WorldWideScience

Sample records for shell experimental measurements

  1. Removal of Arsenic with Oyster Shell: Experimental Measurements

    Md. Atiqur Rahman, , and

    2008-12-01

    Full Text Available Oyster shell has tremendous potential as a remediation material for the removal of arsenic from groundwater. A single arsenic removal system was developed with oyster shell for tube well water containing arsenic. The system removes arsenic from water by adsorption through fine oyster shell. Various conditions that affect the adsorption/desorption of arsenic were investigated. Adsorption column methods showed the removal of As(III under the following conditions: initial As concentration, 100 µg /L; oyster shell amount, 6 g; particle size, <355µm ; treatment flow rate, 1.7 mL/min; and pH 6.5. Arsenic concentration of the treated water were below the Bangladesh drinking water standard of 50 µg/L for As. The desorption efficiencies with 2M of KOH after the treatment of groundwater were in the range of 80-83%. A combination of techniques was used to measure the pH, conductivity, cations and anions. The average concentrations of other inorganic constituents of health concern (Na, K, Ca, Mg and Fe in treated water were below their respective WHO guideline for drinking. The present study might provide new avenues to achieve the arsenic concentrations required for drinking water recommended by Bangladesh and the World Health Organization (WHO.

  2. Radiometric measuring method for egg shells

    Forberg, S; Svaerdstroem, K

    1973-02-01

    A description is given of a fast nondestructive radiometric method for registration of the thickness of egg shells of the tawny owl, hen, osprey, and Canada goose. Certain errors are discussed. Measurement of the thickness of egg shells (mineral content per cm/sup 2/) with an accuracy better than 1% is possible in less than one minute under field conditions. (auth)

  3. The status of experimental buckling investigations of shells

    Singer, J.

    1982-01-01

    The recent developments in shell buckling experiments are surveyed and related to a review of the progress in the seventies. Model fabrication, imperfection measurements, boundary conditions, nondestructive testing, combined loading, postbuckling behavior, composite shells and other aspects of shell buckling tests are discussed. The motivation for experiments and the conclusions drawn in the previous review are reassessed. (orig.)

  4. A method for the measurement of dispersion curves of circumferential guided waves radiating from curved shells: experimental validation and application to a femoral neck mimicking phantom

    Nauleau, Pierre; Minonzio, Jean-Gabriel; Chekroun, Mathieu; Cassereau, Didier; Laugier, Pascal; Prada, Claire; Grimal, Quentin

    2016-07-01

    Our long-term goal is to develop an ultrasonic method to characterize the thickness, stiffness and porosity of the cortical shell of the femoral neck, which could enhance hip fracture risk prediction. To this purpose, we proposed to adapt a technique based on the measurement of guided waves. We previously evidenced the feasibility of measuring circumferential guided waves in a bone-mimicking phantom of a circular cross-section of even thickness. The goal of this study is to investigate the impact of the complex geometry of the femoral neck on the measurement of guided waves. Two phantoms of an elliptical cross-section and one phantom of a realistic cross-section were investigated. A 128-element array was used to record the inter-element response matrix of these waveguides. This experiment was simulated using a custom-made hybrid code. The response matrices were analyzed using a technique based on the physics of wave propagation. This method yields portions of dispersion curves of the waveguides which were compared to reference dispersion curves. For the elliptical phantoms, three portions of dispersion curves were determined with a good agreement between experiment, simulation and theory. The method was thus validated. The characteristic dimensions of the shell were found to influence the identification of the circumferential wave signals. The method was then applied to the signals backscattered by the superior half of constant thickness of the realistic phantom. A cut-off frequency and some portions of modes were measured, with a good agreement with the theoretical curves of a plate waveguide. We also observed that the method cannot be applied directly to the signals backscattered by the lower half of varying thicknesses of the phantom. The proposed approach could then be considered to evaluate the properties of the superior part of the femoral neck, which is known to be a clinically relevant site.

  5. Pyrolysis of Coconut Shell: An Experimental Investigation

    E. Ganapathy Sundaram

    2009-12-01

    Full Text Available Fixed-bed slow pyrolysis experiments of coconut shell have been conducted to determine the effect of pyrolysis temperature, heating rate and particle size on the pyrolysis product yields. The effect of vapour residence time on the pyrolysis yield was also investigated by varying the reactor length. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 1.18-1.80 mm. The optimum process conditions for maximizing the liquid yield from the coconut shell pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 550 °C, particle size of 1.18-1.80 mm, with a heating rate of 60 °C/min in a 200 mm length reactor. The yield of obtained char, liquid and gas was 22-31 wt%, 38-44 wt% and 30-33 wt% respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and residence time. The various characteristics of pyrolysis oil obtained under the optimum conditions for maximum liquid yield were identified on the basis of standard test methods.

  6. The experimental and shell model approach to 100Sn

    Grawe, H.; Maier, K.H.; Fitzgerald, J.B.; Heese, J.; Spohr, K.; Schubart, R.; Gorska, M.; Rejmund, M.

    1995-01-01

    The present status of experimental approach to 100 Sn and its shell model structure is given. New developments in experimental techniques, such as low background isomer spectroscopy and charged particle detection in 4π are surveyed. Based on recent experimental data shell model calculations are used to predict the structure of the single- and two-nucleon neighbours of 100 Sn. The results are compared to the systematic of Coulomb energies and spin-orbit splitting and discussed with respect to future experiments. (author). 51 refs, 11 figs, 1 tab

  7. Experimental studies on an indigenous coconut shell based ...

    Experimental studies are carried out to characterize an indigenous, coconut shell based, activated carbon suitable for storage of natural gas. Properties such as BET surface area, micropore volume, average pore diameter and pore size distribution are obtained by using suitable instruments and techniques. An experimental ...

  8. Shell Measuring Machine. History and Status Report

    Birchler, Wilbur D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fresquez, Philip R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2000-06-01

    Commercialization of the Ring Rotacon Shell Measuring Machine project is a CRADA (NO. LA98C10358) between The University of California (Los Alamos National Laboratory) and Moore Tool Company, Bridgeport, CT. The actual work started on this CRADA in December of 1998. Several meetings were held with the interested parties (Los Alamos, Oak Ridge, Moore Tool, and the University of North Carolina). The results of these meetings were that the original Ring Rotacon did not measure up to the requirements of the Department of Energy and private industry, and a new configuration was investigated. This new configuration (Shell Measuring Machine [SMM]) much better fits the needs of all parties. The work accomplished on the Shell Measuring Machine in FY 99 includes the following; Specifications for size and weight were developed; Performance error budgets were established; Designs were developed; Analyses were performed (stiffness and natural frequency); Existing part designs were compared to the working SMM volume; Peer reviews were conducted; Controller requirements were studied; Fixture requirements were evaluated; and Machine motions were analyzed. The consensus of the Peer Review Committee was that the new configuration has the potential to satisfy the shell inspection needs of Department of Energy as well as several commercial customers. They recommended that more analyses be performed on error budgets, structural stiffness, natural frequency, and thermal effects and that operational processes be developed. Several design issues need to be addressed. They are the type of bearings utilized to support the tables (air bearings or mechanical roller type bearings), the selection of the probes, the design of the probe sliding mechanisms, and the design of the upper table positioning mechanism. Each item has several possible solutions, and more work is required to obtain the best design. This report includes the background and technical objectives; minutes of the working

  9. L-shell photoelectric cross section measurements

    Arora, S K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1981-05-14

    L-shell photoelectric cross sections in Ta, W, Au, Pb, Th and U at 59.5 keV have been determined using three different versions of Sood's method of measuring the absolute yield of fluorescent x-rays when a target is irradiated with a known flux of photons. The results obtained by all the methods agree with one another showing that no hidden systematic errors are involved in the measurements. The present results are found to compare well with the theoretical calculations of Scofield (Lawrence Livermore Laboratory Report No 51326).

  10. Absolute cross-section measurements of inner-shell ionization

    Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer

    1994-12-01

    Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.

  11. Experimental Damage Identification of a Model Reticulated Shell

    Jing Xu

    2017-04-01

    Full Text Available The damage identification of a reticulated shell is a challenging task, facing various difficulties, such as the large number of degrees of freedom (DOFs, the phenomenon of modal localization and transition, and low modeling accuracy. Based on structural vibration responses, the damage identification of a reticulated shell was studied. At first, the auto-regressive (AR time series model was established based on the acceleration responses of the reticulated shell. According to the changes in the coefficients of the AR model between the damaged conditions and the undamaged condition, the damage of the reticulated shell can be detected. In addition, the damage sensitive factors were determined based on the coefficients of the AR model. With the damage sensitive factors as the inputs and the damage positions as the outputs, back-propagation neural networks (BPNNs were then established and were trained using the Levenberg–Marquardt algorithm (L–M algorithm. The locations of the damages can be predicted by the back-propagation neural networks. At last, according to the experimental scheme of single-point excitation and multi-point responses, the impact experiments on a K6 shell model with a scale of 1/10 were conducted. The experimental results verified the efficiency of the proposed damage identification method based on the AR time series model and back-propagation neural networks. The proposed damage identification method can ensure the safety of the practical engineering to some extent.

  12. Theoretical and experimental determination of K - and L -shell x-ray relaxation parameters in Ni

    Guerra, M.; Sampaio, J. M.; Parente, F.; Indelicato, P.; Hönicke, P.; Müller, M.; Beckhoff, B.; Marques, J. P.; Santos, J. P.

    2018-04-01

    Fluorescence yields (FY) for the Ni K and L shells were determined by a theoretical and an experimental group within the framework of the International Initiative on X-ray Fundamental Parameters (FPs) collaboration. Coster-Kronig (CK) parameters were also measured for the L shell of Ni. Theoretical calculations of the same parameters were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental values for the FY and CK were determined at the PTB laboratory in the synchrotron radiation facility BESSY II, Berlin, Germany, and are compared to the corresponding calculated values.

  13. Experimental demonstration of invisible electromagnetic impedance matching cylindrical transformation optics cloak shell

    Chen, Mingji; Wang, Changxian; Cheng, Xiaodong; Gong, Congcheng; Song, Weili; Yuan, Xujin; Fang, Daining

    2018-04-01

    The realization of an ideal invisible cloak implementing transformation optics is still missing. An impedance matching concept is implanted into transformation optics cloak to generate an impedance matching cloak (IMC) shell. In this work, it is proved that impedance matching structure reduces the cloaking structure’s disturbance to a propagating electromagnetic field and improves its invisibility measured by scattering field intensity. Such a cylindrical IMC shell is designed, fabricated with proposed rounded rectangular split-ring-resonators (RR-SRRs), and experimental measurements show the total scattering field of a perfect electric conductor (PEC) cylinder surrounded by an IMC shell is improved greatly compared to the PEC cylinder showing electromagnetic wave front ripple suppression and a considerable scattering shrinking effect. IMC shell backward scattering field is suppressed down to 7.29%, compared to the previous value of 86.7% due to its impedance matching character, and overall scattering field intensity shrinking is down to 19.3% compared to the previously realized value of 56.4%. Sideward scattering field recorded in the experiment also has a remarkable improvement compared to the PEC cylinder. The impedance matching concept might enlighten the realization of an ideal cloak and other novel electromagnetic cloaking and shielding structures.

  14. Study on the technique for precision measurement of density of SiO_2 foam shells

    Ma Xiaojun; Gao Dangzhong; Meng Jie

    2013-01-01

    The measuring method based on vertical scanning interference and combined with the relation between refraction index and density of SiO_2 foam shells is introduced, and the relation is analyzed according to formulas of Lorentz-Lorenz and Gladstone-Dale. The experimental result and measuring uncertainty evaluation indicate that the precision measurement of density of low density SiO_2 foam shells can be realized by using the vertical scanning interference technique and combining with Gladstone and Dale analysis method, and the measuring uncertainty is about 5%. (authors)

  15. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. - Highlights: • This work regard the K shell absorption jump ratios and jump factors of Ti, Cr, Fe, Co, Ni and Cu. • This paper presents the first measurement of these parameters using the experimental K shell fluorescence parameters. • A good agreement was found between experimental and theoretical values. • The EDXRF technique was suitable, precise and reliable for the measurement of these atomic parameters

  16. Measurements of fusion neutron multiplication in spherical beryllium shells

    Giese, H.; Kappler, F.; Tayama, R.; Moellendorff, U. von; Alevra, A.; Klein, H.

    1996-01-01

    New results of spherical-shell transmission measurements with 14-MeV neutrons on pure beryllium shells up to 17 cm thick are reported. The spectral flux above 3 MeV was measured using a liquid scintillation detector. At 17 cm thickness, also the total neutron multiplication was measured using a Bonner sphere system. The results agree well with calculations using beryllium nuclear data from the EFF-1 or the ENDF/B-Vi library. (author). 23 refs, 4 figs, 1 tab

  17. Measurements of integral cross-sections of incoherent interactions of photons with L-shell electrons

    Verma, S L; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1983-05-21

    Integral cross-sections of incoherent interactions of 662 and 1250 keV gamma-rays with L-shell electrons of different elements with 74<=Z<=92 have been measured. The experimental results, when interpreted in terms of photoelectric and Compton interaction cross-sections, are found to agree with theory.

  18. Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring

    Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.

    2017-10-01

    In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.

  19. Experimental and Numerical Investigations on Deformation of Cylindrical Shell Panels to Underwater Explosion

    K. Ramajeyathilagam

    2001-01-01

    Full Text Available Experimental and numerical investigations on cylindrical shell panels subjected to underwater explosion loading are presented. Experiments were conducted on panels of size 0.8 × 0.6 × 0.00314 m and shell rise-to-span ratios h/l = 0.0, 0.05, 0.1 , using a box model set-up under air backed conditions in a shock tank. Small charges of PEK I explosive were employed. The plastic deformation of the panels was measured for three loading conditions. Finite element analysis was carried out using the CSA/GENSA [DYNA3D] software to predict the plastic deformation for various loading conditions. The analysis included material and geometric non-linearities, with strain rate effects incorporated based on the Cowper-Symonds relation. The numerical results for plastic deformation are compared with those from experiments.

  20. Measurements of K shell absorption jump factors and jump ratios using EDXRF technique

    Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-04-01

    In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  1. Experimental Confirmation of CH Mandrel Removal from Be Shells

    Cook, B; Letts, S; Buckley, S

    2004-01-01

    Sputtered Be shells are made by sputter deposition of Be, with a radially graded Cu dopant as necessary, onto plastic mandrels supplied by General Atomics. Although the plastic mandrel may not be a design issue, it is a fielding issue because at cryo temperatures the plastic shrinks more than the Be and delaminates. We described in previous memos a proposed method for thermally removing the plastic by burning it in air at elevated temperature. A key aspect to this process is getting air in and out of the shell through the small diameter hole that must be laser drilled in the capsule wall to serve as a fill hole for the fuel. Because the hole is quite small, gas flow through the orifice must be forced, and an external pressure variation was suggested to do this. Further calculations showed that since the volume of the capsule is quite small and the amount of plastic in the shell by comparison is large, the ''pumping'' of air in and out of the shell must occur at least once per minute in order to supply enough O 2 to completely burn the plastic to CO 2 and H 2 O in a reasonable time. Such an apparatus has been now built and this memo details both its construction and operation, as well as provides the first evidence of plastic mandrel removal from Be shells

  2. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Measurement of D-T neutron penetration probability spectra for iron ball shell systems

    Duan Shaojie

    1998-06-01

    The D-T neutron penetration probability spectra are measured for iron ball shell systems of the series of samples used in the experiments, and the penetration curves are presented. As the detector is near to samples, the measured results being approximately corrected are compared with those in the literature, and it is shown that the former is compatible with the latter in the range of the experimental error

  4. An experimental determination of the drag coefficient of a Mens 8+ racing shell.

    Buckmann, James G; Harris, Samuel D

    2014-01-01

    This study centered around an experimental analysis of a Mens Lightweight Eight racing shell and, specifically, determining an approximation for the drag coefficient. A testing procedure was employed that used a Global Positioning System (GPS) unit in order to determine the acceleration and drag force on the shell, and through calculations yield a drag coefficient. The testing was run over several days in numerous conditions, and a 95% confidence interval was established to capture the results. The results obtained, over these varying trials, maintained a successful level of consistency. The significance of this study transcends the determination an approximation for the drag coefficient of the racing shell; it defined a successful means of quantifying performance of the shell itself. The testing procedures outlined in the study represent a uniform means of evaluating the factors that influence drag on the shell, and thus influence speed.

  5. Higgs couplings: disentangling new physics with off-shell measurements.

    Cacciapaglia, Giacomo; Deandrea, Aldo; La Rochelle, Guillaume Drieu; Flament, Jean-Baptiste

    2014-11-14

    After the discovery of a scalar resonance, resembling the Higgs boson, its couplings have been extensively studied via the measurement of various production and decay channels on the invariant mass peak. Recently, the possibility of using off-shell measurements has been suggested: in particular, the CMS Collaboration has published results based on the high-invariant mass cross section of the process gg→ZZ, which contains a contribution from the Higgs boson. While this measurement has been interpreted as a constraint on the Higgs width after very specific assumptions are taken on the Higgs couplings, in this Letter, we show that a much more model-independent interpretation is possible.

  6. Experimental approach towards shell structure at 100Sn and 78Ni

    Grawe, H.; Gorska, M.; Fahlander, C.

    2000-07-01

    The status of experimental approach to 100 Sn and 78 Ni is reviewed. Revised single particle energies for neutrons are deduced for the N=Z=50 shell closure and evidence for low lying I π =2 + and 3 - states is presented. Moderate E2 polarisation charges of 0.1 e and 0.6 e are found to reproduce the experimental data when core excitation of 100 Sn is properly accounted for in the shell model. For the neutron rich Ni region no conclusive evidence for a N=40 subshell is found, whereas firm evidence for the persistence of the N=50 shell at 78 Ni is inferred from the existence of seniority isomers. The disappearance of this isomerism in the mid νg 9/2 shell is discussed. (orig.)

  7. MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…

  8. Stability of inner baffle-shell of pool type LMFBR - experimental and theoretical studies

    Lebey, J.; Combescure, A.

    1987-01-01

    I pool type LMFBR, the primary coolant circuit, inside the main vessel, comprises a hot plenum separated from a cold plenum by an inner baffle. For Superphenix 1 reactor, it was judged advisable to built a double-shell baffle, each shell withstanding only one type of loading (primary loading for one shell, secondary loading for the other). Due to the size and intricacy of the structure, this design involves unnegligible supplementary costs and manufacturing difficulties. Thus, an alternative solution has been studied for future plants projects. It consists of a single shell baffle having a shape especially studied to sustain the two types of applied loadings (thermal plus primary loadings). Such a shape was calculated by NOVATOME, and it was decided to check the ability of methods of analysis to predict the ruin of this structure under primary loading. For this purpose, a mock-up has been tested, and the experimental results compared with the calculated ones. (orig./GL)

  9. Experimental techniques and measurement accuracies

    Bennett, E.F.; Yule, T.J.; DiIorio, G.; Nakamura, T.; Maekawa, H.

    1985-02-01

    A brief description of the experimental tools available for fusion neutronics experiments is given. Attention is paid to error estimates mainly for the measurement of tritium breeding ratio in simulated blankets using various techniques

  10. Experimental study on dynamic stabilization of the MHD instability in pinch plasmas surrounded by a conducting shell

    Yamamoto, Shunji; Ishii, Shozo; Kawamoto, Shigeshi; Hayashi, Izumi

    1981-01-01

    Experimental study on the dynamic stabilization of MHD instability with a pinch plasma generator was done, and the results were compared with the theoretical works. The previous results of theoretical analysis showed that a conducting shell worked effectively for the dynamic stabilization of MHD instability. The present experiment was carried out with a linear plasma generator which consisted of a discharge tube, a coil and a conducting shell. The macroscopic behavior of plasma was observed with an image converter camera, and the phenomena due to the instability was measured by a magnetic probe. A sine-cosine coil was employed for the observation of the growth of instability. The following results were obtained. When the frequency of RF current for dynamic stabilization was larger than the growth rate of instability, the experimental results were in agreement with the theoretical ones. The effect of a conducting shell was clearly seen. For the helical instability of short wave length, the dynamic stabilization was easily obtained even without a conducting shell. The self-reversal phenomena due to the helical instability of short wave length was suppressed by the RF current along the axis of a discharge tube. (Kato, T.)

  11. Experimental buckling investigation of ring-stiffened cylindrical shells under unsymmetrical axial loads

    Baker, W.E.; Babock, C.D.; Bennett, J.G.

    1983-01-01

    Six steel shells having nuclear containment-like features were fabricated and loaded to failure with an offset axial load. The shells of R/t = 500 buckled plastically. Four of the shells had reinforced circular cutouts. These penetrations were sized to cut no ring-stiffener, a single, two- or three-ring stiffeners. Reinforcing and framing around the penetrations were based upon the area-replacement rule of the applicable portion of the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and were of a design to stimulate actual practice for nuclear steel containments. Prior to testing, imperfections were measured and strain gages were applied to determine information on load distribution at the ends of the cylinder and strain fields at areas likely to buckle. Buckling loads were determined for an axial load applied with an eccentricity of R/2 where R is the cylinder radius. The results showed that the buckling load and mode for the shell having a penetration that did not cut a ring stiffener were essentially the same as those for the unpenetrated shell. The buckling loads for the penetrated shells in which stiffeners were interrupted were less than that for the unpenetrated shells. Results of all tests are compared to numerical solutions carried out using a nonlinear collapse analysis and to the predictions of ASME Code Case N-284

  12. Measurements of L shell X-ray yields of thick Ag target by 6–29 keV electron impact

    Zhao, J.L.; Tian, L.X.; Li, X.L.; An, Z.; Zhu, J.J.; Liu, M.T.

    2015-01-01

    In this paper, the L shell X-ray yields for a thick Ag target have been measured at incident electron energies of 6–29 keV. The experimental values are compared with the Monte Carlo simulation results that are obtained by using the PENELOPE code, in which the inner-shell ionization cross sections by electron impact calculated in the theoretical frame of distorted wave Born approximation are used. The experimental and simulation values are in agreement with ∼10% difference. Meanwhile, the L shell X-ray production cross sections are also obtained based on the measured L shell X-ray yields for a thick Ag target in this paper, and are compared with other experimental Ag L shell X-ray production cross section data by electron and positron impact measured previously and some theoretical models. Some factors that could affect these comparisons are also discussed in this paper. - Highlights: • We measured L shell X-ray yields of thick Ag target by 6–29 keV electrons. • Our measured X-ray yields are in good agreement with the MC results with ∼10%. • L shell production cross sections are obtained based on the measured X-ray yields. • L shell production cross sections obtained are in good agreement with theories

  13. Experimental Study on the Influence on Vibration Characteristics of Thin Cylindrical Shell with Hard Coating under Cantilever Boundary Condition

    Hui Li

    2017-01-01

    Full Text Available This research has experimentally investigated the influence on vibration characteristics of thin cantilever cylindrical shell (TCS with hard coating under cantilever boundary condition. Firstly, the theoretical model of TCS with hard coating is established to calculate its natural frequencies and modal shapes so as to roughly understand vibration characteristic of TCS when it is coated with hard coating material. Then, by considering its nonlinear stiffness and damping influences, an experiment system is established to accurately measure vibration parameters of the shell, and the corresponding test methods and identification techniques are also proposed. Finally, based on the measured data, the influences on natural frequencies, modal shapes, damping ratios, and vibration responses of TCS with hard coating are analyzed and discussed in detail. It can be found that hard coating can play an important role in vibration reduction of TCS, and for the most modes of TCS, hard coating will result in the decrease of natural frequencies, but the decreased level is not very big, and its damping effects on the higher frequency range of the shell are weak and ineffective. Therefore, in order to make better use of this coating material, we must carefully choose the concerned antivibration frequency range of the shell; otherwise it may lead to some negative effects.

  14. Measurement of L-shell photoelectric cross sections in high Z elements at 37 and 74 keV

    Allawadhi, K L; Ghumman, B S; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1977-05-01

    L-shell photoelectric cross section measurements have been made at 36.818 and 74.409 keV for four elements in the range 81<=Z<=92. The measurements at 74.409 keV are found to agree with theory, within experimental uncertainties, but the experimental values at 36.818 keV are found to be higher than the theoretical predictions. The possible reasons for the observed discrepancy are discussed.

  15. Determination of experimental K-shell fluorescence yield for ...

    calcium compounds using a Si(Li) X-ray detector system (FWHM=5.96 keV at 160 eV). The samples were excited by 5.96 keV photons produced by a 55Fe radioisotope source. The experimental values are systematically lower than the theoretical values. Keywords. X-ray; fluorescence yield; cross-section and chemical ...

  16. Determination of K shell absorption jump factors and jump ratios in the elements between Tm( Z = 69) and Os( Z = 76) by measuring K shell fluorescence parameters

    Kaya, N.; Tıraşoğlu, E.; Apaydın, G.

    2008-04-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.

  17. Experimental and numerical modelling of ductile crack propagation in large-scale shell structures

    Simonsen, Bo Cerup; Törnquist, R.

    2004-01-01

    plastic and controlled conditions. The test specimen can be deformed either in combined in-plane bending and extension or in pure extension. Experimental results are described for 5 and 10 mm thick aluminium and steel plates. By performing an inverse finite-element analysis of the experimental results......This paper presents a combined experimental-numerical procedure for development and calibration of macroscopic crack propagation criteria in large-scale shell structures. A novel experimental set-up is described in which a mode-I crack can be driven 400 mm through a 20(+) mm thick plate under fully...... for steel and aluminium plates, mainly as curves showing the critical element deformation versus the shell element size. These derived crack propagation criteria are then validated against a separate set of experiments considering centre crack specimens (CCS) which have a different crack-tip constraint...

  18. Experimental investigation of the influence of internal frames on the vibroacoustic behavior of a stiffened cylindrical shell using wavenumber analysis

    Meyer, V.; Maxit, L.; Renou, Y.; Audoly, C.

    2017-09-01

    The understanding of the influence of non-axisymmetric internal frames on the vibroacoustic behavior of a stiffened cylindrical shell is of high interest for the naval or aeronautic industries. Several numerical studies have shown that the non-axisymmetric internal frame can increase the radiation efficiency significantly in the case of a mechanical point force. However, less attention has been paid to the experimental verification of this statement. That is why this paper proposes to compare the radiation efficiency estimated experimentally for a stiffened cylindrical shell with and without internal frames. The experimental process is based on scanning laser vibrometer measurements of the vibrations on the surface of the shell. A transform of the vibratory field in the wavenumber domain is then performed. It allows estimating the far-field radiated pressure with the stationary phase theorem. An increase of the radiation efficiency is observed in the low frequencies. Analysis of the velocity field in the physical and wavenumber spaces allows highlighting the coupling of the circumferential orders at the origin of the increase in the radiation efficiency.

  19. Measurement of the average L-shell fluorescence yields in elements 40<=Z<=53

    Singh, N; Mittal, R; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1983-12-01

    The average L-shell fluorescence yields in Zr, Nb, Mo, Ag, Cd, In, Sn and I have been measured using photo-ionization for creating the vacancies. The present results are found to agree well with those calculated using the values of L-subshell fluorescence yields and Coster-Kronig yields of Krause et al., but are lower than the only available experimental results of Lay. To the best of our knowledge, the values in Nb, Cd, In and I are reported for the first time.

  20. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 3

    Gwaltney, R.C.; Bolt, S.E.; Corum, J.M.; Bryson, J.W.

    1975-06-01

    The third in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: the experimental data provide design information directly applicable to nozzles in cylindrical vessels; and the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 3 had a 10 in. OD and the nozzle had a 1.29 in. OD, giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios for the cylinder and the nozzle were 50 and 7.68 respectively. Thirteen separate loading cases were analyzed. In each, one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for all the loadings were obtained using 158 three-gage strain rosettes located on the inner and outer surfaces. The loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  1. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 4

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-06-01

    The last in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models in the series are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: (1) the experimental data provide design information directly applicable to nozzles in cylindrical vessels, and (2) the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 4 had an outside diameter of 10 in., and the nozzle had an outside diameter of 1.29 in., giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios were 50 and 20.2 for the cylinder and nozzle respectively. Thirteen separate loading cases were analyzed. For each loading condition one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for each of the 13 loadings were obtained using 157 three-gage strain rosettes located on the inner and outer surfaces. Each of the 13 loading cases was also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  2. Tritium-exchange method for obsidian hydration shell measurement

    Lowe, J P; Wilson, A T; Lowe, D J; Hodder, A P.W. [Waikato Univ., Hamilton (New Zealand)

    1984-12-01

    A new radiochemical method for measuring the amount of water in the hydrated layer on the surface of obsidians exchanges tritiated water with the water in the layer (20 ..mu..l of 5 Ci ml/sup -1/ at 90/sup 0/C for 10 days) and then back-exchanges it (in 150 ml of water at 35/sup 0/C for approx. 200 hr.). The activity of the back-exchange water (F) is monitored by liquid scintillation counting of aliquots extracted at known time intervals (t). The activity so measured is then related to the thickness of the hydration rim. A sheet diffusion model shows that the thickness of the hydration shell (l) is inversely proportional to the slope of the F vs. tsup(1/2) plot. Comparison of l-values so obtained between obsidians, whose age (x) is inferred from archaeological occupation layers containing radiocarbon-dated wood and charcoal, suggests a relationship between l and x. Implications for New Zealand prehistory are briefly considered. The technique, which is non-destructive, appears particularly applicable to young glasses where the development of hydrated layers may be inadequate for accurate optical measurement.

  3. Measurement of relative intensities of L-shell x-rays in some high-Z elements

    Kumar, S; Mittal, R; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1982-10-14

    The L-shell x-ray relative intensities I(Lsub(..cap alpha..))/I(Lsub(l)),I(Lsub(..cap alpha..))/I(Lsub(..beta..)) and I(Lsub(..cap alpha..))/I(Lsub(..gamma..)) for U, Th, Pb and ratios I(Lsub(..cap alpha..+l))/I(Lsub(..beta..)) and I(Lsub(..cap alpha..+l))/I(Lsub(..gamma..)) for W have been measured. The L-shell electrons are excited by 59.57 keV gamma rays from /sup 241/Am and the fluorescent L-shell x-ray intensities are measured with a Si(Li) detector. The experimental results are found to agree well with theory.

  4. Experimental buckling investigation of ring-stiffened cyclindrical shells under unsymmetrical axial loads

    Baker, W.E.; Bennett, J.G.; Babcock, C.D.

    1983-01-01

    Six steel shells having nuclear containment-like features were fabricated and loaded to failure with an offset axial load. The shells of R/t = 500 buckled plastically. Four of the shells had reinforced circular cutouts. These penetrations were sized to cut no ring-stiffener, a single, two- or three-ring stiffeners. Reinforcing and framing around the penetrations were based upon the area-replacement rule of the applicable portion of the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and were of a design to simulate actual practice for nuclear steel containments. Prior to testing, imperfections were measured and strain gages were applied to determine information on load distribution at the ends of the cylinder and strain fields at areas likely to buckle. Buckling loads were determined for an axial load applied with an eccentricity of R/2 where R is the cylinder radius

  5. Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster

    M. Lamrani

    2017-12-01

    Full Text Available The aim of the present work was to investigate the thermal properties of a new building material consisting of a mixture of plaster and peanut shells for use as insulating materials in building. The properties are commonly measured by using the steady state asymmetric hot plate method, the asymmetrical transient hot plate method and the flash method. The experimental study that we have conducted, enabled us to determine the conductivity, the effusivity and the thermal diffusivity of our material. The influence of the size and the mass fraction of the peanut shell shards on thermophysical properties of tested material, was investigated. Our experimental data show a good efficiency and a significant decrease in the thermal conductivity of material with peanut shell shards compared to simple plaster material. The purpose is to obtain ecological composite materials with better thermal performance, which can contribute to improve the thermal comfort in constructions in Morocco. The results show that the density of the new material was not substantially influenced by the size of the peanut shell shards. However, the thermal conductivity and diffusivity decrease from 0.3 Wm−1 K−1 and 3.75 × 10−7 m2 s−1 to 0.14 Wm−1 K−1 and 2.11 × 10−7m2 s−1, respectively, according to the variation of the mass fraction of peanut from 0 to20%.

  6. Mass measurements of 56-57Cr and the question of shell reincarnation at N = 32

    Guenaut, C; Audi, G; Beck, D

    2005-01-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for 56-57 Cr for which an accuracy of 4 x 10 -8 was achieved. Analysis of the mass surface for the supposed new N = 32 shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as 94 Sr

  7. Mass measurements of 56-57Cr and the question of shell reincarnation at N = 32

    Guénaut, C.; Audi, G.; Beck, D.; Blaum, K.; Bollen, G.; Delahaye, P.; Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Lunney, D.; Schwarz, S.; Schweikhard, L.; Yazidjian, C.

    2005-10-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for 56-57Cr for which an accuracy of 4 × 10-8 was achieved. Analysis of the mass surface for the supposed new N = 32 shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as 94Sr.

  8. Mass measurements of $^{56-57}$Cr and the question of shell reincarnation at $N = 32$

    Guenaut, Celine; Beck, D; Blaum, Klaus; Bollen, Georg; Delahaye, P; Herfurth, F; Kellerbauer, A G; Kluge, H J; Lunney, M D; Schwarz, S; Schweikhard, L; Yazidjian, C

    2005-01-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for $^{56-57}$Cr for which an accuracy of $4 \\times 10^{-8}$ was achieved. Analysis of the mass surface for the supposed new $N = 32$ shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as $^{94}$Sr.

  9. Measurement of relative intensities of L-shell X-rays of some heavy elements using Cd-109 radioisotope source

    Darko, J.B.; Tetteh, G.K.

    1992-01-01

    The relative L-shell x-ray intensities of Sm, W, Ir, Au, Hg, Pb and U were measured using a Cd-109 radioisotope source and a Si(Li) detector. The measured relative intensities were compared with the theoretically calculated values due to Scofield, computed for the present excitation energy of 22.6 keV. The experimental results were found to agree with theory in most cases. (author)

  10. Measurement of relative intensities of L-shell X-rays of some heavy elements using Cd-109 radioisotope source

    Darko, J.B.; Tetteh, G.K. (Ghana Univ., Legon (Ghana). Dept. of Physics)

    The relative L-shell x-ray intensities of Sm, W, Ir, Au, Hg, Pb and U were measured using a Cd-109 radioisotope source and a Si(Li) detector. The measured relative intensities were compared with the theoretically calculated values due to Scofield, computed for the present excitation energy of 22.6 keV. The experimental results were found to agree with theory in most cases. (author).

  11. Measurement of critical mass for an assembly of bare uranium shells

    Myers, W.L.; Goulding, C.A.; Hollas, C.L.

    1997-01-01

    As part of the research into nuclear measurement techniques, a series of measurements was performed that have applications to criticality safety and nuclear material handling. The critical mass of a set of bare, enriched-uranium metal hemispherical shells, known as the Rocky Flats shells, was measured for an assembly having an inside radius of 2.347 cm. The critical mass value was extrapolated from a series of subcritical measurements using three different kinds of sources (AmBe, AmF, and 252 Cf) placed at the center of the shells. Two kinds of neutron detection configurations (a 1% efficiency and a 25% efficiency configuration) were used to make the measurements

  12. Analysis of Experimental Research on Cyclones with Cylindrical and Spiral Shells

    Aleksandras Chlebnikovas

    2012-12-01

    Full Text Available The conducted investigation is aimed at providing information on air flow parameters in the cylindrical and spiral shell (devices are designed for separating solid particles from air flow having tangent flow inlet. Experimental research has employed multi-cyclones created by the Department of Environmental Protection at Vilnius Gediminas Technical University. The study is focused on investigating and comparing the distribution of the dynamic pressure of the airflow in six-channel cyclones inside the structures of devices. The paper establishes and estimates the efficiency of air cleaning changing air phase parameters using different particulate matters. The efficiency of the cyclone has been defined applying the weighted method based on LAND 28-98/M-08 methodology. The article presents the results of experimental research on the air cleaning efficiency of cylindrical and spiral shells using 20 µm glass and clay particulate matter under the initial concentration that may vary from 500 mg/m3 to 15 g/m3 using semi-rings with windows at different positions. The obtained results has shown that the maximum efficiency of the cylindrical shell increases up to 87,3 % while the initial concentration of glass makes 15 g/m3.Article in Lithuanian

  13. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 2

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-10-01

    Model 2 in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. Both the cylinder and the nozzle of model 2 had outside diameters of 10 in., giving a d 0 /D 0 ratio of 1.0, and both had outside diameter/thickness ratios of 100. Sixteen separate loading cases in which one end of the cylinder was rigidly held were analyzed. An internal pressure loading, three mutually perpendicular force components, and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. In addition to these 13 loadings, 3 additional loads were applied to the nozzle (in-plane bending moment, out-of-plane bending moment, and axial force) with the free end of the cylinder restrained. The experimental stress distributions for each of the 16 loadings were obtained using 152 three-gage strain rosettes located on the inner and outer surfaces. All the 16 loading cases were also analyzed theoretically using a finite-element shell analysis. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good general agreement, and it is felt that the analysis would be satisfactory for most engineering purposes. (auth)

  14. Experimental determination of the heat transfer coefficient in shell-and-tube condensers using the Wilson plot method

    Havlik Jan

    2017-01-01

    Full Text Available This article deals with the experimental determination of heat transfer coefficients. The calculation of heat transfer coefficients constitutes a crucial issue in design and sizing of heat exchangers. The Wilson plot method and its modifications based on measured experimental data utilization provide an appropriate tool for the analysis of convection heat transfer processes and the determination of convection coefficients in complex cases. A modification of the Wilson plot method for shell-and-tube condensers is proposed. The original Wilson plot method considers a constant value of thermal resistance on the condensation side. The heat transfer coefficient on the cooling side is determined based on the change in thermal resistance for different conditions (fluid velocity and temperature. The modification is based on the validation of the Nusselt theory for calculating the heat transfer coefficient on the condensation side. A change of thermal resistance on the condensation side is expected and the value is part of the calculation. It is possible to improve the determination accuracy of the criterion equation for calculation of the heat transfer coefficient using the proposed modification. The criterion equation proposed by this modification for the tested shell-and-tube condenser achieves good agreement with the experimental results and also with commonly used theoretical methods.

  15. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data.

  16. Measurements of egg shell plasma parameters using laser-induced ...

    In LIBS, a high-intensity laser is focussed onto the sample, which is strong ... Compared to the production of plasma, qualitative and quantitative analyses are ... In this paper, the elemental composition of the egg shell crushed to a size of about.

  17. Experimental Study of Multi-Walled Composite Shell Fragments under Thermal Force Effects

    L. P. Tairova

    2015-01-01

    Full Text Available Multi-walled composite shells are a relatively new prospective type of load carrying structures for rocket and space engineering. These CFRP structures are produced by injection and infusion methods and have several advantages in comparison with common structures such as stringer-frame, grid and sandwich structures with a light core. In particular, those have more structural parameters, which enable one to control mechanical properties of the structure, and this is important in designing the load carrying structures of different purpose.Presently, there are few national and foreign publications on experimental investigations of mechanical properties of multi-walled shells. That is why the objective of the paper is to conduct the experimental study of deformation and failure processes of a multi-walled panel both under steady-state heating and under unsteady-state one.The paper presents the results of two tests: (1 the study of deformation and failure modes under compression and complete heating up to a specified temperature and (2 validation of working capability of multi-walled samples under single-side heating and compression simulating a start and flight version of the “ Proton” launch vehicle.Experimental results have shown that average elastic properties of multi-walled samples slightly depend on temperature for the studied range (from room temperature up to 195C while strength properties considerably decrease with increasing temperature, and this is typical for CFRP structures under compression. However, under unsteady-state short-term heating the structure has a strength that exceeds the minimal necessary strength of load carrying structures of the “Proton” launch vehicle (the samples satisfy simulated start conditions of the “Proton” launch vehicle. This is because of a low heat conductivity of the multi-walled core: an unheated sheet holds a low temperature and high load carrying capacity.Obtained results can be used in

  18. A review of experimental L-shell ionization cross sections for light ion impact

    Orlic, I.

    1994-01-01

    More than 20 000 experimental L-shell cross sections data points for light ion impact are presently available. This number of data provides a solid ground for detailed statistical analysis and comparison with theoretical predictions. An overview of all available experimental data is given in this work. Discussed are annual growth and decline of published data, distribution of L-shell cross section data vs. target atomic number as well as distribution of number of data vs. incident ions. Data for proton impact were recently tabulated by this group and compared with the ECPSSR theoretical predictions in a usual manner: by plotting ratio S = σ exper. /σ theory vs. reduced velocity parameter for each individual subshell L1, L2 and L3, and separately for three groups of target atomic numbers. After applying statistical procedure recommended by the Particle Data Group, so called open-quotes reference cross sectionsclose quotes for proton impact were obtained. Statistical errors of reference cross sections obtained in such a way were significantly smaller than errors of individual experimental results which allowed for some generalization and comparison with theoretical predictions. A review of obtained results is presented in this work

  19. Characterization of the Micro-shell Surface Using Holographic Measurements

    Sandras, F.; Hermerel, C.; Choux, A.; Merillot, P.; Pin, G.; Jeannot, L. [CEA Valduc, Dept Rech Mat Nucl, Serv Microcibles, 21 - Is-sur-Tille (France)

    2009-05-15

    To characterize the shape, the quality, and the roughness of micro-shells, typically used technologies are scanning electron microscopy, scanning interferometric microscopy, or atomic force microscopy. One of the drawbacks of these techniques is that they are generally slow because of their scanning process. Digital holographic microscopy technology is an innovation that can offer ability adapted to these studies. It captures holograms instead of intensity images, as done by conventional microscopes. The holograms are then digitally interpreted (10 per second) to reconstruct a double image, one for the intensity and another one for the phase. Using a rotation axis, the bump counting for the complete micro-shell surface is possible with a very high speed. Using an image stitching software, mapping can be done in a few minutes. Wavelets such as 'Mexican hat' are used to model the bumps. Each bump can then be characterized on the map by its position, diameter, and height. (authors)

  20. Spherical implosion experiments on OMEGA: measurements of the cold, compressed shell

    Yaakobi, B.; Smalyuk, V.A.; Delettrez, J.A.; Town, R.P.J.; Marshall, F.J.; Glebov, V.Y.; Petrasso, R.D.; Soures, J.M.; Meyerhofer, D.D.; Seka, W. [Rochester Univ., NY (United States). Lab. for Laser Energetics

    2000-07-01

    Targets in which a titanium-doped layer is incorporated into the shell provide a variety of diagnostic signatures (absorption lines, K-edge absorption, K{alpha} imaging) for determining the areal density and dimensions of the shell around peak compression. Here we apply these methods to demonstrate the improvement in target performance when SSD is implemented on slow-rising laser pulses. We introduce a new method to study the uniformity of imploded shells: using a recently developed pinhole-array x-ray spectrometer, we obtain core images at energies below and above the K-edge energy of titanium. The ratio between such images reflects the nonuniformity of the shell alone. Finally, we compare the results with those of 1-D LILAC simulations, as well as 2-D ORCHID simulations that allow for the imprinting of laser non-uniformity on the target. The experimental results are replicated much better by ORCHID than by LILAC. (authors)

  1. Experimental study on the strength parameter of Quarry Dust mixed Coconut Shell Concrete adding Coconut Fibre

    Matangulu Shrestha, Victor; Anandh, S.; Sindhu Nachiar, S.

    2017-07-01

    Concrete is a heterogeneous mixture constitute of cement as the main ingredient with a different mix of fine and coarse aggregate. The massive use of conventional concrete has a shortfall in its key ingredients, natural sand and coarse aggregate, due to increased industrialisation and globalisation. To overcome the shortage of material, an alternate material with similar mechanical properties and composition has to be studied, as replacement of conventional concrete. Coconut shell concrete is a prime option as replacement of key ingredients of conventional concrete as coconut is produced in massive quantity in south East Asia. Coconut shell concrete is lightweight concrete and different research is still ongoing concerning about its mix design and composition in the construction industry. Concrete is weak in tension as compared to compression, hence the fibre is used to refrain the crack in the concrete. Coconut fibre is one of many fibres which can be used in concrete. The main aim of this project is to analyse the use of natural by-products in the construction industry, make light weight concrete and eco-friendly construction. This project concerns with the comparison of the mechanical properties of coconut shell concrete and conventional concrete, replacing fine aggregate with quarry dust using coconut fibre. M25 grade of concrete was adopted and testing of concrete was done at the age of 3, 7 and 28 days. In this concrete mix, sand was replaced completely in volumetric measurement by quarry dust. The result was analysed and compared with addition of coconut fibre at varying percentage of 1%, 2%, 3%, 4% and 5%. From the test conducted, coconut shell concrete with quarry dust has the maximum value at 4% of coconut fibre while conventional concrete showed the maximum value at 2% of coconut fibre.

  2. Validation of an optical system to measure acetabular shell deformation in cadavers.

    Dold, Philipp; Bone, Martin C; Flohr, Markus; Preuss, Roman; Joyce, Tom J; Deehan, David; Holland, James

    2014-08-01

    Deformation of the acetabular shell at the time of surgery can result in poor performance and early failure of the hip replacement. The study aim was to validate an ATOS III Triple Scan optical measurement system against a co-ordinate measuring machine using in vitro testing and to check repeatability under cadaver laboratory conditions. Two sizes of custom-made acetabular shells were deformed using a uniaxial/two-point loading frame and measured at different loads. Roundness measurements were performed using both the ATOS III Triple Scan optical system and a co-ordinate measuring machine and then compared. The repeatability was also tested by measuring shells pre- and post-insertion in a cadaver laboratory multiple times. The in vitro comparison with the co-ordinate measuring machine demonstrated a maximum difference of 5 µm at the rim and 9 µm at the measurement closest to the pole of the shell. Maximum repeatability was below 1 µm for the co-ordinate measuring machine and 3 µm for the ATOS III Triple Scan optical system. Repeatability was comparable between the pre-insertion (below 2 µm) and post-insertion (below 3 µm) measurements in the cadaver laboratory. This study supports the view that the ATOS III Triple Scan optical system fulfils the necessary requirements to accurately measure shell deformation in cadavers. © IMechE 2014.

  3. Identification of irradiated oysters by EPR measurements on shells

    Della Monaca, S., E-mail: sara.dellamonaca@iss.it [Istituto Superiore di Sanita, viale Regina Elena, 299 Rome (Italy); Fattibene, P.; Boniglia, C.; Gargiulo, R.; Bortolin, E. [Istituto Superiore di Sanita, viale Regina Elena, 299 Rome (Italy)

    2011-09-15

    In this paper the EPR spectra of the radicals induced in oyster shells after irradiation to (0.5-2) kGy ionizing radiation doses are analyzed. EPR spectra of irradiated shells showed the complex radical composition of biocarbonates, characterized by the presence of SO{sub 2}{sup -}, SO{sub 3}{sup -} and CO{sub 2}{sup -} radicals with different symmetries. In particular, the radiation-induced line at g = 2.0038, due to the g{sub x} component of the orthorhombic SO{sub 3}{sup -}, was well distinguishable from the rest of the spectrum. The g{sub x} component of the orthorhombic SO{sub 3}{sup -} was found to be intense and stable enough to allow the identification at least for the whole shelf life of the oyster. Furthermore, it is still well visible at low microwave powers for which the other signals are weak or non-visible and has a linear dose response in the (0.5-2) kGy range. A possible procedure protocol for the identification of irradiated oysters, can be based on acquisitions of the spectrum at low microwave power values (tenths of milliWatt) and low modulation amplitude values (0.03-0.05 mT) and on the identification of the g = 2.0038 signal as a proof of the ionizing radiation treatment performed on the sample.

  4. Identification of irradiated oysters by EPR measurements on shells

    Della Monaca, S.; Fattibene, P.; Boniglia, C.; Gargiulo, R.; Bortolin, E.

    2011-01-01

    In this paper the EPR spectra of the radicals induced in oyster shells after irradiation to (0.5-2) kGy ionizing radiation doses are analyzed. EPR spectra of irradiated shells showed the complex radical composition of biocarbonates, characterized by the presence of SO 2 - , SO 3 - and CO 2 - radicals with different symmetries. In particular, the radiation-induced line at g = 2.0038, due to the g x component of the orthorhombic SO 3 - , was well distinguishable from the rest of the spectrum. The g x component of the orthorhombic SO 3 - was found to be intense and stable enough to allow the identification at least for the whole shelf life of the oyster. Furthermore, it is still well visible at low microwave powers for which the other signals are weak or non-visible and has a linear dose response in the (0.5-2) kGy range. A possible procedure protocol for the identification of irradiated oysters, can be based on acquisitions of the spectrum at low microwave power values (tenths of milliWatt) and low modulation amplitude values (0.03-0.05 mT) and on the identification of the g = 2.0038 signal as a proof of the ionizing radiation treatment performed on the sample.

  5. Measurement of vacancy transfer probability from K to L shell using ...

    73, No. 4. — journal of. October 2009 physics pp. 711–718. Measurement of vacancy transfer probability from K to L shell using K-shell fluorescence yields. ¨O S¨O˘GÜT1,∗, E BÜYÜKKASAP2, A KÜC¸ ÜK¨ONDER1 and T TARAKC¸ IO ˇGLU1. 1Department of Physics, Faculty of Science and Letters, Kahramanmaras Sütçü ˙ ...

  6. EXPERIMENTAL MEASUREMENT, ANALYSIS AND MODELLING ...

    30 juin 2010 ... We obtain a good agreement between the resolution of the nonlinear equation of heat and the results obtained by the experimentation. . Keywords: Emissivity, Température, optimal Linearisation, finite elements. 1. ..... basse température, Rapport de Stage de D.E.A, Université Paris 12 – Val de Marne.

  7. Quantitative measurement of solvation shells using frequency modulated atomic force microscopy

    Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.

    2005-03-01

    The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.

  8. Experimental study of the strain state at the area of a surface defect in a steel cylindrical shell subjected to internal pressure

    Бесчетников, Д. А.

    2014-01-01

    Experimental research of stress-strain state at the area of local volumetric surface defects of the pipeline systems is an important goal because results of the measurements are necessary for increasing of effectiveness of existing repair technologies using fiber reinforcement polymer composite materials. In this work the description of experiment carried out by the author is presented with statement of results. The experiment was devoted to strain gauging of a steel cylindrical shell with vo...

  9. Development of Special Tools for the Straightness Measurement of JRTR Core Inner Shell

    Sinjlawi, Abdullah; Cho, Yeong-Garp; Chung, Jong-Ha

    2014-01-01

    Jordan Research and Training Reactor (JRTR) is an open pool type nuclear research reactor, 5 MW power, JRTR core made from Zircaloy. The JRTR will be used for nuclear applications such as isotopes production, nuclear researches, neutron transmutation doping (NTD), and training. JRTR core structures will be exposed to a large amount of neutron irradiation during the life time of the reactor. The core inner shell also will be exposed to a pressure that comes from heavy water system. JRTR core inner shell will deform due to the neutron irradiation and the mechanical stress. Therefore, the dimensional change of the core inner shell should be periodically (every 10 years) measured as an in-service inspection to confirm the structural integrity. As a result of neutron irradiation, pressure difference of the heavy water vessel, and the mechanical stress, the reactor core will deform as shown in figure 2 to figure 4. The maximum deformation to the normal direction of inner shell wall is 0.75 mm as shown in figure 3. This study discusses development of special tools that will be used for pre-service and in-service inspection of JRTR inner shell. The performance and procedure for the measurements tools will be verified using by the real inner shell of the heavy water vessel at factory before shipping to Jordan.. There will be very delicate working procedure for the measurement in the limited space in JRTR core. Therefore, we will develop the detail procedures to cover the removal of the core components, installation of the measurement tools, measurement, and re-installation of the core components. The measurement of the inner shell at JAEC site during commissioning stage will be the first remote measurement at the same conditions of pool water and heavy water system

  10. Experimental diagenesis: insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment

    Casella, Laura A.; Griesshaber, Erika; Yin, Xiaofei; Ziegler, Andreas; Mavromatis, Vasileios; Müller, Dirk; Ritter, Ann-Christine; Hippler, Dorothee; Harper, Elizabeth M.; Dietzel, Martin; Immenhauser, Adrian; Schöne, Bernd R.; Angiolini, Lucia; Schmahl, Wolfgang W.

    2017-03-01

    Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralisation take place. In generating their mineralised hard parts, most marine invertebrates produce metastable aragonite rather than the stable polymorph of CaCO3, calcite. After death of the organism the physiological conditions, which were present during biomineralisation, are not sustained any further and the system moves toward inorganic equilibrium with the surrounding inorganic geological system. Thus, during diagenesis the original biogenic structure of aragonitic tissue disappears and is replaced by inorganic structural features. In order to understand the diagenetic replacement of biogenic aragonite to non-biogenic calcite, we subjected Arctica islandica mollusc shells to hydrothermal alteration experiments. Experimental conditions were between 100 and 175 °C, with the main focus on 100 and 175 °C, reaction durations between 1 and 84 days, and alteration fluids simulating meteoric and burial waters, respectively. Detailed microstructural and geochemical data were collected for samples altered at 100 °C (and at 0.1 MPa pressure) for 28 days and for samples altered at 175 °C (and at 0.9 MPa pressure) for 7 and 84 days. During hydrothermal alteration at 100 °C for 28 days most but not the entire biopolymer matrix was destroyed, while shell aragonite and its characteristic microstructure was largely preserved. In all experiments up to 174 °C, there are no signs of a replacement reaction of shell aragonite to calcite in X-ray diffraction bulk analysis. At 175 °C the replacement reaction started after a dormant time of 4 days, and the original shell microstructure was almost completely overprinted by the aragonite to calcite replacement reaction after 10 days

  11. A layered shell containing patches of piezoelectric fibers and interdigitated electrodes: Finite element modeling and experimental validation

    Nielsen, Bo Bjerregaard; Nielsen, Martin S.; Santos, Ilmar

    2017-01-01

    The work gives a theoretical and experimental contribution to the problem of smart materials connected to double curved flexible shells. In the theoretical part the finite element modeling of a double curved flexible shell with a piezoelectric fiber patch with interdigitated electrodes (IDEs......) is presented. The developed element is based on a purely mechanical eight-node isoparametric layered element for a double curved shell, utilizing first-order shear deformation theory. The electromechanical coupling of piezoelectric material is added to all elements, but can also be excluded by setting...... the piezoelectric material properties to zero. The electrical field applied via the IDEs is aligned with the piezoelectric fibers, and hence the direct d33 piezoelectric constant is utilized for the electromechanical coupling. The dynamic performance of a shell with a microfiber composite (MFC) patch...

  12. Review of experimental cross sections for K-shell ionization by light ions

    Paul, H.; Muhr, J.

    1986-01-01

    We review experimental K-shell ionization cross sections using a data file containing about 7800 total X-ray or Auger production cross sections taken from the literature for which Z 1 /Z 2 1 and Z 2 are the atomic numbers of projectile and target. We compare various recent collections of K-shell fluorescence yields ω, and we use Krause's tables to convert the data to ionization cross sections. For every projectile, we normalize these data using the theoretical cross section due to Brandt and Lapicki (ECPSSR). We show them plotted versus log xi (where xi is the scaled projectile velocity) in the appendix, and we average them in equal intervals Δ log xi. A statistical criterion is used to exclude references with discrepant data. We find that the average normalized cross section anti s is mostly close to unity (i.e., ECPSSR describes the data well), but that there are also significant deviations at certain values of xi. For almost all projectiles, anti s decreases below unity for log xi 2 for small and for large log xi. We approximate anti s by analytical functions of log xi and thus produce ''reference'' cross sections for selected proton energies and targets. For heavier projectiles (and also for protons on light targets), additional systematic deviations develop: a maximum of anti s around log xi=-0.6 and a minimum around log xi=-0.3. Above log xi=-0.1, the influence of multiple ionization and of electron capture by the projectile becomes noticeable with increasing Z 1 . X-ray cross sections for light solid or gaseous targets (Z 2 2 >5). (orig.)

  13. An Experimental Study on Effect of Palm – Shell Waste Additive to Cement Strenght Enhancement

    Adi Novriansyah

    2017-03-01

    Full Text Available Enhancing the cement strength through attaching chemical additive has been popular to meet the required condition for a particular well-cementing job. However, due to a low oil-price phenomenon, pouring and additive should be reconsidered because it can raise the cost and make the project become uneconomic. Another additive material in nanocomposite form will be introduced through this experimental study. The nanocomposite material consist of silica nanoparticle, known as “Nanosilica” and a palm-shell-waste, which is abundant in Indonesia. Before making a nanocomposite, the palm-shell should be burned to obtain a charcoal form, ground and sieved to attain a uniform size.   The study focuses on the two parameters, compressive strength and shear bond strength, which can reflect the strength of the cement. These values are obtained by performing a biaxial loading test to the cement sample. Various samples with different concentration of nanocomposite should be prepared and following the mixing, drying, and hardening process before the loading test is carried out. The result from the test shows a positive indication for compressive strength and shear bond strength values, according to the representative well cementing standards. Increasing the nanocomposite concentration on the cement will increase these values. Furthermore, an investigation on the temperature effect confirms that the sample with 700oC burning temperature have highest compressive-strength and shear-bond-strength values. This is a potential opportunity utilizing a waste-based material to produce another product with higher economic value.

  14. Numerical investigation on a novel shell-and-tube heat exchanger with plate baffles and experimental validation

    Yang, Jie; Liu, Wei

    2015-01-01

    Highlights: • A novel shell-and-tube heat exchanger with plate baffles is proposed. • Heat transfer and pressure drop of computational calculations are studied. • Experimental method is carried out to verify the modeling approach. • Path lines, temperature field and pressure field are analyzed. - Abstract: A novel shell-and-tube heat exchanger with new plate baffles is proposed. It is numerically investigated in comparison with a shell-and-tube heat exchanger with rod baffles. Commercial softwares FLUENT 6.3 and GAMBIT 2.3 are adopted for modeling and computational calculations. The modeling approach is verified with experimental approach. The shell-side results of heat transfer, flow performance, and comprehensive performance are analyzed. The Nusselt number for the plate baffles heat exchanger is around 128–139% of that for the rod baffles heat exchanger. The pressure drop for the novel one is about 139–147% of that for the rod baffles heat exchanger. Overall, the novel plate baffles heat exchanger illustrates evidently higher comprehensive performance (115–122%) than the rod baffles one. The temperature field, pressure field, and path lines are analyzed to demonstrate the advantage of the novel shell-and-tube heat exchanger

  15. Measurement of differential incoherent scattering cross-sections of 145 keV photons from K-shell electrons

    Acharya, V B; Ghumman, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1980-06-01

    Differential cross-sections for incoherent scattering of 145 keV photons from K-shell electrons of tin, silver and molybdenum have been measured at 110deg to investigate the effect of electron binding on differential cross-sections in the low energy region. The incoherent scattered photons are selected in coincidence with X-rays which follow the vacancies caused by the ejection of the electrons. NaI(Tl) scintillators are used for the detection of scattered photons and emitted X-rays. The experimental results are compared with the available theoretical data.

  16. Study of Shell Zone Formation in Lithographic and Anodizing Quality Aluminum Alloys: Experimental and Numerical Approach

    Brochu, Christine; Larouche, André; Hark, Robert

    Shell thickness is an important quality factor for lithographic and anodizing quality aluminum alloys. Increasing pressure is placed on casting plants to produce a thinner shell zone for these alloys. This study, based on plant trials and mathematical modelling highlights the most significant parameters influencing shell zone formation. Results obtained show the importance of metal temperature and distribution and mould metal level on shell zone formation. As an answer to specific plant problems, this study led to the development of improved metal distribution systems for DC casting of litho and anodizing quality alloys.

  17. Measurement of K-shell jump ratios and jump factors for some elements in 76≤Z≤92 using EDXRF spectrometer

    Kaya, N.; Apaydin, G.; Tirasoglu, E.

    2011-01-01

    This article presents experimental values of the K-shell jump factor and jump ratio (ratio of the K-shell photoionization cross section to the photoionization cross section of the rest of the atom at the K edge) for some elements in 76≤Z≤92 using an energy dispersive X-ray fluorescence (EDXRF) spectrometer and compares those values with the theoretical ones giving reasonable agreement. The experimental values have been determined using the fluorescence parameters: K α production cross sections, K β /K α X-rays intensity ratios, total atomic attenuation cross sections, etc. To the best of our knowledge, K-shell jump ratios and jump factors have been measured without having any data on K edge for the first time in these elements. The results have been plotted versus atomic number.

  18. Measurement of K-shell absorption jump factors and jump ratios in some lanthanide elements using EDXRF technique

    Polat, Recep; İçelli, Orhan; Yalçın, Zeynel; Pesen, Erhan; Orak, Salim

    2013-01-01

    Highlights: ► Mass attenuation coefficients, jump factor and jump ratio for lanthanide elements are obtained. ► The method used in this experiment is combined both transmission and scattering geometry. ► Secondary gamma rays energy is 59.5 keV. ► Experimental values of jump factor and jump ratio for K shell are new. ► The experimental values are in good agreement with those calculated theoretically. - Abstract: 59.5 keV gamma rays scattered by an aluminum foil have been used as a radiation source to measure the absorption jump factor and jump ratios for absorbers Ce, Pr, Nd, Sm, Eu and Tb. The theoretical and experimental values are compared with the corresponding ones in the literature

  19. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    HAASS, C.C.

    1999-01-01

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included

  20. Measurement of integral cross-sections of incoherent interactions of photons with K-shell electrons

    Verma, S L; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Dept. of Physics. Nuclear Science Labs.

    1981-06-01

    Integral cross-sections of incoherent interactions of 145, 279, 662 and 1250 keV gamma-rays with K-shell electrons of thirty-one different elements with 26 <= Z <= 92 have been measured. The results are interpreted in terms of the photoelectric and Compton interactions and are found to agree with theory.

  1. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  2. Spectroscopy of 96-98Ru and neighboring nuclei: shell model calculations and lifetime measurements

    Kharraja, B.; Garg, U.; Ghugre, S.S.

    1997-01-01

    High Spin states in 94,95 Mo, 94-96 Tc, 96-98 Ru and 97,98 Rh were populated via the 65 Cu( 36 S,xpyn) reactions at 142 MeV. Level schemes of these nuclei have been extended up to a spin of J ∼ 20ℎ and an excitation energy of E x ∼12 -14 MeV. Information on the high spin structure for 96 Tc and 98 Rh has been obtained for the first time. Spherical shell model calculations have been performed and compared with the experimental excitation energies. The level structures of the N=51, 52 isotones exhibit single-particle nature even at the highest spins and excitation energies. A fragmentation of intensity into several branches after breaking of the N = 50 core has been observed. There are indications for the onset of collectivity around neutron number N = 53 in this mass region. A sequence of E2 transitions, reminiscent of vibrational degree of freedom, were observed in 98 Ru at spins just above the observed N = 50 core breaking. RDM lifetime measurements have been performed to ascertain the intrinsic structures of these level sequences. (author)

  3. Determination of K shell absorption jump factors and jump ratios in the elements between Tm(Z = 69) and Os(Z = 76) by measuring K shell fluorescence parameters

    Kaya, N.; Tirasoglu, E.; Apaydin, G.

    2008-01-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm (Z = 69) and Os(Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57 Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number

  4. Inertial waves in a spherical shell induced by librations of the inner sphere: experimental and numerical results

    Koch, S; Harlander, U; Egbers, C [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus, Siemens-Halske-Ring 14, D-03046 Cottbus (Germany); Hollerbach, R, E-mail: uwe.harlander@tu-cottbus.de [Institute of Geophysics, ETH Zuerich, Sonneggstrasse 5, CH-8092 Zurich (Switzerland)

    2013-06-15

    We begin with an experimental investigation of the flow induced in a rotating spherical shell. The shell globally rotates with angular velocity {Omega}. A further periodic oscillation with angular velocity 0 Less-Than-Or-Slanted-Equal-To {omega} Less-Than-Or-Slanted-Equal-To 2{Omega}, a so-called longitudinal libration, is added on the inner sphere's rotation. The primary response is inertial waves spawned at the critical latitudes on the inner sphere, and propagating throughout the shell along inclined characteristics. For sufficiently large libration amplitudes, the higher harmonics also become important. Those harmonics whose frequencies are still less than 2{Omega} behave as inertial waves themselves, propagating along their own characteristics. The steady component of the flow consists of a prograde zonal jet on the cylinder tangent to the inner sphere and parallel to the axis of rotation, and increases with decreasing Ekman number. The jet becomes unstable for larger forcing amplitudes as can be deduced from the preliminary particle image velocimetry observations. Finally, a wave attractor is experimentally detected in the spherical shell as the pattern of largest variance. These findings are reproduced in a two-dimensional numerical investigation of the flow, and certain aspects can be studied numerically in greater detail. One aspect is the scaling of the width of the inertial shear layers and the width of the steady jet. Another is the partitioning of the kinetic energy between the forced wave, its harmonics and the mean flow. Finally, the numerical simulations allow for an investigation of instabilities, too local to be found experimentally. For strong libration amplitudes, the boundary layer on the inner sphere becomes unstable, triggering localized Goertler vortices during the prograde phase of the forcing. This instability is important for the transition to turbulence of the spherical shell flow. (paper)

  5. Correlated electron capture and inner-shell excitation measurements in ion-atom collisions

    Tanis, J.A.; Bernstein, E.M.; Clark, M.W.

    1985-01-01

    In an ion-atom collision projectile excitation and charge transfer (electron capture) may occur together in a single encounter. If the excitation and capture are correlated, then the process is called resonant transfer and excitation (RTE); if they are uncorrelated, then the process is termed nonresonant transfer and excitation (NTE). Experimental work to date has shown the existence of RTE and provided strong evidence for NTE. Results presented here provide information on the relative magnitudes of RTE and NTE, the charge state dependence of RTE, the effect of the target momentum distribution on RTE, the magnitude of L-shell RTE compared to K-shell RTE, and the target Z dependences of RTE and NTE. 15 refs., 5 figs

  6. Measurements of 14 MeV neutron multiplication in spherical beryllium shells

    Moellendorff, U. von; Alevra, A.V.; Giese, H.; Kappler, F.; Klein, H.; Klein, H.; Tayama, R.

    1995-01-01

    New results of spherical-shell transmission measurements with 14MeV neutrons on pure beryllium shells up to 17cm thick are reported. The total leakage neutron multiplications were measured using a Bonner sphere system. Independently, the leakage neutron spectra were measured over the entire energy range, 15MeV to thermal energies, by proton-recoil and time-of-flight methods. The total leakage multiplications are in excellent agreement with three-dimensional Monte Carlo calculations using beryllium nuclear data based on the Young and Stewart evaluation. The leakage in the evaporation energy window confirms the Be(n,2n) cross-section of the Young and Stewart evaluation rather than that used in the ENDF/B-VI library. At energies below 1keV, a surplus of leakage neutrons over the calculation is found for smaller beryllium thicknesses. (orig.)

  7. EXPERIMENTAL STUDY OF 3D SELF-ASSEMBLED PHOTONIC CRYSTALS AND COLLOIDAL CORE-SHELL SEMICONDUCTOR QUANTUM DOTS

    Pham Thu Nga

    2017-11-01

    Full Text Available In this contribution we present an experimental study of 3D opal photonic crystals. The samples are opals constituted by colloidal silica spheres, realized with self-assembly technique. The sphere diameter is selected in order to obtain coupling of the photonic band gap with the emission from CdSe/ZnS colloidal quantum dots. The quantum dots infiltrated in the opals is expected to be enhanced or suppressed depending on the detection angle from the photonic crystal. The structural and optical characterization of the SiO2 opal photonic crystals are performed by field-emission scanning electron microscopy and reflectivity spectroscopy. Measurements performed on samples permits to put into evidence the influence of the different preparation methods on the optical properties. Study of self-activated luminescence of the pure opals is also presented. It is shown that the luminescence of the sample with QDs have original QD emission and not due to the photonic crystal structure. The optical properties of colloidal core-shell semiconductor quantum dots of CdSe/ZnS which are prepared in our lab will be mention.

  8. Thick-target method in the measurement of inner-shell ionization cross-sections by low-energy electron impact

    An, Z.; Wu, Y.; Liu, M.T.; Duan, Y.M.; Tang, C.H.

    2006-01-01

    In this paper, we have studied the thick-target method for the measurements of atomic inner-shell ionization cross-section or X-ray production cross-section by keV electron impact. We find that in the processes of electron impact on the thick targets, the ratios of the characteristic X-ray yields of photoelectric ionization by bremsstrahlung to the total characteristic X-ray yields are Z-dependent and shell-dependent, and the ratios also show the weak energy-dependence. In addition, in the lower incident energy region (i.e. U < 5-6), the contribution from the rediffusion effect and the secondary electrons can be negligible. In general, the thick-target method can be appropriately applied to the measurements of atomic inner-shell ionization cross-sections or X-ray production cross-sections by electron impact for low and medium Z elements in the lower incident electron energy (i.e. U < 5-6). The experimental accuracies by the thick-target method can reach to the level equivalent or superior to the accuracies of experimental data based on the thin-target method. This thick-target method has been applied to the measurement of K-shell ionization cross-sections of Ni element by electron impact in this paper

  9. Experimental Measurement-Device-Independent Entanglement Detection

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-02-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.

  10. Evaluation of thermal ratchetting on axisymmetric thin shells at the free level of sodium: Experimental results and elastic analysis

    Cabrillat, M.T.; Gatt, J.M.; Schoulguine, P.; Skiara, A.

    1993-01-01

    Startup operations and load variations for a FBR reactor (Fast Breeder Reactor) cause sodium level variations in the vessels which exert stresses on the emergent shells in the free level area. The loading of these shells is mainly linked to the axial thermal gradient, primary stresses being generally low or negligible as are the radial thermal gradients. Under the effect of these variable axial thermal gradients, there is a risk of progressive deformation even in the absence of primary type stresses. The simplified methods of analysis (Bree diagram, efficiency diagram) proposed in the design codes (Code Case and RCCMR) are not applicable in this specific case where primary type stresses are negligible. In recent years, many studies and experimental programmes have been undertaken in order to propose more reliable methods of analysis for these structures. This paper describes the experimental program, called VINIL, developed at the CEA at Cadarache. After a brief description of the experimental facility and of the experimental results, this paper proposes an evaluation of the risk of progressive deformation on an elastic basis: various simplified methods of analysis were used and are compared with experimental results

  11. High-precision mass measurements of nickel, copper, and gallium isotopes and the purported shell closure at N=40

    Guenaut, C.; Audi, G.; Beck, D.

    2007-01-01

    High-precision mass measurement of more than thirty neutron-rich nuclides around the Z=28 closed proton shell were performed with the triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN to address the question of a possible neutron shell closure at N=40. The results for 57,60,64-69 Ni, 65-74,76 Cu (Z=29), and 63-65,68-78 Ga (Z=31), have a relative uncertainty of the order of 10 -8 . In particular, the masses of 72-74,76 Cu have been measured for the first time. We analyse the resulting mass surface for signs of magicity, comparing the behavior of N=40 to that of known magic numbers and to mid-shell behavior. Contrary to nuclear spectroscopy studies, no indications of a shell or sub-shell closure are found for N=40. (authors)

  12. Aplication of the statistical experimental design to optimize mine-impacted water (MIW) remediation using shrimp-shell.

    Núñez-Gómez, Dámaris; Alves, Alcione Aparecida de Almeida; Lapolli, Flavio Rubens; Lobo-Recio, María A

    2017-01-01

    Mine-impacted water (MIW) is one of the most serious mining problems and has a high negative impact on water resources and aquatic life. The main characteristics of MIW are a low pH (between 2 and 4) and high concentrations of SO 4 2- and metal ions (Cd, Cu, Ni, Pb, Zn, Fe, Al, Cr, Mn, Mg, etc.), many of which are toxic to ecosystems and human life. Shrimp shell was selected as a MIW treatment agent because it is a low-cost metal-sorbent biopolymer with a high chitin content and contains calcium carbonate, an acid-neutralizing agent. To determine the best metal-removal conditions, a statistical study using statistical planning was carried out. Thus, the objective of this work was to identify the degree of influence and dependence of the shrimp-shell content for the removal of Fe, Al, Mn, Co, and Ni from MIW. In this study, a central composite rotational experimental design (CCRD) with a quadruplicate at the midpoint (2 2 ) was used to evaluate the joint influence of two formulation variables-agitation and the shrimp-shell content. The statistical results showed the significant influence (p < 0.05) of the agitation variable for Fe and Ni removal (linear and quadratic form, respectively) and of the shrimp-shell content variable for Mn (linear form), Al and Co (linear and quadratic form) removal. Analysis of variance (ANOVA) for Al, Co, and Ni removal showed that the model is valid at the 95% confidence interval and that no adjustment needed within the ranges evaluated of agitation (0-251.5 rpm) and shrimp-shell content (1.2-12.8 g L -1 ). The model required adjustments to the 90% and 75% confidence interval for Fe and Mn removal, respectively. In terms of efficiency in removing pollutants, it was possible to determine the best experimental values of the variables considered as 188 rpm and 9.36 g L -1 of shrimp-shells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Karlsruhe Neutron Transmission Experiment (KANT): Spherical shell transmission measurements with 14 MeV neutrons on beryllium

    Moellendorff, U. von; Fischer, U.; Giese, H.; Kappler, F.; Tayama, R.; Wiegner, E.; Klein, H.; Alevra, A.

    1996-01-01

    This is a set of viewgraphs (no additional text) of a presentation on spherical shell transmission measurements with 14 MeV neutrons on beryllium; the cross for 9 Be(n,2n)2α for the energy range between threshold (1.85 MeV) and 20 MeV neutron energy is measured and the measurement is compared with the literature. Also, neutron leakage multiplication in spherical Be shells with various thicknesses are presented. Figs, tabs

  14. Errata and update to ;Experimental cross sections for L-shell X-ray production and ionization by protons;

    Miranda, J.; Lapicki, G.

    2018-01-01

    A compilation of experimental L-shell X-ray production and ionization cross sections induced by proton impact was published recently (Miranda and Lapicki, 2014), collecting 15 439 experimental cross sections. The database covers an energy range from 10 keV to 1 GeV, and targets from 10Ne to 95Am. A correction to several tabulated values that were in error, as well as an update including new data published after 2012 and older references not found previously are given in the present work. The updated data base increased the total number of experimental cross sections by 3.1% to 15 921. A new analysis of the total number of experimental points per year shows that the possible saturation in the cumulative total number of data is increased to 15 950 ± 110 points.

  15. Experimental measurements at the MASURCA facility

    Assal, W.; Bosq, J.C.; Mellier, F.

    2012-01-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning 'mock-up facility for fast breeder reactor studies at Cadarache') is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented. (authors)

  16. Experimental Measurements at the MASURCA Facility

    Assal, W.; Bosq, J. C.; Mellier, F.

    2012-12-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning “mock-up facility for fast breeder reactor studies at CADARACHE”) is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems ...). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented.

  17. Experimental measurements at the Masurca facility

    AssaI, W.; Bosq, J. C.; Mellier, F.

    2009-01-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, Masurca (meaning 'mock-up facility for fast breeder reactor studies at Cadarache') is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems...). For this purpose electronics modules are implemented to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electrical and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at Masurca will be presented. (authors)

  18. The Heat Flux through the Ice Shell on Europa, Constraints from Measurements in Terrestrial Conditions

    Hruba, J.; Kletetschka, G.

    2017-12-01

    Heat transport across the ice shell of Europa controls the thermal evolution of its interior. Such process involves energy sources that drive ice resurfacing (1). More importantly, heat flux through the ice shell controls the thickness of the ice (2), that is poorly constrained between 1 km to 30+ km (3). Thin ice would allow ocean water to be affected by radiation from space. Thick ice would limit the heat ocean sources available to the rock-ocean interface at the ocean's bottom due to tidal dissipation and potential radioactive sources. The heat flux structures control the development of geometrical configurations on the Europa's surface like double ridges, ice diapirs, chaos regions because the rheology of ice is temperature dependent (4).Analysis of temperature record of growing ice cover over a pond and water below revealed the importance of solar radiation during the ice growth. If there is no snow cover, a sufficient amount of solar radiation can penetrate through the ice and heat the water below. Due to temperature gradient, there is a heat flux from the water to the ice (Qwi), which may reduce ice growth at the bottom. Details and variables that constrain the heat flux through the ice can be utilized to estimate the ice thickness. We show with this analog analysis provides the forth step towards measurement strategy on the surface of Europa. We identify three types of thermal profiles (5) and fourth with combination of all three mechanisms.References:(1) Barr, A. C., A. P. Showman, 2009, Heat transfer in Europa's icy shell, University of Arizona Press, p. 405-430.(2) Ruiz, J., J. A. Alvarez-Gómez, R. Tejero, and N. Sánchez, 2007, Heat flow and thickness of a convective ice shell on Europa for grain size-dependent rheologies: Icarus, v. 190, p. 145-154.(3) Billings, S. E., S. A. Kattenhorn, 2005, The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges: Icarus, v. 177, p. 397-412.(4) Quick

  19. Study the Effect of the Flow on the Performance of a shell and Tube Type Heat Exchanger using Experimental Design Technique

    Zuher Hassan Abdullah

    2016-10-01

    Full Text Available In the current research an experimental study was done to show the effect of pulse flow on the effectiveness of shell and tube type heat exchanger. the study was in the case of steady and pulse flows with a changing mass flow rate of hot water flowing inside the pipes of the heat exchanger for the range between (0.0273-0.0819 kg / s  at fix mass flow rate of cold water that flows through the shell and on the outer surface of the pipes when (0.0416 kg / s, to obtain pulsing a used was solenoid valve. The research aims to measure the percentage effect of independent factors which were presenting the mass flow rate of hot water, flow type and the surrounding environment conditions of the experimental side upon shell and tube type heat exchanger performance using experimental design technique at the significant level (0.05.The results derived from the experimental tests showed that pulse flow leads to increase internal heat transfer coefficient (hi comparing with its value in the steady flow and the highest increase was by (9.75% at a mass flow rate of hot water (0.0416 kg / s and increases the overall heat transfer coefficient (U, where the highest percentage was by 4.68% at a mass flow rate of hot water (0.0416kg/s. The results also showed increasing both the number of transmitted units (NTU and the effectiveness of the shell and tube type heat exchanger ( in the case of pulse flow of its value in the steady flow and the highest percentage of increase occurring was (4.75% and (1.85%, respectively, and at the mass flow rate of hot water (0.0416 kg / s. Percentage effect of mass flow rate of hot water was (97%, 97.42%, 95.5%, 99.48% and the percentage effect of each flow type and the errors were (2.8%, 2.25%, 2.44%, 0.4% and (0. 2, 0.33%, 2.06%, 0.12 respectively

  20. Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shell formation mechanisms.

    De Wit, Pierre; Durland, Evan; Ventura, Alexander; Langdon, Chris J

    2018-02-22

    Despite recent work to characterize gene expression changes associated with larval development in oysters, the mechanism by which the larval shell is first formed is still largely unknown. In Crassostrea gigas, this shell forms within the first 24 h post fertilization, and it has been demonstrated that changes in water chemistry can cause delays in shell formation, shell deformations and higher mortality rates. In this study, we use the delay in shell formation associated with exposure to CO 2 -acidified seawater to identify genes correlated with initial shell deposition. By fitting linear models to gene expression data in ambient and low aragonite saturation treatments, we are able to isolate 37 annotated genes correlated with initial larval shell formation, which can be categorized into 1) ion transporters, 2) shell matrix proteins and 3) protease inhibitors. Clustering of the gene expression data into co-expression networks further supports the result of the linear models, and also implies an important role of dynein motor proteins as transporters of cellular components during the initial shell formation process. Using an RNA-Seq approach with high temporal resolution allows us to identify a conceptual model for how oyster larval calcification is initiated. This work provides a foundation for further studies on how genetic variation in these identified genes could affect fitness of oyster populations subjected to future environmental changes, such as ocean acidification.

  1. Measurement of K-shell photoelectric cross-sections for some characteristic x-rays

    Allawadhi, K L; Sood, B S

    1976-03-05

    Because of the non-availability of clean and strong low energy photon sources, external conversion x-rays in various suitable targets have been produced and successfully used to measure relative K shell photoelectric cross-sections in Y for incident energies 17.781, 22.581, 23.618, 25.770, 29.208, 35.478, 41.006, and 43.949 keV in a double reflection geometry experiment. A brief outline of the procedure of measurement and the results obtained are given. (auth)

  2. EXPERIMENTAL MEASUREMENT OF NANOFLUIDS THERMAL PROPERTIES

    Adnan M. Hussein

    2013-07-01

    Full Text Available Solid particles dispersed in a liquid with sizes no larger than 100nm, known as nanofluids, are used to enhance Thermophysical properties compared to the base fluid. Preparations of alumina (Al2O3, titania (TiO2 and silica (SiO2 in water have been experimentally conducted in volume concentrations ranging between 1 and 2.5%. Thermal conductivity is measured by the hot wire method and viscosity with viscometer equipment. The results of thermal conductivity and viscosity showed an enhancement (0.5–20% and 0.5–60% respectively compared with the base fluid. The data measured agreed with experimental data of other researchers with deviation of less than 5%. The study showed that alumina has the highest thermal conductivity, followed silica and titania, on the other hand silica has the highest viscosity followed alumina and titania.

  3. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  4. Mass measurements of {sup 56-57}Cr and the question of shell reincarnation at N = 32

    Guenaut, C [CSNSM-IN2P3/CNRS, Universite de Paris Sud, 91405 Orsay (France); Audi, G [CSNSM-IN2P3/CNRS, Universite de Paris Sud, 91405 Orsay (France); Beck, D [GSI, Planckstrasse 1, 64291 Darmstadt (Germany)] [and others

    2005-10-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for {sup 56-57}Cr for which an accuracy of 4 x 10{sup -8} was achieved. Analysis of the mass surface for the supposed new N = 32 shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as {sup 94}Sr.

  5. Experimental measurement of energy harvesting with backpack

    Pavelkova, Radka; Vala, David; Suranek, Pavel; Mahdal, Miroslav

    2017-08-01

    This article deals with the energy harvesting systems, especially the energy harvesting backpack, which appears as a convenient means for energy harvesting for mobile sensors power. Before starting the experiment, it was necessary to verify whether this energy will be sufficient to get acquainted with the human kinematics and analyze problematics itself. For this purpose there was used motion capture technology from Xsens. Measured data on the position of a particle moving man and back when walking, these data were then used for experimental realization of energy harvesting backpack and as input data to the simulation in Simulink, which brought us a comparison between theoretical assumptions and practical implementation. When measuring characteristics of energy harvesting system we have a problem with measurements on backpack solved when redoing of the hydraulic cylinder as a source of a suitable movement corresponding to the amplitude and frequency of human walk.

  6. Relative L-shell phototelectric cross-section measurements in W, Pb and U

    Arora, S K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1981-06-01

    Measurements of L-shell photoelectric cross sections in W, Pb and U at K X-ray energies of Nb, Mo, Ag, In, Sn, I, Ba, Ce, Gd, and Er have been made. The method yields relative cross sections and is, therefore, simpler and more accurate than those giving absolute values. The problems arising due to the non-monochromatic character of incident and emitted X-rays in the targets have been investigated. The present results show a fairly good agreement with the theoretical predictions.

  7. Relative L-shell photoelectric cross-section measurements in W, Pb and U

    Arora, S K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1981-06-01

    Measurements of L-shell photoelectric cross sections in W, Pb and U at K X-ray energies of Nb, Mo, Ag, In, Sn, I, Ba, Ce, Gd and Er have been made. The method yields relative cross sections and is, therefore, simpler and more accurate than those giving absolute values. The problems arising due to the non-monochromatic character of incident and emitted X-rays in the targets have been investigated. The present results show a fairly good agreement with the theoretical predicitions.

  8. Experimental research of digital holographic microscopic measuring

    Zhu, Xueliang; Chen, Feifei; Li, Jicheng

    2013-06-01

    Digital holography is a new imaging technique, which is developed on the base of optical holography, Digital processing, and Computer techniques. It is using CCD instead of the conventional silver to record hologram, and then reproducing the 3D contour of the object by the way of computer simulation. Compared with the traditional optical holographic, the whole process is of simple measuring, lower production cost, faster the imaging speed, and with the advantages of non-contact real-time measurement. At present, it can be used in the fields of the morphology detection of tiny objects, micro deformation analysis, and biological cells shape measurement. It is one of the research hot spot at home and abroad. This paper introduced the basic principles and relevant theories about the optical holography and Digital holography, and researched the basic questions which influence the reproduce images in the process of recording and reconstructing of the digital holographic microcopy. In order to get a clear digital hologram, by analyzing the optical system structure, we discussed the recording distance and of the hologram. On the base of the theoretical studies, we established a measurement and analyzed the experimental conditions, then adjusted them to the system. To achieve a precise measurement of tiny object in three-dimension, we measured MEMS micro device for example, and obtained the reproduction three-dimensional contour, realized the three dimensional profile measurement of tiny object. According to the experiment results consider: analysis the reference factors between the zero-order term and a pair of twin-images by the choice of the object light and the reference light and the distance of the recording and reconstructing and the characteristics of reconstruction light on the measurement, the measurement errors were analyzed. The research result shows that the device owns certain reliability.

  9. EXPERIMENTAL INVESTIGATION ON RICH MINERAL SILICA AND COCONUT SHELL IN CONCRETE

    C. V. Saranya; V. Anusuya; T. Sreeshma Baburaj

    2017-01-01

    Concrete plays a vital role in the design and construction of the nation’s infrastructure. Almost three quarters of the volume of concrete is composed of aggregates. The current studies involved in the replacement of fine aggregate with Ecosand. In this study an attempt is made to use Ecosand which is a commercial by-product of cement manufacturing process introduced by ACC Cements, as fine aggregate replacement and crushed coconut shell as coarse aggregate. M20 grade of concrete is used. Dif...

  10. Experimental measurement of proton penetration in silicon

    Castaing, C.; Baruch, P.; Picard, C.

    1974-01-01

    After proton implantation in silicon at high fluence, hydrogen precipitation in bubbles is induced by annealing. The stresses are so high that blister formation and peeling occur, leaving flat bottomed pits, with a depth equal to the projected proton range R(p). In this way R(p) was measured between 200 and 600keV, and compared with already published values, and with values computed through LSS (Lindhard, Scharff, and Schiott) theory, using a correct electronic stopping power. A table of ranges and standard deviations, computed in this way is given. The agreement with experimental results is excellent [fr

  11. Experimental investigation on the vibration tuning of a shell with a shape memory alloy ring

    Hong, Jie; Yan, Wenzhong; Ma, Yanhong; Zhang, Dayi; Yang, Xin

    2015-01-01

    This paper presents a new design of a smart ring with motion actuators made of a shape memory alloy (SMA). The mechanical properties of the SMA actuator were investigated at room (25 °C) and high (90 °C) temperatures to better understand its characteristics. The results show that the smart ring with an SMA not only shows good stability and rapid effectiveness in the vibration control of the test shell, but observably eliminates the nonlinear vibration characteristics due to contact and rubbing between the ring and shell during the heating process. The smart ring also shows excellent performance in the isolation of transient vibration resulting from impact or random loads. With regard to impact loads, the response peak value can reduce by 57.4% in most cases, while the value is 38.7% for random excitations. The study shows the feasibility of using the SMA material for potential applications of vibration tuning the casings of aero-engines. (paper)

  12. Fe L-shell Excitation Cross Section Measurements on EBIT-I

    Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.

    2006-09-01

    We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.

  13. An experimental study of the combustion characteristics of groundnut shell and waste paper admixture briquettes

    O. A. Oyelaran

    2015-12-01

    Full Text Available The study was undertaken to assess the heat released of briquettes produced from waste paper and groundnut shell admixture in five mixing ratios (90:10; 80:20; 70:30; 60:40; and 50:50. The briquettes were prepared on an existing motorized briquetting machine. The suitability of briquetted fuel as domestic fuel was studied in terms of flame propagation, afterglow, calorific value, and utilized heat, after sun drying the prepared briquettes for nineteen (19 days. The results of propagation rate and afterglow obtained for all the six compositions are satisfactory they range between 0.13 to 0.14 and 365 to 380 respectively. These energy values obtained for the whole samples are sufficient enough to produce heat required for household cooking and small scale industrial cottage applications. Finally it was observed that composition variation affects the properties of the briquettes.

  14. Masses of T/sub z/ = +5/2 nuclei in the s--d shell from β--decay measurements

    Alburger, D.E.; Goosman, D.R.; Davids, C.N.; Hardy, J.C.

    1975-01-01

    In this work the existence of five new T/sub z/ = + 5 / 2 nuclides, 23 F, 29 Mg, 31 Al, 33 Si, and 35 P, was established; their properties, including mass values, were determined, along with those of 25 Ne and 27 Na. Two experimental techniques were used, the ''rabbit'' transfer of a solid target and the gas transfer system; some novel features of these are described. A β spectrum of 33 Si observed in coincidence with 1848-keV γ rays is shown; a mass excess of -20569 +- 50 keV was derived for 33 Si. Attempts to produce 21 O were unsuccessful. Comparisons of the measured masses of the T/sub z/ = + 5 / 2 nuclides in the 2s--1d shell with predictions of the Garvey--Kelson mass formulation and with shell-model calculations are shown. The latter produce considerably better agreement with experiment. (3 figures, 1 table) (U.S.)

  15. Noise suppression in curved glass shells using macro-fiber-composite actuators studied by the means of digital holography and acoustic measurements

    P. Mokrý

    2015-02-01

    Full Text Available The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction with respect to its surface and to increase the acoustic transmission loss of the piezoelectric MFC-glass composite structure. The effect of the MFC actuators connected to the negative capacitance shunt circuit on the surface distribution of the normal vibration amplitude is studied using frequency-shifted digital holography (FSDH. The principle of the used FSDH method is described in the paper. The frequency dependence of the acoustic transmission loss through the piezoelectric MFC-glass composite structure is estimated using measurements of the specific acoustic impedance of the curved glass shell. The specific acoustic impedance is measured using two microphones and a laser Doppler vibrometer (LDV. The results from the LDV measurements are compared with the FSDH data. The results of the experiments show that using this approach, the acoustic transmission loss in a glass shell can be increased by 36 dB in the frequency range around 247 Hz and by 25 dB in the frequency range around 258 Hz. The experiments indicate that FSDH measurements provide an efficient tool that can be used for fast and accurate measurements of the acoustic transmission loss in large planar structures.

  16. L-shell x-ray fluorescence measurements of lead in bone: accuracy and precision

    Todd, Andrew C.; Carroll, Spencer; Khan, Fuad A.; Moshier, Erin L.; Geraghty, Ciaran; Tang, Shida; Parsons, Patrick J.

    2002-01-01

    This study aimed to quantify the accuracy and precision of a method for in vivo measurements of lead in bone using L-shell x-ray fluorescence (LXRF), the former via comparison with independent measurements of lead in bone obtained using electrothermal atomic absorption spectrometry (AAS) following acid digestion. Using LXRF, the lead content of adult human cadaver tibiae was measured, both as intact legs and as dissected tibiae with overlying tissue removed, the latter at several proximal-distal locations. After LXRF, each tibia was divided into nine cross-sectional segments, which were further separated into tibia core and surface samples for AAS measurement. The proximal-distal variability of AAS-measured core and surface tibia lead concentrations has been described elsewhere (the lead concentration was found to decrease towards both ends of the tibia). The subjects of this paper are the proximal-distal variability of the LXRF-measured lead concentrations, the measurement uncertainty and the statistical agreement between LXRF and AAS. There was no clear proximal-distal variability in the LXRF-measured concentrations; the degree of variability in actual tibia lead concentrations is far less than the LXRF measurement uncertainty. Measurement uncertainty was dominated by counting statistics and exceeded the estimate of lead concentration in most cases. The agreement between LXRF and AAS was reasonably good for bare bone measurements but poor for intact leg measurements. The variability of the LXRF measurements was large enough, for both bare bone and intact leg measurements, to yield grave concerns about the analytical use of the technique in vivo. (author)

  17. Measurement and analysis of thorium fission rate in a polyethylene shell with a D-T neutron source

    Zheng, Lei [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Yang, Yiwei, E-mail: winfield1920@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Liu, Zhujun [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Department of Nuclear Engineering and Technology, Sichuan University, Chengdu 610065,China (China); Liu, Rong, E-mail: liurongzy@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Jiang, Li; Wang, Mei [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-12-15

    Highlights: • Associated angular dependencies of the source neutron energy and intensity was given. • Two sets of fission yields from evaluated libraries were considered and applied. • Calculated results employing ENDF/B-VII.0 agreed with the experimental ones best. • Small discrepancies exist between thorium fission cross section evaluated libraries. - Abstract: In order to validate the {sup 232}Th fission cross section, an integral experiment was carried out using the activation method in a polyethylene shell with a D-T neutron source. Thorium samples were arranged in the 0° direction to the incident D{sup +} beam. The {sup 232}Th fission rate was determined by measuring the 151.195 keV characteristic γ ray emitted from the fission fragment {sup 85m}Kr, and the experimental uncertainties were about 5.3%. MCNP calculation results employing ENDF/B-VII.0, JENDL-3.3, JENDL-4.0 libraries are in good agreement with that of experiments within uncertainties except that employing ENDF/B-VII.1 (∼6.5%). The experiment results can be used to re-evaluate the {sup 232}Th fission cross section.

  18. Experimental Measurement of In Situ Stress

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  19. An Experimental Study of Briquetting Process of Torrefied Rubber Seed Kernel and Palm Oil Shell

    M. Fadzli Hamid

    2016-01-01

    Full Text Available Torrefaction process of biomass material is essential in converting them into biofuel with improved calorific value and physical strength. However, the production of torrefied biomass is loose, powdery, and nonuniform. One method of upgrading this material to improve their handling and combustion properties is by densification into briquettes of higher density than the original bulk density of the material. The effects of critical parameters of briquetting process that includes the type of biomass material used for torrefaction and briquetting, densification temperature, and composition of binder for torrefied biomass are studied and characterized. Starch is used as a binder in the study. The results showed that the briquette of torrefied rubber seed kernel (RSK is better than torrefied palm oil shell (POS in both calorific value and compressive strength. The best quality of briquettes is yielded from torrefied RSK at the ambient temperature of briquetting process with the composition of 60% water and 5% binder. The maximum compressive load for the briquettes of torrefied RSK is 141 N and the calorific value is 16 MJ/kg. Based on the economic evaluation analysis, the return of investment (ROI for the mass production of both RSK and POS briquettes is estimated in 2-year period and the annual profit after payback was approximately 107,428.6 USD.

  20. Wavelength Measurements of Ni L-shell Lines between 9 and 15 A

    Gu, Ming F.; Beiersdorfer, P.; Brown, G. V.; Chen, H.; Thorn, D. B.; Kahn, S. M.

    2006-09-01

    We present accurate wavelength measurements of nikel L-shell X-ray lines resulting from Δ n ≥ 1 transitions (mostly, 2 - 3 transitions) between 9 and 15 Å. We have used the electron beam ion trap, SuperEBIT, at the Lawrence Livermore National Laboratory and a flat field grating spectrometer to record the spectra. Most significant emission lines of Ni XIX -- XXVI in our spectral coverage are identified. The resulting data set provides valuable input in the analyses of high resolution X-ray spectra of stellar coronae sources, including the Sun. This work was performed under the auspices of U.S. DOE contract No. W-7405-Eng-48, and supported by NASA APRA Grant NAG5-5419.

  1. High-precision mass measurements in the realm of the deformed shell closure N=152

    Eibach, Martin Andreas

    2013-12-04

    The nuclear masses reflect the sum of all interactions inside a nucleus. Their precise knowledge can be used to benchmark nuclear mass models and to gain nuclear structure information. Penning-trap mass spectrometers have proven their potential to obtain lowest uncertainties. Uniquely located at a nuclear reactor, the double Penning-trap mass spectrometer TRIGA-TRAP is dedicated to measurements in the neutron-rich region. For a gain in sensitivity a non-destructive detection system for single ion mass measurements was adopted. This includes the implementation of a narrow band-pass filter tuned to the heavy ion cyclotron frequency as well as a cryogenic low-noise amplifier. For on-line mass measurements, the laser ablation ion source was equipped with a newly developed miniature radiofrequency quadrupole trap in order to improve the extraction efficiency. A more economic use of the radioactive material enabled mass measurements using only 10{sup 15} atoms of target material. New mass measurements were performed within this work in the realm of the deformed shell closure N=152. Their implementation into the atomic-mass evaluation improved the uncertainty of more than 80 nuclides in the heavy mass region and simultaneously shifted the absolute mass of two α decay chains.

  2. Experimental Pressure Measurements on Hydropower Turbine Runners

    Harding, Samuel F.; Richmond, Marshall C.

    2017-04-28

    The range of hydrodynamic operating conditions to which the turbine is exposed results in significant pressure fluctuations on both the pressure and suction sides of the blades. Understanding these dynamic pressures has a range of applications. Structurally, the resulting dynamic loads are significant in understanding the design life and maintenance schedule of the bearing, shafts and runner components. The pulsing pressures have also been seen to have a detrimental effect on the surface condition of the blades. Biologically, the pressure gradients and pressure extremes are the primary driver of barotrauma for fish passing through hydroturbines. Improvements in computational fluid dynamics (CFD) can be used to simulate such unsteady pressures in the regions of concern. High frequency model scale and prototype measurements of pressures at the blade are important in the validation of these models. Experimental characterization of pressure fields over hydroturbine blades has been demonstrated by a number of studies which using multiple pressure transducers to map the pressure contours on the runner blades. These have been performed at both model and prototype scales, often to validate computational models of the pressure and flow fields over the blades. This report provides a review of existing studies in which the blade pressure was measured in situ. The report assesses the technology for both model and prototype scale testing. The details of the primary studies in this field are reported and used to inform the types of hardware required for similar experiments based on the Ice Harbor Dam owned by the US Corps of Engineers on the Snake River, WA, USA. Such a study would be used to validate the CFD performed for the BioPA.

  3. Benzene Synthesis for 14C Measurements and Evaluation of Uncertainty in Mollusk Shells

    Romero del Hombrebueno, B.; Simon, M. A.; Larena, P.

    2002-01-01

    This work describes the method and Instrumentation used by Environmental Isotopes laboratory of the CIEMAT Analytical Chemistry Laboratory (DIAE) for the synthesis of benzene from carbonates of mollusk shells and the liquid scintillation counting of 14 C for radiocarbon dating in these samples. The usefulness of mollusk shells for 14 C dating are considered. (Author) 15 refs

  4. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine

    Holland, D. M. P.; Powis, I.; Trofimov, A. B.; Menzies, R. C.; Potts, A. W.; Karlsson, L.; Badsyuk, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J.

    2017-10-01

    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σN LP) has been found to be different to that for the corresponding chlorine lone-pair (σCl LP). For the σN LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine πCl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σCl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the

  5. Shell Venster

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  6. Progress on precision measurements of inner shell transitions in highly charged ions at an ECR ion source

    Szabo, Csilla I.; Indelicato, Paul; LeBigot, Eric-Olivier; Vallette, Alexandre; Amaro, Pedro; Guerra, Mauro; Gumberidze, Alex [Laboratoire Kastler Brossel, Ecole Normale Superieure, CNRS, Universite Pierre et Marie Curie- Paris 6, Case 74, 4 place Jussieu, F-75005 Paris (France); Centro de Fisica Atomica, CFA, Departamento de Fisica (Portugal); Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Laboratoire Kastler Brossel, Ecole Normale Superieure, CNRS, Universite Pierre et Marie Curie- Paris 6, Case 74, 4 place Jussieu, F-75005 Paris (France)

    2012-05-25

    Inner shell transitions of highly charged ions produced in the plasma of an Electron Cyclotron Resonance Ion Source (ECRIS) were observed the first time by a Double Crystal Spectrometer (DCS). The DCS is a well-used tool in precision x-ray spectroscopy due to its ability of precision wavelength measurement traced back to a relative angle measurement. Because of its requirement for a bright x-ray source the DCS has not been used before in direct measurements of highly charged ions (HCI). Our new precision measurement of inner shell transitions in HCI is not just going to provide new x-ray standards for quantum metrology but can also give information about the plasma in which the ions reside. Ionic temperatures and with that the electron density can be determined by thorough examination of line widths measured with great accuracy.

  7. Experimental techniques of conversion coefficient measurements

    Hamilton, J.H.

    1975-01-01

    Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)

  8. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system.Methods: 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg/cm 3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm 3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence/scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm × 15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm.Results: XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73 × 10 −2 cm 3 ). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations.Conclusions: L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts

  9. Using shell tools in Mesolithic and early Neolithic coastal sites from Northern Spain: experimental program for use wear analysis in malacological materials

    Cuenca Solana, David

    2010-06-01

    Full Text Available One of the most common debates surrounding the Mesolithic and early Neolithic periods in northern Spain focuses on the scarcity of lithic and osseous technologies identified in large shell midden contexts. Currently, several hypotheses have been proposed that attribute this phenomenon to differences in site spatial organization, increases in perishable material use, or changes in subsistence strategies. However, recently shell tools have been identified in the early Neolithic levels at Santimamiñe cave located in the Basque Country of northern Spain. These artifacts are the first evidence of shell tools to be identified in Northern Spain in an early Neolithic shell midden context. This paper proposes the hypothesis that shell tools were being used in subsistence activities. To test this hypothesis, the authors developed an experimental programme using different types of mollusc shells to examine evidence of functional use on wood, dry/fresh animal skin and non-woody plants. The experimental results were then used to examine the patterns of use on the seven shell tools from Santimamiñe. The results of the comparisons indicate that the seven shell tools have similar use patterns as the experimental shells. This evidence supports the proposed hypothesis that shell tools may have been used frequently in shell midden contexts during the Mesolithic and early Neolithic for the working of wood, plants or animal skin.

    Uno de los debates más extendidos en la historiografía sobre el Mesolítico y el Neolítico inicial en la región cantábrica es el de la escasez de tecnologías “tradicionales” en la mayor parte de los contextos existentes, especialmente en aquellos con grandes acumulaciones de conchas. Actualmente, varias de las hipótesis propuestas atribuyen este fenómeno a diferencias en la organización espacial de los asentamientos, al aumento en la utilización de materiales perecederos o a cambios en las estrategias de subsistencia

  10. Short-Range Correlated Magnetic Core-Shell CrO₂/Cr₂O₃ Nanorods: Experimental Observations and Theoretical Considerations.

    Gandhi, Ashish C; Li, Tai-Yue; Chan, Ting Shan; Wu, Sheng Yun

    2018-05-09

    With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM) cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO₂/Cr₂O₃ core-shell nanorods (NRs) has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO₂ extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.

  11. An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material

    Ashish Agarwal

    2016-03-01

    Full Text Available In the presented study the shell and tube type latent heat storage (LHS has been designed for solar dryer and paraffin wax is used as heat storage material. In the first part of the study, the thermal and heat transfer characteristics of the latent heat storage system have been evaluated during charging and discharging process using air as heat transfer fluid (HTF. In the last section of the study the effectiveness of the use of an LHS for drying of food product and also on the drying kinetics of a food product has been determined. A series of experiments were conducted to study the effects of flow rate and temperature of HTF on the charging and discharging process of LHS. The temperature distribution along the radial and longitudinal directions was obtained at different time during charging process to analyze the heat transfer phenomenon in the LHS. Thermal performance of the system is evaluated in terms of cumulative energy charged and discharged, during the charging and discharging process of LHS, respectively. Experimental results show that the LHS is suitable to supply the hot air for drying of food product during non-sunshine hours or when the intensity of solar energy is very low. Temperature gain of air in the range of 17 °C to 5 °C for approximately 10 hrs duration was achieved during discharging of LHS.

  12. Measurements of L-shell x-ray production cross-sections of Au and Ag by low energy electron impact

    Wu, Y; An, Z; Liu, M T; Duan, Y M; Tang, C H; Luo, Z M

    2004-01-01

    Au L α and L β and Ag L-shell x-ray production cross-sections by electron impact have been measured in the incident energy region from near threshold to about 25 keV. Thin films with thick aluminium substrates were used as targets in the experiments. The effect of directional and energy spreading of the electron beam within the active films and x-ray enhancement due to backscattering electrons and bremsstrahlung photons from the substrates are corrected by means of Monte Carlo simulations. The corrected experimental data provided by this method are compared with calculated cross-sections from a PWBA theory with Coulomb, relativistic and exchange corrections and with other experimental data available in the literature

  13. Strain Measurement of Steel Roof Truss Using FBG Sensor during Construction of Reverse Shell Shaped Reinforced Concrete Structure

    Lee, Kun Woo [Kyungpook National University, Daegu (Korea, Republic of); Rhim, Hong Chul; Seo, Tae Seok [Yonsei University, Seoul (Korea, Republic of)

    2011-08-15

    Application of FBG (Fiber Bragg Grating) sensors to measure strain of steel roof trusses has been performed. This is to check and confirm the structural integrity of an unusually shaped, reverse shell structure made of reinforced concrete. The issue was to place sensors at proper location and compare the measured values to the results from structural analysis. It has been learned that a deliberate measurement scheme is needed in order to monitor a complex structure during construction. In this study, the measured values were within allowable range of strain, thus confirming the safety of the structure during measurement and construction.

  14. Weak measurement and its experimental realisation

    Flack, R; Hiley, B J

    2014-01-01

    The relationship between the real part of the weak value of the momentum operator at a post selected position is discussed and the meaning of the experimentally determined stream-lines in the Toronto experiment of Kocsis et al is re-examined. We argue against interpreting the energy flow lines as photon trajectories. The possibility of performing an analogous experiment using atoms is proposed in order that a direct comparison can be made with the trajectories calculated by Philippidis, Dewdney and Hiley using the Bohm approach.

  15. Experimental investigation shell model excitations of 89Zr up to high spin and its comparison with 88,90Zr

    Saha, S.; Palit, R.; Sethi, J.

    2012-01-01

    The excited states of nuclei near N=50 closed shell provide suitable laboratory for testing the interactions of shell model states, possible presence of high spin isomers and help in understanding the shape transition as the higher orbitals are occupied. In particular, the structure of N = 49 isotones (and Z =32 to 46) with one hole in N=50 shell gap have been investigated using different reactions. Interestingly, the high spin states in these isotones have contribution from particle excitations across the respective proton and neutron shell gaps and provide suitable testing ground for the prediction of shell model interactions describing theses excitations across the shell gap. In the literature, extensive study of the high spin states of heavier N = 49 isotones starting with 91 Mo up to 95 Pd are available. Limited information existed on the high spin states of lighter isotones. Therefore, the motivation of the present work is to extend the high spin structure of 89 Zr and to characterize the structure of these levels through comparison with the large scale shell model calculations based on two new residual interactions in f 5/2 pg 9/2 model space

  16. Validation of a FBC model for co-firing of hazelnut shell with lignite against experimental data

    Kulah, Gorkem [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey)

    2010-07-15

    Performance of a comprehensive system model extended for modelling of co-firing of lignite and biomass was assessed by applying it to METU 0.3 MW{sub t} Atmospheric Bubbling Fluidized Bed Combustor co-firing lignite with hazelnut shell and validating its predictions against on-line temperature and concentration measurements of O{sub 2}, CO{sub 2}, CO, SO{sub 2} and NO along the same test rig fired with lignite only, lignite with limestone addition and lignite with biomass and limestone addition. The system model accounts for hydrodynamics; volatiles release and combustion, char combustion, particle size distribution for lignite and biomass; entrainment; elutriation; sulfur retention and NO formation and reduction, and is based on conservation equations for energy and chemical species. Special attention was paid to different devolatilization characteristics of lignite and biomass. A volatiles release model based on a particle movement model and a devolatilization kinetic model were incorporated into the system model separately for both fuels. Kinetic parameters for devolatilization were determined via thermogravimetric analysis. Predicted and measured temperatures and concentrations of gaseous species along the combustor were found to be in good agreement. Introduction of biomass to lignite was found to decrease SO{sub 2} emissions but did not affect NO emissions significantly. The system model proposed in this study proves to be a useful tool in qualitatively and quantitatively simulating the processes taking place in a bubbling fluidized bed combustor burning lignite with biomass. (author)

  17. Z0 decay modes - experimental measurements

    Dorfan, J.M.

    1984-08-01

    This report summarizes three lectures given at the Theoretical Advanced Study Institute at the University of Michigan at Ann Arbor. The lectures begin with an introduction to storage rings and linear colliders with special reference to the parameters of the SLC and LEP. The rigors of the Z 0 environment are presented along with the requirements for SLC and LEP detectors. The pedagogy needed for testing the Standard Model is developed, and some experimental tests of the Standard Model are discussed. Tests which involve extensions of the Standard Model (charged Higgs particles, more generations) as well as a few examples of how supersymmetry may show up at the Z 0 are discussed. 25 references, 34 figures

  18. Diagnostic method for measuring plasma-induced voltages on the PBX-M [Princeton Beta Experiment-Modified] stabilizing shell

    Kugel, H.W.; Okabayashi, M.; Schweitzer, S.

    1990-07-01

    The Princeton Beta Experiment-Modified (PBX-M) has a close-fitting conducting, passive plate, stabilizing shell which nearly surrounds highly indented, bean-shaped plasmas. The proximity of this electrically isolated shell to a large fraction of the plasma surface allows measurements similar to previous work on other tokamaks using floating probes and limiters. Measurements were performed to characterize the plasma-induced voltages on the PBX-M passive plate stabilizing shell during high-β plasmas. Voltage differences were measured between the respective passive plate toroidal and poloidal gaps, the respective passive plates and the vessel, and an outer poloidal graphite limiter and its passive plate. The calibration and qualification testing procedures are discussed. The initial measurements found that the largest voltages were observed at plasma start-up and at the plasma current disruption and exhibited characteristics depending on operating conditions. The highest voltages observed have been at disruption and were less than 2 kV. 9 refs., 5 figs

  19. Measurements of operator performance - an experimental setup

    Netland, K.

    1980-01-01

    The human has to be considered as an important element in a process control system, even if the degree of automation is extremely high. Other elements, e.g. computer, displays, etc., can to a large extent be described and quantified. The human (operator), is difficult to describe in a precise way, and it is just as difficult to predict his thinking and acting in a control room environment. Many factors influence his performance, such as: experience, motivation, level of knowledge, training, control environment, job organization, etc. These factors have to a certain degree to be described before guidelines for design of the man-process interfaces and the control room layout can be developed. For decades, the psychological science has obtained knowledge of the human mind and behaviour. This knowledge should have the potential of a positive input on our effort to describe the factors influencing the operator performance. Even if the human is complex, a better understanding of his thinking and acting, and a more precise description of the factors influencing his performance can be obtained. At OECD Halden Reactor Project an experimental set-up for such studies has been developed and implemented in the computer laboratory. The present set-up includes elements as a computer- and display-based control room, a simulator representing a nuclear power plant, training programme for the subjects, and methods for the experiments. Set-up modules allow reconfiguration of experiments. (orig./HP)

  20. Measures of Situation Awareness: An Experimental Evaluation

    1991-10-01

    occurrence from non- occurrence of the target event, referred to as sensitivity (Macmillan and Creelman , 1990). Because sensitivity declines if pilots are...Pollack and Norman, 1964; see also Craig, 1979; Macmillan and Creelman , 1990). Finally, avoidance failures were measured simply as the number of times...Wesley. Macmillan, N. A., & Creelman , C. D. (1990). Response bias: Characteristics of detection theory, threshold theory, and "non- parametric" indexes

  1. Experimental measurements of negative hydrogen ion production from surfaces

    Graham, W.G.

    1977-09-01

    Experimental measurements of the production of H - from surfaces bombarded with hydrogen are reviewed. Some measurements of H + and H 0 production from surfaces are also discussed with particular emphasis on work which might be relevant to ion source applications

  2. Real-Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core-Shell Nanowire Electrodes.

    Zhang, Xin-Wei; Qiu, Quan-Fa; Jiang, Hong; Zhang, Fu-Li; Liu, Yan-Lin; Amatore, Christian; Huang, Wei-Hua

    2017-10-09

    Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC-core-shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano-core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A simple experimental setup for magneto-dielectric measurements

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C., E-mail: cvunom@hotmail.com

    2014-09-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities.

  4. A simple experimental setup for magneto-dielectric measurements

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C.

    2014-01-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities

  5. New method of measuring the K-shell fluorescence yield of As

    Singh, K; Sahota, H S

    1984-02-01

    A new method for the determination of the K-shell fluorescence yield from the analysis of sum peaks observed with a high-resolution intrinsic Ge semiconductor detector in the decay of /sup 75/Se is described. The value found is ..omega..sub(K)(As)=0.574(18), which is in agreement with the fitted value of previous authors.

  6. Experimental measurements of shock properties of stishovite

    Furnish, M.D.; Ito, E.

    1996-01-01

    We have synthesized, characterized and performed Hugoniot measurements on monolithic samples of stishovite. Synthesis was accomplished in a multianvil press with pyrophyllite gaskets and carbon heaters. The samples had densities ranging from 3.80 to 4.07Mg/m 3 , corresponding to stishovite volume fractions of 0.7 to 0.87, a range confirmed by NMR analysis. They had no significant impurities except less than 1% carbon. Samples ∼1 mm thick and 3 mm diameter were tested in reverse- and forward-ballistics modes on a two-stage light gas gun, using velocity interferometry diagnostics. Impact velocities ranged from 4.0 to 6.5 km/sec. Hugoniot stresses for the four successful tests ranged from 65 to 225GPa. At higher stresses significant uncertainties arise due to impact tilt/nonplanarity issues. Results are consistent with earlier predictions of the stishovite Hugoniot based on quartz-centered Hugoniot data, static-compression (diamond-anvil cell) data and hydrostatic multianvil cell data. Release behavior appears to be frozen. These results are remarkable in view of the small size of the samples used. copyright 1996 American Institute of Physics

  7. The measurement of electrostatic potentials in core/shell GaN nanowires using off-axis electron holography

    Yazdi, Sadegh; Kasama, Takeshi; Ciechonski, R

    2013-01-01

    Core-shell GaN nanowires are expected to be building blocks of future light emitting devices. Here we apply off-axis electron holography to map the electrostatic potential distributions in such nanowires. To access the cross-section of selected individual nanowires, focused ion beam (FIB) milling...... is used. Furthermore, to assess the influence of FIB damage, the dopant potential measured from an intact NW is compared with a FIB prepared one. It is shown that in addition to the built-in potential between the p-type shell and unintentionally n-type under-layer there is a potential barrier between...... the core and under-layer which are both unintentionally n-type doped....

  8. Single photon simultaneous K-shell ionization and K-shell excitation. I. Theoretical model applied to the interpretation of experimental results on H2O

    Carniato, S.; Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.

    2015-01-01

    We present in detail a theoretical model that provides absolute cross sections for simultaneous core-ionization core-excitation (K −2 V ) and compare its predictions with experimental results obtained on the water molecule after photoionization by synchrotron radiation. Two resonances of different symmetries are assigned in the main K −2 V peak and comparable contributions from monopolar (direct shake-up) and dipolar (conjugate shake-up) core-valence excitations are identified. The main peak is observed with a much greater width than the total experimental resolution. This broadening is the signature of nuclear dynamics

  9. NIF-Scale Hohlraum Asymmetry Studies Using Point-Projection Radiograph of Thin Shells

    Pollaine, S.; Bradley, D.; Landen, O.; Wallace, R.; Jones, O.

    2000-01-01

    Our current OMEGA experimental campaign is developing the thin shell diagnostic for use on NIF with the needed accuracy. The thin shell diagnostic has the advantage of linearity over alternative measurement techniques, so that low-order modes will not corrupt the measurement of high-order modes. Although our random measurement errors are adequate, we need to monitor beam balance and ensure that the thin shells have a uniform thickness

  10. Oil shale : could Shell's experimental oil shale technology be adapted to Alberta's bitumen carbonates?

    Roche, P.

    2006-07-01

    Although Shell has been trying to develop technologies to economically extract oil from shale containing kerogen for the last 25 years, the volume of oil Shell produced from its Mahogany Research Project in Colorado has added up to less than 2500 bbls in total, and the company has recently devoted $400 million to purchase leases on carbonate reservoirs in Alberta. This article examined whether or not the technologies developed by Shell for oil shales could be used to profitably extract bitumen from carbonates. Extracting bitumen from carbonates may be easier than producing oil from shale, as the resource in carbonates is already oil, whereas the oil in oil shale is actually kerogen, which needs to be chemically cracked at extremely high temperatures. Although the technical feasibility of an in situ cracking process has been proven, work remains to be done before Shell can invest in a commercial-scale oil shale project. Challenges to oil shale production include preventing groundwater from entering target zones and keeping produced fluids out of the groundwater. However, a freeze wall test has recently been designed where chilled liquid is circulated through a closed-loop pipe system to freeze formation water, sealing off an area about the size of a football field from the surrounding strata. The energy requirements of the process that Shell is testing to produce shale oil in Colorado remain unprofitably high, as higher temperatures are necessary for thermal cracking. Shell has yet to make a decision as to what energy sources it will use to make the production process economically viable. An energy conservation group in Colorado has claimed that production of 100,000 bbls of shale oil would require the largest power plant in Colorado history. 2 figs.

  11. Inner-shell/subshell photoionization cross section measurements using a gamma excited variable energy X-ray source

    Sood, B S; Allawadhi, K L; Arora, S K [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1982-02-15

    The method developed for the determination of K/L shell photoionization cross sections in various elements, 39 <= Z <= 92, in the characteristic X-ray energy region using a gamma excited variable energy X-ray source has been used for the measurement of Lsub(III) subshell photoionization cross section in Pb, Th and U. The measurements are made at the K X-ray energies of Rb, Nb and Mo, since these are able to excite selectively the Lsub(III) subshells of Pb, Th and U, respectively. The results, when compared with theoretical calculations of Scofield, are found to agree within the uncertainties of determination.

  12. Precision mass measurements with ISOLTRAP to study the evolution of the $\\textit{N}$=82 shell gap far from stability

    Shell effects and their evolution across the nuclear chart impose important constraints on the modelling of the nucleon-nucleon interaction. The strength of shell closures in neutron-rich nuclei also influences the path of the $\\textit{r}$-process of nucleo-synthesis and the predicted elemental abundances. We propose to measure the masses of the isotopes $^{132,133}$In, $^{129-132}$Cd, $^{125-129}$Ag with the Penning-trap mass spectrometer ISOLTRAP. The recently developed multi-reflection time-of-flight mass separator of ISOLTRAP will allow, as a beam purifier, to handle higher contamination ratios than before and, for the more exotic cases, to directly determine the mass of the nuclides of interest. The masses of the proposed isotopes will allow the investigation of a possible weakening of the $\\textit{N}$ = 82 shell gap for $\\textit{Z}$ < 50 and corresponding $\\textit{r}$-process waiting point. This in turn enables an exploration of the impact on the $\\textit{A}$ = 130 $\\textit{r}$-process abundances.

  13. Communication: spin-orbit splittings in degenerate open-shell states via Mukherjee's multireference coupled-cluster theory: a measure for the coupling contribution.

    Mück, Leonie Anna; Gauss, Jürgen

    2012-03-21

    We propose a generally applicable scheme for the computation of spin-orbit (SO) splittings in degenerate open-shell systems using multireference coupled-cluster (MRCC) theory. As a specific method, Mukherjee's version of MRCC (Mk-MRCC) in conjunction with an effective mean-field SO operator is adapted for this purpose. An expression for the SO splittings is derived and implemented using Mk-MRCC analytic derivative techniques. The computed SO splittings are found to be in satisfactory agreement with experimental data. Due to the symmetry properties of the SO operator, SO splittings can be considered a quality measure for the coupling between reference determinants in Jeziorski-Monkhorst based MRCC methods. We thus provide numerical insights into the coupling problem of Mk-MRCC theory. © 2012 American Institute of Physics

  14. Experimental measurements and mathematics; Les mesures experimentales et les mathematiques

    Abraham, I.; Bruno, S.; Durand, O.; Gaillard, P.; Lagrange, J.M.; Lamy, F.; Peyrat, J.P. [CEA Bruyeres-le-Chatel, 91 (France); Choux, A.; Druoton, L.; Pascal, G.; Sulpice, F. [CEA Valduc, 21 - Is-sur-Tille (France); Busvelle, E.; Garnier, L. [Universite de Bourgogne, Lab. d' Electronique, Informatique et Image, 21 - Dijon (France); Gauthier, J.P. [Laboratoire des Sciences de l' Information et des Systemes, 83 - Toulon (France); Langevin, R. [Institut Mathematique de Bourgogne, 21 - Dijon (France)

    2011-01-15

    Many problems that appear in experimental works can be solved by using mathematical methods, from the conception phase to the interpretation of measurements. We illustrate the use of these methods at CEA-DAM by pointing out some examples in 3 typical domains: treatment of experimental data, geometrical controls of targets, and analysis of a huge quantity of data. (authors)

  15. Overhead traveling crane vibration research using experimental wireless measuring system

    Tomasz HANISZEWSKI

    2013-01-01

    Full Text Available The paper contains an operations and constructions description of theexperimental wireless measuring system for measuring accelerations in bridge cranes,based on PHIDGET 1056 sensors. Developed experimental research and measuringmethodology allows the use of the proposed wireless system on other cranesconstructions. The paper also shows examples of the results of vibration measurementsand FFT spectra, obtained on the basis of accelerations measurements.

  16. Measuring and Analyzing the Scholarly Impact of Experimental Evaluation Initiatives

    Angelini, Marco; Ferro, Nicola; Larsen, Birger

    2014-01-01

    Evaluation initiatives have been widely credited with contributing highly to the development and advancement of information access systems, by providing a sustainable platform for conducting the very demanding activity of comparable experimental evaluation in a large scale. Measuring the impact...

  17. Picosecond Time-Resolved Temperature and Density Measurements with K-Shell Spectroscopy

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.

    2017-10-01

    The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured to track the evolution of the bulk plasma conditions. The targets were driven by high-contrast 1 ω laser pulses at focused intensities up to 1 × 1019 W/cm2. A streaked x-ray spectrometer recorded the AlHeα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E E ΔE 1000 ΔE 1000) . Time-integrated measurements over the same spectral range were used to correct the streaked data for variations in photocathode sensitivity. Linewidths and intensity ratios from the streaked data were interpreted using a collisional radiative atomic kinetics model to provide the average plasma conditions in the buried layer as a function of time. Experimental uncertainties in the measured plasma conditions are quantified within a consistent model-dependent framework. The data demonstrate the production of a 330 +/-56 eV, 0.9 +/-0.3 g/cm3 plasma that evolves slowly during peak Heα emission. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Measurement and simulation of anisotropic magnetoresistance in single GaAs/MnAs core/shell nanowires

    Liang, J.; Wang, J.; Cooley, B. J.; Rench, D. W.; Samarth, N.; Paul, A.; Dellas, N. S.; Mohney, S. E.; Engel-Herbert, R.

    2012-01-01

    We report four probe measurements of the low field magnetoresistance (MR) in single core/shell GaAs/MnAs nanowires (NWs) synthesized by molecular beam epitaxy, demonstrating clear signatures of anisotropic magnetoresistance that track the field-dependent magnetization. A comparison with micromagnetic simulations reveals that the principal characteristics of the magnetoresistance data can be unambiguously attributed to the nanowire segments with a zinc blende GaAs core. The direct correlation between magnetoresistance, magnetization, and crystal structure provides a powerful means of characterizing individual hybrid ferromagnet/semiconductor nanostructures.

  19. Effect of ultrasonic treatment on reduction of Esherichia coli ATCC 25922 and egg quality parameters in experimentally contaminated hens' shell eggs.

    Sert, Durmus; Aygun, Ali; Torlak, Emrah; Mercan, Emin

    2013-09-01

    In this study, hen eggs which were experimentally contaminated with Esherichia coli ATCC 25922 were used. Contaminated eggs were washed statically (S5 to S30; 0 kHz) and by ultrasonic waves (U5 to U30; 35 kHz) for given applications of time (5, 15 and 30 min), then the eggs were stored at 22°C for 14 days. Depending on the time of ultrasonic application, a significant increase in egg shell strength (P eggs which were washed by ultrasonic waves. Yolk width values of ultrasonic washed eggs diminished. E. coli was completely removed by 30 min of ultrasonic application. During storage E. coli growth was not detected on the eggs which were washed by ultrasonic waves except the eggs in U5 group (2.04 log CFU eggshell⁻¹) on the first day of storage. Depending on the time of ultrasonic application a significant increase in egg quality parameters (shell strength, albumen height, Haugh units, and yolk height) were observed. The application of ultrasound led to a significant reduction in E. coli numbers on egg shells. © 2013 Society of Chemical Industry.

  20. Analysis of thin-walled cylindrical composite shell structures subject to axial and bending loads: Concept development, analytical modeling and experimental verification

    Mahadev, Sthanu

    distinguished with respect to the circumferential arc angle, thickness-to-mean radius ratio and total laminate thickness. The potential of this methodology is challenged to analytically determine the location of the centroid. This precise location dictates the decoupling of extension-bending type deformational response in tension loaded composite structures. Upon the cross-validation of the centroidal point through the implementation of an ANSYS based finite element routine, influence of centroid is analytically examined under the application of a concentrated longitudinal tension and bending type loadings on a series of cylindrical shells characterized by three different symmetric-balanced stacking sequences. In-plane ply-stresses are computed and analyzed across the circumferential contour. An experimental investigation has been incorporated via designing an ad-hoc apparatus and test-up that accommodates the quantification of in-plane strains, computation of ply-stresses and addresses the physical characteristics for a set of auto-clave fabricated cylindrical shell articles. Consequently, this work is shown to essentially capture the mechanical aspects of cylindrical shells, thus facilitating structural engineers to design and manufacture viable structures.

  1. Hydration shells exchange charge with their protein

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    . In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  2. Experimental study of fission process by fragment-neutron correlation measurement

    Nishio, Katsuhisa; Yamamoto, Hideki; Kanno, Ikuo; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan). Faculty of Engineering

    1997-07-01

    Fragment-neutron correlation measurement of {sup 235}U(n{sub th}, f) was carried out. The obtained results showed more statistical accuracy than that of reported thermal neutron reaction. Experimental results and it`s analysis made clear the following facts. The minimum values of <{eta}> (m*) are shown at about 90 and 145 {mu} and <{eta}> (m*) showed the symmetrical form with an axis of symmetrical fission. This tendency is same as the distribution of {sup 252}Cf(s.f). -dV/dTKE(m*) indicates the saw-teethed distribution as same as <{nu}>(m*). The distribution seems depend on stiffness of fission fragment affected by the shell effect. The level density parameter a(m*) of fission fragment obtained from {sup 235}U(n{sub th}, f) expresses the saw-teethed distribution as same as that of {sup 252}Cf(s.f). This distribution can be explained by the empirical equation under consideration of the fission fragment depending on the shell effect and the collective motion. (S.Y.)

  3. On-shell constrained M 2 variables with applications to mass measurements and topology disambiguation

    Cho, Won Sang; Gainer, James S.; Kim, Doojin; Matchev, Konstantin T.; Moortgat, Filip; Pape, Luc; Park, Myeonghun

    2014-08-01

    We consider a class of on-shell constrained mass variables that are 3+1 dimensional generalizations of the Cambridge M T2 variable and that automatically incorporate various assumptions about the underlying event topology. The presence of additional on-shell constraints causes their kinematic distributions to exhibit sharper endpoints than the usual M T2 distribution. We study the mathematical properties of these new variables, e.g., the uniqueness of the solution selected by the minimization over the invisible particle 4-momenta. We then use this solution to reconstruct the masses of various particles along the decay chain. We propose several tests for validating the assumed event topology in missing energy events from new physics. The tests are able to determine: 1) whether the decays in the event are two-body or three-body, 2) if the decay is two-body, whether the intermediate resonances in the two decay chains are the same, and 3) the exact sequence in which the visible particles are emitted from each decay chain.

  4. Distribution of haemic neoplasia of soft-shelled clams in Prince Edward Island: an examination of anthropogenic factors and effects of experimental fungicide exposure.

    Mateo, D R; MacCallum, G S; McGladdery, S E; Davidson, J

    2016-05-01

    Haemic neoplasia was first considered a disease of concern for soft-shell clams in Prince Edward Island (PEI) when it was diagnosed as the cause of mass mortalities in 1999. The aetiology of the disease remains elusive, but has been associated with environmental degradation. In this study, a 2-year (2001-2002) geographic and seasonal survey was conducted for haemic neoplasia, using histology, in soft-shell clams from PEI. In addition, using geographic information system, the association between anthropogenic factors in the watersheds at sites affected by haemic neoplasia and the prevalence of the disease was investigated. Finally, histopathological changes were assessed in soft-shell clams experimentally exposed to four concentrations of chlorothalonil for 27 days. Haemic neoplasia could not be induced at any concentration of chlorothalonil. Clams exposed to a concentration of 1000 μg L(-1) of the fungicide, however, exhibited an LC50 of 17 days. Although this information provides additional toxicity information (LC50) for soft-shell clams, further experiments are required to assess longer term exposure to the fungicide. The highest prevalences of haemic neoplasia in PEI were found in North River and Miscouche (28.3-50.9% and 33.0-77.8%, respectively). No clear seasonal patterns were found. There was a correlation between haemic neoplasia prevalence and watersheds with a high percentage of potato acreage and forest coverage (P = 0.026 and P = 0.045, respectively), suggesting a link between anthropogenic activity and the prevalence of the disease. © 2015 John Wiley & Sons Ltd.

  5. Understanding the Use-wears on Non-retouched Shells Mytilus galloprovincialis. and Ruditapes decussatus by Performing Wood Working Experiment: An Experimental Approach

    Tumung, Laxmi; Bazgir, Behrouz; Ahmadi, Kamran; Shadmehr, Abdolkarim

    2012-01-01

    This paper is an experimental attempt to understand the use-wear comes on non-retouched shells Ruditapes decussatus and Mytilus galloprovincialis. These species have been selected due to their variation in shape, size and edge type. In wood working experiment Celtus australis wood is used to perform the activities like scrapping and cutting wood. The ESEM results show the usewears in the form of linear marks, edge rounding, edge facture, polish and micro-pitting. Experiments also showed some macro-fractures.

  6. L X-ray intensity ratio measurements using selective L sub-shell photo-ionisation on synchrotron

    Bansal, Himani; Tiwari, M. K.; Mittal, Raj

    2017-10-01

    Lα/Lℓ, Lβ /Lℓ and Lγ/Lℓ intensity ratios have been measured for elements in the range 66≤Z≤83 at tuned photon energies on synchrotron beam line-16 at Indus-2, India. For each element, three incident energies Ei were E3; EL3 EL1 where ELi are Li absorption edge energies of the element. Emitted L X-ray spectrum of an element constitutes a number of X-ray lines generally grouped into four main groups due to limited resolution of available detectors as Lℓ(L3-M1), Lα(L3-M4,5), Lβ(L1-M2,3,4,5,N4; L2-M3,4; L3-N1,4,5,O1,4,5) and Lγ(L2-N1,4,O1,4; L1-N2,3,5,O3,2). Lα and Lℓ both comprise only the lines feeding L3 level and Lβ group comprises X-ray lines feeding all the three sub-shells where as Lγ involves contribution from L1 and L2 feedings. Only E3 excitation gives the ratios free from intra sub-shell Coster-Kronig (CK) transitions while excitations E2 and E1 give CK affected Lβ/Lℓ and Lγ/Lℓ X-ray intensity ratios and Lα/Lℓ still remains free from CKs. The pattern of intensity ratios at three excitation energies of elements was well interpreted in terms of on/off of CK transitions (Bambynek et al., 1972; Campbell, 2003) and outer shell electron filling configuration (Scofield, 1973).

  7. Electron induced atomic inner-shell ionization

    Quarles, C.A.

    1974-01-01

    The current status of cross section measurements for atomic inner-shell ionization by electron bombardment is reviewed. Inner shell ionization studies using electrons as projectiles compliment the similar studies being done with heavy particles, and in addition can provide tests of the theory in those cases when relativistic effects and exchange effects are expected to be important. Both total cross sections and recently measured differential cross sections will be discussed and compared with existing theories where possible. Prospects for further experimental and theoretical work in this area of atomic physics using small electron accelerators will also be discussed

  8. The Experimental Study of the Performance of Nano-Thin Polyelectrolyte Shell for Dental Pulp Stem Cells Immobilization.

    Grzeczkowicz, A; Granicka, L H; Maciejewska, I; Strawski, M; Szklarczyk, M; Borkowska, M

    2015-12-01

    Carious is the most frequent disease of mineralized dental tissues which might result in dental pulp inflammation and mortality. In such cases an endodontic treatment is the only option to prolong tooth functioning in the oral cavity; however, in the cases of severe pulpitis, especially when complicated with periodontal tissue inflammation, the endodontic treatment might not be enough to protect against tooth loss. Thus, keeping the dental pulp viable and/or possibility of the reconstruction of a viable dental pulp complex, appears to become a critical factor for carious and/or pulp inflammation treatment. The nowadays technologies, which allow handling dental pulp stem cells (DPSC), seem to bring us closer to the usage of dental stem cells for tooth tissues reconstruction. Thus, DPSC immobilized within nano-thin polymeric shells, allowing for a diffusion of produced factors and separation from bacteria, may be considered as a cover system supporting technology of dental pulp reconstruction. The DPSC were immobilized using a layer-by-layer technique within nano-thin polymeric shells constructed and modified by nanostructure involvement to ensure the layers stability and integrity as well as separation from bacterial cells. The cytotoxity of the material used for membrane production was assessed on the model of adherent cells. The performance of DPSC nano-coating was assessed in vitro. Membrane coatings showed no cytotoxicity on the immobilized cells. The presence of coating shell was confirmed with flow cytometry, atomic force microscopy and visualized with fluorescent microscopy. The transfer of immobilized DPSC within the membrane system ensuring cells integrity, viability and protection from bacteria should be considered as an alternative method for dental tissues transportation and regeneration.

  9. New experimental procedure for measuring volume magnetostriction on powder samples

    Rivero, G.; Multigner, M.; Valdes, J.; Crespo, P.; Martinez, A.; Hernando, A.

    2005-01-01

    Conventional techniques used for volume magnetostriction measurements, as strain gauge or cantilever method, are very useful for ribbons or thin films but cannot be applied when the samples are in powder form. To overcome this problem a new experimental procedure has been developed. In this work, the experimental set-up is described, together with the results obtained in amorphous FeCuZr powders, which exhibit a strong dependence of the magnetization on the strength of the applied magnetic field. The magnetostriction measurements presented in this work point out that this dependence is related to a magnetovolume effect

  10. A direct measurement of g-factors in II-VI and III-V core-shell nanocrystals

    Fradkin, L.; Langof, L.; Lifshitz, E.; Gaponik, N.; Rogach, A.; Eychmüller, A.; Weller, H.; Micic, O. I.; Nozik, A. J.

    2005-02-01

    This study describes a direct measurement of spectroscopic g-factors of photo-generated carriers in InP/ZnS and HgTe/Hg xCd 1-xTe(S) core-shell nanocrystals. The g-factor of trapped electrons and their spin-lattice versus radiative relaxation ratio ( T1/ τ) were measured by the use of continuous-wave and time-resolved optically detected magnetic resonance (ODMR) spectroscopy. The g-factors of excitons and donor-hole pairs were derived by the use of field-induced circular-polarized photoluminescence (CP-PL) spectroscopy. The combined information enabled to determine the g-factors of the individual band-edge electrons and holes. The results suggested an increase of the g-factor of the exciton and conduction electron with a decrease of the nanocrystal size.

  11. Looking for the best experimental conditions to detail the protein solvation shell in a binary aqueous solvent via small angle scattering

    Ortore, Maria Grazia; Sinibaldi, Raffaele; Spinozzi, Francesco; Carbini, Andrea; Carsughi, Flavio; Mariani, Paolo

    2009-01-01

    Protein hydration features attract particular interest in different fields, from biology up to physics, crossing chemistry and medicine. Particular attention is devoted to proteins dissolved in binary aqueous mixtures, since the presence of cosolvent can induce modifications in structural and functional properties. We have recently developed a methodology to obtain a quantitative description on protein solvation shell by a set of in-solution small angle scattering experiments, simultaneously analysed by a global-fit approach. In this paper, numerical simulations of small angle scattering curves are presented to figure out the sensitivity of the technique to different experimental conditions. Simulations concern two model proteins of different molecular weights and an unique cosolvent. A reliability test is introduced in order to find the best experimental conditions to be investigated, together with the most suitable scattering probe (neutrons or X-rays).

  12. Experimental techniques for measuring Rayleigh-Taylor instability in inertial confinement fusion (ICF)

    Smalyuk, V A

    2012-06-07

    Rayleigh-Taylor (RT) instability is one of the major concerns in inertial confinement fusion (ICF) because it amplifies target modulations in both acceleration and deceleration phases of implosion, which leads to shell disruption and performance degradation of imploding targets. This article reviews experimental results of the RT growth experiments performed on OMEGA laser system, where targets were driven directly with laser light. RT instability was studied in the linear and nonlinear regimes. The experiments were performed in acceleration phase, using planar and spherical targets, and in deceleration phase of spherical implosions, using spherical shells. Initial target modulations consisted of 2-D pre-imposed modulations, and 2-D and 3-D modulations imprinted on targets by the non-uniformities in laser drive. In planar geometry, the nonlinear regime was studied using 3-D modulations with broadband spectra near nonlinear saturation levels. In acceleration-phase, the measured modulation Fourier spectra and nonlinear growth velocities are in good agreement with those predicted by Haan's model [Haan S W 1989 Phys. Rev. A 39 5812]. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions [Oron D et al 2001 Phys. Plasmas 8, 2883]. The 3-D, inner-surface modulations were measured to grow throughout the deceleration phase of spherical implosions. RT growth rates are very sensitive to the drive conditions, therefore they can be used to test and validate drive physics in hydrodynamic codes used to design ICF implosions. Measured growth rates of pre-imposed 2-D target modulations below nonlinear saturation levels were used to validate non-local thermal electron transport model in laser-driven experiments.

  13. A measure of state persecutory ideation for experimental studies.

    Freeman, Daniel; Pugh, Katherine; Green, Catherine; Valmaggia, Lucia; Dunn, Graham; Garety, Philippa

    2007-09-01

    Experimental research is increasingly important in developing the understanding of paranoid thinking. An assessment measure of persecutory ideation is necessary for such work. We report the reliability and validity of the first state measure of paranoia: The State Social Paranoia Scale. The items in the measure conform to a recent definition in which persecutory thinking has the 2 elements of feared harm and perpetrator intent. The measure was tested with 164 nonclinical participants and 21 individuals at high risk of psychosis with attenuated positive symptoms. The participants experienced a social situation presented in virtual reality and completed the new measure. The State Social Paranoia Scale was found to have excellent internal reliability, adequate test-retest reliability, clear convergent validity as assessed by both independent interviewer ratings and self-report measures, and showed divergent validity with measures of positive and neutral thinking. The measure of paranoia in a recent social situation has good psychometric properties.

  14. Experimental study of K-shell ionization of low-Z solids in collisions with intermediate-velocity carbon ions and the local plasma approximation

    Kadhane, U [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Montanari, C C [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Tribedi, Lokesh C [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

    2003-07-28

    K-shell vacancy production in low-atomic-number (Z{sub t} = 17-29) solid targets has been measured in collisions of highly charged carbon ions with energies of 1.5-6 MeV u{sup -1}. The K-shell ionization cross sections of Cl, K, Ti, Fe and Cu are derived from the measured K x-ray cross sections. The present data-set has been used to test the predictions of a theoretical model based on the local plasma approximation (LPA). This theory takes into account the response of solid core electrons working within the dielectric formalism. We find that this ab initio ion-solid model gives very good agreement with the measured data for Fe and Cu targets, while it tends to under-estimate the data for the most symmetric collision systems studied here. We discuss the range of validity of the LPA in terms of the symmetry parameter and the impact velocity. On the other hand, a model based on the perturbed stationary state approximation, designed for ion-atom collisions (ECPSSR) is found to give excellent agreement with the measured data for all target elements over the whole energy range. All the measured cross sections for different targets are found to follow a universal scaling rule predicted by the ECPSSR.

  15. A novel experimental technique of nuclear lifetime measurements

    Yuminov, O.A.; D'Arrigo, A.; Giardina, G.; Taccone, A.; Vannini, G.; Moroni, A.; Ricci, R.A.; Vannucci, L.

    1995-01-01

    In the present paper a new experimental method to measure nuclear reaction time in the 10 -15 -10 -10 s region is presented. Measurements of the lifetimes of low-lying and long-lived states of 19 F and 20 Ne decaying via α-channel were carried out with the aim of checking the feasibility of the method. The results obtained in this way are compared with the lifetimes known from different techniques. ((orig.))

  16. Some observations on precipitation measurement on forested experimental watersheds

    Raymond E. Leonard; Kenneth G. Reinhart

    1963-01-01

    Measurement of precipitation on forested experimental watersheds presents difficulties other than those associated with access to and from the gages in all kinds of weather. For instance, the tree canopy must be cleared above the gage. The accepted practice of keeping an unobstructed sky view of 45" around the gage involves considerable tree cutting. On a level...

  17. Electron density measurement in an evolving plasma. Experimental devices

    Consoli, Terenzio; Dagai, Michel

    1960-01-01

    The experimental devices described here allow the electron density measurements in the 10 16 e/m 3 to 10 20 e/m 3 interval. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1223-1225, sitting of 15 February 1960 [fr

  18. Measurements of inner-shell characteristic X-ray yields of thick W, Mo and Zr targets by low-energy electron impact and comparison with Monte Carlo simulations

    Li, X.L.; Zhao, J.L.; Tian, L.X.; An, Z.; Zhu, J.J.; Liu, M.T.

    2014-01-01

    Highlights: •We measured characteristic X-ray yields of thick W, Mo, Zr by 5–29 keV electrons. •Our measured data are in general in good agreement with the MC results with ∼10%. •Error of 10% of characteristic X-ray yields will produce errors of 2–7% for BIXS. -- Abstract: Inner-shell characteristic X-ray yields are one of the important ingredients in the β-ray induced X-ray spectrometry (BIXS) technique which can be used to perform tritium content and depth distribution analyses in plasma facing materials (PLMs) and other tritium-containing materials, such as W, Mo, Zr. In this paper, the measurements of K, L, M-shell X-ray yields Y(E) of pure thick W (Z = 74), Mo (Z = 42) and Zr (Z = 40) element targets produced by electron impact in the energy range of 5–29 keV are presented. The experimental data for Y(E) are compared with the corresponding predictions from Monte Carlo (MC) calculations using the general purpose MC code PENELOPE. In general, a good agreement is obtained between the experiment and the MC calculations for the variation of Y(E) with the impact energy both in shape and in magnitude with ∼10%. The effect of uncertainty of inner-shell characteristic X-ray yields on the BIXS technique is also discussed

  19. K-shell absorption jump factors and jump ratios in elements between Tm ( Z = 69) and Os ( Z = 76) derived from new mass attenuation coefficient measurements

    Kaya, Necati; Tıraşoğlu, Engin; Apaydın, Gökhan; Aylıkcı, Volkan; Cengiz, Erhan

    2007-08-01

    The K-shell absorption jump factors and jump ratios were derived from new mass attenuation coefficients measured using an energy dispersive X-ray fluorescence (EDXRF) spectrometer for Tm, Yb elements being Tm 2O 3, Yb 2O 3 compounds and pure Lu, Hf, Ta, W, Re and Os. The measurements, in the region 56-77 keV, were done in a transmission geometry utilizing the K α1 , K α2 , K β1 and K β2 X- rays from different secondary source targets (Yb, Ta, Os, W, Re and Ir, etc.) excited by the 123.6 keV γ-photons from an 57Co annular source and detected by an Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. Experimental results have been compared with theoretically calculated values. The measured values of Tm, Yb, Lu, Hf, Ta, W, Re and Os are reported here for the first time.

  20. K-shell absorption jump factors and jump ratios in elements between Tm (Z = 69) and Os (Z = 76) derived from new mass attenuation coefficient measurements

    Kaya, Necati; Tirasoglu, Engin; Apaydin, Goekhan; Aylikci, Volkan; Cengiz, Erhan

    2007-01-01

    The K-shell absorption jump factors and jump ratios were derived from new mass attenuation coefficients measured using an energy dispersive X-ray fluorescence (EDXRF) spectrometer for Tm, Yb elements being Tm 2 O 3 , Yb 2 O 3 compounds and pure Lu, Hf, Ta, W, Re and Os. The measurements, in the region 56-77 keV, were done in a transmission geometry utilizing the K α1 , K α2 , K β1 and K β2 X- rays from different secondary source targets (Yb, Ta, Os, W, Re and Ir, etc.) excited by the 123.6 keV γ-photons from an 57 Co annular source and detected by an Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. Experimental results have been compared with theoretically calculated values. The measured values of Tm, Yb, Lu, Hf, Ta, W, Re and Os are reported here for the first time

  1. X-ray continuum as a measure of pressure and fuel–shell mix in compressed isobaric hydrogen implosion cores

    Epstein, R.; Goncharov, V. N.; Marshall, F. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Betti, R.; Nora, R.; Christopherson, A. R. [Fusion Science Center and Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Golovkin, I. E.; MacFarlane, J. J. [Prism Computational Sciences, Madison, Wisconsin 53711 (United States)

    2015-02-15

    Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolved core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.

  2. X-ray continuum as a measure of pressure and fuel–shell mix in compressed isobaric hydrogen implosion cores

    Epstein, R.; Goncharov, V. N.; Marshall, F. J.; Betti, R.; Nora, R.; Christopherson, A. R.; Golovkin, I. E.; MacFarlane, J. J.

    2015-01-01

    Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolved core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot “fuel–shell” mix mass can be inferred

  3. Structure of 14C via elastic and inelastic neutron scattering from 13C: Measurement, R-matrix analysis, and shell model calculations

    Resler, D.A.

    1987-03-01

    The specific purpose of this work is to provide a better understanding of the 14 C level structure; the general purpose is to provide the details for using shell model calculations in R-matrix analyses. Using the TOF facilities of the Ohio University Accelerator Laboratory, the elastic and first 3 inelastic differential scattering cross sections for 13 C + n were measured at 69 energies for 4.5 ≤ E/sub n/ ≤ 11 MeV. A multiple scattering code was developed which provided a simulation of the experimental scattering process allowing accurate corrections to the small inelastic data. The integrated 13 C(n,α) 10 Be cross section is estimated. The sequential 2n-decay of 14 C states populated by 13 C + n was observed. A shell model code was developed. Normal and nonnormal parity calculations were made for the lithium isotopes using a new two-body interaction. The results for 5 Li predict the 2s/sub 1/2/ and 1d/sub 5/2/ single-particle states to be located below the 3/2 + state. Similar calculations were made for 13 C, 13 N, and 14 C. Results for 13 C and 13 N show for E/sub x/ 7 Li and 14 C, 2 h-barω calculations were done. Shell model calculations generated the R-matrix parameters for the elastic and first 3 inelastic channels of 13 C + n. After adjusting some energies, the predicted structure generally agrees with experiment for E/sub n/ 13 C + n data were refit to replace R 0 background terms by more realistic broad states and to get better agreement with model calculations. R-matrix fitting of the full data set produced new 14 C level information. For E/sub n/ > 4 MeV (E/sub x/ > 12 MeV), 5 states are given definite J/sup π/ assignments; 3, tentative assignments. 122 refs., 91 figs., 30 tabs

  4. Reconstruction of dynamic structures of experimental setups based on measurable experimental data only

    Chen, Tian-Yu; Chen, Yang; Yang, Hu-Jiang; Xiao, Jing-Hua; Hu, Gang

    2018-03-01

    Nowadays, massive amounts of data have been accumulated in various and wide fields, it has become today one of the central issues in interdisciplinary fields to analyze existing data and extract as much useful information as possible from data. It is often that the output data of systems are measurable while dynamic structures producing these data are hidden, and thus studies to reveal system structures by analyzing available data, i.e., reconstructions of systems become one of the most important tasks of information extractions. In the past, most of the works in this respect were based on theoretical analyses and numerical verifications. Direct analyses of experimental data are very rare. In physical science, most of the analyses of experimental setups were based on the first principles of physics laws, i.e., so-called top-down analyses. In this paper, we conducted an experiment of “Boer resonant instrument for forced vibration” (BRIFV) and inferred the dynamic structure of the experimental set purely from the analysis of the measurable experimental data, i.e., by applying the bottom-up strategy. Dynamics of the experimental set is strongly nonlinear and chaotic, and itʼs subjects to inevitable noises. We proposed to use high-order correlation computations to treat nonlinear dynamics; use two-time correlations to treat noise effects. By applying these approaches, we have successfully reconstructed the structure of the experimental setup, and the dynamic system reconstructed with the measured data reproduces good experimental results in a wide range of parameters.

  5. Experimental determination of entanglement with a single measurement.

    Walborn, S P; Souto Ribeiro, P H; Davidovich, L; Mintert, F; Buchleitner, A

    2006-04-20

    Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.

  6. Fate of the open-shell singlet ground state in the experimentally accessible acenes: A quantum Monte Carlo study

    Dupuy, Nicolas; Casula, Michele

    2018-04-01

    By means of the Jastrow correlated antisymmetrized geminal power (JAGP) wave function and quantum Monte Carlo (QMC) methods, we study the ground state properties of the oligoacene series, up to the nonacene. The JAGP is the accurate variational realization of the resonating-valence-bond (RVB) ansatz proposed by Pauling and Wheland to describe aromatic compounds. We show that the long-ranged RVB correlations built in the acenes' ground state are detrimental for the occurrence of open-shell diradical or polyradical instabilities, previously found by lower-level theories. We substantiate our outcome by a direct comparison with another wave function, tailored to be an open-shell singlet (OSS) for long-enough acenes. By comparing on the same footing the RVB and OSS wave functions, both optimized at a variational QMC level and further projected by the lattice regularized diffusion Monte Carlo method, we prove that the RVB wave function has always a lower variational energy and better nodes than the OSS, for all molecular species considered in this work. The entangled multi-reference RVB state acts against the electron edge localization implied by the OSS wave function and weakens the diradical tendency for higher oligoacenes. These properties are reflected by several descriptors, including wave function parameters, bond length alternation, aromatic indices, and spin-spin correlation functions. In this context, we propose a new aromatic index estimator suitable for geminal wave functions. For the largest acenes taken into account, the long-range decay of the charge-charge correlation functions is compatible with a quasi-metallic behavior.

  7. Experimental measurement of zero power reactor transfer function

    Liang Shuhong

    2011-01-01

    In order to study the zero power reactor (ZPR) transfer function, the ZPR transfer function expression was deduced with the point reactor kinetics equation, which was disturbed by reactivity input response. Based on the Fourier analysis for the input of triangular wave, the relation between the transfer function and reactivity was got. Validating research experiment was made on the DF-VI fast ZPR. After the disturbed reactivity was measured, the experimental value of the transfer function was got. According to the experimental value and the calculated value, the expression of the ZPR transfer function is proved, whereas the disturbed reactivity is got from the transfer function. (authors)

  8. Comparisons of theoretical and experimental neutron spectra, 115In(n,n') and fission rates, in the centre of three spherical natural uranium and iron shell configurations, located at BR1

    De Leeuw-Gierts, G.; De Leeuw, S.; Gilliam, D.M.

    1984-01-01

    Three spherical configurations of iron and uranium shells have been studied. The configurations were a 1-cm thick natural uranium shell, a 1-cm thick natural uranium shell with an inner 7-cm thick iron shell and a 1-cm thick natural uranium shell with an inner iron shell of 14-cm thickness. For the measurements, the shells were located at the centre of a hollow cavity, 100-cm in diameter, in the vertical graphite thermal column of the BR1 reactor. The central neutron spectra were calculated by means of the DTF-IV code, using the 208-group KEDAK-3 library, and by means of the ANISN code, using the 171-group VITAMIN-C library. Central neutron spectra, measured by the proton-recoil and 6 Li(n,α)t spectrometry techniques, are compared to the theory between ∼ 100 keV and 5 MeV. Mean fission cross-sections of 240 Pu, 237 Np, 234 U, 235 U, 236 U and 238 U were deduced from the calculations. Their ratios with respect to 238 U are compared to measurements made with NBS dual fission chambers. (Auth.)

  9. NIF Double Shell outer/inner shell collision experiments

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  10. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms, there is a n......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions....

  11. Determining characteristics of oscillations of elastic spherical shell filled using semiconductor laser autodyne

    Dobdin, S. Yu.; Usanov, D. A.; Skripal, A. V.

    2012-06-01

    The experimental results to determine the motion characteristics of oscillations of elastic spherical shell filled under the pneumopulse action have been presented. The required characteristics of motion were determined by analysis of the autodyne signal. The relationship between the parameters of motion of the spherical shell and the internal pressure measured using a contact tonometer has been shown.

  12. Development and design of a bone-equivalent cortical shell phantom to determine accuracy measures on DXA and PQCT scanners

    Khoo, B.C.C.; Beck, T.J. Johns; Turk, B.; Price, R.I.

    2004-01-01

    Full text: Hip Structural Analysis (HSA), is an algorithm that computes bone-structural geometry from dual energy X-ray absorptiometry (DXA) derived hip images and may be used in a complementary manner to DXA areal bone mineral density (BMD) for bone strength interpretation. DXA is normally used to facilitate the diagnosis and management of bone metabolic diseases such as osteoporosis. HSA provides a biomechanical interpretation of BMD, using its mass profiles to compute cross-sectional structural geometry. In essence, HSA provides insight into bone structural and biomechanical properties, particularly of long bones, which BMD alone cannot. While conventional (vendor-provided) phantoms calibrate DXA machines for densitometric precision, analogous phantoms for calibrating structural geometry are lacking. This paper describes the design and preliminary testing of a densitometric bone-equivalent cylindrical phantom with 'cortical' shells and 'cancellous' core, and the use of this phantom to do a performance test of structural geometry variables such as cortical thickness, bone width and section modulus derived, from pQCT and DXA scan data. Powdered calcium-sulphate (CSC) was water-mixed in vacuum and cured. This mixture exhibited hydroxyapatite-like DXA photon-attenuation properties with density monotonically related to added water-mass. Its mass and BMD maintained temporal stability (CV%=0.03%, n=4 specimens over 321 d). Using CSC designed for a BMD=1.04g/cm, (for plate-thickness 10mm), a cylindrical phantom with cortical shell thicknesses of 0.5, 1.0, 2.0, 4.0mm, an acrylic-based internal core diameter of 26mm, and an acrylic surrounding 'soft-tissue' were constructed. The phantom was scanned using a DXA scanner (Hologic QDRl000W) and pQCT (Stratec XCT2000, pixel resolution 0.15mm). Selected cortical structural-geometric variables, derived from calculated geometry; pQCT mass-projections, and DXA HSA. In conclusion, dimensions of this novel cortical-shell phantom

  13. Contact Angle Measurements Using a Simplified Experimental Setup

    Lamour, Guillaume; Hamraoui, Ahmed; Buvailo, Andrii; Xing, Yangjun; Keuleyan, Sean; Prakash, Vivek; Eftekhari-Bafrooei, Ali; Borguet, Eric

    2010-01-01

    A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact…

  14. An experimental study on the thermal and fouling characteristics in a washable shell and helically coiled heat exchanger by the Wilson plot method

    Koo, Kyoung Min; Ahn, Young Chull [Pusan National University, Busan (Korea, Republic of); Hwang, Jun Hyeon; Hur, Hyun; Na, Byung Chul; Hwang, Yoon Jae; Kim, Byung Soon [LG Electronics, Changwon (Korea, Republic of); Lee, Jae Keun [EcoEnergy Research Institute, Busan (Korea, Republic of)

    2016-06-15

    Brazed plate heat exchangers (BPHEX) are broadly used in water source heat pump systems for their large heat transfer capacity. Despite their high heat transfer rate, their high-performance rate tends to decrease sharply, due to fouling and they cannot be cleaned. So the thermal and fouling resistances of washable Shell and helically coiled tube heat exchangers (SCHEX) are designed and experimentally investigated in this study. Heat exchangers with two different tube types are studied and compared with a brazed plate heat exchanger. The overall thermal resistance coefficient of the heat exchangers as determined by using Wilson plots is 38% lower than that of the brazed plate heat exchanger at a Reynolds number of 2460. Fouling test results revealed that regular maintenance and physical cleaning can be used to maintain the thermal resistance of fouling of the washable heat exchanger at a level equal to or less than that of the brazed plate heat exchanger.

  15. Dynamic pulse buckling of cylindrical shells under axial impact: A comparison of 2D and 3D finite element calculations with experimental data

    Hoffman, E.L.; Ammerman, D.J.

    1995-04-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement

  16. submitter Experimental temperature measurements for the energy amplifier test

    Calero, J; Gallego, E; Gálvez, J; García Tabares, L; González, E; Jaren, J; López, C; Lorente, A; Martínez Val, J M; Oropesa, J; Rubbia, C; Rubio, J A; Saldana, F; Tamarit, J; Vieira, S

    1996-01-01

    A uranium thermometer has been designed and built in order to make local power measurements in the First Energy Amplifier Test (FEAT). Due to the experimental conditions power measurements of tens to hundreds of nW were required, implying a sensitivity in the temperature change measurements of the order of 1 mK. A uranium thermometer accurate enough to match that sensitivity has been built. The thermometer is able to determine the absolute energetic gain obtained in a tiny subcritical uranium assembly exposed to a proton beam of kinetic energies between 600 MeV and 2.75 GeV. In addition, the thermometer measurements have provided information about the spatial power distribution and the shape of the neutron spallation cascade.

  17. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  18. Polarization measurement of iron L-shell lines on EBIT-I

    Chen, Hui; Beiersdorfer, Peter; Robbins, Darron; Smith, A.J.; Gu, Ming Feng

    2004-01-01

    We report measurements of the line polarization of Ne-like and F-like of iron n=3 to n=2 transitions in the x-ray region. We used the ''two-crystal technique'' developed in previous polarization measurements in our laboratory. Preliminary results from our measurements are presented together with the theoretical calculations using the Flexible Atomic Code (FAC). Our calculations show that contributions from cascades play an important role in the polarization calculations of most of the transitions. The uncertainties and difficulties of our experiments are also discussed. (author)

  19. Fluorescence lifetime measurements to determine the core-shell nanostructure of FITC-doped silica nanoparticles: An optical approach to evaluate nanoparticle photostability

    Santra, Swadeshmukul; Liesenfeld, Bernd; Bertolino, Chiara; Dutta, Debamitra; Cao Zehui; Tan Weihong; Moudgil, Brij M.; Mericle, Robert A.

    2006-01-01

    In this paper, we described a novel fluorescence lifetime-based approach to determine the core-shell nanostructure of FITC-(fluorescein isothiocyanate, isomer I) doped fluorescent silica nanoparticles (FSNPs). Because of phase homogeneity between the core and the shell, electron microscopic technique could not be used to characterize such core-shell nanostructure. Our optical approach not only revealed the core-shell nanostructure of FSNPs but also evaluated photobleaching of FSNPs both in the solvated and non-solvated (dry) states. The FSNPs were produced via Stoeber's method by hydrolysis and co-condensation reaction of tetraethylorthosilicate (TEOS) and fluorescein linked (3-aminopropyl)triethoxysilane (FITC-APTS conjugate) in the presence of ammonium hydroxide catalyst. To obtain a pure silica surface coating, FSNPs were then post-coated with TEOS. The average particle size was 135 nm as determined by TEM (transmission electron microscope) measurements. Fluorescence excitation and emission spectral data demonstrated successful doping of FITC dye molecules in FSNPs. Fluorescence lifetime data revealed that approximately 62% of dye molecules remained in the solvated silica shell, while 38% of dye molecules remained in the non-solvated (dry) silica core. Photobleaching experiments of FSNPs were conducted both in DI water (solution state) and in air (dry state). Severe photobleaching of FSNPs was observed in air. However, FSNPs were moderately photostable in the solution state. Photostability of FSNPs in both solution and dry states was explained on the basis of fluorescence lifetime data

  20. Further measurements of K shell photoelectric cross sections for some elements in the range 26<=Z<=41 at 74 keV. [74. 409 keV

    Arora, S K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1978-12-01

    K shell photoelectric cross sections in elements Fe, Ni, Cu, Zn, As, Se, Br, Sr, Zr and Nb have been measured at 74.409 keV. The targets were irradiated with x radiation and gamma radiation beams. In confirmation with the earlier results, the present results also show fairly good agreement with theory.

  1. Experimental measurements of the cavitating flow after horizontal water entry

    Nguyen, Thang Tat; Thai, Nguyen Quang; Phuong, Truong Thi [Institute of Mechanics (IMECH), Vietnam Academy of Science and Technology (VAST), 264—Doi Can, Ba Dinh, Hanoi (Viet Nam); Hai, Duong Ngoc, E-mail: ntthang@imech.vast.vn, E-mail: dnhai@vast.vn, E-mail: nqthai@imech.vast.vn, E-mail: ttphuong@imech.vast.vn [Graduate University of Science and Technology (GUST), VAST, 18—Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2017-10-15

    Water-entry cavitating flow is of considerable importance in underwater high-speed applications. That is because of the drag-reduction effect that concerns the presence of a cavity around moving objects. Though the study of the flow has long been carried out, little data are documented in literature so far. Besides, currently, in the case of unsteady flow, experimental measurements of some flow parameters such as the cavity pressure still encounter difficulties. Hence continuing research efforts are of important significance. The objective of this study is to investigate experimentally the unsteady cavitating flow after the horizontal water entry of projectiles. An experimental apparatus has been developed. Qualitative and quantitative optical visualizations of the flow have been carried out by using high-speed videography. Digital image processing has been applied to analyzing the recorded flow images. Based on the known correlations between the ellipsoidal super-cavity’s size and the corresponding cavitation number, the cavity pressure has been measured by utilizing the data of image processing. A comparison between the partial- and super-cavitating flow regimes is reported. The received results can be useful for the design of high-speed underwater projectiles. (paper)

  2. Quantification of tomographic PIV uncertainty using controlled experimental measurements.

    Liu, Ning; Wu, Yue; Ma, Lin

    2018-01-20

    The goal of this work was to experimentally quantify the uncertainty of three-dimensional (3D) and three-component (3C) velocity measurements using tomographic particle image velocimetry (tomo-PIV). Controlled measurements were designed using tracer particles embedded in a solid sample, and tomo-PIV measurements were performed on the sample while it was moved both translationally and rotationally to simulate various known displacement fields, so the 3D3C displacements measured by tomo-PIV can be directly compared to the known displacements created by the sample. The results illustrated that (1) the tomo-PIV technique was able to reconstruct the 3D3C velocity with an averaged error of 0.8-1.4 voxels in terms of magnitude and 1.7°-1.9° in terms of orientation for the velocity fields tested; (2) view registration (VR) plays a significant role in tomo-PIV, and by reducing VR error from 0.6° to 0.1°, the 3D3C measurement accuracy can be improved by at least 2.5 times in terms of both magnitude and orientation; and (3) the use of additional cameras in tomo-PIV can extend the 3D3C velocity measurement to a larger volume, while maintaining acceptable accuracy. These results obtained from controlled tests are expected to aid the error analysis and the design of tomo-PIV measurements.

  3. Experimental solubility measurements of lanthanides in liquid alkalis

    Isler, Jeremy; Zhang, Jinsuo; Mariani, Robert; Unal, Cetin

    2017-11-01

    In metallic nuclear fuel, lanthanide fission products play a crucial role in the fuel burnup-limiting phenomena of fuel cladding-chemical interaction (FCCI). The lanthanides have been hypothesized to transport by a 'liquid-like' mechanism out of the metallic fuel to the fuel peripheral to cause FCCI. By liquid fission product cesium and liquid bond sodium, the lanthanides are transported to the peripheral of the fuel through the porosity of the fuel. This work investigates the interaction between the lanthanides and the alkali metals by experimentally measuring the solubility of lanthanides within liquid sodium, and neodymium in liquid cesium and mixtures of cesium and sodium. The temperature dependence of the solubility is experimentally determined within an inert environment. In addition, the dependence of the solubility on the alkali metal concentration in liquid mixtures of cesium and sodium was examined. In quantifying the solubility, the fundamental understanding of this transport mechanism can be better determined.

  4. Experimental comparison of particle interaction measurement techniques using optical traps

    Koehler, Timothy P.; Grillet, Anne Mary; Brotherton, Christopher M.; Molecke, Ryan A.

    2008-01-01

    Optical tweezers has become a powerful and common tool for sensitive determination of electrostatic interactions between colloidal particles. Recently, two techniques, 'blinking' tweezers and direct force measurements, have become increasingly prevalent in investigations of inter-particle potentials. The 'blinking' tweezers method acquires physical statistics of particle trajectories to determine drift velocities, diffusion coefficients, and ultimately colloidal forces as a function of the center-center separation of two particles. Direct force measurements monitor the position of a particle relative to the center of an optical trap as the separation distance between two continuously trapped particles is gradually decreased. As the particles near each other, the displacement from the trap center for each particle increases proportional to the inter-particle force. Although commonly employed in the investigation of interactions of colloidal particles, there exists no direct comparison of these experimental methods in the literature. In this study, an experimental apparatus was developed capable of performing both methods and is used to quantify electrostatic potentials between particles in several particle/solvent systems. Comparisons are drawn between the experiments conducted using the two measurement techniques, theory, and existing literature. Forces are quantified on the femto-Newton scale and results agree well with literature values

  5. Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters

    Lay-Ekuakille, A.; Palamara, I.; Caratelli, D.; Morabito, F. C.

    2013-01-01

    Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated ones). Online measurements include both real-time and no real-time measurements. In general, it is difficult to implement real-time measurements in stricto sensu for online acquisitions on aqueous effluents since they need to be processed by a modeling. This research presents an experimental measurement system based on infrared (IR) spectroscopy for aqueous effluents containing hydrocarbons and capable of displaying excellent values of pollutant concentrations even in instable conditions; the system is able to detect pollutants either in laminar or turbulent flow. The results show the possibility of avoiding the use of "Pitot tube" that is employed to create a stagnation point in order to convert kinetic energy into potential one. This conversion allows the transformation of a turbulent flow in a laminar flow making easy measurement of pollutants included in an aqueous effluent. Obviously, "Pitot tube" is also used for other fluid effluents. The obtained results have been compared with those produced by means of sophisticated IR instrumentation for laboratory applications.

  6. Mass measurements of neutron-rich indium isotopes toward the N =82 shell closure

    Babcock, C.; Klawitter, R.; Leistenschneider, E.; Lascar, D.; Barquest, B. R.; Finlay, A.; Foster, M.; Gallant, A. T.; Hunt, P.; Kootte, B.; Lan, Y.; Paul, S. F.; Phan, M. L.; Reiter, M. P.; Schultz, B.; Short, D.; Andreoiu, C.; Brodeur, M.; Dillmann, I.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.; Dilling, J.

    2018-02-01

    Precise mass measurements of the neutron-rich In-130125 isotopes have been performed with the TITAN Penning trap mass spectrometer. TITAN's electron beam ion trap was used to charge breed the ions to charge state q =13 + thus providing the necessary resolving power to measure not only the ground states but also isomeric states at each mass number. In this paper, the properties of the ground states are investigated through a series of mass differentials, highlighting trends in the indium isotopic chain as compared to its proton-magic neighbor, tin (Z =50 ). In addition, the energies of the indium isomers are presented. The (8-) level in 128In is found to be 78 keV lower than previously thought and the (21 /2- ) isomer in 127In is shown to be lower than the literature value by more than 150 keV.

  7. Measurements of (p,γ) resonance strengths in the s-d shell

    Engelbertink, G.A.P.; Endt, P.M.

    1966-01-01

    Resonace strengths of selected resonances in the Ep=0.3−2.1 MeV region in the (p, γ) reactions on 23Na, 24–24Mg, 27Al, 28–30Si, 31P, 32, 34S, 35, 37Cl, 39, 41K and 40Ca are compared through relative yield measurements, using targets of many different chemical compounds, each containing at least two

  8. Experimental ion mobility measurements in Ne-N2

    Cortez, A.F.V.; Encarnação, P.M.C.C.; Santos, F.P.; Borges, F.I.G.M.; Conde, C.A.N.; Veenhof, R.; Neves, P.N.B.

    2016-01-01

    Data on ion mobility is important to improve the performance of large volume gaseous detectors, such as the ALICE TPC or in the NEXT experiment. In the present work the method, experimental setup and results for the ion mobility measurements in Ne-N 2 mixtures are presented. The results for this mixture show the presence of two peaks for different gas ratios of Ne-N 2 , low reduced electric fields, E / N , 10–20 Td (2.4–4.8 kV·cm −1 ·bar −1 ), low pressures 6–8 Torr (8–10.6 mbar) and at room temperature.

  9. Experimental ion mobility measurements in Xe-CO2

    Cortez, A. F. V.; Santos, M. A. G.; Veenhof, R.; Patra, R. N.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2017-06-01

    Data on ion mobility is important to improve the performance of large volume gaseous detectors. In the present work the method, experimental setup and results for the ion mobility measurements in Xe-CO2 mixtures are presented. The results for this mixture show the presence of only one peak for all gas ratios of Xe-CO2, low reduced electric fields, E/N, 10-25 Td (2.4-6.1 kV·cm-1·bar-1), low pressures 6-8 Torr (8-10.6 mbar), at room temperature.

  10. Experimental measurements and modelling of the WEGA boundary layer plasma

    El Shaer, M.; Ichtchenko, G.

    1983-02-01

    The boundary layer of the WEGA Tokamak has been investigated by using specific diagnostics: movable 4 mm microwave interferometer, several types of movable and fixed probes, Katsumata probe, and multigrid electrostatic analyzer. During the RF heating at the lower hybrid frequency, some modifications in the parameters of the boundary layer are observed which are interpreted by the ponderomotive force effects. A comparison between the measured reflection coefficients of the grill waveguides and their predicted values by a coupling theory (not taking into account the real conditions facing the Grill) is presented. A diffusion model was also made to describe this particular region and to fit the experimental results

  11. Evolution of L -shell photoabsorption of the molecular-ion series Si Hn + (n =1 ,2 ,3 ): Experimental and theoretical studies

    Kennedy, E. T.; Mosnier, J.-P.; van Kampen, P.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Carniato, S.; Puglisi, A.; Sisourat, N.

    2018-04-01

    We report on complementary laboratory and theoretical investigations of the 2 p photoexcitation cross sections for the molecular-ion series Si Hn + (n =1 ,2 ,3 ) near the L -shell threshold. The experiments used an electron cyclotron resonance (ECR) plasma molecular-ion source coupled with monochromatized synchrotron radiation in a merged-beam configuration. For all three molecular ions, the S i2 + decay channel appeared dominant, suggesting similar electronic and nuclear relaxation patterns involving resonant Auger and dissociation processes, respectively. The total yields of the S i2 + products were recorded and put on absolute cross-section scales by comparison with the spectrum of the S i+ parent atomic ion. Interpretation of the experimental spectra ensued from a comparison with total photoabsorption cross-sectional profiles calculated using ab initio configuration interaction theoretical methods inclusive of vibrational dynamics and contributions from inner-shell excitations in both ground and valence-excited electronic states. The spectra, while broadly similar for all three molecular ions, moved towards lower energies as the number of screening hydrogen atoms increased from one to three. They featured a wide and shallow region below ˜107 eV due to 2 p →σ* transitions to dissociative states, and intense and broadened peaks in the ˜107 -113 -eV region merging into sharp Rydberg series due to 2 p →n δ ,n π transitions converging on the LII ,III limits above ˜113 eV . This overall spectral shape is broadly replicated by theory in each case, but the level of agreement does not extend to individual resonance structures. In addition to the fundamental interest, the work should also prove useful for the understanding and modeling of astronomical and laboratory plasma sources where silicon hydride molecular species play significant roles.

  12. Measurement of conversion electrons with the $^{208}Pb(p,n)^{208}Bi$ reaction and derivation of the shell model proton neutron hole interaction from the properties of $^{208}Bi$

    Maier, K H; Dracoulis, G D; Boutachkov, P; Aprahamian, A; Byrne, A P; Davidson, P M; Lane, G L; Marie-Jeanne, Mélanie; Nieminen, P; Watanabe, H

    2007-01-01

    Conversion electrons from 208Bi have been measured using singles and coincidence techniques with the 208Pb(p,n)208Bi reaction at 9 MeV. The new information on multipolarities and spins complements that available from recent gamma-gamma-coincidence studies with the same reaction [Boutachkov et al., Nucl. Phys. A768, 22 (2006)]. The results on electromagnetic decays taken together with information on spectroscopic factors from earlier single-particle transfer reaction measurements represent an extensive data set on the properties of the one-proton one-neutron-hole states below 3 MeV, a spectrum which is virtually complete. Comparison of the experimental observables, namely, energies, spectroscopic factors, and gamma-branching ratios, with those calculated within the shell model allows extraction of the matrix elements of the shell model residual interaction. More than 100 diagonal and nondiagonal elements can be determined in this way, through a least squares fit to the experimental data. This adjustment of the...

  13. Energy dependence of photon-induced L shell x-ray intensity ratios in Ta and W

    Shatendra, K; Allawadhi, K L; Sood, B S

    1984-02-01

    The L shell x-ray intensity ratios have been measured for the elements Ta and W by photoionization of L shell electrons in the photon energy region 14 <= E <= 44 keV. The experimental results are compared with those calculated at the photon energies used in the present measurements. The measured values show fairly good agreement with the calculated values within the experimental uncertainties. 11 references, 7 figures.

  14. Deriving Structural Information from Experimentally Measured Data on Biomolecules.

    van Gunsteren, Wilfred F; Allison, Jane R; Daura, Xavier; Dolenc, Jožica; Hansen, Niels; Mark, Alan E; Oostenbrink, Chris; Rusu, Victor H; Smith, Lorna J

    2016-12-23

    During the past half century, the number and accuracy of experimental techniques that can deliver values of observables for biomolecular systems have been steadily increasing. The conversion of a measured value Q exp of an observable quantity Q into structural information is, however, a task beset with theoretical and practical problems: 1) insufficient or inaccurate values of Q exp , 2) inaccuracies in the function Q(r→) used to relate the quantity Q to structure r→ , 3) how to account for the averaging inherent in the measurement of Q exp , 4) how to handle the possible multiple-valuedness of the inverse r→(Q) of the function Q(r→) , to mention a few. These apply to a variety of observable quantities Q and measurement techniques such as X-ray and neutron diffraction, small-angle and wide-angle X-ray scattering, free-electron laser imaging, cryo-electron microscopy, nuclear magnetic resonance, electron paramagnetic resonance, infrared and Raman spectroscopy, circular dichroism, Förster resonance energy transfer, atomic force microscopy and ion-mobility mass spectrometry. The process of deriving structural information from measured data is reviewed with an eye to non-experts and newcomers in the field using examples from the literature of the effect of the various choices and approximations involved in the process. A list of choices to be avoided is provided. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Experimental measurements in the BYU controlled profile reactor

    Tree, D.R.; Black, D.l.; Rigby, J.R.; McQuay, M.Q.; Webb, B.W. [Brigham Young University, Provo, UT (United States). Dept. of Mechanical Engineering

    1998-09-01

    Over the past decade the Controlled Profile Reactor (CPR) has been used to obtain extensive combustion data sets. CPR is a small scale (0.2-0.4 MW) combustion facility that has been used to obtain data for model validation, the testing of new combustion concepts, and the development of new combustion instruments. This review of the past ten years of research completed in the CPR includes a description of the reactor and instrumentation used, a summary of three experimental data sets which have been obtained in the reactor, and a description of novel tests and instrumentation. Measurements obtained include gas species, gas temperature, particle velocity, particle size, particle number density, particle-cloud temperature profiles, radiation and total heat flux to the wall, and wall temperatures. Species data include the measurement of CO, CO{sub 2}, NO, NO{sub x}, O{sub 2}, NH{sub 3} and HCN. The three combustion studies included one with natural gas combustion in a swirling flow, and two pulverized-coal combustion studies involving Utah Blind Canyon and Pittsburgh No. 8 coals. Most, but not all of the above measurements were obtained in each study. The second coal study involving the Pittsburgh No. 8 coal contained the most complete set of data and is described in detail. Novel combustion instrumentation includes the use of Coherent Anti-Stokes Raman Spectroscopy (CARS) to measure gas temperature. Novel combustion experiments include the measurement of NO{sub x} and burnout with coal-char blends. The measurements have led to an improved understanding of the combustion process and an understanding of the strengths and weaknesses associated with different aspects of comprehensive combustion models. 67 refs., 26 figs., 9 tabs.

  16. Shell supports

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  17. Effect of Electron Seeding on Experimentally Measured Multipactor Discharge Threshold

    Noland, Jonathan; Graves, Timothy; Lemon, Colby; Looper, Mark; Farkas, Alex

    2012-10-01

    Multipactor is a vacuum phenomenon in which electrons, moving in resonance with an externally applied electric field, impact material surfaces. If the number of secondary electrons created per primary electron impact averages more than unity, the resonant interaction can lead to an electron avalanche. Multipactor is a generally undesirable phenomenon, as it can cause local heating, absorb power, or cause detuning of RF circuits. In order to increase the probability of multipactor initiation, test facilities often employ various seeding sources such as radioactive sources (Cesium 137, Strontium 90), electron guns, or photon sources. Even with these sources, the voltage for multipactor initiation is not certain as parameters such as material type, RF pulse length, and device wall thickness can all affect seed electron flux and energy in critical gap regions, and hence the measured voltage threshold. This study investigates the effects of seed electron source type (e.g., photons versus beta particles), material type, gap size, and RF pulse length variation on multipactor threshold. In addition to the experimental work, GEANT4 simulations will be used to estimate the production rate of low energy electrons (< 5 keV) by high energy electrons and photons. A comparison of the experimental fluxes to the typical energetic photon and particle fluxes experienced by spacecraft in various orbits will also be made. Initial results indicate that for a simple, parallel plate device made of aluminum, there is no threshold variation (with seed electrons versus with no seed electrons) under continuous-wave RF exposure.

  18. Experimental Measurements of Prestressed Masonry with using Sliding Joint

    Stara Marie

    2014-06-01

    Full Text Available Contribution deals with experimental measurements of deformations in the place exposed to local load caused by additional pre-stressing. The measurements are made at the masonry corner built in the laboratory equipment. The laboratory equipment was designed at Faculty of Civil Engineering VŠB-Technical University of Ostrava for measurement tri-axial stress-strain conditions in masonry. In this masonry corner two pre-stressing bars are placed. These bars are in different height and are anchored to the anchor plates, which transfer pre-stressing forces to the masonry. The specimen for laboratory testing is performed in the proportion to the reality of 1:1. In the bottom part masonry is inserted asphalt strip. It operates in the masonry like a sliding joint and reduces the shear stress at interface between concrete and masonry structures. The results are compared with the results of masonry without the use of sliding joints, including comment on the effect of sliding joints on the pre-stressing masonry structures.

  19. Experimental arrangement to measure dispersion in optical fiber devices

    Armas Rivera, Ivan [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica (Mexico); Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas (Mexico); Zaca Moran, Placido, E-mail: ivan_rr1@hotmail.com [Benemerita Universidad Autonoma de Puebla, Fisicoquimica de Materiales ICUAP (Mexico)

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n({lambda}) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n({lambda}) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  20. Experimental ion mobility measurements in Xe-CH4

    Perdigoto, J. M. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2017-09-01

    Data on ion mobility is important to improve the performance of large volume gaseous detectors. In the present work, the method, experimental setup and results for the ion mobility measurements in Xe-CH4 mixtures are presented. The results for this mixture show the presence of two distinct groups of ions. The nature of the ions depend on the mixture ratio since they are originated by both Xe and CH4. The results here presented were obtained for low reduced electric fields, E/N, 10-25 Td (2.4-6.1 kV ṡ cm-1 ṡ bar-1), at low pressure (8 Torr) (10.6 mbar), and at room temperature.

  1. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  2. Experimental arrangement to measure dispersion in optical fiber devices

    Armas Rivera, Ivan; Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino; Zaca Moran, Placido

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n(λ) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n(λ) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  3. Experimental impact-parameter--dependent probabilities for K-shell vacancy production by fast heavy-ion projectiles

    Randall, R.R.; Bednar, J.A.; Curnutte, B.; Cocke, C.L.

    1976-01-01

    The impact-parameter dependence of the probability for production of target K x rays has been measured for oxygen projectiles on copper and for carbon and fluorine projectiles on argon at scaled velocities near 0.5. The O-on-Cu data were taken for 1.56-, 1.88-, and 2.69-MeV/amu O beams incident upon thin Cu foils. A thin Ar-gas target was used for 1.56-MeV/amu C and F beams, permitting measurements to be made for charge-pure C +4 , C +6 , F +9 and F +5 projectiles. Ar and Cu K x rays were observed with a Si(Li) detector and scattered projectiles with a collimated surface-barrier detector. Comparison of the shapes of the measured K-vacancy--production probability curves with predictions of the semiclassical Coulomb approximation (SCA) shows adequate agreement for the O-on-Cu system. For the higher ratio of projectile-to-target nuclear charge (Z 1 /Z 2 ) characterizing the C-on-Ar and F-on-Ar systems, the SCA predictions are entirely inadequate in describing the observed impact-parameter dependence. In particular, they cannot account for large probabilities found at large impact parameters. Furthermore, the dependence of the shapes on the projectile charge state is found to become pronounced at larger Z 1 /Z 2 . Attempts to account for this behavior in terms of alternative vacancy-production processes are discussed

  4. Studies of dust shells around stars

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  5. Measuring Diagnostic Stand for Experimental Researches in Technology Machining

    A. E. Dreval'

    2014-01-01

    Full Text Available The paper reviews applied techniques, methods, and structure of the control and measuring means to conduct experimental and scientific researches of cutting processes. Existing research methods in cutting the metals are divided by features, such as essence of methods, the number of records of physical indicators, the number of studied factors, duration of tests. The groups of methods are briefly characterized.The chair "Tool Engineering and Technologies" of BMSTU developed and made a diagnostic stand of control and measurements for conducting research activities in the field of materials processing technology by cutting to define rational technological decisions, when machining, and carry out an analysis of efficiency and economic feasibility of made decisions. The diagnostic stand contains modern the electronic equipment. Record of measuring parameters is made in real time with a possibility for visual representation of read results and mathematical and statistical processing of measurement results. The stand can be used in research laboratories of machine-building enterprises, laboratories of higher education institutions, and other scientific divisions.The paper presents a justification that the stand is reasonable to use for the following: completion and choice of rational cutting modes, workability assessment of new constructional materials, technical and operational characteristics of the processed surfaces, and operational properties of the cutting tools of various producers, choice of optimum geometrical parameters of the cutting tools and brands of the lubricant cooling technological means, as well as the energy consumption for the chosen machining process. The stand allows us to make an assessment of wear resistance and tribology-technical characteristics of tool materials, as well as an accuracy, rigidity, vibration stability of machines, both new and being in operation.

  6. Short-Range Correlated Magnetic Core-Shell CrO2/Cr2O3 Nanorods: Experimental Observations and Theoretical Considerations

    Ashish C. Gandhi

    2018-05-01

    Full Text Available With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO2/Cr2O3 core-shell nanorods (NRs has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO2 extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.

  7. Measurement of wavelengths and lamb shifts for inner-shell transitions in Fe XVIII-XXIV. [from solar flare X-ray spectra

    Seely, J. F.; Feldman, U.; Safronova, U. I.

    1986-01-01

    The wavelengths of inner-shell 1s-2p transitions in the ions Fe XVIII-XXIV have been measured in solar flare spectra recorded by the Naval Research Laboratory crystal spectrometer (SOLFLEX) on the Air Force P78-1 spacecraft. The measurements are compared with previous measurements and with recently calculated wavelengths. It is found that the measured wavelengths are systematically larger than the wavelengths calculated using the Z-expansion method by up to 0.65 mA. For the more highly charged ions, these differences can be attributed to the QED contributions to the transition energies that are not included in the Z-expansion calculations.

  8. Experimental studies of atomic inner shell ionization phenomena. Progress report V, 1 August 1983-1 July 1984

    Shafroth, S.M.

    1984-01-01

    Since last year's progress report (August 1984), we have analyzed most of the data taken up to that time. This has revealed some problems and led to repeating the Si 11+ on He and Ar experiments over a wider energy range. In the case of the He data four points in the RTE region were taken at Brookhaven by M. Clark, J. Tanis and collaborators, with a different Si(Li) detector. This will serve as a good check on the absolute cross sections at TUNL compared to those measured at Brookhaven

  9. Experimental evaluation of a MOSFET dosimeter for proton dose measurements

    Kohno, Ryosuke; Nishio, Teiji; Miyagishi, Tomoko; Hirano, Eriko; Hotta, Kenji; Kawashima, Mitsuhiko; Ogino, Takashi

    2006-01-01

    The metal oxide semiconductor field-effect transistor (MOSFET) dosimeter has been widely studied for use as a dosimeter for patient dose verification. The major advantage of this detector is its size, which acts as a point dosimeter, and also its ease of use. The commercially available TN502RD MOSFET dosimeter manufactured by Thomson and Nielsen has never been used for proton dosimetry. Therefore we used the MOSFET dosimeter for the first time in proton dose measurements. In this study, the MOSFET dosimeter was irradiated with 190 MeV therapeutic proton beams. We experimentally evaluated dose reproducibility, linearity, fading effect, beam intensity dependence and angular dependence for the proton beam. Furthermore, the Bragg curve and spread-out Bragg peak were also measured and the linear-energy transfer (LET) dependence of the MOSFET response was investigated. Many characteristics of the MOSFET response for proton beams were the same as those for photon beams reported in previous papers. However, the angular MOSFET responses at 45, 90, 135, 225, 270 and 315 degrees for proton beams were over-responses of about 15%, and moreover the MOSFET response depended strongly on the LET of the proton beam. This study showed that the angular dependence and LET dependence of the MOSFET response must be considered very carefully for quantitative proton dose evaluations

  10. Absolute cross section measurement for the ionization of the K-shell of titanium and nickel by electron impact (50 KEV)

    Jessenberger, J.

    1974-01-01

    The yield of characteristic X-ray K radiation of titanium during bombardment with electrons in the energy region of 6-50 keV and of nickel at 9-50 keV was measured, and the cross sections for th ionization of the K shell of titanium and nickel were determined from this. The results obtained are compared with several theoretical models. (WL/LN) [de

  11. Spectroscopic factors measurements in the s,d and f,p shells below and above the Coulomb barrier by (3He,d) reactions

    Baghdadi, Ahmed.

    1974-01-01

    The overlap of t and d or 3 He and d wave functions may be measured by one neutron transfer in (d,t) or one proton transfer in ( 3 He,d). The measurement of the resulting normalization constant has been performed in subcoulombic conditions in the case of 58 Ni( 3 He,d) 59 Cu and 60 Ni( 3 He,d) 61 Cu leading to the first 3/2 - and 1/2 - states with a position sensitive detector in a Buechner spectrograph. The result: D 2 =2.7+-0.2 10 4 MeV 2 fm 3 is in agreement with the D 2 measurement for (t,d) reactions [3.1+-0.2 10 4 MeV 2 fm 3 ] and with the theoretical value proposed by L.J.B. Goldfarg and coworkers. This result was used for a determination of the spectroscopic factors of the 1.379MeV 3/2 - state, the 1.507MeV 1/2 - state and the 1.758MeV 3/2 - state in 57 Co. The subcoulombic approximation is also shown to be valid even in the case of (d,p) reactions, by the measurement of angular distributions and excitation curves of 60 Ni(d,p) reactions leading to the excited states at 4.760MeV (l=2) and 4.907MeV (l=0). In the second part, some spectroscopic factors in the s-d shell were measured by ( 3 He,d) reactions at MP Tandem energies. In the case of 27 Al( 3 He,d) 28 Si (states at 4.62, 6.88, 6.89, 9.32 and 0.38MeV) the normalization constant D 0 2 (deduced from the subcoulombic D 2 value) together with the first order finite range approximation leads to spectroscopic factors in good agreement with Wildenthal theoretical results. For 28 Si( 3 He,d) 29 p however, the values are too high compared to 29 Si. The conclusion is that it is better to use the DWBA treatment at subcoulombic energies everytime the experimental conditions may be fulfilled [fr

  12. Impact parameter dependence of inner-shell ionization probabilities

    Cocke, C.L.

    1974-01-01

    The probability for ionization of an inner shell of a target atom by a heavy charged projectile is a sensitive function of the impact parameter characterizing the collision. This probability can be measured experimentally by detecting the x-ray resulting from radiative filling of the inner shell in coincidence with the projectile scattered at a determined angle, and by using the scattering angle to deduce the impact parameter. It is conjectured that the functional dependence of the ionization probability may be a more sensitive probe of the ionization mechanism than is a total cross section measurement. Experimental results for the K-shell ionization of both solid and gas targets by oxygen, carbon and fluorine projectiles in the MeV/amu energy range will be presented, and their use in illuminating the inelastic collision process discussed

  13. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    ROGERS, P.M.

    2000-01-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted

  14. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  15. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    ROGERS, P.M.

    2000-06-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted.

  16. Buckling strength of spherical shells under combined loads

    Nagashima, H.; Kokubo, K.; Takayanagi, M.; Hayasaka, Y.; Kume, T.; Nagata, T.

    1995-01-01

    to the nominal radius of the spherical shell, and a theoretical bucking wavelength (64 mm) in external-pressure buckling. Measured buckling loads are shown to be smaller than those of nonlinear FEM analyses for imperfect shells. It is clarified that these initial imperfections are too small to explain non-linear analysis results. Furthermore, experimental investigation into the effects of cutouts on buckling strengths using spherical shells with circular cutouts under compressive loads prove that decreases in buckling strength due to cutouts are small, the effect of cutouts being smaller for spherical shells than for cylindrical ones. Nonlinear FEM analyses make more clear decreases in buckling strength due to the effect of cut-outs. (author)

  17. Experimental study of ERT monitoring ability to measure solute dispersion.

    Lekmine, Grégory; Pessel, Marc; Auradou, Harold

    2012-01-01

    This paper reports experimental measurements performed to test the ability of electrical resistivity tomography (ERT) imaging to provide quantitative information about transport parameters in porous media such as the dispersivity α, the mixing front velocity u, and the retardation factor R(f) associated with the sorption or trapping of the tracers in the pore structure. The flow experiments are performed in a homogeneous porous column placed between two vertical set of electrodes. Ionic and dyed tracers are injected from the bottom of the porous media over its full width. Under such condition, the mixing front is homogeneous in the transverse direction and shows an S-shape variation in the flow direction. The transport parameters are inferred from the variation of the concentration curves and are compared with data obtained from video analysis of the dyed tracer front. The variations of the transport parameters obtained from an inversion performed by the Gauss-Newton method applied on smoothness-constrained least-squares are studied in detail. While u and R(f) show a relatively small dependence on the inversion procedure, α is strongly dependent on the choice of the inversion parameters. Comparison with the video observations allows for the optimization of the parameters; these parameters are found to be robust with respect to changes in the flow condition and conductivity contrast. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  18. Experimental evaluation of fluorescent (alizarin red S and calcein) and clip-tag markers for stock assessment of ark shell, Anadara broughtonii

    Zhou, Shanshan; Zhang, Xiumei; Li, Wentao; Li, Long; Cai, Xingyuan

    2017-03-01

    Release programs to enhance stocks of ark shell ( Anadara broughtonii) have been undertaken in a number of Asian countries, but their effectiveness has rarely been investigated owing to a lack of marking methods. The quality and longevity of fluorescent markers, alizarin red S (ARS) and calcein (CAL) (200 and 300 mg/L), as well as clip tags, were tested on juvenile A. broughtonii. No significant differences in survival or shell growth were observed in juveniles stained with either of the two fluorochromes after a 160-day culture period, but the retention rate was 100% after 1 year. Fluorescent marks (≥grade 3) were observable microscopically in juveniles stained with the two fluorochromes, and some fluorescent marks (≥grade 4) were visible with the naked eye after 1 year. ARS-marked shells were brighter than those marked with CAL, and shells marked with 300 mg/L of the fluorochromes were easier to detect than those marked with 200 mg/L. Clip tags were incorporated into the shell as the bivalve grew, and the retention rate was 64.25% after 160 days. Significant differences in survival (at 30 days), shell length (at 60, 90, 120, and 160 days), and wet weight (at 90, 120, and 160 days) were observed between the clip-tagged and control groups (all P< 0.05), indicating that the tags may have passive effects on the ark shell. The results suggest that both ARS and CAL are suitable to mark A. broughtonii for large-scale restocking programs, and that optimal marking quality was achieved with 300 mg/L ARS. Lighter and smaller clip tags need to be developed to reduce injury and increase survival rate of clams.

  19. Core and shell sizing of small silver-coated nanospheres by optical extinction spectroscopy

    Schinca, D C; Scaffardi, L B

    2008-01-01

    Silver metal nanoparticles (Nps) are extensively used in different areas of research and technology due to their interesting optical, thermal and electric properties, especially for bare core and core-shell nanostructures with sizes smaller than 10 nm. Since these properties are core-shell size-dependent, size measurement is important in manipulating their potential functionalization and applications. Bare and coated small silver Nps fabricated by physical and chemical methods present specific characteristics in their extinction spectra that are potentially useful for sizing purposes. This work presents a novel procedure to size mean core radius smaller than 10 nm and mean shell thickness of silver core-shell Nps based on a comparative study of the characteristics in their optical extinction spectra in different media as a function of core radii, shell thickness and coating refractive index. From the regularities derived from these relationships, it can be concluded that plasmon full width at half-maximum (FWHM) is sensitive to core size but not to coating thickness, while plasmon resonance wavelength (PRW) is related to shell thickness and mostly independent of core radius. These facts, which allow sizing simultaneously both mean core radius and shell thickness, can also be used to size bare silver Nps as a special case of core-shell Nps with zero shell thickness. The proposed method was applied to size experimental samples and the results show good agreement with conventional TEM microscopy.

  20. Hypersonic nozzle/afterbody CFD code validation. I - Experimental measurements

    Spaid, Frank W.; Keener, Earl R.

    1993-01-01

    This study was conducted to obtain a detailed experimental description of the flow field created by the interaction of a single-expansion-ramp-nozzle flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5-Foot Hypersonic Wind Tunnel of the NASA Ames Research Center in a cooperative experimental program involving Ames and the McDonnell Douglas Research Laboratories. This paper presents experimental results consisting primarily of surveys obtained with a five-hole total-pressure/flow-direction probe and a total-temperature probe. These surveys were obtained in the flow field created by the interaction between the underexpanded jet plume and the external flow.

  1. Measurements of gamma rays from keV-neutron resonance capture by odd-Z nuclei in the 2s-1d shell region

    Igashira, Masayuki; Lee, Sam Yol; Mizuno, Satoshi; Hori, Jun-ichi [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Kitazawa, Hideo

    1998-03-01

    Measurements of gamma rays from keV-neutron resonance capture by {sup 19}F, {sup 23}Na, and {sup 27}Al, which are odd-Z nuclei in the 2s-1d shell region, were performed, using an anti-Compton HPGe spectrometer and a pulsed neutron source by the {sup 7}Li(p,n){sup 7}Be reaction. Capture gamma rays from the 27-, 49-, and 97-keV resonances of {sup 19}F, the 35- and 53-keV resonances of {sup 23}Na, and the 35-keV resonance of {sup 27}Al were observed. Some results are presented. (author)

  2. Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters

    Lay-Ekuakille, A.; Palamara, I.; Caratelli, D.; Morabito, F.C.

    2013-01-01

    Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated ones). Online measurements include both real-time and no real-time measurements. In general, it is difficult to implement real-time measurements in stricto sensu for online acquisitions on aqueous...

  3. Enhanced linear photonic nanojet generated by core-shell optical microfibers

    Liu, Cheng-Yang; Yen, Tzu-Ping; Chen, Chien-Wen

    2017-05-01

    The generation of linear photonic nanojet using core-shell optical microfiber is demonstrated numerically and experimentally in the visible light region. The power flow patterns for the core-shell optical microfiber are calculated by using the finite-difference time-domain method. The focusing properties of linear photonic nanojet are evaluated in terms of length and width along propagation and transversal directions. In experiment, the silica optical fiber is etched chemically down to 6 μm diameter and coated with metallic thin film by using glancing angle deposition. We show that the linear photonic nanojet is enhanced clearly by metallic shell due to surface plasmon polaritons. The large-area superresolution imaging can be performed by using a core-shell optical microfiber in the far-field system. The potential applications of this core-shell optical microfiber include micro-fluidics and nano-structure measurements.

  4. K-shell ionisation cross sections for W, Au and U by low velocity protons

    Castro Faria, N.V. de; Freire Junior, F.L.; Montenegro, E.C.; Pinho, A.G. de; Silveira, E.F. da.

    1984-01-01

    Proton-induced K-shell ionisation cross section for W, Au and U by low velocity protons were obtained from thick target measurements. For the first time the lowest incident energy reached a value less than 10 times the binding energy of the K-shell electron (less than 9 times in the case of Au). Possible errors are thoroughly examined and a comparison with other available experimental results and theoretical values is presented and discussed. (Author) [pt

  5. Shell model test of the Porter-Thomas distribution

    Grimes, S.M.; Bloom, S.D.

    1981-01-01

    Eigenvectors have been calculated for the A=18, 19, 20, 21, and 26 nuclei in an sd shell basis. The decomposition of these states into their shell model components shows, in agreement with other recent work, that this distribution is not a single Gaussian. We find that the largest amplitudes are distributed approximately in a Gaussian fashion. Thus, many experimental measurements should be consistent with the Porter-Thomas predictions. We argue that the non-Gaussian form of the complete distribution can be simply related to the structure of the Hamiltonian

  6. Implementation of an Experimental Method for Coupled Subchannel Mixing Measurement

    Silin, Nicolas; Juanico, Luis; Delmastro, Dario

    2003-01-01

    In this work the application of a thermal tracing technique to the measurement of thermal turbulent mixing between coupled subchannels is presented.The experiment was carried out on a real scale model with geometry similar to nuclear fuel element rod bundles.Thermal mixing rates were measured for water flows at different Reynolds numbers

  7. Performance measurement, expectancy and agency theory: An experimental study

    Sloof, R.; van Praag, C.M.

    2008-01-01

    Theoretical analyses of (optimal) performance measures are typically performed within the realm of the linear agency model. This model implies that, for a given compensation scheme, the agent’s optimal effort is unrelated to the amount of noise in the performance measure. In contrast, expectancy

  8. Experimental device for measuring the dynamic properties of diaphragm motors

    Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan

    The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.

  9. M sub shell X-ray emission cross section measurements for Pt, Au, Hg, Pb, Th and U at 8 and 10 keV synchrotron photons

    Kaur, Gurpreet; Gupta, Sheenu; Tiwari, M.K.; Mittal, Raj

    2014-01-01

    Highlights: • First time M sub shell fluorescence cross section measurements at 8 and 10 keV photons. • Comparison with theoretical evaluations from different model data for parameters. • Explained the large deviations from the trend of parameters with atomic number Z. • A specific pattern of cross sections with Z is predicted in the region, 78 ⩽ Z ⩽ 92. • Confirmation of prediction requires more experiment in these Z and energy region. -- Abstract: M sub shell X-ray emission cross sections of Pt, Au, Hg, Pb, Th and U at 8 and 10 keV photon energies have been determined with linearly polarized photon beam from Indus-2 synchrotron source. The measured cross sections have been reported for the first time and were used to check the available theoretical Dirac–Hartree–Slater (DHS) and Dirac–Fock (DF) values reported in literature and also the presently derived Non Relativistic Hartree–Slater (NRHS), DF and DHS values for M ξ , M δ , M α , M β , M γ , M m1 and M m2 group of X-rays

  10. Calibration of a gamma spectrometer for natural radioactivity measurement. Experimental measurements and Monte Carlo modelling

    Courtine, Fabien

    2007-03-01

    The thesis proceeded in the context of dating by thermoluminescence. This method requires laboratory measurements of the natural radioactivity. For that purpose, we have been using a germanium spectrometer. To refine the calibration of this one, we modelled it by using a Monte-Carlo computer code: Geant4. We developed a geometrical model which takes into account the presence of inactive zones and zones of poor charge-collection within the germanium crystal. The parameters of the model were adjusted by comparison with experimental results obtained with a source of 137 Cs. It appeared that the form of the inactive zones is less simple than is presented in the specialized literature. This model was widened to the case of a more complex source, with cascade effect and angular correlations between photons: the 60 Co. Lastly, applied to extended sources, it gave correct results and allowed us to validate the simulation of matrix effect. (author)

  11. Analysis of experimental biosensor/FIA lactose measurements

    Ferreira L.S.

    2003-01-01

    Full Text Available Whey is an abundant effluent in the production of cheese and casein. The biotechnological utilization of this economically important and nutritive source is limited mainly because of the presence of high percentages of lactose. This disaccharide has poor solubility, which can cause crystallization and insufficient sweetness in dairy food; additionally, part of the adult population suffers from associated lactose intolerance diseases. There are several methods to determine lactose such as spectrophotometry, polarimetry, infrared spectroscopy, titrimetry and chromatography. However these methods are tedious and time-consuming due to long sample preparation. These disadvantages stimulated the development of an enzymatic lactose biosensor. It employs two immobilized enzymes, beta-galactosidase and glucose oxidase and the quantitative analysis of lactose is based on determination of oxygen consumption in the enzymatic reaction. The influence of temperature on the biosensor signal was experimentally studied. It was observed that a nonlinear relationship exists between the electric response of the biosensor - provided by CAFCA (Computer Assisted Flow Control & Analysis - ANASYSCON, Hannover - and lactose concentration. In this work, attempts were made to correlate these variables using a simple nonlinear model and multilayered neural networks, with the latter providing the best modeling of the experimental data.

  12. Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters

    Lay-Ekuakille, A.; Palamara, I.; Caratelli, D.; Morabito, F.C.

    2013-01-01

    Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated

  13. Performance Measurement, Expectancy and Agency Theory: An Experimental Study

    Randolph Sloof; Mirjam van Praag

    2007-01-01

    Theoretical analyses of (optimal) performance measures are typically performed within the realm of the linear agency model. An important implication of this model is that, for a given compensation scheme, the agent's optimal effort choice is unrelated to the amount of noise in the performance measure. In contrast, expectancy theory as developed by psychologists predicts that effort levels are increasing in the signal-to-noise ratio. We conduct a real effort laboratory experiment to assess the...

  14. Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for Single-Shell Tank (SST) Waste Management Areas

    MCCARTHY, M.M.

    1999-01-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly

  15. Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas

    MCCARTHY, M.M.

    1999-08-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

  16. Development of experimental methods for measuring fuel elements burnup

    PEREDA, C; HENRIQUEZ, C; NAVARRO, G; TORRES, H; KLEIN, J; CALDERON, D; MEDEL, J; MUTIS, O; DAIE, J; ITURRIETA, L; LONCOMILLA, M; ZAMBRANO, J; KESTELMAN, A

    2003-01-01

    This paper is a summary of the work carried out during the last two years in fuel burning measurements at RECH-1 for different enrichments, cooling times and burning rates. The measurements were made in two gamma-spectrometric facilities, one is installed in a hot cell and the other inside of the secondary pool of the RECH-1, where the element is under 2 meters of water. The hot cell measurements need at least 100 cooling days because of the problems generated by the transport of highly active fuel elements from the Reactor to the cell. This was the main reason for using the in-pool facility because of its capability to measure the burning of fuel elements without having to wait so long, that is with only 5 cooling days. The accumulated experience in measurements achieved in both facilities and the encouraging results show that this measuring method is reliable. The results agreed well with those obtained using the reactor's physics codes, which was the way they were obtained previously (Cw)

  17. Design and experimentally measure a high performance metamaterial filter

    Xu, Ya-wen; Xu, Jing-cheng

    2018-03-01

    Metamaterial filter is a kind of expecting optoelectronic device. In this paper, a metal/dielectric/metal (M/D/M) structure metamaterial filter is simulated and measured. Simulated results indicate that the perfect impedance matching condition between the metamaterial filter and the free space leads to the transmission band. Measured results show that the proposed metamaterial filter achieves high performance transmission on TM and TE polarization directions. Moreover, the high transmission rate is also can be obtained when the incident angle reaches to 45°. Further measured results show that the transmission band can be expanded through optimizing structural parameters. The central frequency of the transmission band is also can be adjusted through optimizing structural parameters. The physical mechanism behind the central frequency shifted is solved through establishing an equivalent resonant circuit model.

  18. Experimental nonlocality-based randomness generation with nonprojective measurements

    Gómez, S.; Mattar, A.; Gómez, E. S.; Cavalcanti, D.; Farías, O. Jiménez; Acín, A.; Lima, G.

    2018-04-01

    We report on an optical setup generating more than one bit of randomness from one entangled bit (i.e., a maximally entangled state of two qubits). The amount of randomness is certified through the observation of Bell nonlocal correlations. To attain this result we implemented a high-purity entanglement source and a nonprojective three-outcome measurement. Our implementation achieves a gain of 27% of randomness as compared with the standard methods using projective measurements. Additionally, we estimate the amount of randomness certified in a one-sided device-independent scenario, through the observation of Einstein-Podolsky-Rosen steering. Our results prove that nonprojective quantum measurements allow extending the limits for nonlocality-based certified randomness generation using current technology.

  19. Performance measurement, expectancy and agency theory: An experimental study

    Sloof, R.; van Praag, C.M.

    2005-01-01

    Theoretical analyses of (optimal) performance measures are typically performed within the realm of the linear agency model. An important implication of this model is that, for a given compensation scheme, the agent's optimal effort choice is unrelated to the amount of noise in the performance

  20. "Calibration" system for spectral measurements and its experimental results

    Bruchkouskaya, Sviatlana I.; Katkovsky, Leonid V.; Belyaev, Boris I.; Malyshev, Vladislav B.

    2017-04-01

    "Calibration" system has been developed at A. N. Sevchenko Research Institute of Applied Physical Problems of the Belarusian State University. It was designed for measuring the characteristics of spectral reflectance of all types of natural surfaces (test sites) in ground conditions or on board of aircraft carriers and has the following components: - Photospectroradiometr (PhSR) of high resolution with a range of 400-900 nm, equipped with a digital time-lapse video system; - Two-channel modular spectroradiometer (TMS) with a range of 400-900 nm, designed for simultaneous measurements of reflected light brightness of the underlying surface and the incident radiation from the upper hemisphere; - Two portable spectroradiometers (PSR-700 and PSR-1300) with a spectral range 800-1500 nm; 1200-2500 nm; - Scanning solar spectropolarimeter (SSP-600) with a range of 350-950 nm for measurements of direct sunlight and scattered by the atmosphere at different angles; "Calibration" system provides spectral resolution of 5.2 nm in a range of 400-900 nm, 10 nm in a range of 800-1500 nm and 15 nm in a range of 1200-2500 nm. Measurements of the optical characteristics of solar radiation (for determining parameters of the atmosphere) and that of underlying surface are synchronous. There is also a set of special nozzles for measurements of spectral brightness coefficients, polarization characteristics and spectral albedo. Spectra and images are geotagged to the navigation data (time, GPS). For the measurements of spectral reflection dependencies within "Monitoring-SG" framework expeditions to the Kuril Islands, Kursk aerospace test site and Kamchatka Peninsula were conducted in 2015 and 2016. The spectra of different underlying surfaces have been obtained: soils, plants and water objects, sedimentary and volcanic rocks. These surveys are a valuable material for further researches and selection of test facilities for flight calibration of space imaging systems. Information obtained

  1. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    Cheng, Hai-Xia [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Xiao-Xu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Computing Center, Beijing 100094 (China); Hu, Yao-Wen [Department of Physics, Tsinghua University, Beijing 100084 (China); Song, Hong-Quan; Huo, Jin-Rong; Li, Lu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Qian, Ping, E-mail: ustbqianp@163.com [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Song, Yu-Jun [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-12-15

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations show that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.

  2. Experimental viscosity measurements of biodiesels at high pressure

    Schaschke C.J.

    2016-01-01

    Full Text Available The viscosity of biodiesels of soybean and rapeseed biodiesels blended with mineral diesel fuel were measured at pressures of up to 200 MPa. Using a falling sinker-type viscometer reproducible viscosity data were obtained based on the time taken for a sinker to descend a fixed distance down an enclosed tube under the influence of gravity. Measurements were taken using pressures which correspond to those of interest in automotive common rail diesel engines, and at temperatures of between 25ºC and 80ºC. In all cases, the viscosity of the biodiesel blends were found to increase exponentially for which the blends were noted as being more viscous than pure mineral fuels. A pressure-freezing effect was not observed for the blends.

  3. Experimental approaches to the measurement of dielectronic recombination

    Datz, S.

    1984-01-01

    In dielectronic recombination, the first step involves a continuum electron which excites a previously bound electron and, in so doing, loses just enough energy to be captured in a bound state (nl). This results in a doubly excited ion of a lower charge state which may either autoionize or emit a photon resulting in a stabilized recombination. The complete signature of the event is an ion of reduced charge and an emitted photon. Methods of measuring this event are discussed

  4. Challenges to the Application of δ15N measurements of the organic fraction of archaeological and fossil mollusk shells to assess paleoenvironmental change.

    Andrus, C. F. T.

    2015-12-01

    Nitrogen isotope analysis of the organic fraction of mollusk shells is beginning to be applied to questions of past anthropogenic and natural environmental variation using samples from archaeological and fossil deposits. Fairly extensive proxy validation research has been conducted in the past decade, documenting the relationship between the δ15N of ambient particulate organic matter, mollusk soft tissues, and shell organic matrix. However, comparatively little research has addressed the potential effects of taphonomy and diagenesis on these proxy records. Assessing archaeological samples are especially complex in that humans may have transported and/or cooked shell prior to deposition. Shell δ15N data will be presented from modern and archaeological oyster (Crassostrea virginica) and clam shell (Mercenaria spp.) of various late Holocene ages and late Cretaceous Crassatellites vadosus shells. Archaeological shells show some loss of organic matter over time, yet some Cretaceous shells retain enough matrix to permit δ15N analysis. The Cretaceous samples required concentration of the remaining organic matrix by removing carbonate via acid pretreatment prior to EA-IRMS analysis, but modern and archaeological shells had sufficient organic matrix to permit analysis without acid pretreatment. The δ15N data from the archaeological shells do not display obvious alteration from the loss of organic matrix. The results of cooking experiments performed on modern oyster shells also indicate little alteration of δ15N values, unless the shell was heated to the point of disintegration. While these experiments indicate promise for the application of δ15N analysis of shell organic matter, the results are incomplete and lack ideal control over initial δ15N values in ancient samples used for comparisons. Future research, perhaps focused on compound-specific δ15N analysis and additional controlled experiments on moderns shells, may improve this assessment.

  5. Experimental measurements of spatial dose distributions in radiosurgery treatments

    Avila-Rodriguez, M. A.; Rodriguez-Villafuerte, M.; Diaz-Perches, R.; Perez-Pastenes, M. A.

    2001-01-01

    The measurement of stereotactic radiosurgery dose distributions requires an integrating, high-resolution dosimeter capable of providing a spatial map of absorbed dose. This paper describes the use of a commercial radiochromic dye film (GafChromic MD-55-2) to measure radiosurgery dose distributions with 6 MV X-rays in a head phantom. The response of the MD-55-2 was evaluated by digitizing and analyzing the films with conventional computer systems. Radiosurgery dose distributions were measured using the radiochromic film in a spherical acrylic phantom of 16 cm diameter undergoing a typical SRS treatment as a patient, and were compared with dose distributions provided by the treatment planning system. The comparison lead to mean radial differences of ±0.6 mm, ±0.9 mm, ±1.3 mm, ±1.9 mm, and ±2.8 mm, for the 80, 60, 50, 40, and 30% isodose curves, respectively. It is concluded that the radiochromic film is a convenient and useful tool for radiosurgery treatment planning validation

  6. Experimental measurement of electron heat diffusivity in a tokamak

    Callen, J.D.; Jahns, G.L.

    1976-06-01

    The electron temperature perturbation produced by internal disruptions in the center of the Oak Ridge Tokamak (ORMAK) is followed with a multi-chord soft x-ray detector array. The space-time evolution is found to be diffusive in character, with a conduction coefficient larger by a factor of 2.5 - 15 than that implied by the energy containment time, apparently because it is a measurement for the small group of electrons whose energies exceed the cut-off energy of the detectors

  7. Self-protection of FLIP fuel: Experimental measurements

    Johnson, A.G.; Ringle, J.C.; Anderson, T.V.; Dodd, B.; Bennett, S.; Carpenter, W.T.

    1980-01-01

    During the last year and one-half non-power reactor licensees of the Nuclear Regulatory Commission (NRC) have been repeatedly alerted to the fact that the Commission planned to tighten physical security regulations for their class of reactors. Essentially all of the new NRC physical security requirements for these reactors have been based on the type, quantity and enrichment of the special nuclear materials (e.g. enriched uranium and plutonium) possessed by the licensees. While each licensee's security classification will be evaluated individually, it is now apparent that non-power reactor licensees using or storing formula quantities of special nuclear material not meeting the 100 rem per hour at three feet self-protection exemption (e.g. 5 kilograms or more of non-self-protected fuel enriched to 20% or more with U-235) will be required to meet extremely stringent NRC physical security requirements patterned after the new Physical Protection Upgrade Rule. Implementation of these much stricter security requirements poses many economic and operational difficulties for university research reactors, to the point where facility closure could be the only alternative. TRIGA reactors utilizing a full FLIP fueled core, such as the Oregon State University TRIGA (OSTR), qualify for the highest physical protection category unless fuel can be maintained at self-protecting radiation levels. In order to demonstrate that OSTR fuel could be consistently kept above the 100 rem per hour threshold, a computer program was written which predicts the gamma radiation levels from an irradiated FLIP fuel element at 1, 2 and 3 feet in air and water. Furthermore, in order to verify the accuracy of the computer program, actual measurements of irradiated fuel elements were made at 3 feet in air and at 1, 2 and 3 feet in water, and the results compared very favorably to the predictions. The results of specific measurements, the instrumentation used and its calibration, the personnel doses

  8. A review of direct experimental measurements of detachment

    Boedo, J.; McLean, A. G.; Rudakov, D. L.; Watkins, J. G.

    2018-04-01

    Detached divertor plasmas feature strong radial and parallel gradients of density, temperature, electric fields and flow over the divertor volume and therefore, sampling the divertor plasma directly provides crucial knowledge to the interpretation and modeling efforts. We review the contribution of diagnostics that directly sample the plasma to the advancement of knowledge of the physics of detachment and detached divertors, such as the characteristics of the various regimes, discovery and quantification of drifts and identification of convection of heat and particles. We focus on wall probes, scanning probes, retarding field analyzers and Thomson scattering in the divertor region and also include the contribution of measurements away from the divertor that provide insight on how divertor detachment affects core, edge or pedestal conditions. Wall probes are critical as they can be installed in closed volumes of difficult access to other diagnostics and measure plasma parameters at the divertor structures, which define the plasma boundary conditions and where detachment effects are more likely to be strongest.

  9. Experimental ion mobility measurements in Xe-CF4 mixtures

    Cortez, A. F. V.; Kaja, M. A.; Escada, J.; Santos, M. A. G.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2018-04-01

    In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon with carbon tetrafluoride (Xe-CF4) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 to 25 Td range (2.4-6.1 kVṡcm‑1ṡbar‑1), at room temperature. The time-of-arrival spectra revealed one or two peaks depending on the gas relative abundances, which were attributed to CF3+ and to Xe2+ ions. However, for Xe concentrations above 60%, only one peak remains (Xe2+). The reduced mobilities obtained from the peak centroid of the time-of-arrival spectra are presented for Xe concentrations in the 5%-95% range.

  10. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p biotechnology, medicine, chemistry and other areas.

  11. Overview of the In-Flight Experimentations and Measurements on the IXV Experimental Vehicle

    Cosson, E.; Giusto, S.; Del Vecchio, A.; Mancuso, S.

    2009-01-01

    After an assessment and then a trade-off of all the passenger experiments proposed by different partners within Europe, a selection of Core Experiments to be embarked on-board IXV to fulfil the Mission and System Requirements has been made. Some Passenger Experiments have also been identified to be potentially embarked, provided it is compatible with the system allocations, since they could bring valuable additional in-flight data. All those experiments include Thermal Protection System (TPS) experiments (including innovative TPS materials), AeroThermoDynamic (ATD) experiments and Health Monitoring System (HMS) experiments. Aside the previously mentioned experiments, a specific Vehicle Model Identification experiment (VMI) aims at validating in-flight the mathematical models of flight dynamics for a gliding re-entry vehicle. This paper also presents a preliminary version of the in- flight measurement plan, encompassing both conventional instrumentation and advanced sensors or even innovative measurement techniques.

  12. Simplified magnetic circuit for the calculation of the stray magnetic flux through the shell gaps

    Collarin, P.; Piovan, R. [Associazioni EURATOM-ENEA-CNR-Univ. di Padova (Italy). Gruppo di Padova per Ricerche sulla Fusione

    1995-12-31

    Significant toroidal magnetic field perturbations, stray flux at the shell gaps and current mismatching in the coils of the toroidal field winding are measured during the start-up and the flat-top phases of RFX. These phenomena are consistent with large and wall locked MHD modes: at first some m = 1 modes evolve separately one after the other, afterwards they concur to a wide and localized plasma perturbation that persists during the flat-top. These perturbations are heavily influenced by the stray magnetic flux through the shell gaps. Hence a magnetic circuit that mainly considers the magnetic reluctance of the conducting shell gaps has been developed in order to estimate this stray flux and, therefore, to evaluate the stabilizing capability of the shell. The observation of the MHD modes, the description of the equivalent magnetic network, the estimation of the stray flux and the comparison with the experimental measurements are reported in the paper.

  13. Simplified magnetic circuit for the calculation of the stray magnetic flux through the shell gaps

    Collarin, P.; Piovan, R.

    1995-01-01

    Significant toroidal magnetic field perturbations, stray flux at the shell gaps and current mismatching in the coils of the toroidal field winding are measured during the start-up and the flat-top phases of RFX. These phenomena are consistent with large and wall locked MHD modes: at first some m = 1 modes evolve separately one after the other, afterwards they concur to a wide and localized plasma perturbation that persists during the flat-top. These perturbations are heavily influenced by the stray magnetic flux through the shell gaps. Hence a magnetic circuit that mainly considers the magnetic reluctance of the conducting shell gaps has been developed in order to estimate this stray flux and, therefore, to evaluate the stabilizing capability of the shell. The observation of the MHD modes, the description of the equivalent magnetic network, the estimation of the stray flux and the comparison with the experimental measurements are reported in the paper

  14. Oscillation experiments on Cesar and Marius - Experimental devices and measurement techniques

    Brunet, Max; Guerange, Jacques; Morier, Francis; Tonolli, Jacky

    1969-02-01

    An original method of measurement of effective cross sections of fissile materials has been developed by the CEA: a central fuel element of a critical experimental reactor is replaced by a sample containing the material to be studied. The replacement technique is based on oscillating the fuel load of the central channel. Signals are measured which are proportional to reactivity variation and to neutron density disturbance at the vicinity of the central channel, these variation and disturbance being produced by the sample oscillation. Measurements have been performed on experimental reactors (Minerve in Fontenay-aux-Roses, and Cesar and Marius in Cadarache). The authors herein describe the experimental devices and measurement techniques implemented in Marius and Cesar. In a first part, they describe the experimental devices which have been used during the three measurement campaigns (between 1965 and 1967). They report the study of measurement accuracies, and of some problems related to the use of the local detector [fr

  15. Experimental Measurement of the Flow Field of Heavy Trucks

    Fred Browand; Charles Radovich

    2005-05-31

    trucks in a tandem configuration. In December 2003, such fuel consumption tests were performed at the same Crows Landing testsite. In the tests, two identical trucks are operated at headways in the range 3-10 meters. The trucks are steered by hand, but longitudinal control is provided by a closed-loop control system. Laser ranging measures truck-to-truck distance, and the control system maintains a truck separation to within about {+-} 3 centimeters. From these tests it is concluded that both trucks save fuel by close-following, that the fuel saving increases with decreasing spacing, and that the trail truck saves more fuel. An average value of fuel saving for each of the two trucks at spacings of 6-10 meters can be taken to be 3.0 liters/100 km.

  16. Experimental validation of error in temperature measurements in thin walled ductile iron castings

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    An experimental analysis has been performed to validate the measurement error of cooling curves measured in thin walled ductile cast iron. Specially designed thermocouples with Ø0.2 mm thermocouple wire in Ø1.6 mm ceramic tube was used for the experiments. Temperatures were measured in plates...

  17. Measurement of ground state properties of neutron-rich nuclei on the r-process path between the N=50 and N=82 shells

    2007-01-01

    The evolution of the unknown ground-state ${\\beta}$-decay properties of the neutron-rich $^{84-89}$Ge, $^{90-93}$Se and $^{102-104}$Sr isotopes near the r-process path is of high interest for the study of the abundance peaks around the N=50 and N=82 neutron shells. At ISOLDE, beams of certain elements with sufficient isotopic purity are produced as molecular sidebands rather than atomic beams. This applies e.g, to germanium, separated as GeS$^{+}$, selenium separated as SeCO$^{+}$ and strontium separated as SrF$^{+}$. However, in case of neutron-rich isotopes produced in actinide targets, new "isobaric" background of atomic ions appears on the mass of the molecular sideband. For this particular case, the ECR charge breeder, positioned in the experimental hall after ISOLDE first mass separation, can be advantageously used as a purification device, by breaking the molecules and removing the molecular contaminants. This proposal indicates our interest in the study of basic nuclear structure properties of neutron...

  18. Experimental study of a swept reflectometer with a single antenna for plasma density profile measurement

    Calderon, M.A.G.; Simonet, F.

    1984-12-01

    The feasibility of a swept microwave reflectometer, with one antenna only, for plasma electron density measurement is studied. Experimental results obtained in the laboratory by simulating the plasma with a metallic mirror are presented

  19. Experimental device for the X-ray energetic distribution measurement in a tokamak plasma

    Perez-Navarro, A.

    1977-01-01

    An experimental system to measure the X-ray spectrum in a tokamak plasma is described, emphasizing its characteristics: resolution, dead time and the pulse pile-up distortion effects on the X-ray spectra. (author) [es

  20. Off-energy-shell variations of two-nucleon transition matrix and three-nucleon problem

    Stingl, M.; Sauer, P.U.

    1975-01-01

    For a schematic three-nucleon problem, approximate analytic expressions are derived for the functional derivatives of measurable three-particle quantities with respect to off-shell variations of the triplet-s two-nucleon transition matrix. Those quantities include neutron-deuteron scattering lengths, trinucleon binding energies, and the 3 He charge form-factor minimum; correlations between off-shell changes in the latter two are discussed. An indication is given how results of this kind may be to decide whether or not a given set of discrepancies between calculated and experimental three-nucleon observables can be reconciled in terms of off-shell variations of a nonretarded hermitean two-nucleon interaction. The treatment is not restricted to special classes of phase-shift equivalent potentials or phase-shift preserving transformations but instead makes use of a systematic parameterization of off-shell variations in terms of symmetric rational approximants of increasing order

  1. 75 FR 18849 - Small Entity Compliance Guide: Prevention of Salmonella Enteritidis in Shell Eggs During...

    2010-04-13

    ...] Small Entity Compliance Guide: Prevention of Salmonella Enteritidis in Shell Eggs During Production... ``Prevention of Salmonella Enteritidis in Shell Eggs During Production, Storage, and Transportation--Small... requiring shell egg producers to implement measures to prevent Salmonella Enteritidis (SE) from...

  2. Structure of 12B from measurement and R-matrix analysis of sigma(theta) for 11B(n,n)11B and 11B(n,n')11Bsup(*)(2.12 MeV), and shell-model calculations

    Koehler, P.E.; Knox, H.D.; Resler, D.A.; Lane, R.O.

    1983-01-01

    Differential cross sections for neutrons, elastically scattered from 11 B and inelastically scattered to the first excited state 11 B*(2.12 MeV) have been measured at 13 incident energies for 4.8 12 B of 7.8 to 10.3 MeV. The cross sections were measured at nine laboratory angles per energy from 20 0 to 160 0 and show considerable resonance structure. Differential inelastic cross sections were also measured for the 4.45 and 5.02 MeV levels of 11 B for 2 to 9 angles at several incident energies. These new elastic and inelastic 2.12 MeV level data have been analyzed together with previously publsihed cross sections for 2 12 B. The shell model was used to calculate states in 12 B as well as spectroscopic amplitudes for reactions leading to these states. The results of this model calculation are compared to those of the R-matrix analysis. Much of the structure observed in the experimental work is predicted by the model for Esub(x) < or approx. 7 MeV. For levels of higher excitation the agreement is not as good. The experimental data are also compared to continuum shell-model calculations. (orig.)

  3. Experimental measurement of flexion-extension movement in normal and corpse prosthetic elbow joint.

    TarniŢă, Daniela; TarniŢă, DănuŢ Nicolae

    2016-01-01

    This paper presents a comparative experimental study of flexion-extension movement in healthy elbow and in the prosthetic elbow joint fixed on an original experimental bench. Measurements were carried out in order to validate the functional morphology and a new elbow prosthesis type ball head. The three-dimensional (3D) model and the physical prototype of our experimental bench used to test elbow endoprosthesis at flexion-extension and pronation-supination movements is presented. The measurements were carried out on a group of nine healthy subjects and on the prosthetic corpse elbow, the experimental data being obtained for flexion-extension movement cycles. Experimental data for the two different flexion-extension tests for the nine subjects and for the corpse prosthetic elbow were acquired using SimiMotion video system. Experimental data were processed statistically. The corresponding graphs were obtained for all subjects in the experimental group, and for corpse prosthetic elbow for both flexion-extension tests. The statistical analysis has proved that the flexion angles of healthy elbows were significantly close to the values measured at the prosthetic elbow fixed on the experimental bench. The studied elbow prosthesis manages to re-establish the mobility for the elbow joint as close to the normal one.

  4. Theoretical background and experimental measurements of human brain noise intensity in perception of ambiguous images

    Runnova, Anastasiya E.; Hramov, Alexander E.; Grubov, Vadim V.; Koronovskii, Alexey A.; Kurovskaya, Maria K.; Pisarchik, Alexander N.

    2016-01-01

    We propose a theoretical approach associated with an experimental technique to quantitatively characterize cognitive brain activity in the perception of ambiguous images. Based on the developed theoretical background and the obtained experimental data, we introduce the concept of effective noise intensity characterizing cognitive brain activity and propose the experimental technique for its measurement. The developed theory, using the methods of statistical physics, provides a solid experimentally approved basis for further understanding of brain functionality. The rather simple way to measure the proposed quantitative characteristic of the brain activity related to the interpretation of ambiguous images will hopefully become a powerful tool for physicists, physiologists and medics. Our theoretical and experimental findings are in excellent agreement with each other.

  5. LOFT experimental measurements uncertainty analyses. Volume XX. Fluid-velocity measurement using pulsed-neutron activation

    Lassahn, G.D.; Taylor, D.J.N.

    1982-08-01

    Analyses of uncertainty components inherent in pulsed-neutron-activation (PNA) measurements in general and the Loss-of-Fluid-Test (LOFT) system in particular are given. Due to the LOFT system's unique conditions, previously-used techniques were modified to make the volocity measurement. These methods render a useful, cost-effective measurement with an estimated uncertainty of 11% of reading

  6. Atomic inner shell ionization: a new method of nuclear interaction lifetimes in the range 10-16-10-18 second. Lifetime measurement of the compound nucleus in the reaction 106Cd+p (Ep=10 and 12 MeV)

    Chemin, J.-F.

    1978-01-01

    A new method to measure the lifetime of the compound nucleus formed in the reaction 106 Cd+p at Ep=10 and 12 MeV is described. The nuclear lifetime is compared to the known lifetime of an atomic inner shell vacancy created in the entrance channel of the nuclear reaction. If the ionization probability in he way-in of the nuclear reaction is kown the compound nucleus lifetime is deduced by a simple relation from the number of compound X-rays measured in coincidence with one of the reaction products. A large number of ionization probability values measured in very small impact parameter collisions induced by H + , He + , D + on Al, Cu, S, Ti, Si, Ag, Cd are reported. The data are interpreted in terms of the corrected SCA theory of ionization. New effects such as angular dependence and trajectory effect (hair-pin-curve effect) are shown experimentally. The influence of a nuclear delay time on the ionization probability value is considered; the effect on a nuclear reaction of the energy losses by the projectile during the ionization process is analysed in detail. The yield curve of the resonant nuclear reaction 27 Al(p,γ) 28 Si is taken as an example. A detailed analysis of the compound nucleus 107 In lifetimes is given. Attention has been paid to competitive processes leading to X ray emission of same energy as the compound X rays. Extensions of the method to measure compound nucleus lifetimes in collision induced by heavy ions and to separate the shape elastic and compound elastic mechanisms are presented [fr

  7. Penning-trap mass measurements of the neutron-rich K and Ca isotopes: Resurgence of the N=28 shell strength

    Lapierre, A.; Brodeur, M.; Brunner, T.; Ettenauer, S.; Finlay, P.; Gallant, A. T.; Simon, V. V.; Delheij, P.; Lunney, D.; Ringle, R.; Savajols, H.; Dilling, J.

    2012-02-01

    We present Penning-trap mass measurements of neutron-rich 44,47-50K and 49,50Ca isotopes carried out at the TITAN facility at TRIUMF-ISAC. The 44K mass measurement was performed with a charge-bred 4+ ion utilizing the TITAN electron beam ion trap and agrees with the literature. The mass excesses obtained for 47K and 49,50Ca are more precise and agree with the values published in the 2003 Atomic Mass Evaluation (AME’03). The 48,49,50K mass excesses are more precise than the AME’03 values by more than 1 order of magnitude. For 48,49K, we find deviations of 7σ and 10σ, respectively. The new 49K mass excess lowers significantly the two-neutron separation energy at the neutron number N=30 compared with the separation energy calculated from the AME’03 mass-excess values and thus increases the N=28 neutron-shell gap energy at Z=19 by approximately 1 MeV.

  8. Proton induced K-shell ionization cross sections for a wide range of elements (4 ≤ Z ≤ 92 within ECPSSR theory and updated experimental data

    B. Deghfel

    2014-10-01

    Full Text Available Within the individual treatment of the elements from beryllium (4Be to uranium (92U, the experimental databases are normalized to their corresponding values of the ECPSSR model to deduce the semi-empirical cross sections. These databases rely on the different compilations available in the literature and on the other data extracted from papers published from 1953 till 2010. In the present paper, a fourth order polynomial was used to fit very well the existing normalized database of K-shell ionization cross sections by proton. These procedures generate a new set of parameters for the sake of the quick calculation of the semi-empirical cross sections. A comparison is made between the deduced results and those obtained by using the ECPSSR model where a remarkable discrepancy is observed at low-proton velocity regime especially for the lightest elements.

  9. Experimental stress analysis of the attachment region of hemispherical shells with attached nozzles. Part 5c. Nonradial nozzle at 22-1/2 degrees 2.625 in. O.D.--2.5000 in. I.D., zero penetration

    Maxwell, R.L.; Holland, R.W.

    1975-06-01

    A continuing series of investigations has been conducted to determine experimentally the stress patterns for the junction region of spherical shells with radially and non-radially attached nozzles when subjected to internal pressure and various types of loadings on the nozzles. Results of the investigations conducted on a nonradially attached nozzle of 2.625 in.-OD, 2.500 in. ID, and finished flush with the inner surface of the hemisphere are reported. The nozzle was inclined at 22 1 / 2 0 from a radial axis. Stress values for the following types of loadings are tabulated: internal pressure applied to the hemisphere and nozzle assembly; an axial load applied collinear with nozzle; a pure torque applied in the radial plane of the nozzle; and a pure bending moment or axial couple applied in various axial planes of the nozzle. Various stress vs. profile curves are presented. These curves present the tabulated stress data in graphical format. (U.S.)

  10. On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress

    Bocko, M.F.; Onofrio, R.

    1996-01-01

    Several high-precision physics experiments are approaching a level of sensitivity at which the intrinsic quantum nature of the experimental apparatus is the dominant source of fluctuations limiting the sensitivity of the measurements. This quantum limit is embodied by the Heisenberg uncertainty principle, which prohibits arbitrarily precise simultaneous measurements of two conjugate observables of a system but allows one-time measurements of a single observable with any precision. The dynamical evolution of a system immediately following a measurement limits the class of observables that may be measured repeatedly with arbitrary precision, with the influence of the measurement apparatus on the system being confined strictly to the conjugate observables. Observables having this feature, and the corresponding measurements performed on them, have been named quantum nondemolition or back-action evasion observables. In a previous review (Caves et al., 1980, Rev. Mod. Phys. 52, 341) a quantum-mechanical analysis of quantum nondemolition measurements of a harmonic oscillator was presented. The present review summarizes the experimental progress on quantum nondemolition measurements and the classical models developed to describe and guide the development of practical implementations of quantum nondemolition measurements. The relationship between the classical and quantum theoretical models is also reviewed. The concept of quantum nondemolition and back-action evasion measurements originated in the context of measurements on a macroscopic mechanical harmonic oscillator, though these techniques may be useful in other experimental contexts as well, as is discussed in the last part of this review. copyright 1996 The American Physical Society

  11. Calculation and experimental measurements in the Argonauta reactor subcritical and exponential facility

    Voi, Dante L.; Furieri, Rosane C.A.A.; Renke, Carlos A.C.; Bastos, Wilma S.; Ferreira, Francisco J.O.

    1997-01-01

    Initial measurements were performed on the exponential and subcritical facility installed on the internal thermal column of the Argonauta reactor at IEN-CNEN-Rio de Janeiro, Brazil. The measurements are include in the reactor physics experimental program for integral parameters determination, for both valid and confirmed theoretical models for reactor calculation. Gamma doses and neutron fluxes were measured with telescopic, proportional counters, wire and foil detectors. Experimental data were compared with results obtained by application of CITATION code. (author). 4 refs., 8 figs

  12. Experimental system to measure excitation cross-sections by electron impact. Measurements for ArI and ArII

    Blanco, F.; Sanchez, J.A.; Aguilera, J.A.; Campos, J.

    1989-01-01

    An experimental set-up to measure excitation cross-section of atomic and molecular levels by electron impact based on the optical method is reported. We also present some measurements on the excitation cross-section for ArI 5p'(1/2)0 level, and for simultaneous ionization and excitation of Ar leading to ArII levels belonging to the 3p 4 4p and 3p 4 4d configurations. (Author)

  13. Compton scattering of 145 keV gamma rays by K-shell electrons of silver

    Acharya, V B; Singh, B; Ghumman, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1981-01-01

    Differential cross-sections for the incoherent scattering of 145 keV photons from K-shell electrons of silver are measured at scattering angles ranging from 30/sup 0/ to 150/sup 0/ to investigate the effect of electron binding on the scattering process in the low energy region. Measurements are made employing two NaI (Tl) scintillation spectrometers and a slow-fast coincidence circuit of resolving time 30 ns. The experimental results are compared with the available theoretical data. The total K-shell scattering cross-section is also estimated and is about 45% of the free electron cross-section.

  14. Technique of measuring and evaluating the R3E dia. 112 experimental fuel element

    Stanc, S.; Badiar, S.

    1974-10-01

    The charging is considered of the R3E experimental fuel element having a diameter of 112 mm which will serve the simultaneous temperature measurement on 15 sites and neutron flux measurement on 7 sites aimed at verifying the improved R3-type fuel element with extended cladding and a new toroidal spacing. The temperature will be measured using jacket thermocouples while neutron flux will be measured by self-powered detectors. The methods are described of checking the measuring chain by determining the loop resistance of the thermocouples and SPN detectors in order to verify the correctness of the measured data. (J.B.)

  15. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  16. Impact of measurement uncertainty from experimental load distribution factors on bridge load rating

    Gangone, Michael V.; Whelan, Matthew J.

    2018-03-01

    Load rating and testing of highway bridges is important in determining the capacity of the structure. Experimental load rating utilizes strain transducers placed at critical locations of the superstructure to measure normal strains. These strains are then used in computing diagnostic performance measures (neutral axis of bending, load distribution factor) and ultimately a load rating. However, it has been shown that experimentally obtained strain measurements contain uncertainties associated with the accuracy and precision of the sensor and sensing system. These uncertainties propagate through to the diagnostic indicators that in turn transmit into the load rating calculation. This paper will analyze the effect that measurement uncertainties have on the experimental load rating results of a 3 span multi-girder/stringer steel and concrete bridge. The focus of this paper will be limited to the uncertainty associated with the experimental distribution factor estimate. For the testing discussed, strain readings were gathered at the midspan of each span of both exterior girders and the center girder. Test vehicles of known weight were positioned at specified locations on each span to generate maximum strain response for each of the five girders. The strain uncertainties were used in conjunction with a propagation formula developed by the authors to determine the standard uncertainty in the distribution factor estimates. This distribution factor uncertainty is then introduced into the load rating computation to determine the possible range of the load rating. The results show the importance of understanding measurement uncertainty in experimental load testing.

  17. An experimental device for measurement of gas permeation in solid matrices

    De Salve, M.; Mazzi, E.; Zucchetti, M.

    1996-01-01

    The inventory in and the permeation through fusion reactor structures of hydrogen and its isotopes play an important role in the machine operation, evolution of material properties, and safety. An experimental and research activity for the determination of permeability (and derived parameters) of gases in solid matrices is described. It uses a gas permeation method, that basically consists in the measure of the time evolution of the gas pressure in a chamber in which vacuum has been previously made (downstream volume). This chamber is separated from another one, full of the gas in exam (upstream volume), by means of a membrane of the material under study. The experimental installation is described. The first stage of the experimental activity has dealt with the set-up of the device, the volume calibration, and the definition of the parameters range for which the installation can give reliable measurements. The subsequent stage of the activity has consisted in the measurement of the permeability, and then of the diffusion coefficient, of nitrogen in some materials at room temperature. Concurrently with the experimental activity, a model has been set-up and implemented in a computer code: this code permits to evaluate the time evolution of the pressure in the downstream chamber. With this code, using the measured parameters, the time evolution of the pressure experimentally measured has been satisfactorily reproduced. (author)

  18. Experimental verification of neutron emission method for measuring of fissile material content in spent fuel

    Abou-Zaid, A.A.; Pytel, K.

    1999-01-01

    A non-destructive method of measurement of fissile nuclides content remained in spent fuel from research reactor is presented. The method, called the neutron emission one, is based on counting of fission neutrons emitted from fissile isotopes: 235 U, 239 Pu, 241 Pu. Fissions are induced mainly by neutrons supplied by the external neutron source. Another effects contribute also to the measured neutron population, e. g. source neutrons from penetrating the fuel without being captured and scattered, neutrons (α,n) reactions and from spontaneous fissions of actinides. Complexity of phenomena occurring within the measurement facility required the detailed numerical simulation and experimental studies prior design of ultimate measurement stand. In the previous paper, the results of Monte Carlo simulation on optimisation of measuring stand for neutron emission method were presented. On the basis of those results, the experimental stand for Maria reactor fuel investigation has been designed and manufactured. The present paper, being the continuation of previous one, contains the description of experimental facility and the results of measurements for the fresh fuel (without burnup) and the fuel mock-up (without fissile materials). Although some discrepancies were found between Monte Carlo and experimental results, the main conclusions concerning the optimal geometry of measuring facility have been confirmed. (author)

  19. Reaction cross section measurements of neutron-rich exotic nuclei in the vicinity of closed shells N=20 and N=28

    Khouaja, A.

    2003-12-01

    Using the direct method, the mean energy integrated reaction cross section was investigated for a wide range of neutron-rich nuclei (N → Ar) at GANIL. Using the parametrisation of S. Kox, 19 new radii measurements (reaction cross sections) were obtained. By the isotopic, isotonic and isospin dependence, the evolution of the strong reduced radius was studied according to the excess of neutrons. New halo effect is proposed to the nuclei of Mg 35 and S 44 . A quadratic parametrization is also proposed for the nuclear radius as a function of the isospin in the region of closed shells N=8 and N=28. In addition, we used a modified version of the Glauber model for studying the tail and matter distribution of nuclei. Indeed, using our new data the effects of the nuclear size (root mean square radii) and the matter distribution (diffusivity) were de-convoluted for each isotope. The root mean square radii of Na and Mg isotopes obtained so far were consistent with the ones from literature. (author)

  20. Coherent versus incoherent resonant emission: an experimental method for easy discrimination and measurement

    Ceccherini, S.; Colocci, M.; Gurioli, M.; Bogani, F.

    1998-11-01

    The distinction between the coherent and the incoherent component of the radiation emitted from resonantly excited material systems is difficult experimentally, particularly when ultra-short optical pulses are used for excitation. We propose an experimental procedure allowing an easy measurement of the two components. The method is completely general and applicable to any kind of physical system; its feasibility is demonstrated on the resonant emission from excitons in a semiconductor quantum well.

  1. Modal analysis of a stiffened toroidal shell sector

    Cerreta, R.; Di Pietro, E.; Pizzuto, A.

    1987-01-01

    This paper presents the results of the modal analysis of a sector of the toroidal vacuum vessel of a new experimental machine for research in the field of controlled thermonuclear fusion (FTU - Frascati Tokamak Upgrade). The vacuum vessel, one of the most critical components of the experimental device, consist of 12 stainless steel toroidal sectors, and it is designed to withstand pulsed electromagnetic loads during operation. Results of the modal analysis of the stiffened toroidal shell sector are compared and discussed with regard to the experimental data. Theoretical eigenvalues and eigenvectors have been predicted by means of ABAQUS finite element code. Experimental analysis has been carried out on a full scale model and natural frequencies have been measured. Satisfactory agreement between experimental and theoretical eigenvalues has been found

  2. Atomic mass formula with linear shell terms

    Uno, Masahiro; Yamada, Masami; Ando, Yoshihira; Tachibana, Takahiro.

    1981-01-01

    An atomic mass formula is constructed in the form of a sum of gross terms and empirical linear shell terms. Values of the shell parameters are determined after the statistical method of Uno and Yamada, Which is characterized by inclusion of the error inherent in the mass formula. The resulting formula reproduces the input masses with the standard deviation of 393 keV. A prescription is given for estimating errors of calculated masses. The mass formula is compared with recent experimental data of Rb, Cs and Fr isotopes, which are not included in the input data, and also with the constant-shell-term formula of Uno and Yamada. (author)

  3. Experimental demonstration of the finite measurement time effect on the Feynman-{alpha} technique

    Wallerbos, E.J.M.; Hoogenboom, J.E

    1998-09-01

    The reactivity of a subcritical system is determined by fitting two different theoretical models to a measured Feynman-{alpha} curve. The first model is the expression usually found in the literature, which can be shown to be the expectation value of the experimental quality if the measurement time is infinite. The second model is a new expression which is the expectation value of the experimental quantity for a finite measurement time. The reactivity inferred with the new model is seen to be independent of the length of the fitting interval, whereas the reactivity inferred with the conventional model is seen to vary. This difference demonstrates the effect of the finite measurement time. As a reference, the reactivity is also measured with the pulsed-neutron source method. It is seen to be in good agreement with the reactivity obtained with the Feynman-{alpha} technique when the new expression is applied.

  4. Development of an Experimental Measurement System for Human Error Characteristics and a Pilot Test

    Jang, Tong-Il; Lee, Hyun-Chul; Moon, Kwangsu

    2017-01-01

    Some items out of individual and team characteristics were partially selected, and a pilot test was performed to measure and evaluate them using the experimental measurement system of human error characteristics. It is one of the processes to produce input data to the Eco-DBMS. And also, through the pilot test, it was tried to take methods to measure and acquire the physiological data, and to develop data format and quantification methods for the database. In this study, a pilot test to measure the stress and the tension level, and team cognitive characteristics out of human error characteristics was performed using the human error characteristics measurement and experimental evaluation system. In an experiment measuring the stress level, physiological characteristics using EEG was measured in a simulated unexpected situation. As shown in results, although this experiment was pilot, it was validated that relevant results for evaluating human error coping effects of workers’ FFD management guidelines and unexpected situation against guidelines can be obtained. In following researches, additional experiments including other human error characteristics will be conducted. Furthermore, the human error characteristics measurement and experimental evaluation system will be utilized to validate various human error coping solutions such as human factors criteria, design, and guidelines as well as supplement the human error characteristics database.

  5. Experimental Test of Entropic Noise-Disturbance Uncertainty Relations for Spin-1/2 Measurements.

    Sulyok, Georg; Sponar, Stephan; Demirel, Bülent; Buscemi, Francesco; Hall, Michael J W; Ozawa, Masanao; Hasegawa, Yuji

    2015-07-17

    Information-theoretic definitions for noise and disturbance in quantum measurements were given in [Phys. Rev. Lett. 112, 050401 (2014)] and a state-independent noise-disturbance uncertainty relation was obtained. Here, we derive a tight noise-disturbance uncertainty relation for complementary qubit observables and carry out an experimental test. Successive projective measurements on the neutron's spin-1/2 system, together with a correction procedure which reduces the disturbance, are performed. Our experimental results saturate the tight noise-disturbance uncertainty relation for qubits when an optimal correction procedure is applied.

  6. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  7. Importance-truncated shell model for multi-shell valence spaces

    Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.

  8. Measurements of experimental precision for trials with cowpea (Vigna unguiculata L. Walp.) genotypes.

    Teodoro, P E; Torres, F E; Santos, A D; Corrêa, A M; Nascimento, M; Barroso, L M A; Ceccon, G

    2016-05-09

    The aim of this study was to evaluate the suitability of statistics as experimental precision degree measures for trials with cowpea (Vigna unguiculata L. Walp.) genotypes. Cowpea genotype yields were evaluated in 29 trials conducted in Brazil between 2005 and 2012. The genotypes were evaluated with a randomized block design with four replications. Ten statistics that were estimated for each trial were compared using descriptive statistics, Pearson correlations, and path analysis. According to the class limits established, selective accuracy and F-test values for genotype, heritability, and the coefficient of determination adequately estimated the degree of experimental precision. Using these statistics, 86.21% of the trials had adequate experimental precision. Selective accuracy and the F-test values for genotype, heritability, and the coefficient of determination were directly related to each other, and were more suitable than the coefficient of variation and the least significant difference (by the Tukey test) to evaluate experimental precision in trials with cowpea genotypes.

  9. Experimental measurements and prediction of liquid densities for n-alkane mixtures

    Ramos-Estrada, Mariana; Iglesias-Silva, Gustavo A.; Hall, Kenneth R.

    2006-01-01

    We present experimental liquid densities for n-pentane, n-hexane and n-heptane and their binary mixtures from (273.15 to 363.15) K over the entire composition range (for the mixtures) at atmospheric pressure. A vibrating tube densimeter produces the experimental densities. Also, we present a generalized correlation to predict the liquid densities of n-alkanes and their mixtures. We have combined the principle of congruence with the Tait equation to obtain an equation that uses as variables: temperature, pressure and the equivalent carbon number of the mixture. Also, we present a generalized correlation for the atmospheric liquid densities of n-alkanes. The average absolute percentage deviation of this equation from the literature experimental density values is 0.26%. The Tait equation has an average percentage deviation of 0.15% from experimental density measurements

  10. Further optimization studies of experimental dynamic responses measured on the HTGC Dragon reactor

    Cummins, J.D.

    1968-04-01

    This report considers some measurements made of the dynamics of the HTGC Dragon reactor and the optimization of a mathematical model which represents the reactor, by altering the parameters until a least squares fit between the experimental responses and the mathematical model is obtained. The experimental information was processed in various ways. The experimental response to an impulse, step or periodic sine wave change in reactivity was processed as an impulse, step or periodic sine wave response respectively and compared with a similar response from the model. In other studies the result of a binary cross correlation experiment (effectively an impulse response input) was processed as a frequency response and this experimental frequency response was compared with the frequency response from the mathematical model. It was possible therefore to compare the optimum values of parameters, obtained for different forms of perturbing signal and for different methods of processing and to relate the optima obtained to the problem of parameter estimation. (author)

  11. Membrane reinforcement in concrete shells: A review

    Gupta, A.K.

    1984-01-01

    A historical evolution of the membrane reinforcement design in concrete shells is presented. Theoretical developments, experimental verifications and the history of US codes and standards have been traced. For two decades now, the evidence is converging towards application of the principle of minimum resistance. This principle is rational, and it can reasonably explain the experimental results. (orig.)

  12. Progress in nuclear measuring and experimental techniques by application of microelectronics. 1

    Meiling, W.

    1984-01-01

    In the past decade considerable progress has been made in nuclear measuring and experimental techniques by developing position-sensitive detector systems and widely using integrated circuits and microcomputers for data acquisition and processing as well as for automation of measuring processes. In this report which will be published in three parts those developments are reviewed and demonstrated on selected examples. After briefly characterizing microelectronics, the use of microelectronic elements for radiation detectors is reviewed. (author)

  13. Investigation and measurement of radio thermoluminescence properties of some calci tic mollusc shells of the Persian Gulf and the Oman Sea (for γ radiation dosimetry)

    Ghafourian, H.; Rabbani, M.; Rouhi, U.

    2000-01-01

    Biogenic Calcium Carbonate, particularly as naturally thermoluminescent calci tic mollusc shells may serve as excellent radio thermoluminescent dosimeters. In this study the radio thermoluminescence properties of 8 different bivalves of the Persian Gulf, the Oman Sea and the internal calcite shell of Sepia sp. are investigated. The results of this investigation have shown that the shells of Sepia sp., Pinctata radiata and Card ita bicolor as appropriate dosimeters for both personal and industrial dosimetry purposes, among which Sepia sp. is the most sensitive one. Callista umbonella and Mactra sp. are relatively less thermoluminescent while Saccostrea Cucullata and Chlamys ruschenbergerii are completely inert with respect to γ - thermoluminescence. Thermoluminescence properties of Anadara refescens and Anadara secticostata decrease surprisingly by an increase in the absorbed dose of γ radiation, which can mainly be interpreted as the result of crystal lattice destruction caused by ionizing radiation

  14. Experimental test of far-infrared polarimetry for Faraday rotation measurements on the TFR 600 Tokamak

    Soltwisch, H [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Plasmaphysik; Association Euratom-Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)); Equipe, T F.R. [Association Euratom-CEA sur la Fusion, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Dept. de Recherches sur la Fusion Controlee

    1981-09-01

    The results are reported on the feasibility of using far-infrared polarimetry for Faraday rotation diagnostic measurements on the TRF Tokamak. Precise quantitative results were not obtained but a satisfactory agreement with a simple theoretical model leads to a good understanding of the experimental limitations of the method.

  15. Experimental evaluation of permanent magnet probe flowmeter measuring high temperature liquid sodium flow in the ITSL

    Jeong, Uiju; Kim, Yun Ho [Nuclear engineering Department, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Jong-Man; Kim, Tae-Joon [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Sung Joong, E-mail: sungjkim@mit.edu [Nuclear engineering Department, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-12-15

    Highlights: • An Instrument Test Sodium Loop (ITSL) has been built and tested in various conditions at KAERI. • Free fall of liquid sodium was conducted experimentally and numerically. • A Permanent Magnet Probe Flowmeter (PMPF) was experimented in the ITSL. • Excellent linearity of the PMPF was achieved under high temperature condition. - Abstract: The Instrument Test Sodium Loop (ITSL) installed at Korea Atomic Energy Research Institute (KAERI) is a medium-size experimental facility dedicated to obtaining relevant experimental data of liquid sodium flow characteristics under various thermal hydraulic conditions and sodium purification. The ITSL has been utilized to perform thermal flow measurement of the liquid sodium and to calibrate a Permanent Magnet Probe Flowmeter (PMPF). The primary objective of this study is to obtain liquid sodium flow rate given a wide temperature range using the PMPF. Non-stationary method was adopted for the calibration of the probe given the liquid sodium temperature range of 150–415 °C. A relationship between the measured voltage signal and flow rate was obtained successfully. It is observed that the calibration experiments result in excellent linear relationships between measured voltage and volumetric flow rate at various temperature conditions. Also a computational analysis using FlowMaster, is employed to facilitate the calibration process by predicting the liquid sodium flow rate. Finally the effect of the fluid temperature on thermal flow measurements is discussed in light of the obtained experimental data.

  16. Development of the Neuron Assessment for Measuring Biology Students' Use of Experimental Design Concepts and Representations

    Dasgupta, Annwesa P.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    Researchers, instructors, and funding bodies in biology education are unanimous about the importance of developing students' competence in experimental design. Despite this, only limited measures are available for assessing such competence development, especially in the areas of molecular and cellular biology. Also, existing assessments do not…

  17. Experimentally Measured Susceptibility to Peer Influence and Adolescent Sexual Behavior Trajectories: A Preliminary Study

    Choukas-Bradley, Sophia; Giletta, Matteo; Widman, Laura; Cohen, Geoffrey L.; Prinstein, Mitchell J.

    2014-01-01

    A performance-based measure of peer influence susceptibility was examined as a moderator of the longitudinal association between peer norms and trajectories of adolescents' number of sexual intercourse partners. Seventy-one 9th grade adolescents (52% female) participated in an experimental "chat room" paradigm involving…

  18. Experimentally measured susceptibility to peer influence and adolescent sexual behavior trajectories : A preliminary study

    Choukas-Bradley, S.; Giletta, M.; Widman, L.; Cohen, G.L.; Prinstein, M.J.

    2014-01-01

    A performance-based measure of peer influence susceptibility was examined as a moderator of the longitudinal association between peer norms and trajectories of adolescents' number of sexual intercourse partners. Seventy-one 9th grade adolescents (52% female) participated in an experimental "chat

  19. An experimental model for measuring gastrointestinal bleeding rate using Tc-99m DTPA in rabbits

    Owunwanne, A.; Abdel-Dayem, H.M.; Sadek, S.; Yakoub, T.; Mahajan, K.K.; Ericsson, S.B.

    1987-01-01

    An animal experimental model to measure the rate of gastrointestinal bleeding rate in a rabbit using Tc-99m DTPA is described. It was possible to detect a bleeding rate of 0.1 ml/min. However, the model could not be used to calculate the minimum amount of radioactivity needed to detect the bleeding site. (orig.) [de

  20. On the Dielectric Constant for Acetanilide: Experimental Measurements and Effect on Energy Transport

    Careri, G.; Compatangelo, E.; Christiansen, P. L.; Halding, J.; Skovgaard, O.

    1987-01-01

    Experimental measurements of the dielectric constant for crystalline acetanilide powder for temperatures ranging from - 140°C to 20°C and for different hydration levels are presented. A Davydov-soliton computer model predicts dramatic changes in the energy transport and storage for typically increased values of the dielectric constant.

  1. Experimental measurements of the solubility of technetium under near-field conditions

    Pilkington, N.J.; Wilkins, J.D.

    1988-05-01

    The solubility of technetium in contact with hydrated technetium dioxide under near-field conditions has been measured experimentally. The values obtained were changed little by a change in pH or in the filtration method used. The presence of organic degradation products increased slightly the solution concentration of technetium. (author)

  2. COMPARISON OF EXPERIMENTAL-DESIGNS COMBINING PROCESS AND MIXTURE VARIABLES .2. DESIGN EVALUATION ON MEASURED DATA

    DUINEVELD, C. A. A.; Smilde, A. K.; Doornbos, D. A.

    1993-01-01

    The construction of a small experimental design for a combination of process and mixture variables is a problem which has not been solved completely by now. In a previous paper we evaluated some designs with theoretical measures. This second paper evaluates the capabilities of the best of these

  3. COMPARISON OF EXPERIMENTAL-DESIGNS COMBINING PROCESS AND MIXTURE VARIABLES .2. DESIGN EVALUATION ON MEASURED DATA

    DUINEVELD, CAA; SMILDE, AK; DOORNBOS, DA

    The construction of a small experimental design for a combination of process and mixture variables is a problem which has not been solved completely by now. In a previous paper we evaluated some designs with theoretical measures. This second paper evaluates the capabilities of the best of these

  4. The transverse shear deformation behaviour of magneto-electro-elastic shell

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H. [UniversitiTeknologi PETRONAS, Perak (Malaysia); Faris, Waleed [International Islamic University Malaysia, Perak (Malaysia)

    2016-01-15

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour.

  5. The transverse shear deformation behaviour of magneto-electro-elastic shell

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H.; Faris, Waleed

    2016-01-01

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour

  6. Experimental technique to measure thoron generation rate of building material samples using RAD7 detector

    Csige, I.; Szabó, Zs.; Szabó, Cs.

    2013-01-01

    Thoron ( 220 Rn) is the second most abundant radon isotope in our living environment. In some dwellings it is present in significant amount which calls for its identification and remediation. Indoor thoron originates mainly from building materials. In this work we have developed and tested an experimental technique to measure thoron generation rate in building material samples using RAD7 radon-thoron detector. The mathematical model of the measurement technique provides the thoron concentration response of RAD7 as a function of the sample thickness. For experimental validation of the technique an adobe building material sample was selected for measuring the thoron concentration at nineteen different sample thicknesses. Fitting the parameters of the model to the measurement results, both the generation rate and the diffusion length of thoron was estimated. We have also determined the optimal sample thickness for estimating the thoron generation rate from a single measurement. -- Highlights: • RAD7 is used for the determination of thoron generation rate (emanation). • The described model takes into account the thoron decay and attenuation. • The model describes well the experimental results. • A single point measurement method is offered at a determined sample thickness

  7. Basic Design of Experimental Facility for Measuring Pressure Drop of IHX in a SFR

    Ko, Yung-Joo; Eoh, Jae-Hyuk; Kim, Hyungmo; Lee, Dong-Won; Jeong, Ji-Young; Lee, Hyeong-Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dong Eok [Kyungpook National Univ., Daegu (Korea, Republic of)

    2015-05-15

    The conceptual design of the Prototype gen-IV SFR (PGSFR) with a 150 MWe capacity was commenced in 2012 through the national long-term R and D program by KAERI. Then, PGSFR is now being designed with the defense in depth concept with active, passive and inherent safety features to acquire design approval for PGSFR from the Korean regulatory authority by 2020. PGSFR is a sodium-cooled pool-type fast reactor with all primary components including the primary heat transport system (PHTS) pumps and IHXs are located inside a sodium pool. The heat produced due to fission in the core is transported by primary sodium to secondary sodium in a sodium to sodium intermediate heat exchanger (IHX), which in turn is transferred to water in a steam generator (SG). Basic design of the IHX flow characteristic test facility, WEIPA was conducted based on the three-level scaling methodology in order to preserve the flow characteristics of the IHX in PGSFR. This test facility is intended to measure a high precision pressure drop at the shell-side of the IHX. This paper describes the aspects of the current design features of the IHX in PGSFR, scaling and basic design features of the facility.

  8. Strontium and fluorine in tuatua shells

    Trompetter, W.J.; Coote, G.E.

    1993-01-01

    This report describes the research to date on the elemental distributions of strontium, calcium, and fluorine in a collection of 24 tuatua shells (courtesy of National Museum). Variations in elemental concentrations were measured in the shell cross-sections using a scanning proton microprobe (PIXE and PIGME). In this paper we report the findings to date, and present 2-D measurement scans as illustrative grey-scale pictures. Our results support the hypothesis that increased strontium concentrations are deposited in the shells during spawning, and that fluorine concentration is proportional to growth rate. (author). 15 refs.; 13 figs.; 1 appendix

  9. Inner-shell photodetachment from Ru-

    Dumitriu, I.; Gorczyca, T. W.; Berrah, N.; Bilodeau, R. C.; Pesic, Z. D.; Rolles, D.; Walter, C. W.; Gibson, N. D.

    2010-01-01

    Inner-shell photodetachment from Ru - was studied near and above the 4p excitation region, 29-to-91-eV photon energy range, using a merged ion-photon-beam technique. The absolute photodetachment cross sections of Ru - ([Kr]4d 7 5s 2 ) leading to Ru + , Ru 2+ , and Ru 3+ ion production were measured. In the near-threshold region, a Wigner s-wave law, including estimated postcollision interaction effects, locates the 4p 3/2 detachment threshold between 40.10 and 40.27 eV. Additionally, the Ru 2+ product spectrum provides evidence for simultaneous two-electron photodetachment (likely to the Ru + 4p 5 4d 6 5s 2 state) located near 49 eV. Resonance effects are observed due to interference between transitions of the 4p electrons to the quasibound 4p 5 4d 8 5s 2 states and the 4d→εf continuum. Despite the large number of possible terms resulting from the Ru - 4d open shell, the cross section obtained from a 51-state LS-coupled R-matrix calculation agrees qualitatively well with the experimental data.

  10. Soft template synthesis of yolk/silica shell particles.

    Wu, Xue-Jun; Xu, Dongsheng

    2010-04-06

    Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed.

  11. Effect of supercritical water shell on cavitation bubble dynamics

    Shao Wei-Hang; Chen Wei-Zhong

    2015-01-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. (paper)

  12. Calibration of uncertain inputs to computer models using experimentally measured quantities and the BMARS emulator

    Stripling, H.F.; McClarren, R.G.; Kuranz, C.C.; Grosskopf, M.J.; Rutter, E.; Torralva, B.R.

    2011-01-01

    We present a method for calibrating the uncertain inputs to a computer model using available experimental data. The goal of the procedure is to produce posterior distributions of the uncertain inputs such that when samples from the posteriors are used as inputs to future model runs, the model is more likely to replicate (or predict) the experimental response. The calibration is performed by sampling the space of the uncertain inputs, using the computer model (or, more likely, an emulator for the computer model) to assign weights to the samples, and applying the weights to produce the posterior distributions and generate predictions of new experiments within confidence bounds. The method is similar to the Markov chain Monte Carlo (MCMC) calibration methods with independent sampling with the exception that we generate samples beforehand and replace the candidate acceptance routine with a weighting scheme. We apply our method to the calibration of a Hyades 2D model of laser energy deposition in beryllium. We employ a Bayesian Multivariate Adaptive Regression Splines (BMARS) emulator as a surrogate for Hyades 2D. We treat a range of uncertainties in our system, including uncertainties in the experimental inputs, experimental measurement error, and systematic experimental timing errors. The results of the calibration are posterior distributions that both agree with intuition and improve the accuracy and decrease the uncertainty in experimental predictions. (author)

  13. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum

    Ryan A. Shanks

    2017-05-01

    Full Text Available Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.

  14. Experimental sources of variation in avian energetics: estimated basal metabolic rate decreases with successive measurements.

    Jacobs, Paul J; McKechnie, Andrew E

    2014-01-01

    Basal metabolic rate (BMR) is one of the most widely used metabolic variables in endotherm ecological and evolutionary physiology. Surprisingly few studies have investigated how BMR is influenced by experimental and analytical variables over and above the standardized conditions required for minimum normothermic resting metabolism. We tested whether avian BMR is affected by habituation to the conditions experienced during laboratory gas exchange measurements by measuring BMR five times in succession in budgerigars (Melopsittacus undulatus) housed under constant temperature and photoperiod. Both the magnitude and the variability of BMR decreased significantly with repeated measurements, from 0.410 ± 0.092 W (n = 9) during the first measurement to 0.285 ± 0.042 W (n = 9) during the fifth measurement. Thus, estimated BMR decreased by ∼30% within individuals solely on account of the number of times they had previously experienced the experimental conditions. The most likely explanation for these results is an attenuation with repeated exposure of the acute stress response induced by birds being handled and placed in respirometry chambers. Our data suggest that habituation to experimental conditions is potentially an important determinant of observed BMR, and this source of variation needs to be taken into account in future studies of metabolic variation among individuals, populations, and species.

  15. Role of experimental resolution in measurements of critical layer thickness for strained-layer epitaxy

    Fritz, I.J.

    1987-01-01

    Experimental measurements of critical layer thicknesses (CLT's) in strained-layer epitaxy are considered. Finite experimental resolution can have a major effect on measured CLT's and can easily lead to spurious results. The theoretical approach to critical layer thicknesses of J. W. Matthews [J. Vac. Sci. Technol. 12, 126 (1975)] has been modified in a straightforward way to predict the apparent critical thickness for an experiment with finite resolution in lattice parameter. The theory has also been modified to account for the general empirical result that fewer misfit dislocations are generated than predicted by equilibrium calculation. The resulting expression is fit to recent x-ray diffraction data on InGaAs/GaAs and SiGe/Si. The results suggest that CLT's in these systems may not be significantly larger than predicted by equilibrium theory, in agreement with high-resolution measurements

  16. Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning

    Nicholson, Charles D.; Barker, Kash; Ramirez-Marquez, Jose E.

    2016-01-01

    This work develops and compares several flow-based vulnerability measures to prioritize important network edges for the implementation of preparedness options. These network vulnerability measures quantify different characteristics and perspectives on enabling maximum flow, creating bottlenecks, and partitioning into cutsets, among others. The efficacy of these vulnerability measures to motivate preparedness options against experimental geographically located disruption simulations is measured. Results suggest that a weighted flow capacity rate, which accounts for both (i) the contribution of an edge to maximum network flow and (ii) the extent to which the edge is a bottleneck in the network, shows most promise across four instances of varying network sizes and densities. - Highlights: • We develop new flow-based measures of network vulnerability. • We apply these measures to determine the importance of edges after disruptions. • Networks of varying size and density are explored.

  17. 1988 Progress report of the EDF department for the analysis of experimental data and measurements

    Anon.

    1988-01-01

    The 1988 activity report of the department for the analysis of experimental data and measurements (Department of Retour d'Experience Mesures-Essais, of EDF, France), is presented. The mission of the department is to collect and investigate data from the nuclear power plant operations. The investigations started before 1988, were carried on in 1988. The department main activities are: technology and information transfer from experimental activities, the construction of a standard data acquisition and processing system, the actions involving the N4 turbine, and the modelling and construction of new non-destructive methods of control. The most important facts and activities carried out in 1988 are presented [fr

  18. Inverse kinetics technique for reactor shutdown measurement: an experimental assessment. [AGR

    Lewis, T. A.; McDonald, D.

    1975-09-15

    It is proposed to use the Inverse Kinetics Technique to measure the subcritical reactivity as a function of time during the testing of the nitrogen injection systems on AGRs. A description is given of an experimental assessment of the technique by investigating known transients created by control rod movements on a small experimental reactor, (2m high, 1m radius). Spatial effects were observed close to the moving rods but otherwise derived reactivities were independent of detector position and agreed well with the existing calibrations. This prompted the suggestion that data from installed reactor instrumentation could be used to calibrate CAGR control rods.

  19. Experimental measurements of competition between fundamental and second harmonic emission in a quasi-optical gyrotron

    Alberti, S.; Pedrozzi, M.; Tran, M.Q.; Hogge, J.P.; Tran, T.M.; Muggli, P.; Joedicke, B.; Mathews, H.G.

    1990-04-01

    A quasi-optical gyrotron (QOG) designed for operation at the fundamental (Ω ce ≅100 GHz) exhibits simultaneous emission at Ω ce and 2Ω ce (second harmonic). For a beam current of 4 A, 20% of the total RF power is emitted at the second harmonic. The experimental measurements show that the excitation of the second harmonic is only possible when the fundamental is present. The frequency of the second harmonic is locked by the frequency of the fundamental. Experimental evidence shows that when the second harmonic is not excited, total efficiency is enhanced. (author) 6 refs., 5 figs., 1 tab

  20. Improvements in the measurement system of a biological Magnetic Induction Tomographical experimental setup

    Bras, N. B.; Martins, R. C.; Serra, A. C.

    2010-01-01

    Magnetic Induction Tomography (MIT) is an imaging technique that allows mapping the internal structure complex conductivity of a body. In this paper a feasibility study to implement a higher resolution MIT system for biological tissues is carried out. Recent improvements in measured signal stability and accuracy as well as a much improved angular resolution measurement of the multi-coil setup are presented which, together with a new mechanical design allows obtaining longer stable and more accurate acquisitions. This allows improving the number of measurements without trends or external perturbations, leading to a better conductivity resolution and to an enhanced image reconstruction. Throughout the paper experimental data is used to consolidate results.

  1. Measurements of gamma-ray energy deposition in a heterogeneous reactor experimental configuration and their analysis

    Calamand, D.; Wouters, R. de; Knipe, A.D.; Menil, R.

    1984-10-01

    An important contribution to the power output of a fast reactor is provided by the energy deposition from gamma-rays, and is particularly significant in the inner fertile zones of heterogeneous breeder reactor designs. To establish the validity of calculational methods and data for such systems an extensive series of measurements was performed in the zero power reactor Masurca, as part of the RACINE programme. The experimental study involved four European laboratories and the measurement techniques covered a range of thermoluminescent dosemeters and an ionization chamber. The present paper describes and compares the gamma-ray energy deposition measurements and analysis

  2. Atomic inner-shell physics

    Crasemann, B.

    1985-01-01

    This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions

  3. Coal option. [Shell Co

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  4. Shell-like structures

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  5. Measured energy dependence of L-shell photoelectric cross sections of lead in the energy region 17-50 keV

    Arora, S K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1980-08-28

    The energy dependence of L-shell photoelectric cross sections for lead in the energy region 17-50 keV has been investigated. The method utilises external conversion x-rays as the source of photons and it yields relative rather than absolute cross sections, but is simpler and more accurate. The results show fairly good agreement with theory.

  6. Mechanisms of gas retention and release: Experimental results for Hanford single-shell waste tanks 241-A-101, 241-S-106, and 241-U-103

    Rassat, S.D.; Caley, S.M.; Bredt, P.R.; Gauglitz, P.A.; Rinehart, D.E.; Forbes, S.V.

    1998-09-01

    The 177 underground waste storage tanks at the Hanford Site contain millions of gallons of radioactive waste resulting from the purification of nuclear materials and related processes. Through various mechanisms, flammable gas mixtures of hydrogen, ammonia, methane, and nitrous oxide are generated and retained in significant quantities within the waste in many (∼25) of these tanks. The potential for large releases of retained gas from these wastes creates a flammability hazard. It is a critical component of the effort to understand the flammability hazard and a primary goal of this laboratory investigation to establish an understanding of the mechanisms of gas retention and release in these wastes. The results of bubble retention experimental studies using waste samples from several waste tanks and a variety of waste types support resolution of the Flammable Gas Safety Issue. Gas bubble retention information gained in the pursuit of safe storage will, in turn, benefit future waste operations including salt-well pumping, waste transfers, and sluicing/retrieval

  7. Experimental Measurements of Temporal Dispersion for Underwater Laser Communications and Imaging

    Cochenour, Brandon Michael

    The challenge in implementing optical sensors underwater lies in the high variability of the ocean environment where propagation of light in the ocean is complicated by absorption and scattering. Most underwater optical sensors operate in the blue/green portion of the electromagnetic spectrum where seawater exhibits an absorption minimum. Mitigating scattering however is a greater challenge. In particular, scattering causes both spatial distortion (beam spreading) and temporal dispersion (pulse spreading or distortion). Each of type of dispersion decreases sensor performance (operating range, image resolution, data bandwidth, etc.). While spatial dispersion has received a great deal of attention in previous decades, technological limitations of sensor hardware have made experimental measurements of temporal dispersion underwater difficult until now. The main contribution of this thesis are experimental measurements of temporal dispersion of optical beams in turbid water, made with a high sensitivity/high dynamic range experimental technique. Measurements are performed as a function of water clarity (0-20 attenuation lengths), transmitter/receiver alignment (0-30 degrees, half angle), receiver field of view (1-7 degrees, full angle), and transmitter beam divergence (collimated and diffuse). Special attention is paid to the interdependency between spatial and temporal dispersion. This work provides severable notable contributions: 1. While experimental characterization of spatial dispersion has received significant attention underwater, there has been a lack of measurements characterizing temporal dispersion underwater. This work provides the most comprehensive set of experimental measurements to date regarding the temporal dispersion of optical beams underwater. 2. An experimental analysis of the influence of scattering phase function on temporal dispersion. Coarse estimates of the scattering phase function are used to determine the ranges (or attenuation lengths

  8. Shell energy scenarios to 2050

    2008-01-01

    Shell developed two scenarios that describe alternative ways the energy future may develop. In the first scenario (Scramble) policymakers pay little attention to more efficient energy use until supplies are tight. Likewise, greenhouse gas emissions are not seriously addressed until there are major climate shocks. In the second scenario (Blueprints) growing local actions begin to address the challenges of economic development, energy security and environmental pollution. A price is applied to a critical mass of emissions giving a huge stimulus to the development of clean energy technologies, such as carbon dioxide capture and storage, and energy efficiency measures. The result is far lower carbon dioxide emissions. Both these scenarios can help Shell to test their strategy against a range of possible developments over the long-term. However, according to Shell, the Blueprints' outcomes offer the best hope for a sustainable future, whether or not they arise exactly in the way described. However, with the right combination of policy, technology and commitment from governments, industry and society globally, Shell believes it can be realized. But achieving the targets will not be easy, and time is short. Clear thinking, huge investment, and effective leadership are required

  9. An experimental method for making spectral emittance and surface temperature measurements of opaque surfaces

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.

    2011-01-01

    An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.

  10. Experimental study on performance verification tests for coordinate measuring systems with optical distance sensors

    Carmignato, Simone

    2009-01-01

    Optical sensors are increasingly used for dimensional and geometrical metrology. However, the lack of international standards for testing optical coordinate measuring systems is currently limiting the traceability of measurements and the easy comparison of different optical systems. This paper presents an experimental investigation on artefacts and procedures for testing coordinate measuring systems equipped with optical distance sensors. The work is aimed at contributing to the standardization of testing methods. The VDI/VDE 2617-6.2:2005 guideline, which is probably the most complete document available at the state of the art for testing systems with optical distance sensors, is examined with specific experiments. Results from the experiments are discussed, with particular reference to the tests used for determining the following characteristics: error of indication for size measurement, probing error and structural resolution. Particular attention is given to the use of artefacts alternative to gauge blocks for determining the error of indication for size measurement.

  11. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    Tamaki, Takashi; Tsujikawa, Shinji

    2008-01-01

    We derive analytic solutions of a chameleon scalar field φ that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m A inside of the body. The standard thin-shell field profile is recovered by taking the limit m A r c →∞, where r c is a radius of the body. We show the existence of ''no-shell'' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m A r c >>1, the effective coupling of φ with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value φ A at the extremum of an effective potential induced by the matter coupling.

  12. Experimental study of enhancing heating performance of the air-source heat pump by using a novel heat recovery device designed for reusing the energy of the compressor shell

    Huang, Bi; Jian, Qifei; Luo, Lizhong; Zhao, Jing

    2017-01-01

    Highlights: • A novel heat recovery device was designed and tested. • Aiming at avoiding liquid slugging in cold areas. • Recovery of the waste energy of compressor housing. • Refrigerant is heated with the energy recovered before it is sucked into the compressor. • Requires no extra power while the recovery system is operating. - Abstract: A novel heat recovery device designed to recover the heat that is released from the outer surface of heat pump compressors, and to enhance the performance of heat pumps in cold areas was made and tested in this study. The novel heat recovery device consists of three fundamental units: a heat absorption unit, a heat emission unit and heat pipes. An amount of work focused on recovering the heat of compressors through oil system, but few studies concentrated on the housing. The main advantage of the heat recovery device is no need for extra energy consumption for its only driving force is the temperature difference between the compressor shell and the working fluid inside the suction line. The experimental results were obtained from a series of tests with a R410A air-source heat pump. Effects of the device are analyzed with respect of the suction temperature, temperature distribution among the housing, input power and exergy destruction. Moreover, the impact on the heating capacity is also discussed. Further, direction for improvement is also given based on the analysis.

  13. Establishment of Experimental Equipment for Training of Professionals in the Nuclear Radiation Measurement

    Ahn, S. K.; Seo, K. W.; Joo, Y. C.; Kim, I. C.; Woo, C. K.; Yoo, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    The main purpose of this project is to establish experimental equipment for training of professionals and students in the field of radiation measurement, and settle the foundation for the advanced education system and program. The priority for the experimental equipment had been deduced by reviewing of the Nuclear Training and Education Center of KAERI and other country's training courses. Equipment for training of radiation professionals are High-Purity Germanium spectroscopic systems, alpha analyzers, and hand-held gamma/neutron inspector systems. For the basic experiments, electric personal dosimeters and a reader, radiation survey meters, and various alpha, beta and gamma radiation isotopes have been equipped. Some old or disused equipment and devices were disposed and re-arranged, and a new experiment lab had been settled for gamma spectroscopy. Along with the preparation of equipment, 14 experimental modules have been selected for practical and essential experiments training to professionals from industries, universities and research organizations. Among the modules, 7 important experiment notes had been prepared in Korea and also in English. As a consequence, these advanced radiation experimental setting would be a basis to cooperate with IAEA or other countries for international training courses. These activities would be a foundation for our contribution to the international nuclear society and for improving our nuclear competitiveness. The experimental equipment and application notes developed in this study will be used also by other training institutes and educational organizations through introducing and encouraging to use them to the nuclear society.

  14. Establishment of Experimental Equipment for Training of Professionals in the Nuclear Radiation Measurement

    Ahn, S. K.; Seo, K. W.; Joo, Y. C.; Kim, I. C.; Woo, C. K.; Yoo, B. H.

    2008-09-01

    The main purpose of this project is to establish experimental equipment for training of professionals and students in the field of radiation measurement, and settle the foundation for the advanced education system and program. The priority for the experimental equipment had been deduced by reviewing of the Nuclear Training and Education Center of KAERI and other country's training courses. Equipment for training of radiation professionals are High-Purity Germanium spectroscopic systems, alpha analyzers, and hand-held gamma/neutron inspector systems. For the basic experiments, electric personal dosimeters and a reader, radiation survey meters, and various alpha, beta and gamma radiation isotopes have been equipped. Some old or disused equipment and devices were disposed and re-arranged, and a new experiment lab had been settled for gamma spectroscopy. Along with the preparation of equipment, 14 experimental modules have been selected for practical and essential experiments training to professionals from industries, universities and research organizations. Among the modules, 7 important experiment notes had been prepared in Korea and also in English. As a consequence, these advanced radiation experimental setting would be a basis to cooperate with IAEA or other countries for international training courses. These activities would be a foundation for our contribution to the international nuclear society and for improving our nuclear competitiveness. The experimental equipment and application notes developed in this study will be used also by other training institutes and educational organizations through introducing and encouraging to use them to the nuclear society

  15. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  16. Experimental measurements and theoretical simulations for neutron flux in self-serve facility of Dhruva reactor

    Rana, Y.S.; Mishra, Abhishek; Singh, Tej

    2016-06-01

    Dhruva is a 100 MW th tank type research reactor with natural metallic uranium as fuel and heavy water as coolant, moderator and reflector. The reactor is utilized for production of a large variety of radioisotopes for fulfilling growing demands of various applications in industrial, agricultural and medicinal sectors, and neutron beam research in condensed matter physics. The core consists of two on-power tray rods for radioisotope production and fifteen experimental beam holes for neutron beam research. Recently, a self-serve facility has also been commissioned in one of the through tubes in the reactor for carrying out short term irradiations. To get accurate information about neutron flux spectrum, measurements have been carried out in self-serve facility of Dhruva reactor. The present report describes measurement method, analysis technique and results. Theoretical estimations for neutron flux were also carried out and a comparison between theoretical and experimental results is made. (author)

  17. Random three-dimensional jammed packings of elastic shells acting as force sensors

    Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout

    2016-06-01

    In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing. A full experimental characterization requires measurement of all the interparticle forces, but so far such measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the topology of (elastic) shells are good local force sensors as relatively large deformations of the shells result from relatively small forces. We recently introduced such fluorescent shells as a model granular system in which force distributions can be determined in three dimensions using confocal microscopy and quantitative image analysis. An interesting aspect about these shells that differentiates them from other soft deformable particles is their buckling behavior at higher compression. This leads to deformations that do not conserve the inner volume of the particle. Here we use this system to accurately measure the contact forces in a three-dimensional packing of shells subjected to a static anisotropic compression and to shear. At small deformations forces are linear, however, for a buckled contact, the restoring force is related to the amount of deformation by a square root law, as follows from the theory of elasticity of shells. Near the unjamming-jamming transition (point J ), we found the probability distribution of the interparticle forces P (f ) to decay nearly exponentially at large forces, with little evidence of long-range force chains in the packings. As the packing density is increased, the tail of the distribution was found to crossover to a Gaussian, in line with other experimental and simulation studies. Under a small shear strain, up to 0.216, applied at an extremely low shear rate, we observed a shear-induced anisotropy in both the pair correlation function and contact force network; however, no appreciable change was seen in the number of contacts per particle.

  18. Measurement of ultra-high energy cosmic rays: An experimental summary and prospects

    Fukushima M.

    2013-06-01

    Full Text Available Measurements of Ultra-High Energy Cosmic Rays achieved remarkable progress in the last 10 years. Physicists, gathered from around the world in the symposium UHECR-2012 held at CERN on February 13-16 2012, reported their most up-to-date observations, discussed the meaning of their findings, and identified remaining problems and future challenges in this field. This paper is a part of the symposium proceedings on the experimental summary and future prospects of the UHECR study.

  19. Experimental system using an active method for the measurement of low alpha emitter grades

    Bernard, P.; Cance, M.

    1986-06-01

    The diversity of waste produced in France, the limitations of passive neutron measurements, the new safety requirements in the field of low level waste disposal have induced us to develop active neutron techniques. Two experimental pulsed neutron interrogation systems are described giving a sensitivity lower than 10 mg Pu 239 in 200 l drums. This project is the result of a close cooperation between the CEA, SGN and SODERN

  20. Amplitude structure of off-shell processes

    Fearing, H.W.; Goldstein, G.R.; Moravcsik, M.J.

    1984-01-01

    The structure of M matrices, or scattering amplitudes, and of potentials for off-shell processes is discussed with the objective of determining how one can obtain information on off-shell amplitudes of a process in terms of the physical observables of a larger process in which the first process is embedded. The procedure found is inevitably model dependent, but within a particular model for embedding, a determination of the physically measurable amplitudes of the larger process is able to yield a determination of the off-shell amplitudes of the embedded process

  1. Shell coal gasification process

    Hennekes, B. [Shell Global Solutions (US) Inc. (United States). Technology Marketing

    2002-07-01

    The presentation, on which 17 slides/overheads are included in the papers, explained the principles of the Shell coal gasification process and the methods incorporated for control of sulfur dioxide, nitrogen oxides, particulates and mercury. The economics of the process were discussed. The differences between gasification and burning, and the differences between the Shell process and other processes were discussed.

  2. Wrinkling of Pressurized Elastic Shells

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-01-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells

  3. Basic experimental preparation for the measurement of the stopping power of heavy ions in matter

    Carvalho Brito Brum, H. de.

    1976-02-01

    To measure the stopping power of heavy ions in solid matter one must develop both an experimental apparatus and a data analysis program. This thesis discusses these preparatory works and the methods to be employed. The design, building and testing of a scattering chamber with many detectors; the preparation of thin solid films, their analysis by electron diffraction and their thickness measurements; the testing of the electronic system; the calibration of the 4 MeV Van de Graaf accelerator at PUC/RJ; and the development of an original data analysis computer program are presented. (Author) [pt

  4. Experimental results on the MOX fuel. Study of the calculus/measures divergences

    Martin, S.

    1997-01-01

    For each nuclear plant unit restart, all safety criterion have to be respected. Various parameters as boron concentration, temperature coefficient, worth or power and activity distributions related to fuel assemblies, have to be calculated. To compute these parameters Framatome uses the neutronic channel Science. Before the validation they are compare to experimental measures. For UO 2 fuel the divergence calculus/measures are correct. But for MOX fuels the divergence worsening. This paper discusses tis divergence and research the origin. (A.L.B.)

  5. Theory and experimental study of biased charge collector for measuring HPIB

    He Xiaoping; Wang Haiyang; Sun Jianfeng; Yang Hailiang; Qiu Aici; Tang Junping; Li Jingya; Li Hongyu

    2004-01-01

    Structure of the biased charge collector for measuring HPIB (High-power ion beam) is introduced in this paper. The inner charge propagation process of HPIB in the biased charge collector was simulated with KARAT PIC code. The simulation results indicated that charge was neutralized but current was not neutralized in the biased charge collector. The influence of biased voltage and aperture diameter were also simulated. A -800V biased voltage can meet the requirement for measuring 500 keV HPIB, and this is consistent with the experimental results

  6. Sensitivity Measurement of Transmission Computer Tomography: thePreliminary Experimental Study

    Widodo, Chomsin-S; Sudjatmoko; Kusminarto; Agung-BS Utomo; Suparta, Gede B

    2000-01-01

    This paper reports result of preliminary experimental study onmeasurement method for sensitivity of a computed tomography (CT) scanner. ACT scanner has been build at the Department of Physics, FMIPA UGM and itsperformance based on its sensitivity was measured. The result showed that themeasurement method for sensitivity confirmed this method may be developedfurther as a measurement standard. Although the CT scanner developed has anumber of shortcoming, the analytical results from the sensitivitymeasurement suggest a number of reparations and improvements for the systemso that improved reconstructed CT images can be obtained. (author)

  7. An experimental set-up to measure Light Yield of Scintillating Fibres

    Alfieri, C; Joram, C; Kenzie, M W

    2015-01-01

    In the context of the LHCb SciFi Tracker project, an experimental set up was designed and built to provide reliable and reproducible measurements of the light yield of scintillating fibres. This document describes the principle and technical realisation of the set-up. A few examples illustrate the operation and data analysis. In the first implementation of the set-up a photomultiplier tube with bialkali photocathode was used for the reading of the light from the fibres under test. In order to measure also green emitting fibres, the photomultiplier was replaced in January 2016 by a SiPM with higher sensitivity and larger spectral coverage1.

  8. An experimental applications of impedance measurements by spectral analysis to electrochemistry and corrosion

    Castro, E.B.; Vilche, J.R.; Milocco, R.H.

    1984-01-01

    An impedance measurement system based on the spectral analysis of excitation and response signals was implemented using a pseudo-random binary sequence in the generation of the electrical perturbation signal. The spectral density functions were estimated through finite Fourier transforms of the original time history records by fast computation of Fourier series. Experimental results obtained using the FFT algorithm in the developed impedance measurement system which covers a wide frequency range, 10 KHz >= f >= 1 mHz, are given both for dummy cells representing conventional electric circuits in electrochemistry and corrosion systems and for the Fe/acidic chloride solution interfaces under different polarization conditions. (C.L.B.) [pt

  9. An Effective Experimental Optimization Method for Wireless Power Transfer System Design Using Frequency Domain Measurement

    Sangyeong Jeong

    2017-10-01

    Full Text Available This paper proposes an experimental optimization method for a wireless power transfer (WPT system. The power transfer characteristics of a WPT system with arbitrary loads and various types of coupling and compensation networks can be extracted by frequency domain measurements. The various performance parameters of the WPT system, such as input real/imaginary/apparent power, power factor, efficiency, output power and voltage gain, can be accurately extracted in a frequency domain by a single passive measurement. Subsequently, the design parameters can be efficiently tuned by separating the overall design steps into two parts. The extracted performance parameters of the WPT system were validated with time-domain experiments.

  10. Feasibility of reactivity worth measurements by perturbation method with Caliban and Silene experimental reactors

    Casoli, Pierre; Authier, Nicolas [Commissariat a l' Energie Atomique, Centre d' Etudes de Valduc, 21120 Is-Sur-Tille (France)

    2008-07-01

    Reactivity worth measurements of material samples put in the central cavities of nuclear reactors allow to test cross section nuclear databases or to extract information about the critical masses of fissile elements. Such experiments have already been completed on the Caliban and Silene experimental reactors operated by the Criticality and Neutronics Research Laboratory of Valduc (CEA, France) using the perturbation measurement technique. Calculations have been performed to prepare future experiments on new materials, such as light elements, structure materials, fission products or actinides. (authors)

  11. Quantitative comparisons between experimentally measured 2-D carbon radiation and Monte Carlo impurity (MCI) code simulations

    Evans, T.E.; Leonard, A.W.; West, W.P.; Finkenthal, D.F.; Fenstermacher, M.E.; Porter, G.D.

    1998-08-01

    Experimentally measured carbon line emissions and total radiated power distributions from the DIII-D divertor and Scrape-Off Layer (SOL) are compared to those calculated with the Monte Carlo Impurity (MCI) model. A UEDGE background plasma is used in MCI with the Roth and Garcia-Rosales (RG-R) chemical sputtering model and/or one of six physical sputtering models. While results from these simulations do not reproduce all of the features seen in the experimentally measured radiation patterns, the total radiated power calculated in MCI is in relatively good agreement with that measured by the DIII-D bolometric system when the Smith78 physical sputtering model is coupled to RG-R chemical sputtering in an unaltered UEDGE plasma. Alternatively, MCI simulations done with UEDGE background ion temperatures along the divertor target plates adjusted to better match those measured in the experiment resulted in three physical sputtering models which when coupled to the RG-R model gave a total radiated power that was within 10% of measured value

  12. An experimental technique for the direct measurement of N2O5 reactivity on ambient particles

    T. H. Bertram

    2009-06-01

    Full Text Available An experimental approach for the direct measurement of trace gas reactivity on ambient aerosol particles has been developed. The method utilizes a newly designed entrained aerosol flow reactor coupled to a custom-built chemical ionization mass spectrometer. The experimental method is described via application to the measurement of the N2O5 reaction probability, γ (N2O5. Laboratory investigations on well characterized aerosol particles show that measurements of γ (N2O5 observed with this technique are in agreement with previous observations, using conventional flow tube methods, to within ±20% at atmospherically relevant particle surface area concentrations (0–1000 μm2 cm−3. Uncertainty in the measured γ (N2O5 is discussed in the context of fluctuations in potential ambient biases (e.g., temperature, relative humidity and trace gas loadings. Under ambient operating conditions we estimate a single-point uncertainty in γ (N2O5 that ranges between ± (1.3×10-2 + 0.2×γ (N2O5, and ± (1.3×10-3 + 0.2×γ (N2O5 for particle surface area concentrations of 100 to 1000 μm2 cm−3, respectively. Examples from both laboratory investigations and field observations are included alongside discussion of future applications for the reactivity measurement and optimal deployment locations and conditions.

  13. Experimental study on reactivity measurement in thermal reactor by polarity correlation method

    Yasuda, Hideshi

    1977-11-01

    Experimental study on the polarity correlation method for measuring the reactivity of a thermal reactor, especially the one possessing long prompt neutron lifetime such as graphite on heavy water moderated core, is reported. The techniques of reactor kinetics experiment are briefly reviewed, which are classified in two groups, one characterized by artificial disturbance to a reactor and the other by natural fluctuation inherent in a reactor. The fluctuation phenomena of neutron count rate are explained using F. de Hoffman's stochastic method, and correlation functions for the neutron count rate fluctuation are shown. The experimental results by polarity correlation method applied to the β/l measurements in both graphite-moderated SHE core and light water-moderated JMTRC and JRR-4 cores, and also to the measurement of SHE shut down reactivity margin are presented. The measured values were in good agreement with those by a pulsed neutron method in the reactivity range from critical to -12 dollars. The conditional polarity correlation experiments in SHE at -20 cent and -100 cent are demonstrated. The prompt neutron decay constants agreed with those obtained by the polarity correlation experiments. The results of experiments measuring large negative reactivity of -52 dollars of SHE by pulsed neutron, rod drop and source multiplication methods are given. Also it is concluded that the polarity and conditional polarity correlation methods are sufficiently applicable to noise analysis of a low power thermal reactor with long prompt neutron lifetime. (Nakai, Y.)

  14. Modeling and experimental characterization of a new piezoelectric sensor for low-amplitude vibration measurement

    Hou, X Y; Koh, C G; Kuang, K S C; Lee, W H

    2017-01-01

    This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations. (paper)

  15. Single-quantum annihilation of positrons with shell-bound atomic electrons

    Palathingal, J.C.; Asoka-Kumar, P.; Lynn, K.G.; Posada, Y.; Wu, X.Y.

    1991-01-01

    The single-quantum annihilation of positrons has been studied experimentally with a positron beam and a thin lead target, at energies 1 MeV and higher. Spectral peaks corresponding to the K, L, and M shells have been resolved and observed distinctly for the first time. The shell ratios L/K and M/K have been determined. An analysis of the L peak has yielded the (LII+LIII)/L ratio. The first measurements of the directional distributions of the annihilation quanta of the three individual electron shells are also reported. The results are in agreement with theory. They also point out the potential for applying the phenomena to the development of a tunable, highly directional gamma-ray source

  16. Comparison of theoretical estimates and experimental measurements of fatigue crack growth under severe thermal shock conditions (part one - experimental observations)

    Marsh, D.; Green, D.; Parker, R.

    1984-01-01

    This paper reports the results of an experiment in which a severe thermal cycle comprising of alternate upshocks and downshocks has been applied to an axisymmetric feature with an internal, partial penetration weld and crevice. The direction of cracking and crack growth rate were observed experimentally and detailed records made of the thermal cycle. A second part to the paper, reported separately, compares a linear elastic fracture mechanics assessment of the cracking to the experimental observations

  17. Buckling shells are also swimmers

    Quilliet, Catherine; Dyfcom Bubbleboost Team

    We present an experimental and numerical study on the displacement of shells undergoing deformations in a fluid. When submitted to cycles of pressure difference between outside and inside, a shell buckles and debuckles, showing a succession of shapes and a dynamics that are different during the two phases. Hence such objects are likely to swim, including at low Reynolds (microscopic scale). We studied the swimming of buckling/debuckling shells at macroscopic scale using different approaches (force quantization, shape recording, displacement along a frictionless rail, study of external flow using PIV), and showed that inertia plays a role in propulsion, even in situations where dimensionless numbers correspond also to microswimmers in water. Different fluid viscosities were explored, showing an optimum for the displacement. Interestingly, the most favorable cases lead to displacements in the same direction and sense during both motor stroke (buckling phase) and recovery stroke (de-buckling phase). This work opens the route for the synthesis with high throughput of abusively simple synthetic swimmers, possibly gathered into nanorobots, actuated by a scalar field such as the pressure in echographic devices. Universite Grenoble Alpes, CNRS, European Research Council.

  18. Design of an experimental device dedicated to the measurement of spallation reactions; Mise au point d'un dispositif experimental pour des mesures exclusives des reactions de spallation

    Lafriakh, A

    2005-12-15

    Spallation mechanisms are not yet completely understood, especially because of the difficulty of experimentally disentangling the effects of the different steps of the reaction. In order to understand these mechanisms, we have developed a new experimental device able to perform inclusive measurements. We propose a detection system based on a combination of ionization chambers and proportional counters and on a wall of plastic scintillators to measure light charged particles. In particular the detection of light charged particles is described in detail. In order to validate our device, we have compared our preliminary results obtained on the Fe{sup 56} + p system at 1 GeV/u with inclusive measurements previously obtained at the FRS spectrometer of the GSI facility. A comparison of charge differential cross section shows reasonable agreement. However, our new device allowed extension of those measurements down to Z = 1 and Z = 2. These cross sections are important for material damage studies. Taking into account our error brackets, the evolution of mean longitudinal velocities with respect to residue masses is comparable to that obtained at the FRS. These first results, although preliminary, allow us to validate our experimental device. It is now possible to exploit the strong points of our exclusive measurements, namely correlations between different measured observables. Finally, experimental problems encountered will be taken into account in the future experimental programs, in order to ensure the best measurements conditions.

  19. P-shell hyperon binding energies

    Koetsier, D.; Amos, K.

    1991-01-01

    A shell model for lambda hypernuclei has been used to determine the binding energy of the hyperon in nuclei throughout the p shell. Conventional (Cohen and Kurath) potential energies for nucleon-nucleon interactions were used with hyperon-nucleon interactions taken from Nijmegen one boson exchange potentials. The hyperon binding energies calculated from these potentials compare well with measured values. 7 refs., 2 figs

  20. Alpha particle cluster states in (fp)-shell nuclei

    Merchant, A.C.

    1987-07-01

    Alpha particle cluster structure is known experimentally to persist throughout the mass range 16 ≤ A ≤ 20, and has been very successfully described in this region in terms of the Buck-Dover-Vary local potential cluster model. It is argued that an analogous cluster structure should be present in nuclei at the beginning of the (fp) - shell, and the available experimental data are examined to determine likely alpha particle cluster state candidates in the mass range 40 ≤ A ≤ 44. Calculations of the cluster state spectra and mean square cluster-core separation distances (which may be readily used to evaluate E2 electromagnetic transition rates) for sup(40)Ca, sup(42)Ca, sup(42)Sc, sup(43)Sc, sup(43)Ti and sup(44)Ti using the above mentioned model are presented, and compared with experimental measurements where possible. The agreement between theory and experiment is generally good (although inferior to that obtained in the (sd)-shell) and points to the desirability of an extension and improvement of the measurements of the properties of the excited states in these nuclei. (author)

  1. A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplastics

    Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2017-10-01

    Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.

  2. Experimental assessment for instantaneous temperature and heat flux measurements under Diesel motored engine conditions

    Torregrosa, A.J.; Bermúdez, V.; Olmeda, P.; Fygueroa, O.

    2012-01-01

    Higlights: ► We measured in-cylinder wall heat fluxes. ► We examine the effects of different engine parameters. ► Increasing air mass flow increase heat fluxes. ► The effect of engine speed can be masked by the effect of volumetric efficiency. ► Differences among the different walls have been found. - Abstract: The main goal of this work is to validate an innovative experimental facility and to establish a methodology to evaluate the influence of some of the engine parameters on local engine heat transfer behaviour under motored steady-state conditions. Instantaneous temperature measurements have been performed in order to estimate heat fluxes on a modified Diesel single cylinder combustion chamber. This study was divided into two main parts. The first one was the design and setting on of an experimental bench to reproduce Diesel conditions and perform local-instantaneous temperature measurements along the walls of the combustion chamber by means of fast response thermocouples. The second one was the development of a procedure for temperature signal treatment and local heat flux calculation based on one-dimensional Fourier analysis. A thermodynamic diagnosis model has been employed to characterise the modified engine with the new designed chamber. As a result of the measured data coherent findings have been obtained in order to understand local behaviour of heat transfer in an internal combustion engine, and the influence of engine parameters on local instantaneous temperature and heat flux, have been analysed.

  3. High-precision measurements of cementless acetabular components using model-based RSA: an experimental study

    Baad-Hansen, Thomas; Kold, Søren; Kaptein, Bart L

    2007-01-01

    BACKGROUND: In RSA, tantalum markers attached to metal-backed acetabular cups are often difficult to detect on stereo radiographs due to the high density of the metal shell. This results in occlusion of the prosthesis markers and may lead to inconclusive migration results. Within the last few years...

  4. Numerical Simulations and Experimental Measurements of Scale-Model Horizontal Axis Hydrokinetic Turbines (HAHT) Arrays

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2014-11-01

    The performance, turbulent wake evolution and interaction of multiple Horizontal Axis Hydrokinetic Turbines (HAHT) is analyzed in a 45:1 scale model setup. We combine experimental measurements with different RANS-based computational simulations that model the turbines with sliding-mesh, rotating reference frame and blame element theory strategies. The influence of array spacing and Tip Speed Ratio on performance and wake velocity structure is investigated in three different array configurations: Two coaxial turbines at different downstream spacing (5d to 14d), Three coaxial turbines with 5d and 7d downstream spacing, and Three turbines with lateral offset (0.5d) and downstream spacing (5d & 7d). Comparison with experimental measurements provides insights into the dynamics of HAHT arrays, and by extension to closely packed HAWT arrays. The experimental validation process also highlights the influence of the closure model used (k- ω SST and k- ɛ) and the flow Reynolds number (Re=40,000 to 100,000) on the computational predictions of devices' performance and characteristics of the flow field inside the above-mentioned arrays, establishing the strengths and limitations of existing numerical models for use in industrially-relevant settings (computational cost and time). Supported by DOE through the National Northwest Marine Renewable Energy Center (NNMREC).

  5. Experimental measurement and modeling of snow accumulation and snowmelt in a mountain microcatchment

    Danko, Michal; Krajčí, Pavel; Hlavčo, Jozef; Kostka, Zdeněk; Holko, Ladislav

    2016-04-01

    Fieldwork is a very useful source of data in all geosciences. This naturally applies also to the snow hydrology. Snow accumulation and snowmelt are spatially very heterogeneous especially in non-forested, mountain environments. Direct field measurements provide the most accurate information about it. Quantification and understanding of processes, that cause these spatial differences are crucial in prediction and modelling of runoff volumes in spring snowmelt period. This study presents possibilities of detailed measurement and modeling of snow cover characteristics in a mountain experimental microcatchment located in northern part of Slovakia in Western Tatra mountains. Catchment area is 0.059 km2 and mean altitude is 1500 m a.s.l. Measurement network consists of 27 snow poles, 3 small snow lysimeters, discharge measurement device and standard automatic weather station. Snow depth and snow water equivalent (SWE) were measured twice a month near the snow poles. These measurements were used to estimate spatial differences in accumulation of SWE. Snowmelt outflow was measured by small snow lysimeters. Measurements were performed in winter 2014/2015. Snow water equivalent variability was very high in such a small area. Differences between particular measuring points reached 600 mm in time of maximum SWE. The results indicated good performance of a snow lysimeter in case of snowmelt timing identification. Increase of snowmelt measured by the snow lysimeter had the same timing as increase in discharge at catchment's outlet and the same timing as the increase in air temperature above the freezing point. Measured data were afterwards used in distributed rainfall-runoff model MIKE-SHE. Several methods were used for spatial distribution of precipitation and snow water equivalent. The model was able to simulate snow water equivalent and snowmelt timing in daily step reasonably well. Simulated discharges were slightly overestimated in later spring.

  6. A dual tracer ratio method for comparative emission measurements in an experimental dairy housing

    Mohn, Joachim; Zeyer, Kerstin; Keck, Margret; Keller, Markus; Zähner, Michael; Poteko, Jernej; Emmenegger, Lukas; Schrade, Sabine

    2018-04-01

    Agriculture, and in particular dairy farming, is an important source of ammonia (NH3) and non-carbon dioxide greenhouse gas (GHG) emissions. This calls for the development and quantification of effective mitigation strategies. Our study presents the implementation of a dual tracer ratio method in a novel experimental dairy housing with two identical, but spatially separated housing areas. Modular design and flexible floor elements allow the assessment of structural, process engineering and organisational abatement measures at practical scale. Thereby, the emission reduction potential of specific abatement measures can be quantified in relation to a reference system. Emissions in the naturally ventilated housing are determined by continuous dosing of two artificial tracers (sulphur hexafluoride SF6, trifluoromethylsulphur pentafluoride SF5CF3) and their real-time detection in the ppt range with an optimized GC-ECD method. The two tracers are dosed into different experimental sections, which enables the independent assessment of both housing areas. Mass flow emissions of NH3 and GHGs are quantified by areal dosing of tracer gases and multipoint sampling as well as real-time analysis of both tracer and target gases. Validation experiments demonstrate that the technique is suitable for both areal and point emission sources and achieves an uncertainty of less than 10% for the mass emissions of NH3, methane (CH4) and carbon dioxide (CO2), which is superior to other currently available methods. Comparative emission measurements in this experimental dairy housing will provide reliable, currently unavailable information on emissions for Swiss dairy farming and demonstrate the reduction potential of mitigation measures for NH3, GHGs and potentially other pollutants.

  7. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.

    Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia

    2017-11-01

    Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Experimentally measuring a quantum state by the Heisenberg exchange interaction in a single apparatus

    Peng Xinhua; Du Jiangfeng; Suter, D.

    2005-01-01

    Full text: Quantum information processing requires the effective measurement of quantum states. An important method, called quantum state tomography, needs measuring a complete set of observables on the measured system to determine its unknown quantum state ρ. The measurement involves certain noncommuting observables as a result of Bohr's complementarity. Very recently, Allahverdyan et al. proposed a new method in which the unknown quantum state r is determined by measuring a set of commuting observables in the price of a controlled interaction with an auxiliary system. If both systems S and A are spins, their z components (σ z ) can be chosen to measure after some specific Heisenberg exchange interaction. We study in detail a general Heisenberg XYZ model for a two-qubit system and present two classes of special Heisenberg interactions which can serve as the controlled interaction in Allahverdyan's scheme when the state of the auxiliary system A is initially completely disordered. Using the nuclear magnetic resonance techniques, the measurement scheme in a single apparatus has been experimentally demonstrated by designing the quantum circuit to simulate the Heisenberg exchange interaction. (author)

  9. Using the analysis of stress waves to build research for experimentation on ultrasonic film measurement

    Chang, Shi-Shing; Wu, John H.

    1993-09-01

    After the 2th world war, although the application of ultrasonic wave in industries is becoming more and more popular. But due to the restriction of the precise equivelent , experimental method and the support of the basic theoremsetc. Ultrasonic wave is not applied in precise measurement. Nowadays due to many conditions - the improvement in the production technic, the precise of the equivelent, causes to increase the application of ultrasonic wave. But it's still limited due to the lack of measurement and analysis theorem. In this paper, first we caculate translation of the stress wave (elastic wave) in material for the free surface of material by a normal impulse load. as the theorem analysis base in real application. It is applied to an experiment of film measurement. We can find the partical motion in material and the arriving time of wave front. Then we can estimate the thickness of layers and can prove the actual condition with the result of experiment. This resarch is not only in the theoretical investigation but also in setting overall the measurement system, and excutes the following three experiments: the thickness measurement of two layers, the thickness measurement of film material. the thickness measurement of air propagation. About the data processing, we relied on the frequency analysis to evalute the time difference of two overlapped ultrasonic wave signal. in the meanwhile. we also designed several computer programs to assist the sonic wave identification and signal analysis.

  10. Molluscan shell colour.

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  11. Characterisation of large area THGEMs and experimental measurement of the Townsend coefficients for CF4

    Burns, J.; Crane, T.; Ezeribe, A. C.; Grove, C. L.; Lynch, W.; Scarff, A.; Spooner, N. J. C.; Steer, C.

    2017-10-01

    Whilst the performance of small THGEMs is well known, here we consider the challenges in scaling these up to large area charge readouts. We first verify the expected gain of larger THGEMs by reporting experimental Townsend coefficients for a 10 cm diameter THGEM in low-pressure CF4. Large area 50 cm by 50 cm THGEMs were sourced from a commercial PCB supplier and geometrical imperfections were observed which we quantified using an optical camera setup. The large area THGEMs were experimentally characterised at Boulby Underground Laboratory through a series of gain calibrations and alpha spectrum measurements. ANSYS, Magboltz and Garfield++ simulations of the design of a TPC based on the large area THGEMs are presented. We also consider their implications for directional dark matter research and potential applications within nuclear security.

  12. Experimental measurements and numerical simulation of permittivity and permeability of Teflon in X band

    Adriano Luiz de Paula

    2011-01-01

    Full Text Available Recognizing the importance of an adequate characterization of radar absorbing materials, and consequently their development, the present study aims to contribute for the establishment and validation of experimental determination and numerical simulation of electromagnetic materials complex permittivity and permeability, using a Teflon® sample. The present paper branches out into two related topics. The first one is concerned about the implementation of a computational modeling to predict the behavior of electromagnetic materials in confined environment by using electromagnetic three-dimensional simulation. The second topic re-examines the Nicolson-Ross-Weir mathematical model to retrieve the constitutive parameters (complex permittivity and permeability of a homogeneous sample (Teflon®, from scattering coefficient measurements. The experimental and simulated results show a good convergence that guarantees the application of the used methodologies for the characterization of different radar absorbing materials samples.

  13. Experimental measurement of the 12C+16O fusion cross sections at astrophysical energies

    Fang, X.; Tan, W. P.; Beard, M.; deBoer, R. J.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; de Souza, R.; Hudan, S.; Singh, V.; Tang, X. D.; Uberseder, E.

    2018-05-01

    The total cross sections of the 12C+16O fusion have been experimentally determined at low energies to investigate the role of this reaction during late stellar evolution burning phases. A high-intensity oxygen beam was produced by the 5MV pelletron accelerator at the University of Notre Dame impinging on a thick ultra-pure graphite target. Protons and γ-rays were measured simultaneously in the center-of-mass energy range from 3.64 to 5.01 MeV, using strip silicon and HPGe detectors. Statistical model calculations were employed to interpret the experimental results. A new broad resonance-like structure is observed for the 12C+16O reaction, and a decreasing trend of its S-factor towards low energies is found.

  14. Measurements and Experimental Database Review for Laminar Flame Speed Premixed Ch4/Air Flames

    Zubrilin, I. A.; Matveev, S. S.; Matveev, S. G.; Idrisov, D. V.

    2018-01-01

    Laminar flame speed (SL ) of CH4 was determined at atmospheric pressure and initial gas temperatures in range from 298 to 358 K. The heat flux method was employed to measure the flame speed in non-stretched flames. The kinetic mechanism GRI 3.0 [1] were used to simulate SL . The measurements were compared with available literature results. The data determined with the heat flux method agree with some previous burner measurements and disagree with the data from some vessel closed method and counterflow method. The GRI 3.0 mechanism was able to reproduce the present experiments. Laminar flame speed was determined at pressures range from of 1 to 20 atmospheres through mechanism GRI 3.0. Based on experimental data and calculations was obtained SL dependence on pressure and temperature. The resulting of dependence recommended use during the numerical simulation of methane combustion.

  15. Experimental Characterization of Ultra-Wideband Channel Parameter Measurements in an Underground Mine

    B. Nkakanou

    2011-01-01

    Full Text Available Experimental results for an ultra-wideband (UWB channel parameters in an underground mining environment over a frequency range of 3 GHz to 10 GHz are reported. The measurements were taken both in LOS and NLOS cases in two different size mine galleries. In the NLOS case, results were acquired for different corridor obstruction angles. The results were obtained during an extensive measurement campaign in the UWB frequency, and the measurement procedure allows both the large- and small-scale parameters such as the path loss exponent, coherence bandwidth, and so forth, to be quantified. The capacity of the UWB channel as a function of the physical depth of the mine gallery has also been recorded for comparison purposes.

  16. Experimental study on two-dimensional film flow with local measurement methods

    Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-12-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  17. Experimental study on two-dimensional film flow with local measurement methods

    Yang, Jin-Hwa; Cho, Hyoung-Kyu; Kim, Seok; Euh, Dong-Jin; Park, Goon-Cherl

    2015-01-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  18. Nuclear shell theory

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  19. Experimental approaches and applications

    Crasemann, Bernd

    1975-01-01

    Atomic Inner-Shell Processes, Volume II: Experimental Approaches and Applications focuses on the physics of atomic inner shells, with emphasis on experimental aspects including the use of radioactive atoms for studies of atomic transition probabilities. Surveys of modern techniques of electron and photon spectrometry are also presented, and selected practical applications of inner-shell processes are outlined. Comprised of six chapters, this volume begins with an overview of the general principles underlying the experimental techniques that make use of radioactive isotopes for inner-sh

  20. Workability and Compressive Strength for Concrete With Coconut Shell Aggregate

    Leman Alif Syazani

    2017-01-01

    Full Text Available This study was conducted to investigate the compressive strength and workability of concrete added with coconut shells. Comparisons were made between conventional concrete with concrete mix coconut shell. In this study, the concretes were mixes with coconut shell by percentage of weight concrete which is 0%, 5%, and 10%. The coconut shell has been crushed first, then it was sieved, to get the optimum size which, that retained on the 5mm sieve and passing 10mm sieve. Experimental tests conducted in this study are slump test and compressive test. The results from this study are workability of concrete added with 0% and 5% of coconut shell has medium degree of workability compared to concrete added with 10% that has low workability. For the compressive strength, the concrete added with 5% and 10% of coconut shell has lower strength compared with normal concrete.

  1. New experimental device for high-temperature normal spectral emissivity measurements of coatings

    Honnerová, Petra; Martan, Jiří; Kučera, Martin; Honner, Milan; Hameury, Jacques

    2014-01-01

    A new experimental device for normal spectral emissivity measurements of coatings in the infrared spectral range from 1.38 μm to 26 μm and in the temperature range from 550 K to 1250 K is presented. A Fourier transform infrared spectrometer (FTIR) is used for the detection of sample and blackbody spectral radiation. Sample heating is achieved by a fiber laser with a scanning head. Surface temperature is measured by two methods. The first method uses an infrared camera and a reference coating with known effective emissivity, the second method is based on the combination of Christiansen wavelength with contact and noncontact surface temperature measurement. Application of the method is shown on the example of a high-temperature high-emissivity coating. Experimental results obtained with this apparatus are compared with the results performed by a direct method of Laboratoire National d’Essais (LNE) in France. The differences in the spectra are analyzed. (paper)

  2. Calibration of a gamma spectrometer for measuring natural radioactivity. Experimental measurements and modeling by Monte-Carlo methods

    Courtine, Fabien

    2007-01-01

    The thesis proceeded in the context of dating by thermoluminescence. This method requires laboratory measurements of the natural radioactivity. For that purpose, we have been using a germanium spectrometer. To refine the calibration of this one, we modelled it by using a Monte-Carlo computer code: Geant4. We developed a geometrical model which takes into account the presence of inactive zones and zones of poor charge-collection within the germanium crystal. The parameters of the model were adjusted by comparison with experimental results obtained with a source of 137 Cs. It appeared that the form of the inactive zones is less simple than is presented in the specialized literature. This model was widened to the case of a more complex source, with cascade effect and angular correlations between photons: the 60 Co. Lastly, applied to extended sources, it gave correct results and allowed us to validate the simulation of matrix effect. (author)

  3. Hydrodynamic experiments on dacryoconarid shell telescoping

    Hladil, Jindřich; Šimčík, Miroslav; Růžička, Marek; Kulaviak, Lukáš; Lisý, Pavel

    2014-01-01

    Roč. 47, č. 3 (2014), s. 376-396 ISSN 0024-1164 R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 ; RVO:67985858 Keywords : dacryoconarid shells * experimental fluid mechanics * narrow cones * Palaeozoic * telescoping Subject RIV: DB - Geology ; Mineralogy; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) Impact factor: 1.454, year: 2014

  4. A novel full-field experimental method to measure the local compressibility of gas diffusion media

    Lai, Yeh-Hung; Li, Yongqiang [Electrochemical Energy Research Lab, GM R and D, Honeoye Falls, NY 14472 (United States); Rock, Jeffrey A. [GM Powertrain, Honeoye Falls, NY 14472 (United States)

    2010-05-15

    The gas diffusion medium (GDM) in a proton exchange membrane (PEM) fuel cell needs to simultaneously satisfy the requirements of transporting reactant gases, removing product water, conducting electrons and heat, and providing mechanical support to the membrane electrode assembly (MEA). Concerning the localized over-compression which may force carbon fibers and other conductive debris into the membrane to cause fuel cell failure by electronically shorting through the membrane, we have developed a novel full-field experimental method to measure the local thickness and compressibility of GDM. Applying a uniform air pressure upon a thin polyimide film bonded on the top surface of the GDM with support from the bottom by a flat metal substrate and measuring the thickness change using the 3-D digital image correlation technique with an out-of-plane displacement resolution less than 0.5 {mu}m, we have determined the local thickness and compressive stress/strain behavior in the GDM. Using the local thickness and compressibility data over an area of 11.2 mm x 11.2 mm, we numerically construct the nominal compressive response of a commercial Toray trademark TGP-H-060 based GDM subjected to compression by flat platens. Good agreement in the nominal stress/strain curves from the numerical construction and direct experimental flat-platen measurement confirms the validity of the methodology proposed in this article. The result shows that a nominal pressure of 1.4 MPa compressed between two flat platens can introduce localized compressive stress concentration of more than 3 MPa in up to 1% of the total area at various locations from several hundred micrometers to 1 mm in diameter. We believe that this full-field experimental method can be useful in GDM material and process development to reduce the local hard spots and help to mitigate the membrane shorting failure in PEM fuel cells. (author)

  5. A novel full-field experimental method to measure the local compressibility of gas diffusion media

    Lai, Yeh-Hung; Li, Yongqiang; Rock, Jeffrey A.

    The gas diffusion medium (GDM) in a proton exchange membrane (PEM) fuel cell needs to simultaneously satisfy the requirements of transporting reactant gases, removing product water, conducting electrons and heat, and providing mechanical support to the membrane electrode assembly (MEA). Concerning the localized over-compression which may force carbon fibers and other conductive debris into the membrane to cause fuel cell failure by electronically shorting through the membrane, we have developed a novel full-field experimental method to measure the local thickness and compressibility of GDM. Applying a uniform air pressure upon a thin polyimide film bonded on the top surface of the GDM with support from the bottom by a flat metal substrate and measuring the thickness change using the 3-D digital image correlation technique with an out-of-plane displacement resolution less than 0.5 μm, we have determined the local thickness and compressive stress/strain behavior in the GDM. Using the local thickness and compressibility data over an area of 11.2 mm × 11.2 mm, we numerically construct the nominal compressive response of a commercial Toray™ TGP-H-060 based GDM subjected to compression by flat platens. Good agreement in the nominal stress/strain curves from the numerical construction and direct experimental flat-platen measurement confirms the validity of the methodology proposed in this article. The result shows that a nominal pressure of 1.4 MPa compressed between two flat platens can introduce localized compressive stress concentration of more than 3 MPa in up to 1% of the total area at various locations from several hundred micrometers to 1 mm in diameter. We believe that this full-field experimental method can be useful in GDM material and process development to reduce the local hard spots and help to mitigate the membrane shorting failure in PEM fuel cells.

  6. Modeling of a pitching and plunging airfoil using experimental flow field and load measurements

    Troshin, Victor; Seifert, Avraham

    2018-01-01

    The main goal of the current paper is to outline a low-order modeling procedure of a heaving airfoil in a still fluid using experimental measurements. Due to its relative simplicity, the proposed procedure is applicable for the analysis of flow fields within complex and unsteady geometries and it is suitable for analyzing the data obtained by experimentation. Currently, this procedure is used to model and predict the flow field evolution using a small number of low profile load sensors and flow field measurements. A time delay neural network is used to estimate the flow field. The neural network estimates the amplitudes of the most energetic modes using four sensory inputs. The modes are calculated using proper orthogonal decomposition of the flow field data obtained experimentally by time-resolved, phase-locked particle imaging velocimetry. To permit the use of proper orthogonal decomposition, the measured flow field is mapped onto a stationary domain using volume preserving transformation. The analysis performed by the model showed good estimation quality within the parameter range used in the training procedure. However, the performance deteriorates for cases out of this range. This situation indicates that, to improve the robustness of the model, both the decomposition and the training data sets must be diverse in terms of input parameter space. In addition, the results suggest that the property of volume preservation of the mapping does not affect the model quality as long as the model is not based on the Galerkin approximation. Thus, it may be relaxed for cases with more complex geometry and kinematics.

  7. Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.

    Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi

    2010-11-01

    Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.

  8. Measurement with SR-0 experimental modules of the SPHINX nuclear transmutation system. Variants 2008

    Rypar, Vojtech; Juricek, Vlastimil; Svadlenkova, Marie; Heraltova, Lenka; Viererbl, Ladislav; Lahodova, Zdena

    2008-12-01

    Experiments were performed with two LR-0 rector core arrangements and 3 variants of SR-0 insertion modules with a view to establishing the critical parameters of the reactor cores for the 3 module variants comprising different materials and different numbers of LR-0 fuel pins. The effect of the materials on the photon dose distribution and, on the axial and radial neutron field distributions (via 140 Ba and 140 La activities) was examined and the reaction rate distribution of activation foils inside the experimental module was measured

  9. Optical waveguiding and applied photonics technological aspects, experimental issue approaches and measurements

    Massaro, Alessandro

    2012-01-01

    Optoelectronics--technology based on applications light such as micro/nano quantum electronics, photonic devices, laser for measurements and detection--has become an important field of research. Many applications and physical problems concerning optoelectronics are analyzed in Optical Waveguiding and Applied Photonics.The book is organized in order to explain how to implement innovative sensors starting from basic physical principles. Applications such as cavity resonance, filtering, tactile sensors, robotic sensor, oil spill detection, small antennas and experimental setups using lasers are a

  10. The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers

    Neumann, Richard D.; Freeman, Delma C.

    2011-01-01

    In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.

  11. Response of a shell structure subject to distributed harmonic excitation

    Cao, Rui; Bolton, J. Stuart

    2016-01-01

    Previously, a coupled, two-dimensional structural-acoustic ring model was constructed to simulate the dynamic and acoustical behavior of pneumatic tires. Analytical forced solutions were obtained and were experimentally verified through laser velocimeter measurement made using automobile tires. However, the two-dimensional ring model is incapable of representing higher order, in-plane modal motion in either the circumferential or axial directions. Therefore, in this paper, a three-dimensional pressurized circular shell model is proposed to study the in-plane shearing motion and the effect of different forcing conditions. Closed form analytical solutions were obtained for both free and forced vibrations of the shell under simply supported boundary conditions. Dispersion relations were calculated and different wave types were identified by their different speeds. Shell surface mobility results under various input distributions were also studied and compared. Spatial Fourier series decompositions were also performed on the spatial mobility results to give the forced dispersion relations, which illustrate clearly the influence of input force spatial distribution. Such a model has practical application in identifying the sources of noise and vibration problems in automotive tires. (paper)

  12. Inner shells as a link between atomic and nuclear physics

    Merzbacher, E.

    1982-01-01

    Nuclear decay and reaction processes generally take place in neutral or partially ionized atoms. The effects of static nuclear properties (size, shape, moments) on atomic spectra are well known, as are electronic transitions accompanying nuclear transitions, e.g. K capture and internal conversion. Excitation or ionization of initially filled inner shells, really or virtually, may modify nuclear Q values, will require correction to measured beta-decay endpoint energies, and can permit the use of inner-shell transitions in the determination of nuclear widths. Improvements in resolution continue to enhance the importance of these effects. There is also beginning to appear experimental evidence of the dynamical effects of atomic electrons on the course of nuclear reactions. The dynamics of a nuclear reaction, which influences and may in turn be influenced by atomic electrons in inner shells, offers instructive examples of the interplay between strong and electromagnetic interactions and raises interesting questions about coherence properties of particle beams. A variety of significantly different collision regimes, depending on the atomic numbers of the collision partners and the collision velocity, will be discussed and illustrated. 21 References, 5 figures

  13. Shell structure of potassium isotopes deduced from their magnetic moments

    Papuga, J.; Kreim, K; Barbieri, C; Blaum, K; De Rydt, M; Duguet, T; Garcia Ruiz, R F; Heylen, H; Kowalska, M; Neugart, R; Neyens, G; Nortershauser, W; Rajabali, M M; Sanchez, R; Smirnova, N; Soma, V; Yordanov, D T

    2014-09-29

    $\\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\\\ \\\\ $\\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \\\\ \\\\ $\\textbf{Method:}$ High-resolution collinear laser spectroscopy on bunched atomic beams. \\\\ \\\\ $\\textbf{Results:}$ From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and $\\textit{ab initio}$ framework is al...

  14. Shell Buckling Knockdown Factors

    National Aeronautics and Space Administration — The Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment #: 07-010-E, was established in March of 2007 by the NESC in...

  15. Quark deconfinement in nuclei: A review of experimental tests based on nuclear magnetic moment measurements

    Stone, N.J.; Rikovska, J.

    1988-01-01

    The introduction very briefly outlines the basic idea and experimental evidence to suggest that quarks may behave differently in nuclei and in individual nucleons, with possible consequences for the calculation of nuclear magnetic dipole moments. After description of a calculation of moments made using the extreme model of total quark deconfinement (the MIT bag model) attention is focussed on experimental tests and the state of current evidence for more partial quark deconfinement. The arguments of Yamazaki which give an experimental basis for distinguishing quark deconfinement effects from, specifically, effects caused by pion exchange currents, are given in more detail. The reasons underlying choice of nuclei in which meaningful tests may be possible are given. Early claims by Karl et al. to have demonstrated the existence of quark deconfinement in mass 3 nuclei are discussed. The current status of evidence for deconfinement based on orbital g-factor measurements in heavier nuclei is also summarised. Finally some examples are given of possible experiments using recently developed on-line facilities which may provide further tests of these ideas. (orig.)

  16. Plasma-column instabilities in a reversed-field pinch without a shell

    Schmid, P.G.

    1988-01-01

    Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell.

  17. Plasma-column instabilities in a reversed-field pinch without a shell

    Schmid, P.G.

    1988-01-01

    Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell

  18. Shells and Patterns

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  19. Uncertainty in techno-economic estimates of cellulosic ethanol production due to experimental measurement uncertainty

    Vicari Kristin J

    2012-04-01

    Full Text Available Abstract Background Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge at the industrial scale. A critical tool in biofuels process development is the techno-economic (TE model, which calculates biofuel production costs using a process model and an economic model. The process model solves mass and energy balances for each unit, and the economic model estimates capital and operating costs from the process model based on economic assumptions. The process model inputs include experimental data on the feedstock composition and intermediate product yields for each unit. These experimental yield data are calculated from primary measurements. Uncertainty in these primary measurements is propagated to the calculated yields, to the process model, and ultimately to the economic model. Thus, outputs of the TE model have a minimum uncertainty associated with the uncertainty in the primary measurements. Results We calculate the uncertainty in the Minimum Ethanol Selling Price (MESP estimate for lignocellulosic ethanol production via a biochemical conversion process: dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis and co-fermentation of the resulting sugars to ethanol. We perform a sensitivity analysis on the TE model and identify the feedstock composition and conversion yields from three unit operations (xylose from pretreatment, glucose from enzymatic hydrolysis, and ethanol from fermentation as the most important variables. The uncertainty in the pretreatment xylose yield arises from multiple measurements, whereas the glucose and ethanol yields from enzymatic hydrolysis and fermentation, respectively, are dominated by a single measurement: the fraction of insoluble solids (fIS in the biomass slurries. Conclusions We calculate a $0.15/gal uncertainty in MESP from the TE model due to uncertainties in primary measurements. This result sets a lower bound on the error bars of

  20. Off-shell CHY amplitudes

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  1. Experimental measurements of the eddy current signal due to a flawed, conducting half space

    Long, S.A.; Toomsawasdi, S.; Zaman, A.J.M.

    1984-01-01

    This chapter reports on an experimental investigation in which the change in impedance of a practical multi-turn eddy current coil near a conducting half space is measured as a function of the conductivity and the lift-off distance. The results are compared in a qualitative fashion with the analytical results for a single-turn coil. Measurements are also made of the change in impedance due to a small void in the conducting half space as a function of both its depth and radial position. The results indicate that, at least in a qualitative fashion, the precisely derived analytical solutions adequately predict the general behavior of the change in complex impedance of an eddy current coil above a conducting ground plane as a function of lift-off distance. It is determined that the effect of a sub-surface void on the change in inductance of the test coil correlates well with theoretical calculations

  2. Modeling and Experimental Tests of a Mechatronic Device to Measure Road Profiles Considering Impact Dynamics

    Souza, A.; Santos, Ilmar

    2002-01-01

    of a vehicle and to test its components in laboratory. In this framework a mechanism to measure road profiles is designed and presented. Such a mechanism is composed of two rolling wheels and two long beams attached to the vehicles by means of four Kardan joints. The wheels are kept in contact to the ground...... to highlight that the aim of this device is to independently measure two road profiles, without the influence of the vehicle dynamics where the mechanism is attached. Before the mechatronic mechanism is attached to a real vehicle, its dynamic behavior must be known. A theoretical analysis of the mechanism...... predicts well the mechanism movements. However it was also experimentally observed that the contact between the wheels and the road profile is not permanent. To analyze the non-contact between the wheels and the road, the Newton-Euler´s Method is used to calculate forces and moments of reactions between...

  3. The threshold anomaly in the interaction of s-d shell nuclei

    Bilwes, B.

    1990-01-01

    The energy dependence of the potential near the Coulomb barrier is studied by precise measurements of elastic scattering and quasi elastic reactions between s-d shell nuclei. The analyses with semi-microscopic (M3Y-folding model) and microscopic (closure approximation model) potentials allow us to demonstrate the generality of the threshold anomaly and the ability of these models to well reproduce the experimental data

  4. Noninvasive measurement of nutrient portal blood shunting: an experimental study with [14C]ursodeoxycholic acid

    Nordlinger, B.; Parquet, M.; Infante, R.; Moreels, R.; Blondiau, P.; Boschat, M.; Groussard, M.; Huguet, C.

    1982-01-01

    All of the methods proposed for measuring portal blood flow are either invasive, estimate total rather than nutrient flow, and none has proved reliable in cirrhotic patients. A method has been derived from pharmacokinetic principles used for the calculation of bioavailability of drugs according to the route of administration (i.v. or p.o.) and tested experimentally in 20 pigs. A tracer dose of [ 14 C]ursodeoxycholic acid, a biliary acid with a high-liver first-pass effect, is administered in the duodenum, and serial peripheral blood samples are taken. Later, the same dose of the same drug is administered i.v. The shunt fraction of portal blood F is obtained by the ratio of the areas under the plasma level vs. time curves (AUC) after p.o. and i.v. administrations: (see formula in text). The pigs were divided into three experimental groups. (i) Group I: undisturbed portal flow; (ii) Group II: total diversion of portal blood with an end-to-side portacaval shunt, and (iii) Group III: partial diversion of portal blood through a side-to-side portacaval shunt. Portal flow was measured during surgery with an electromagnetic flowmeter above and below the shunt and the degree of shunting calculated. Results show that the shunt fraction measured with ursodeoxycholic acid is well-correlated with hemodynamic data. No overlap between Groups I and III is observed. It is concluded that the shunt fraction of nutrient portal blood can be measured with this noninvasive method. Minute amounts of ursodeoxycholic acid were used in order to be completely metabolized by the liver, even in spite of hepatocellular dysfunction. Therefore, this method should be valid in cirrhotic patients and be useful to decide the type of portasystemic shunt to propose for the decompression of gastroesophageal varices

  5. Experimental density and viscosity measurements of di(2ethylhexyl)sebacate at high pressure

    Paredes, Xavier; Fandino, Olivia; Pensado, Alfonso S.; Comunas, Maria J.P.; Fernandez, Josefa

    2012-01-01

    Highlights: → We measure viscosities for di(2-ethylhexyl)sebacate from (298.15 to 398.15) K and up to 60 MPa. → We measure densities for DEHS from (298.15 to 373.15) K and from (0.1 to 60) MPa. → The reported and lit. data were used in a viscosity correlation from (273 to 491) K and up to 1.1 GPa. → This correlation could be used in industrial equipment that operate at high pressures. - Abstract: Experimental densities and dynamic viscosities of di(2-ethylhexyl)sebacate (DEHS) are the object of study in this work. DEHS could be a useful industrial reference fluid for moderately high viscosity at high pressures as it is often used as a pressure transmitting fluid. At atmospheric pressure the density and viscosity measurements have been performed in a rotational SVM 3000 Stabinger viscometer from (273.15 to 373.15) K, whereas from (0.1 to 60) MPa and from (298.15 to 398.15) K an automated Anton Paar DMA HPM vibrating-tube densimeter, and a high-pressure rolling-ball viscometer were used. Several Vogel-Fulcher-Tammann type equations were used to fit the experimental values of viscosity to the pressure and temperature. The measured viscosity data have been used together with previous data found in the literature to establish a correlation of the viscosity surface η(T, p) of DEHS, covering a temperature range from (273 to 491) K and pressure up to 1.1 GPa. This correlation could be used in industrial equipment like viscometers and other devices that operate at high pressures. Our viscosity data have also been fitted as a function of temperature and volume to the thermodynamic scaling model of Roland et al. [C.M. Roland, S. Bair, R. Casalini, J. Chem. Phys. 125 (2006) 124508].

  6. Kinetically blocked stable heptazethrene and octazethrene: Closed-shell or open-shell in the ground state?

    Li, Yuan

    2012-09-12

    Polycyclic aromatic hydrocarbons with an open-shell singlet biradical ground state are of fundamental interest and have potential applications in materials science. However, the inherent high reactivity makes their synthesis and characterization very challenging. In this work, a convenient synthetic route was developed to synthesize two kinetically blocked heptazethrene (HZ-TIPS) and octazethrene (OZ-TIPS) compounds with good stability. Their ground-state electronic structures were systematically investigated by a combination of different experimental methods, including steady-state and transient absorption spectroscopy, variable temperature NMR, electron spin resonance (ESR), superconducting quantum interfering device (SQUID), FT Raman, and X-ray crystallographic analysis, assisted by unrestricted symmetry-broken density functional theory (DFT) calculations. All these demonstrated that the heptazethrene derivative HZ-TIPS has a closed-shell ground state while its octazethrene analogue OZ-TIPS with a smaller energy gap exists as an open-shell singlet biradical with a large measured biradical character (y = 0.56). Large two-photon absorption (TPA) cross sections (σ(2)) were determined for HZ-TIPS (σ(2)max = 920 GM at 1250 nm) and OZ-TIPS (σ(2)max = 1200 GM at 1250 nm). In addition, HZ-TIPS and OZ-TIPS show a closely stacked 1D polymer chain in single crystals. © 2012 American Chemical Society.

  7. A novel experimental mechanics method for measuring the light pressure acting on a solar sail membrane

    Shi, Aiming; Jiang, Li; Dowell, Earl H.; Qin, Zhixuan

    2017-02-01

    Solar sail is a high potential `sailing craft' for interstellar exploration. The area of the first flight solar sail demonstrator named "IKAROS" is 200 square meters. Future interplanetary missions will require solar sails at least on the order of 10000 square meters (or larger). Due to the limitation of ground facilities, the size of experimental sample should not be large. Furthermore the ground experiments have to be conducted in gravitational field, so the gravity effect must be considered in a ground test. To obtain insight into the solar sail membrane dynamics, a key membrane flutter (or limit cycle oscillations) experiment with light forces acting on it must be done. But one big challenge is calibrating such a tiny light force by as a function of the input power. In this paper, a gravity-based measuring method for light pressure acting on membrane is presented. To explain the experimental principle, an ideal example of a laser beam with expanders and a metal film is studied. Based on calculations, this experimental mechanics method for calibrating light pressure with an accuracy of 0.01 micro-Newton may be realized by making the light force balance the gravity force on the metal films. This gravity-based measuring method could not only be applied to study the dynamics characteristics of solar sail membrane structure with different light forces, but could also be used to determine more accurate light forces/loads acting on solar sail films and hence to enhance the determination of the mechanical properties of the solar sail membrane structure.

  8. Experimental determination of an ionisation detector for measuring the nuclear lifetime

    Tisserant, S.

    1982-06-01

    The proton or neutron decay signature needs a good measurement of the varied produced particle energy, together with a good identification of them. The lack of experimental data on electron and charged pion of low energy led to experiment two series of tests. This thesis study precise, from these tests, the performances of the detector that will be installed at Modane. Prototype performances are first studied, concerning the particle energy measurement (electron and charged pions) and their identification. To extrapolate these results to the final detector, simulation programs will be used. The application of such a program that Electron-Gamma-Shower to energies below 500 MeV/c 2 for electromagnetic showers will be verified. For the pions, a simulation program of pion-nucleus interactions at low energy will be checked out from the experimental test data. Scattering effects, charge exchange and absorption are particularly concerned. These simulations reproduce the prototype results; they will be applied to the expected decay modes of proton and neutron. It will be shown that a fine grain detector. Shows a comparable sensitivty for every mode without final neutrino. Triggering probability and decay sign probability will be studied particularly [fr

  9. Neutron spectrometer for DD/DT burning ratio measurement in fusion experimental reactor

    Asai, Keisuke; Naoi, Norihiro; Iguchi, Tetsuo; Watanabe, Kenichi; Kawarabayashi, Jun; Nishitani, Takeo

    2006-01-01

    The most feasible fuels for a fusion reactor are D (Deuterium) and T (Tritium). DD and/or DT fusion reaction or nuclear burning reaction provides two kinds of neutrons, DD neutron and DT neutron, respectively. DD/DT burning ratio, which can be estimated by DD/DT neutron ratio in the burning plasma, is essential for burn control, alpha particle emission rate monitoring and tritium fuel cycle estimation. Here we propose a new neutron spectrometer for the absolute DD/DT burning ratio measurement. The system consists of a Proton Recoil Telescope (PRT) and a Time-of-Flight (TOF) technique. We have conducted preliminary experiments with a prototype detector and a DT neutron beam (φ20 mm) at the Fusion Neutronics Source, Japan Atomic Energy Agency (JAEA), to assess its basic performance. The detection efficiency obtained by the experiment is consistent with the calculation results in PRT, and sufficient energy resolution for the DD/DT neutron discrimination has been achieved in PRT and TOF. The validity of the Monte Carlo calculation has also been confirmed by comparing the experimental results with the calculation results. The design consideration of this system for use in ITER (International Thermonuclear Experimental Reactor) has shown that this system is capable of monitoring the line-integrated DD/DT burning ratio for the plasma core line of sight with the required measurement accuracy of 20% in the upper 4 decades of the ITER operation (fusion power: 100 kW-700 MW). (author)

  10. Experimental technologies comparison for strain measurement of a composite main landing gear bay specimen

    Viscardi, Massimo; Arena, Maurizio; Ciminello, Monica; Guida, Michele; Meola, Carosena; Cerreta, Pietro

    2018-03-01

    The development of advanced monitoring system for strain measurements on aeronautical components remain an important target both when related to the optimization of the lead-time and cost for part validation, allowing earlier entry into service, and when related to the implementation of advanced health monitoring systems dedicated to the in-service parameters verification and early stage detection of structural problems. The paper deals with the experimental testing of a composite samples set of the main landing gear bay for a CS-25 category aircraft, realized through an innovative design and production process. The test have represented a good opportunity for direct comparison of different strain measurement techniques: Strain Gauges (SG) and Fibers Bragg Grating (FBG) have been used as well as non-contact techniques, specifically the Digital Image Correlation (DIC) and Infrared (IR) thermography applied where possible in order to highlight possible hot-spot during the tests. The crucial points identification on the specimens has been supported by means of advanced finite element simulations, aimed to assessment of the structural strength and deformation as well as to ensure the best performance and the global safety of the whole experimental campaign.

  11. Degree of Acetylization Chitosan Gonggong Snail Shells

    Horiza, H.; Iskandar, I.; Aldo, N.

    2018-04-01

    Chitosan is a polysaccharide obtained from the deacetylation of chitin, which is generally derived from crustacean animal waste and animal skins other sea. One marine animals that have compounds that can be processed chitin chitosan is derived from the snail Gonggong marine waters of Riau Islands province. The purpose of this study was to determine the degree of chitosan from the shells of snails asetilisasi Gonggong. This research is an experimental research laboratory. The results of this study indicate that the degree of chitosan shell snail deasetilisasi Gonggong is 70.27%.

  12. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    Folsom, Charles

    2015-01-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC of the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50-30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.

  13. Type I Shell Galaxies as a Test of Gravity Models

    Vakili, Hajar; Rahvar, Sohrab [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Kroupa, Pavel, E-mail: vakili@physics.sharif.edu [Helmholtz-Institut für Strahlen-und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2017-10-10

    Shell galaxies are understood to form through the collision of a dwarf galaxy with an elliptical galaxy. Shell structures and kinematics have been noted to be independent tools to measure the gravitational potential of the shell galaxies. We compare theoretically the formation of shells in Type I shell galaxies in different gravity theories in this work because this is so far missing in the literature. We include Newtonian plus dark halo gravity, and two non-Newtonian gravity models, MOG and MOND, in identical initial systems. We investigate the effect of dynamical friction, which by slowing down the dwarf galaxy in the dark halo models limits the range of shell radii to low values. Under the same initial conditions, shells appear on a shorter timescale and over a smaller range of distances in the presence of dark matter than in the corresponding non-Newtonian gravity models. If galaxies are embedded in a dark matter halo, then the merging time may be too rapid to allow multi-generation shell formation as required by observed systems because of the large dynamical friction effect. Starting from the same initial state, the observation of small bright shells in the dark halo model should be accompanied by large faint ones, while for the case of MOG, the next shell generation patterns iterate with a specific time delay. The first shell generation pattern shows a degeneracy with the age of the shells and in different theories, but the relative distance of the shells and the shell expansion velocity can break this degeneracy.

  14. Experimental measurement of compressibility coefficients of synthetic sandstone in hydrostatic conditions

    Asaei, H; Moosavi, M

    2013-01-01

    For the characterization of the mechanical behavior of porous media in elastic conditions, the theory of poroelasticity is used. The number of poroelastic coefficients is greater in elastic conditions because of the complexity of porous media. The laboratory measurement of poroelastic coefficients needs a system that can control and measure the variables of poroelasticity. In this paper, experimental measurements of these coefficients are presented. Laboratory tests are performed using a system designed by the authors. Laboratory hydrostatic tests are performed on cylindrical samples in drained, pore pressure loading, undrained and dry conditions. Compressibilities (bulk and pore compressibility), effective stress and Skempton coefficients are measured by these tests. Samples are made of a composition (sand and cement) and are made by a compaction process synthetically. Calibration tests are performed for the setup to identify possible errors in the system and to correct the results of the main tests. This is done by performing similar compressibility tests at each stress level on a cylindrical steel sample (5.47 mm in diameter) with a longitudinal hole along it (hollow cylinder). A steel sample is used to assume an incompressible sample. The results of the tests are compared with the theory of poroelasticity and the obtained graphs and their errors are analyzed. This study shows that the results of the drained and pore pressure loading tests are compatible with poroelastic formulation, while the undrained results have errors because of extra fluid volume in the pore pressure system and calibration difficulties. (paper)

  15. Experimental reslts from the HERO project: In situ measurements of ionospheric modifications using sounding rockets

    Rose, G.; Grandal, B.; Neske, E.; Ott, W.; Spenner, K.; Maseide, K.; Troim, J.

    1985-01-01

    The Heating Rocket project HERO comprised the first in situ experiments to measure artifical ionospheric modifications at F layer heights set up by radio waves transmitted from the Heating facility at Ramfjord near Tromso in Northern Norway. Four instrumented payloads were launched on sounding rockets from Andoya Rocket Range during the autumn of 1982 into a sunlit ionosphere with the sun close to the horizon. The payloads recorded modifications, in particular, the presence of electron plasma waves near the reflection level of the heating wave. The amplitude and phase of the three components of the electric and magnetic fields of the heating wave were measured simultaneously as a function of altitude. Coherent spectra of the three electric field components of the locally generated electron plasma waves were obtained in a 50-kHz-wide band. At the same time quasi-continuous measurements were made on several fixed frequencies from 4 kHz to 16 kHz below the heating frequency and in the VLF-range using linear dipole antennas. Moreover, measurements were made of electron temperature, suprathermal electrons and local electron density along the rocket trajectory. The experimental results will be presented and discussed

  16. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  17. Artificially evolved functional shell morphology of burrowing bivalves

    Germann, D. P.; Schatz, W.; Hotz, Peter Eggenberger

    2014-01-01

    dimensional (3D) objects, the first ever artificial evolution of a physical bivalve shell was performed. The result was a vertically flattened shell occupying only the top sediment layers. Insufficient control of the sediment was the major limitation of the setup and restricted the significance of the results......, there are almost no studies experimentally testing their dynamic properties. To investigate the functional morphology of the bivalve shell, we employed a synthetic methodology and built an experimental setup to simulate the burrowing process. Using an evolutionary algorithm and a printer that prints three...

  18. Experimental measurement of enthalpy increments of Th0.25Ce0.75O2

    Babu, R.; Balakrishnan, S.; Ananthasivan, K.; Nagarajan, K.

    2013-01-01

    Thorium has been suggested as an alternative fertile material for a nuclear fuel cycle, and an inert matrix for burning plutonium and for waste disposal. The third stage of India's nuclear power programme envisages utilization of thorium and plutonium as a fuel in Advanced Heavy Water Reactor (AHWR) and Accelerator Driven Sub-critical Systems (ADSS). Solid solutions of ThO 2 -PuO 2 are of importance because of coexistence of Th with Pu during the breeding cycle. CeO 2 is used as a PuO 2 analog due to similar ionic radii of cations and similar physico-chemical properties of the oxides. ThO 2 forms a homogeneous solid solution with the cubic fluorite structure when doped with Ce in the entire compositional range. In the development of mixed oxide nuclear fuels, knowledge of thermodynamic properties of thorium oxide and its mixtures has become extremely importance for understanding the fuel behavior during irradiation and for predicting the performance of the fuel under accidental conditions. Thermodynamic functions such as the enthalpy increment and heat capacity of the theria-ceria solid solution have not been measured experimentally. Hence, the enthalpy increments of thoria-ceria solid solutions, Th 0.25 Ce 0.75 O 2 by inverse drop calorimetry in the temperature range 523-1723 K have been measured. The measured enthalpy increments were fitted in to polynomial functions by using the least squares method and the other thermodynamic functions such as heat capacity, entropy and Gibbs energy functions were computed in the temperature range 298-1800 K. The reported thermodynamic functions for Th 0.25 Ce 0.75 O 2 forms the first experimental data and the heat capacity of (Th,Ce)O 2 solid solutions was shown to obey the Neumann-Kopp's rule. (author)

  19. Calculation of the Scattered Radiation Profile in 64 Slice CT Scanners Using Experimental Measurement

    Afshin Akbarzadeh

    2009-06-01

    Full Text Available Introduction: One of the most important parameters in x-ray CT imaging is the noise induced by detected scattered radiation. The detected scattered radiation is completely dependent on the scanner geometry as well as size, shape and material of the scanned object. The magnitude and spatial distribution of the scattered radiation in x-ray CT should be quantified for development of robust scatter correction techniques. Empirical methods based on blocking the primary photons in a small region are not able to extract scatter in all elements of the detector array while the scatter profile is required for a scatter correction procedure. In this study, we measured scatter profiles in 64 slice CT scanners using a new experimental measurement. Material and Methods: To measure the scatter profile, a lead block array was inserted under the collimator and the phantom was exposed at the isocenter. The raw data file, which contained detector array readouts, was transferred to a PC and was read using a dedicated GUI running under MatLab 7.5. The scatter profile was extracted by interpolating the shadowed area. Results: The scatter and SPR profiles were measured. Increasing the tube voltage from 80 to 140 kVp resulted in an 80% fall off in SPR for a water phantom (d=210 mm and 86% for a polypropylene phantom (d = 350 mm. Increasing the air gap to 20.9 cm caused a 30% decrease in SPR. Conclusion: In this study, we presented a novel approach for measurement of scattered radiation distribution and SPR in a CT scanner with 64-slice capability using a lead block array. The method can also be used on other multi-slice CT scanners. The proposed technique can accurately estimate scatter profiles. It is relatively straightforward, easy to use, and can be used for any related measurement.

  20. Temperature-dependent tensile strength, surface roughness diagnostics, and magnetic support and positioning of polymer ICF shells. Final report, April 17, 1995--July 31, 1996

    Honig, A.

    1997-01-01

    The research carried out under this grant is a continuation of some of the authors previous experimental work on ICF target shells which focused on emissivity properties over a large temperature range, and on magnetic properties which could lead to successful levitation of target shells. Former methods in which contact-less shell temperature determination was achieved by accurate measurements of shell permeation rate are not workable at temperatures below about 230K, since the permeation rate becomes too slow. A new method explored here for emissivity determination at lower temperatures than in the preceding studies utilizes visual observation of phase changes between the liquid and gaseous phases as the shell warms up under the influence of black-body radiation absorption. The apparatus for this method was modified from its previously form by using cold flowing gas as coolant rather than a liquid N 2 bath. Two gases, argon and methane, were principally employed. While the actual emissivities were not accurately measured here, proof of the method was established. CH 4 (methane) gives the best results, thus extending the temperature range of emissivity determination down to about 140K. For emissivity determinations at still lower temperatures, another method discussed in previous work provides contact-less temperature measurement via the Curie law through measurements of the magnetic susceptibility using electron spin resonance (ESR). Current work showed some interesting distinctions among variously doped shells, but otherwise the results of the preliminary work carried out at the end of the previous grant were confirmed

  1. A heat transport benchmark problem for predicting the impact of measurements on experimental facility design

    Cacuci, Dan Gabriel

    2016-01-01

    Highlights: • Predictive Modeling of Coupled Multi-Physics Systems (PM_CMPS) methodology is used. • Impact of measurements for reducing predicted uncertainties is highlighted. • Presented thermal-hydraulics benchmark illustrates generally applicable concepts. - Abstract: This work presents the application of the “Predictive Modeling of Coupled Multi-Physics Systems” (PM_CMPS) methodology conceived by Cacuci (2014) to a “test-section benchmark” problem in order to quantify the impact of measurements for reducing the uncertainties in the conceptual design of a proposed experimental facility aimed at investigating the thermal-hydraulics characteristics expected in the conceptual design of the G4M reactor (GEN4ENERGY, 2012). This “test-section benchmark” simulates the conditions experienced by the hottest rod within the conceptual design of the facility's test section, modeling the steady-state conduction in a rod heated internally by a cosinus-like heat source, as typically encountered in nuclear reactors, and cooled by forced convection to a surrounding coolant flowing along the rod. The PM_CMPS methodology constructs a prior distribution using all of the available computational and experimental information, by relying on the maximum entropy principle to maximize the impact of all available information and minimize the impact of ignorance. The PM_CMPS methodology then constructs the posterior distribution using Bayes’ theorem, and subsequently evaluates it via saddle-point methods to obtain explicit formulas for the predicted optimal temperature distributions and predicted optimal values for the thermal-hydraulics model parameters that characterized the test-section benchmark. In addition, the PM_CMPS methodology also yields reduced uncertainties for both the model parameters and responses. As a general rule, it is important to measure a quantity consistently with, and more accurately than, the information extant prior to the measurement. For

  2. Shell model description of Ge isotopes

    Hirsch, J G; Srivastava, P C

    2012-01-01

    A shell model study of the low energy region of the spectra in Ge isotopes for 38 ≤ N ≤ 50 is presented, analyzing the excitation energies, quadrupole moments, B(E2) values and occupation numbers. The theoretical results have been compared with the available experimental data. The shell model calculations have been performed employing three different effective interactions and valence spaces. We have used two effective shell model interactions, JUN45 and jj44b, for the valence space f 5/2 pg 9/2 without truncation. To include the proton subshell f 7/2 in valence space we have employed the fpg effective interaction due to Sorlin et al., with 48 Ca as a core and a truncation in the number of excited particles.

  3. Modeling of microencapsulated polymer shell solidification

    Boone, T.; Cheung, L.; Nelson, D.; Soane, D.; Wilemski, G.; Cook, R.

    1995-01-01

    A finite element transport model has been developed and implemented to complement experimental efforts to improve the quality of ICF target shells produced via controlled-mass microencapsulation. The model provides an efficient means to explore the effect of processing variables on the dynamics of shell dimensions, concentricity, and phase behavior. Comparisons with experiments showed that the model successfully predicts the evolution of wall thinning and core/wall density differences. The model was used to efficiently explore and identify initial wall compositions and processing temperatures which resulted in concentricity improvements from 65 to 99%. The evolution of trace amounts of water entering into the shell wall was also tracked in the simulations. Comparisons with phase envelope estimations from modified UNIFAP calculations suggest that the water content trajectory approaches the two-phase region where vacuole formation via microphase separation may occur

  4. Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy

    Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.

    2016-09-01

    Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.

  5. Measurement of the ratio of hydrogen to deuterium at the KSTAR 2009 experimental campaign

    Kwak, Jong-Gu; Wang, Son Jong; Kim, Sun Ho; Park, Jae Min; Na, Hoon Kyun

    2010-01-01

    The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11 m 2 . The data showed that it remained as high as around 50% during the campaign period because graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.

  6. DEAR Monte Carlo simulation versus experimental data in measurements with the DEAR NTP setup

    Bragadireanu, A.M.; Iliescu, M.; Petrascu, C.; Ponta, T.

    1999-01-01

    The DEAR NTP setup was installed in DAΦNE and is taking background data since February 1999. The goal of this work is to compare the measurements, in terms of charged particle hits (clusters), with the DEAR Monte Carlo simulation, taking into account the main effects due to which the particles are lost from circulating beams: Touschek effect and beam-gas interaction. To be mentioned that, during this period, no collisions between electrons and positrons have been achieved in the DEAR Interaction Point (IP) and consequently we don't have any experimental data concerning the hadronic background coming from φ-decays directly, or as secondary products of hadronic interactions. The NTP setup was shielded using lead and copper which gives a shielding factor of about 4. In parallel with the NTP setup, the signals from two scintillator slabs (150 x 80 x 2 mm) collected by 4 PMTs, positioned bellow the NTP setup and facing the IP, were digitized and counted using a National Instruments Timer/Counter Card. To compare experimental data with results of the Monte Carlo simulation we selected periods with only one circulating beam (electrons or positrons), in order to have a clean data set and we selected data files with CCD occupancy lower than 5%. As concerning the X-rays, the statistics was too poor to perform any quantitative comparison. The comparison between Monte Carlo, CCD data and kaon monitor data, for two beams are shown. It can be seen the agreement is fairly good and promising along the way of checking our routines which describes the experimental setup and the physical processes occurring in the accelerator environment. (authors)

  7. Comparative performance of three experimental hut designs for measuring malaria vector responses to insecticides in Tanzania.

    Massue, Dennis J; Kisinza, William N; Malongo, Bernard B; Mgaya, Charles S; Bradley, John; Moore, Jason D; Tenu, Filemoni F; Moore, Sarah J

    2016-03-15

    Experimental huts are simplified, standardized representations of human habitations that provide model systems to evaluate insecticides used in indoor residual spray (IRS) and long-lasting insecticidal nets (LLINs) to kill disease vectors. Hut volume, construction materials and size of entry points impact mosquito entry and exposure to insecticides. The performance of three standard experimental hut designs was compared to evaluate insecticide used in LLINs. Field studies were conducted at the World Health Organization Pesticide Evaluation Scheme (WHOPES) testing site in Muheza, Tanzania. Three East African huts, three West African huts, and three Ifakara huts were compared using Olyset(®) and Permanet 2.0(®) versus untreated nets as a control. Outcomes measured were mortality, induced exophily (exit rate), blood feeding inhibition and deterrence (entry rate). Data were analysed using linear mixed effect regression and Bland-Altman comparison of paired differences. A total of 613 mosquitoes were collected in 36 nights, of which 13.5% were Anopheles gambiae sensu lato, 21% Anopheles funestus sensu stricto, 38% Mansonia species and 28% Culex species. Ifakara huts caught three times more mosquitoes than the East African and West African huts, while the West African huts caught significantly fewer mosquitoes than the other hut types. Mosquito densities were low, very little mosquito exit was measured in any of the huts with no measurable exophily caused by the use of either Olyset or Permanet. When the huts were directly compared, the West African huts measured greater exophily than other huts. As unholed nets were used in the experiments and few mosquitoes were captured, it was not possible to measure difference in feeding success either between treatments or hut types. In each of the hut types there was increased mortality when Permanet or Olyset were present inside the huts compared to the control, however this did not vary between the hut types. Both East African

  8. Monte Carlo and experimental determination of correction factors for gamma knife perfexion small field dosimetry measurements

    Zoros, E.; Moutsatsos, A.; Pappas, E. P.; Georgiou, E.; Kollias, G.; Karaiskos, P.; Pantelis, E.

    2017-09-01

    Detector-, field size- and machine-specific correction factors are required for precise dosimetry measurements in small and non-standard photon fields. In this work, Monte Carlo (MC) simulation techniques were used to calculate the k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} and k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors for a series of ionization chambers, a synthetic microDiamond and diode dosimeters, used for reference and/or output factor (OF) measurements in the Gamma Knife Perfexion photon fields. Calculations were performed for the solid water (SW) and ABS plastic phantoms, as well as for a water phantom of the same geometry. MC calculations for the k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors in SW were compared against corresponding experimental results for a subset of ionization chambers and diode detectors. Reference experimental OF data were obtained through the weighted average of corresponding measurements using TLDs, EBT-2 films and alanine pellets. k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} values close to unity (within 1%) were calculated for most of ionization chambers in water. Greater corrections of up to 6.0% were observed for chambers with relatively large air-cavity dimensions and steel central electrode. A phantom correction of 1.006 and 1.024 (breaking down to 1.014 from the ABS sphere and 1.010 from the accompanying ABS phantom adapter) were calculated for the SW and ABS phantoms, respectively, adding up to k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} corrections in water. Both measurements and MC calculations for the diode and microDiamond detectors resulted in lower than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors, due to their denser sensitive volume and encapsulation materials. In comparison, higher than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} results for the ionization chambers suggested field size depended dose underestimations (being significant for the 4 mm field), with magnitude depending on the combination of

  9. Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-103Pd source

    Sadeghi, Mahdi; Hosseini, Hamed; Raisali, Gholamreza

    2008-01-01

    Full text: The use of 103 Pd seed sources for permanent prostate implantation has become a popular brachytherapy application. As recommended by AAPM the dosimetric characteristics of the new source must be determined using experimental and Monte Carlo simulations, before its use in clinical applications thus The goal of this report is the experimental and theoretical determination of the dosimetric characteristics of this source following the recommendations in the AAPM TG-43U1 protocol. Figure 1 shows the geometry of the IRA- 103 Pd source. The source consists of a cylindrical silver core, 0.3 cm long x 0.05 cm in diameter, onto which 0.5 nm layer of 103 Pd has been uniformly adsorbed. The effective active length of source is 0.3 cm and the silver core encapsulated inside a hollow titanium tube with 0.45 cm long, 0.07 cm and 0.08 inner and outer diameters and two caps. The Monte Carlo N-Particle (MCNP) code, version 4C, was used to determine the relevant dosimetric parameters of the source. The geometry of the Monte Carlo simulation performed in this study consisted of a sphere with 30 cm diameter. Dose distributions around this source were measured in two Perspex phantom using enough TLD chips. For these measurements, slabs of Perspex material were machined to accommodate the source and TLD chips. A value of 0.67± 1% cGy.h -1 .U -1 for, Λ, was calculated as the ratio of d(r 0 ,θ 0 ) and s K , that may be compared with Λ values obtained for 103 Pd sources. Result of calculations and measurements values of dosimetric parameters of the source including radial dose function, g(r), and anisotropy function, F(r,θ), has been shown in separate figures. The radial dose function, g(r), for the IRA- 103 Pd source and other 103 Pd sources is included in Fig. 2. Comparison between measured and Monte Carlo simulated dose function, g(r), and anisotropy function, F(r,θ), of this source demonstrated that they are in good agreement with each other and The value of Λ is

  10. Experimental Verification of Plasmonic Cloaking at Microwave Frequencies with Metamaterials

    Edwards, Brian; Engheta, Nader; Alu, Andrea; Silveirinha, Mario G.

    2009-01-01

    Plasmonic cloaking is a scattering-cancellation technique based on the local negative polarizability of metamaterials. Here we report its first experimental realization and measurement at microwave frequencies. An array of metallic fins embedded in a high-permittivity fluid has been used to create a metamaterial plasmonic shell capable of cloaking a dielectric cylinder, yielding over 75% reduction of total scattering width.

  11. Experimental measurements and integrated modelling studies of actinide sorption onto cement

    Sugiyama, Daisuke; Fujita, Tomonari; Baston, G.M.N.

    2003-01-01

    An Integrated Cement Sorption Model (ICSM) for actinides onto Ordinary Portland Cement (OPC) is developed. The experimental measurements using the batch sorption technique for actinides onto cement and constituent minerals, which were considered in the modelling calculations, are also described. The actinide elements studied (thorium, uranium, neptunium, plutonium and americium) were strongly sorbed onto OPC. An initial comparison of the experimental data relating the sorption values of actinides onto cement-component phases with those onto OPC is carried out. The results suggest that the Calcium Silicate Hydrate (C-S-H) phases were found to be the most likely candidates to be the dominant-sorbing phases in order to describe the sorption of a actinides onto OPC. An approach to develop the integrated cement sorption model, based on a thermodynamic surface complexation model, is described with discussions on the possible mineralogy and phase distribution of OPC. Another approach than sorption, assuming that co-precipitation on the surface of the cement phase dominates 'sorption', is proposed and discussed. A scoring system is introduced to assess the applicability of the proposed ICSMs. It is suggested that the thermodynamic sorption model is recommended for the sorption of ionic species and the surface co-precipitation model is recommended for the sorption of neutral species though the sorption model is still recommended to be used to model OPC-based systems. (author)

  12. An Experimental Comparison of Similarity Assessment Measures for 3D Models on Constrained Surface Deformation

    Quan, Lulin; Yang, Zhixin

    2010-05-01

    To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.

  13. Calculation of kinetic parameters of Caliban metallic core experimental reactor from stochastic neutron measurements

    Casoli, P.; Authier, N.; Baud, J. [Commissariat a l' energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)

    2009-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Department of the CEA Valduc Laboratory. One of these is the metallic core reactor Caliban. The knowledge of the fundamental kinetic parameters of the reactor is very useful, indeed necessary, to the operator. The purpose of this study was to develop and perform experiments allowing to determinate some of these parameters. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as the interval-distribution, the Feynman variance-to-mean, and the Rossi-{alpha} methods. By introducing the Nelson number, the effective delayed neutron fraction and the average neutron lifetime can also be calculated with the Rossi-{alpha} method. Subcritical, critical, and even supercritical experiments were performed. With the Rossi-{alpha} technique, it was found that the prompt neutron decay constant at criticality was (6.02*10{sup 5} {+-} 9%). Experiments also brought out the limitations of the used experimental parameters. (authors)

  14. Three experimental tests of Bell's inequalities by measurement of polarization correlation of photons

    Aspect, A.

    1983-02-01

    We have performed three experimental tests of Bell's inequalities by measuring the linear-polarization correlation of photons emitted by pairs in the 4p 2 1 S 0 → 4s4p 1 P 1 → 4s 2 1 S 0 radiative cascade of calcium. The first part of this dissertation reminds the theoretical background (Bell's theorem), and the experimental situation (previous experiments). We then describe our apparatus: the source (calcium atomic beam selectively excited by two-photon absorption), the optics, the photon coincidence-counting system. Our first experiment, analogous to previous ones (but more precise) involves one-channel polarizers. Our second experiment, based on a conceptually simpler scheme, uses two-channel polarizers. The third experiment involves acousto-optical switches followed by two linear polarizers: these devices act as time-varying polarizers, the orientation of which is changed during the time of flight of photons. In the three experiments, the results are in good agreement with the Quantum mechanical predictions, and they distinctly violate the relevant Bell's inequalities [fr

  15. Measuring the Biodegradability of Plastic Polymers in Olive-Mill Waste Compost with an Experimental Apparatus

    Francesco Castellani

    2016-01-01

    Full Text Available The use of biodegradable polymers is spreading in agriculture to replace those materials derived from petroleum, thus reducing the environmental concerns. However, to issue a significant assessment, biodegradation rate must be measured in case-specific standardized conditions. In accordance with ISO 14855-1, we designed and used an experimental apparatus to evaluate the biodegradation rate of three biopolymers based on renewable resources, two poly(ε-caprolactone (PCL composites, and a compatibilized polylactic acid and polybutyrate (PLA/PBAT blend. Biodegradation tests were carried out under composting condition using mature olive-mill waste (OMW compost as inoculum. Carbon dioxide emissions were automatically recorded by infrared gas detectors and also trapped in saturated Ba(OH2 solution and evaluated via a standard titration method to check the results. Some of the samples reached more than 80% biodegradation in less than 20 days. Both the experimental apparatus and the OMW compost showed to be suitable for the cases studied.

  16. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation

    Yang, Jie; Liu, Qingquan; Dai, Wei; Ding, Renhui

    2016-01-01

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.

  17. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation.

    Yang, Jie; Liu, Qingquan; Dai, Wei; Ding, Renhui

    2016-08-01

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.

  18. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation

    Yang, Jie, E-mail: yangjie396768@163.com [Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing 210044 (China); School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Liu, Qingquan [Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing 210044 (China); Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing 210044 (China); Dai, Wei [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Ding, Renhui [Jiangsu Meteorological Observation Center, Nanjing 210008 (China)

    2016-08-15

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.

  19. Central X-ray beam correction of radiographic acetabular cup measurement after THA: an experimental study.

    Schwarz, T; Weber, M; Wörner, M; Renkawitz, T; Grifka, J; Craiovan, B

    2017-05-01

    Accurate assessment of cup orientation on postoperative radiographs is essential for evaluating outcome after THA. However, accuracy is impeded by the deviation of the central X-ray beam in relation to the cup and the impossibility of measuring retroversion on standard pelvic radiographs. In an experimental trial, we built an artificial cup holder enabling the setting of different angles of anatomical anteversion and inclination. Twelve different cup orientations were investigated by three examiners. After comparing the two methods for radiographic measurement of the cup position developed by Lewinnek and Widmer, we showed how to differentiate between anteversion and retroversion in each cup position by using a second plane. To show the effect of the central beam offset on the cup, we X-rayed a defined cup position using a multidirectional central beam offset. According to Murray's definition of anteversion and inclination, we created a novel corrective procedure to balance measurement errors caused by deviation of the central beam. Measurement of the 12 different cup positions with the Lewinnek's method yielded a mean deviation of [Formula: see text] (95 % CI 1.3-2.3) from the original cup anteversion. The respective deviation with the Widmer/Liaw's method was [Formula: see text] (95 % CI 2.4-4.0). In each case, retroversion could be differentiated from anteversion with a second radiograph. Because of the multidirectional central beam offset ([Formula: see text] cm) from the acetabular cup in the cup holder ([Formula: see text] anteversion and [Formula: see text] inclination), the mean absolute difference for anteversion was [Formula: see text] (range [Formula: see text] to [Formula: see text] and [Formula: see text] (range [Formula: see text] to [Formula: see text] for inclination. The application of our novel mathematical correction of the central beam offset reduced deviation to a mean difference of [Formula: see text] for anteversion and [Formula: see text

  20. Development, calibration and experimental results obtained with an innovative calorimeter (CALMOS) for nuclear heating measurements

    Carcreff, H.; Cloute-Cazalaa, V.; Salmon, L.

    2011-01-01

    Nuclear heating inside an MTR reactor has to be known in order to be able to control samples temperature during irradiation experiments. An R and D program has been carried out at CEA to design a new type of in-core calorimetric system. This new development, started in 2002, has for main objective to manufacture a calorimeter suitable to monitoring nuclear heating inside the 70 MWth OSIRIS material testing reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. An innovative calorimetric probe, associated to a specific handling system, has been designed to provide access to measurements both along the fissile height and on the upper part of the core, where nuclear heating still remains high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for process validation, while a displacement system has been especially studied to move the probe along a given axial measurement range. This paper deals with the development, tests on preliminary mock-ups and the finalization of the probe. Main modeling and experimental results are presented. Moreover, alternative methods to calibration for nuclear heating rate measurements which are now possible with this new calorimeter are presented and discussed. (authors)

  1. Development, calibration, and experimental results obtained with an innovative calorimeter (CALMOS) for nuclear heating measurements

    Carcreff, Hubert; Cloute-Cazalaa, Veronique; Salmon, Laurent

    2012-01-01

    Nuclear heating inside an MTR reactor has to be known in order to be able to control samples temperature during irradiation experiments. An R and D program has been carried out at CEA to design a new type of in-core calorimetric system. This new development, started in 2002, has for main objective to manufacture a calorimeter suitable to monitoring nuclear heating inside the 70 MWth OSIRIS material testing reactor operated by CEA's Nuclear Energy Division at the Saclay research center. An innovative calorimetric probe, associated to a specific handling system, has been designed to provide access to measurements both along the fissile height and on the upper part of the core, where nuclear heating still remains high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for process validation, while a displacement system has been especially studied to move the probe along a given axial measurement range. This paper deals with the development, tests on preliminary mock-ups and the finalization of the probe. Main modeling and experimental results are presented. Moreover, alternative methods to calibration for nuclear heating rate measurements which are now possible with this new calorimeter are presented and discussed. (authors)

  2. Muon Lifetime Measurement and Introduction to the use of FPGAs in Experimental Physics

    Villasenor, L.

    2008-01-01

    During the laboratory sessions at the Workshop, the students used a simple experimental setup to measure the muon lifetime with a 10% statistical error. The muon detector consisted of a sealed container, filled with liquid scintillator, coupled to a 2.5'' photomultiplier (PMT). A personal computer (PC) was used to control a digital oscilloscope which directly measured the time interval between two consecutive PMT pulses in a time window of 20 μs. The students were also introduced to the use of root to analyze the muon data and to measure the muon lifetime. They were also presented with a basic introduction to the application of field-programmable gate arrays (FPGAs) in data acquisition (DAQ) systems by means of examples. We started with a brief introduction to the VHDL language and the software package used to program FPGAs and PROMs on a commercial FPGA development board. They learned to program FPGAs for handling data transfers using the RS-232 port of a PC. They were also introduced to the concepts of circular RAMs (Random Access Memory) and FIFO (First-In First-Out) memories in the context of fast and efficient DAQ systems. We emphasized the way in which inexpensive FPGA-based electronics replaces the use of traditionally used electronics modules, such as NIM, CAMAC, FASTBUS, VME, etc., to construct fast and powerful DAQ systems

  3. Measuring and modeling the temporal dynamics of nitrogen balance in an experimental-scale paddy field

    Tseng, C.; Lin, Y.

    2013-12-01

    Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Fertilizer application in agriculture activity is usually seen as a common and significant nitrogen input to environment. Improper fertilizer application on paddy field can result in great amount of various types of nitrogen losses. Hence, it is essential to understand and quantify the nitrogen dynamics in paddy field for fertilizer management and pollution control. In this study, we develop a model which considers major transformation processes of nitrogen (e.g. volatilization, nitrification, denitrification and plant uptake). In addition, we measured different types of nitrogen in plants, soil and water at plant growth stages in an experimental-scale paddy field in Taiwan. The measurement includes total nitrogen in plants and soil, and ammonium-N (NH4+-N), nitrate-N (NO3--N) and organic nitrogen in water. The measured data were used to calibrate the model parameters and validate the model for nitrogen balance simulation. The results showed that the model can accurately estimate the temporal dynamics of nitrogen balance in paddy field during the whole growth stage. This model might be helpful and useful for future fertilizer management and pollution control in paddy field.

  4. Experimental measurements and finite element models of High Displacement Piezoelectric Actuators.

    Camargo, Gilberto; Ashford, Gevale; Naco, Eris; Usher, Tim

    2004-03-01

    Piezoelectric actuators have many applications including morphable wing technology and piezoelectric transformers. A Piezoelectric ceramic is a material that will move when a voltage is applied and conversely produces a charge when a pressure is applied. In our study, we examine THUNDER (Thin Layer Unimorph Ferroelectric Driver and Sensor) actuators (Thunder TM is a trademark of FACE International Corporation.) Thunder actuators are constructed by bonding thin PZT piezoelectric ceramics to metal sheets. We will present physical measurements of piezoelectric actuators, as well as measurements of the displacements due to applied voltages. In our studies we used a laser micrometer to measure the dimensional characteristics of four sizes of THUNDER actuators including TH-8R, TH-9R, TH-10R, and finally the TH-11R. We also developed computer models using a commercial fine element modeling package (FEM) known as ANSYS6.0®. This software enables us to construct our models controlling such attributes as exact dimensions of the three layers of the piezoelectric actuator, the material properties of each element, the type of load that is to be applied as well as the manner in which the layers are bonded together. The computer model compares favorably with the experimental results. Acknowledgements: NASA Grant No. 0051-0078 Department of Defense (DoD) Control No.ISP02-EUG15

  5. Dyson shells: a retrospective

    Bradbury, Robert J.

    2001-08-01

    More than 40 years have passed since Freeman Dyson suggested that advanced technological civilizations are likely to dismantle planets in their solar systems to harvest all of the energy their stars wastefully radiate into space. Clearly this was an idea that was ahead of its time. Since that time, dozens of SETI searches have been conducted and almost all of them have focused their attention on stars which by definition cannot be the advanced civilizations that Dyson envisioned. I will review the data that created the confusion between Dyson spheres and Dyson shells. The sources that disprove Dyson spheres while still allowing Dyson shells will be discussed. The use of outmoded ideas that have biased the few searches for Dyson Shells that have occurred will be pointed out. An update of the concept of Dyson shells to include our current knowledge of biotechnology, nanotechnology and computer science will be explored. Finally, an approach to setting limits on the abundance of Dyson shells in our galaxy using existing optical astronomical data and future optical satellites will be proposed.

  6. Double shell planar experiments on OMEGA

    Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.

    2017-10-01

    The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.

  7. Inner shell ionization accompanying nuclear collisions

    Sujkowski, Z.

    1987-01-01

    Selected phenomena leading to inner shell ionization and being of relevance for nuclear physics are discussed. The selection emphasizes the K-shell ionization induced in head-on collisions by fast light and medium-heavy ions. Cross-sections are reviewed. Effects of multiple inner shell ionization on the K X-ray spectra are illustrated with recent results. Implications for nuclear experiments are noted. Use of atomic observables as clocks for proton induced nuclear reactions is reviewed. Prospects for H.I. reactions are discussed. Preliminary experimental results on the direct K-shell ionization accompanying H.I. fusion reactions are presented. The post-collisional K-shell ionization due to internal conversion of γ-rays is discussed as the dominating contribution to the ionization for residues of dissipative nuclear reactions with Z > 40. Systematics of the corresponding K X-ray multiplicities are presented for rotational nuclei. These multiplicity values can be used for determining cross-sections for e.g. incomplete fusion reactions. Examples of such applications are given. Also discussed is the use of target K X-rays for normalization purposes and of the post-collisional, residue K X-rays in the studies of high spin phenomena. 96 references, 35 figures, 3 tables

  8. Experimental Measurement of Relative Permeability Functions for Fuel Cell GDL Materials

    Hussaini, Irfan; Wang, Chao-Yang

    2009-01-01

    Gas diffusion layer in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex-situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented. Significant departure from the generally assumed cubic function of saturation is observed. ©The Electrochemical Society.

  9. Design, Specification and Construction of Specialized Measurement System in the Experimental Building

    Fedorczak-Cisak, Malgorzata; Kwasnowski, Pawel; Furtak, Marcin; Hayduk, Grzegorz

    2017-10-01

    Experimental buildings for “in situ” research are a very important tool for collecting data on energy efficiency of the energy-saving technologies. One of the most advanced building of this type in Poland is the Maloposkie Laboratory of Energy-saving Buildings at Cracow University of Technology. The building itself is used by scientists as a research object and research tool to test energy-saving technologies. It is equipped with a specialized measuring system consisting of approx. 3 000 different sensors distributed in technical installations and structural elements of the building (walls, ceilings, cornices) and the ground. The authors of the paper will present the innovative design and technology of this specialized instrumentation. They will discuss issues arising during the implementation and use of the building.

  10. EXPERIMENTAL MEASUREMENT, ANALYSIS AND MODELLING OF DEPENDENCY EMISSIVITY IN FUNCTION OF TEMPERATURE

    N. Baba Ahmed

    2015-08-01

    Full Text Available We propose a direct method of measurement of the total emissivity of opaque samples on a range of temperature around the ambient one. The method rests on the modulation of the temperature of the sample and the infra-red signal processing resulting from the surface of the sample we model the total emissivity obtained in experiments according to the temperature to establish linear correlations. This leads us to apply the method of optimal linearization associated the finite element method with the nonlinear problem of transfer of heat if thermal conductivity, the specific heat and the emissivity of studied material depend on the temperature. We obtain a good agreement between the resolution of the nonlinear equation of heat and the results obtained by the experimentation. .

  11. Experimental testing of the digital multichannel analyzer for gamma spectrometry measurements

    Novkovic, D.; Nadjdjerdj, L.; Kandic, A.; Vukanac, I.; Djurasevic, M.

    2008-01-01

    The results of experimental testing of the digital multichannel analyzer which digitalizes the signal after a preamplifier are presented. The recordings of some of the characteristics of the spectrometer containing a digital MCA, such as full-peak efficiency, net-area ratio of the two peaks and the stability of the peak position, were carried out under different input counting rates, with different radioactive sources. The tested MCA has shown some excellent features, like the stability of the peak position over a long-term period and flexibility in the adjusting of optimum measurement conditions. However, the performed tests have also shown some serious and unexpected disadvantages of the digital MCA when it operates under certain circumstances, one of them having to do with the automatic tuning of live-time correction at low-input counting rates. (author)

  12. Experimental Set-up and Full-scale measurements in the ‘Cube'

    Kalyanova, Olena; Heiselberg, Per

    The Cube' is an outdoor test facility located at the main campus of Aalborg University. It has been built in the fall of 2005 with the purpose of detailed investigations of the DSF performance, development of the empirical test cases for validation and further improvements of various building...... of any power supplied to the experimental zone in order to maintain the necessary thermal conditions. An accuracy of these measurements is justified by the quality of the facility construction: ‘the Cube' is very well insulated and tight....... simulation software for the modelling of buildings with double skin facades in the frame of IEA ECBCS ANNEX 43/SHC Task 34, Subtask EDouble Skin Facade. The test facility is designed to be flexible for a choice of the DSF operational modes, natural or mechanical flow conditions, different types of shading...

  13. Comparison of Numerically Simulated and Experimentally Measured Performance of a Rotating Detonation Engine

    Paxson, Daniel E.; Fotia, Matthew L.; Hoke, John; Schauer, Fred

    2015-01-01

    A quasi-two-dimensional, computational fluid dynamic (CFD) simulation of a rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction and other simplifications yield rapidly converging, steady solutions. Viscous effects, and heat transfer effects are modeled using source terms. The effects of potential inlet flow reversals are modeled using boundary conditions. Results from the simulation are compared to measured data from an experimental RDE rig with a converging-diverging nozzle added. The comparison is favorable for the two operating points examined. The utility of the code as a performance optimization tool and a diagnostic tool are discussed.

  14. Solar intensity measurement using a thermoelectric module; experimental study and mathematical modeling

    Rahbar, Nader; Asadi, Amin

    2016-01-01

    Highlights: • Solar intensity could be explained as a linear function of voltage and ambient temperature. • The maximum output voltage is approximately 120 mV which was occurred in midday. • The average value of the heat-sink thermal resistance could be measured with this device. • The average values of total heat transfer coefficients could be measured with this device. • Two correlations were proposed to predict the solar intensity with the accuracy of 10%. - Abstract: The present study is intended to design, manufacture, and modeling an inexpensive pyranometer using a thermoelectric module. The governing equations relating the solar intensity, output voltage, and ambient temperature have been derived by applying the mathematical and thermodynamic models. According to the thermodynamics modeling, the output voltage is a function of solar intensity, ambient temperature, internal parameters of thermoelectric module, convection and radiation coefficients, and geometrical characteristics of the setup. Moreover, the solar intensity can be considered as a linear function of voltage and ambient temperature within an acceptable range of accuracy. The experiments have been carried out on a typical winter day under climatic conditions of Semnan (35°33′N, 53°23′E), Iran. The results also indicated that the output voltage is dependent on the solar intensity and its maximum value was 120 mV. Finally, based on the experimental results, two correlations, with the accuracy of 10%, have been proposed to predict the solar intensity as a function of output voltage and ambient temperature. The average values of total heat transfer coefficient and thermal resistance of the heat-sink have been also calculated according to the thermodynamic modeling and experimental results.

  15. Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size

    Nekić Nikolina

    2017-03-01

    Full Text Available Ge/Si core/shell quantum dots (QDs recently received extensive attention due to their specific properties induced by the confinement effects of the core and shell structure. They have a type II confinement resulting in spatially separated charge carriers, the electronic structure strongly dependent on the core and shell size. Herein, the experimental realization of Ge/Si core/shell QDs with strongly tunable optical properties is demonstrated. QDs embedded in an amorphous alumina glass matrix are produced by simple magnetron sputtering deposition. In addition, they are regularly arranged within the matrix due to their self-assembled growth regime. QDs with different Ge core and Si shell sizes are made. These core/shell structures have a significantly stronger absorption compared to pure Ge QDs and a highly tunable absorption peak dependent on the size of the core and shell. The optical properties are in agreement with recent theoretical predictions showing the dramatic influence of the shell size on optical gap, resulting in 0.7 eV blue shift for only 0.4 nm decrease at the shell thickness. Therefore, these materials are very promising for light-harvesting applications.

  16. Methodology and experimental setup for measuring short-lives fission product yields in actinides induced fission by charged particles

    Bellido, A.V.

    1995-07-01

    The theoretical principles and the laboratory set-up for the fission products yields measurements are described. The procedures for the experimental determinations are explain in detail. (author). 43 refs., 5 figs

  17. Experimental measurements of thermoelectric and electrochemical potentials in sandstones saturated with NaCl electrolyte

    Leinov, E.; Jackson, M.

    2013-12-01

    Measurements of the self-potential (SP) have been used to characterize subsurface flow in numerous settings, including volcanoes, earthquake zones, and geothermal fields. Thermoelectric (TE) and electrochemical (EC) potentials contribute to the measured SP if gradients in temperature and/or concentration are present, yet few experimental measurements of EC and TE potentials in natural porous media have been reported. Each is the sum of a diffusion and exclusion potential: the former arises when ions of contrasting mobility migrate at different rates down a temperature or concentration gradient; the latter arises when there is a temperature or concentration gradient across an electrically charged porous medium in which co-ions of the same polarity have been excluded from the pore-space. Here we report measurements of the SP arising from temperature or concentration gradients across clean (clay-free) sandstone samples saturated with NaCl electrolyte over the salinity range 5x10-5 to 1M. Electrical potentials are measured using non-polarizing Ag/AgCl electrodes, and temperature or salinity gradients are induced by placing the saturated samples in contact with electrolyte reservoirs of contrasting temperature or concentration. Our experimental methodology accounts for the temperature- and concentration-dependent electrode response. We find that the TE potential responds linearly to the applied temperature difference, allowing a TE potential coupling coefficient to be determined; the value of this decreases as the electrolyte concentration increases, from +0.056mV/K at 10-4 M to -0.126mV/K at 1M. The EC potential increases as the concentration ratio increases, from a minimum of 1.8mV at a salinity ratio of 1.13, to a maximum of 24.8mV at salinity ratio of 102, before decreasing to 19.5mV at salinity ratio of 103. In both cases, at high values of concentration (>0.01M) the measured potential is diffusion dominated, while at lower concentration the exclusion potential is

  18. Correction of Pelvic Tilt and Pelvic Rotation in Cup Measurement after THA - An Experimental Study.

    Schwarz, Timo Julian; Weber, Markus; Dornia, Christian; Worlicek, Michael; Renkawitz, Tobias; Grifka, Joachim; Craiovan, Benjamin

    2017-09-01

    Purpose  Accurate assessment of cup orientation on postoperative pelvic radiographs is essential for evaluating outcome after THA. Here, we present a novel method for correcting measurement inaccuracies due to pelvic tilt and rotation. Method  In an experimental setting, a cup was implanted into a dummy pelvis, and its final position was verified via CT. To show the effect of pelvic tilt and rotation on cup position, the dummy was fixed to a rack to achieve a tilt between + 15° anterior and -15° posterior and 0° to 20° rotation to the contralateral side. According to Murray's definitions of anteversion and inclination, we created a novel corrective procedure to measure cup position in the pelvic reference frame (anterior pelvic plane) to compensate measurement errors due to pelvic tilt and rotation. Results  The cup anteversion measured on CT was 23.3°; on AP pelvic radiographs, however, variations in pelvic tilt (± 15°) resulted in anteversion angles between 11.0° and 36.2° (mean error 8.3°± 3.9°). The cup inclination was 34.1° on CT and ranged between 31.0° and 38.7° (m. e. 2.3°± 1.5°) on radiographs. Pelvic rotation between 0° and 20° showed high variation in radiographic anteversion (21.2°-31.2°, m. e. 6.0°± 3.1°) and inclination (34.1°-27.2°, m. e. 3.4°± 2.5°). Our novel correction algorithm for pelvic tilt reduced the mean error in anteversion measurements to 0.6°± 0.2° and in inclination measurements to 0.7° (SD± 0.2). Similarly, the mean error due to pelvic rotation was reduced to 0.4°± 0.4° for anteversion and to 1.3°± 0.8 for inclination. Conclusion  Pelvic tilt and pelvic rotation may lead to misinterpretation of cup position on anteroposterior pelvic radiographs. Mathematical correction concepts have the potential to significantly reduce these errors, and could be implemented in future radiological software tools. Key Points   · Pelvic tilt and rotation influence cup

  19. Assessment of CANDU physics codes using experimental data - II: CANDU core physics measurements

    Roh, Gyu Hong; Jeong, Chang Joon; Choi, Hang Bok

    2001-11-01

    Benchmark calculations of the advanced CANDU reactor analysis tools (WIMS-AECL, SHETAN and RFSP) and the Monte Carlo code MCNP-4B have been performed using Wolsong Units 2 and 3 Phase-B measurement data. In this study, the benchmark calculations have been done for the criticality, boron worth, reactivity device worth, reactivity coefficient, and flux scan. For the validation of the WIMS-AECL/SHETANRFSP code system, the lattice parameters of the fuel channel were generated by the WIMS-AECL code, and incremental cross sections of reactivity devices and structural material were generated by the SHETAN code. The results have shown that the criticality is under-predicted by -4 mk. The reactivity device worths are generally consistent with the measured data except for the strong absorbers such as shutoff rod and mechanical control absorber. The heat transport system temperature coefficient and flux distributions are in good agreement with the measured data. However, the moderator temperature coefficient has shown a relatively large error, which could be caused by the incremental cross-section generation methodology for the reactivity device. For the MCNP-4B benchmark calculation, cross section libraries were newly generated from ENDF/B-VI release 3 through the NJOY97.114 data processing system and a three-dimensional full core model was developed. The simulation results have shown that the criticality is estimated within 4 mk and the estimated reactivity worth of the control devices are generally consistent with the measurement data, which implies that the MCNP code is valid for CANDU core analysis. In the future, therefore, the MCNP code could be used as a reference tool to benchmark design and analysis codes for the advanced fuels for which experimental data are not available

  20. Heat transfer models for predicting Salmonella enteritidis in shell eggs through supply chain distribution.

    Almonacid, S; Simpson, R; Teixeira, A

    2007-11-01

    Egg and egg preparations are important vehicles for Salmonella enteritidis infections. The influence of time-temperature becomes important when the presence of this organism is found in commercial shell eggs. A computer-aided mathematical model was validated to estimate surface and interior temperature of shell eggs under variable ambient and refrigerated storage temperature. A risk assessment of S. enteritidis based on the use of this model, coupled with S. enteritidis kinetics, has already been reported in a companion paper published earlier in JFS. The model considered the actual geometry and composition of shell eggs and was solved by numerical techniques (finite differences and finite elements). Parameters of interest such as local (h) and global (U) heat transfer coefficient, thermal conductivity, and apparent volumetric specific heat were estimated by an inverse procedure from experimental temperature measurement. In order to assess the error in predicting microbial population growth, theoretical and experimental temperatures were applied to a S. enteritidis growth model taken from the literature. Errors between values of microbial population growth calculated from model predicted compared with experimentally measured temperatures were satisfactorily low: 1.1% and 0.8% for the finite difference and finite element model, respectively.

  1. Systematic study of shell effect near drip-lines

    Adhikari, S.; Samanta, C.

    2004-01-01

    The variation of nuclear shell effects with nucleon numbers is evaluated using the modified Bethe–Weizsaecker mass formula (BWM) and the measured atomic masses. The shell effects at magic neutron numbers N=8, 20, 28, 50, 82 and 126 and magic proton numbers Z=8, 20, 28, 50 and 82 are found to vary rapidly approaching the drip-lines. The shell effect due to one magic number increases on approaching another magic number. Thus, shell effects are not always negligible near the drip-lines. (author)

  2. Transitional nuclei near shell closures

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  3. An experimental setup for visualizations and measurements on free hypersonic jets

    Tordella Daniela

    2012-04-01

    Full Text Available The free hypersonic jets can be found in several technological applications and even in astrophysical observations. This article is mainly devoted to explain an experiment about visualizations and measurements on free hypersonic jets extending on length scales in the order of hundreds of initial diameters and traveling in a medium not necessarily made of the same gas of the jets. The experiments are performed by means of special facilities where the jet Mach numbers and the jetto-ambient density ratios can be set independently of each other, what permits the investigation of a wide parameters range in the relevant physics. The Mach number of the jets ranges from 5 to 20 and the jet-to ambient density ratio, which plays an important role in the jets morphology, can be set from 0.1 up to values exceeding 100. The present setup produces the jets by means of a fast piston system (for high Mach numbers or injection valves (for low Mach numbers, both coupled with de Laval nozzles. The visualizations and measurements are based on the electron beam technique: the jets are weakly ionized, then a fast CMOS camera captures images that are analyzed by image processing techniques. A sample of the results obtained by this experimental system is included at the end of this work.

  4. Accurate Profile Measurement of the low Intensity Secondary Beams in the CERN Experimental Areas

    AUTHOR|(CDS)2084531; Tranquille, Gerard

    2018-02-23

    The CERN accelerators deliver a wide spectrum of secondary beams to the Experimental Areas. These beams are composed of hadrons, leptons, and heavy ions that can vary greatly in momentum (1 GeV/c to 400 GeV/c) and intensity (10^2 to 10^8 particles per second). The profile, position, and intensity of these beams are measured utilising particle detectors. However, the current systems show several problems that limit the quality of this kind of monitoring. The aim of this doctoral thesis is to investigate the best detector technology that could replace the existing monitors and build a first prototype of it. A review of the existing detection techniques has led to the choice of Scintillating Fibres (SciFi) read-out with Silicon Photomultipliers (SiPM). This detection technology has the potential to perform better in terms of material budget, range of intensities measured, and active area size. In addition, it has particle counting capabilities, which could extend its application to momentum spectrometry or Time...

  5. Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-103Pd brachytherapy source

    Sadeghi, Mahdi; Raisali, Gholamreza; Hosseini, S. Hamed; Shavar, Arzhang

    2008-01-01

    This article presents a brachytherapy source having 103 Pd adsorbed onto a cylindrical silver rod that has been developed by the Agricultural, Medical, and Industrial Research School for permanent implant applications. Dosimetric characteristics (radial dose function, anisotropy function, and anisotropy factor) of this source were experimentally and theoretically determined in terms of the updated AAPM Task group 43 (TG-43U1) recommendations. Monte Carlo simulations were used to calculate the dose rate constant. Measurements were performed using TLD-GR200A circular chip dosimeters using standard methods employing thermoluminescent dosimeters in a Perspex phantom. Precision machined bores in the phantom located the dosimeters and the source in a reproducible fixed geometry, providing for transverse-axis and angular dose profiles over a range of distances from 0.5 to 5 cm. The Monte Carlo N-particle (MCNP) code, version 4C simulation techniques have been used to evaluate the dose-rate distributions around this model 103 Pd source in water and Perspex phantoms. The Monte Carlo calculated dose rate constant of the IRA- 103 Pd source in water was found to be 0.678 cGy h -1 U -1 with an approximate uncertainty of ±0.1%. The anisotropy function, F(r,θ), and the radial dose function, g(r), of the IRA- 103 Pd source were also measured in a Perspex phantom and calculated in both Perspex and liquid water phantoms

  6. Estimating temperature reactivity coefficients by experimental procedures combined with isothermal temperature coefficient measurements and dynamic identification

    Tsuji, Masashi; Aoki, Yukinori; Shimazu, Yoichiro; Yamasaki, Masatoshi; Hanayama, Yasushi

    2006-01-01

    A method to evaluate the moderator coefficient (MTC) and the Doppler coefficient through experimental procedures performed during reactor physics tests of PWR power plants is proposed. This method combines isothermal temperature coefficient (ITC) measurement experiments and reactor power transient experiments at low power conditions for dynamic identification. In the dynamic identification, either one of temperature coefficients can be determined in such a way that frequency response characteristics of the reactivity change observed by a digital reactivity meter is reproduced from measured data of neutron count rate and the average coolant temperature. The other unknown coefficient can also be determined by subtracting the coefficient obtained from the dynamic identification from ITC. As the proposed method can directly estimate the Doppler coefficient, the applicability of the conventional core design codes to predict the Doppler coefficient can be verified for new types of fuels such as mixed oxide fuels. The digital simulation study was carried out to show the feasibility of the proposed method. The numerical analysis showed that the MTC and the Doppler coefficient can be estimated accurately and even if there are uncertainties in the parameters of the reactor kinetics model, the accuracies of the estimated values are not seriously impaired. (author)

  7. Experimental measurement of 12C+16O fusion at stellar energies

    Fang, X.; Tan, W. P.; Beard, M.; deBoer, R. J.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; deSouza, R. T.; Hudan, S.; Singh, V.; Tang, X. D.; Uberseder, E.

    2017-10-01

    The total cross section of the 12C+16O fusion reaction has been measured at low energies to investigate the role of this reaction during late stellar evolution burning phases. A high-intensity oxygen beam, produced by the 5 MV pelletron accelerator at the University of Notre Dame, impinged on a thick, ultrapure graphite target. Protons and γ rays were simultaneously measured in the center-of-mass energy range from 3.64 to 5.01 MeV for singles and from 3.73 to 4.84 MeV for coincidence events, using silicon and Ge detectors. Statistical model calculations were employed to interpret the experimental results. The emergence of a new resonance-like broad structure and a decreasing trend in the S -factor data towards lower energies (opposite to previous data) are found for the 12C+16O fusion reaction. Based on these results the uncertainty range of the reaction rate within the temperature range of late stellar burning environments is discussed.

  8. Seeing mental states: An experimental strategy for measuring the observability of other minds

    Becchio, Cristina; Koul, Atesh; Ansuini, Caterina; Bertone, Cesare; Cavallo, Andrea

    2018-03-01

    Is it possible to perceive others' mental states? Are mental states visible in others' behavior? In contrast to the traditional view that mental states are hidden and not directly accessible to perception, in recent years a phenomenologically-motivated account of social cognition has emerged: direct social perception. However, despite numerous published articles that both defend and critique direct perception, researchers have made little progress in articulating the conditions under which direct perception of others' mental states is possible. This paper proposes an empirically anchored approach to the observability of others' mentality - not just in the weak sense of discussing relevant empirical evidence for and against the phenomenon of interest, but also, and more specifically, in the stronger sense of identifying an experimental strategy for measuring the observability of mental states and articulating the conditions under which mental states are observable. We conclude this article by reframing the problem of direct perception in terms of establishing a definable and measurable relationship between movement features and perceived mental states.

  9. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint.

    Zhang, Xiangming; Gan, Rong Z

    2011-10-01

    The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint.

  10. Dynamic properties of human incudostapedial joint-Experimental measurement and finite element modeling.

    Jiang, Shangyuan; Gan, Rong Z

    2018-04-01

    The incudostapedial joint (ISJ) is a synovial joint connecting the incus and stapes in the middle ear. Mechanical properties of the ISJ directly affect sound transmission from the tympanic membrane to the cochlea. However, how ISJ properties change with frequency has not been investigated. In this paper, we report the dynamic properties of the human ISJ measured in eight samples using a dynamic mechanical analyzer (DMA) for frequencies from 1 to 80 Hz at three temperatures of 5, 25 and 37 °C. The frequency-temperature superposition (FTS) principle was used to extrapolate the results to 8 kHz. The complex modulus of ISJ was measured with a mean storage modulus of 1.14 MPa at 1 Hz that increased to 3.01 MPa at 8 kHz, and a loss modulus that increased from 0.07 to 0.47 MPa. A 3-dimensional finite element (FE) model consisting of the articular cartilage, joint capsule and synovial fluid was then constructed to derive mechanical properties of ISJ components by matching the model results to experimental data. Modeling results showed that mechanical properties of the joint capsule and synovial fluid affected the dynamic behavior of the joint. This study contributes to a better understanding of the structure-function relationship of the ISJ for sound transmission. Copyright © 2018. Published by Elsevier Ltd.

  11. Investigation of particle transport through the measurement of the electron source in the Texas Experimental Tokamak

    Klepper, C.C.

    1985-01-01

    The spatial distribution of the electron source was measured spectroscopically in the Texas Experimental Tokamak. The method used involves the measurement of the emissivity of the Balmer α and β lines of neutral hydrogen. Modeling of the corresponding atomic transitions provides a relation between the emissivities and the electron source from the ionization of neutrals. Toroidal distributions were obtained by means of a set of relatively calibrated photodiode amplifier-filter packages referred to as plasma light monitors. Such monitors were distributed toroidally, and attached primarily to radial ports. Specially constructed, absolutely calibrated monitors provided absolute calibration. A scanning, rotating mirror system provided in-out brightness profiles. A TV camera system, viewing the limiter through a tangential port, provided a qualitative description of the poloidal asymmetry. Such description was necessary for the inversion of the rotating mirror data. Using electron density profiles obtained by means of far-infrared interferometry, and integrating the electron sources, the global particle confinement time (tau/sub p/) was computed. Parameter scans were performed in ohmically heated plasmas, varying the toroidal field, the plasma current, the electron density, and the plasma position with respect to the center of the poloidal ring limiter. It was found that tau/sub p/ peaks for a critical density that is independent of the other parameters

  12. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Séguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.

  13. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions.

    Rosenberg, M J; Zylstra, A B; Frenje, J A; Rinderknecht, H G; Johnson, M Gatu; Waugh, C J; Séguin, F H; Sio, H; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Hohenberger, M; Stoeckl, C; Sangster, T C; Yeamans, C B; LePape, S; Mackinnon, A J; Bionta, R M; Talison, B; Casey, D T; Landen, O L; Moran, M J; Zacharias, R A; Kilkenny, J D; Nikroo, A

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±DD-neutron yield diagnostics at the NIF.

  14. Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia

    Markou, Athina; Salamone, John D.; Bussey, Timothy; Mar, Adam; Brunner, Daniela; Gilmour, Gary; Balsam, Peter

    2013-01-01

    The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu). A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits. PMID:23994273

  15. Assessing the precision of strain measurements using electron backscatter diffraction – Part 2: Experimental demonstration

    Britton, T.B.; Jiang, J.; Clough, R.; Tarleton, E.; Kirkland, A.I.; Wilkinson, A.J.

    2013-01-01

    The residual impression after performing a microhardness indent in silicon has been mapped with high resolution EBSD to reveal residual elastic strain and lattice rotation fields. Mapping of the same area has been performed with variable pattern binning and exposure times to reveal the qualitative and quantitative differences resulting from reducing the pattern size and exposure time. Two dimension ‘image’ plots of these fields indicate that qualitative assessment of the shape and size of the fields can be performed with as much as 4×4 binning. However, quantitative assessment using line scans reveals that the smoothest profile can be obtained using minimal pattern binning and long exposure times. To compare and contrast with these experimental maps, finite element analysis has been performed using a continuum damage-plasticity material law which has been independently calibrated to Si [9]. The constitutive law incorporates isotropic hardening in compression, and isotropic hardening and damage in tension. To accurately capture the localised damage which develops during indentation via the nucleation and propagation of cracks around the indentation site cohesive elements were assigned along the interfaces between the planes which experience the maximum traction. The residual strain state around the indenter and the size of the cracks agree very well with the experimentally measured value. - Highlights: • Similar deformation fields around a microhardness indent have been characterised with HR-EBSD and simulated with a finite element model. • Qualitative assessment of the stress field can be performed with significant EBSD pattern binning (i.e. faster capture of maps). • Quantitative assessment of the stress fields benefits significantly from increased exposure times and minimal binning

  16. Thermal conductivity of Al–Cu–Mg–Si alloys: Experimental measurement and CALPHAD modeling

    Zhang, Cong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German cooperation group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Du, Yong, E-mail: yong-du@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German cooperation group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Liu, Shuhong; Liu, Yuling [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German cooperation group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Sundman, Bo. [INSTN, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2016-07-10

    Highlights: • The thermal conductivities of Al–x wt% Cu (x = 1, 3, 5, 15 and 30) and Al–y wt% Si (y = 2, 12.5 and 20) alloys were determined. • The reported thermal conductivities of Al–Cu–Mg–Si system were critically reviewed. • The CALPHAD approach was applied for the modeling of thermal conductivity. • The applicability of CALPHAD technique in the modeling of thermal conductivity was discussed. - Abstract: In the present work, the thermal conductivities and microstructure of Al–x wt% Cu (x = 1, 3, 5, 15 and 30) and Al–y wt% Si (y = 2, 12.5 and 20) alloys were investigated by using laser-flash method, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Besides, a CALPHAD (CALculation of PHAse Diagram) approach to evaluate the thermal conductivity of Al–Cu–Mg–Si system was performed. The numerical models for the thermal conductivity of pure elements and stoichiometric phases were described as polynomials, and the coefficients were optimized via PARROT module of Thermal-Calc software applied to the experimental data. The thermal conductivity of (Al)-based solid solutions was described by using Redlich–Kister interaction parameters. For alloys in two-phase region, the interface scattering parameter was proposed in the modeling to describe the impediment of interfaces on the heat transfer. Finally, a set of self-consistent parameters for the description of thermal conductivity in Al–Cu–Mg–Si system was obtained, and comprehensive comparisons between the calculated and measured thermal conductivities show that the experimental information is satisfactorily accounted for by the present modeling.

  17. Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia.

    Markou, Athina; Salamone, John D; Bussey, Timothy J; Mar, Adam C; Brunner, Daniela; Gilmour, Gary; Balsam, Peter

    2013-11-01

    The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu) meeting. A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits. Copyright © 2013 Elsevier

  18. Complexity of MRI induced heating on metallic leads: Experimental measurements of 374 configurations

    Mendoza Gonzalo

    2008-03-01

    Full Text Available Abstract Background MRI induced heating on PM leads is a very complex issue. The widely varying results described in literature suggest that there are many factors that influence the degree of heating and that not always are adequately addressed by existing testing methods. Methods We present a wide database of experimental measurements of the heating of metallic wires and PM leads in a 1.5 T RF coil. The aim of these measurements is to systematically quantify the contribution of some potential factors involved in the MRI induced heating: the length and the geometric structure of the lead; the implant location within the body and the lead path; the shape of the phantom used to simulate the human trunk and its relative position inside the RF coil. Results We found that the several factors are the primary influence on heating at the tip. Closer locations of the leads to the edge of the phantom and to the edge of the coil produce maximum heating. The lead length is the other crucial factor, whereas the implant area does not seem to have a major role in the induced temperature increase. Also the lead structure and the geometry of the phantom revealed to be elements that can significantly modify the amount of heating. Conclusion Our findings highlight the factors that have significant effects on MRI induced heating of implanted wires and leads. These factors must be taken into account by those who plan to study or model MRI heating of implants. Also our data should help those who wish to develop guidelines for defining safe medical implants for MRI patients. In addition, our database of the entire set of measurements can help those who wish to validate their numerical models of implants that may be exposed to MRI systems.

  19. Experimental validation of a method for removing the capacitive leakage artifact from electrical bioimpedance spectroscopy measurements

    Buendia, R; Seoane, F; Gil-Pita, R

    2010-01-01

    Often when performing electrical bioimpedance (EBI) spectroscopy measurements, the obtained EBI data present a hook-like deviation, which is most noticeable at high frequencies in the impedance plane. The deviation is due to a capacitive leakage effect caused by the presence of stray capacitances. In addition to the data deviation being remarkably noticeable at high frequencies in the phase and the reactance spectra, the measured EBI is also altered in the resistance and the modulus. If this EBI data deviation is not properly removed, it interferes with subsequent data analysis processes, especially with Cole model-based analyses. In other words, to perform any accurate analysis of the EBI spectroscopy data, the hook deviation must be properly removed. Td compensation is a method used to compensate the hook deviation present in EBI data; it consists of multiplying the obtained spectrum, Z meas (ω), by a complex exponential in the form of exp(–jωTd). Although the method is well known and accepted, Td compensation cannot entirely correct the hook-like deviation; moreover, it lacks solid scientific grounds. In this work, the Td compensation method is revisited, and it is shown that it should not be used to correct the effect of a capacitive leakage; furthermore, a more developed approach for correcting the hook deviation caused by the capacitive leakage is proposed. The method includes a novel correcting expression and a process for selecting the proper values of expressions that are complex and frequency dependent. The correctness of the novel method is validated with the experimental data obtained from measurements from three different EBI applications. The obtained results confirm the sufficiency and feasibility of the correcting method

  20. Accurate measurement of absolute experimental inelastic mean free paths and EELS differential cross-sections

    Craven, Alan J.; Bobynko, Joanna; Sala, Bianca; MacLaren, Ian, E-mail: ian.maclaren@glasgow.ac.uk

    2016-11-15

    Methods are described for measuring accurate absolute experimental inelastic mean free paths and differential cross-sections using DualEELS. The methods remove the effects of surface layers and give the results for the bulk materials. The materials used are VC{sub 0.83}, TiC{sub 0.98}, VN{sub 0.97} and TiN{sub 0.88} but the method should be applicable to a wide range of materials. The data was taken at 200 keV using a probe half angle of 29 mrad and a collection angle of 36 mrad. The background can be subtracted from under the ionisation edges, which can then be separated from each other. This is achieved by scaling Hartree-Slater calculated cross-sections to the edges in the atomic regions well above the threshold. The average scaling factors required are 1.00 for the non-metal K-edges and 1.01 for the metal L-edges (with uncertainties of a few percent). If preliminary measurements of the chromatic effects in the post-specimen lenses are correct, both drop to 0.99. The inelastic mean free path for TiC{sub 0.98} was measured as 103.6±0.5 nm compared to the prediction of 126.9 nm based on the widely used Iakoubovskii parameterisation. - Highlights: • We show how to extract absolute cross sections for EELS edges using DualEELS. • The method removes the effects of any surface layers on standards. • We use a needle specimen to determining the mean free path for inelastic scattering. • Constrained background fitting is essential to correct background subtraction. • Absolute cross sections are determined for TiC, TiN, VC and VN.