Energy is transferred towards the small scales in intermittent bursts. Nevertheless, mean field arguments are sufficient to account for the ens......Decaying and periodically kicked turbulence are analyzed within the Gledzer–Ohkitani–Yamada shell model, to allow for sufficiently large scaling regimes. Energy is transferred towards the small scales in intermittent bursts. Nevertheless, mean field arguments are sufficient to account...

  19. The experimental and shell model approach to 100Sn

    Grawe, H.; Maier, K.H.; Fitzgerald, J.B.; Heese, J.; Spohr, K.; Schubart, R.; Gorska, M.; Rejmund, M.

    1995-01-01

    The present status of experimental approach to 100 Sn and its shell model structure is given. New developments in experimental techniques, such as low background isomer spectroscopy and charged particle detection in 4π are surveyed. Based on recent experimental data shell model calculations are used to predict the structure of the single- and two-nucleon neighbours of 100 Sn. The results are compared to the systematic of Coulomb energies and spin-orbit splitting and discussed with respect to future experiments. (author). 51 refs, 11 figs, 1 tab

  20. Major shell centroids in the symplectic collective model

    Draayer, J.P.; Rosensteel, G.; Tulane Univ., New Orleans, LA

    1983-01-01

    Analytic expressions are given for the major shell centroids of the collective potential V(#betta#, #betta#) and the shape observable #betta# 2 in the Sp(3,R) symplectic model. The tools of statistical spectroscopy are shown to be useful, firstly, in translating a requirement that the underlying shell structure be preserved into constraints on the parameters of the collective potential and, secondly, in giving a reasonable estimate for a truncation of the infinite dimensional symplectic model space from experimental B(E2) transition strengths. Results based on the centroid information are shown to compare favorably with results from exact calculations in the case of 20 Ne. (orig.)

  1. The alpha-particle and shell models of the nucleus

    Perring, J.K.; Skyrme, T.H.R.

    1994-01-01

    It is shown that it is possible to write down α-particle wave functions for the ground states of 8 Be, 12 C and 16 O, which become, when antisymmetrized, identical with shell-model wave functions. The α-particle functions are used to obtain potentials which can then be used to derive wave functions and energies of excited states. Most of the low-lying states of 16 O are obtained in this way, qualitative agreement with experiment being found. The shell structure of the 0 + level at 6·06 MeV is analyzed, and is found to consist largely of single-particle excitations. The lifetime for pair-production is calculated, and found to be comparable with the experimental value. The validity of the method is discussed, and comparison made with shell-model calculations. (author). 5 refs, 1 tab

  2. Shell model Monte Carlo investigation of rare earth nuclei

    White, J. A.; Koonin, S. E.; Dean, D. J.

    2000-01-01

    We utilize the shell model Monte Carlo method to study the structure of rare earth nuclei. This work demonstrates the first systematic full oscillator shell with intruder calculations in such heavy nuclei. Exact solutions of a pairing plus quadrupole Hamiltonian are compared with the static path approximation in several dysprosium isotopes from A=152 to 162, including the odd mass A=153. Some comparisons are also made with Hartree-Fock-Bogoliubov results from Baranger and Kumar. Basic properties of these nuclei at various temperatures and spin are explored. These include energy, deformation, moments of inertia, pairing channel strengths, band crossing, and evolution of shell model occupation numbers. Exact level densities are also calculated and, in the case of 162 Dy, compared with experimental data. (c) 2000 The American Physical Society

  3. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  4. Shell Model Far From Stability: Island of Inversion Mergers

    Nowacki, F.; Poves, A.

    2018-02-01

    In this study we propose a common mechanism for the disappearance of shell closures far from stabilty. With the use of Large Scale Shell Model calculations (SM-CI), we predict that the region of deformation which comprises the heaviest Chromium and Iron isotopes at and beyond N=40 will merge with a new one at N=50 in an astonishing parallel to the N=20 and N=28 case in the Neon and Magnesium isotopes. We propose a valence space including the full pf-shell for the protons and the full sdg shell for the neutrons, which represents a come-back of the the harmonic oscillator shells in the very neutron rich regime. Our calculations preserve the doubly magic nature of the ground state of 78Ni, which, however, exhibits a well deformed prolate band at low excitation energy, providing a striking example of shape coexistence far from stability. This new Island of Inversion (IoI) adds to the four well documented ones at N=8, 20, 28 and 40.

  5. Use of a finite range nucleon-nucleon interaction in the continuum shell model

    Faes, Jean-Baptiste

    2007-01-01

    The unification of nuclear structure and nuclear reactions was always a great challenge of nuclear physics. The extreme complexity of finite quantum systems lead in the past to a separate development of the nuclear structure and the nuclear reactions. A unified description of structure and reactions is possible within the continuum shell model. All previous applications of this model used the zero-range residual interaction and the finite depth local potential to generate the single-particle basis. In the thesis, we have presented an extension of the continuum shell model for finite-range nucleon-nucleon interaction and an arbitrary number of nucleons in the scattering continuum. The great advantage of the present formulation is the same two-body interaction used both to generate the single-particle basis and to describe couplings to the continuum states. This formulation opens a possibility for an ab initio continuum shell model studies with the same nucleon-nucleon interaction generating the nuclear mean field, the configuration mixing and the coupling to the scattering continuum. First realistic applications of the above model has been shown for spectra of "1"7F and "1"7O, and elastic phase-shifts in the reaction "1"6O(p, p)"1"6O. (author)

  6. Shell model test of the Porter-Thomas distribution

    Grimes, S.M.; Bloom, S.D.

    1981-01-01

    Eigenvectors have been calculated for the A=18, 19, 20, 21, and 26 nuclei in an sd shell basis. The decomposition of these states into their shell model components shows, in agreement with other recent work, that this distribution is not a single Gaussian. We find that the largest amplitudes are distributed approximately in a Gaussian fashion. Thus, many experimental measurements should be consistent with the Porter-Thomas predictions. We argue that the non-Gaussian form of the complete distribution can be simply related to the structure of the Hamiltonian

  7. Transformation of photoluminescence spectra at the bioconjugation of core-shell CdSe/ZnS quantum dots

    Macotela, L.G.V.; Douda, J. [UPIITA - Instituto Politecnico Nacional, Mexico (Mexico); Torchynska, T.V. [ESFM- Instituto Politecnico Nacional, Mexico (Mexico); Sierra, R.P. [CINVESTAV del IPN, Mexico (Mexico); Shcherbyna, L. [V. Lashkarev Institute of Semiconductor Physics at NASU, Kiev (Ukraine)

    2010-04-15

    The photoluminescence (PL) of nonconjugated and bioconjugated core-shell CdSe/ZnS quantum dots (QDs) has been discussed in this paper. Commercial CdSe/ZnS QDs with the size of 3.6-4.0 nm covered by polymer with emission at 560-565 nm (2.19-2.22 eV) have been used. The QD bioconjugation is performed with the mouse anti PSA (Prostate-Specific Antigen) antibody (mab). PL spectra of nonconjugated QDs are characterized by a superposition of PL bands related to exciton emission in the CdSe core (2.19-2.22 eV) and to hot electron-hole emission via surface states (2.37, 2.73 and 3.06 eV) at the CdSe/ZnS or ZnS/polymer interfaces. The PL spectrum of bioconjugated QDs has changed dramatically, with essential decreasing of the hot electron-hole recombination flow via interface states. This effect is explained on the base of re-charging of QD interface states at the bioconjugation. It is shown that the CdSe/ZnS QDs with interface states are very promising for the study of bioconjugation effects to antibodies (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Final Report Fermionic Symmetries and Self consistent Shell Model

    Zamick, Larry

    2008-01-01

    In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with 'anomoulous' magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them. The importance of a self consistent shell model was emphasized.

  9. Deformed shell model studies of spectroscopic properties of Zn and ...

    2014-04-05

    Apr 5, 2014 ... April 2014 physics pp. 757–767. Deformed shell model studies of ... experiments without isotopical enrichment thereby reducing the cost considerably. By taking a large mass of the sample because of its low cost, one can ...

  10. Bursts and shocks in a continuum shell model

    Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...

  11. Symmetry-guided large-scale shell-model theory

    Launey, K. D.; Dytrych, Tomáš; Draayer, J. P.

    2016-01-01

    Roč. 89, JUL (2016), s. 101-136 ISSN 0146-6410 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : Ab intio shell -model theory * Symplectic symmetry * Collectivity * Clusters * Hoyle state * Orderly patterns in nuclei from first principles Subject RIV: BE - Theoretical Physics Impact factor: 11.229, year: 2016

  12. Projected shell model study of neutron- deficient 122Ce

    Projected shell model; band diagram; yrast energies; electromagnetic quan- ... signed to 122Ce by detecting γ-rays in coincidence with evaporated charged particles .... 0.75 from the free nucleon values to account for the core-polarization and ...

  13. A different interpretation of the nuclear shell model

    Fabre de la Ripelle, M.

    1984-12-01

    In the first order approximation the nucleons are moving into a collective well extracted from the two-body N-N interaction. The nuclear shell model is explained by the structure of the first order solution of the Schroedinger equation. In the next step the two-body correlations generated by the N-N potential are introduced in the wave function

  14. A shell-model calculation in terms of correlated subsystems

    Boisson, J.P.; Silvestre-Brac, B.

    1979-01-01

    A method for solving the shell-model equations in terms of a basis which includes correlated subsystems is presented. It is shown that the method allows drastic truncations of the basis to be made. The corresponding calculations are easy to perform and can be carried out rapidly

  15. Chaotic behaviour of the nuclear shell-model hamiltonian

    Dias, H.; Hussein, M.S.; Oliveira, N.A. de; Wildenthal, B.H.

    1987-11-01

    Large scale nuclear shell-model calculations for several nuclear systems are discussed. In particular, the statistical baheviour of the energy eigenvalues and eigenstates, are discussed. The chaotic behaviour of the NSMH is then shown to be quite useful in calculating the spreading width of the highly collective multipole giant resonances. (author) [pt

  16. Quantum chaos in the two-center shell model

    Milek, B; Noerenberg, W; Rozmej, P [Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany, F.R.)

    1989-11-01

    Within an axially symmetric two-center shell model single-particle levels with {Omega}=1/2 are analyzed with respect to their level-spacing distributions and avoided level crossings as functions of the shape parameters. Only for shapes sufficiently far from any additional symmetry, ideal Wigner distributions are found as signature for quantum chaos. (orig.).

  17. Quantum chaos in the two-center shell model

    Milek, B; Noerenberg, W; Rozmej, P

    1989-03-01

    Within an axially symmetric two-center shell model single-particle levels with ..cap omega.. = 1/2 are analyzed with respect to their level-spacing distributions and avoided level crossings as functions of the shape parameters. Only for shapes sufficiently far from any additional symmetry, ideal Wigner distributions are found as signature for quantum chaos.

  18. Intruder level and deformation in SD-pair shell model

    Luo Yan'an; Ning Pingzhi; Pan Feng

    2004-01-01

    The influence of intruder level on nuclear deformation is studied within the framework of the nucleon-pair shell model truncated to an SD-pair subspace. The results suggest that the intruder level has a tendency to reduce the deformation and plays an important role in determining the onset of rotational behavior. (authors)

  19. Acoustic modeling of shell-encapsulated gas bubbles

    P.J.A. Frinking (Peter); N. de Jong (Nico)

    1998-01-01

    textabstractExisting theoretical models do not adequately describe the scatter and attenuation properties of the ultrasound contrast agents Quantison(TM) and Myomap(TM). An adapted version of the Rayleigh-Plesset equation, in which the shell is described by a viscoelastic solid, is proposed and

  20. Super-hypernuclei in the quark-shell model, 2

    Terazawa, Hidezumi.

    1989-07-01

    By following the previous paper, where the quark-shell model of nuclei in quantum chromodynamics is briefly reviewed, a short review of the MIT bag model of nuclei is presented for comparison and a simple estimate of the Hλ ('hexalambda') mass is also made for illustration. Furthermore, an even shorter review of the 'nucleon cluster model' of nuclei is presented for further comparison. (J.P.N.)

  1. Meson spectra using relativistic quark models

    Eggers, M.C.

    1985-01-01

    The complexity of QCD has led to the use of simpler, phenomenological models for hadrons, notably potential models. A short overview of the origin, rationale, merits and demerits of such models is given. Nonrelativistic models and scaling laws are discussed using the WKB technique for illustrative purposes. The failure of nonrelativistic models to describe the lighter mesons motivates the introduction of relativistic equations. Relativistic kinematics are incorporated into a Schroedinger formalism using equations derived by A. Barut, while two-body kinematics are brought into a one-body form via a substitution related to the Todorov equation. The potential used involves a semi-analytic solution to a harmonic oscillator modified by a spin-spin interaction term. The results seem to indicate that such a harmonic oscillator is unsuitable to describe diquark systems adequately

  2. Connections between the dynamical symmetries in the microscopic shell model

    Georgieva, A. I., E-mail: anageorg@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Drumev, K. P. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria)

    2016-03-25

    The dynamical symmetries of the microscopic shell model appear as the limiting cases of a symmetry adapted Pairing-Plus-Quadrupole Model /PQM/, with a Hamiltonian containing isoscalar and isovector pairing and quadrupole interactions. We establish a correspondence between each of the three types of pairing bases and Elliott’s SU(3) basis, that describes collective rotation of nuclear systems with quadrupole deformation. It is derived from their complementarity to the same LS coupling chain of the shell model number conserving algebra. The probability distribution of the S U(3) basis states within the pairing eigenstates is also obtained through a numerical diagonalization of the PQM Hamiltonian in each limit. We introduce control parameters, which define the phase diagram of the model and determine the role of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  3. No-Core Shell Model for A = 47 and A = 49

    Vary, J P; Negoita, A G; Stoica, S

    2006-11-13

    We apply the no-core shell model to the nuclear structure of odd-mass nuclei straddling {sup 48}Ca. Starting with the NN interaction, that fits two-body scattering and bound state data, we evaluate the nuclear properties of A = 47 and A = 49 nuclei while preserving all the underlying symmetries. Due to model space limitations and the absence of three-body interactions, we incorporate phenomenological interaction terms determined by fits to A = 48 nuclei in a previous effort. Our modified Hamiltonian produces reasonable spectra for these odd-mass nuclei. In addition to the differences in single-particle basis states, the absence of a single-particle Hamiltonian in our no-core approach complicates comparisons with valence effective NN interactions. We focus on purely off-diagonal two-body matrix elements since they are not affected by ambiguities in the different roles for one-body potentials and we compare selected sets of fp-shell matrix elements of our initial and modified Hamiltonians in the harmonic oscillator basis with those of a recent model fp-shell interaction, the GXPF1 interaction of Honma et al. While some significant differences emerge from these comparisons, there is an overall reasonably good correlation between our off-diagonal matrix elements and those of GXPF1.

  4. Inner-shell X-ray line spectra of highly ionized titanium, chromium, iron and nickel and their application to laboratory plasmas

    Lemen, J.R.; Phillips, K.J.H.; Doschek, G.A.; Cowan, R.D.

    1986-06-01

    The intensities of X-ray lines due to inner-shell 1s-2p transitions in 0 I-, N I-, and C I-like ions of Ti XV-XVII, Cr XVII-XIX, Fe XIX-XXI, and Ni XXI-XXIII, seen in tokamak plasmas are calculated. The lines are assumed to be formed by dielectronic recombination and inner-shell excitation. The dielectronic rates were calculated using a suite of computer programs developed by one of the authors. The inner-shell contribution was estimated by van Regemorter's formula. The present calculations were applied to the problem of radial ion diffusion in tokamaks. Spectra were calculated by integrating along various lines-of-sight to simulate what might be observed by an actual spectrometer viewing a tokamak plasma. A method for determining the diffusion coefficient from tokamak observations is discussed. (author)

  5. Determination of Hamiltonian matrix for IBM4 and compare it is self value with shells model

    Slyman, S.; Hadad, S.; Souman, H.

    2004-01-01

    The Hamiltonian is determined using the procedure OAI and the mapping of (IBM4) states into the shell model, which is based on the seniority classification scheme. A boson sub-matrix of the shell model Hamiltonian for the (sd) 4 configuration is constructed, and is proved to produce the same eigenvalues as the shell model Hamiltonian for the corresponding fermion states. (authors)

  6. A REMARK ON FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS

    2001-01-01

    This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the “classical” linear limiting membrane model, whose juetification has already been established by a convergence theorem.

  7. Dynamic model of open shell structures buried in poroelastic soils

    Bordón, J. D. R.; Aznárez, J. J.; Maeso, O.

    2017-08-01

    This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.

  8. Theoretical modeling of infrared spectra of twinned lead zirconate

    Dočekalová, Zuzana; Pasciak, Marek; Hlinka, Jiří

    2017-01-01

    Roč. 90, č. 1 (2017), s. 17-23 ISSN 0141-1594 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : domains * IR spectroscopy * dielectric permittivity * lead zirconate * shell model * Born effective charge Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.060, year: 2016

  9. Projected shell model description of N = 114 superdeformed isotone nuclei

    Guo, R S; Chen, L M; Chou, C H

    2006-01-01

    A systematic description of the yrast superdeformed (SD) bands in N 114, Z = 80-84 isotone nuclei using the projected shell model is presented. The calculated γ-ray energies, moment of inertia and M1 transitions are compared with the data for which spin is assigned. Excellent agreement with the available data for all isotones is obtained. The calculated electromagnetic properties provide a microscopic understanding of those measured nuclei. Some predictions in superdeformed nuclei are also discussed

  10. Development of a Buried Layer Platform at the OMEGA Laser to Study Open L-Shell Spectra from Coronal (non-LTE) Plasmas

    Marley, Edward; Jarrot, Charlie; Schneider, Marilyn; Kemp, Elijah; Foord, Mark; Heeter, Robert; Liedahl, Duane; Widmann, Klause; Mauche, Christopher; Brown, Greg; Emig, James

    2017-10-01

    A buried layer platform is being developed at the OMEGA laser to study the open L-shell spectra of coronal (non LTE) plasmas (ne few 1021/cm3, Te 0.8-1.2 keV) of mid Z materials. Studies have been done using a 250 μm diameter dot composed of a layer of 1200 Å thick Zn between two 600 Å thick layers of Ti, in the center of a 1000 μm diameter, 13 μm thick beryllium tamper. Lasers heat the target from both sides for up to 3 ns. The size of the microdot vs time was measured with x-ray imaging (face-on and side-on). The radiant x-ray power was measured with a low-resolution absolutely calibrated x-ray spectrometer (DANTE). The temperature was measured from the Ti helium-beta complex. The use of this platform for the verification of atomic models is discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. An IBM-3 hamiltonian from a multi-j-shell model

    Evans, J.A.; Elliott, J.P.; Lac, V.S.; Long, G.L.

    1995-01-01

    The number and isospin dependence of the hamiltonian in the isospin invariant form (IBM-3) of the boson model is deduced from a seniority mapping onto a shell-model system of several shells. The numerical results are compared with earlier work for a single j-shell. (orig.)

  12. Shell model calculations for stoichiometric Na β-alumina

    Wang, J.C.

    1985-01-01

    Walker and Catlow recently reported the results of their shell model calculations for the structure and transport of Na β-alumina (Naβ). The main computer programs used by Walker and Catlow for their calculations are PLUTO and HADES III. The latter, a recent version of HADES II written for cubic crystals, is believed to be applicable to defects in crystals of both cubic and hexagonal symmetry. PLUTO is usually used in calculating properties of perfect crystals before defects are introduced into the structure. Walker and Catlow claim that, in some respects, their models are superior to those of Wang et al. Yet, their results are quite different from those observed experimentally. In this work these differences are investigated by using a computer program designed to calculate lattice energies for s Naβ using the same shell model parameters adopted by Walker and Catlow. The core and shell positions of all ions, as well as the lattice parameters, were fully relaxed. The calculated energy difference between aBR and BR sites (0.33 eV) is about twice as large as that reported by Walker and Catlow. The present results also show that the relaxed oxygen ion positions next to the conduction plane in this case are displaced from their observed sites reported. When the core-shell spring constant of the oxygen ion was adjusted to minimize these displacements, the above-mentioned energy difference increased to about 0.56 eV. These results cast doubt on the fluid conduction plane structure suggested by Walker and Catlow and on the defect structure and activation energy obtained from their calculations

  13. Comparative Modelling of the Spectra of Cool Giants

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.; hide

    2012-01-01

    Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.

  14. Energy spectra of odd nuclei in the generalized model

    I. O. Korzh

    2015-04-01

    Full Text Available Based on the generalized nuclear model, energy spectra of the odd nuclei of such elements as 25Mg, 41K, and 65Cu are determined, and the structure of wave functions of these nuclei in the excited and normal states is studied. High quality in determining the energy spectra is possible due to the accurate calculations of all elements of the energy matrix. It is demonstrated that the structure of the wave functions so determined provides the possibility to more accurately select the nuclear model and the method for calculating the nucleon cross-sections of the inelastic scattering of nucleons by odd nuclei.

  15. Recent evolution of theoretical models in inner shell photoionization

    Combet Farnoux, F.

    1978-01-01

    This paper is a brief review of various atomic theoretical models recently developed to calculate photoionization cross sections in the low energy range (from the far ultraviolet to the soft X ray region). For both inner and outer shells concerned, we emphasize the necessity to go beyond the independent particle models by means of the introduction of correlation effects in both initial and final states. The basic physical ideas of as elaborated models as Random Phase Approximation with exchange, Many Body Perturbation Theory and R matrix Theory are outlined and summarized. As examples, the results of some calculations are shown and compared with experiment

  16. Phases and phase transitions in the algebraic microscopic shell model

    Georgieva A. I.

    2016-01-01

    Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  17. Pair Natural Orbital Restricted Open-Shell Configuration Interaction (PNO-ROCIS) Approach for Calculating X-ray Absorption Spectra of Large Chemical Systems.

    Maganas, Dimitrios; DeBeer, Serena; Neese, Frank

    2018-02-08

    In this work, the efficiency of first-principles calculations of X-ray absorption spectra of large chemical systems is drastically improved. The approach is based on the previously developed restricted open-shell configuration interaction singles (ROCIS) method and its parametrized version, based on a density functional theory (DFT) ground-state determinant ROCIS/DFT. The combination of the ROCIS or DFT/ROCIS methods with the well-known machinery of the pair natural orbitals (PNOs) leads to the new PNO-ROCIS and PNO-ROCIS/DFT variants. The PNO-ROCIS method can deliver calculated metal K-, L-, and M-edge XAS spectra orders of magnitude faster than ROCIS while maintaining an accuracy with calculated spectral parameters better than 1% relative to the original ROCIS method (referred to as canonical ROCIS). The method is of a black box character, as it does not require any user adjustments, while it scales quadratically with the system size. It is shown that for large systems, the size of the virtual molecular orbital (MO) space is reduced by more than 90% with respect to the canonical ROCIS method. This allows one to compute the X-ray absorption spectra of a variety of large "real-life" chemical systems featuring hundreds of atoms using a first-principles wave-function-based approach. Examples chosen from the fields of bioinorganic and solid-state chemistry include the Co K-edge XAS spectrum of aquacobalamin [H 2 OCbl] + , the Fe L-edge XAS spectrum of deoxymyoglobin (DMb), the Ti L-edge XAS spectrum of rutile TiO 2 , and the Fe M-edge spectrum of α-Fe 2 O 3 hematite. In the largest calculations presented here, molecules with more than 700 atoms and cluster models with more than 50 metal centers were employed. In all the studied cases, very good to excellent agreement with experiment is obtained. It will be shown that the PNO-ROCIS method provides an unprecedented performance of wave-function-based methods in the field of computational X-ray spectroscopy.

  18. Fitting PAC spectra with stochastic models: PolyPacFit

    Zacate, M. O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics and Geology (United States); Evenson, W. E. [Utah Valley University, College of Science and Health (United States); Newhouse, R.; Collins, G. S. [Washington State University, Department of Physics and Astronomy (United States)

    2010-04-15

    PolyPacFit is an advanced fitting program for time-differential perturbed angular correlation (PAC) spectroscopy. It incorporates stochastic models and provides robust options for customization of fits. Notable features of the program include platform independence and support for (1) fits to stochastic models of hyperfine interactions, (2) user-defined constraints among model parameters, (3) fits to multiple spectra simultaneously, and (4) any spin nuclear probe.

  19. Spectra theory for nuclei with closed shells (1962); Theorie des spectres des noyaux a couches completes (1962)

    Gillet, V [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    A unified theory for the spectra of nuclei with closed shells, based on the elementary particle-hole excitation of these systems, is applied to a study of carbon-12, oxygen-16 and calcium-40. Two approximations are made. The first consists in diagonalizing the residual two-body interaction in a limited sub-space having one particle and one hole configurations. Its validity depends on the high energy necessary for exciting a particle-hole pair. The second approximation consists in re-summing the infinite sub-series of the particle-hole diagrams. It is equivalent to the Hartree-Fock method depending on the time, or to Quasi-Boson method. Its domain of validity in the nuclear case is not thoroughly Understood. The summed diagrams are preponderant at the high density limit, when the nuclear density is about unity. The violation of the Pauli principle in this approximation is only justified if the number of excited pairs is small with respect to the number of particle states available; in the case of light nuclei the degeneracies of the shells are small. Nevertheless this approximation, which postulates the existence of an average nuclear field, varying slowly with time with respect to the nucleons periods has the merit of being self-consistent, of giving orthogonal proper states in the non-physical state of the mass centre, and of improving the calculation of the summation rules. In order to determine and to limit the role of phenomenology in the results obtained using these approximations, a maximum amount of experimental data is calculated. By applying method of least squares to fourteen energy levels of oxygen and carbon, the region of optimum agreement in the effective interaction parameters is determined. This region is in part a function of the numerical approximations made. We hope that it will keep its significance when the theory is improved. It is compatible with certain characteristics of free nucleon-nucleon scattering. The present research favours the

  20. The creep analysis of shell structures using generalised models

    Boyle, J.T.; Spence, J.

    1981-01-01

    In this paper a new, more complete estimate of the accuracy of the stationary creep model is given for the general case through the evaluation of exact and approximate energy surfaces. In addition, the stationary model is extended to include more general non-stationary (combined elastic-creep) behaviour and to include the possibility of material deterioration through damage. The resulting models are then compared to existing exact solutions for several shell structures - e.g. a thin pressurised cylinder, a curved pipe in bending and an S-bellows under axial extension with large deflections. In each case very good agreement is obtained. Although requiring similar computing effort, so that the same solution techniques can be utilised, the calculation times are shown to be significantly reduced using the generalised approach. In conclusion, it has been demonstrated that a new simple mechanical model of a thin shell in creep, with or without material deterioration can be constructed; the model is assessed in detail and successfully compared to existing solutions. (orig./HP)

  1. High resolution X-ray spectra of solar flares. V. interpretation of inner-shell transitions in Fe XX-Fe XXIII

    Doschek, G.A.; Feldman, U.; Cowan, R.D.

    1981-01-01

    We discuss high-resolution solar flare iron line spectra recorded between 1.82 and 1.97 A by a spectrometer flown by the Naval Research Laboratory on an Air Force spacecraft launched on 1979 February 24. The emission line spectrum is due to inner-shell transitions in the ions Fe XX-Fe XXV. Using theoretical spectra and calculations of line intensities obtained by methods discussed by Merts, Cowan, and Magee, we derive electron temperatures as a function for time of two large class X flares. These temperatures are deduced from intensities of lines of Fe XXIII, Fe XXII, and Fe XXIV. Previous measurements by us have involved only lines of Fe XXIV and Fe XXV. We discuss the determination of the differential emission measure between about 12 x 10 6 K and 20 x 10 6 K using these temperatures. The possibility of determining electron densities in flare and tokamak plasmas using the inner-shell spectra of Fe XXI and Fe XX is discussed. We also discuss recent theoretical work by Mewe and Schrijver based on atomic data of Grineva, Safronova, and Urnov

  2. A Shell Model for Free Vibration Analysis of Carbon Nanoscroll

    Amin Taraghi Osguei

    2017-04-01

    Full Text Available Carbon nanoscroll (CNS is a graphene sheet rolled into a spiral structure with great potential for different applications in nanotechnology. In this paper, an equivalent open shell model is presented to study the vibration behavior of a CNS with arbitrary boundary conditions. The equivalent parameters used for modeling the carbon nanotubes are implemented to simulate the CNS. The interactions between the layers of CNS due to van der Waals forces are included in the model. The uniformly distributed translational and torsional springs along the boundaries are considered to achieve a unified solution for different boundary conditions. To study the vibration characteristics of CNS, total energy including strain energy, kinetic energy, and van der Waals energy are minimized using the Rayleigh-Ritz technique. The first-order shear deformation theory has been utilized to model the shell. Chebyshev polynomials of first kind are used to obtain the eigenvalue matrices. The natural frequencies and corresponding mode shapes of CNS in different boundary conditions are evaluated. The effect of electric field in axial direction on the natural frequencies and mode shapes of CNS is investigated. The results indicate that, as the electric field increases, the natural frequencies decrease.

  3. Holographic shell model: Stack data structure inside black holes?

    Davidson, Aharon

    2014-03-01

    Rather than tiling the black hole horizon by Planck area patches, we suggest that bits of information inhabit, universally and holographically, the entire black core interior, a bit per a light sheet unit interval of order Planck area difference. The number of distinguishable (tagged by a binary code) configurations, counted within the context of a discrete holographic shell model, is given by the Catalan series. The area entropy formula is recovered, including Cardy's universal logarithmic correction, and the equipartition of mass per degree of freedom is proven. The black hole information storage resembles, in the count procedure, the so-called stack data structure.

  4. Nuclear deformation in the configuration-interaction shell model

    Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Mustonen, M. T.

    2018-02-01

    We review a method that we recently introduced to calculate the finite-temperature distribution of the axial quadrupole operator in the laboratory frame using the auxiliary-field Monte Carlo technique in the framework of the configuration-interaction shell model. We also discuss recent work to determine the probability distribution of the quadrupole shape tensor as a function of intrinsic deformation β,γ by expanding its logarithm in quadrupole invariants. We demonstrate our method for an isotope chain of samarium nuclei whose ground states describe a crossover from spherical to deformed shapes.

  5. Intrinsic Density Matrices of the Nuclear Shell Model

    Deveikis, A.; Kamuntavichius, G.

    1996-01-01

    A new method for calculation of shell model intrinsic density matrices, defined as two-particle density matrices integrated over the centre-of-mass position vector of two last particles and complemented with isospin variables, has been developed. The intrinsic density matrices obtained are completely antisymmetric, translation-invariant, and do not employ a group-theoretical classification of antisymmetric states. They are used for exact realistic density matrix expansion within the framework of the reduced Hamiltonian method. The procedures based on precise arithmetic for calculation of the intrinsic density matrices that involve no numerical diagonalization or orthogonalization have been developed and implemented in the computer code. (author). 11 refs., 2 tabs

  6. Realistic shell-model calculations for Sn isotopes

    Covello, A.; Andreozzi, F.; Coraggio, L.; Gargano, A.; Porrino, A.

    1997-01-01

    We report on a shell-model study of the Sn isotopes in which a realistic effective interaction derived from the Paris free nucleon-nucleon potential is employed. The calculations are performed within the framework of the seniority scheme by making use of the chain-calculation method. This provides practically exact solutions while cutting down the amount of computational work required by a standard seniority-truncated calculation. The behavior of the energy of several low-lying states in the isotopes with A ranging from 122 to 130 is presented and compared with the experimental one. (orig.)

  7. Morphing the Shell Model into an Effective Theory

    Haxton, W. C.; Song, C.-L.

    2000-01-01

    We describe a strategy for attacking the canonical nuclear structure problem--bound-state properties of a system of point nucleons interacting via a two-body potential--which involves an expansion in the number of particles scattering at high momenta, but is otherwise exact. The required self-consistent solutions of the Bloch-Horowitz equation for effective interactions and operators are obtained by an efficient Green's function method based on the Lanczos algorithm. We carry out this program for the simplest nuclei, d and 3 He , in order to explore the consequences of reformulating the shell model as a controlled effective theory. (c) 2000 The American Physical Society

  8. Moments Method for Shell-Model Level Density

    Zelevinsky, V; Horoi, M; Sen'kov, R A

    2016-01-01

    The modern form of the Moments Method applied to the calculation of the nuclear shell-model level density is explained and examples of the method at work are given. The calculated level density practically exactly coincides with the result of full diagonalization when the latter is feasible. The method provides the pure level density for given spin and parity with spurious center-of-mass excitations subtracted. The presence and interplay of all correlations leads to the results different from those obtained by the mean-field combinatorics. (paper)

  9. Shell-model Monte Carlo studies of nuclei

    Dean, D.J.

    1997-01-01

    The pair content and structure of nuclei near N = Z are described in the frwnework of shell-model Monte Carlo (SMMC) calculations. Results include the enhancement of J=0 T=1 proton-neutron pairing at N=Z nuclei, and the maxked difference of thermal properties between even-even and odd-odd N=Z nuclei. Additionally, a study of the rotational properties of the T=1 (ground state), and T=0 band mixing seen in 74 Rb is presented

  10. Measurement of wavelengths and lamb shifts for inner-shell transitions in Fe XVIII-XXIV. [from solar flare X-ray spectra

    Seely, J. F.; Feldman, U.; Safronova, U. I.

    1986-01-01

    The wavelengths of inner-shell 1s-2p transitions in the ions Fe XVIII-XXIV have been measured in solar flare spectra recorded by the Naval Research Laboratory crystal spectrometer (SOLFLEX) on the Air Force P78-1 spacecraft. The measurements are compared with previous measurements and with recently calculated wavelengths. It is found that the measured wavelengths are systematically larger than the wavelengths calculated using the Z-expansion method by up to 0.65 mA. For the more highly charged ions, these differences can be attributed to the QED contributions to the transition energies that are not included in the Z-expansion calculations.

  11. A model for quasi parity-doublet spectra with strong coriolis mixing

    Minkov, N.; Drenska, S.; Strecker, M.

    2013-01-01

    The model of coherent quadrupole and octupole motion (CQOM) is combined with the reflection-asymmetric deformed shell model (DSM) in a way allowing fully microscopic description of the Coriolis decoupling and K-mixing effects in the quasi parity-doublet spectra of odd-mass nuclei. In this approach the even-even core is considered within the CQOM model, while the odd nucleon is described within DSM with pairing interaction. The Coriolis decoupling/mixing factors are calculated through a parity-projection of the single-particle wave function. Expressions for the Coriolis mixed quasi parity-doublet levels are obtained in the second order of perturbation theory, while the K-mixed core plus particle wave function is obtained in the first order. Expressions for the B(E1), B(E2) and B(E3) reduced probabilities for transitions within and between different quasi-doublets are obtained by using the total K-mixed wave function. The model scheme is elaborated in a form capable of describing the yrast and non-yrast quasi parity-doublet spectra in odd-mass nuclei. (author)

  12. Constructing theoretical M-shell spectra for Mg-like Au through Cl-like Au ions in gold plasma diagnostics

    Hamasha, Safeia; Alshaiub, Rania

    2012-01-01

    The theoretical atomic structure and spectra data for electric dipole transitions in six gold ions (Au 67+ through Au 62+ ) are produced using the flexible atomic code (FAC). The produced data contain energy levels, radiative transition rates and oscillator strengths with Δn≠0 (n = 3 → 4, 5, 6, 7). All M-shell strong lines for the six gold ions are also identified. The produced data and constructed spectra revealed the presence of a wide variety of ionization stages of Au with several blended spectral lines in the spectral range (1.7-4.4 Å). Calculated energy levels are compared against published values, which were calculated using the multi-reference many body perturbation theory that includes higher order quantum electrodynamics corrections effects. Favorable agreement with <0.26% difference was observed.

  13. The Nuclear Shell Model and its Relation with Other Nuclear Models

    Elliott, J. P. [University of Sussex, Brighton (United Kingdom)

    1963-01-15

    The starting point of all versions of the shell model is the physical idea that the interaction between a given nucleon and all the others resembles that between a nucleon and a fixed field. From this starting point one might attempt to construct a field which is self-consistent but this approach is not followed in most shell-model calculations because of the complications that arise. The more usual approach has been to use the idea of an average field to provide a complete set of sin gle-particle wave functions. Then, if the parameters of the field (e.g. its size) are correctly chosen, we would expect to reach a good approximation to the nuclear-wave function by taking that configuration of single-particle wave functions which has lowest energy in this field. The wave functions could clearly be improved by allowing the mixing of excited configurations but this is rarely done because of the resulting complexity of the problem. Even in the lowest configuration there are in general many independent wave functions for a many-particle system which would all be degenerate in the average field. To find the nuclear energy levels and wave functions we must therefore build up the energy matrix in this degenerate set, using the inter-nucleon two-body forces, and then diagonalize this matrix. If the detailed form of the nuclear forces was known we might regard such calculations as the first step towards an exact calculation in which higher configurations were included but every indication is that the convergence would be extremely slow. It is more usual to treat an energy calculation in the lowest configuration unashamedly as a model calculation and to attempt to deduce, by comparisons with experimental data in the many-particle nuclei, the nature of the effective nuclear forces required in that configuration. If the model is realistic then we should not expect these effective forces to change very much in going from one nucleus to its neighbour and since there are many more

  14. Tensor-optimized shell model for the Li isotopes with a bare nucleon-nucleon interaction

    Myo, Takayuki; Umeya, Atsushi; Toki, Hiroshi; Ikeda, Kiyomi

    2012-08-01

    We study the Li isotopes systematically in terms of the tensor-optimized shell model (TOSM) by using a bare nucleon-nucleon interaction as the AV8' interaction. The short-range correlation is treated in the unitary correlation operator method (UCOM). Using the TOSM + UCOM approach, we investigate the role of the tensor force on each spectrum of the Li isotopes. It is found that the tensor force produces quite a characteristic effect on various states in each spectrum and those spectra are affected considerably by the tensor force. The energy difference between the spin-orbit partner, the p1/2 and p3/2 orbits of the last neutron, in 5Li is caused by opposite roles of the tensor correlation. In 6Li, the spin-triplet state in the LS coupling configuration is favored energetically by the tensor force in comparison with jj coupling shell-model states. In 7,8,9Li, the low-lying states containing extra neutrons in the p3/2 orbit are favored energetically due to the large tensor contribution to allow the excitation from the 0s, orbit to the p1/2 orbit by the tensor force. Those three nuclei show the jj coupling character in their ground states which is different from 6Li.

  15. Shell model in-water frequencies of the core barrel

    Takeuchi, K.; De Santo, D.F.

    1980-01-01

    Natural frequencies of a 1/24th-scale core barrel/vessel model in air and in water are measured by determining frequency responses to applied forces. The measured data are analyzed by the use of the one-dimensional fluid-structure computer code, MULTIFLEX, developed to calculate the hydraulic force. The fluid-structure interaction in the downcomer annulus is computed with a one-dimensional network model formed to be equivalent to two-dimensional fluid-structure interaction. The structural model incorporated in MULTIFLEX is substantially simpler than that necessary for structural analyses. Proposed for computation of structural dynamics is the projector method than can deal with the beam mode by modal analysis and the other shell modes by a direct integration method. Computed in-air and in-water frequencies agree fairly well with the experimental data, verifying the above MULTIFLEX technique

  16. Shell-model-based deformation analysis of light cadmium isotopes

    Schmidt, T.; Heyde, K. L. G.; Blazhev, A.; Jolie, J.

    2017-07-01

    Large-scale shell-model calculations for the even-even cadmium isotopes 98Cd-108Cd have been performed with the antoine code in the π (2 p1 /2;1 g9 /2) ν (2 d5 /2;3 s1 /2;2 d3 /2;1 g7 /2;1 h11 /2) model space without further truncation. Known experimental energy levels and B (E 2 ) values could be well reproduced. Taking these calculations as a starting ground we analyze the deformation parameters predicted for the Cd isotopes as a function of neutron number N and spin J using the methods of model independent invariants introduced by Kumar [Phys. Rev. Lett. 28, 249 (1972), 10.1103/PhysRevLett.28.249] and Cline [Annu. Rev. Nucl. Part. Sci. 36, 683 (1986), 10.1146/annurev.ns.36.120186.003343].

  17. TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES

    Fortney, J. J.; Shabram, M.; Showman, A. P.; Lian, Y.; Lewis, N. K.; Freedman, R. S.; Marley, M. S.

    2010-01-01

    We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectra in general. We find that carbon dioxide absorption at 4.4 and 15 μm is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the three-dimensional atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the dayside, their abundances can be considerably reduced on the cooler planetary limb. However, given the predicted limb temperatures and TiO abundances, the model's optical opacity is too high. For HD 189733b we find a good match with some infrared data sets and constrain the altitude of a postulated haze layer. For this planet, substantial differences can exist between the transmission spectra of the leading and trailing hemispheres, which are an excellent probe of carbon chemistry. In thermochemical equilibrium, the cooler leading hemisphere is methane-dominated, and the hotter trailing hemisphere is CO-dominated, but these differences may be eliminated by non-equilibrium chemistry due to vertical mixing. It may be possible to constrain the carbon chemistry of this planet, and its spatial variation, with James Webb Space Telescope.

  18. Identification of shell-model states in $^{135}$Sb populated via $\\beta^{-}$ decay of $^{135}$Sn

    Shergur, J; Brown, B A; Cederkäll, J; Dillmann, I; Fraile-Prieto, L M; Hoff, P; Joinet, A; Köster, U; Kratz, K L; Pfeiffer, B; Walters, W B; Wöhr, A

    2005-01-01

    The $\\beta$- decay of $^{135}$Sn was studied at CERN/ISOLDE using a resonance ionization laser ion source and mass separator to achieve elemental and mass selectivity, respectively. $\\gamma$-ray singles and $\\gamma\\gamma$ coincidence spectra were collected as a function of time with the laser on and with the laser off. These data were used to establish the positions of new levels in $^{135}$Sb, including new low-spin states at 440 and 798 keV, which are given tentative spin and parity assignments of 3/2$^{+}$ and 9/2$^{+}$, respectively. The observed levels of $^{135}$Sb are compared with shell-model calculations using different single-particle energies and different interactions.

  19. Modeling plate shell structures using pyFormex

    Bagger, Anne; Verhegghe, Benedict; Hertz, Kristian Dahl

    2009-01-01

    A shell structure made of glass combines a light-weight structural concept with glass’ high permeability to light. If the geometry of the structure is plane-based facetted (plate shell structure), the glass elements will be plane panes, and these glass panes will comprise the primary load...... (plate shells and triangulated lattice shells) may not differ in complexity regarding the topology, but when it comes to the practical generation of the geometry, e.g. in CAD, the plate shell is far more troublesome to handle than the triangulated geometry. The free software tool “pyFormex”, developed...

  20. Radiative capture reactions and spectroscopy of multipolar anions in the framework of Gamow Shell Model

    Fossez, Kevin

    2014-01-01

    Small open quantum systems, whose properties are profoundly affected by the environment of continuum states, are intensely studied in various fields of Physics: nuclear physics, atomic and molecular physics, quantum optics, etc. These different many-body systems, in spite of their specific features, have generic properties which are common to all weakly bound or unbound systems close to the threshold. Coupling to the continuum is essential to describe the low-energy nuclear reactions of astrophysical interest, the formation of halo states in nuclei, atomic clusters and dipolar anions, or the near-threshold two neutron and alpha particle correlations (clustering). Recently, the open quantum system extension of the nuclear shell model, the Gamow shell model (GSM), based on the Berggren ensemble, has been applied successfully for the description of resonant states spectra in atomic nuclei. The coupled-channel formulation of the GSM (GSM-CC) allows to describe various low-energy nuclear reactions. In this work, the GSM-CC is formulated and applied for the description of proton/neutron radiative capture reactions of astrophysical interest, such as: 17 F(p, γ) 18 Ne, 7 Be(p, γ) 8 B and 7 Li(n, γ) 8 Li. Moreover, for the first time, the GSM has been applied in atomic physics for the description of spectra of dipolar anions. Systematic investigation of the hydrogen cyanide dipolar anion (HCN - ) allowed to identify the collective bands of states both in the strong coupling regime, for weakly bound halo states, and in the weak coupling regime above the dissociation threshold. In the strong coupling regime, K J = 0 anion a rotational band has been found. Above the threshold, K J quantum number is not conserved. Resonances in this regime form rotational bands according to the angular momentum of the rotating molecule, whereas the band head energies and the lifetimes depend predominantly on the external electron wave function. (author) [fr

  1. Equivalence of the spherical and deformed shell-model approach to intruder states

    Heyde, K.; Coster, C. de; Ryckebusch, J.; Waroquier, M.

    1989-01-01

    We point out that the description of intruder states, incorporating particle-hole (p-h) excitation across a closed shell in the spherical shell model or a description starting from the Nilsson model are equivalent. We furthermore indicate that the major part of the nucleon-nucleon interaction, responsible for the low excitation energy of intruder states comes as a two-body proton-neutron quadrupole interaction in the spherical shell model. In the deformed shell model, quadrupole binding energy is gained mainly through the one-body part of the potential. (orig.)

  2. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    Kijak, J.; Basu, R.; Lewandowski, W.; Rożko, K. [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Z. Szafrana 2, PL-65-516 Zielona Góra (Poland); Dembska, M., E-mail: jkijak@astro.ia.uz.zgora.pl [DLR Institute of Space Systems, Robert-Hooke-Str. 7 D-28359 Bremen (Germany)

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physical parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.

  3. Research advances in contact model and mechanism configuration for nut shelling manipulation based on metamorphic method

    Xiulan BAO

    2017-04-01

    Full Text Available Nuts are the important economic forest tree species of China. De-shell is the key operation of nut deep processing. There are some problems in the current nut cracking devices such as the low decorticating rate, the high nuts losses rate and nutmeat integrity problems, etc.. The foundation of force analysis is to establish contact model for nut and mechanical. The nut surface is rough and irregular, so the contact area cannot be modeled as regular shape. How to set up contact constraint model is the key problem to accomplish non-loss shelling. In order to study the shell-breaking mechanism and structural design of the nut shelling manipulation, a multi-fingered metamorphic manipulator is presented. An overview of the nut shelling technology and the contact manipulator modeling are proposed. The origin and application of metamorphic mechanisms are introduced. Then the research contents and development prospects of nut shelling manipulator are described.

  4. Shell-model results in fp and fpg9/2 spaces for 61,63,65Co isotopes

    Srivastava, P. C.; Kota, V. K. B.

    2011-01-01

    Low-lying spectra and several high-spin states of odd-even 61,63,65 Co isotopes are calculated in two different shell-model spaces. First set of calculations have been carried out in fp-shell valence space (full fp space for 63,65 Co and a truncated one for 61 Co) using two recently derived fp-shell interactions, namely GXPF1A and KB3G, with 40 Ca as core. Similarly, the second set of calculations have been performed in fpg 9/2 valence space using an fpg effective interaction due to Sorlin et al., with 48 Ca as core and imposing a truncation. It is seen that the results of GXPF1A and KB3G are reasonable for 61,63 Co. For 65 Co, shell-model results show that the fpg interaction adopted in the study is inadequate and also points out that it is necessary to include orbitals higher than 1g 9/2 for neutron-rich Co isotopes.

  5. Modeling X-ray Spectra of Astrophysical Plasmas: Current Status and Future Needs

    Smith, Randall

    Existing high-resolution astrophysical X-ray spectra has exposed the need for high-quality atomic data of all stripes: wavelengths, collisional and absorption cross sections, and radiative rates. The Astro-H soft X-ray spectrometer (2015 launch) will vastly increase the number and type of high-resolution X-ray spectra available and likely expose a number of shortcomings in our models. I will describe recent advances in theoretical calculations and laboratory measurements, as well as a number of existing needs in the field. These include accurate soft X-ray wavelengths for L-shell ions, diagnostic emission line ratios with estimated error bars, and high-resolution absorption cross sections for abundant ions and molecules. Finally, new models of emission from non-equilibrium ionization plasmas and astrophysical charge exchange will be discussed. This latter emission arises due to the interaction of highly charged ions with neutral atoms, forming a diffuse background in the case of solar wind ions and possibly also arising in more distant environments.

  6. The 1(h/2π)ω spectra of nuclei with a nearly half-filled 1p shell

    Jaeger, H.U.; Kirchbach, M.

    1977-01-01

    The effective particle-hole interaction of Millener and Kurath which contains non-central components is used to study the non-normal parity states of A = 9 - 12 nuclei in the framework of all non-spurious 1(h/2π)ω excitations. Additional calculations with a pure central force confirm the conclusion that non-central forces are necessary for a unified description of non-normal parity states in 1p-shell nuclei. (author)

  7. Spectra and neutron dose of an 18 MV Linac using two geometric models of the head

    Barrera, M. T.; Pino, F.; Barros, H.; Sajo-Bohus, L.; Davila, J.; Salcedo, E.; Vega C, H. R.; Benites R, J. L.

    2015-10-01

    Full text: Using the Monte Carlo method, by MCNP5 code, simulations were performed with different source terms and 2 geometric models of the head to obtain spectra in energy, flow and doses of photo-neutrons at different positions on the stretcher and in the radiotherapy room. The simplest model was a spherical shell of tungsten; the second was the complete model of a heterogeneous head of an accelerator Varian ix. In both models Tosi function was used as a source term. In addition, for the second model Sheikh-Bagheri distribution was used for photons and photo-neutrons were generated. Also in both models the radiotherapy room of Gurve group of the Teaching Medical Center La Trinidad was included, which is equipped with an accelerator Varian Clinic 2100. In this Center passive detectors PADC (Cr-39) were irradiated with neutron converters, with 18 MeV photons radiation. The measured neutron flow was compared with that obtained with Monte Carlo calculations. The Monte Carlo flows are similar to those measured at the isocenter. The simplest model underestimates the neutron flow compared with the calculated flows with the heterogeneous model of the head. (Author)

  8. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.

    Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-02-21

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.

  9. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity

    Li Qian; Tu Juan; Guo Xiasheng; Zhang Dong; Matula, Thomas J

    2013-01-01

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear ‘Cross law’ to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius–time curves and the numerical simulations demonstrate that the ‘compression-only’ behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., ‘shear-thinning’ and ‘strain-softening’) in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity. (paper)

  10. Nonscaling parametrization of hadronic spectra and dual parton model

    Gaponenko, O.N.

    2001-01-01

    Using the popular Wdowczyk-Wolfendale parametrization (WW-parametrization) as an example one studies restrictions imposed by a dual parton model for different nonscaling parametrizations of the pulsed hadron spectra in soft hadron-hadron and hadron-nuclear interactions. One derived a new parametrization free from basic drawback of the WW-formulae. In the central range the determined parametrization show agreement with the Wdowczyk-Wolfendale formula, but in contrast to the last-named one it does not result in contradiction with the experiment due to fast reduction of inelastic factor reduction with energy increase [ru

  11. Fermion dynamical symmetry and the nuclear shell model

    Ginocchio, J.N.

    1985-01-01

    The interacting boson model (IBM) has been very successful in giving a unified and simple description of the spectroscopic properties of a wide range of nuclei, from vibrational through rotational nuclei. The three basic assumptions of the model are that: (1) the valence nucleons move about a doubly closed core, (2) the collective low-lying states are composed primarily of coherent pairs of neutrons and pairs of protons coupled to angular momentum zero and two, and (3) these coherent pairs are approximated as bosons. In this review we shall show how it is possible to have fermion Hamiltonians which have a class of collective eigenstates composed entirely of monopole and quadrupole pairs of fermions. Hence these models satisfy the assumptions (1) and (2) above but no boson approximation need be made. Thus the Pauli principle is kept in tact. Furthermore the fermion shell model states excluded in the IBM can be classified by the number of fermion pairs which are not coherent monopole or quadrupole pairs. Hence the mixing of these states into the low-lying spectrum can be calculated in a systematic and tractable manner. Thus we can introduce features which are outside the IBM. 11 refs

  12. Towards a shell-model description of intruder states and the onset of deformation

    Heyde, K.; Van Isacker, P.; Casten, R.F.; Wood, J.L.

    1985-01-01

    Basing on the nuclear shell-model and concentrating on the monopole, pairing and quadrupole corrections originating from the nucleon-nucleon force, both the appearance of low-lying 0 + intruder states near major closed shells (Z = 50, 82) and sub-shell regions (Z = 40, 64) can be described. Moreover, a number of new facets related to the study of intruder states are presented. 19 refs., 3 figs

  13. Extrapolation method in the Monte Carlo Shell Model and its applications

    Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio

    2011-01-01

    We demonstrate how the energy-variance extrapolation method works using the sequence of the approximated wave functions obtained by the Monte Carlo Shell Model (MCSM), taking 56 Ni with pf-shell as an example. The extrapolation method is shown to work well even in the case that the MCSM shows slow convergence, such as 72 Ge with f5pg9-shell. The structure of 72 Se is also studied including the discussion of the shape-coexistence phenomenon.

  14. Elementary isovector spin and orbital magnetic dipole modes revisited in the shell model

    Richter, A.

    1988-08-01

    A review is given on the status of mainly spin magnetic dipole modes in some sd- and fp-shell nuclei studied with inelastic electron and proton scattering, and by β + -decay. Particular emphasis is also placed on a fairly new, mainly orbital magnetic dipole mode investigated by high-resolution (e,e') and (p,p') scattering experiments on a series of fp-shell nuclei. Both modes are discussed in terms of the shell model with various effective interactions. (orig.)

  15. New-generation Monte Carlo shell model for the K computer era

    Shimizu, Noritaka; Abe, Takashi; Yoshida, Tooru; Otsuka, Takaharu; Tsunoda, Yusuke; Utsuno, Yutaka; Mizusaki, Takahiro; Honma, Michio

    2012-01-01

    We present a newly enhanced version of the Monte Carlo shell-model (MCSM) method by incorporating the conjugate gradient method and energy-variance extrapolation. This new method enables us to perform large-scale shell-model calculations that the direct diagonalization method cannot reach. This new-generation framework of the MCSM provides us with a powerful tool to perform very advanced large-scale shell-model calculations on current massively parallel computers such as the K computer. We discuss the validity of this method in ab initio calculations of light nuclei, and propose a new method to describe the intrinsic wave function in terms of the shell-model picture. We also apply this new MCSM to the study of neutron-rich Cr and Ni isotopes using conventional shell-model calculations with an inert 40 Ca core and discuss how the magicity of N = 28, 40, 50 remains or is broken. (author)

  16. Modeling of A-DLTS Spectra of MOS Structures

    Peter Hockicko

    2008-01-01

    Full Text Available Acquisition of basic characteristic of defects has become possible through a wide class of measurement techniqueswhich probe the interface, the near interface, as well as the bulk of semiconductor. Results presented here are basedessentially on the acoustic version of Deep Level Transient Spectroscopy (A-DLTS measurements. This method is based onthe acoustoelectric response effect observed at the interface. The A-DLTS uses the acoustoelectric response signal (ARSproduced by MOS structure interface when a longitudal acoustic wave propagates through a structure. The ARS is extremelysensitive to external conditions of the structure and reflects any changes in the charge distribution connected with chargedtraps. The temperature dependence of ARS after bias voltage step application is investigated and the activation energies andsome other parameters of traps at the insulator – semiconductor interface are determined. The results obtained formArrhenius plots of A-DLTS spectra of selected MOS structures are compared with results obtained from modeling of ADLTS spectra using theoretical model.

  17. Comparisons between shell-model calculations, seniority truncation, and quasiparticle approximations: Application to the odd Ni isotopes and odd N = 82 isotones

    Losano, L.; Dias, H.; Krmpotic, F.; Wildenthal, B.H.

    1988-01-01

    A detailed study of the results of correcting BCS approximation for the effects of particle-number projection and blocking has been carried out. A low-seniority shell-model approximation was used as the frame of reference for investigating the mixing of one- and three-quasiparticle states in odd-mass Ni isotopes and in odd-mass N = 82 isotones. We discuss the results obtained for the energy spectra and electromagnetic decay properties. Effects of seniority-five configurations on the low-lying states have also been studied through the comparison of the low-seniority shell-model results with those which arose from the corresponding full shell-model calculations

  18. Comparisons of theoretical and experimental neutron spectra, 115In(n,n') and fission rates, in the centre of three spherical natural uranium and iron shell configurations, located at BR1

    De Leeuw-Gierts, G.; De Leeuw, S.; Gilliam, D.M.

    1984-01-01

    Three spherical configurations of iron and uranium shells have been studied. The configurations were a 1-cm thick natural uranium shell, a 1-cm thick natural uranium shell with an inner 7-cm thick iron shell and a 1-cm thick natural uranium shell with an inner iron shell of 14-cm thickness. For the measurements, the shells were located at the centre of a hollow cavity, 100-cm in diameter, in the vertical graphite thermal column of the BR1 reactor. The central neutron spectra were calculated by means of the DTF-IV code, using the 208-group KEDAK-3 library, and by means of the ANISN code, using the 171-group VITAMIN-C library. Central neutron spectra, measured by the proton-recoil and 6 Li(n,α)t spectrometry techniques, are compared to the theory between ∼ 100 keV and 5 MeV. Mean fission cross-sections of 240 Pu, 237 Np, 234 U, 235 U, 236 U and 238 U were deduced from the calculations. Their ratios with respect to 238 U are compared to measurements made with NBS dual fission chambers. (Auth.)

  19. Van der Waals coefficients beyond the classical shell model

    Tao, Jianmin, E-mail: jianmint@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Fang, Yuan; Hao, Pan [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Scuseria, G. E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ruzsinszky, Adrienn; Perdew, John P. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2015-01-14

    Van der Waals (vdW) coefficients can be accurately generated and understood by modelling the dynamic multipole polarizability of each interacting object. Accurate static polarizabilities are the key to accurate dynamic polarizabilities and vdW coefficients. In this work, we present and study in detail a hollow-sphere model for the dynamic multipole polarizability proposed recently by two of the present authors (JT and JPP) to simulate the vdW coefficients for inhomogeneous systems that allow for a cavity. The inputs to this model are the accurate static multipole polarizabilities and the electron density. A simplification of the full hollow-sphere model, the single-frequency approximation (SFA), circumvents the need for a detailed electron density and for a double numerical integration over space. We find that the hollow-sphere model in SFA is not only accurate for nanoclusters and cage molecules (e.g., fullerenes) but also yields vdW coefficients among atoms, fullerenes, and small clusters in good agreement with expensive time-dependent density functional calculations. However, the classical shell model (CSM), which inputs the static dipole polarizabilities and estimates the static higher-order multipole polarizabilities therefrom, is accurate for the higher-order vdW coefficients only when the interacting objects are large. For the lowest-order vdW coefficient C{sub 6}, SFA and CSM are exactly the same. The higher-order (C{sub 8} and C{sub 10}) terms of the vdW expansion can be almost as important as the C{sub 6} term in molecular crystals. Application to a variety of clusters shows that there is strong non-additivity of the long-range vdW interactions between nanoclusters.

  20. Modeling Blazar Spectra by Solving an Electron Transport Equation

    Lewis, Tiffany; Finke, Justin; Becker, Peter A.

    2018-01-01

    Blazars are luminous active galaxies across the entire electromagnetic spectrum, but the spectral formation mechanisms, especially the particle acceleration, in these sources are not well understood. We develop a new theoretical model for simulating blazar spectra using a self-consistent electron number distribution. Specifically, we solve the particle transport equation considering shock acceleration, adiabatic expansion, stochastic acceleration due to MHD waves, Bohm diffusive particle escape, synchrotron radiation, and Compton radiation, where we implement the full Compton cross-section for seed photons from the accretion disk, the dust torus, and 26 individual broad lines. We used a modified Runge-Kutta method to solve the 2nd order equation, including development of a new mathematical method for normalizing stiff steady-state ordinary differential equations. We show that our self-consistent, transport-based blazar model can qualitatively fit the IR through Fermi g-ray data for 3C 279, with a single-zone, leptonic configuration. We use the solution for the electron distribution to calculate multi-wavelength SED spectra for 3C 279. We calculate the particle and magnetic field energy densities, which suggest that the emitting region is not always in equipartition (a common assumption), but sometimes matter dominated. The stratified broad line region (based on ratios in quasar reverberation mapping, and thus adding no free parameters) improves our estimate of the location of the emitting region, increasing it by ~5x. Our model provides a novel view into the physics at play in blazar jets, especially the relative strength of the shock and stochastic acceleration, where our model is well suited to distinguish between these processes, and we find that the latter tends to dominate.

  1. Core-shell particles as model compound for studying fouling

    Christensen, Morten Lykkegaard; Nielsen, Troels Bach; Andersen, Morten Boel Overgaard

    2008-01-01

    Synthetic colloidal particles with hard cores and soft, water-swollen shells were used to study cake formation during ultrafiltration. The total cake resistance was lowest for particles with thick shells, which indicates that interparticular forces between particles (steric hindrance...... and electrostatic repulsion) influenced cake formation. At low pressure the specific cake resistance could be predicted from the Kozeny-Carman equation. At higher pressures, the resistance increased due to cake compression. Both cake formation and compression were reversible. For particles with thick shells...

  2. The shell model. Towards a unified description of nuclear structure

    Poves, Alfredo [Departamento de Fisica Teorica, Universidad Autonoma Cantoblanco, 28049 - Madrid (Spain); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    In this series of lectures we present the foundations of the spherical shell model that we treat as an approximation to the exact solution of the full secular problem. We introduce the notions of valence space, effective interaction and effective operator. We analyse the structure of the realistic effective interactions, identifying their monopole part with the spherical mean field. The multipole Hamiltonian is shown to have a universal (simple) form that includes pairing (isovector and isoscalar), quadrupole, octupole, deca-pole, and ({sigma}{center_dot}{tau})({sigma}{center_dot}{tau}). We describe the methods of resolution of the secular problem, in particular the Lanczos method. The model is applied to the description of nuclear deformation and its relationship with the deformed mean field theories is studied. We propose a new symmetry, `quasi`-SU3, to understand deformation in the spherical basis. Finally, we discuss the domain of nuclei very far from the valley of {beta} stability, addressing the vanishing of some magic closures that can be explained in terms of intruder states. (author) 53 refs., 20 figs., 3 tabs.

  3. Recent Developments in No-Core Shell-Model Calculations

    Navratil, P.; Quaglioni, S.; Stetcu, I.; Barrett, B.R.

    2009-01-01

    We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.

  4. Recent Developments in No-Core Shell-Model Calculations

    Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R

    2009-03-20

    We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.

  5. The shell model. Towards a unified description of nuclear structure

    Poves, Alfredo

    1998-01-01

    In this series of lectures we present the foundations of the spherical shell model that we treat as an approximation to the exact solution of the full secular problem. We introduce the notions of valence space, effective interaction and effective operator. We analyse the structure of the realistic effective interactions, identifying their monopole part with the spherical mean field. The multipole Hamiltonian is shown to have a universal (simple) form that includes pairing (isovector and isoscalar), quadrupole, octupole, deca-pole, and (σ·τ)(σ·τ). We describe the methods of resolution of the secular problem, in particular the Lanczos method. The model is applied to the description of nuclear deformation and its relationship with the deformed mean field theories is studied. We propose a new symmetry, 'quasi'-SU3, to understand deformation in the spherical basis. Finally, we discuss the domain of nuclei very far from the valley of β stability, addressing the vanishing of some magic closures that can be explained in terms of intruder states. (author)

  6. On two-dimensionalization of three-dimensional turbulence in shell models

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  7. Preparation of hollow shell ICF targets using a depolymerizing model

    Letts, S.A.; Fearon, E.M.; Buckley, S.R.

    1994-11-01

    A new technique for producing hollow shell laser fusion capsules was developed that starts with a depolymerizable mandrel. In this technique we use poly(alpha-methylstyrene) (PAMS) beads or shells as mandrels which are overcoated with plasma polymer. The PAMS mandrel is thermally depolymerized to gas phase monomer, which diffuses through the permeable and thermally more stable plasma polymer coating, leaving a hollow shell. We have developed methods for controlling the size of the PAMS mandrel by either grinding to make smaller sizes or melt sintering to form larger mandrels. Sphericity and surface finish are improved by heating the PAMS mandrels in hot water using a surfactant to prevent aggregation. Using this technique we have made shells from 200 μm to 5 mm diameter with 15 to 100 μm wall thickness having sphericity better than 2 μm and surface finish better than 10 nm RMS

  8. A model of tungsten anode x-ray spectra

    Hernández, G.; Fernández, F., E-mail: fdz@usal.es [Física Fundamental, Universidad de Salamanca, Salamanca 37008 (Spain)

    2016-08-15

    Purpose: A semiempirical model for x-ray production in tungsten thick-targets was evaluated using a new characterization of electron fluence. Methods: Electron fluence is modeled taking into account both the energy and angular distributions, each of them adjusted to Monte Carlo simulated data. Distances were scaled by the CSDA range to reduce the energy dependence. Bremsstrahlung production was found by integrating the cross section with the fluence in a 1D penetration model. Characteristic radiation was added using a semiempirical law whose validity was checked. The results were compared the experimental results of Bhat et al., with the SpekCalc numerical tool, and with MCNPX simulation results from the work of Hernandez and Boone. Results: The model described shows better agreement with the experimental results than the SpekCalc predictions in the sense of area between the spectra. A general improvement of the predictions of half-value layers is also found. The results are also in good agreement with the simulation results in the 50–640 keV energy range. Conclusions: A complete model for x-ray production in thick bremsstrahlung targets has been developed, improving the results of previous works and extending the energy range covered to the 50–640 keV interval.

  9. Nucleon-pair approximation to the nuclear shell model

    Zhao, Y.M., E-mail: ymzhao@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Arima, A. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533 (Japan)

    2014-12-01

    Atomic nuclei are complex systems of nucleons–protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton–proton and neutron–neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton–neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.

  10. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  11. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    Li, Zi; Zhang, Shen; Kang, Wei; Wang, Cong; Zhang, Ping

    2016-01-01

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N 2 molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electron density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.

  12. Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei

    Guidry, M.W.

    1992-01-01

    Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed

  13. Symplectic no-core shell-model approach to intermediate-mass nuclei

    Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.

    2014-03-01

    We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.

  14. Steady state model for the thermal regimes of shells of airships and hot air balloons

    Luchev, Oleg A.

    1992-10-01

    A steady state model of the temperature regime of airships and hot air balloons shells is developed. The model includes three governing equations: the equation of the temperature field of airships or balloons shell, the integral equation for the radiative fluxes on the internal surface of the shell, and the integral equation for the natural convective heat exchange between the shell and the internal gas. In the model the following radiative fluxes on the shell external surface are considered: the direct and the earth reflected solar radiation, the diffuse solar radiation, the infrared radiation of the earth surface and that of the atmosphere. For the calculations of the infrared external radiation the model of the plane layer of the atmosphere is used. The convective heat transfer on the external surface of the shell is considered for the cases of the forced and the natural convection. To solve the mentioned set of the equations the numerical iterative procedure is developed. The model and the numerical procedure are used for the simulation study of the temperature fields of an airship shell under the forced and the natural convective heat transfer.

  15. Modeling of LMM-MVV Auger-Auger Coincidence Spectra From Solids

    Sundaramoorthy, R.; Weiss, A. H.; Hulbert, S. L.; Bartynski, R. A.

    2006-03-01

    Atoms that are highly excited due to the presence of a hole in an inner shell often relax via an Auger transition. This auto-ionizing process results in a final state with two or more holes from an Auger cascade. We present results of the direct measurements of the second and third Auger decays in this sequence. We have measured the Mn MVV Auger spectra from a single-crystal sample of MnO in time coincidence with Auger electrons emitted from prior Mn LMM Auger decays and find these to be much wider than the MVV spectrum measured in time coincidence with M core photoelectron emission. We present a model which attributes the increased energy width of the MVV transitions that follow LMM decays to the rearrangement of ``not so innocent'' bystander hole(s) in the valence band. The energetics of the Auger cascade process are modeled mathematically in terms of correlation integral(s) and convolution integral(s) over the valence band density of states. Comparisons with recent Auger-Auger coincidence studies of Ag and Pd will be made. Acknowledgements: Welch Foundation, NSF DMR98-12628, NSF DMR98-01681, and DOE DE-AC02-98CH10886.

  16. Light neutron-rich hypernuclei from the importance-truncated no-core shell model

    Roland Wirth

    2018-04-01

    Full Text Available We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains — from HeΛ5 to HeΛ11 and from LiΛ7 to LiΛ12 — in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon–nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon. Keywords: Hypernuclei, Ab-initio methods, Neutron-rich nuclei, Neutron separation energies, Neutron drip line

  17. Light neutron-rich hypernuclei from the importance-truncated no-core shell model

    Wirth, Roland; Roth, Robert

    2018-04-01

    We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.

  18. Spectra of heavy-light mesons in a relativistic model

    Liu, Jing-Bin; Lue, Cai-Dian [Institute of High Energy Physics, Beijing (China)

    2017-05-15

    The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model which is based on a heavy-quark expansion of the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation. The kernel we choose is the standard combination of linear scalar and Coulombic vector. The effective Hamiltonian for heavy-light quark-antiquark system is calculated up to order 1/m{sub Q}{sup 2}. Our results are in good agreement with available experimental data except for the anomalous D{sub s0}{sup *}(2317) and D{sub s1}(2460) states. The newly observed heavy-light meson states can be accommodated successfully in the relativistic quark model with their assignments presented. The D{sub sJ}{sup *}(2860) can be interpreted as the vertical stroke 1{sup 3/2}D{sub 1} right angle and vertical stroke 1{sup 5/2}D{sub 3} right angle states being members of the 1D family with J{sup P} = 1{sup -} and 3{sup -}. (orig.)

  19. Laboratory-based grain-shape models for simulating dust infrared spectra

    Mutschke, H.; Min, M.; Tamanai, A.

    2009-01-01

    Context. Analysis of thermal dust emission spectra for dust mineralogy and physical grain properties depends on comparison spectra, which are either laboratory-measured infrared extinction spectra or calculated extinction cross sections based on certain grain models. Often, the agreement between

  20. The pure rotational spectra of the open-shell diatomic molecules PbI and SnI

    Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E. [Department of Chemistry, University of Leicester, Leicester LE1 7RH (United Kingdom); Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Köckert, Hansjochen; Zaleski, Daniel P.; Stephens, Susanna L. [School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-12-28

    Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{sub 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.

  1. The pure rotational spectra of the open-shell diatomic molecules PbI and SnI.

    Evans, Corey J; Needham, Lisa-Maria E; Walker, Nicholas R; Köckert, Hansjochen; Zaleski, Daniel P; Stephens, Susanna L

    2015-12-28

    Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X (2)Π1/2 ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y01, Y02, Y11, and Y21, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.

  2. Seniority truncation in an equations-of-motion approach to the shell model

    Covello, A.; Andreozzi, F.; Gargano, A.; Porrino, A.

    1989-01-01

    This paper presents an equations-of-motion method for treating shell-model problems within the framework of the seniority scheme. This method can be applied at many levels of approximation and represents therefore a valuable tool to further reduce seniority truncated shell-model spaces. To show its practical value the authors report some results of an extensive study of the N = 82 isotones which is currently under way

  3. Sinusoidal velaroidal shell – numerical modelling of the nonlinear ...

    The nonlinearity, applied to a sinusoidal velaroidal shell with the inner radius r0, the outer variables radii from 10m to 20m and the number of waves n=8, will give rise to the investigation of its nonlinear buckling resistance. The building material is a high-performant concrete. The investigation emphasizes more on the ...

  4. Electronic Raman spectra in iron-based superconductors with two-orbital model

    Lu Hongyan; Wang Da; Chen San; Wang Wei; Gong Pifeng

    2011-01-01

    Electronic Raman spectra were calculated in orbital space in a microscopic theory. Both Raman spectra and spectra weight were presented. Raman spectra for the gap symmetries are different from each other. The results can help decide the gap symmetry by comparing with experiments. Electronic Raman spectra in iron-based superconductors with two-orbital model is discussed. In the orbital space, some possible pairing symmetries of the gap are selected. To further discriminate them, electronic Raman spectra and spectra weight at Fermi surface (FS) which helps understand the Raman spectra are calculated in each case. From the low energy threshold, the number of Raman peaks, and the low frequency power law behavior, we can judge whether it is full gap or nodal gap, and even one gap or multi-gaps. The results provide useful predictions for comparison with experiments.

  5. Inverted spin sequences in the spectra of odd-odd nuclei in the 2S-1d and 2P-1f shells

    Sharma, Arvind; Sharma, S.D.

    1990-01-01

    In case of odd-odd nuclei, near magic numbers, there are found inverted sequences as well as few rotational members. In order to explain the unique feature of the spectra of odd-odd nuclei, we have applied modified form of rotational-vibrational model with two parameters A and B. It is found that level orders in inverted as well as in rotational sequences are very well reproduced on the basis of this model. In case of inverted spin sequences, the sign of B is found to be positive. The ratio of B/A is ≅ 10 -2 as compared to its value of the order of 10 -3 in case of even-even and odd-A nuclei. We infer that pair correlations are responsible for these invertions. The simple model applied here worked well to predict these inverted spectra. (author)

  6. Auger Spectra and Different Ionic Charges Following 3s, 3p and 3d Sub-Shells Photoionization of Kr Atoms

    Yehia A. Lotfy

    2006-01-01

    Full Text Available The decay of inner-shell vacancy in an atom through radiative and non-radiative transitions leads to final charged ions. The de-excitation decay of 3s, 3p and 3d vacancies in Kr atoms are calculated using Monte-Carlo simulation method. The vacancy cascade pathway resulted from the de-excitation decay of deep core hole in 3s subshell in Kr atoms is discussed. The generation of spectator vacancies during the vacancy cascade development gives rise to Auger satellite spectra. The last transitions of the de-excitation decay of 3s, 3p and 3d holes lead to specific charged ions. Dirac-Fock-Slater wave functions are adapted to calculate radiative and non-radiative transition probabilities. The intensity of Kr^{4+} ions are high for 3s hole state, whereas Kr^{3+} and Kr^{2+} ions have highest intensities for 3p and 3d hole states, respectively. The present results of ion charge state distributions agree well with the experimental data.

  7. Importance-truncated no-core shell model for fermionic many-body systems

    Spies, Helena

    2017-03-15

    The exact solution of quantum mechanical many-body problems is only possible for few particles. Therefore, numerical methods were developed in the fields of quantum physics and quantum chemistry for larger particle numbers. Configuration Interaction (CI) methods or the No-Core Shell Model (NCSM) allow ab initio calculations for light and intermediate-mass nuclei, without resorting to phenomenology. An extension of the NCSM is the Importance-Truncated No-Core Shell Model, which uses an a priori selection of the most important basis states. The importance truncation was first developed and applied in quantum chemistry in the 1970s and latter successfully applied to models of light and intermediate mass nuclei. Other numerical methods for calculations for ultra-cold fermionic many-body systems are the Fixed-Node Diffusion Monte Carlo method (FN-DMC) and the stochastic variational approach with Correlated Gaussian basis functions (CG). There are also such method as the Coupled-Cluster method, Green's Function Monte Carlo (GFMC) method, et cetera, used for calculation of many-body systems. In this thesis, we adopt the IT-NCSM for the calculation of ultra-cold Fermi gases at unitarity. Ultracold gases are dilute, strongly correlated systems, in which the average interparticle distance is much larger than the range of the interaction. Therefore, the detailed radial dependence of the potential is not resolved, and the potential can be replaced by an effective contact interaction. At low energy, s-wave scattering dominates and the interaction can be described by the s-wave scattering length. If the scattering length is small and negative, Cooper-pairs are formed in the Bardeen-Cooper-Schrieffer (BCS) regime. If the scattering length is small and positive, these Cooper-pairs become strongly bound molecules in a Bose-Einstein-Condensate (BEC). In between (for large scattering lengths) is the unitary limit with universal properties. Calculations of the energy spectra

  8. Modeling the Electrostatics of Hollow Shell Suspensions: Ion Distribution, Pair Interactions, and Many-Body Effects.

    Hallez, Yannick; Meireles, Martine

    2016-10-11

    Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.

  9. Stability of core–shell nanowires in selected model solutions

    Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-01-01

    Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods

  10. Stability of core–shell nanowires in selected model solutions

    Kalska-Szostko, B., E-mail: kalska@uwb.edu.pl; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-30

    Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  11. Inner shell Coulomb ionization by heavy charged particles studied by the SCA model

    Hansteen, J.M.

    1976-12-01

    The seven papers, introduced by the most recent, subtitled 'A condensed status review', form a survey of the work by the author and his colleagues on K-, L-, and M-shell ionisation by impinging protons, deuterons and α-particles in the period 1971-1976. The SCA model is discussed and compared with other approximations for inner shell Coulomb ionisation. The future aspects in this field are also discussed. (JIW)

  12. All (4,1): Sigma models with (4,q) off-shell supersymmetry

    Hull, Chris [The Blackett Laboratory, Imperial College London,Prince Consort Road London SW7 @AZ (United Kingdom); Lindström, Ulf [The Blackett Laboratory, Imperial College London,Prince Consort Road London SW7 @AZ (United Kingdom); Department of Physics and Astronomy, Division of Theoretical Physics,Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2017-03-08

    Off-shell (4,q) supermultiplets in 2-dimensions are constructed for q=1,2,4. These are used to construct sigma models whose target spaces are hyperkähler with torsion. The off-shell supersymmetry implies the three complex structures are simultaneously integrable and allows us to construct actions using extended superspace and projective superspace, giving an explicit construction of the target space geometries.

  13. Neutrinoless double-β decay matrix elements in large shell-model spaces with the generator-coordinate method

    Jiao, C. F.; Engel, J.; Holt, J. D.

    2017-11-01

    We use the generator-coordinate method (GCM) with realistic shell-model interactions to closely approximate full shell-model calculations of the matrix elements for the neutrinoless double-β decay of 48Ca, 76Ge, and 82Se. We work in one major shell for the first isotope, in the f5 /2p g9 /2 space for the second and third, and finally in two major shells for all three. Our coordinates include not only the usual axial deformation parameter β , but also the triaxiality angle γ and neutron-proton pairing amplitudes. In the smaller model spaces our matrix elements agree well with those of full shell-model diagonalization, suggesting that our Hamiltonian-based GCM captures most of the important valence-space correlations. In two major shells, where exact diagonalization is not currently possible, our matrix elements are only slightly different from those in a single shell.

  14. Modelling Velocity Spectra in the Lower Part of the Planetary Boundary Layer

    Olesen, H.R.; Larsen, Søren Ejling; Højstrup, Jørgen

    1984-01-01

    of the planetary boundary layer. Knowledge of the variation with stability of the (reduced) frequency f, for the spectral maximum is utilized in this modelling. Stable spectra may be normalized so that they adhere to one curve only, irrespective of stability, and unstable w-spectra may also be normalized to fit...... one curve. The problem of using filtered velocity variances when modelling spectra is discussed. A simplified procedure to provide a first estimate of the filter effect is given. In stable, horizontal velocity spectra, there is often a ‘gap’ at low frequencies. Using dimensional considerations...... and the spectral model previously derived, an expression for the gap frequency is found....

  15. Synthesis of audio spectra using a diffraction model.

    Vijayakumar, V; Eswaran, C

    2006-12-01

    It is shown that the intensity variations of an audio signal in the frequency domain can be obtained by using a mathematical function containing a series of weighted complex Bessel functions. With proper choice of values for two parameters, this function can transform an input spectrum of discrete frequencies of unit intensity into the known spectra of different musical instruments. Specific examples of musical instruments are considered for evaluating the performance of this method. It is found that this function yields musical spectra with a good degree of accuracy.

  16. Analysis of the M-shell spectra emitted by a short-pulse laser-created tantalum plasma

    Busquet; Jiang; Coinsertion Markte CY; Kieffer; Klapisch; Bar-Shalom; Bauche-Arnoult; Bachelier

    2000-01-01

    The spectrum of tantalum emitted by a subpicosecond laser-created plasma, was recorded in the regions of the 3d-5f, 3d-4f, and 3d-4p transitions. The main difference with a nanosecond laser-created plasma spectrum is a broad understructure appearing under the 3d-5f transitions. An interpretation of this feature as a density effect is proposed. The supertransition array model is used for interpreting the spectrum, assuming local thermodynamic equilibrium (LTE) at some effective temperature. An interpretation of the 3d-4f spectrum using the more detailed unresolved transition array formalism, which does not assume LTE, is also proposed. Fitted contributions of the different ionic species differ slightly from the LTE-predicted values.

  17. Mean field theory of nuclei and shell model. Present status and future outlook

    Nakada, Hitoshi

    2003-01-01

    Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave

  18. Modeling a gamma spectroscopy system and predicting spectra with Geant-4

    Sahin, D.; Uenlue, K.

    2009-01-01

    An activity predictor software was previously developed to foresee activities, exposure rates and gamma spectra of activated samples for Radiation Science and Engineering Center (RSEC), Penn State Breazeale Reactor (PSBR), Neutron Activation Analysis (NAA) measurements. With Activity Predictor it has been demonstrated that the predicted spectra were less than satisfactory. In order to obtain better predicted spectra, a new detailed model for the RSEC NAA spectroscopy system with High Purity Germanium (HPGe) detector is developed using Geant-4. The model was validated with a National Bureau of Standards certified 60 Co source and tree activated high purity samples at PSBR. The predicted spectra agreed well with measured spectra. Error in net photo peak area values were 8.6-33.6%. Along with the previously developed activity predictor software, this new model in Geant-4 provided realistic spectra prediction for NAA experiments at RSEC PSBR. (author)

  19. Structure of exotic nuclei by large-scale shell model calculations

    Utsuno, Yutaka; Otsuka, Takaharu; Mizusaki, Takahiro; Honma, Michio

    2006-01-01

    An extensive large-scale shell-model study is conducted for unstable nuclei around N = 20 and N = 28, aiming to investigate how the shell structure evolves from stable to unstable nuclei and affects the nuclear structure. The structure around N = 20 including the disappearance of the magic number is reproduced systematically, exemplified in the systematics of the electromagnetic moments in the Na isotope chain. As a key ingredient dominating the structure/shell evolution in the exotic nuclei from a general viewpoint, we pay attention to the tensor force. Including a proper strength of the tensor force in the effective interaction, we successfully reproduce the proton shell evolution ranging from N = 20 to 28 without any arbitrary modifications in the interaction and predict the ground state of 42Si to contain a large deformed component

  20. No core shell model results for oxygen chain

    Saxena, Archana; Srivastavay, Praveen C.

    2017-01-01

    In the present work, our focus is on oxygen isotopes. We show the energy spectra of 18 O and evolution of occupancies of proton and neutron orbitals in the oxygen chain. We have used inside non local outside Yukawa potential (INOY) for NCSM calculations

  1. Inclusive zero-angle neutron spectra at the ISR and OPER-model

    Grigoryan, A.A.

    1977-01-01

    The invlusive zero-angle neutron spectra in pp-collisions measured at the ISR are compared with the OPER-model predictions. OPER-model rather well describes the experimental data. Some features of the spectra behaviour at fixed transverse momentum and large x are considered

  2. The contribution of Skyrme Hartree-Fock calculations to the understanding of the shell model

    Zamick, L.

    1984-01-01

    The authors present a detailed comparison of Skyrme Hartree-Fock and the shell model. The H-F calculations are sensitive to the parameters that are chosen. The H-F results justify the use of effective charges in restricted model space calculations by showing that the core contribution can be large. Further, the H-F results roughly justify the use of a constant E2 effective charge, but seem to yield nucleus dependent E4 effective charges. The H-F can yield results for E6 and higher multipoles, which would be zero in s-d model space calculations. On the other side of the coin in H-F the authors can easily consider only the lowest rotational band, whereas in the shell model one can calculate the energies and properties of many more states. In the comparison some apparent problems remain, in particular E4 transitions in the upper half of the s-d shell

  3. Ab Initio Study of 40Ca with an Importance Truncated No-Core Shell Model

    Roth, R; Navratil, P

    2007-05-22

    We propose an importance truncation scheme for the no-core shell model, which enables converged calculations for nuclei well beyond the p-shell. It is based on an a priori measure for the importance of individual basis states constructed by means of many-body perturbation theory. Only the physically relevant states of the no-core model space are considered, which leads to a dramatic reduction of the basis dimension. We analyze the validity and efficiency of this truncation scheme using different realistic nucleon-nucleon interactions and compare to conventional no-core shell model calculations for {sup 4}He and {sup 16}O. Then, we present the first converged calculations for the ground state of {sup 40}Ca within no-core model spaces including up to 16{h_bar}{Omega}-excitations using realistic low-momentum interactions. The scheme is universal and can be easily applied to other quantum many-body problems.

  4. Exact boson mappings for nuclear neutron (proton) shell-model algebras having SU(3) subalgebras

    Bonatsos, D.; Klein, A.

    1986-01-01

    In this paper the commutation relations of the fermion pair operators of identical nucleons coupled to spin zero are given for the general nuclear major shell in LST coupling. The associated Lie algebras are the unitary symplectic algebras Sp(2M). The corresponding multipole subalgebras are the unitary algebras U(M), which possess SU(3) subalgebras. Number conserving exact boson mappings of both the Dyson and hermitian form are given for the nuclear neutron (proton) s--d, p--f, s--d--g, and p--f--h shells, and their group theoretical structure is emphasized. The results are directly applicable in the case of the s--d shell, while in higher shells the experimentally plausible pseudo-SU(3) symmetry makes them applicable. The final purpose of this work is to provide a link between the shell model and the Interacting Boson Model (IBM) in the deformed limit. As already implied in the work of Draayer and Hecht, it is difficult to associate the boson model developed here with the conventional IBM model. The differences between the two approaches (due mainly to the effects of the Pauli principle) as well as their physical implications are extensively discussed

  5. Modeling of XANES-spectra with the FEFF-program

    Bosman, E; Thieme, J, E-mail: e.bosman@gmx.d, E-mail: jthieme@gwdg.d [Institute for X-Ray Physics, Georg-August-University Gottingen, Friedrich-Hund-Platz 1, 37077 Gottingen (Germany)

    2009-09-01

    The aim of this project is the calculation of the absorption coefficient {mu} of x-ray absorption spectra as a function of energy and a comparison with experimental data. A characteristic fine structure can be found in x-ray absorption spectra (XAS) consisting of the XANES (X-Ray Absorption Near Edge Structure) and the EXAFS (Extended X-Ray Absorption Fine Structure) region. XANES is characterized by multiple scattering and provides information about coordination chemistry and bonding angles of the irradiated sample. The program FEFF 8.4 was used for the calculations of the absorption K-edge spectra. FEFF was generated for ab initio multiple scattering calculations of X-ray Absorption Fine Structure (XAFS) of atom-clusters. The code yields scattering amplitudes, phases and other quantities. We computed {mu} at the K-edge of several elements like Ti, S and Fe. For this purpose, clusters of Na{sub 2}SO{sub 4}, Ba{sub 2}TiO{sub 4}, FeS{sub 2}, CaSO{sub 2} 2(H {sub 2}O) were used, working with several space groups. Some of the calculations are consistent with the results of the experiments, but others show energy shifts in the range of some eV. In summary, the FEFF calculations and the experimental data exhibit similarities as well as deviations. By using trimming parameters, deviations could be eliminated to a certain extent, which will be presented.

  6. Shell supports

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  7. OWL: A code for the two-center shell model with spherical Woods-Saxon potentials

    Diaz-Torres, Alexis

    2018-03-01

    A Fortran-90 code for solving the two-center nuclear shell model problem is presented. The model is based on two spherical Woods-Saxon potentials and the potential separable expansion method. It describes the single-particle motion in low-energy nuclear collisions, and is useful for characterizing a broad range of phenomena from fusion to nuclear molecular structures.

  8. History and future perspectives of the Monte Carlo shell model -from Alphleet to K computer-

    Shimizu, Noritaka; Otsuka, Takaharu; Utsuno, Yutaka; Mizusaki, Takahiro; Honma, Michio; Abe, Takashi

    2013-01-01

    We report a history of the developments of the Monte Carlo shell model (MCSM). The MCSM was proposed in order to perform large-scale shell-model calculations which direct diagonalization method cannot reach. Since 1999 PC clusters were introduced for parallel computation of the MCSM. Since 2011 we participated the High Performance Computing Infrastructure Strategic Program and developed a new MCSM code for current massively parallel computers such as K computer. We discuss future perspectives concerning a new framework and parallel computation of the MCSM by incorporating conjugate gradient method and energy-variance extrapolation

  9. Model independent method to deconvolve hard X-ray spectra

    Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale); Manchanda, R.K. (Tata Inst. of Fundamental Research, Bombay (India))

    1984-07-01

    A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented.

  10. Using Molecular Modeling in Teaching Group Theory Analysis of the Infrared Spectra of Organometallic Compounds

    Wang, Lihua

    2012-01-01

    A new method is introduced for teaching group theory analysis of the infrared spectra of organometallic compounds using molecular modeling. The main focus of this method is to enhance student understanding of the symmetry properties of vibrational modes and of the group theory analysis of infrared (IR) spectra by using visual aids provided by…

  11. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  12. Multi-shell model of ion-induced nucleic acid condensation

    Tolokh, Igor S. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Drozdetski, Aleksander V. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853-3501 (United States); Baker, Nathan A. [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States); Onufriev, Alexey V. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(III) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent

  13. Monte Carlo evaluation of path integral for the nuclear shell model

    Lang, G.H.

    1993-01-01

    The authors present a path-integral formulation of the nuclear shell model using auxillary fields; the path-integral is evaluated by Monte Carlo methods. The method scales favorably with valence-nucleon number and shell-model basis: full-basis calculations are demonstrated up to the rare-earth region, which cannot be treated by other methods. Observables are calculated for the ground state and in a thermal ensemble. Dynamical correlations are obtained, from which strength functions are extracted through the Maximum Entropy method. Examples in the s-d shell, where exact diagonalization can be carried out, compared well with exact results. The open-quotes sign problemclose quotes generic to quantum Monte Carlo calculations is found to be absent in the attractive pairing-plus-multipole interactions. The formulation is general for interacting fermion systems and is well suited for parallel computation. The authors have implemented it on the Intel Touchstone Delta System, achieving better than 99% parallelization

  14. Use of shell model calculations in R-matrix studies of neutron-induced reactions

    Knox, H.D.

    1986-01-01

    R-matrix analyses of neutron-induced reactions for many of the lightest p-shell nuclei are difficult due to a lack of distinct resonance structure in the reaction cross sections. Initial values for the required R-matrix parameters, E,sub(lambda) and γsub(lambdac) for states in the compound system, can be obtained from shell model calculations. In the present work, the results of recent shell model calculations for the lithium isotopes have been used in R-matrix analyses of 6 Li+n and 7 Li+n reactions for E sub(n) 7 Li and 8 Li on the 6 Li+n and 7 Li+n reaction mechanisms and cross sections are discussed. (author)

  15. Analysis of two colliding fractionally damped spherical shells in modelling blunt human head impacts

    Rossikhin, Yury A.; Shitikova, Marina V.

    2013-06-01

    The collision of two elastic or viscoelastic spherical shells is investigated as a model for the dynamic response of a human head impacted by another head or by some spherical object. Determination of the impact force that is actually being transmitted to bone will require the model for the shock interaction of the impactor and human head. This model is indended to be used in simulating crash scenarios in frontal impacts, and provide an effective tool to estimate the severity of effect on the human head and to estimate brain injury risks. The model developed here suggests that after the moment of impact quasi-longitudinal and quasi-transverse shock waves are generated, which then propagate along the spherical shells. The solution behind the wave fronts is constructed with the help of the theory of discontinuities. It is assumed that the viscoelastic features of the shells are exhibited only in the contact domain, while the remaining parts retain their elastic properties. In this case, the contact spot is assumed to be a plane disk with constant radius, and the viscoelastic features of the shells are described by the fractional derivative standard linear solid model. In the case under consideration, the governing differential equations are solved analytically by the Laplace transform technique. It is shown that the fractional parameter of the fractional derivative model plays very important role, since its variation allows one to take into account the age-related changes in the mechanical properties of bone.

  16. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  17. Mathematical Modeling of the Thermal Shell State of the Cylindrical Cryogenic Tank During Filling and Emptying

    V. S. Zarubin

    2015-01-01

    Full Text Available Liquid hydrogen and oxygen are used as the oxidizer and fuel for liquid rocket engines. Liquefied natural gas, which is based on methane, is seen as a promising motor fuel for internal combustion engines. One of the technical problems arising from the use of said cryogenic liquid is to provide containers for storage, transport and use in the propulsion system. In the design and operation of such vessels it is necessary to have reliable information about their temperature condition, on which depend the loss of cryogenic fluids due to evaporation and the stress-strain state of the structural elements of the containers.Uneven temperature distribution along the generatrix of the cylindrical thin-walled shell of rocket cryogenic tanks, in a localized zone of cryogenic liquid level leads to a curvature of the shell and reduce the permissible axle load in a hazard shell buckling in the preparation for the start of the missile in flight with an increasing acceleration. Moving the level of the cryogenic liquid during filling or emptying the tank at a certain combination of parameters results in an increase of the local temperature distribution nonuniformity.Along with experimental study of the shell temperature state of the cryogenic container, methods of mathematical modeling allow to have information needed for designing and testing the construction of cryogenic tanks. In this study a mathematical model is built taking into account features of heat transfer in a cryogenic container, including the boiling cryogenic liquid in the inner surface of the container. This mathematical model describes the temperature state of the thin-walled shell of cylindrical cryogenic tank during filling and emptying. The work also presents a quantitative analysis of this model in case of fixed liquid level, its movement at a constant speed, and harmonic oscillations relative to a middle position. The quantitative analysis of this model has allowed to find the limit options

  18. Computer Modeling of the Dynamic Strength of Metal-Plastic Cylindrical Shells Under Explosive Loading

    Abrosimov, N. A.; Novosel'tseva, N. A.

    2017-05-01

    A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.

  19. Exchange bias and asymmetric hysteresis loops from a microscopic model of core/shell nanoparticles

    Iglesias, Oscar; Batlle, Xavier; Labarta, Amilcar

    2007-01-01

    We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromagnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loop shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Overlap functions computed from the spin configurations along the loops have been obtained to explain the origin and magnitude of these features microscopically

  20. Shell-model calculations with a basis that contains correlated pairs

    Boisson, J.P.; Silvestre-Brac, B.A.; Liotta, R.J.

    1979-01-01

    A method to solve the shell-model equations within a basis that contains correlated pairs of particles is presented. The method is illustrated for the three-identical-particle system. Applications in nuclei around 208 Pb are given and comparisons with both experimental data and other calculations are carried out. (Auth.)

  1. Cluster model of s-and p-shell ΛΛ hypernuclei

    The binding energy ( ) of the s- and p-shell hypernuclei are calculated variationally in the cluster model and multidimensional integrations are performed using Monte Carlo. A variety of phenomenological -core potentials consistent with the -core energies and a wide range of simulated s-state potentials are ...

  2. Study of band structure in 78,80Sr using Triaxial Projected Shell Model

    Behera, N.; Naik, Z.; Bhat, G.H.; Sheikh, J.A.; Palit, R.; Sun, Y.

    2017-01-01

    The purpose of present work is to carry out a systematic study of the yrast-band and gamma-band structure for the even-even 78-80 Sr nuclei using Triaxial Projected Shell Model (TPSM) approach. These nuclei were chosen because 78 Sr has well developed side band(unassigned configuration) and 80 Sr has well developed band observed experimentally

  3. Large scale shell model calculations: the physics in and the physics out

    Zuker, A.P.

    1997-01-01

    After giving a few examples of recent results of the (SM) 2 collaboration, the monopole modified realistic interactions to be used in shell model calculations are described and analyzed. Rotational motion is discussed in some detail, and some introductory remarks on level densities are made. (orig.)

  4. First-Principles Modeling of Core/Shell Quantum Dot Sensitized Solar Cells

    Azpiroz, Jon Mikel; Infante, Ivan; De Angelis, Filippo

    2015-01-01

    We report on the density functional theory (DFT) modeling of core/shell quantum dot (QD) sensitized solar cells (QDSSCs), a device architecture that holds great potential in photovoltaics but has not been fully exploited so far. To understand the working mechanisms of this kind of solar cells, we

  5. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 3

    Gwaltney, R.C.; Bolt, S.E.; Corum, J.M.; Bryson, J.W.

    1975-06-01

    The third in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: the experimental data provide design information directly applicable to nozzles in cylindrical vessels; and the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 3 had a 10 in. OD and the nozzle had a 1.29 in. OD, giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios for the cylinder and the nozzle were 50 and 7.68 respectively. Thirteen separate loading cases were analyzed. In each, one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for all the loadings were obtained using 158 three-gage strain rosettes located on the inner and outer surfaces. The loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  6. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 4

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-06-01

    The last in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models in the series are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: (1) the experimental data provide design information directly applicable to nozzles in cylindrical vessels, and (2) the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 4 had an outside diameter of 10 in., and the nozzle had an outside diameter of 1.29 in., giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios were 50 and 20.2 for the cylinder and nozzle respectively. Thirteen separate loading cases were analyzed. For each loading condition one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for each of the 13 loadings were obtained using 157 three-gage strain rosettes located on the inner and outer surfaces. Each of the 13 loading cases was also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  7. Proceedings of a symposium on the occasion of the 40th anniversary of the nuclear shell model

    Lee, T.S.H.; Wiringa, R.B.

    1990-03-01

    This report contains papers on the following topics: excitation of 1p-1h stretched states with the (p,n) reaction as a test of shell-model calculations; on Z=64 shell closure and some high spin states of 149 Gd and 159 Ho; saturating interactions in 4 He with density dependence; are short-range correlations visible in very large-basis shell-model calculations?; recent and future applications of the shell model in the continuum; shell model truncation schemes for rotational nuclei; the particle-hole interaction and high-spin states near A-16; magnetic moment of doubly closed shell +1 nucleon nucleus 41 Sc(I π =7/2 - ); the new magic nucleus 96 Zr; comparing several boson mappings with the shell model; high spin band structures in 165 Lu; optical potential with two-nucleon correlations; generalized valley approximation applied to a schematic model of the monopole excitation; pair approximation in the nuclear shell model; and many-particle, many-hole deformed states

  8. Modelling the structure and kinematics of the Firework nebula: The nature of the GK Persei nova shell and its jet-like feature

    Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.

    2016-10-01

    Aims: The shaping mechanisms of old nova remnants are probes for several important and unexplained processes, such as dust formation and the structure of evolved star nebulae. To gain a more complete understanding of the dynamics of the GK Per (1901) remnant, an examination of symmetry of the nova shell is explored, followed by a kinematical analysis of the previously detected jet-like feature in the context of the surrounding fossil planetary nebula. Methods: Faint-object high-resolution echelle spectroscopic observations and imaging were undertaken covering the knots which comprise the nova shell and the surrounding nebulosity. New imaging from the Aristarchos telescope in Greece and long-slit spectra from the Manchester Echelle Spectrometer instrument at the San Pedro Mártir observatory in Mexico were obtained, supplemented with archival observations from several other optical telescopes. Position-velocity arrays are produced of the shell, and also individual knots, and are then used for morpho-kinematic modelling with the shape code. The overall structure of the old knotty nova shell of GK Per and the planetary nebula in which it is embedded is then analysed. Results: Evidence is found for the interaction of knots with each other and with a wind component, most likely the periodic fast wind emanating from the central binary system. We find that a cylindrical shell with a lower velocity polar structure gives the best model fit to the spectroscopy and imaging. We show in this work that the previously seen jet-like feature is of low velocity. Conclusions: The individual knots have irregular tail shapes; we propose here that they emanate from episodic winds from ongoing dwarf nova outbursts by the central system. The nova shell is cylindrical, not spherical, and the symmetry axis relates to the inclination of the central binary system. Furthermore, the cylinder axis is aligned with the long axis of the bipolar planetary nebula in which it is embedded. Thus, the

  9. Modelling Viscoelasticity of Loudspeaker Suspensions using Retardation Spectra

    Ritter, Tobias; Agerkvist, Finn T.

    2010-01-01

    , the viscoelastic retardation spectrum, which provides a more fundamental description of the suspension viscoelasticity, is rst used to explain the accuracy of the empirical LOG creep model (Knudsen et al.). Then, two extensions to the LOG model are proposed which include the low and high frequency limit...... of the compliance, not accounted for in the original LOG model. The new creep models are veried by measurements on two 5.5 loudspeakers with different surrounds....

  10. White Dwarf Model Atmospheres: Synthetic Spectra for Super Soft Sources

    Rauch, Thomas

    2011-01-01

    The T\\"ubingen NLTE Model-Atmosphere Package (TMAP) calculates fully metal-line blanketed white dwarf model atmospheres and spectral energy distributions (SEDs) at a high level of sophistication. Such SEDs are easily accessible via the German Astrophysical Virtual Observatory (GAVO) service TheoSSA. We discuss applications of TMAP models to (pre) white dwarfs during the hottest stages of their stellar evolution, e.g. in the parameter range of novae and super soft sources.

  11. White Dwarf Model Atmospheres: Synthetic Spectra for Supersoft Sources

    Rauch, Thomas

    2013-01-01

    The Tübingen NLTE Model-Atmosphere Package (TMAP) calculates fully metal-line blanketed white dwarf model atmospheres and spectral energy distributions (SEDs) at a high level of sophistication. Such SEDs are easily accessible via the German Astrophysical Virtual Observatory (GAVO) service TheoSSA. We discuss applications of TMAP models to (pre) white dwarfs during the hottest stages of their stellar evolution, e.g. in the parameter range of novae and supersoft sources.

  12. A SEMI-ANALYTICAL LINE TRANSFER MODEL TO INTERPRET THE SPECTRA OF GALAXY OUTFLOWS

    Scarlata, C.; Panagia, N.

    2015-01-01

    We present a semi-analytical line transfer model, (SALT), to study the absorption and re-emission line profiles from expanding galactic envelopes. The envelopes are described as a superposition of shells with density and velocity varying with the distance from the center. We adopt the Sobolev approximation to describe the interaction between the photons escaping from each shell and the remainder of the envelope. We include the effect of multiple scatterings within each shell, properly accounting for the atomic structure of the scattering ions. We also account for the effect of a finite circular aperture on actual observations. For equal geometries and density distributions, our models reproduce the main features of the profiles generated with more complicated transfer codes. Also, our SALT line profiles nicely reproduce the typical asymmetric resonant absorption line profiles observed in starforming/starburst galaxies whereas these absorption profiles cannot be reproduced with thin shells moving at a fixed outflow velocity. We show that scattered resonant emission fills in the resonant absorption profiles, with a strength that is different for each transition. Observationally, the effect of resonant filling depends on both the outflow geometry and the size of the outflow relative to the spectroscopic aperture. Neglecting these effects will lead to incorrect values of gas covering fraction and column density. When a fluorescent channel is available, the resonant profiles alone cannot be used to infer the presence of scattered re-emission. Conversely, the presence of emission lines of fluorescent transitions reveals that emission filling cannot be neglected

  13. Realistic Gamow shell model for resonance and continuum in atomic nuclei

    Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.

    2018-02-01

    The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.

  14. Pion-nucleus double charge exchange and the nuclear shell model

    Auerbach, N.; Gibbs, W.R.; Ginocchio, J.N.; Kaufmann, W.B.

    1988-01-01

    The pion-nucleus double charge exchange reaction is studied with special emphasis on nuclear structure. The reaction mechanism and nuclear structure aspects of the process are separated using both the plane-wave and distorted-wave impulse approximations. Predictions are made employing both the seniority model and a full shell model (with a single active orbit). Transitions to the double analog state and to the ground state of the residual nucleus are computed. The seniority model yields particularly simple relations among double charge exchange cross sections for nuclei within the same shell. Limitations of the seniority model and of the plane-wave impulse approximation are discussed as well as extensions to the generalized seniority scheme. Applications of the foregoing ideas to single charge exchange are also presented

  15. Collectivity in heavy nuclei in the shell model Monte Carlo approach

    Özen, C.; Alhassid, Y.; Nakada, H.

    2014-01-01

    The microscopic description of collectivity in heavy nuclei in the framework of the configuration-interaction shell model has been a major challenge. The size of the model space required for the description of heavy nuclei prohibits the use of conventional diagonalization methods. We have overcome this difficulty by using the shell model Monte Carlo (SMMC) method, which can treat model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We identify a thermal observable that can distinguish between vibrational and rotational collectivity and use it to describe the crossover from vibrational to rotational collectivity in families of even-even rare-earth isotopes. We calculate the state densities in these nuclei and find them to be in close agreement with experimental data. We also calculate the collective enhancement factors of the corresponding level densities and find that their decay with excitation energy is correlated with the pairing and shape phase transitions. (author)

  16. A systematic study of band structure and electromagnetic properties of neutron rich odd mass Eu isotopes in the projected shell model framework

    Pandit, Rakesh K.; Devi, Rani [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)

    2017-10-15

    The positive and negative parity rotational band structure of the neutron rich odd mass Eu isotopes with neutron numbers ranging from 90 to 96 are investigated up to the high angular momentum. In the theoretical analysis of energy spectra, transition energies and electromagnetic transition probabilities we employ the projected shell model. The calculations successfully describe the formation of the ground and excited band structures from the single particle and multi quasiparticle configurations. Calculated excitation energy spectra, transition energies, exact quantum mechanically calculated B(E2) and B(M1) transition probabilities are compared with experimental data wherever available and a reasonably good agreement is obtained with the observed data. The change in deformation in the ground state band with the increase in angular momentum and the increase in neutron number has also been established. (orig.)

  17. Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process

    Lee, Hyeon-Hui; Lee, Jae-Chul; Joo, Yong-Jin; Oh, Min; Lee, Chang-Ha

    2014-01-01

    Highlights: • Detailed dynamic model for the Shell entrained flow gasifier was developed. • The model included sub-models of reactor, membrane wall, gas quench and slag flow. • The dynamics of each zone including membrane wall in the gasifier were analyzed. • Cold gas efficiency (81.82%), gas fraction and temperature agreed with Shell data. • The model could be used as part of the overall IGCC simulation. - Abstract: The Shell coal gasification system is a single-stage, up-flow, oxygen-blown gasifier which utilizes dry pulverized coal with an entrained flow mechanism. Moreover, it has a membrane wall structure and operates in the slagging mode. This work provides a detailed dynamic model of the 300 MW Shell gasifier developed for use as part of an overall IGCC (integrated gasification combined cycle) process simulation. The model consists of several sub-models, such as a volatilization zone, reaction zone, quench zone, slag zone, and membrane wall zone, including heat transfers between the wall layers and steam generation. The dynamic results were illustrated and the validation of the gasifier model was confirmed by comparing the results in the steady state with the reference data. The product gases (H 2 and CO) began to come out from the exit of the reaction zone within 0.5 s, and nucleate boiling heat transfer was dominant in the water zone of the membrane wall due to high heat fluxes. The steady state of the process was reached at nearly t = 500 s, and our simulation data for the steady state, such as the temperature and composition of the syngas, the cold gas efficiency (81.82%), and carbon conversion (near 1.0) were in good agreement with the reference data

  18. On the absence of an α-nucleus structure in a two-centre shell model

    Gupta, R.K.; Sharma, M.K.; Antonenko, N.V.; Scheid, W.

    1999-01-01

    The two-centre shell model, used within the Strutinsky macro-microscopic method, is a valid prescription for calculating adiabatic or diabatic potential energy surfaces. It is shown, however, that this model does not contain the appropriate α-nucleus structure effects, very much required for collisions between light nuclei. A possible way to incorporate such effects is suggested. (author). Letter-to-the-editor

  19. Four shells atomic model to computer the counting efficiency of electron-capture nuclides

    Grau Malonda, A.; Fernandez Martinez, A.

    1985-01-01

    The present paper develops a four-shells atomic model in order to obtain the efficiency of detection in liquid scintillation courting, Mathematical expressions are given to calculate the probabilities of the 229 different atomic rearrangements so as the corresponding effective energies. This new model will permit the study of the influence of the different parameters upon the counting efficiency for nuclides of high atomic number. (Author) 7 refs

  20. Structures of $p$-shell double-$\\Lambda$ hypernuclei studied with microscopic cluster models

    Kanada-En'yo, Yoshiko

    2018-01-01

    $0s$-orbit $\\Lambda$ states in $p$-shell double-$\\Lambda$ hypernuclei ($^{\\ \\,A}_{\\Lambda\\Lambda}Z$), $^{\\ \\,8}_{\\Lambda\\Lambda}\\textrm{Li}$, $^{\\ \\,9}_{\\Lambda\\Lambda}\\textrm{Li}$, $^{10,11,12}_{\\ \\ \\ \\ \\ \\Lambda\\Lambda}\\textrm{Be}$, $^{12,13}_{\\ \\ \\Lambda\\Lambda}\\textrm{B}$, and $^{\\,14}_{\\Lambda\\Lambda}\\textrm{C}$ are investigated. Microscopic cluster models are applied to core nuclear part and a potential model is adopted for $\\Lambda$ particles. The $\\Lambda$-core potential is a folding ...

  1. Heat transfer models for predicting Salmonella enteritidis in shell eggs through supply chain distribution.

    Almonacid, S; Simpson, R; Teixeira, A

    2007-11-01

    Egg and egg preparations are important vehicles for Salmonella enteritidis infections. The influence of time-temperature becomes important when the presence of this organism is found in commercial shell eggs. A computer-aided mathematical model was validated to estimate surface and interior temperature of shell eggs under variable ambient and refrigerated storage temperature. A risk assessment of S. enteritidis based on the use of this model, coupled with S. enteritidis kinetics, has already been reported in a companion paper published earlier in JFS. The model considered the actual geometry and composition of shell eggs and was solved by numerical techniques (finite differences and finite elements). Parameters of interest such as local (h) and global (U) heat transfer coefficient, thermal conductivity, and apparent volumetric specific heat were estimated by an inverse procedure from experimental temperature measurement. In order to assess the error in predicting microbial population growth, theoretical and experimental temperatures were applied to a S. enteritidis growth model taken from the literature. Errors between values of microbial population growth calculated from model predicted compared with experimentally measured temperatures were satisfactorily low: 1.1% and 0.8% for the finite difference and finite element model, respectively.

  2. Modelling telluric line spectra in the optical and infrared with an application to VLT/X-Shooter spectra

    Rudolf, N.; Günther, H. M.; Schneider, P. C.; Schmitt, J. H. M. M.

    2016-01-01

    Context. Earth's atmosphere imprints a large number of telluric absorption and emission lines on astronomical spectra, especially in the near infrared, that need to be removed before analysing the affected wavelength regions. Aims: These lines are typically removed by comparison to A- or B-type stars used as telluric standards that themselves have strong hydrogen lines, which complicates the removal of telluric lines. We have developed a method to circumvent that problem. Methods: For our IDL software package tellrem we used a recent approach to model telluric absorption features with the line-by-line radiative transfer model (LBLRTM). The broad wavelength coverage of the X-Shooter at VLT allows us to expand their technique by determining the abundances of the most important telluric molecules H2O, O2, CO2, and CH4 from sufficiently isolated line groups. For individual observations we construct a telluric absorption model for most of the spectral range that is used to remove the telluric absorption from the object spectrum. Results: We remove telluric absorption from both continuum regions and emission lines without systematic residuals for most of the processable spectral range; however, our method increases the statistical errors. The errors of the corrected spectrum typically increase by 10% for S/N ~ 10 and by a factor of two for high-quality data (S/N ~ 100), I.e. the method is accurate on the percent level. Conclusions: Modelling telluric absorption can be an alternative to the observation of standard stars for removing telluric contamination. Based on observations collected at the European Southern Observatory, Paranal, Chile, 085.C-0764(A) and 60.A-9022(C).The tellrem package is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A113

  3. Large-scale shell model calculations for the N=126 isotones Po-Pu

    Caurier, E.; Rejmund, M.; Grawe, H.

    2003-04-01

    Large-scale shell model calculations were performed in the full Z=82-126 proton model space π(Oh 9/2 , 1f 7/2 , Oi 13/2 , 2p 3/2 , 1f 5/2 , 2p 1/2 ) employing the code NATHAN. The modified Kuo-Herling interaction was used, no truncation was applied up to protactinium (Z=91) and seniority truncation beyond. The results are compared to experimental data including binding energies, level schemes and electromagnetic transition rates. An overall excellent agreement is obtained for states that can be described in this model space. Limitations of the approach with respect to excitations across the Z=82 and N=126 shells and deficiencies of the interaction are discussed. (orig.)

  4. Design and modeling of an additive manufactured thin shell for x-ray astronomy

    Feldman, Charlotte; Atkins, Carolyn; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Willingale, Richard; Doel, Peter

    2017-09-01

    Future X-ray astronomy missions require light-weight thin shells to provide large collecting areas within the weight limits of launch vehicles, whilst still delivering angular resolutions close to that of Chandra (0.5 arc seconds). Additive manufacturing (AM), also known as 3D printing, is a well-established technology with the ability to construct or `print' intricate support structures, which can be both integral and light-weight, and is therefore a candidate technique for producing shells for space-based X-ray telescopes. The work described here is a feasibility study into this technology for precision X-ray optics for astronomy and has been sponsored by the UK Space Agency's National Space Technology Programme. The goal of the project is to use a series of test samples to trial different materials and processes with the aim of developing a viable path for the production of an X-ray reflecting prototype for astronomical applications. The initial design of an AM prototype X-ray shell is presented with ray-trace modelling and analysis of the X-ray performance. The polishing process may cause print-through from the light-weight support structure on to the reflecting surface. Investigations in to the effect of the print-through on the X-ray performance of the shell are also presented.

  5. Spectra of Anderson type models with decaying randomness

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Our models include potentials decaying in all directions in which case ..... the free operators with some uniform bounds of low moments of the measure µ weighted ..... We have the following inequality coming out of Cauchy–Schwarz and Fubini, ... The required statement on the limit follows if we now show that the quantity in ...

  6. Scale-invariant inclusive spectra in a dual model

    Chikovani, Z.E.; Jenkovsky, L.L.; Martynov, E.S.

    1979-01-01

    One-particle inclusive distributions at large transverse momentum phisub(tr) are shown to scale, Edσ/d 3 phi approximately phisub(tr)sup(-N)(1-Xsub(tr))sup(1+N/2)lnphisub(tr), in a dual model with Mandelstam analyticity if the Regge trajectories are logarithmic asymptotically

  7. Half-life calculation of one-proton emitters with a shell model potential

    Rodrigues, M. M.; Duarte, S. B. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCT Rua Dr. Xavier Sigaud, 150, 22290-180, Rio de Janeiro-RJ (Brazil); Teruya, N. [Departamento de Fisica, Universidade Federal da Paraiba - UFPB Campus de Joao Pessoa, 58051-970, Joao Pessoa - PB (Brazil)

    2013-03-25

    The accumulated amount of data for half-lives of proton emitters still remains a challenge to the ability of nuclear models to reproduce them consistently. These nuclei are far from beta stability line in a region where the validity of current nuclear models is not guaranteed. A nuclear shell model is introduced to the calculation of the nuclear barrier of less deformed proton emitters. The predictions using the proposed model are in good agreement with the data, with the advantage of have used only a single parameter in the model.

  8. Quantum mechanical treatment of the shell-of-influence model

    Matta, M L [Regional Engineering Coll., Kurukshetra (India). Dept. of Physics; Sukheeja, B D [Thapa Engineering Coll., Patiala (India). Dept. of Physics; Narchal, M L [Punjabi Univ., Patiala (India). Dept. of Physics

    1975-10-01

    A quantum mechanical treatment ignoring nuclear exchange interactions has been used to compute steady dynamic nuclear polarization in dilute paramagnetic crystals. The calculation assumes dipolar interaction of a paramagnetic ion with a large number of nuclear spins. The results are in rough agreement with the phenomenological model proposed by T.J. Schmugge and C.D. Jeffries (1965).

  9. Explicit versus Implicit Solvent Modeling of Raman Optical Activity Spectra

    Hopmann, K. H.; Ruud, K.; Pecul, M.; Kudelski, A.; Dračínský, Martin; Bouř, Petr

    2011-01-01

    Roč. 115, č. 14 (2011), s. 4128-4137 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : raman optical activity * lactamide * solvent models Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  10. Finite-volume spectra of the Lee-Yang model

    Bajnok, Zoltan [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Deeb, Omar el [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Physics Department, Faculty of Science, Beirut Arab University (BAU),Beirut (Lebanon); Pearce, Paul A. [School of Mathematics and Statistics, University of Melbourne,Parkville, Victoria 3010 (Australia)

    2015-04-15

    We consider the non-unitary Lee-Yang minimal model M(2,5) in three different finite geometries: (i) on the interval with integrable boundary conditions labelled by the Kac labels (r,s)=(1,1),(1,2), (ii) on the circle with periodic boundary conditions and (iii) on the periodic circle including an integrable purely transmitting defect. We apply φ{sub 1,3} integrable perturbations on the boundary and on the defect and describe the flow of the spectrum. Adding a Φ{sub 1,3} integrable perturbation to move off-criticality in the bulk, we determine the finite size spectrum of the massive scattering theory in the three geometries via Thermodynamic Bethe Ansatz (TBA) equations. We derive these integral equations for all excitations by solving, in the continuum scaling limit, the TBA functional equations satisfied by the transfer matrices of the associated A{sub 4} RSOS lattice model of Forrester and Baxter in Regime III. The excitations are classified in terms of (m,n) systems. The excited state TBA equations agree with the previously conjectured equations in the boundary and periodic cases. In the defect case, new TBA equations confirm previously conjectured transmission factors.

  11. One-dimensional σ-models with N = 5, 6, 7, 8 off-shell supersymmetries

    Gonzales, M.; Toppan, F.; Rojas, M.

    2008-12-01

    We computed the actions for the 1D N = 5 σ-models with respect to the two inequivalent (2, 8, 6) multiplets. 4 supersymmetry generators are manifest, while the constraint originated by imposing the 5-th supersymmetry automatically induces a full N = 8 off-shell invariance. The resulting action coincides in the two cases and corresponds to a conformally flat 2D target satisfying a special geometry of rigid type. To obtain these results we developed a computational method (for Maple 11) which does not require the notion of superfields and is instead based on the nowadays available list of the inequivalent representations of the 1D N-extended supersymmetry. Its application to systematically analyze the σ-models off-shell invariant actions for the remaining N = 5, 6, 7, 8 (k, 8, 8 - k) multiplets, as well as for the N > 8 representations, only requires more cumbersome computations. (author)

  12. Study of nickel nuclei by (p,d) and (p,t) reactions. Shell model interpretation

    Kong-A-Siou, D.-H.

    1975-01-01

    The experimental techniques employed at the Nuclear Science Institute (Grenoble) and at Michigan State University are described. The development of the transition amplitude calculation of the one-or two-nucleon transfer reactions is described first, after which the principle of shell model calculations is outlined. The choices of configuration space and two-body interactions are discussed. The DWBA method of analysis is studied in more detail. The effects of different approximations and the influence of the parameters are examined. Special attention is paid to the j-dependence of the form of the angular distributions, on effect not explained in the standard DWBA framework. The results are analysed and a large section is devoted to a comparative study of the experimental results obtained and those from other nuclear reactions. The spectroscopic data obtained are compared with the results of shell model calculations [fr

  13. Spectroscopy of 215Ra: the shell model and enhanced E3 transitions

    Stuchbery, A.E.; Dracoulis, G.D.; Kibedi, T.; Fabricius, B.; Lane, G.J.; Poletti, A.R.; Baxter, A.M.

    1998-01-01

    Excited states in the N=127 nucleus 215 Ra have been studied using γ-ray and electron spectroscopy following reactions of 13 C on 206 Pb targets. Levels were identified up to spins of ∝61/2 ℎ and excitation energies of ∝6 MeV. Enhanced octupole transitions are a feature of the level scheme. Lifetimes and magnetic moments were measured for several isomeric levels. The level scheme, transition rates and magnetic moments are compared with empirical shell model calculations and multiparticle octupole-coupled shell model calculations. In general, the experimental data are well described, but in comparison with its success in describing enhanced E3 transitions between related states in the radon isotopes, some limitations of the multiparticle octupole-coupling approach are revealed in 215 Ra. (orig.)

  14. Structure of liposome encapsulating proteins characterized by X-ray scattering and shell-modeling

    Hirai, Mitsuhiro; Kimura, Ryota; Takeuchi, Kazuki; Hagiwara, Yoshihiko; Kawai-Hirai, Rika; Ohta, Noboru; Igarashi, Noriyuki; Shimuzu, Nobutaka

    2013-01-01

    Wide-angle X-ray scattering data using a third-generation synchrotron radiation source are presented. Lipid liposomes are promising drug delivery systems because they have superior curative effects owing to their high adaptability to a living body. Lipid liposomes encapsulating proteins were constructed and the structures examined using synchrotron radiation small- and wide-angle X-ray scattering (SR-SWAXS). The liposomes were prepared by a sequential combination of natural swelling, ultrasonic dispersion, freeze-throw, extrusion and spin-filtration. The liposomes were composed of acidic glycosphingolipid (ganglioside), cholesterol and phospholipids. By using shell-modeling methods, the asymmetric bilayer structure of the liposome and the encapsulation efficiency of proteins were determined. As well as other analytical techniques, SR-SWAXS and shell-modeling methods are shown to be a powerful tool for characterizing in situ structures of lipid liposomes as an important candidate of drug delivery systems

  15. Geometric singularities and spectra of Landau-Ginzburg models

    Greene, B.R.; Roan, S.S.; Yau, S.T.

    1991-01-01

    Some mathematical and physical aspects of superconformal string compactification in weighted projective space are discussed. In particular, we recast the path integral argument establishing the connection between Landau-Ginsburg conformal theories and Calabi-Yau string compactification in a geometric framework. We then prove that the naive expression for the vanishing of the first Chern class for a complete intersection (adopted from the smooth case) is sufficient to ensure that the resulting variety, which is generically singular, can be resolved to a smooth Calabi-Yau space. This justifies much analysis which has recently been expended on the study of Landau-Ginzburg models. Furthermore, we derive some simple formulae for the determination of the Witten index in these theories which are complementary to those derived using semiclassical reasoning by Vafa. Finally, we also comment on the possible geometrical significance of unorbifolded Landau-Ginzburg theories. (orig.)

  16. Shell Venster

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  17. A model study of aggregates composed of spherical soot monomers with an acentric carbon shell

    Luo, Jie; Zhang, Yongming; Zhang, Qixing

    2018-01-01

    Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.

  18. [Analysis of the stability and adaptability of near infrared spectra qualitative analysis model].

    Cao, Wu; Li, Wei-jun; Wang, Ping; Zhang, Li-ping

    2014-06-01

    The stability and adaptability of model of near infrared spectra qualitative analysis were studied. Method of separate modeling can significantly improve the stability and adaptability of model; but its ability of improving adaptability of model is limited. Method of joint modeling can not only improve the adaptability of the model, but also the stability of model, at the same time, compared to separate modeling, the method can shorten the modeling time, reduce the modeling workload; extend the term of validity of model, and improve the modeling efficiency. The experiment of model adaptability shows that, the correct recognition rate of separate modeling method is relatively low, which can not meet the requirements of application, and joint modeling method can reach the correct recognition rate of 90%, and significantly enhances the recognition effect. The experiment of model stability shows that, the identification results of model by joint modeling are better than the model by separate modeling, and has good application value.

  19. Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2000-01-01

    A pseudo shell SU(3) model description of normal parity bands in 159 Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompanied by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values

  20. Shell model for time-correlated random advection of passive scalars

    Andersen, Ken Haste; Muratore-Ginanneschi, P.

    1999-01-01

    We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...... noise limit and nonperturbatively by numerical integration. The time correlation of the velocity field is seen to enhance the intermittency of the passive scalar. [S1063-651X(99)07711-9]....

  1. Reexamination of shell model tests of the Porter-Thomas distribution

    Grimes, S.M.

    1983-01-01

    Recent shell model calculations have yielded width amplitude distributions which have apparently not agreed with the Porter-Thomas distribution. This result conflicts with the present experimental evidence. A reanalysis of these calculations suggests that, although correct, they do not imply that the Porter-Thomas distribution will fail to describe the width distributions observed experimentally. The conditions for validity of the Porter-Thomas distribution are discussed

  2. Region of validity of the Thomas–Fermi model with quantum, exchange and shell corrections

    Dyachkov, S A; Levashov, P R; Minakov, D V

    2016-01-01

    A novel approach to calculate thermodynamically consistent shell corrections in wide range of parameters is used to predict the region of validity of the Thomas-Fermi approach. Calculated thermodynamic functions of electrons at high density are consistent with the more precise density functional theory. It makes it possible to work out a semi-classical model applicable both at low and high density. (paper)

  3. Excitation spectra of an effective d-wave model for cuprate superconductivity

    Yamaguchi, M; Ohta, Y; Eder, R

    An exact-diagonalization technique on finite-size clusters is used to study the ground states and some excitation spectra of the two-dimensional effective Fermi-liquid model derived from numerical studies of the t-J model. We show that there is actually a reasonable range of parameter values where

  4. 3D MODELS COMPARISON OF COMPLEX SHELL IN UNDERWATER AND DRY ENVIRONMENTS

    S. Troisi

    2015-04-01

    Full Text Available In marine biology the shape, morphology, texture and dimensions of the shells and organisms like sponges and gorgonians are very important parameters. For example, a particular type of gorgonian grows every year only few millimeters; this estimation was conducted without any measurement instrument but it has been provided after successive observational studies, because this organism is very fragile: the contact could compromise its structure and outliving. Non-contact measurement system has to be used to preserve such organisms: the photogrammetry is a method capable to assure high accuracy without contact. Nevertheless, the achievement of a 3D photogrammetric model of complex object (as gorgonians or particular shells is a challenge in normal environments, either with metric camera or with consumer camera. Indeed, the successful of automatic target-less image orientation and the image matching algorithms is strictly correlated to the object texture properties and of camera calibration quality as well. In the underwater scenario, the environment conditions strongly influence the results quality; in particular, water’s turbidity, the presence of suspension, flare and other optical aberrations decrease the image quality reducing the accuracy and increasing the noise on the 3D model. Furthermore, seawater density variability influences its refraction index and consequently the interior orientation camera parameters. For this reason, the camera calibration has to be performed in the same survey conditions. In this paper, a comparison between the 3D models of a Charonia Tritonis shell are carried out through surveys conducted both in dry and underwater environments.

  5. Corrections to the neutrinoless double-β-decay operator in the shell model

    Engel, Jonathan; Hagen, Gaute

    2009-06-01

    We use diagrammatic perturbation theory to construct an effective shell-model operator for the neutrinoless double-β decay of Se82. The starting point is the same Bonn-C nucleon-nucleon interaction that is used to generate the Hamiltonian for recent shell-model calculations of double-β decay. After first summing high-energy ladder diagrams that account for short-range correlations and then adding diagrams of low order in the G matrix to account for longer-range correlations, we fold the two-body matrix elements of the resulting effective operator with transition densities from the recent shell-model calculation to obtain the overall nuclear matrix element that governs the decay. Although the high-energy ladder diagrams suppress this matrix element at very short distances as expected, they enhance it at distances between one and two fermis, so that their overall effect is small. The corrections due to longer-range physics are large, but cancel one another so that the fully corrected matrix element is comparable to that produced by the bare operator. This cancellation between large and physically distinct low-order terms indicates the importance of a reliable nonperturbative calculation.

  6. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 2

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-10-01

    Model 2 in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. Both the cylinder and the nozzle of model 2 had outside diameters of 10 in., giving a d 0 /D 0 ratio of 1.0, and both had outside diameter/thickness ratios of 100. Sixteen separate loading cases in which one end of the cylinder was rigidly held were analyzed. An internal pressure loading, three mutually perpendicular force components, and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. In addition to these 13 loadings, 3 additional loads were applied to the nozzle (in-plane bending moment, out-of-plane bending moment, and axial force) with the free end of the cylinder restrained. The experimental stress distributions for each of the 16 loadings were obtained using 152 three-gage strain rosettes located on the inner and outer surfaces. All the 16 loading cases were also analyzed theoretically using a finite-element shell analysis. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good general agreement, and it is felt that the analysis would be satisfactory for most engineering purposes. (auth)

  7. Experimental investigation shell model excitations of 89Zr up to high spin and its comparison with 88,90Zr

    Saha, S.; Palit, R.; Sethi, J.

    2012-01-01

    The excited states of nuclei near N=50 closed shell provide suitable laboratory for testing the interactions of shell model states, possible presence of high spin isomers and help in understanding the shape transition as the higher orbitals are occupied. In particular, the structure of N = 49 isotones (and Z =32 to 46) with one hole in N=50 shell gap have been investigated using different reactions. Interestingly, the high spin states in these isotones have contribution from particle excitations across the respective proton and neutron shell gaps and provide suitable testing ground for the prediction of shell model interactions describing theses excitations across the shell gap. In the literature, extensive study of the high spin states of heavier N = 49 isotones starting with 91 Mo up to 95 Pd are available. Limited information existed on the high spin states of lighter isotones. Therefore, the motivation of the present work is to extend the high spin structure of 89 Zr and to characterize the structure of these levels through comparison with the large scale shell model calculations based on two new residual interactions in f 5/2 pg 9/2 model space

  8. The geometric content of the interacting boson model for molecular spectra

    Levit, S.; Smilansky, U.

    1981-12-01

    The recently proposed algebraic model for collective spectra of diatomic molecules is analysed in terms of conventional geometrical degrees of freedom. We present a mapping of the algebraic Hamiltonian onto an exactly solvable geometrical Hamiltonian with the Morse potential. This mapping explains the success of the algebraic model in reproducing the low lying part of molecular spectra. At the same time the mapping shows that the expression for the dipole transition operator in terms of boson operators differs from the simplest IBM expression and in general must include many-body boson terms. The study also provides an insight into the problem of possible interpretations of the bosons in the nuclear IBM. (author)

  9. Test of the fermion dynamical symmetry model microscopy in the sd shell

    Halse, P.

    1987-01-01

    The recently formulated fermion dynamical symmetry model treats low-lying collective levels as states classified in a pseudo-orbit pseudo-spin (k-i) basis having either k = 1 and zero i seniority, or i = (3/2) and zero k seniority. The validity of this suggestion, which has not previously been subjected to a microscopic examination, is determined for even-even nuclei in the sd shell, for which the model is phenomenologically successful, by comparing these states with the eigenfunctions of a realistic Hamiltonian. Most low-lying levels are almost orthogonal to the fermion dynamical symmetry model zero seniority subspaces

  10. Electromagnetic and weak observables in the context of the shell model

    Wildenthal, B.H.

    1984-01-01

    Wave functions for A = 17-39 nuclei have been obtained from diagonalizations of a single Hamiltonian formulation in the complete sd-shell configuration space for each NTJ system. These wave functions are used to generate the one-body density matrices corresponding to weak and electromagnetic transitions and moments. These densities are combined with different assumptions for the single-particle matrix elements of the weak and electromagnetic operators to produce theoretical matrix elements. The predictions are compared with experiment to determine, in some ''linearly dependent'' fashion, the correctness of the wave functions themselves, the optimum values of the single-particle matrix elements, and the viability of the overall shell-model formulation. (author)

  11. Fragmentation of single-particle strength and the validity of the shell model

    Brand, M.G.E.; Rijsdijk, G.A.; Muller, F.A.; Allaart, K.; Dickhoff, W.H.

    1991-01-01

    The problem of missing spectroscopic strength in proton knock-out reactions is addressed by calculating this strength with a realistic interaction up to about a hundred MeV missing energy. An interaction suitably modified for short-range correlations (G-matrix) is employed in the calculation of the self-energy including all orbitals up to and including three major shells above the Fermi level for protons. The spectroscopic strength is obtained by solving the Dyson equation for the Green function with a self-energy up to second order in the interaction. Results for 48 Ca and 90 Zr are compared with recent (e,e'p) data. The calculated strength overestimates the data by about 10-15% of the independent particle shell-model (IPSM) sum rule. This is in accordance with what is expected from depletions calculated in infinite nuclear matter. Inclusion of higher order terms into the self-energy, especially the correlated motion of particles and holes, is found to be necessary to reproduce the observed fragmentation of strength in the low-energy region. The widths of the strength distributions compare well with empirical formulas which have been deduced from optical potentials. The validity of the conventional shell-model picture is connected with the relevance of Landau's quasiparticle picture for strongly interacting Fermi systems. (orig.)

  12. Atomic physics modeling of transmission spectra of Sc-doped aerogel foams to support OMEGA experiments

    Johns, H. M., E-mail: hjohns@lanl.gov; Lanier, N. E.; Kline, J. L.; Fontes, C. J.; Perry, T. S.; Fryer, C. L.; Sherrill, M. E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87544 (United States); Brown, C. R. D.; Morton, J. W. [AWE Aldermaston, Berkshire, Reading RG7 4PR (United Kingdom); Hager, J. D. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87544 (United States); Lockheed-Martin, 497 Electronics Parkway, Syracuse, New York 13221 (United States)

    2016-11-15

    We present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi{sub 6}O{sub 12} at 75 mg/cm{sup 3} density). We have determined that in the 50-200 eV T{sub e} range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for T{sub e} = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power reveals spectral sensitivity to T{sub e} changes of ∼3 eV.

  13. Spectroscopic information on light halo - nuclei within the framework of multiparticle shell model

    Khaydarov, R.R.

    2004-09-01

    Aim of the inquiry: to develop the potential approach within the framework of multiparticle shell model; to obtain analytical expressions for a wave function and equations for widths off sub-barrier resonance states; to apply the theoretical approach for obtaining properties of 5 He, 5 Li, 8 B and 11 N nuclei; to estimate values of root-mean-square radiuses, radial density of nucleons, magnetic dipole and electrical quadrupole moments and spectroscopic information for 8 B and 8 Li with use of a method of expansion on functions of Storm - Liouville; to estimate the contribution of 2p - shell of 13 C and process of exchange replacement to the astrophysical S-factor of 13 C (α, n) 16 O reaction. Method of the research: theoretical approaches within the framework of multiparticle shell model. Achieved results and their novelty: new theoretical approach allowing to describe correctly the experimental static characteristics of sub-barrier one-particle resonance states in of 5 He, 5 Li, 8 B and 11 N light nuclei has been developed. Structure of 8 B and 8 Li light mirror nuclei with use of the approach for the description of one-particle resonance states based on the method of expansion on functions of Storm - Liouville has been investigated; The spectroscopic information for proton halo in 8 B and values of the magnetic dipole and electric quadrupole moments of 8 B and 8 Li with use of technique of genealogical coefficients have been obtained. The contribution of 2p - shell of 13 C (α, n) 16 O reaction has been estimated. (author)

  14. Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements

    Caty, O.; Maire, E.; Youssef, S.; Bouchet, R.

    2008-01-01

    Closed-cell cellular materials exhibit several interesting properties. These properties are, however, very difficult to simulate and understand from the knowledge of the cellular microstructure. This problem is mostly due to the highly complex organization of the cells and to their very fine walls. X-ray tomography can produce three-dimensional (3-D) images of the structure, enabling one to visualize locally the damage of the cell walls that would result in the structure collapsing. These data could be used for meshing with continuum elements of the structure for finite element (FE) calculations. But when the density is very low, the walls are fine and the meshes based on continuum elements are not suitable to represent accurately the structure while preserving the representativeness of the model in terms of cell size. This paper presents a shell FE model obtained from tomographic 3-D images that allows bigger volumes of low-density closed-cell cellular materials to be calculated. The model is enriched by direct thickness measurement on the tomographic images. The values measured are ascribed to the shell elements. To validate and use the model, a structure composed of stainless steel hollow spheres is firstly compressed and scanned to observe local deformations. The tomographic data are also meshed with shells for a FE calculation. The convergence of the model is checked and its performance is compared with a continuum model. The global behavior is compared with the measures of the compression test. At the local scale, the model allows the local stress and strain field to be calculated. The calculated deformed shape is compared with the deformed tomographic images

  15. HR Del REMNANT ANATOMY USING TWO-DIMENSIONAL SPECTRAL DATA AND THREE-DIMENSIONAL PHOTOIONIZATION SHELL MODELS

    Moraes, Manoel; Diaz, Marcos

    2009-01-01

    The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in Hα, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10 -4 M sun is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.

  16. Drag Coefficient Comparisons Between Observed and Model Simulated Directional Wave Spectra Under Hurricane Conditions

    2016-04-19

    the Wave Model (WAM; Hasselmann t al., 1988 ), and Simulating Waves Nearshore ( SWAN ; Booij et al., 999...of the circle represents the maximum wind speed of the hurricane. The black lines in the vicinity of the hurricane track represent the aircraft...contour maps and black contour lines for the model spec- ra at the same location. Then, the model spectra energy exceeds RA pk are plotted as

  17. Theoretical spectroscopy and the fp shell

    Poves, A.; Zuker, A.

    1980-01-01

    The recently developed quasiconfiguration method is applied to fp shell nuclei. Second order degenerate perturbation theory is shown to be sufficient to produce, for low lying states, the same results as large diagonalizations in the f(7/2)p(3/2)p(1/2)f(5/2)sup(n) full space. due to the operation of linked cluster mechanisms. Realistic interactions with minimal monopole changes are shown to be successful in reproducing spectra, binding energies, quadrupole moments and transition rates. Large shell model spaces are seen to exhibit typical many body behaviour. Quasiconfigurations allow insight into the underlying coupling schemes

  18. Vibration test of spherical shell structure and replacing method into mathematical model

    Takayanagi, M.; Suzuki, S.; Okamura, T.; Haas, E.E.; Krutzik, N.J.

    1989-01-01

    To verify the beam-type and oval-type vibratory characteristics of a spherical shell structure, two test specimens were made and vibration tests were carried out. Results of these tests are compared with results of detailed analyses using 3-D FEM and 2-D axisymmetric FEM models. The analytical results of overall vibratory characteristics are in good agreement with the test results, has been found that the effect of the attached mass should be considered in evaluating local vibration. The replacing method into equivalent beam model is proposed

  19. Exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model

    Divari, P.C.; Vergados, J.D.; Kosmas, T.S.; Skouras, L.D.

    2001-01-01

    A comprehensive study of the exotic (μ - ,e + ) conversion in 27 Al, 27 Al(μ - ,e + ) 27 Na is presented. The relevant operators are deduced assuming one-pion and two-pion modes in the framework of intermediate neutrino mixing models, paying special attention to the light neutrino case. The total rate is calculated by summing over partial transition strengths for all kinematically accessible final states derived with s-d shell model calculations employing the well-known Wildenthal realistic interaction

  20. Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants

    Beck, R.; Drury, L.O.; Voelk, H.J.; Bogdan, T.J.

    1985-01-01

    The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium

  1. Modelling by the SPH method of the impact of a shell containing a fluid

    Maurel, B.

    2008-01-01

    The aim of this work was to develop a numerical simulation tool using a mesh-less approach, able to simulate the deformation and the rupture of thin structures under the impact of a fluid. A model of thick mesh-less shell (Mindlin-Reissner) based on the SPH method has then been carried out. A contact algorithm has moreover been perfected for the interactions between the structure and the fluid, it is modelled too by the SPH method. These studies have been carried out and been included in the CEA Europlexus fast dynamics software. (O.M.)

  2. Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants

    Beck, R.; Drury, L. O.; Voelk, H. J.; Bogdan, T. J.

    1985-01-01

    The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium.

  3. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Teruya E.

    2014-03-01

    Full Text Available It is evidence for an extension of the Standard Model in particle physics, if static electric dipole moments (EDMs are measured for any elementary particle. The nuclear EDM arises mainly from two sources: one comes from asymmetric charge distribution in a nucleus and the other is due to the nucleon intrinsic EDM. We estimate the nuclear EDMs from two sources for the 1/21+ states in Xe isotopes by a shell model approach using full orbitals between magic numbers 50 and 82.

  4. Shell and isotopic effects in neutron interaction with nuclei. [Optical model and nucleus asymmetry correlations

    Pasechnik, M V

    1978-01-01

    Major results of investigations into the shell structure of deformed nuclei with the number of neutrons of approximately 100, as well as new isotopic effects in the inelastic scattering of fast neutrons with nuclei are reported. The experiments conducted at the WWR-M research reactor have shown a substantial dependence of the nuclear excited energy-level density on the mass number and the number of neutrons. The fact resulted in a conclusion that the deformed nuclei possess filled shells, that was an incentive to revise the whole nuclear shell concept. In particular it was established that the property of magicity rests not only on the sphericity of nuclei but it may be also observed in strongly deformed nuclei. The isotope-spin dependence of the nuclear potential was studied at the AG-5 pulse electrostatic generator. The parameters of the potential were determined by comparing the experimental data on inelastic scattering and polarization of fast neutrons by nuclei from /sup 48/Ti to /sup 209/Bi with the calculations in terms of the optical model. Simple correlations were established between the optical potential and the nucleus asymmetry parameter ..cap alpha..=N-Z/A in wide ranges of mass numbers and neutron energy.

  5. Sulfur Speciation of Crude Oils by Partial Least Squares Regression Modeling of Their Infrared Spectra

    de Peinder, P.; Visser, T.; Wagemans, R.W.P.; Blomberg, J.; Chaabani, H.; Soulimani, F.; Weckhuysen, B.M.

    2013-01-01

    Research has been carried out to determine the feasibility of partial least-squares regression (PLS) modeling of infrared (IR) spectra of crude oils as a tool for fast sulfur speciation. The study is a continuation of a previously developed method to predict long and short residue properties of

  6. Model-independent separation of poorly resolved hypperfine split spectra by a linear combination method

    Nagy, D.L.; Dengler, J.; Ritter, G.

    1988-01-01

    A model-independent evaluation of the components of poorly resolved Moessbauer spectra based on a linear combination method is possible if there is a parameter as a function of which the shape of the individual components do not but their intensities do change and the dependence of the intensities on this parameter is known. The efficiency of the method is demonstrated on the example of low temperature magnetically split spectra of the high-T c superconductor YBa 2 (Cu 0.9 Fe 0 .1 ) 3 O 7-y . (author)

  7. Ionization potential depression and optical spectra in a Debye plasma model

    Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich

    2017-11-01

    We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.

  8. TWO-DIMENSIONAL APPROXIMATION OF EIGENVALUE PROBLEMS IN SHELL THEORY: FLEXURAL SHELLS

    2000-01-01

    The eigenvalue problem for a thin linearly elastic shell, of thickness 2e, clamped along its lateral surface is considered. Under the geometric assumption on the middle surface of the shell that the space of inextensional displacements is non-trivial, the authors obtain, as ε→0,the eigenvalue problem for the two-dimensional"flexural shell"model if the dimension of the space is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the spectra of both flexural and membrane shells. The method consists of rescaling the variables and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable a priori estimates for the scaled eigenvalues.

  9. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data.

  10. Approximate symmetries in atomic nuclei from a large-scale shell-model perspective

    Launey, K. D.; Draayer, J. P.; Dytrych, T.; Sun, G.-H.; Dong, S.-H.

    2015-05-01

    In this paper, we review recent developments that aim to achieve further understanding of the structure of atomic nuclei, by capitalizing on exact symmetries as well as approximate symmetries found to dominate low-lying nuclear states. The findings confirm the essential role played by the Sp(3, ℝ) symplectic symmetry to inform the interaction and the relevant model spaces in nuclear modeling. The significance of the Sp(3, ℝ) symmetry for a description of a quantum system of strongly interacting particles naturally emerges from the physical relevance of its generators, which directly relate to particle momentum and position coordinates, and represent important observables, such as, the many-particle kinetic energy, the monopole operator, the quadrupole moment and the angular momentum. We show that it is imperative that shell-model spaces be expanded well beyond the current limits to accommodate particle excitations that appear critical to enhanced collectivity in heavier systems and to highly-deformed spatial structures, exemplified by the second 0+ state in 12C (the challenging Hoyle state) and 8Be. While such states are presently inaccessible by large-scale no-core shell models, symmetry-based considerations are found to be essential.

  11. Predictive modelling of the dielectric response of plasmonic substrates: application to the interpretation of ellipsometric spectra

    Pugliara, A.; Bayle, M.; Bonafos, C.; Carles, R.; Respaud, M.; Makasheva, K.

    2018-03-01

    A predictive modelling of plasmonic substrates appropriate to read ellipsometric spectra is presented in this work. We focus on plasmonic substrates containing a single layer of silver nanoparticles (AgNPs) embedded in silica matrices. The model uses the Abeles matrix formalism and is based on the quasistatic approximation of the classical Maxwell-Garnett mixing rule, however accounting for the electronic confinement effect through the damping parameter. It is applied on samples elaborated by: (i) RF-diode sputtering followed by Plasma Enhanced Chemical Vapor Deposition (PECVD) and (ii) Low Energy Ion Beam Synthesis (LE-IBS), and represents situations with increasing degree of complexity that can be accounted for by the model. It allows extraction of the main characteristics of the AgNPs population: average size, volume fraction and distance of the AgNPs layer from the matrix free surface. Model validation is achieved through comparison with results obtained from transmission electron microscopy approving for its applicability. The advantages and limitations of the proposed model are discussed after eccentricity-based statistical analysis along with further developments related to the quality of comparison between the model-generated spectra and the experimentally-recorded ellipsometric spectra.

  12. Analytical Model of Doppler Spectra of Light Backscattered from Rotating Convex Bodies of Revolution in the Global Cartesian Coordinate System

    Yan-Jun, Gong; Zhen-Sen, Wu; Jia-Ji, Wu

    2009-01-01

    We present an analytical model of Doppler spectra in backscattering from arbitrary rough convex bodies of revolution rotating around their axes in the global Cartesian coordinate system. This analytical model is applied to analyse Doppler spectra in backscatter from two cones and two cylinders, as well as two ellipsoids of revolution. We numerically analyse the influences of attitude and geometry size of objects on Doppler spectra. The analytical model can give contribution of the surface roughness, attitude and geometry size of convex bodies of revolution to Doppler spectra and may contribute to laser Doppler velocimetry as well as ladar applications

  13. Magnetization of the Ising model on the Sierpinski pastry-shell

    Chame, Anna; Branco, N. S.

    1992-02-01

    Using a real-space renormalization group approach, we calculate the approximate magnetization in the Ising model on the Sierpinski Pastry-shell. We consider, as an approximation, only two regions of the fractal: the internal surfaces, or walls (sites on the border of eliminated areas), with coupling constants JS, and the bulk (all other sites), with coupling constants Jv. We obtain the mean magnetization of the two regions as a function of temperature, for different values of α= JS/ JV and different geometric parameters b and l. Curves present a step-like behavior for some values of b and l, as well as different universality classes for the bulk transition.

  14. Application of the Kishimoto-Tamura boson expansion theory to a single-j shell model

    Li, C.T.; Pedrocchi, V.G.; Tamura, T.

    1985-01-01

    The boson expansion theory of Kishimoto and Tamura is applied to a single-j shell model. It is shown that this theory is quite accurate, giving results that agree very closely with those of the exact fermion calculations. The fast convergence of the boson expansion is also demonstrated. A critical discussion is then made of an earlier paper by Arima, in which he stated that the Kishimoto-Tamura theory gives rise to very poor numerical results. The source of the trouble encountered by Arima is unmasked

  15. Recent developments of the projected shell model based on many-body techniques

    Sun Yang

    2015-01-01

    Full Text Available Recent developments of the projected shell model (PSM are summarized. Firstly, by using the Pfaffian algorithm, the multi-quasiparticle configuration space is expanded to include 6-quasiparticle states. The yrast band of 166Hf at very high spins is studied as an example, where the observed third back-bending in the moment of inertia is well reproduced and explained. Secondly, an angular-momentum projected generate coordinate method is developed based on PSM. The evolution of the low-lying states, including the second 0+ state, of the soft Gd, Dy, and Er isotopes to the well-deformed ones is calculated, and compared with experimental data.

  16. Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei

    Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.

    2011-01-01

    A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the 125,127,129,131,133 Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J (2) , kinetic moment of inertia J (1) , the crossing of rotational bands, and backbending effects.

  17. Zero-point energies in the two-center shell model. II

    Reinhard, P.-G.

    1978-01-01

    The zero-point energy (ZPE) contained in the potential-energy surface of a two-center shell model (TCSM) is evaluated. In extension of previous work, the author uses here the full TCSM with l.s force, smoothing and asymmetry. The results show a critical dependence on the height of the potential barrier between the centers. The ZPE turns out to be non-negligible along the fission path for 236 U, and even more so for lighter systems. It is negligible for surface quadrupole motion and it is just on the fringe of being negligible for motion along the asymmetry coordinate. (Auth.)

  18. Zero-point energies in the two-center shell model

    Reinhard, P.G.

    1975-01-01

    The zero-point energies (ZPE) contained in the potential-energy surfaces (PES) of a two-center shell model are evaluated. For the c.m. motion of the system as a whole the kinetic ZPE was found to be negligible, whereas it varies appreciably for the rotational and oscillation modes (about 5-9MeV). For the latter two modes the ZPE also depends sensitively on the changing pairing structure, which can induce strong local fluctuations, particularly in light nuclei. The potential ZPE is very small for heavy nuclei, but might just become important in light nuclei. (Auth.)

  19. Accounting of inter-electron correlations in the model of mobile electron shells

    Panov, Yu.D.; Moskvin, A.S.

    2000-01-01

    One studied the basic peculiar features of the model for mobile electron shells for multielectron atom or cluster. One offered a variation technique to take account of the electron correlations where the coordinates of the centre of single-particle atomic orbital served as variation parameters. It enables to interpret dramatically variation of electron density distribution under anisotropic external effect in terms of the limited initial basis. One studied specific correlated states that might make correlation contribution into the orbital current. Paper presents generalization of the typical MO-LCAO pattern with the limited set of single particle functions enabling to take account of additional multipole-multipole interactions in the cluster [ru

  20. Symmetry analysis of many-body wave functions, with applications to the nuclear shell model

    Novoselsky, A.; Katriel, J.

    1995-01-01

    The weights of the different permutational symmetry components of a nonsymmetry-adapted many-particle wave function are evaluated in terms of the expectation values of the symmetric-group class sums. This facilitates the evaluation of the weights without the construction of a complete set of symmetry adapted functions. Subspace projection operators are introduced, to be used when prior knowledge about the symmetry-species composition of a wave function is available. The permutational weight analysis of a recursively angular-momentum coupled (shell model) wave function is presented as an illustration

  1. Shell-model calculations of beta-decay rates for s- and r-process nucleosyntheses

    Takahashi, K.; Mathews, G.J.; Bloom, S.D.

    1985-01-01

    Examples of large-basis shell-model calculations of Gamow-Teller β-decay properties of specific interest in the astrophysical s- and r- processes are presented. Numerical results are given for: (1) the GT-matrix elements for the excited state decays of the unstable s-process nucleus 99 Tc; and (2) the GT-strength function for the neutron-rich nucleus 130 Cd, which lies on the r-process path. The results are discussed in conjunction with the astrophysics problems. 23 refs., 3 figs

  2. Fixed J spectral distributions in large shell model spaces. Pt. 3

    Jacquemin, C.; Auger, G.; Quesne, C.

    1982-01-01

    A method is developed to exactly calculate the fixed J quasiparticle centroid energies and partial widths. Some results obtained in the even-mass lead isotopes with various interactions are analysed. Fixed J quasiparticle distributions are used to predict an upper limit for the deviations between the quasiparticle approximation and the shell model results for the low-energy levels. The influence of the states with a high quasiparticle number in the low-energy region is seen to strongly depend upon the interaction. The importance of the dimensionalities and the internal widths is explaining the admixtures is stressed. (orig.)

  3. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Teruya Eri

    2015-01-01

    Full Text Available Existence of the electric dipole moment (EDM is deeply related with time-reversal invariance. The EDMof a diamagnetic atom is mainly induced by the nuclear Schiff moment. After carrying out the shell model calculations to obtain wavefunctions for Xe isotopes, we evaluate nuclear Schiff moments for Xe isotopes to estimate their atomic EDMs. We estimate the contribution from each single particle orbital for the Schiff moment. It is found that the contribution on the Schiff moment is very different from orbital to orbital.

  4. A library of ATMO forward model transmission spectra for hot Jupiter exoplanets

    Goyal, Jayesh M.; Mayne, Nathan; Sing, David K.; Drummond, Benjamin; Tremblin, Pascal; Amundsen, David S.; Evans, Thomas; Carter, Aarynn L.; Spake, Jessica; Baraffe, Isabelle; Nikolov, Nikolay; Manners, James; Chabrier, Gilles; Hebrard, Eric

    2018-03-01

    We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547-2710 K). This model grid has been developed using a 1D radiative-convective-chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and χ2 maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from ˜0.56 to ˜1-1.3 for equilibrium temperatures from ˜900 to ˜2600 K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (˜460 000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations.

  5. A Library of ATMO Forward Model Transmission Spectra for Hot Jupiter Exoplanets

    Goyal, Jayesh M.; Mayne, Nathan; Sing, David K.; Drummond, Benjamin; Tremblin, Pascal; Amundsen, David S.; Evans, Thomas; Carter, Aarynn L.; Spake, Jessica; Baraffe, Isabelle; hide

    2017-01-01

    We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547-2710 K). This model grid has been developed using a 1D radiative-convective-chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and X(exp 2) maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from approximately 0.56 to approximately 1-1.3 for equilibrium temperatures from approximately 900 to approximately 2600 K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (approximately 460 000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations.

  6. A layered shell containing patches of piezoelectric fibers and interdigitated electrodes: Finite element modeling and experimental validation

    Nielsen, Bo Bjerregaard; Nielsen, Martin S.; Santos, Ilmar

    2017-01-01

    The work gives a theoretical and experimental contribution to the problem of smart materials connected to double curved flexible shells. In the theoretical part the finite element modeling of a double curved flexible shell with a piezoelectric fiber patch with interdigitated electrodes (IDEs......) is presented. The developed element is based on a purely mechanical eight-node isoparametric layered element for a double curved shell, utilizing first-order shear deformation theory. The electromechanical coupling of piezoelectric material is added to all elements, but can also be excluded by setting...... the piezoelectric material properties to zero. The electrical field applied via the IDEs is aligned with the piezoelectric fibers, and hence the direct d33 piezoelectric constant is utilized for the electromechanical coupling. The dynamic performance of a shell with a microfiber composite (MFC) patch...

  7. Optimization of tungsten x-ray spectra for digital mammography: a comparison of model to experiment

    Andre, Michael P.; Spivey, Brett A.

    1997-05-01

    Tungsten (W) target x-rays tubes are being studied for use in digital mammography to improve x-ray flux, reduce noise and increase tube heat capacity. A parametric model was developed for digital mammography to evaluate optimization of x-ray spectra for a particular sensor. The model computes spectra and mean glandular doses (MGD) for combinations of W target, beam filters, kVp, breast type and thickness. Two figures of merit were defined: (signal/noise)2/MGD and spectral quantum efficiency; these were computed as a means to approach optimization of object contrast. The model is derived from a combination of classic equations, XCOM from NBS, and published data. X-ray spectra were calculated and measured for filters of Al, Sn, Rh, Mo and Ag on a Eureka tube. (Signal/noise)2/MGD was measured for a filtered W target tube and a digital camera employing CsI scintillator optically coupled to a CCD for which the detective quantum efficiency (DQE) was known. A 3-mm thick acrylic disk was imaged on thickness of 3-8 cm of acrylic and the results were compared to the predictions of the model. The relative error between predicted and measured spectra was +/- 2 percent from 24 to 34 kVp. Calculated MGD as a function of breast thickness, half-value layer and beam filter compares very well to published data. Best performance was found for the following combinations: Mo filter with 30 mm breast, Ag filter with 45 mm, Sn filter for 60 mm, and Al filter for 75 mm thick breast. The parametric model agrees well with measurement and provides a means to explore optimum combinations of kVp and beam filter. For a particular detector, this data may be used with the DQE to estimate total system signal-to-noise ratio for a particular imaging task.

  8. Evaluation of the spectra of baryons containing two heavy quarks in a bag model

    He Daheng; Qian Ke; Ding Yibing; Li Xueqian; Shen Pengnian

    2004-01-01

    In this work, we evaluate the mass spectra of baryons which consist of two heavy quarks and one light quark in the MIT bag model. The two heavy quarks constitute a heavy scalar or axial-vector diquark. Concretely, we calculate the spectra of vertical bar q(QQ ' )> 1/2 and vertical bar q(QQ ' )> 3/2 where Q and Q ' stand for b and/or c quarks. Especially, for vertical bar q(bc)> 1/2 there can be a mixing between vertical bar q(bc) 0 > 1/2 and vertical bar q(bc) 1 > 1/2 where the subscripts 0 and 1 refer to the spin state of the diquark (bc), the mixing is not calculable in the framework of quantum mechanics as the potential model is employed, but can be evaluated by the quantum field theory. Our numerical results indicate that the mixing is sizable

  9. Angle-correlated cross sections in the framework of the continuum shell model

    Moerschel, K.P.

    1984-01-01

    In the present thesis in the framework of the continuum shell modell a concept for the treatment of angle-correlated cross sections was developed by which coincidence experiments on electron scattering on nuclei are described. For this the existing Darmstadt continuum-shell-model code had to be extended to the calculation of the correlation coefficients in which nuclear dynamics enter and which determine completely the angle-correlated cross sections. Under inclusion of the kinematics a method for the integration over the scattered electron was presented and used for the comparison with corresponding experiments. As application correlation coefficients for the proton channel in 12 C with 1 - and 2 + excitations were studied. By means of these coefficients finally cross sections for the reaction 12 C (e,p) 11 B could be calculated and compared with the experiment whereby the developed methods were proved as suitable to predict correctly both the slope and the quantity of the experimental cross sections. (orig.) [de

  10. Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt

    Gong Haixia

    2017-01-01

    Full Text Available In order to solve the problem of large trim and heel angles of the wrecked submarine, the double spherical shell rotating docking skirt is studied. According to the working principle of the rotating docking skirt, and the fixed skirt, the directional skirt, the angle skirt are simplified as the connecting rod. Therefore, the posture equation and kinematics model of the docking skirt are deduced, and according to the kinematics model, the angle of rotation of the directional skirt and the angle skirt is obtained when the wrecked submarine is in different trim and heel angles. Through the directional skirt and angle skirt with the matching rotation can make docking skirt interface in the 0°~2γ range within the rotation, to complete the docking skirt and the wrecked submarine docking. The MATLAB software is used to visualize the rotation angle of fixed skirt and directional skirt, which lays a good foundation for the development of the control of the double spherical shell rotating docking skirt in future.

  11. Projected Shell Model Description of Positive Parity Band of 130Pr Nucleus

    Singh, Suram; Kumar, Amit; Singh, Dhanvir; Sharma, Chetan; Bharti, Arun; Bhat, G. H.; Sheikh, J. A.

    2018-02-01

    Theoretical investigation of positive parity yrast band of odd-odd 130Pr nucleus is performed by applying the projected shell model. The present study is undertaken to investigate and verify the very recently observed side band in 130Pr theoretically in terms of quasi-particle (qp) configuration. From the analysis of band diagram, the yrast as well as side band are found to arise from two-qp configuration πh 11/2 ⊗ νh 11/2. The present calculations are viewed to have qualitatively reproduced the known experimental data for yrast states, transition energies, and B( M1) / B( E2) ratios of this nucleus. The recently observed positive parity side band is also reproduced by the present calculations. The energy states of the side band are predicted up to spin 25+, which is far above the known experimental spin of 18+ and this could serve as a motivational factor for future experiments. In addition, the reduced transition probability B( E2) for interband transitions has also been calculated for the first time in projected shell model, which would serve as an encouragement for other research groups in the future.

  12. Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models

    Saraswati, Teguh Endah; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri

    2017-01-01

    Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH 3 ). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory. (paper)

  13. Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models

    Endah Saraswati, Teguh; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri

    2017-01-01

    Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH3). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory.

  14. Symmetry chains for the atomic shell model. I. Classification of symmetry chains for atomic configurations

    Gruber, B.; Thomas, M.S.

    1980-01-01

    In this article the symmetry chains for the atomic shell model are classified in such a way that they lead from the group SU(4l+2) to its subgroup SOsub(J)(3). The atomic configurations (nl)sup(N) transform like irreducible representations of the group SU(4l+2), while SOsub(J)(3) corresponds to total angular momentum in SU(4l+2). The defining matrices for the various embeddings are given for each symmetry chain that is obtained. These matrices also define the projection onto the weight subspaces for the corresponding subsymmetries and thus relate the various quantum numbers and determine the branching of representations. It is shown in this article that three (interrelated) symmetry chains are obtained which correspond to L-S coupling, j-j coupling, and a seniority dependent coupling. Moreover, for l<=6 these chains are complete, i.e., there are no other chains but these. In articles to follow, the symmetry chains that lead from the group SO(8l+5) to SOsub(J)(3) will be discussed, with the entire atomic shell transforming like an irreducible representation of SO(8l+5). The transformation properties of the states of the atomic shell will be determined according to the various symmetry chains obtained. The symmetry lattice discussed in this article forms a sublattice of the larger symmetry lattice with SO(8l+5) as supergroup. Thus the transformation properties of the states of the atomic configurations, according to the various symmetry chains discussed in this article, will be obtained too. (author)

  15. Spectra of nuclei 9Be and 9B in a three-cluster microscopic model

    Nesterov, A.V.; Vasilevsky, V.S.; Kovalenko, T.P.

    2012-01-01

    Within a microscopic three-cluster α + α + n(p) model, which is a three-cluster version of the algebraic approach to the Resonating Group Method (RGM), we consider the spectra of the low-lying states of mirror nuclei 9 Be and 9 B in the energy range from zero to 5 MeV excitation. The obtained theoretical results are compared with the available experimental data

  16. Computer model for calculating gamma-ray pulse-height spectra for logging applications

    Evans, M.L.

    1981-01-01

    A generalized computer model has been devised to simulate the emission, transport, and detection of natural gamma radiation from various logging environments. The model yields high-resolution gamma-ray pulse-height spectra that can be used to correct both gross gamma and spectral gamma-ray logs. The technique can help provide corrections to airborne and surface radiometric survey logs for the effects of varying altitude, formation composition, and overburden. Applied to borehole logging, the model can yield estimates of the effects of varying borehole fluid and casing attenuations, as well as varying formation porosity and saturation

  17. Generation of floor response spectra for a model structure of nuclear power plant

    Vaidyanathan, C.V.; Kamatchi, P.; Ravichandran, R.; Lakshmanan, N.

    2003-01-01

    The importance of Nuclear power plants and the consequences of a nuclear accident require that the nuclear structures be designed for the most severe environmental conditions. Earthquakes constitutes major design consideration for the system, structures and equipment of a nuclear power plant. The design of structures on ground is based on the ground response spectra. Many important parts of a nuclear power plant facility are attached to the principal parts of the structure and respond in a manner determined by the structural response rather than by the general ground motion to which the structure is supported. Hence the seismic response of equipment is generally based on the response spectrum of the floor on which it is mounted. In this paper such floor response spectra have been generated at different nodes of a chosen model structure of a nuclear power plant. In the present study a detailed nonlinear time history analysis has been carried out on the mathematical model of the chosen Nuclear Power Plant model structure with the spectrum compatible time history. The acceleration response results of the time history analysis has been used in the spectral analysis and the response spectra are generated. Further peak broadening has been done to account for uncertainties in the material properties and soil characteristics. (author)

  18. Study of the tensor correlation in oxygen isotopes using mean-field-type and shell model methods

    Sugimoto, Satoru

    2007-01-01

    The tensor force plays important roles in nuclear structure. Recently, we have developed a mean-field-type model which can treat the two-particle-two-hole correlation induced by the tensor force. We applied the model to sub-closed-shell oxygen isotopes and found that an sizable attractive energy comes from the tensor force. We also studied the tensor correlation in 16O using a shell model including two-particle-two-hole configurations. In this case, quite a large attractive energy is obtained for the correlation energy from the tensor force

  19. X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. I. CONSTANT DENSITY ATMOSPHERES

    Garcia, J.; Kallman, T. R.

    2010-01-01

    We present new models for illuminated accretion disks, their structure, and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by simultaneously solving the equations of radiative transfer, energy balance, and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell processes of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Kα line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  20. Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.

    Travis S Hughes

    Full Text Available Fluorine (19F NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC to objectively determine which model (number of peaks would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/.

  1. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  2. A study of the Gaussian overlap approach in the two-center shell model

    Reinhard, P.-G.

    1976-01-01

    The Gaussian overlap approach (GOA) to the generator coordinate method (GCM) is carried through up to fourth order in the derivatives. By diagonalizing the norm overlap, a collective Schroedinger equation is obtained. The potential therein contains the usual potential energy surface (PES) plus correction terms, which subtract the zero-point energies (ZPE) is the PES. The formalism is applied to BCS states obtained from a two-center shell model (TCSM). To understand the crucial role of the pairing contributions in the GOA a schematic picture, the multi-level model, is constructed. An explicit numerical study of the convergence of the GOA is given for the TCSM, with the result that the GOA seems to be justified for medium and heavy nuclei but critical for light nuclei. (Auth.)

  3. In-medium no-core shell model for ab initio nuclear structure calculations

    Gebrerufael, Eskendr

    2017-01-01

    In this work, we merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the multi-reference in-medium similarity renormalization group (IM-SRG), to define a novel many-body approach for the comprehensive description of ground and excited states of closed- and open-shell medium-mass nuclei. Building on the key advantages of the two methods - the decoupling of excitations at the many-body level in the IM-SRG, and the exact diagonalization in the NCSM applicable up to medium-light nuclei - their combination enables fully converged no-core calculations for an unprecedented range of nuclei and observables at moderate computational cost. The efficiency and rapid model-space convergence of the new approach make it ideally suited for ab initio studies of ground and low-lying excited states of nuclei up to the medium-mass regime. Interactions constructed within the framework of chiral effective field theory provide an excellent opportunity to describe properties of nuclei from first principles, i.e., rooted in quantum chromodynamics, they overcome the lack of predictive power of phenomenological potentials. The hard core of these interactions causes strong short-range correlations, which we soften by using the similarity-renormalization-group transformation that accelerates the model-space convergence of many-body calculations. Three-nucleon effects, which are mandatory for the correct description of bulk properties of nuclei, are included in our calculations by using the normal-ordered two-body approximation, which has been shown to be sufficient to capture the main effects of the three-nucleon interaction. Using these interactions, we analyze energies of ground and excited states in the carbon and oxygen isotopic chains, where conventional NCSM calculations are still feasible and provide an important benchmark. Furthermore, we study the Hoyle state in 12 C - a three-alpha cluster state that cannot be converged in standard NCSM

  4. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    K. Beier

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  5. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    K. Beier

    1994-08-01

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  6. Modeling Optical Spectra of Large Organic Systems Using Real-Time Propagation of Semiempirical Effective Hamiltonians.

    Ghosh, Soumen; Andersen, Amity; Gagliardi, Laura; Cramer, Christopher J; Govind, Niranjan

    2017-09-12

    We present an implementation of a time-dependent semiempirical method (INDO/S) in NWChem using real-time (RT) propagation to address, in principle, the entire spectrum of valence electronic excitations. Adopting this model, we study the UV/vis spectra of medium-sized systems such as P3B2 and f-coronene, and in addition much larger systems such as ubiquitin in the gas phase and the betanin chromophore in the presence of two explicit solvents (water and methanol). RT-INDO/S provides qualitatively and often quantitatively accurate results when compared with RT- TDDFT or experimental spectra. Even though we only consider the INDO/S Hamiltonian in this work, our implementation provides a framework for performing electron dynamics in large systems using semiempirical Hartree-Fock Hamiltonians in general.

  7. Inner-shell corrections to the Bethe stopping-power formula evaluated from a realistic atomic model

    Inokuti, M.; Manson, S.T.

    1985-01-01

    Generalized oscillator strengths for K- and L-shell ionization have been calculated using a central potential derived from the Hartree-Slater model. In cases in which an ejected electron carries low kinetic energies, sizable differences with hydrogenic-model calculations are evident

  8. Thermal Infrared Spectra of a Suite of Forsterite Samples and Ab-initio Modelling of theirs Spectra

    Maturilli, A.; Stangarone, C.; Helbert, J.; Tribaudino, M.; Prencipe, M.

    2017-12-01

    Forsterite is the dominating component in olivine, a major constituent in ultrafemic rocks, as well as planetary bodies. Messenger X-ray spectrometer has shown that Mg-rich silicate minerals, such as enstatite and forsterite, dominate Mercury's surface (Weider et al 2012). A careful and detailed acquaintance with the forsterite spectral features and their dependence wrt environmental conditions on Mercury is needed to interpret the remote sensing data from previous and forthcoming missions. We propose an experimental vs calculation approach to reproduce and describe the spectral features of forsterite. TIR emissivity measurements are performed by the Planetary Spectroscopy Laboratory (PSL) of DLR. PSL offers the unique capability to measure the emissivity of samples at temperature up to 1000K under vacuum conditions. TIR emissivity and reflectance measurements are performed on 11 olivine samples having a different composition within the forsterite-fayalite series. When available, the sample has been measured in 2 different grain sizes (chameleon-like effects of Mercury surface already observed (Helbert et al. 2013), this study wants to point out the main spectral features due to the composition and temperature. Our results are used to create a theoretical background to interpret the high temperature infrared emissivity spectra from MERTIS onboard the ESA BepiColombo mission to Mercury (Helbert et al. 2010).

  9. Energy spectra of vibron and cluster models in molecular and nuclear systems

    Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.

    2018-03-01

    The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.

  10. CASTHY, Statistical Model for Neutron Cross-Sections and Gamma-Ray Spectra

    Igarasi, Sin-iti; Fukahori, Tokio

    1998-01-01

    Description of program or function: CASTHY calculates neutron cross sections of total, shape elastic scattering and compound nucleus formation with the optical model, and compound elastic, inelastic and capture cross sections by the statistical model. The other cross sections, such as (n,2n), (n,p), (n,f) reactions are treated as cross sections of competing processes, and their sum is given through input data. Capture gamma-ray spectra can also be calculated. The branching ratio for primary transition can be treated in a particular way, if required

  11. Influence of smoothing of X-ray spectra on parameters of calibration model

    Antoniak, W.; Urbanski, P.; Kowalska, E.

    1998-01-01

    Parameters of the calibration model before and after smoothing of X-ray spectra have been investigated. The calibration model was calculated using multivariate procedure - namely the partial least square regression (PLS). Investigations have been performed on an example of six sets of various standards used for calibration of some instruments based on X-ray fluorescence principle. The smoothing methods were compared: regression splines, Savitzky-Golay and Discrete Fourier Transform. The calculations were performed using a software package MATLAB and some home-made programs. (author)

  12. COMPARATIVE SPECTRA OF OXYGEN-RICH VERSUS CARBON-RICH CIRCUMSTELLAR SHELLS: VY CANIS MAJORIS AND IRC +10216 AT 215-285 GHz

    Tenenbaum, E. D.; Dodd, J. L.; Woolf, N. J.; Ziurys, L. M.; Milam, S. N.

    2010-01-01

    A sensitive (1σ rms at 1 MHz resolution ∼3 mK) 1 mm spectral line survey (214.5-285.5 GHz) of VY Canis Majoris (VY CMa) and IRC +10216 has been conducted to compare the chemistries of oxygen- and carbon-rich circumstellar envelopes. This study was carried out using the Submillimeter Telescope of the Arizona Radio Observatory with a new Atacama Large Millimeter Array type receiver. This survey is the first to chemically characterize an O-rich circumstellar shell at millimeter wavelengths. In VY CMa, 128 emission features were detected arising from 18 different molecules; and in IRC +10216, 720 lines were observed, assigned to 32 different species. The 1 mm spectrum of VY CMa is dominated by SO 2 and SiS; in IRC +10216, C 4 H and SiC 2 are the most recurrent species. Ten molecules were common to both sources: CO, SiS, SiO, CS, CN, HCN, HNC, NaCl, PN, and HCO + . Sulfur plays an important role in VY CMa, but saturated/unsaturated carbon dominates the molecular content of IRC +10216, producing CH 2 NH, for example. Although the molecular complexity of IRC +10216 is greater, VY CMa supports a unique 'inorganic' chemistry leading to the oxides PO, AlO, and AlOH. Only diatomic and triatomic compounds were observed in VY CMa, while species with four or more atoms are common in IRC +10216, reflecting carbon's ability to form multiple strong bonds, unlike oxygen. In VY CMa, a new water maser (v 2 = 2) has been found, as well as vibrationally excited NaCl. Toward IRC +10216, vibrationally excited CCH was detected for the first time.

  13. Comparative Spectra of Oxygen-rich Versus Carbon-rich Circumstellar Shells: VY Canis Majoris and IRC +10216 at 215-285 GHz

    Tenenbaum, E. D.; Dodd, J. L.; Milam, S. N.; Woolf, N. J.; Ziurys, L. M.

    2010-09-01

    A sensitive (1σ rms at 1 MHz resolution ~3 mK) 1 mm spectral line survey (214.5-285.5 GHz) of VY Canis Majoris (VY CMa) and IRC +10216 has been conducted to compare the chemistries of oxygen- and carbon-rich circumstellar envelopes. This study was carried out using the Submillimeter Telescope of the Arizona Radio Observatory with a new Atacama Large Millimeter Array type receiver. This survey is the first to chemically characterize an O-rich circumstellar shell at millimeter wavelengths. In VY CMa, 128 emission features were detected arising from 18 different molecules; and in IRC +10216, 720 lines were observed, assigned to 32 different species. The 1 mm spectrum of VY CMa is dominated by SO2 and SiS; in IRC +10216, C4H and SiC2 are the most recurrent species. Ten molecules were common to both sources: CO, SiS, SiO, CS, CN, HCN, HNC, NaCl, PN, and HCO+. Sulfur plays an important role in VY CMa, but saturated/unsaturated carbon dominates the molecular content of IRC +10216, producing CH2NH, for example. Although the molecular complexity of IRC +10216 is greater, VY CMa supports a unique "inorganic" chemistry leading to the oxides PO, AlO, and AlOH. Only diatomic and triatomic compounds were observed in VY CMa, while species with four or more atoms are common in IRC +10216, reflecting carbon's ability to form multiple strong bonds, unlike oxygen. In VY CMa, a new water maser (v 2 = 2) has been found, as well as vibrationally excited NaCl. Toward IRC +10216, vibrationally excited CCH was detected for the first time.

  14. Comparative Spectra of Oxygen-Rich Versus Carbon-Rich Circumstellar Shells: VY Canis Majoris and IRC(plus)10216 at 215-285 GHz

    Tenebaum, E. D.; Dodd, J. L.; Milam, S. N.; Woolf, N. J.; Ziurys, L. M.

    2010-01-01

    A sensitive (1sigma rms at 1 MHz resolution approx.3 mK) 1 mm spectral line survey (214.5-285.5 GHz) of VY Canis Majoris (VY CMa) and IRC +10216 has been conducted to compare the chemistries of oxygen- and carbon-rich circumstellar envelopes. This study was carried out using the Submillimeter Telescope of the Arizona Radio Observatory with a new Atacama Large Millimeter Array type receiver. This survey is the first to chemically characterize an O-rich circumstellar shell at millimeter wavelengths. In VY CMa, 128 emission features were detected arising from 18 different molecules; and in IRC +10216, 720 lines were observed, assigned to 32 different species. The 1 mm spectrum of VY CMa is dominated by SO, and SiS; in IRC +10216, C4H and SiC2 are the most recurrent species. Ten molecules were common to both sources: CO, SiS, SiO, CS, CN, HCN, HNC, NaCl, PN, and HCO(+). Sulfur plays an important role in VY CMa, but saturated/ unsaturated carbon dominates the molecular content of IRC +102.16, producing CH2NH, for example. Although the molecular complexity of IRC +10216 is greater, VY CMa supports a unique "inorganic" chemistry leading to the oxides PO, AlO, and AlOH. Only diatomic and triatomic compounds were observed in VY CMa, while species with four or more atoms are common in IRC +10216, reflecting carbon's ability to form multiple strong bonds, unlike oxygen. In VY CMa, a new water maser (v2 = 2) has been found, as well as vibrationally excited NaCl. Toward IRC +10216, vibrationally excited CCH was detected for the first time.

  15. Retrieving CO concentrations from FT-IR spectra with nonmodeled interferences and fluctuating baselines using PCR model parameters

    Bak, J.

    2001-01-01

    It is demonstrated that good predictions of gas concentrations based on measured spectra can be made even if these spectra contain totally overlapping spectral features from nonidentified and non-modeled interfering compounds and fluctuating baselines. The prediction program (CONTOUR) is based...... solely on principal component regression (PCR) model parameters, CONTOUR consists of two smaller algorithms. The first of these is used to calculate pure component spectra based on the PCR model parameters at different concentrations. In the second algorithm, the calculated pure component spectra...... remains. The assumptions are that the background and analytical signals must be additive and that no accidental match between these signals takes place. The best results are obtained with the use of spectra with a high selectivity. The use of the program is demonstrated hg applying simple single...

  16. Numerical model for the thermal-hydraulic solution of shell-and-U-tubes heat exchanger with segmental baffles

    Baptista Filho, Benedito Dias

    1979-01-01

    A numerical model has been developed to calculate the flow, pressure and temperature distribution of steady-state |for the tube and shell-side fluids in a shell-and-U-tubes heat exchanger with segmental baffles. It was based on the Subchannel Analysis Method- The model, checked with experimental results from one heat exchanger, predicted with good accuracy outlet temperatures for both fluids. The method, implemented ' in a computer program of low cost and easy application, can be used in the design and performance evaluation of commercial units.(author)

  17. Finite element analysis of the cross-section of wind turbine blades; a comparison between shell and 2D-solid models

    Pardo, D.; Branner, K.

    2005-01-01

    line load. The results are compared with result from similar shell models, which typically are used for practical design. Usually, good agreement between the shell models and the detailed 2D-solid model is found for the deflections, strains and stresses in regions with loads from pure bending. However...

  18. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  19. Performance prediction and validation of equilibrium modeling for gasification of cashew nut shell char

    M. Venkata Ramanan

    2008-09-01

    Full Text Available Cashew nut shell, a waste product obtained during deshelling of cashew kernels, had in the past been deemed unfit as a fuel for gasification owing to its high occluded oil content. The oil, a source of natural phenol, oozes upon gasification, thereby clogging the gasifier throat, downstream equipment and associated utilities with oil, resulting in ineffective gasification and premature failure of utilities due to its corrosive characteristics. To overcome this drawback, the cashew shells were de-oiled by charring in closed chambers and were subsequently gasified in an autothermal downdraft gasifier. Equilibrium modeling was carried out to predict the producer gas composition under varying performance influencing parameters, viz., equivalence ratio (ER, reaction temperature (RT and moisture content (MC. The results were compared with the experimental output and are presented in this paper. The model is quite satisfactory with the experimental outcome at the ER applicable to gasification systems, i.e., 0.15 to 0.30. The results show that the mole fraction of (i H2, CO and CH4 decreases while (N2 + H2O and CO2 increases with ER, (ii H2 and CO increases while CH4, (N2 + H2O and CO2 decreases with reaction temperature, (iii H2, CH4, CO2 and (N2 + H2O increases while CO decreases with moisture content. However at an equivalence ratio less than 0.15, the model predicts an unrealistic composition and is observed to be non valid below this ER.

  20. The effects of soil-structure interaction modeling techniques on in-structure response spectra

    Johnson, J.J.; Wesley, D.A.; Almajan, I.T.

    1977-01-01

    The structure considered for this investigation consisted of the reactor containment building (RCB) and prestressed concrete reactor vessel (PCRV) for a HTGR plant. A conventional lumped-mass dynamic model in three dimensions was used in the study. The horizontal and vertical response, which are uncoupled due to the symmetry of the structure, were determined for horizontal and vertical excitation. Five different site conditions ranging from competent rock to a soft soil site were considered. The simplified approach to the overall plant analysis utilized stiffness proportional composite damping with a limited amount of soil damping consistent with US NRC regulatory guidelines. Selected cases were also analyzed assuming a soil damping value approximating the theoretical value. The results from the simplified approach were compared to those determined by rigorously coupling the structure to a frequency independent half-space representation of the soil. Finally, equivalent modal damping ratios were found by matching the frequency response at a point within the coupled soil-structure system determined by solution of the coupled and uncoupled equations of motion. The basis for comparison of the aforementioned techniques was the response spectra at selected locations within the soil-structure system. Each of the five site conditions was analyzed and in-structure response spectra were generated. The response spectra were combined to form a design envelope which encompasses the entire range of site parameters. Both the design envelopes and the site-by-site results were compared

  1. A model study of tunneling conductance spectra of ferromagnetically ordered manganites

    Panda, Saswati; Kar, J. K.; Rout, G. C.

    2018-02-01

    We report here the interplay of ferromagnetism (FM) and charge density wave (CDW) in manganese oxide systems through the study of tunneling conductance spectra. The model Hamiltonian consists of strong Heisenberg coupling in core t2g band electrons within mean-field approximation giving rise to ferromagnetism. Ferromagnetism is induced in the itinerant eg electrons due to Kubo-Ohata type double exchange (DE) interaction among the t2g and eg electrons. The charge ordering (CO) present in the eg band giving rise to CDW interaction is considered as the extra-mechanism to explain the colossal magnetoresistance (CMR) property of manganites. The magnetic and CDW order parameters are calculated using Zubarev's Green's function technique and solved self-consistently and numerically. The eg electron density of states (DOS) calculated from the imaginary part of the Green's function explains the experimentally observed tunneling conductance spectra. The DOS graph exhibits a parabolic gap near the Fermi energy as observed in tunneling conductance spectra experiments.

  2. Many-electron theory of x-ray photoelectron spectra: N-shell linewidths in the 46Pd to 92U range

    Ohno, M.; Wendin, G.

    1985-01-01

    The linewidths and energies of 4d holes (main lines in x-ray photoelectron spectra) are calculated for a number of elements in the range 70 Yb to 92 U, with use of nonrelativistic atomic many-body theory. The nonrelativistic Hartree-Fock frozen-core approximation for one-electron wave functions and Auger energies gives very good agreement with experiment. In the case of 4s and 4p holes, the Auger (in particular, super-Coster-Kronig) energies have to be calculated with inclusion of relaxation and relativistic effects. Combined with frozen-core, nonrelativistic one-electron wave functions, this gives good agreement with experimental energies and widths for 4s and 4p holes in 80 Hg. In conclusion, it is very important to include the effects of two final-state holes on the Auger electron, as well as the polarization response which screens the Auger emission matrix element. This latter effect is largely equivalent to the so-called exchange interaction between the Auger electron and the final-state holes

  3. Microsolvation of the water cation in neon: Infrared spectra and potential energy surface of the H2O+-Ne open-shell ionic complex

    Dopfer, Otto; Roth, Doris; Maier, John P.

    2001-04-01

    The intermolecular potential of the H2O+-Ne open-shell ionic dimer in its doublet electronic ground state has been investigated by infrared spectroscopy in the vicinity of the O-H stretch vibrations (ν1 and ν3) and ab initio calculations at the unrestricted Møller-Plesset second-order (MP2) level with a basis set of aug-cc-pVTZ quality. The rovibrational structure of the photodissociation spectrum is consistent with a proton-bound planar H-O-H-Ne structure and a Ne-H separation of R0=1.815(5) Å. The complexation-induced redshifts are Δν1=-69 cm-1 and Δν3=-6 cm-1, respectively. Tunneling splittings observed in the perpendicular component of the ν3 hybrid band of H2O+-Ne are attributed to hindered internal rotation between the two equivalent proton-bound equilibrium structures. The interpretation of the H2O+-Ne spectrum is supported by the spectrum of the monodeuterated species, for which both the proton-bound and the deuteron-bound isomers are observed (DOH+-Ne, HOD+-Ne). The equilibrium structure of the calculated potential energy surface of H2O+-Ne has a slightly translinear proton bond, which is characterized by a Ne-H separation of Re=1.77 Å, a bond angle of φe=174°, and dissociation energies of De=756 cm-1 and D0=476 cm-1. According to the calculated potential, the exchange tunneling between the two equivalent minima occurs via the planar bridged transition state with C2v symmetry and a barrier of 340 cm-1. In general, the calculated properties of H2O+-Ne show good agreement with the experimental data. Initial steps in the microsolvation of the water cation in neon are discussed by comparing the calculated and experimental properties of H2O+-Nen (n=0-2) with neon matrix isolation data (n→∞).

  4. A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence

    Plunian, F [Laboratoire de Geophysique Interne et Tectonophysique, CNRS, Universite Joseph Fourier, Maison des Geosciences, BP 53, 38041 Grenoble Cedex 9 (France); Stepanov, R [Institute of Continuous Media Mechanics, Korolyov 1, 614013 Perm (Russian Federation)

    2007-08-15

    We derive a new shell model of magnetohydrodynamic (MHD) turbulence in which the energy transfers are not necessarily local. Like the original MHD equations, the model conserves the total energy, magnetic helicity, cross-helicity and volume in phase space (Liouville's theorem) apart from the effects of external forcing, viscous dissipation and magnetic diffusion. The model of hydrodynamic (HD) turbulence is derived from the MHD model setting the magnetic field to zero. In that case the conserved quantities are the kinetic energy and the kinetic helicity. In addition to a statistically stationary state with a Kolmogorov spectrum, the HD model exhibits multiscaling. The anomalous scaling exponents are found to depend on a free parameter {alpha} that measures the non-locality degree of the model. In freely decaying turbulence, the infra-red spectrum also depends on {alpha}. Comparison with theory suggests using {alpha} = -5/2. In MHD turbulence, we investigate the fully developed turbulent dynamo for a wide range of magnetic Prandtl numbers in both kinematic and dynamic cases. Both local and non-local energy transfers are clearly identified.

  5. Constrained-path quantum Monte Carlo approach for non-yrast states within the shell model

    Bonnard, J. [INFN, Sezione di Padova, Padova (Italy); LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Juillet, O. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France)

    2016-04-15

    The present paper intends to present an extension of the constrained-path quantum Monte Carlo approach allowing to reconstruct non-yrast states in order to reach the complete spectroscopy of nuclei within the interacting shell model. As in the yrast case studied in a previous work, the formalism involves a variational symmetry-restored wave function assuming two central roles. First, it guides the underlying Brownian motion to improve the efficiency of the sampling. Second, it constrains the stochastic paths according to the phaseless approximation to control sign or phase problems that usually plague fermionic QMC simulations. Proof-of-principle results in the sd valence space are reported. They prove the ability of the scheme to offer remarkably accurate binding energies for both even- and odd-mass nuclei irrespective of the considered interaction. (orig.)

  6. Continuum shell-model study of 16O and 40Ca

    Heil, V.; Stock, W.

    1976-06-01

    Continuum shell-model calculations of the E1 and E2 strengths in 16 O and 40 Ca are presented. A consistent microscopic description of both the giant resonances and isospin forbidden E1- transitions between bound states can be achieved through 1) a careful choice of the single-particle potential, 2) the use of a finite-range residual interaction (including the Coulomb particle-hole force), and 3) the removal of spurious states. The results obtained within the separation expansion approximation of Birkholz are in reasonable agreement with measured photonucleon angular distributions and formfactors for electroexcitation. The influence of the continuum on the isospin mixing in bound states is found to be very strong. (orig.) [de

  7. The contribution of the expanding shell test to the modeling of elastoplaticity at high strain rates

    Llorca, Fabrice; Buy, Francois

    2002-01-01

    The expanding shell test allows to load a material in the domain of high strain levels while strain rate is about 104s-1. This test submits an hemisphere to a radial expanding free flight, using a pyrotechnic device. The experiment (experimental apparatus, measurements...) is described with the difficulties encountered for the interpretation of the experimental data. Under some assumptions, the numerical transformation of radial velocities gives indications about the evolution of the strain, stress, strain rate and temperature rise, this last one being related to plastic work. We show how it is possible to associate both analytical and numerical approaches. Numerical simulation of the test is presented in a companion paper (see [Buy01]). Results obtained for copper, tantalum and TA6V4 are presented. The contribution of this test to the modeling of elastoplastic behavior is discussed and further works are proposed

  8. Time-dependent shell-model theory of dissipative heavy-ion collisions

    Ayik, S.; Noerenberg, W.

    1982-01-01

    A transport theory is formulated within a time-dependent shell-model approach. Time averaging of the equations for macroscopic quantities lead to irreversibility and justifies weak-coupling limit and Markov approximation for the (energy-conserving) one- and two-body collision terms. Two coupled equations for the occupation probabilities of dynamical single-particle states and for the collective variable are derived and explicit formulas for transition rates, dynamical forces, mass parameters and friction coefficients are given. The applicability of the formulation in terms of characteristic quantities of nuclear systems is considered in detail and some peculiarities due to memory effects in the initial equilibration process of heavy-ion collisions are discussed. (orig.)

  9. Off-shell dynamics of the O(3) NLS model beyond Monte Carlo and perturbation theory

    Balog, J.; Niedermaier, M.

    1997-01-01

    The off-shell dynamics of the O(3) non-linear sigma model is probed in terms of spectral densities and two-point functions by means of the form factor approach. The exact form factors of the spin field, Noether current, EM tensor and the topological charge density are computed up to six particles. The corresponding n≤6 particle spectral densities are used to compute the two-point functions, and are argued to deviate at most a few per mille from the exact answer in the entire energy range below 10 3 in units of the mass gap. To cover yet higher energies we propose an extrapolation scheme to arbitrary particle numbers based on a novel scaling hypothesis for the spectral densities. It yields candidate results for the exact two-point functions at all energy scales and allows us to exactly determine the values of two, previously unknown, non-perturbative constants. (orig.)

  10. Seniority structure of the cranked shell model wave function and the pairing phase transition

    Wu, C.S.; Zeng, J.Y.; Center of Theoretical Physics, China Center of Advanced Science and Technology

    1989-01-01

    The accurate solutions to the low-lying eigenstates of the cranked shell model Hamiltonian are obtained by the particle-number-conserving treatment, in which a many-particle configuration truncation is adopted instead of the conventional single-particle level truncation. The variation of the seniority structures of low-lying eigenstates with rotational frequency ω is analyzed. The gap parameter of the yrast band decreases with ω very slowly, though the seniority structure has undergone a great change. It is suggested to use the seniority structure to indicate the possible pairing phase transition from a superconducting state to a normal state. The important blocking effects on the low-lying eigenstates are discussed

  11. Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals

    Silveira, Landulfo; Silveira, Fabrício Luiz; Bodanese, Benito; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu T.

    2012-07-01

    Raman spectroscopy has been employed to identify differences in the biochemical constitution of malignant [basal cell carcinoma (BCC) and melanoma (MEL)] cells compared to normal skin tissues, with the goal of skin cancer diagnosis. We collected Raman spectra from compounds such as proteins, lipids, and nucleic acids, which are expected to be represented in human skin spectra, and developed a linear least-squares fitting model to estimate the contributions of these compounds to the tissue spectra. We used a set of 145 spectra from biopsy fragments of normal (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues, collected using a near-infrared Raman spectrometer (830 nm, 50 to 200 mW, and 20 s exposure time) coupled to a Raman probe. We applied the best-fitting model to the spectra of biochemicals and tissues, hypothesizing that the relative spectral contribution of each compound to the tissue Raman spectrum changes according to the disease. We verified that actin, collagen, elastin, and triolein were the most important biochemicals representing the spectral features of skin tissues. A classification model applied to the relative contribution of collagen III, elastin, and melanin using Euclidean distance as a discriminator could differentiate normal from BCC and MEL.

  12. Scission-point model of nuclear fission based on deformed-shell effects

    Wilkins, B.D.; Steinberg, E.P.; Chasman, R.R.

    1976-01-01

    A static model of nuclear fission is proposed based on the assumption of statistical equilibrium among collective degrees of freedom at the scission point. The relative probabilities of formation of complementary fission fragment pairs are determined from the relative potential energies of a system of two nearly touching, coaxial spheroids with quadrupole deformations. The total potential energy of the system at the scission point is calculated as the sum of liquid-drop and shell- and pairing-correction terms for each spheroid, and Coulomb and nuclear potential terms describing the interaction between them. The fissioning system at the scission point is characterized by three parameters: the distance between the tips of the spheroids (d), the intrinsic excitation energy of the fragments (tau/sub int/), and a collective temperature (T/sub coll/). No attempt is made to adjust these parameters to give optimum fits to experimental data, but rather, a single choice of values for d, tau/sub int/, and T/sub coll/ is used in the calculations for all fissioning systems. The general trends of the distributions of mass, nuclear charge, and kinetic energy in the fission of a wide range of nuclides from Po to Fm are well reproduced in the calculations. The major influence of the deformed-shell corrections for neutrons is indicated and provides a convenient framework for the interpretation of observed trends in the data and for the prediction of new results. The scission-point configurations derived from the model provide an interpretation of the ''saw-tooth'' neutron emission curve as well as previously unexplained observations on the variation of TKE for isotopes of U, Pu, Cm, and Cf; structure in the width of total kinetic energy release as a function of fragment mass ratio; and a difference in threshold energies for symmetric and asymmetric mass splits in the fission of Ra and Ac isotopes

  13. Model and measurements of linear mixing in thermal IR ground leaving radiance spectra

    Balick, Lee; Clodius, William; Jeffery, Christopher; Theiler, James; McCabe, Matthew; Gillespie, Alan; Mushkin, Amit; Danilina, Iryna

    2007-10-01

    Hyperspectral thermal IR remote sensing is an effective tool for the detection and identification of gas plumes and solid materials. Virtually all remotely sensed thermal IR pixels are mixtures of different materials and temperatures. As sensors improve and hyperspectral thermal IR remote sensing becomes more quantitative, the concept of homogeneous pixels becomes inadequate. The contributions of the constituents to the pixel spectral ground leaving radiance are weighted by their spectral emissivities and their temperature, or more correctly, temperature distributions, because real pixels are rarely thermally homogeneous. Planck's Law defines a relationship between temperature and radiance that is strongly wavelength dependent, even for blackbodies. Spectral ground leaving radiance (GLR) from mixed pixels is temperature and wavelength dependent and the relationship between observed radiance spectra from mixed pixels and library emissivity spectra of mixtures of 'pure' materials is indirect. A simple model of linear mixing of subpixel radiance as a function of material type, the temperature distribution of each material and the abundance of the material within a pixel is presented. The model indicates that, qualitatively and given normal environmental temperature variability, spectral features remain observable in mixtures as long as the material occupies more than roughly 10% of the pixel. Field measurements of known targets made on the ground and by an airborne sensor are presented here and serve as a reality check on the model. Target spectral GLR from mixtures as a function of temperature distribution and abundance within the pixel at day and night are presented and compare well qualitatively with model output.

  14. A self-consistent model for the Galactic cosmic ray, antiproton and positron spectra

    CERN. Geneva

    2015-01-01

    In this talk I will present the escape model of Galactic cosmic rays. This model explains the measured cosmic ray spectra of individual groups of nuclei from TeV to EeV energies. It predicts an early transition to extragalactic cosmic rays, in agreement with recent Auger data. The escape model also explains the soft neutrino spectrum 1/E^2.5 found by IceCube in concordance with Fermi gamma-ray data. I will show that within the same model one can explain the excess of positrons and antiprotons above 20 GeV found by PAMELA and AMS-02, the discrepancy in the slopes of the spectra of cosmic ray protons and heavier nuclei in the TeV-PeV energy range and the plateau in cosmic ray dipole anisotropy in the 2-50 TeV energy range by adding the effects of a 2 million year old nearby supernova.

  15. Forward Modeling of Reduced Power Spectra from Three-dimensional k-space

    von Papen, Michael; Saur, Joachim

    2015-06-01

    We present results from a numerical forward model to evaluate one-dimensional reduced power spectral densities (PSDs) from arbitrary energy distributions in {\\boldsymbol{k}} -space. In this model, we can separately calculate the diagonal elements of the spectral tensor for incompressible axisymmetric turbulence with vanishing helicity. Given a critically balanced turbulent cascade with {{k}\\parallel }∼ k\\bot α and α \\lt 1, we explore the implications on the reduced PSD as a function of frequency. The spectra are obtained under the assumption of Taylor’s hypothesis. We further investigate the functional dependence of the spectral index κ on the field-to-flow angle θ between plasma flow and background magnetic field from MHD to electron kinetic scales. We show that critically balanced turbulence asymptotically develops toward θ-independent spectra with a slope corresponding to the perpendicular cascade. This occurs at a transition frequency {{f}2D}(L,α ,θ ), which is analytically estimated and depends on outer scale L, critical balance exponent α, and field-to-flow angle θ. We discuss anisotropic damping terms acting on the {\\boldsymbol{k}} -space distribution of energy and their effects on the PSD. Further, we show that the spectral anisotropies κ (θ ) as found by Horbury et al. and Chen et al. in the solar wind are in accordance with a damped critically balanced cascade of kinetic Alfvén waves. We also model power spectra obtained by Papen et al. in Saturn’s plasma sheet and find that the change of spectral indices inside 9 {{R}s} can be explained by damping on electron scales.

  16. Bayesian model comparison using Gauss approximation on multicomponent mass spectra from CH4 plasma

    Kang, H.D.; Dose, V.

    2004-01-01

    We performed Bayesian model comparison on mass spectra from CH4 rf process plasmas to detect radicals produced in the plasma. The key ingredient for its implementation is the high-dimensional evidence integral. We apply Gauss approximation to evaluate the evidence. The results were compared with those calculated by the thermodynamic integration method using Markov Chain Monte Carlo technique. In spite of very large difference in the computation time between two methods a very good agreement was obtained. Alternatively, a Monte Carlo integration method based on the approximated Gaussian posterior density is presented. Its applicability to the problem of mass spectrometry is discussed

  17. Calculational analysis of errors for various models of an experiment on measuring leakage neutron spectra

    Androsenko, A.A.; Androsenko, P.A.; Deeva, V.V.; Prokof'eva, Z.A.

    1990-01-01

    Analysis is made for the effect of mathematical model accuracy of the system concerned on the calculation results using the BRAND program system. Consideration is given to the impact of the following factors: accuracy of neutron source energy-angular characteristics description, various degrees of system geometry approximation, adequacy of Monte-Carlo method estimation to a real physical neutron detector. The calculation results analysis is made on the basis of the experiments on leakage neutron spectra measurement in spherical lead assemblies with the 14 MeV-neutron source in the centre. 4 refs.; 2 figs.; 10 tabs

  18. Faraday Wave Turbulence on a Spherical Liquid Shell

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  19. Application of dimensional analysis to the study of shells subject to external pressure and to the use of models

    Lefrancois, A.

    1976-01-01

    The method of dimensional analysis is applied to the evaluation of deformation, stress, and ideal buckling strength (which is independent of the values of the elastic range), of shells subject to external pressure. The relations obtained are verified in two examples: a cylindrical ring and a tube with free ends and almost circular cross-section. Further, it is shown how and to what extent the results obtained from model tests can be used to predict the behaviour of geometrically similar shells which are made of the same material, or even of a different material. (Author) [fr

  20. EM Transition Sum Rules Within the Framework of sdg Proton-Neutron Interacting Boson Model, Nuclear Pair Shell Model and Fermion Dynamical Symmetry Model

    Zhao, Yumin

    1997-07-01

    By the techniques of the Wick theorem for coupled clusters, the no-energy-weighted electromagnetic sum-rule calculations are presented in the sdg neutron-proton interacting boson model, the nuclear pair shell model and the fermion-dynamical symmetry model. The project supported by Development Project Foundation of China, National Natural Science Foundation of China, Doctoral Education Fund of National Education Committee, Fundamental Research Fund of Southeast University

  1. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell.

    Lacour, Thomas; Guédra, Matthieu; Valier-Brasier, Tony; Coulouvrat, François

    2018-01-01

    Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy, or targeted drug delivery. Their functions can be mechanically activated by means of focused ultrasound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV) process. In this context, a four-phases (vapor + liquid + shell + surrounding environment) model of ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to very large deformations of soft, nearly incompressible materials. Various responses to ultrasound excitation are illustrated, depending on linear and nonlinear mechanical shell properties and acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a relevant threshold ensuring complete vaporization of the inner liquid layer is defined. The dependence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.

  2. Effects of quantum chemistry models for bound electrons on positron annihilation spectra for atoms and small molecules

    Wang Feng; Ma Xiaoguang; Selvam, Lalitha; Gribakin, Gleb; Surko, Clifford M

    2012-01-01

    The Doppler-shift spectra of the γ-rays from positron annihilation in molecules were determined by using the momentum distribution of the annihilation electron–positron pair. The effect of the positron wavefunction on spectra was analysed in a recent paper (Green et al 2012 New J. Phys. 14 035021). In this companion paper, we focus on the dominant contribution to the spectra, which arises from the momenta of the bound electrons. In particular, we use computational quantum chemistry models (Hartree–Fock with two basis sets and density functional theory (DFT)) to calculate the wavefunctions of the bound electrons. Numerical results are presented for noble gases and small molecules such as H 2 , N 2 , O 2 , CH 4 and CF 4 . The calculations reveal relatively small effects on the Doppler-shift spectra from the level of inclusion of electron correlation energy in the models. For atoms, the difference in the full-width at half-maximum of the spectra obtained using the Hartree–Fock and DFT models does not exceed 2%. For molecules the difference can be much larger, reaching 8% for some molecular orbitals. These results indicate that the predicted positron annihilation spectra for molecules are generally more sensitive to inclusion of electron correlation energies in the quantum chemistry model than the spectra for atoms are. (paper)

  3. Shell-model Monte Carlo simulations of the BCS-BEC crossover in few-fermion systems

    Zinner, Nikolaj Thomas; Mølmer, Klaus; Özen, C.

    2009-01-01

    We study a trapped system of fermions with a zero-range two-body interaction using the shell-model Monte Carlo method, providing ab initio results for the low particle number limit where mean-field theory is not applicable. We present results for the N-body energies as function of interaction...

  4. Radiative capture reaction {sup 7}Be(p,{gamma}){sup 8}B in the continuum shell model

    Bennaceur, K; Ploszajczak, M [Grand Accelerateur National d` Ions Lourds (GANIL), Caen (France); Nowacki, F [Grand Accelerateur National d` Ions Lourds (GANIL), Caen (France); [Lab. de Physique Theorique Strasbourg, Strasbourg (France); Okolowicz, J [Grand Accelerateur National d` Ions Lourds (GANIL), Caen (France); [Inst. of Nuclear Physics, Krakow (Poland)

    1998-06-01

    We present here the first application of realistic shell model (SM) including coupling between many-particle (quasi-)bound states and the continuum of one-particle scattering states to the calculation of the total capture cross section and the astrophysical factor in the reaction {sup 7}Be(p,{gamma}){sup 8}B. (orig.)

  5. Core/shell CdS/ZnS nanoparticles: Molecular modelling and characterization by photocatalytic decomposition of Methylene Blue

    Praus, P.; Svoboda, L.; Tokarský, J.; Hospodková, Alice; Klemm, V.

    2014-01-01

    Roč. 292, Feb (2014), s. 813-822 ISSN 0169-4332 Institutional support: RVO:68378271 Keywords : core/shell nanoparticles * CdS/ZnS * molecular modelling * electron tunnelling * photocatalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.711, year: 2014

  6. Development of two mix model postprocessors for the investigation of shell mix in indirect drive implosion cores

    Welser-Sherrill, L.; Mancini, R. C.; Haynes, D. A.; Haan, S. W.; Koch, J. A.; Izumi, N.; Tommasini, R.; Golovkin, I. E.; MacFarlane, J. J.; Radha, P. B.; Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.

    2007-01-01

    The presence of shell mix in inertial confinement fusion implosion cores is an important characteristic. Mixing in this experimental regime is primarily due to hydrodynamic instabilities, such as Rayleigh-Taylor and Richtmyer-Meshkov, which can affect implosion dynamics. Two independent theoretical mix models, Youngs' model and the Haan saturation model, were used to estimate the level of Rayleigh-Taylor mixing in a series of indirect drive experiments. The models were used to predict the radial width of the region containing mixed fuel and shell materials. The results for Rayleigh-Taylor mixing provided by Youngs' model are considered to be a lower bound for the mix width, while those generated by Haan's model incorporate more experimental characteristics and consequently have larger mix widths. These results are compared with an independent experimental analysis, which infers a larger mix width based on all instabilities and effects captured in the experimental data

  7. Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling

    H. Kalesse

    2016-03-01

    Full Text Available Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyond the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. This suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.

  8. Theoretical modeling of infrared spectra of the hydrogen and deuterium bond in aspirin crystal

    Ghalla, Houcine; Rekik, Najeh; Michta, Anna; Oujia, Brahim; Flakus, Henryk T.

    2010-01-01

    An extended quantum theoretical approach of the ν IR lineshape of cyclic dimers of weakly H-bonded species is proposed. We have extended a previous approach [M.E.-A. Benmalti, P. Blaise, H.T. Flakus, O. Henri-Rousseau, Chem. Phys. 320 (2006) 267] by accounting for the anharmonicity of the slow mode which is described by a "Morse" potential in order to reproduce the polarized infrared spectra of the hydrogen and deuterium bond in acetylsalicylic acid (aspirin) crystals. From comparison of polarized IR spectra of isotopically neat and isotopically diluted aspirin crystals it resulted that centrosymmetric aspirin dimer was the bearer of the crystal main spectral properties. In this approach, the adiabatic approximation is performed for each separate H-bond bridge of the dimer and a strong non-adiabatic correction is introduced into the model via the resonant exchange between the fast mode excited states of the two moieties. Within the strong anharmonic coupling theory, according to which the X-H→⋯Y high-frequency mode is anharmonically coupled to the H-bond bridge, this model incorporated the Davydov coupling between the excited states of the two moieties, the quantum direct and indirect dampings and the anharmonicity for the H-bond bridge. The spectral density is obtained within the linear response theory by Fourier transform of the damped autocorrelation functions. The evaluated spectra are in fairly good agreement with the experimental ones by using a minimum number of independent parameters. The effect of deuteration has been well reproduced by reducing simply the angular frequency of the fast mode and the anharmonic coupling parameter.

  9. Development of surrogate models using artificial neural network for building shell energy labelling

    Melo, A.P.; Cóstola, D.; Lamberts, R.; Hensen, J.L.M.

    2014-01-01

    Surrogate models are an important part of building energy labelling programs, but these models still present low accuracy, particularly in cooling-dominated climates. The objective of this study was to evaluate the feasibility of using an artificial neural network (ANN) to improve the accuracy of surrogate models for labelling purposes. An ANN was applied to model the building stock of a city in Brazil, based on the results of extensive simulations using the high-resolution building energy simulation program EnergyPlus. Sensitivity and uncertainty analyses were carried out to evaluate the behaviour of the ANN model, and the variations in the best and worst performance for several typologies were analysed in relation to variations in the input parameters and building characteristics. The results obtained indicate that an ANN can represent the interaction between input and output data for a vast and diverse building stock. Sensitivity analysis showed that no single input parameter can be identified as the main factor responsible for the building energy performance. The uncertainty associated with several parameters plays a major role in assessing building energy performance, together with the facade area and the shell-to-floor ratio. The results of this study may have a profound impact as ANNs could be applied in the future to define regulations in many countries, with positive effects on optimizing the energy consumption. - Highlights: • We model several typologies which have variation in input parameters. • We evaluate the accuracy of surrogate models for labelling purposes. • ANN is applied to model the building stock. • Uncertainty in building plays a major role in the building energy performance. • Results show that ANN could help to develop building energy labelling systems

  10. Finite element modeling of shell shape in the freshwater turtle Pseudemys concinna reveals a trade-off between mechanical strength and hydrodynamic efficiency.

    Rivera, Gabriel; Stayton, C Tristan

    2011-10-01

    Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low-drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade-offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator-induced loads. We tested the idea that "lotic" shell shapes are weaker than "lentic" shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. "Lotic" shell shapes produced significantly higher stresses than "lentic" shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many-to-one mapping of shell shape onto strength, P. concinna experiences a trade-off in shell shape between hydrodynamic and mechanical performance. This trade-off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade-off in some cases, as changes in

  11. Radiative-Transfer Modeling of Spectra of Densely Packed Particulate Media

    Ito, G.; Mishchenko, M. I.; Glotch, T. D.

    2017-12-01

    Remote sensing measurements over a wide range of wavelengths from both ground- and space-based platforms have provided a wealth of data regarding the surfaces and atmospheres of various solar system bodies. With proper interpretations, important properties, such as composition and particle size, can be inferred. However, proper interpretation of such datasets can often be difficult, especially for densely packed particulate media with particle sizes on the order of wavelength of light being used for remote sensing. Radiative transfer theory has often been applied to the study of densely packed particulate media like planetary regoliths and snow, but with difficulty, and here we continue to investigate radiative transfer modeling of spectra of densely packed media. We use the superposition T-matrix method to compute scattering properties of clusters of particles and capture the near-field effects important for dense packing. Then, the scattering parameters from the T-matrix computations are modified with the static structure factor correction, accounting for the dense packing of the clusters themselves. Using these corrected scattering parameters, reflectance (or emissivity via Kirchhoff's Law) is computed with the method of invariance imbedding solution to the radiative transfer equation. For this work we modeled the emissivity spectrum of the 3.3 µm particle size fraction of enstatite, representing some common mineralogical and particle size components of regoliths, in the mid-infrared wavelengths (5 - 50 µm). The modeled spectrum from the T-matrix method with static structure factor correction using moderate packing densities (filling factors of 0.1 - 0.2) produced better fits to the laboratory measurement of corresponding spectrum than the spectrum modeled by the equivalent method without static structure factor correction. Future work will test the method of the superposition T-matrix and static structure factor correction combination for larger particles

  12. Fast forward modeling of Titan’s infrared spectra to invert VIMS/CASSINI hyperspectral images

    Rodriguez, S.; Le Mouélic, S.; Rannou, P.; Combe, J.; Le Corre, L.; Griffith, C. A.; Tobie, G.; Barnes, J. W.; Sotin, C.; Brown, R. H.; Baines, K. H.; Buratti, B. J.; Clark, R. N.

    2009-12-01

    The surface of Titan, the largest icy moon of Saturn, is veiled by a very thick and hazy atmosphere. The Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft, in orbit around Saturn since July 2004, has been conducting an intensive survey of Titan with the objective of understanding the complex nature and interaction of the atmosphere and surface of this mysterious moon. Retrieving and separating contributions from the surface and the atmosphere in Titan’s infrared spectra requires accurate radiative transfer modeling, which is often very demanding of computer resources. As Cassini has gathered hitherto millions of spectra of Titan and will continue to observe it until at least 2010, we report here on the development of a new rapid, simple and versatile radiative transfer model specially designed to process VIMS datacubes. Currently, our model accounts for gas absorption, haze scattering and surface reflectance and can be implemented in an inversion scheme. First results of forward modeling provide spectral shapes that are consistent with VIMS measurements, as well as surface and aerosol properties in the range of validity for Titan. Further inversion tests will be carried on VIMS hyperspectral images for the estimate of spatial coherence of the results, accuracy of the surface reflectance within the atmospheric windows, and potential needs for improved input data and modeling. This work was partly performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration. Calibrated VIMS data appear courtesy of the VIMS team. We thank the CNES French agency for its financial support.

  13. Nonlinear permittivity spectra of supercooled ionic liquids: Observation of a "hump" in the third-order permittivity spectra and comparison to double-well potential models.

    Patro, L N; Burghaus, O; Roling, B

    2017-04-21

    We have measured the third-order permittivity spectra ε 3 3 of a monocationic and of a dicationic liquid close to the glass transition temperature by applying ac electric fields with large amplitudes up to 180 kV/cm. A peak ("hump") in the modulus of ε 3 3 is observed for a mono-cationic liquid after subtraction of the dc contribution from the imaginary part of ε 3 3 . We show that the origin of this experimental "hump" is a peak in the imaginary part of ε 3 3 , with the peak height strongly increasing with decreasing temperature. Overall, the spectral shape of the third-order permittivity of both ionic liquids is similar to the predictions of a symmetric double well potential model, although this model does not predict a "hump" in the modulus. In contrast, an asymmetric double well potential model predicts a "hump," but the spectral shape of both the real and imaginary part of ε 3 3 deviates significantly from the experimental spectra. These results show that not only the modulus of ε 3 3 but also its phase is an important quantity when comparing experimental results with theoretical predictions.

  14. Cross-spectra over the sea from observations and mesoscale modelling

    Vincent, Claire Louise; Larsén, Xiaoli Guo; Larsen, Søren Ejling

    2013-01-01

    of the cross-correlation function and an exponentially decaying coherence function are fitted to the normalized cospectra and quadrature spectra. The expressions are shown to be a good fit to the spectra calculated from the WRF simulations and to the observed spectra for directions with a long sea-fetch, which...

  15. Rock properties influencing impedance spectra (IS) studied by lab measurements on porous model systems

    Volkmann, J.; Klitzsch, N.; Mohnke, O. [RWTH Aachen Univ. (Germany). Applied Geophysics and Geothermal Energy; Schleifer, N. [Wintershall Holding GmbH, Barnstorf (Germany)

    2013-08-01

    The wetting condition of reservoir rocks is a crucial parameter for the estimation of reservoir characteristics like permeability and saturation with residual oil or water. Since standard methods are often costly, at least in terms of time, we aim at assessing wettability of reservoir rocks using impedance spectroscopy (IS), a frequency dependent measurement of complex electric resistivity. This approach is promising, because IS is sensitive to the electrochemical properties of the inner surface of rocks which, on the other hand, are decisively influencing wettability. Unfortunately, there is large number of rock parameters - besides wettability - influencing the impedance spectra often not exactly known for natural rock samples. Therefore, we study model systems to improve the understanding of the underlying mechanisms and to quantify the influencing parameters. The model systems consist of sintered porous silica beads of different sizes leading to samples with different pore sizes. The main advantage of these samples compared to natural rocks is their well-defined and uniform mineralogical composition and thus their uniform electrochemical surface property. In order to distinguish pore geometry and fluid electrochemistry effects on the IS properties we measured the IS response of the fully water saturated model systems in a wide frequency range - from 1 mHz to 35 MHz - to capture different often overlapping polarization processes. With these measurements we study the influence of pore or grain size, fluid conductivity, and wettability (contact angle) on the impedance spectra. The influence of wettability was studied by modifying the originally hydrophilic inner surface into a hydrophobic state. The wettability change was verified by contact angle measurements. As results, we find pore size dependent relaxation times and salinity dependent chargeabilities for the hydrophilic samples in the low frequency range (< 10 kHz), whereas for the hydrophobic samples

  16. Three-fluid MHD-model of a current shell in Z-pinch

    Bazdenkov, S.V.; Vikhrev, V.V.

    1975-01-01

    Formation and motion of the current shell in a power pulsed discharge (Z-pinch) are discussed. One-dimmensional nonstationary problem about a discharge in deuterium is solved in the three-liquid magnetohydrodynamic approximation with regard for gas ionization and motion of neutral atoms. It is shown that after the shell removal there remains a large quantity of an ionized gas near an isolating chamber wall. The quantity is sufficient that a secondary breakdown may take place in the ionized gas. The moving current shell has a double structure, i.e. a current ''piston'' and a current layer in the shock wave front

  17. The fractal dimension of cell membrane correlates with its capacitance: A new fractal single-shell model

    Wang, Xujing; Becker, Frederick F.; Gascoyne, Peter R. C.

    2010-01-01

    The scale-invariant property of the cytoplasmic membrane of biological cells is examined by applying the Minkowski–Bouligand method to digitized scanning electron microscopy images of the cell surface. The membrane is found to exhibit fractal behavior, and the derived fractal dimension gives a good description of its morphological complexity. Furthermore, we found that this fractal dimension correlates well with the specific membrane dielectric capacitance derived from the electrorotation measurements. Based on these findings, we propose a new fractal single-shell model to describe the dielectrics of mammalian cells, and compare it with the conventional single-shell model (SSM). We found that while both models fit with experimental data well, the new model is able to eliminate the discrepancy between the measured dielectric property of cells and that predicted by the SSM. PMID:21198103

  18. Collapse of the random-phase approximation: Examples and counter-examples from the shell model

    Johnson, Calvin W.; Stetcu, Ionel

    2009-01-01

    The Hartree-Fock approximation to the many-fermion problem can break exact symmetries, and in some cases by changing a parameter in the interaction one can drive the Hartree-Fock minimum from a symmetry-breaking state to a symmetry-conserving state (also referred to as a 'phase transition' in the literature). The order of the transition is important when one applies the random-phase approximation (RPA) to the of the Hartree-Fock wave function: if first order, RPA is stable through the transition, but if second-order, then the RPA amplitudes become large and lead to unphysical results. The latter is known as 'collapse' of the RPA. While the difference between first- and second-order transitions in the RPA was first pointed out by Thouless, we present for the first time nontrivial examples of both first- and second-order transitions in a uniform model, the interacting shell-model, where we can compare to exact numerical results.

  19. Shell model study of high spin states in the N=50 nucleus 93Tc

    Ghugre, S.S.; Patel, S.B.; Bhowmik, R.K.

    1994-01-01

    High spin states in the N=50 nucleus 93 Tc were reinvestigated by using the reaction 64 Zn ( 35 Cl, 4p 2n) at a beam energy of 140 MeV. This was done particularly with a view to observe any γ rays upto 2.7 MeV which may have been missed in our earlier study where the experimental conditions were set to observe γ rays upto 2 MeV. We found four new γ rays of energy: 2484, 2164, 2130 and 69 keV. We have placed these γ rays in the level scheme and it now gets extended to 49/2 - . Though there is no substantial change in the level scheme, placing the γ rays in the level scheme has resulted into two important conclusions: (1) We have performed shell model calculations for 93 Tc nucleus within a model space which encompasses an enlarged proton configuration and allows for the excitation of the neutron across the N=50 core. The excitation of a single neutron across the N=50 core satisfactorily explains the new level scheme. (2) The energy of the 17/2 - isomeric state is now unambiguously placed at 2185 keV. (orig.)

  20. Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model

    Kuligowska, Elżbieta

    2018-04-01

    Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.

  1. [Outlier sample discriminating methods for building calibration model in melons quality detecting using NIR spectra].

    Tian, Hai-Qing; Wang, Chun-Guang; Zhang, Hai-Jun; Yu, Zhi-Hong; Li, Jian-Kang

    2012-11-01

    Outlier samples strongly influence the precision of the calibration model in soluble solids content measurement of melons using NIR Spectra. According to the possible sources of outlier samples, three methods (predicted concentration residual test; Chauvenet test; leverage and studentized residual test) were used to discriminate these outliers respectively. Nine suspicious outliers were detected from calibration set which including 85 fruit samples. Considering the 9 suspicious outlier samples maybe contain some no-outlier samples, they were reclaimed to the model one by one to see whether they influence the model and prediction precision or not. In this way, 5 samples which were helpful to the model joined in calibration set again, and a new model was developed with the correlation coefficient (r) 0. 889 and root mean square errors for calibration (RMSEC) 0.6010 Brix. For 35 unknown samples, the root mean square errors prediction (RMSEP) was 0.854 degrees Brix. The performance of this model was more better than that developed with non outlier was eliminated from calibration set (r = 0.797, RMSEC= 0.849 degrees Brix, RMSEP = 1.19 degrees Brix), and more representative and stable with all 9 samples were eliminated from calibration set (r = 0.892, RMSEC = 0.605 degrees Brix, RMSEP = 0.862 degrees).

  2. Application of class-modelling techniques to infrared spectra for analysis of pork adulteration in beef jerkys.

    Kuswandi, Bambang; Putri, Fitra Karima; Gani, Agus Abdul; Ahmad, Musa

    2015-12-01

    The use of chemometrics to analyse infrared spectra to predict pork adulteration in the beef jerky (dendeng) was explored. In the first step, the analysis of pork in the beef jerky formulation was conducted by blending the beef jerky with pork at 5-80 % levels. Then, they were powdered and classified into training set and test set. The second step, the spectra of the two sets was recorded by Fourier Transform Infrared (FTIR) spectroscopy using atenuated total reflection (ATR) cell on the basis of spectral data at frequency region 4000-700 cm(-1). The spectra was categorised into four data sets, i.e. (a) spectra in the whole region as data set 1; (b) spectra in the fingerprint region (1500-600 cm(-1)) as data set 2; (c) spectra in the whole region with treatment as data set 3; and (d) spectra in the fingerprint region with treatment as data set 4. The third step, the chemometric analysis were employed using three class-modelling techniques (i.e. LDA, SIMCA, and SVM) toward the data sets. Finally, the best result of the models towards the data sets on the adulteration analysis of the samples were selected and the best model was compared with the ELISA method. From the chemometric results, the LDA model on the data set 1 was found to be the best model, since it could classify and predict 100 % accuracy of the sample tested. The LDA model was applied toward the real samples of the beef jerky marketed in Jember, and the results showed that the LDA model developed was in good agreement with the ELISA method.

  3. Neotectonics of Asia: Thin-shell finite-element models with faults

    Kong, Xianghong; Bird, Peter

    1994-01-01

    As India pushed into and beneath the south margin of Asia in Cenozoic time, it added a great volume of crust, which may have been (1) emplaced locally beneath Tibet, (2) distributed as regional crustal thickening of Asia, (3) converted to mantle eclogite by high-pressure metamorphism, or (4) extruded eastward to increase the area of Asia. The amount of eastward extrusion is especially controversial: plane-stress computer models of finite strain in a continuum lithosphere show minimal escape, while laboratory and theoretical plane-strain models of finite strain in a faulted lithosphere show escape as the dominant mode. We suggest computing the present (or neo)tectonics by use of the known fault network and available data on fault activity, geodesy, and stress to select the best model. We apply a new thin-shell method which can represent a faulted lithosphere of realistic rheology on a sphere, and provided predictions of present velocities, fault slip rates, and stresses for various trial rheologies and boundary conditions. To minimize artificial boundaries, the models include all of Asia east of 40 deg E and span 100 deg on the globe. The primary unknowns are the friction coefficient of faults within Asia and the amounts of shear traction applied to Asia in the Himalayan and oceanic subduction zones at its margins. Data on Quaternary fault activity prove to be most useful in rating the models. Best results are obtained with a very low fault friction of 0.085. This major heterogeneity shows that unfaulted continum models cannot be expected to give accurate simulations of the orogeny. But, even with such weak faults, only a fraction of the internal deformation is expressed as fault slip; this means that rigid microplate models cannot represent the kinematics either. A universal feature of the better models is that eastern China and southeast Asia flow rapidly eastward with respect to Siberia. The rate of escape is very sensitive to the level of shear traction in the

  4. Coexistence of spherical states with deformed and superdeformed bands in doubly magic 40Ca; A shell model challenge

    Caurier, E.; Nowacki, F.; Menendez, J.; Poves, A.

    2007-02-01

    Large scale shell model calculations, with dimensions reaching 10 9 , are carried out to describe the recently observed deformed (ND) and superdeformed (SD) bands based on the first and second excited 0 + states of 40 Ca at 3.35 MeV and 5.21 MeV respectively. A valence space comprising two major oscillator shells, sd and pf, can accommodate most of the relevant degrees of freedom of this problem. The ND band is dominated by configurations with four particles promoted to the pf-shell (4p-4h in short). The SD band by 8p-8h configurations. The ground state of 40 Ca is strongly correlated, but the closed shell still amounts to 65%. The energies of the bands are very well reproduced by the calculations. The out-band transitions connecting the SD band with other states are very small and depend on the details of the mixing among the different np-nh configurations, in spite of that, the calculation describes them reasonably. For the in-band transition probabilities along the SD band, we predict a fairly constant transition quadrupole moment Q 0 (t) ∼ 70 e fm 2 up to J=10, that decreases toward the higher spins. We submit also that the J=8 states of the deformed and superdeformed band are maximally mixed. (authors)

  5. Coexistence of spherical states with deformed and superdeformed bands in doubly magic 40Ca: A shell-model challenge

    Caurier, E.; Nowacki, F.; Menendez, J.; Poves, A.

    2007-01-01

    Large-scale shell-model calculations, with dimensions reaching 10 9 , are carried out to describe the recently observed deformed (ND) and superdeformed (SD) bands based on the first and second excited 0 + states of 40 Ca at 3.35 and 5.21 MeV, respectively. A valence space comprising two major oscillator shells, sd and pf, can accommodate most of the relevant degrees of freedom of this problem. The ND band is dominated by configurations with four particles promoted to the pf shell (4p-4h in short). The SD band by 8p-8h configurations. The ground state of 40 Ca is strongly correlated, but the closed shell still amounts to 65%. The energies of the bands are very well reproduced by the calculations. The out-band transitions connecting the SD band with other states are very small and depend on the details of the mixing among the different np-nh configurations; in spite of that, the calculation describes them reasonably. For the in-band transition probabilities along the SD band, we predict a fairly constant transition quadrupole moment Q 0 (t)∼170 e fm 2 up to J=10 that decreases toward the higher spins. We submit also that the J=8 states of the deformed and superdeformed bands are maximally mixed

  6. Dual regression physiological modeling of resting-state EPI power spectra: Effects of healthy aging.

    Viessmann, Olivia; Möller, Harald E; Jezzard, Peter

    2018-02-02

    Aging and disease-related changes in the arteriovasculature have been linked to elevated levels of cardiac cycle-induced pulsatility in the cerebral microcirculation. Functional magnetic resonance imaging (fMRI), acquired fast enough to unalias the cardiac frequency contributions, can be used to study these physiological signals in the brain. Here, we propose an iterative dual regression analysis in the frequency domain to model single voxel power spectra of echo planar imaging (EPI) data using external recordings of the cardiac and respiratory cycles as input. We further show that a data-driven variant, without external physiological traces, produces comparable results. We use this framework to map and quantify cardiac and respiratory contributions in healthy aging. We found a significant increase in the spatial extent of cardiac modulated white matter voxels with age, whereas the overall strength of cardiac-related EPI power did not show an age effect. Copyright © 2018. Published by Elsevier Inc.

  7. A Study of Precataclysmic Binaries Through Theoretic Modeling of Light Curves and Spectra

    Mitrofanova, A. A.; Shimansky, V. V.; Borisov, N. V.

    2017-06-01

    The article presents results of three pre-cataclysmic binaries (PN G068.1+11.0, TW Crv and RE J2013+4002) investigation. Spectroscopic and photometric observations were obtained on BTA and Zeiss-1000 of SAO RAS and on RTT-150. We used the modeling of light curves and spectra to determine the fundamental parameters for all three systems. The PN G068.1+11.0 parameters were obtained with the use of the evolutionary tracks for the nuclei of planetary nebulae of different masses. According to the results of the study, it was found that the secondary components of PN G068.1+11.0 and TW Crv have luminosity excess, but secondary component of RE J2013+4002 doesn't have one.

  8. Cooperativity in Molecular Dynamics Structural Models and the Dielectric Spectra of 1,2-Ethanediol

    Usacheva, T. M.

    2018-05-01

    Linear relationships are established between the experimental equilibrium correlation factor and the molecular dynamics (MD) mean value of the O-H···O bond angle and the longitudinal component of the unit vector of the mean statistical dipole moment of the cluster in liquid 1,2-ethanediol (12ED). The achievements of modern MD models in describing the experimental dispersion of the permittivity of 12ED by both continuous and discrete relaxation time spectra are analyzed. The advantage computer MD experiments have over dielectric spectroscopy for calculating relaxation time and determining the molecular diffusion mechanisms of the rearrangement of the network 12ED structure, which is more complex than water, is demonstrated.

  9. Shell model calculations for levels and transition rates in 204Pb and 206Pb

    Wang, D.; McEllistrem, M.T.

    1990-01-01

    Level energies and decay rates of both negative and positive parity levels of 206,204 Pb have been calculated through mixed-configuration shell model calculations using the modified surface delta interaction (MSDI), the Schiffer-True central interaction, and another two-body interaction. These calculations were all carried out with a full six-orbit neutron hole space. The predicted low-lying levels with the MSDI are in excellent agreement with experiments, accounting for the energies, spins, and parities of essentially all levels below 3 MeV excitation energy except known particle-hole collective excitations in both nuclei. Almost all calculated E2 and M1 transition rates are consistent with measured branching ratios for γ-ray decay of excited levels. The comparison of the observed and calculated levels demonstrates the important role played by the neutron-hole i 13/2 configuration in the levels of 204 Pb and 206 Pb, and interprets an apparent discrepancy over the character and energy spacings of 0 + levels in 204 Pb

  10. Cluster form factor calculation in the ab initio no-core shell model

    Navratil, Petr

    2004-01-01

    We derive expressions for cluster overlap integrals or channel cluster form factors for ab initio no-core shell model (NCSM) wave functions. These are used to obtain the spectroscopic factors and can serve as a starting point for the description of low-energy nuclear reactions. We consider the composite system and the target nucleus to be described in the Slater determinant (SD) harmonic oscillator (HO) basis while the projectile eigenstate to be expanded in the Jacobi coordinate HO basis. This is the most practical case. The spurious center of mass components present in the SD bases are removed exactly. The calculated cluster overlap integrals are translationally invariant. As an illustration, we present results of cluster form factor calculations for 5 He vertical bar 4 He+n>, 5 He vertical bar 3 H+d>, 6 Li vertical bar 4 He+d>, 6 Be vertical bar 3 He+ 3 He>, 7 Li vertical bar 4 He+ 3 H>, 7 Li vertical bar 6 Li+n>, 8 Be vertical bar 6 Li+d>, 8 Be vertical bar 7 Li+p>, 9 Li vertical bar 8 Li+n>, and 13 C vertical bar 12 C+n>, with all the nuclei described by multi-(ℎ/2π)Ω NCSM wave functions

  11. IBM parameters derived from realistic shell-model Hamiltonian via Hn-cooling method

    Nakada, Hitoshi

    1997-01-01

    There is a certain influence of non-collective degrees-of-freedom even in lowest-lying states of medium-heavy nuclei. This influence seems to be significant for some of the IBM parameters. In order to take it into account, several renormalization approaches have been applied. It has been shown in the previous studies that the influence of the G-pairs is important, but does not fully account for the fitted values. The influence of the non-collective components may be more serious when we take a realistic effective nucleonic interaction. To incorporate this influence into the IBM parameters, we employ the recently developed H n -cooling method. This method is applied to renormalize the wave functions of the states consisting of the SD-pairs, for the Cr-Fe nuclei. On this ground, the IBM Hamiltonian and transition operators are derived from corresponding realistic shell-model operators, for the Cr-Fe nuclei. Together with some features of the realistic interaction, the effects of the non-SD degrees-of-freedom are presented. (author)

  12. Mass loss from OH/IR stars - Models for the infrared emission of circumstellar dust shells

    Justtanont, K.; Tielens, A. G. G. M.

    1992-01-01

    The IR emission of a sample of 24 OH/IR stars is modeled, and the properties of circumstellar dust and mass-loss rate of the central star are derived. It is shown that for some sources the observations of the far-IR emission is well fitted with a lambda exp -1 law, while some have a steeper index of 1.5. For a few sources, the presence of circumstellar ice grains is inferred from detailed studies of the observed 10-micron feature. Dust mass-loss rates are determined from detailed studies for all the stars in this sample. They range from 6.0 x 10 exp -10 solar mass/yr for an optically visible Mira to 2.2 x 10 exp -6 solar mass/yr for a heavily obscured OH/IR star. These dust mass-loss rates are compared to those calculated from IRAS photometry using 12-, 25-, and 60-micron fluxes. The dust mass-loss rates are also compared to gas mass-loss rates determined from OH and CO observations. For stars with tenuous shells, a dust-to-gas ratio of 0.001 is obtained.

  13. Shell model with several particles in the continuum: application to the two-proton decay

    Rotureau, J.

    2005-02-01

    The recent experimental results concerning nuclei at the limit of stability close to the drip-lines and in particular the two-proton emitters require a development of new methodologies to reliably calculate and understand properties of those exotic physical systems. In this work we have extended the Shell Model Embedded in the Continuum (SMEC) in order to describe the coupling with two particles in the scattering continuum. We have obtained a microscopic description of the two-proton emission that takes into account the antisymmetrization of the total wavefunction, the configuration mixing and the three-body asymptotics. We have studied the decay of the 1 2 - state in 18 Ne in two limiting cases: (i) a sequential emission of two protons through the correlated continuum of 17 F and (ii) emission of 2 He cluster that disintegrates because of the final state interaction (diproton emission). Independently of the choice of the effective interaction we have observed that the two-proton emission of the 1 2 - in 18 Ne is mainly a sequential process; the ratio between the widths of the diproton emission and the sequential decay does not exceed 8% in any case. (author)

  14. Spectroscopy of 96-98Ru and neighboring nuclei: shell model calculations and lifetime measurements

    Kharraja, B.; Garg, U.; Ghugre, S.S.

    1997-01-01

    High Spin states in 94,95 Mo, 94-96 Tc, 96-98 Ru and 97,98 Rh were populated via the 65 Cu( 36 S,xpyn) reactions at 142 MeV. Level schemes of these nuclei have been extended up to a spin of J ∼ 20ℎ and an excitation energy of E x ∼12 -14 MeV. Information on the high spin structure for 96 Tc and 98 Rh has been obtained for the first time. Spherical shell model calculations have been performed and compared with the experimental excitation energies. The level structures of the N=51, 52 isotones exhibit single-particle nature even at the highest spins and excitation energies. A fragmentation of intensity into several branches after breaking of the N = 50 core has been observed. There are indications for the onset of collectivity around neutron number N = 53 in this mass region. A sequence of E2 transitions, reminiscent of vibrational degree of freedom, were observed in 98 Ru at spins just above the observed N = 50 core breaking. RDM lifetime measurements have been performed to ascertain the intrinsic structures of these level sequences. (author)

  15. Microscopic calculation of level densities: the shell model Monte Carlo approach

    Alhassid, Yoram

    2012-01-01

    The shell model Monte Carlo (SMMC) approach provides a powerful technique for the microscopic calculation of level densities in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We discuss a number of developments: (i) Spin distribution. We used a spin projection method to calculate the exact spin distribution of energy levels as a function of excitation energy. In even-even nuclei we find an odd-even staggering effect (in spin). Our results were confirmed in recent analysis of experimental data. (ii) Heavy nuclei. The SMMC approach was extended to heavy nuclei. We have studied the crossover between vibrational and rotational collectivity in families of samarium and neodymium isotopes in model spaces of dimension approx. 10 29 . We find good agreement with experimental results for both state densities and 2 > (where J is the total spin). (iii) Collective enhancement factors. We have calculated microscopically the vibrational and rotational enhancement factors of level densities versus excitation energy. We find that the decay of these enhancement factors in heavy nuclei is correlated with the pairing and shape phase transitions. (iv) Odd-even and odd-odd nuclei. The projection on an odd number of particles leads to a sign problem in SMMC. We discuss a novel method to calculate state densities in odd-even and odd-odd nuclei despite the sign problem. (v) State densities versus level densities. The SMMC approach has been used extensively to calculate state densities. However, experiments often measure level densities (where levels are counted without including their spin degeneracies.) A spin projection method enables us to also calculate level densities in SMMC. We have calculated the SMMC level density of 162 Dy and found it to agree well with experiments

  16. Correlations in microscopic optical model for nucleon elastic scattering off doubly closed-shell nuclei

    Dupuis, M.; Karataglidis, S.; Bauge, E.; Delaroche, J.P.; Gogny, D.

    2006-01-01

    The random phase approximation (RPA) long-range correlations are known to play a significant role in understanding the depletion of single particle-hole states observed in (e,e ' ) and (e,e ' p) measurements. Here the RPA theory, implemented using the D1S force is considered for the specific purpose of building correlated ground states and related one-body density matrix elements. These may be implemented and tested in a fully microscopic optical model for NA scattering off doubly closed-shell nuclei. A method is presented to correct for the correlations overcounting inherent to the RPA formalism. One-body density matrix elements in the uncorrelated (i.e., Hartree-Fock) and correlated (i.e., RPA) ground states are then challenged in proton scattering studies based on the Melbourne microscopic optical model to highlight the role played by the RPA correlations. Agreement between the parameter free scattering predictions and measurements is good for incident proton energies ranging from 200 MeV down to approximately 60 MeV and becomes gradually worse in the lower energy range. Those features point unambiguously to the relevance of the g-matrix method to build microscopic optical model potentials at medium energies, and emphasize the need to include nucleon-phonon coupling, that is, a second-order component of the Feshbach type in the potential at lower energies. Illustrations are given for proton scattering observables measured up to 201 MeV for the 16 O, 40 Ca, 48 Ca, and 208 Pb target nuclei

  17. Microscopic theory of light exotic nuclei. Shell Models Embedded in the Continuum

    Bennaceur, K.

    1999-01-01

    The recent advances in experimental nuclear physics make it possible to study nuclear systems far from the beta stability line. The discovery of new phenomena, like halos or neutron skins, requires the development of new theoretical models which enable to study these systems. The first part of this work is devoted to the development and the applications of the Shell Model Embedded in the Continuum (SMEC). This new formalism allows to take into account the correlations between the bound and scattering states of loosely bound nuclei. SMEC is applied here to the study of the spectroscopy of the Mirror nuclei 8 B- 8 Li and 17 F- 17 O. It can also be used to calculate the cross sections of the elastic scattering, the Coulomb breakup processes and the radiative n,p capture processes. The results concerning the reactions of astrophysical interest: 18 O(p, γ) 17 F and 7 Be(p, γ) 8 B, are discussed in details. This last reaction is very important because the disintegration of 8 B is the main source of High energy neutrinos in the sun. The second part of this work is related to the analysis of pairing interaction for weakly bound nuclei. We have developed a new approach, based on the Hartree-Fock-Bogolyubov (HFB) theory, that allows to study the pairing correlations between bound and scattering states, both resonant and not resonant ones. The 'particle-hole' potential is replaced by a model potential for which the solutions are analytically known. This method allows to analyse the effect of pairing on bound and resonant states, independently of their energy position. We have clearly demonstrated that the non-resonant continuum plays a crucial role in the loosely bound nuclei and that solving the HFB equations in the coordinate space is the only method that permits to treat this problem correctly. (author)

  18. Modelling of oscillations in two-dimensional echo-spectra of the Fenna-Matthews-Olson complex

    Hein, Birgit; Kreisbeck, Christoph; Kramer, Tobias; Rodríguez, Mirta

    2012-01-01

    Recent experimental observations of time-dependent beatings in the two-dimensional echo-spectra of light-harvesting complexes at ambient temperatures have opened up the question of whether coherence and wave-like behaviour play a significant role in photosynthesis. We carry out a numerical study of the absorption and echo-spectra of the Fenna-Matthews-Olson (FMO) complex in Chlorobium tepidum and analyse the requirements in the theoretical model needed to reproduce beatings in the calculated spectra. The energy transfer in the FMO pigment-protein complex is theoretically described by an exciton Hamiltonian coupled to a phonon bath which accounts for the pigments' electronic and vibrational excitations, respectively. We use the hierarchical equations of motions method to treat the strong couplings in a non-perturbative way. We show that the oscillations in the two-dimensional echo-spectra persist in the presence of thermal noise and static disorder. (paper)

  19. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models.

    Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R

    2016-09-13

    The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models.

  20. Nuclear shell theory

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  1. Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?

    Karlsson, Hanna; Pettersson, Anders; Larsson, Marcus; Strömberg, Tomas

    2011-02-01

    Model based analysis of calibrated diffuse reflectance spectroscopy can be used for determining oxygenation and concentration of skin chromophores. This study aimed at assessing the effect of including melanin in addition to hemoglobin (Hb) as chromophores and compensating for inhomogeneously distributed blood (vessel packaging), in a single-layer skin model. Spectra from four humans were collected during different provocations using a twochannel fiber optic probe with source-detector separations 0.4 and 1.2 mm. Absolute calibrated spectra using data from either a single distance or both distances were analyzed using inverse Monte Carlo for light transport and Levenberg-Marquardt for non-linear fitting. The model fitting was excellent using a single distance. However, the estimated model failed to explain spectra from the other distance. The two-distance model did not fit the data well at either distance. Model fitting was significantly improved including melanin and vessel packaging. The most prominent effect when fitting data from the larger separation compared to the smaller separation was a different light scattering decay with wavelength, while the tissue fraction of Hb and saturation were similar. For modeling spectra at both distances, we propose using either a multi-layer skin model or a more advanced model for the scattering phase function.

  2. Modelling of the anti-neutrino production and spectra from a Magnox reactor

    Mills, Robert W.; Mountford, David J.; Coleman, Jonathon P.; Metelko, Carl; Murdoch, Matthew; Schnellbach, Yan-Jie

    2018-01-01

    The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152) during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of monitored reactor

  3. Modelling of the anti-neutrino production and spectra from a Magnox reactor

    Mills Robert W

    2018-01-01

    Full Text Available The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152 during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of

  4. MODEL SPECTRA OF THE FIRST POTENTIALLY HABITABLE SUPER-EARTH-Gl581d

    Kaltenegger, Lisa; Segura, AntIgona; Mohanty, Subhanjoy

    2011-01-01

    Gl581d has a minimum mass of 7 M Earth and is the first detected potentially habitable rocky Super-Earth. Our models confirm that a habitable atmosphere can exist on Gl581d. We derive spectroscopic features for atmospheres assuming an Earth-like composition for this planet, from high-oxygen atmosphere analogous to Earth's to high-CO 2 atmospheres with and without biotic oxygen concentrations. We find that a minimum CO 2 partial pressure of about 7 bar, in an atmosphere with a total surface pressure of 7.6 bar, is needed to maintain a mean surface temperature above freezing on Gl581d. We model transmission and emergent synthetic spectra from 0.4 μm to 40 μm and show where indicators of biological activities in such a planet's atmosphere could be observed by future ground- and space-based telescopes. The model we present here only represents one possible nature-an Earth-like composition-of a planet like Gl581d in a wide parameter space. Future observations of atmospheric features can be used to examine if our concept of habitability and its dependence on the carbonate-silicate cycle is correct, and assess whether Gl581d is indeed a habitable Super-Earth.

  5. Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model

    Sherman, A.

    2018-05-01

    The influence of spin and charge fluctuations on spectra of the two-dimensional fermionic Hubbard model is considered using the strong coupling diagram technique. Infinite sequences of diagrams containing ladder inserts, which describe the interaction of electrons with these fluctuations, are summed, and obtained equations are self-consistently solved for the ranges of Hubbard repulsions , temperatures and electron concentrations with t the intersite hopping constant. For all considered U the system exhibits a transition to the long-range antiferromagnetic order at . At the same time no indication of charge ordering is observed. Obtained solutions agree satisfactorily with results of other approaches and obey moments sum rules. In the considered region of the U-T plane, the curve separating metallic solutions passes from at the highest temperatures to U  =  2t at for half-filling. If only short-range fluctuations are allowed for the remaining part of this region is occupied by insulating solutions. Taking into account long-range fluctuations leads to strengthening of maxima tails, which transform a part of insulating solutions into bad-metal states. For low T, obtained results allow us to trace the gradual transition from the regime of strong correlations with the pronounced four-band structure and well-defined Mott gap for to the Slater regime of weak correlations with the spectral intensity having a dip along the boundary of the magnetic Brillouin zone due to an antiferromagnetic ordering for . For and doping leads to the occurrence of a pseudogap near the Fermi level, which is a consequence of the splitting out of a narrow band from a Hubbard subband. Obtained spectra feature waterfalls and Fermi arcs, which are similar to those observed in hole-doped cuprates.

  6. Understanding emergent collectivity and clustering in nuclei from a symmetry-based no-core shell-model perspective

    Dreyfuss, A. C.; Launey, K. D.; Dytrych, Tomáš; Draayer, J. P.; Baker, R. B.; Deibel, C. M.; Bahri, C.

    2017-01-01

    Roč. 95, č. 4 (2017), č. článku 044312. ISSN 2469-9985 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : C-12 * no-core shell-model * resonance Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.820, year: 2016

  7. Coulomb excitation $^{74}$Zn-$^{80}$Zn (N=50): probing the validity of shell-model descriptions around $^{78}$Ni

    A study of the evolution of the nuclear structure along the zinc isotopic chain close to the doubly magic nucleus $^{78}$Ni is proposed to probe recent shell-model calculations in this area of the nuclear chart. Excitation energies and connecting B(E2) values will be measured through multiple Coulomb excitation experiment with laser ionized purified beams of $^{74-80}$Zn from HIE ISOLDE. The current proposal request 30 shifts.

  8. Shell model description of 16O(p,γ)17F and 16O(p,p)16O reactions

    Bennaceur, K.; Michel, N.; Okolowicz, J.; Ploszajczak, M.; Bennaceur, K.; Nowacki, F.; Okolowicz, J.

    2000-01-01

    We present shell model calculations of both the structure of 17 F and the reactions 16 O(p,γ) 17 F, 16 O(p,p) 16 O. We use the ZBM interaction which provides a fair description of the properties of 16 O and neighbouring nuclei and, in particular it takes account for the complicated correlations in coexisting low-lying states of 16 O. (authors)

  9. Two-loop O(ααs) corrections to the on-shell fermion propagator in the standard model

    Eiras, Dolors; Steinhauser, Matthias

    2006-01-01

    In this paper we consider mixed two-loop electroweak corrections to the top quark propagator in the Standard Model. In particular, we compute the on-shell renormalization constant for the mass and wave function, which constitute building blocks for many physical processes. The results are expressed in terms of master integrals. For the latter practical approximations are derived. In the case of the mass renormalization constant we find agreement with the results in the literature

  10. A systematic approach to obtain validated Partial Least Square models for predicting lipoprotein subclasses from serum NMR spectra

    Mihaleva, V.V.; van Schalkwijk, D.B.; de Graaf, A.A.; van Duynhoven, J.; van Dorsten, F.A.; Vervoort, J.; Smilde, A.; Westerhuis, J.A.; Jacobs, D.M.

    2014-01-01

    A systematic approach is described for building validated PLS models that predict cholesterol and triglyceride concentrations in lipoprotein subclasses in fasting serum from a normolipidemic, healthy population. The PLS models were built on diffusion-edited 1H NMR spectra and calibrated on

  11. A systematic approach to obtain validated partial least square models for predicting lipoprotein subclasses from serum NMR spectra

    Mihaleva, V.V.; Schalkwijk, van D.B.; Graaf, de A.A.; Duynhoven, van J.P.M.; Dorsten, van F.A.; Vervoort, J.J.M.; Smilde, A.K.; Westerhuis, J.A.; Jacobs, D.M.

    2014-01-01

    A systematic approach is described for building validated PLS models that predict cholesterol and triglyceride concentrations in lipoprotein subclasses in fasting serum from a normolipidemic, healthy population. The PLS models were built on diffusion-edited (1)H NMR spectra and calibrated on

  12. A systematic approach to obtain validated partial least square models for predicting lipoprotein subclasses from serum nmr spectra

    Mihaleva, V.V.; Schalkwijk, D.B. van; Graaf, A.A. de; Duynhoven, J. van; Dorsten, F.A. van; Vervoort, J.; Smilde, A.; Westerhuis, J.A.; Jacobs, D.M.

    2014-01-01

    A systematic approach is described for building validated PLS models that predict cholesterol and triglyceride concentrations in lipoprotein subclasses in fasting serum from a normolipidemic, healthy population. The PLS models were built on diffusion-edited 1H NMR spectra and calibrated on

  13. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  14. Doubly 15N-substituted diazenylium: THz laboratory spectra and fractionation models

    Dore, L.; Bizzocchi, L.; Wirström, E. S.; Degli Esposti, C.; Tamassia, F.; Charnley, S. B.

    2017-07-01

    Context. Isotopic fractionation in dense molecular cores has been suggested as a possible origin of large 14N/15N ratio variations in solar system materials. While chemical models can explain some observed variations with different fractionation patterns for molecules with -NH or -CN functional groups, they fail to reproduce the observed ratios in diazenylium (N2H+). Aims: Observations of doubly 15N-substituted species could provide important constraints and insights for theoretical chemical models of isotopic fractionation. However, spectroscopic data are very scarce. Methods: The rotational spectra of the fully 15N-substituted isopologues of the diazenylium ion, 15N2H+ and 15N2D+, have been investigated in the laboratory well into the THz region by using a source-modulation microwave spectrometer equipped with a negative glow discharge cell. An extended chemical reaction network has been used to estimate what ranges of 15N fractionation in doubly 15N-substituted species could be expected in the interstellar medium (ISM). Results: For each isotopologue of the H- and D-containing pair, nine rotational transitions were accurately measured in the frequency region 88 GHz-1.2 THz. The analysis of the spectrum provided very precise rest frequencies at millimeter and sub-millimeter wavelengths, useful for the radioastronomical identification of the rotational lines of 15N2H+ and 15N2D+ in the ISM.

  15. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors - 202

    Recktenwald, G.D.; Bronk, L.A.; Deinert, M.R.

    2010-01-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks. (authors)

  16. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe

    Hindmarsh, Mark

    2018-02-01

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  17. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe.

    Hindmarsh, Mark

    2018-02-16

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  18. A shell-neutral modeling approach yields sustainable oyster harvest estimates: a retrospective analysis of the Louisiana state primary seed grounds

    Soniat, Thomas M.; Klinck, John M.; Powell, Eric N.; Cooper, Nathan; Abdelguerfi, Mahdi; Hofmann, Eileen E.; Dahal, Janak; Tu, Shengru; Finigan, John; Eberline, Benjamin S.; La Peyre, Jerome F.; LaPeyre, Megan K.; Qaddoura, Fareed

    2012-01-01

    A numerical model is presented that defines a sustainability criterion as no net loss of shell, and calculates a sustainable harvest of seed (<75 mm) and sack or market oysters (≥75 mm). Stock assessments of the Primary State Seed Grounds conducted east of the Mississippi from 2009 to 2011 show a general trend toward decreasing abundance of sack and seed oysters. Retrospective simulations provide estimates of annual sustainable harvests. Comparisons of simulated sustainable harvests with actual harvests show a trend toward unsustainable harvests toward the end of the time series. Stock assessments combined with shell-neutral models can be used to estimate sustainable harvest and manage cultch through shell planting when actual harvest exceeds sustainable harvest. For exclusive restoration efforts (no fishing allowed), the model provides a metric for restoration success-namely, shell accretion. Oyster fisheries that remove shell versus reef restorations that promote shell accretion, although divergent in their goals, are convergent in their management; both require vigilant attention to shell budgets.

  19. Corrections to the free-nucleon values of the single-particle matrix elements of the M1 and Gamow-Teller operators, from a comparison of shell-model predictions with sd-shell data

    Brown, B.A.; Wildenthal, B.H.

    1983-01-01

    The magnetic dipole moments of states in mirror pairs of the sd-shell nuclei and the strengths of the Gamow-Teller beta decays which connect them are compared with predictions based on mixed-configuration shell-model wave functions. From this analysis we extract the average effective values of the single-particle matrix elements of the l, s, and [Y/sup( 2 )xs]/sup( 1 ) components of the M1 and Gamow-Teller operators acting on nucleons in the 0d/sub 5/2/, 1s/sub 1/2/, and 0d/sub 3/2/ orbits. These results are compared with the recent calculations by Towner and Khanna of the corrections to the free-nucleon values of these matrix elements which arise from the effects of isobar currents, mesonic-exchange currents, and mixing with configurations outside the sd shell

  20. Applying a Qualitative Modeling Shell to Process Diagnosis: The Caster System. ONR Technical Report #16.

    Thompson, Timothy F.; Clancey, William J.

    This report describes the application of a shell expert system from the medical diagnostic system, Neomycin, to Caster, a diagnostic system for malfunctions in industrial sandcasting. This system was developed to test the hypothesis that starting with a well-developed classification procedure and a relational language for stating the…

  1. GPI Spectra of HR8799 C, D, and E in H-K Bands with KLIP Forward Modeling

    Greenbaum, Alexandra Z.; Pueyo, Laurent; Ruffio, Jean-Baptiste; Wang, Jason J.; De Rosa, Robert J.; Aguilar, Jonathan; Rameau, Julien; Barman, Travis; Marois, Christian; Marley, Mark S.; hide

    2018-01-01

    We demonstrate KLIP forward modeling spectral extraction on Gemini Planet Imager coronagraphic data of HR8799, using PyKLIP. We report new and re-reduced spectrophotometry of HR8799 c, d, and e from H-K bands. We discuss a strategy for choosing optimal KLIP PSF subtraction parameters by injecting fake sources and recovering them over a range of parameters. The K1/K2 spectra for planets c and d are similar to previously published results from the same dataset. We also present a K band spectrum of HR8799e for the first time and show that our H-band spectra agree well with previously published spectra from the VLT/SPHERE instrument. We compare planets c, d, and e with M, L, and T-type field objects. All objects are consistent with low gravity mid-to-late L dwarfs, however, a lack of standard spectra for low gravity late L-type objects lead to poor fit for gravity. We place our results in context of atmospheric models presented in previous publications and discuss differences in the spectra of the three planets.

  2. Modeling midwave infrared muzzle flash spectra from unsuppressed and flash-suppressed large caliber munitions

    Steward, Bryan J.; Perram, Glen P.; Gross, Kevin C.

    2012-07-01

    Time-resolved infrared spectra of firings from a 152 mm howitzer were acquired over an 1800-6000 cm-1 spectral range using a Fourier-transform spectrometer. The instrument collected primarily at 32 cm-1 spectral and 100 Hz temporal resolutions. Munitions included unsuppressed and chemically flash suppressed propellants. Secondary combustion occurred with unsuppressed propellants resulting in flash emissions lasting ˜100 ms and dominated by H2O and CO2 spectral structure. Non-combusting plume emissions were one-tenth as intense and approached background levels within 20-40 ms. A low-dimensional phenomenological model was used to reduce the data to temperatures, soot absorbances, and column densities of H2O, CO2, CH4, and CO. The combusting plumes exhibit peak temperatures of ˜1400 K, areas of greater than 32 m2, low soot emissivity of ˜0.04, with nearly all the CO converted to CO2. The non-combusting plumes exhibit lower temperatures of ˜1000 K, areas of ˜5 m2, soot emissivity of greater than 0.38 and CO as the primary product. Maximum fit residual relative to peak intensity are 14% and 8.9% for combusting and non-combusting plumes, respectively. The model was generalized to account for turbulence-induced variations in the muzzle plumes. Distributions of temperature and concentration in 1-2 spatial regions demonstrate a reduction in maximum residuals by 40%. A two-region model of combusting plumes provides a plausible interpretation as a ˜1550 K, optically thick plume core and ˜2550 K, thin, surface-layer flame-front. Temperature rate of change was used to characterize timescales and energy release for plume emissions. Heat of combustion was estimated to be ˜5 MJ/kg.

  3. PREFACE: 11th International Spring Seminar on Nuclear Physics: Shell Model and Nuclear Structure - achievements of the past two decades

    2015-02-01

    The 11th International Seminar on Nuclear Physics was held in Ischia from May 12 to May 16, 2014. This Seminar was dedicated to Aldo Covello, who has been the promoter of this series of meetings, which started in Sorrento in 1986 and continued with meetings held every two or three years in the Naples area. Aldo's idea was to offer to a group of researchers, actively working in selected fields of Nuclear Physics, the opportunity to confront their points of view in a lively and informal way. The choice for the period of the year, Spring, as well as the sites chosen reflected this intent. The first meeting was of a purely theoretical nature, but it was immediately clear that the scope of these conferences needed to be enlarged calling into play the experimental community. Then, starting from the second meeting, all the following ones have been characterized by fruitful discussion between theoretical and experimental researchers on current achievements and future developments of nuclear structure. This may be read, in fact, as one of the motivating factors for Aldo's election as Fellow of the American Physical Society in 2008 "... for his outstanding contributions to the international nuclear physics community by providing, for over two decades, a venue for theorists and experimentalists to share their latest ideas." The present meeting, organized by Aldo's former students and with the benefit of his suggestions, has maintained this tradition. The title "Shell model and nuclear structure: achievements of the past two decades" recalls that of the 2nd International Spring Seminar "Shell Model and Nuclear Structure: where do we stand?". The main aim of this 11th Seminar was, in fact, to discuss the changes of the past two decades on our view of nuclei in terms of shell structure as well as the perspectives of the shell model, which has been one of the key points in Aldo's research. This point is well accounted by the Opening Speech of Igal Talmi, one of the fathers of the

  4. Modeling of X-ray Images and Energy Spectra Produced by Stepping Lightning Leaders

    Xu, Wei; Marshall, Robert A.; Celestin, Sebastien; Pasko, Victor P.

    2017-11-01

    Recent ground-based measurements at the International Center for Lightning Research and Testing (ICLRT) have greatly improved our knowledge of the energetics, fluence, and evolution of X-ray emissions during natural cloud-to-ground (CG) and rocket-triggered lightning flashes. In this paper, using Monte Carlo simulations and the response matrix of unshielded detectors in the Thunderstorm Energetic Radiation Array (TERA), we calculate the energy spectra of X-rays as would be detected by TERA and directly compare with the observational data during event MSE 10-01. The good agreement obtained between TERA measurements and theoretical calculations supports the mechanism of X-ray production by thermal runaway electrons during the negative corona flash stage of stepping lightning leaders. Modeling results also suggest that measurements of X-ray bursts can be used to estimate the approximate range of potential drop of lightning leaders. Moreover, the X-ray images produced during the leader stepping process in natural negative CG discharges, including both the evolution and morphological features, are theoretically quantified. We show that the compact emission pattern as recently observed in X-ray images is likely produced by X-rays originating from the source region, and the diffuse emission pattern can be explained by the Compton scattering effects.

  5. Quantum-Gravitational Effects on Primordial Power Spectra in Slow-Roll Inflationary Models

    David Brizuela

    2018-01-01

    Full Text Available We review the computation of the power spectra of inflationary gauge-invariant perturbations in the context of canonical quantum gravity for generic slow-roll models. A semiclassical approximation, based on an expansion in inverse powers of the Planck mass, is applied to the complete Wheeler–DeWitt equation describing a perturbed inflationary universe. This expansion leads to a hierarchy of equations at consecutive orders of the approximation and allows us to write down a corrected Schrödinger equation that encodes information about quantum-gravitational effects. The analytical dependence of the correction to the power spectrum on the wavenumber is obtained. Nonetheless, some numerical work is needed in order to obtain its precise value. Finally, it is shown that the correction turns out to be positive, which leads to an enhancement of the power spectrum especially prominent for large scales. We will also discuss whether this correction leads to a measurable effect in the cosmic microwave background anisotropies.

  6. Study of neutron shell structure of even-even 40-56Ca isotopes by the dispersive optical model

    Bespalova, O.V.; Boboshin, I.N.; Varlamov, V.V.; Ermakova, T.A.; Ishkhanov, B.S.; Romanovskij, E.A.; Spasskaya, T.I.; Timokhina, T.P.

    2005-01-01

    The single-particle energies and occupation probabilities of the bound neutron states in 40,42,44,46,48 Ca isotopes were obtained by the joint evaluation of the stripping and pick-up reaction data. The results were analyzed by the dispersive optical model and a good agreement was achieved. The dispersive optical potential was extrapolated to unstable 50,52,54,56 Ca nuclei. The calculated single-particle energies of the bound neutron states in unstable Ca isotopes were compared with the nuclear shell-model calculations, which predicted new magic number N = 34 for nuclei with Z = 20 [ru

  7. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides.

    Hendriks, P H G M; Maucec, M; de Meijer, R J

    2002-09-01

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of 40K and the series of 232Th and 238U are used to describe the source. A procedure is proposed which excludes the time-consuming electron tracking in less relevant areas of the geometry. The simulated gamma-ray spectra are benchmarked against laboratory data.

  8. Computational Fluid Dynamics Modeling Of Scaled Hanford Double Shell Tank Mixing - CFD Modeling Sensitivity Study Results

    Jackson, V.L.

    2011-01-01

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

  9. LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications

    Koller, Josep [Los Alamos National Laboratory; Reeves, Geoffrey D [Los Alamos National Laboratory; Friedel, Reiner H W [Los Alamos National Laboratory

    2008-01-01

    Space weather modeling, forecasts, and predictions, especially for the radiation belts in the inner magnetosphere, require detailed information about the Earth's magnetic field. Results depend on the magnetic field model and the L* (pron. L-star) values which are used to describe particle drift shells. Space wather models require integrating particle motions along trajectories that encircle the Earth. Numerical integration typically takes on the order of 10{sup 5} calls to a magnetic field model which makes the L* calculations very slow, in particular when using a dynamic and more accurate magnetic field model. Researchers currently tend to pick simplistic models over more accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic field models affect the calculation of electron phase space density by applying adiabatic invariants including the drift shell value L*. We present here a new method using a surrogate model based on a neural network technique to replace the time consuming L* calculations made with modern magnetic field models. The advantage of surrogate models (or meta-models) is that they can compute the same output in a fraction of the time while adding only a marginal error. Our drift shell model LANL* (Los Alamos National Lab L-star) is based on L* calculation using the TSK03 model. The surrogate model has currently been tested and validated only for geosynchronous regions but the method is generally applicable to any satellite orbit. Computations with the new model are several million times faster compared to the standard integration method while adding less than 1% error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric space weather is limited partly due to the long computing time of accurate L* values. Without them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the inner magnetosphere are used to understand

  10. LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications

    Koller, Josep; Reeves, Geoffrey D.; Friedel, Reiner H.W.

    2008-01-01

    Space weather modeling, forecasts, and predictions, especially for the radiation belts in the inner magnetosphere, require detailed information about the Earth's magnetic field. Results depend on the magnetic field model and the L* (pron. L-star) values which are used to describe particle drift shells. Space wather models require integrating particle motions along trajectories that encircle the Earth. Numerical integration typically takes on the order of 10 5 calls to a magnetic field model which makes the L* calculations very slow, in particular when using a dynamic and more accurate magnetic field model. Researchers currently tend to pick simplistic models over more accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic field models affect the calculation of electron phase space density by applying adiabatic invariants including the drift shell value L*. We present here a new method using a surrogate model based on a neural network technique to replace the time consuming L* calculations made with modern magnetic field models. The advantage of surrogate models (or meta-models) is that they can compute the same output in a fraction of the time while adding only a marginal error. Our drift shell model LANL* (Los Alamos National Lab L-star) is based on L* calculation using the TSK03 model. The surrogate model has currently been tested and validated only for geosynchronous regions but the method is generally applicable to any satellite orbit. Computations with the new model are several million times faster compared to the standard integration method while adding less than 1% error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric space weather is limited partly due to the long computing time of accurate L* values. Without them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the inner magnetosphere are used to understand physical

  11. A Comparison of the Lower Stratospheric Age-Spectra Derived from a General Circulation Model and Two Data Assimilation Systems

    Schoeberl, Mark R.; Douglass, Anne R.; Zhu, Zhengxin; Pawson, Steven

    2002-01-01

    We use kinematic and diabatic back trajectory calculations, driven by winds from a general circulation model (GCM) and two different data assimilation systems (DAS), to compute the age spectrum at three latitudes in the lower stratosphere. The age-spectra are compared to chemical transport model (CTM) calculations, and the mean ages from all of these studies are compared to observations. The age spectra computed using the GCM winds show a reasonably isolated tropics in good agreement with observations; however, the age spectra determined from the DAS differ from the GCM spectra. For the DAS diabatic trajectory calculations there is too much exchange between the tropics and mid-latitudes. The age spectrum is thus too broad and the tropical mean age is too old as a result of mixing older mid latitude air with tropical air. Likewise the mid latitude mean age is too young due to the in mixing of tropical air. The DAS kinematic trajectory calculations show excessive vertical dispersion of parcels in addition to excessive exchange between the tropics and mid latitudes. Because air is moved rapidly to the troposphere from the vertical dispersion, the age spectrum is shifted toward the young side. The excessive vertical and meridional dispersion compensate in the kinematic case giving a reasonable tropical mean age. The CTM calculation of the age spectrum using the DAS winds shows the same vertical and meridional dispersive characteristics of the kinematic trajectory calculation. These results suggest that the current DAS products will not give realistic trace gas distributions for long integrations; they also help explain why the extra tropical mean ages determined in a number of previous DAS driven CTM s are too young compared with observations. Finally, we note trajectory-generated age spectra . show significant age anomalies correlated with the seasonal cycles. These anomalies can be linked to year-to-year variations in the tropical heating rate. The anomalies are

  12. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra.

    Kumar, Jagadish; Ananthakrishna, G

    2018-01-01

    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum

  13. Experimental and numerical modelling of ductile crack propagation in large-scale shell structures

    Simonsen, Bo Cerup; Törnquist, R.

    2004-01-01

    plastic and controlled conditions. The test specimen can be deformed either in combined in-plane bending and extension or in pure extension. Experimental results are described for 5 and 10 mm thick aluminium and steel plates. By performing an inverse finite-element analysis of the experimental results......This paper presents a combined experimental-numerical procedure for development and calibration of macroscopic crack propagation criteria in large-scale shell structures. A novel experimental set-up is described in which a mode-I crack can be driven 400 mm through a 20(+) mm thick plate under fully...... for steel and aluminium plates, mainly as curves showing the critical element deformation versus the shell element size. These derived crack propagation criteria are then validated against a separate set of experiments considering centre crack specimens (CCS) which have a different crack-tip constraint...

  14. BATMAN--an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model.

    Hao, Jie; Astle, William; De Iorio, Maria; Ebbels, Timothy M D

    2012-08-01

    Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models. We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists. http://www1.imperial.ac.uk/medicine/people/t.ebbels/ t.ebbels@imperial.ac.uk.

  15. A Generalized Approach to Model the Spectra and Radiation Dose Rate of Solar Particle Events on the Surface of Mars

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; McDole, Thoren; Kühl, Patrick; Appel, Jan C.; Matthiä, Daniel; Krauss, Johannes; Köhler, Jan

    2018-01-01

    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly galactic cosmic rays (GCRs) modulated by solar activity that contribute to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra, as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs, including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events, thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra.

  16. Compressible convection in a rotating spherical shell. II. A linear anelastic model

    Glatzmaier, G.A.; Gilman, P.A.

    1981-01-01

    We study the onset of convection for a compressible fluid in a rotating spherical shell via linear anelastic fluid equations for a depth of 40% of the radius, constant kinematic viscosity and thermometric diffusivity, Taylor numbers up to 10 5 , and density stratifications up to seven e-folds across the zone. The perturbations are expanded in spherical harmonics, and the radially dependent equations are solved with a Newton-Raphson relaxation method

  17. Boson mapping of the shell model algebra obtained from a seniority-dictated similarity transformation

    Geyer, H.B.

    1986-01-01

    The qualitative ideas put forward by Geyer and Lee are given quantitative content by constructing a similarity transformation which reexpresses the Dyson boson images of the single-j shell fermion operators in terms of seniority bosons. It is shown that the results of Otsuka, Arima, and Iachello, or generalizations thereof which include g bosons or even bosons with J>4, can be obtained in an economic and transparent way without resorting to any comparison of matrix elements

  18. Comparative Influences of Fluid and Shell on Modeled Ejection Performance of a Piezoelectric Micro-Jet

    Kai Li

    2017-01-01

    Full Text Available The piezoelectric micro-jet, which can achieve the drop-on-demand requirement, is based on ink-jet technology and small droplets can be ejected out by precise control. The droplets are driven out of the nozzle by the acoustic pressure waves which are generated by the piezoelectric vibrator. The propagation processes of the acoustic pressure waves are affected by the acoustic properties of the fluid and the shell material of the micro-jet, as well as the excitations and the structure sizes. The influences of the fluid density and acoustic velocity in the fluid on the nozzle pressure and support reaction force of the vibrator are analyzed in this paper. The effects of the shell material on the ejection performance are studied as well. In order to improve the ejection performance of the micro-jet, for ejecting a given fluid, the recommended methods of selecting the shell material and adjusting excitations are provided based on the results, and the influences of the factors on working frequencies are obtained as well.

  19. The Sort on Radioactive Waste Type model: A method to sort single-shell tanks into characteristic groups. Revision 1

    Hill, J.G.; Simpson, B.C.

    1994-08-01

    The Sort on Radioactive Waste Type (SORWT) model presents a method to categorize Hanford Site single-shell tanks (SSTs) into groups of tanks expected to exhibit similar chemical and physical characteristics based on their major waste types and processing histories. This model has identified 29 different waste-type groups encompassing 135 of the 149 SSTs and 93% of the total waste volume in SSTs. The remaining 14 SSTs and associated wastes could not be grouped according to the established criteria and were placed in an ungrouped category. This letter report will detail the assumptions and methodologies used to develop the SORWT model and present the grouping results. Included with this report is a brief description and approximate compositions of the single-shell tank waste types. In the near future, the validity of the predicted groups will be statistically tested using analysis of variance of characterization data obtained from recent (post-1989) core sampling and analysis activities. In addition, the SORWT model will be used to project the nominal waste characteristics of entire waste type groups that have some recent characterization data available. These subsequent activities will be documented along with these initial results in a comprehensive, formal PNL report cleared for public release by September 1994

  20. Observation of high-spin states in the N=84 nucleus 152Er and comparison with shell-model calculations

    Kuhnert, A.; Alber, D.; Grawe, H.; Kluge, H.; Maier, K.H.; Reviol, W.; Sun, X.; Beck, E.M.; Byrne, A.P.; Huebel, H.; Bacelar, J.C.; Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.

    1992-01-01

    High-spin states in 152 Er have been populated through the 116 Sn( 40 Ar,4n) 152 Er reaction. Prompt and delayed γ-γ-γ-t and γ-e-t coincidences have been measured. Levels and transitions are assigned up to an excitation energy of 15 MeV and spin and parities up to 28 + at 9.7 MeV. A new isomer [t 1/2 =11(1) ns] has been observed at 13.4 MeV. The results are discussed in comparison with neighboring nuclei and with shell-model calculations

  1. A simple toroidal shell model for the study of feedback stabilization of resistive wall modes in a tokamak plasma

    Jhang, Hogun

    2008-01-01

    A study is conducted on the feedback stabilization of resistive wall modes (RWMs) in a tokamak plasma using a toroidal shell model. An analytically tractable form of the RWM dispersion relation is derived in the presence of a set of discrete feedback coil currents. A parametric study is carried out to optimize the feedback system configuration. It is shown that the total toroidal angle of a resistive wall spanned by the feedback coils and the poloidal angular extent of a feedback coil are crucial parameters to determine the efficacy of the feedback system

  2. Image simulation and a model of noise power spectra across a range of mammographic beam qualities

    Mackenzie, Alistair, E-mail: alistairmackenzie@nhs.net; Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Diaz, Oliver [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom and Computer Vision and Robotics Research Institute, University of Girona, Girona 17071 (Spain)

    2014-12-15

    Purpose: The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. Methods: Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a reference beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. Results: The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise

  3. Mass spectra and wave functions of meson systems and the covariant oscillator quark model as an expansion basis

    Oda, Ryuichi; Ishida, Shin; Wada, Hiroaki; Yamada, Kenji; Sekiguchi, Motoo

    1999-01-01

    We examine mass spectra and wave functions of the nn-bar, cc-bar and bb-bar meson systems within the framework of the covariant oscillator quark model with the boosted LS-coupling scheme. We solve nonperturbatively an eigenvalue problem for the squared-mass operator, which incorporates the four-dimensional color-Coulomb-type interaction, by taking a set of covariant oscillator wave functions as an expansion basis. We obtain mass spectra of these meson systems, which reproduce quite well their experimental behavior. The resultant manifestly covariant wave functions, which are applicable to analyses of various reaction phenomena, are given. Our results seem to suggest that the present model may be considered effectively as a covariant version of the nonrelativistic linear-plus-Coulomb potential quark model. (author)

  4. Spectra of late type dwarf stars of known abundance for stellar population models

    Oconnell, R. W.

    1990-01-01

    The project consisted of two parts. The first was to obtain new low-dispersion, long-wavelength, high S/N IUE spectra of F-G-K dwarf stars with previously determined abundances, temperatures, and gravities. To insure high quality, the spectra are either trailed, or multiple exposures are taken within the large aperture. Second, the spectra are assembled into a library which combines the new data with existing IUE Archive data to yield mean spectral energy distributions for each important type of star. My principal responsibility is the construction and maintenance of this UV spectral library. It covers the spectral range 1200-3200A and is maintained in two parts: a version including complete wavelength coverage at the full spectral resolution of the Low Resolution cameras; and a selected bandpass version, consisting of the mean flux in pre-selected 20A bands. These bands are centered on spectral features or continuum regions of special utility - e.g. the C IV lambda 1550 or Mg II lambda 2800 feature. In the middle-UV region, special emphasis is given to those features (including continuum 'breaks') which are most useful in the study of F-G-K star spectra in the integrated light of old stellar populations.

  5. Modeling and measurements of XRD spectra of extended solids under high pressure

    Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.

    2017-06-01

    We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.

  6. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides

    Hendriks, Peter; Maucec, M; de Meijer, RJ

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of K-40 and the series of Th-232 and U-238 are used to describe the source. A procedure is proposed which excludes the

  7. Design of cryogenic tanks for space vehicles shell structures analytical modeling

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.

    1991-01-01

    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  8. LOW MACH NUMBER MODELING OF CONVECTION IN HELIUM SHELLS ON SUB-CHANDRASEKHAR WHITE DWARFS. II. BULK PROPERTIES OF SIMPLE MODELS

    Jacobs, A. M.; Zingale, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Nonaka, A.; Almgren, A. S.; Bell, J. B. [Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-08-10

    The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. We explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway, and convective runaway. Our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.

  9. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions

    Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J.

    2002-01-01

    Electrical impedance spectroscopy (EIS) was applied in order to investigate electrochemical nanocrystalline TiO 2 dye solar cells (DSC). Typically, three characteristic frequency peaks were observed in the spectra. These frequency peaks could be explained by variations of cell parameters and by comparison with intensity-modulated photovoltage spectroscopy (IMVS). It was shown that the low-frequency peak (in the mHz range) corresponds to the Nernstian diffusion within the electrolyte, while the middle-frequency peak (in the 10-100 Hz range) reflects the properties of the photoinjected electrons within the TiO 2 . The high-frequency peak (in the kHz range) corresponds to the charge-transfer at the platinum counter electrode. For a detailed analysis of the spectra, a model was developed which allows the evaluation of EIS spectra, measured under bias illumination and under open-circuit conditions. The influence of cell parameters such as the TiO 2 layer thickness, cell thickness, charge-transfer resistance of the platinum counter electrode, and the lifetime of the photoinjected electrons, on the impedance spectra was studied both experimentally and theoretically. Finally, it is shown that EIS is a measurement method suited well for the investigation of the long-term stability of DSC, as changes of the inner cell parameters can be revealed

  10. Testing electric field models using ring current ion energy spectra from the Equator-S ion composition (ESIC instrument

    L. M. Kistler

    Full Text Available During the main and early recovery phase of a geomagnetic storm on February 18, 1998, the Equator-S ion composition instrument (ESIC observed spectral features which typically represent the differences in loss along the drift path in the energy range (5–15 keV/e where the drift changes from being E × B dominated to being gradient and curvature drift dominated. We compare the expected energy spectra modeled using a Volland-Stern electric field and a Weimer electric field, assuming charge exchange along the drift path, with the observed energy spectra for H+ and O+. We find that using the Weimer electric field gives much better agreement with the spectral features, and with the observed losses. Neither model, however, accurately predicts the energies of the observed minima.

    Key words. Magnetospheric physics (energetic particles trapped; plasma convection; storms and substorms

  11. Mixed Models and Reduction Techniques for Large-Rotation, Nonlinear Analysis of Shells of Revolution with Application to Tires

    Noor, A. K.; Andersen, C. M.; Tanner, J. A.

    1984-01-01

    An effective computational strategy is presented for the large-rotation, nonlinear axisymmetric analysis of shells of revolution. The three key elements of the computational strategy are: (1) use of mixed finite-element models with discontinuous stress resultants at the element interfaces; (2) substantial reduction in the total number of degrees of freedom through the use of a multiple-parameter reduction technique; and (3) reduction in the size of the analysis model through the decomposition of asymmetric loads into symmetric and antisymmetric components coupled with the use of the multiple-parameter reduction technique. The potential of the proposed computational strategy is discussed. Numerical results are presented to demonstrate the high accuracy of the mixed models developed and to show the potential of using the proposed computational strategy for the analysis of tires.

  12. Symmetry energies for A =24 and 48 and the USD and KB3 shell model Hamiltonians

    Kingan, A.; Neergârd, K.; Zamick, L.

    2017-12-01

    Calculations in the sd and pf shells reported some time ago by Satuła et al. [Phys. Lett. B 407, 103 (1997), 10.1016/S0370-2693(97)00711-9] are redone for an extended analysis of the results. As in the original work, we do calculations for one mass number in each shell and consider in each case the sequence of lowest energies for isospins 0, 2, and 4, briefly the symmetry spectrum. Following further the original work, we study how this spectrum changes when parts of the two-nucleon interaction are turned off. The variation of its width is explored in detail. A differential combination ɛW of the three energies was taken in the original work as a measure of the so-called Wigner term in semiempirical mass formulas, and it was found to decrease drastically when the two-nucleon interaction in the channel of zero isospin is turned off. Our analysis shows that the width of the symmetry spectrum experiences an equally drastic decrease, which can be explained qualitatively in terms of schematic approximations. We therefore suggest that the decrease of ɛW be seen mainly as a side effect of a narrowing of the symmetry spectrum rather than an independent manifestation of the two-nucleon interaction in the channel of zero isospin.

  13. Neutron spectra and cross sections for ice and clathrate generated from the synthetic spectrum and synthetic model for molecular solids

    Petriw, S; Cantargi, F; Granada, R

    2006-01-01

    We present here a Synthetic Model for Molecular Solids, aimed at the description of the interaction of thermal neutrons with this kind of systems.Simple representations of the molecular dynamical modes are used, in order to produce a fair description of neutron scattering kernels and cross sections with a minimum set of input data. Using those spectra, we have generated thermal libraries for M C N P [es

  14. Finite temperature magnon spectra in yttrium iron garnet from a mean field approach in a tight-binding model

    Shen, Ka

    2018-04-01

    We study magnon spectra at finite temperature in yttrium iron garnet using a tight-binding model with nearest-neighbor exchange interaction. The spin reduction due to thermal magnon excitation is taken into account via the mean field approximation to the local spin and is found to be different at two sets of iron atoms. The resulting temperature dependence of the spin wave gap shows good agreement with experiment. We find that only two magnon modes are relevant to the ferromagnetic resonance.

  15. Nuclear Neutrino Spectra in Late Stellar Evolution

    Misch, G. Wendell; Sun, Yang; Fuller, George

    2018-05-01

    Neutrinos are the principle carriers of energy in massive stars, beginning from core carbon burning and continuing through core collapse and after the core bounce. In fact, it may be possible to detect neutrinos from nearby pre-supernova stars. Therefore, it is of great interest to understand the neutrino energy spectra from these stars. Leading up to core collapse, beginning around core silicon burning, nuclei become dominant producers of neutrinos, particularly at high neutrino energy, so a systematic study of nuclear neutrino spectra is desirable. We have done such a study, and we present our sd-shell model calculations of nuclear neutrino energy spectra for nuclei in the mass number range A = 21 - 35. Our study includes neutrinos produced by charged lepton capture, charged lepton emission, and neutral current nuclear deexcitation. Previous authors have tabulated the rates of charged current nuclear weak interactions in astrophysical conditions, but the present work expands on this not only by providing neutrino energy spectra, but also by including the heretofore untabulated neutral current de-excitation neutrino pairs.

  16. FIER: Software for analytical modeling of delayed gamma-ray spectra

    Matthews, E. F.; Goldblum, B. L.; Bernstein, L. A.; Quiter, B. J.; Brown, J. A.; Younes, W.; Burke, J. T.; Padgett, S. W.; Ressler, J. J.; Tonchev, A. P.

    2018-05-01

    A new software package, the Fission Induced Electromagnetic Response (FIER) code, has been developed to analytically predict delayed γ-ray spectra following fission. FIER uses evaluated nuclear data and solutions to the Bateman equations to calculate the time-dependent populations of fission products and their decay daughters resulting from irradiation of a fissionable isotope. These populations are then used in the calculation of γ-ray emission rates to obtain the corresponding delayed γ-ray spectra. FIER output was compared to experimental data obtained by irradiation of a 235U sample in the Godiva critical assembly. This investigation illuminated discrepancies in the input nuclear data libraries, showcasing the usefulness of FIER as a tool to address nuclear data deficiencies through comparison with experimental data. FIER provides traceability between γ-ray emissions and their contributing nuclear species, decay chains, and parent fission fragments, yielding a new capability for the nuclear science community.

  17. Neutron and gamma-ray spectra measurement on the model of the KS-150 reactor radial shielding

    Holman, M.; Hogel, J.; Marik, J.; Kovarik, K.; Franc, L.; Vespalec, R.

    1977-01-01

    A shortened model of the peripheral region of the KS-150 reactor core consisting of two rows of fuel elements and a reflector was constructed from the peripheral fuel elements of the KS-150 reactor core in an experiment on the TR-0 reactor. The mockup of the thermal shield (10 cm of steel), the pressure vessel (15 cm of steel) and the inner wall of the water biological shielding (2 cm of steel) of the KS-150 reactor were erected outside the TR-0 vessel. Fast neutron and gamma spectra were measured with a stilbene crystal scintillation spectrometer. The resonance neutron spectra were measured with 197 Au, 63 Cu and 23 Na resonance activation detectors. Fast neutron spectra inside the reactor were measured with a 10 mm diameter by 10 mm thick stilbene crystal spectrometer, outside the reactor with a 10 mm diameter by 10 mm thick and a 20 mm diameter by 20 mm thick stilbene crystal spectrometer. Neutron spectra in the energy regions of 1 eV to 3 keV and 0.6 MeV to 0.8 MeV were obtained on the core periphery, on the reflector half-thickness and in front of and behind the reactor thermal shield. Gamma spectra were obtained in front of and behind the thermal shield. It was found that the attenuation of neutron fluxes by the reflector and the thermal shield increased with increasing energy while gamma radiation attenuation decreased with increasing energy. It was not possible to obtain the neutron spectrum in the 10 to 600 keV energy range because suitable detection instrumentation was not available. (J.P.)

  18. GNASH: a preequilibrium, statistical nuclear-model code for calculation of cross sections and emission spectra

    Young, P.G.; Arthur, E.D.

    1977-11-01

    A new multistep Hauser--Feshbach code that includes corrections for preequilibrium effects is described. The code can calculate up to 60 decay reactions (cross sections and energy spectra) in one computation, and thereby provide considerable flexibility for handling processes with complicated reaction chains. Input parameter setup, problem output, and subroutine descriptions are given along with a sample problem calculation. A brief theoretical description is also included. 8 figures, 3 tables

  19. Modeling of X-ray images and energy spectra produced by stepping lightning leaders

    Xu , Wei; Marshall , Robert A.; Celestin , Sébastien; Pasko , Victor P.

    2017-01-01

    International audience; Recent ground-based measurements at the International Center for Lightning Research and Testing (ICLRT) have greatly improved our knowledge of the energetics, fluence, and evolution of X-ray emissions during natural cloud-to-ground (CG) and rocket-triggered lightning flashes. In this paper, using Monte Carlo simulations and the response matrix of unshielded detectors in the Thunderstorm Energetic Radiation Array (TERA), we calculate the energy spectra of X-rays as woul...

  20. Nanocrystalline p-hydroxyacetanilide (paracetamol) and gold core-shell structure as a model drug deliverable organic-inorganic hybrid nanostructure

    Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2013-09-01

    We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b

  1. Comparative study between two animal models of extrapyramidal movement disorders: prevention and reversion by pecan nut shell aqueous extract.

    Trevizol, Fabiola; Benvegnú, Dalila M; Barcelos, Raquel C S; Pase, Camila S; Segat, Hecson J; Dias, Verônica Tironi; Dolci, Geisa S; Boufleur, Nardeli; Reckziegel, Patrícia; Bürger, Marilise E

    2011-08-01

    Acute reserpine and subchronic haloperidol are animal models of extrapyramidal disorders often used to study parkinsonism, akinesia and tardive dyskinesia. In humans, these usually irreversible and disabling extrapyramidal disorders are developed by typical antipsychotic treatment, whose pathophysiology has been related to oxidative damages development. So far, there is no treatment to prevent these problems of the psychiatric clinic, and therefore further studies are needed. Here we used the animal models of extrapyramidal disorders cited above, which were performed in two distinct experiments: orofacial dyskinesia (OD)/catalepsy induced by acute reserpine and subchronic haloperidol after (experiment 1) and before (experiment 2) oral treatment with pecan shell aqueous extract (AE), a natural and promissory antioxidant. When administered previously (exp.1), the AE prevented OD and catalepsy induced by both reserpine and haloperidol. When reserpine and haloperidol were administered before the extract (exp.2), the animals developed OD and catalepsy all the same. However, the orofacial parameter (but not catalepsy) in both animal models was reversed after 7 and 14 days of AE treatment. These results indicate that, acute reserpine and subchronic haloperidol administrations induced similar motor disorders, although through different mechanisms, and therefore are important animal models to study the physiopathology of extrapyramidal disorders. Comparatively, the pecan shell AE was able to both prevent and reverse OD but only to prevent catalepsy. These results reinforce the role of oxidative stress and validate the two animal models used here. Our findings also favor the idea of prevention of extrapyramidal disorders, rather than their reversal. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 <= Gamma <= 3.4, 1 <= zeta <= 104, and 0.5 <= A(sub Fe) <= 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  3. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model

    Shi, L.; Ni, Y.; Drews, S. E. P.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-08-28

    Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm{sup −1} in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecular interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih.

  4. Ab initio translationally invariant nonlocal one-body densities from no-core shell-model theory

    Burrows, M.; Elster, Ch.; Popa, G.; Launey, K. D.; Nogga, A.; Maris, P.

    2018-02-01

    Background: It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear densities obtained from ab initio no-core shell-model (NCSM) calculations are to be used in reaction calculations, translationally invariant nonlocal densities must be available. Purpose: Though it is standard to extract translationally invariant one-body local densities from NCSM calculations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal one-body densities have not been considered so far. A major reason for this is that the procedure for removing the center-of-mass component from NCSM wave functions up to now has only been developed for local densities. Results: A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state densities of 4He, 6Li, 12C, and 16O. The nonlocality is studied as a function of angular momentum components in momentum as well as coordinate space. Conclusions: We find that the nonlocality for the ground state densities of the nuclei under consideration increases as a function of the angular momentum. The relative magnitude of those contributions decreases with increasing angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is given by the shell structure of the nucleus, and cannot be described with simple functional forms.

  5. SPH modeling of fluid-solid interaction for dynamic failure analysis of fluid-filled thin shells

    Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S.

    2013-05-01

    This work concerns the prediction of failure of a fluid-filled tank under impact loading, including the resulting fluid leakage. A water-filled steel cylinder associated with a piston is impacted by a mass falling at a prescribed velocity. The cylinder is closed at its base by an aluminum plate whose characteristics are allowed to vary. The impact on the piston creates a pressure wave in the fluid which is responsible for the deformation of the plate and, possibly, the propagation of cracks. The structural part of the problem is modeled using Mindlin-Reissner finite elements (FE) and Smoothed Particle Hydrodynamics (SPH) shells. The modeling of the fluid is also based on an SPH formulation. The problem involves significant fluid-structure interactions (FSI) which are handled through a master-slave-based method and the pinballs method. Numerical results are compared to experimental data.

  6. Band crossing and signature splitting in odd mass fp shell nuclei

    Velazquez, Victor; Hirsch, Jorge G.; Sun, Yang

    2001-01-01

    Structure of two sets of mirror nuclei: 47 V- 47 Cr and 49 Cr- 49 Mn, as well as 49 V and 51 Mn, is studied using the projected shell model. Their yrast spectra are described as an interplay between the angular momentum projected states around the Fermi level which carry different intrinsic K-quantum numbers. The deviations from a regular rotational sequence are attributed to band crossing and signature splitting, which are usually discussed in heavy nuclear systems. Our results agree reasonably with experimental data, and are comparable with those from the full pf shell model calculations

  7. Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model

    Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Zarei, M.Sh.; Amir, S.; Khoddami Maraghi, Z. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)

    2013-02-01

    In this work nonlinear vibration of double-walled carbon nanotube (DWCNT) embedded in an elastic medium and subjected to an axial fluid flow (incompressible and non-viscose) is investigated. The elastic medium is simulated using Pasternak foundation in which adjacent layer interactions are assumed to have been coupled by van der Waals (VdW) force. The higher-order equation of motion is derived using Hamilton's principle and nonlocal-nonlinear shell theory. Galerkin and averaging methods are adopted to solve the higher-order governing equations. Elastic medium, small scale parameter, velocity and fluid density are taken into account to calculate the effects of axial and circumferential wave numbers in this study. Results reveal that increasing circumferential wave number, leads to enhanced nonlinearity. Critical flow velocities of DWCNT are inversely related to the non-local parameter (e{sub 0}a), so that increase in the later lead to reduced critical flow velocities.

  8. BETA SPECTRA. I. Negatrons spectra

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  9. Development of an Energy Biorefinery Model for Chestnut (Castanea sativa Mill. Shells

    Alessandra Morana

    2017-09-01

    Full Text Available Chestnut shells (CS are an agronomic waste generated from the peeling process of the chestnut fruit, which contain 2.7–5.2% (w/w phenolic compounds and approximately 36% (w/w polysaccharides. In contrast with current shell waste burning practices, this study proposes a CS biorefinery that integrates biomass pretreatment, recovery of bioactive molecules, and bioconversion of the lignocellulosic hydrolyzate, while optimizing materials reuse. The CS delignification and saccharification produced a crude hydrolyzate with 12.9 g/L of glucose and xylose, and 682 mg/L of gallic acid equivalents. The detoxification of the crude CS hydrolyzate with 5% (w/v activated charcoal (AC and repeated adsorption, desorption and AC reuse enabled 70.3% (w/w of phenolic compounds recovery, whilst simultaneously retaining the soluble sugars in the detoxified hydrolyzate. The phenols radical scavenging activity (RSA of the first AC eluate reached 51.8 ± 1.6%, which is significantly higher than that of the crude CS hydrolyzate (21.0 ± 1.1%. The fermentation of the detoxified hydrolyzate by C. butyricum produced 10.7 ± 0.2 mM butyrate and 63.9 mL H2/g of CS. Based on the obtained results, the CS biorefinery integrating two energy products (H2 and calorific power from spent CS, two bioproducts (phenolic compounds and butyrate and one material reuse (AC reuse constitutes a valuable upgrading approach for this yet unexploited waste biomass.

  10. Modeling of exchange bias in the antiferromagnetic (core)/ferromagnetic (shell) nanoparticles with specialized shapes

    Hu Yong; Liu Yan; Du An

    2011-01-01

    Zero-field-cooled (ZFC) and field-cooled (FC) hysteresis loops of egg- and ellipsoid-shaped nanoparticles with inverted ferromagnetic (FM)-antiferromagnetic (AFM) core-shell morphologies are simulated using a modified Monte Carlo method, which takes into account both the thermal fluctuations and energy barriers during the rotation of spin. Pronounced exchange bias (EB) fields and reduced coercivities are obtained in the FC hysteresis loops. The analysis of the microscopic spin configurations allows us to conclude that the magnetization reversal occurs by means of the nucleation process during both the ZFC and FC hysteresis branches. The nucleation takes place in the form of 'sparks' resulting from the energy competition and the morphology of the nanoparticle. The appearance of EB in the FC hysteresis loops is only dependent on that the movements of 'sparks' driven by magnetic field at both branches of hysteresis loops are not along the same axis, which is independent of the strength of AFM anisotropy. The tilt of 'spark' movement with respect to the symmetric axis implies the existence of additional unidirectional anisotropy at the AFM/FM interfaces as a consequence of the surplus magnetization in the AFM core, which is the commonly accepted origin of EB. Our simulations allow us to clarify the microscopic mechanisms of the observed EB behavior, not accessible in experiments. - Highlights: → A modified Monte Carlo method considers thermal fluctuations and energy barriers. → Egg and ellipsoid nanoparticles with inverted core-shell morphology are studied. → Pronounced exchange bias fields and reduced coercivities may be detected. → 'Sparks' representing nucleation sites due to energy competition are observed. → 'Sparks' can reflect or check directly and vividly the origin of exchange bias.

  11. Validation of a FBC model for co-firing of hazelnut shell with lignite against experimental data

    Kulah, Gorkem [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey)

    2010-07-15

    Performance of a comprehensive system model extended for modelling of co-firing of lignite and biomass was assessed by applying it to METU 0.3 MW{sub t} Atmospheric Bubbling Fluidized Bed Combustor co-firing lignite with hazelnut shell and validating its predictions against on-line temperature and concentration measurements of O{sub 2}, CO{sub 2}, CO, SO{sub 2} and NO along the same test rig fired with lignite only, lignite with limestone addition and lignite with biomass and limestone addition. The system model accounts for hydrodynamics; volatiles release and combustion, char combustion, particle size distribution for lignite and biomass; entrainment; elutriation; sulfur retention and NO formation and reduction, and is based on conservation equations for energy and chemical species. Special attention was paid to different devolatilization characteristics of lignite and biomass. A volatiles release model based on a particle movement model and a devolatilization kinetic model were incorporated into the system model separately for both fuels. Kinetic parameters for devolatilization were determined via thermogravimetric analysis. Predicted and measured temperatures and concentrations of gaseous species along the combustor were found to be in good agreement. Introduction of biomass to lignite was found to decrease SO{sub 2} emissions but did not affect NO emissions significantly. The system model proposed in this study proves to be a useful tool in qualitatively and quantitatively simulating the processes taking place in a bubbling fluidized bed combustor burning lignite with biomass. (author)

  12. Ab-initio modeling of an iron laser-induced plasma: Comparison between theoretical and experimental atomic emission spectra

    Colgan, J.; Judge, E.J.; Kilcrease, D.P.; Barefield, J.E.

    2014-01-01

    We report on efforts to model the Fe emission spectrum generated from laser-induced breakdown spectroscopy (LIBS) measurements on samples of pure iron oxide (Fe 2 O 3 ). Our modeling efforts consist of several components. We begin with ab-initio atomic structure calculations performed by solving the Hartree–Fock equations for the neutral and singly ionized stages of Fe. Our energy levels are then adjusted to their experimentally known values. The atomic transition probabilities and atomic collision quantities are also computed in an ab-initio manner. We perform LTE or non-LTE calculations that generate level populations and, subsequently, an emission spectrum for the iron plasma for a range of electron temperatures and electron densities. Such calculations are then compared to the experimental spectrum. We regard our work as a preliminary modeling effort that ultimately strives towards the modeling of emission spectra from even more complex samples where less atomic data are available. - Highlights: • LIBS plasma of iron oxide • Ab-initio theoretical Modeling • Discussion of LTE versus non-LTE criteria and assessment • Boltzmann plots for Fe—determination of when LTE is a valid assumption • Emission spectra for Fe—comparison of theoretical modeling and measurement: good agreement obtained

  13. A model independent method to deconvolve hard X-ray spectra

    Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C.

    1984-01-01

    A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented. (orig.)

  14. Predicting the Shifts of Absorption Maxima of Azulene Derivatives Using Molecular Modeling and ZINDO CI Calculations of UV-Vis Spectra

    Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne

    2007-01-01

    The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…

  15. Prediction of long-residue properties of potential blends from mathematically mixed infrared spectra of pure crude oils by partial least-squares regression models

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the feasibility of partial least-squares (PLS) regression models to predict the long-residue (LR) properties of potential blends from infrared (IR) spectra that have been created by linearly co-adding the IR spectra of crude oils. The study is the follow-up

  16. New Spectral Model for Constraining Torus Covering Factors from Broadband X-Ray Spectra of Active Galactic Nuclei

    Baloković, M.; Brightman, M.; Harrison, F. A.; Comastri, A.; Ricci, C.; Buchner, J.; Gandhi, P.; Farrah, D.; Stern, D.

    2018-02-01

    The basic unified model of active galactic nuclei (AGNs) invokes an anisotropic obscuring structure, usually referred to as a torus, to explain AGN obscuration as an angle-dependent effect. We present a new grid of X-ray spectral templates based on radiative transfer calculations in neutral gas in an approximately toroidal geometry, appropriate for CCD-resolution X-ray spectra (FWHM ≥ 130 eV). Fitting the templates to broadband X-ray spectra of AGNs provides constraints on two important geometrical parameters of the gas distribution around the supermassive black hole: the average column density and the covering factor. Compared to the currently available spectral templates, our model is more flexible, and capable of providing constraints on the main torus parameters in a wider range of AGNs. We demonstrate the application of this model using hard X-ray spectra from NuSTAR (3–79 keV) for four AGNs covering a variety of classifications: 3C 390.3, NGC 2110, IC 5063, and NGC 7582. This small set of examples was chosen to illustrate the range of possible torus configurations, from disk-like to sphere-like geometries with column densities below, as well as above, the Compton-thick threshold. This diversity of torus properties challenges the simple assumption of a standard geometrically and optically thick toroidal structure commonly invoked in the basic form of the unified model of AGNs. Finding broad consistency between our constraints and those from infrared modeling, we discuss how the approach from the X-ray band complements similar measurements of AGN structures at other wavelengths.

  17. Iron Oxide Nanoparticles: Tunable Size Synthesis and Analysis in Terms of the Core-Shell Structure and Mixed Coercive Model

    Phong, P. T.; Oanh, V. T. K.; Lam, T. D.; Phuc, N. X.; Tung, L. D.; Thanh, Nguyen T. K.; Manh, D. H.

    2017-04-01

    Iron oxide nanoparticles (NPs) are currently a very active research field. To date, a comprehensive study of iron oxide NPs is still lacking not only on the size dependence of structural phases but also in the use of an appropriate model. Herein, we report on a systematic study of the structural and magnetic properties of iron oxide NPs prepared by a co-precipitation method followed by hydrothermal treatment. X-ray diffraction and transmission electron microscopy reveal that the NPs have an inverse spinel structure of iron oxide phase (Fe3O4) with average crystallite sizes ( D XRD) of 6-19 nm, while grain sizes ( D TEM) are of 7-23 nm. In addition, the larger the particle size, the closer the experimental lattice constant value is to that of the magnetite structure. Magnetic field-dependent magnetization data and analysis show that the effective anisotropy constants of the Fe3O4 NPs are about five times larger than that of their bulk counterpart. Particle size ( D) dependence of the magnetization and the non-saturating behavior observed in applied fields up to 50 kOe are discussed using the core-shell structure model. We find that with decreasing D, while the calculated thickness of the shell of disordered spins ( t ˜ 0.3 nm) remains almost unchanged, the specific surface areas S a increases significantly, thus reducing the magnetization of the NPs. We also probe the coercivity of the NPs by using the mixed coercive Kneller and Luborsky model. The calculated results indicate that the coercivity rises monotonously with the particle size, and are well matched with the experimental ones.

  18. Applying a physical continuum model to describe the broadband X-ray spectra of accreting pulsars at high luminosity

    Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern

    2018-01-01

    A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.

  19. Spectra and neutron dose of an 18 MV Linac using two geometric models of the head; Espectros y dosis por neutrones de un Linac de 18 MV usando dos modelos geometricos del cabezal

    Barrera, M. T.; Pino, F.; Barros, H.; Sajo-Bohus, L. [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Sartenejas, Baruta 1080-A, Caracas (Venezuela, Bolivarian Republic of); Davila, J. [Fisica Medica C. A., Av. Francisco de Miranda s/n, Los Palos Grandes, 1060 Miranda (Venezuela, Bolivarian Republic of); Salcedo, E. [Centro Medico Docente La Trinidad, Av. de El Haltillo, Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Benites R, J. L., E-mail: mariate9590@gmail.com [Centro de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calz. de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico)

    2015-10-15

    Full text: Using the Monte Carlo method, by MCNP5 code, simulations were performed with different source terms and 2 geometric models of the head to obtain spectra in energy, flow and doses of photo-neutrons at different positions on the stretcher and in the radiotherapy room. The simplest model was a spherical shell of tungsten; the second was the complete model of a heterogeneous head of an accelerator Varian ix. In both models Tosi function was used as a source term. In addition, for the second model Sheikh-Bagheri distribution was used for photons and photo-neutrons were generated. Also in both models the radiotherapy room of Gurve group of the Teaching Medical Center La Trinidad was included, which is equipped with an accelerator Varian Clinic 2100. In this Center passive detectors PADC (Cr-39) were irradiated with neutron converters, with 18 MeV photons radiation. The measured neutron flow was compared with that obtained with Monte Carlo calculations. The Monte Carlo flows are similar to those measured at the isocenter. The simplest model underestimates the neutron flow compared with the calculated flows with the heterogeneous model of the head. (Author)

  20. Synthesis and optical study of green light emitting polymer coated CdSe/ZnSe core/shell nanocrystals

    Tripathi, S.K., E-mail: surya@pu.ac.in [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh 160 014 (India); Sharma, Mamta [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh 160 014 (India)

    2013-05-15

    Highlights: ► Synthesis of Polymer coated core CdSe and CdSe/ZnSe core/shell NCs. ► From TEM image, the spherical nature of CdSe and CdSe/ZnSe is obtained. ► Exhibiting green band photoemission peak at 541 nm and 549 nm for CdSe core and CdSe/ZnSe core/shell NCs. ► The shell thickness has been calculated by using superposition of quantum confinement energy model. - Abstract: CdSe/ZnSe Core/Shell NCs dispersed in PVA are synthesized by chemical method at room temperature. This is characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV/Vis spectra and photoluminescence spectroscopy (PL). TEM image shows the spherical nature of CdSe/ZnSe core/shell NCs. The red shift of absorption and emission peak of CdSe/ZnSe core/shell NCs as compared to CdSe core confirmed the formation of core/shell. The superposition of quantum confinement energy model is used for calculation of thickness of ZnSe shell.