WorldWideScience

Sample records for shell designs incorporating

  1. Design of Breadfruit Shelling Machine | Nwigbo | African Research ...

    In the engineering design of this machine, the action zone consisted essentially of two rollers; one adjustable and the other rotating. A separating unit that cleans the seed while pneumatically separating it from the shell was incorporated. The design of this separating unit was such that practically 80% cleaning was achieved ...

  2. Nested shell superconducting magnet designs

    Bromberg, L.; Williams, J.E.C.; Titus, P.

    1992-01-01

    A new concept for manufacturing the toroidal field coil is described in this paper. Instead of structural plates, the magnet is wound in interlocking shells. The magnet configuration is described and the advantages explored. Structural analysis of the concept is performed using the ARIES tokamak reactor parameters. The effectiveness of a structural cap, placed above and below the toroidal field coils and used only to balance opposing torques generated in different places of the coil, is quantified

  3. A design chart for long vacuum pipes and shells

    Krempetz, K.; Grimson, J.; Kelly, P.

    1986-01-01

    This paper presents a design chart to aid designers in the selection of a wall thickness for long cylindrical shells having atmospheric pressure outside the shell and a pressure less than atmospheric inside the shell. The chart indicates a conservative value for the minimum wall thickness for a given shell diameter and material when the shell is completely evacuated

  4. Conceptual Design Tool for Concrete Shell Structures

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical re...

  5. Double-shell target designs for the Los Alamos Scientific Laboratory eight-beam laser system

    Kindel, J.M.; Stroscio, M.A.

    1978-03-01

    We investigate two double-pusher laser fusion targets, one that incorporates an outer exploding pusher shell and another that uses velocity multiplication. Specific designs are presented for the Los Alamos Scientific Laboratory Eight-Beam Laser System

  6. Method to incorporate anisotropic semiconductor nanocrystals of all shapes in an ultrathin and uniform silica shell

    Hutter, Eline M.; Pietra, Francesca; Moes, Relinde; Mitoraj, Dariusz; Meeldijk, Johannes D.; De Mello Donegá, Celso; Vanmaekelbergh, Daniël

    2014-01-01

    In this work, we present a method for the incorporation of anisotropic colloidal nanocrystals of many different shapes in silica in a highly controlled way. This method yields a uniform silica shell, with thickness tunable from 3 to 17 nm. The silica shell perfectly adapts to the shape of the

  7. Design of reinforced concrete plates and shells

    Schulz, M.

    1984-01-01

    Nowadays, the internal forces of reinforced concrete laminar structures can be easily evaluated by the finite element procedures. The longitudinal design in each direction is not adequate, since the whole set of internal forces in each point must be concomitantly considered. The classic formulation for the design and new design charts which bring reduction of the amount of necessary reinforcement are presented. A rational reinforced concrete mathematical theory which makes possible the limit state design of plates and shells is discussed. This model can also be applied to define the constitutive relationships of laminar finite elements of reinforced concrete. (Author) [pt

  8. ARIES-IV Nested Shell Blanket Design

    Wong, C.P.C.; Redler, K.; Reis, E.E.; Will, R.; Cheng, E.; Hasan, C.M.; Sharafat, S.

    1993-11-01

    The ARIES-IV Nested Shell Blanket (NSB) Design is an alternate blanket concept of the ARIES-IV low activation helium-cooled reactor design. The reference design has the coolant routed in the poloidal direction and the inlet and outlet plena are located at the top and bottom of the torus. The NSB design has the high velocity coolant routed in the toroidal direction and the plena are located behind the blanket. This is of significance since the selected structural material is SiC-composite. The NSB is designed to have key high performance components with characteristic dimensions of no larger than 2 m. These components can be brazed to form the blanket module. For the diverter design, we eliminated the use of W as the divertor coating material by relying on the successful development of the gaseous divertor concept. The neutronics and thermal-hydraulic performance of both blanket concepts are similar. The selected blanket and divertor configurations can also meet all the projected structural, neutronics and thermal-hydraulics design limits and requirements. With the selected blanket and divertor materials, the design has a level of safety assurance rate of I (LSA-1), which indicates an inherently safe design

  9. Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites

    S, Abdul Khalil H. P.; Masri, M.; Saurabh, Chaturbhuj K.; Fazita, M. R. N.; Azniwati, A. A.; Sri Aprilia, N. A.; Rosamah, E.; Dungani, Rudi

    2017-03-01

    In the present study, a successful attempt has been made on enhancing the properties of hybrid kenaf/coconut fibers reinforced vinyl ester composites by incorporating nanofillers obtained from coconut shell. Coconut shells were grinded followed by 30 h of high energy ball milling for the production of nanoparticles. Particle size analyzer demonstrated that the size of 90% of obtained nanoparticles ranged between 15-140 nm. Furthermore, it was observed that the incorporation of coconut shell nanofillers into hybrid composite increased water absorption capacity. Moreover, tensile, flexural, and impact strength increased with the filler loading up to 3 wt.% and thereafter decrease was observed at higher filler concentration. However, elongation at break decreased and thermal stability increased in nanoparticles concentration dependent manner. Morphological analysis of composite with 3% of filler loading showed minimum voids and fiber pull outs and this indicated that the stress was successfully absorbed by the fiber.

  10. Incorporating Engineering Design Challenges into STEM Courses

    Householder, Daniel L., Ed.; Hailey, Christine E., Ed.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…

  11. Incorporating Engineering Design Challenges into STEM Courses

    Householder, Daniel L.; Hailey, Christine E.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American youth. In most instances, these experiences in engineering design are infused into instruction programs in standards-based courses in science, technol...

  12. Design criteria of launching rockets for burst aerial shells

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  13. Optimal designs of mollusk shells from bivalves to snails.

    Okabe, Takuya; Yoshimura, Jin

    2017-02-10

    Bivalve, ammonite and snail shells are described by a small number of geometrical parameters. Raup noted that the vast majority of theoretically possible shell forms do not occur in nature. The constraint factors that regulate the biased distribution of natural form have long since been an open problem in evolution. The problem of whether natural shell form is a result of optimization remains unsolved despite previous attempts. Here we solve this problem by considering the scaling exponent of shell thickness as a morphological parameter. The scaling exponent has a drastic effect on the optimal design of shell shapes. The observed characteristic shapes of natural shells are explained in a unified manner as a result of optimal utilization of shell material resources, while isometric growth in thickness leads to impossibly tight coiling.

  14. Multislice theory of fast electron scattering incorporating atomic inner-shell ionization

    Dwyer, C.

    2005-01-01

    It is demonstrated how atomic inner-shell ionization can be incorporated into a multislice theory of fast electron scattering. The resulting theory therefore accounts for both inelastic scattering due to inner-shell ionization and dynamical elastic scattering. The theory uses a description of the ionization process based on the angular momentum representation for both the initial and final states of the atomic electron. For energy losses near threshold, only a small number of independent states of the ejected atomic electron need to be considered, reducing demands on computing time, and eliminating the need for tabulated inelastic scattering factors. The theory is used to investigate the influence of the collection aperture size on the spatial origin of the silicon K-shell EELS signal generated by a STEM probe. The validity of a so-called local approximation is also considered

  15. Elemental and Isotopic Incorporation into the Aragonitic Shells of Arctica Islandica: Insights from Temperature Controlled Experiments

    Wanamaker, A. D.; Gillikin, D. P.

    2014-12-01

    The long-lived ocean quahog, Arctica islandica, is a fairly well developed and tested marine proxy archive, however, the utility of elemental ratios in A. islandica shell material as environmental proxies remains questionable. To further evaluate the influence of seawater temperature on elemental and isotopic incorporation during biomineralization, A. islandica shells were grown at constant temperatures under two regimes during a 16-week period from March 27 to July 21, 2011. Seawater from the Darling Marine Center in Walpole, Maine was pumped into temperature and flow controlled tanks that were exposed to ambient food and salinity conditions. A total of 20 individual juvenile clams with an average shell height of 36 mm were stained with calcein (a commonly used biomarker) and cultured at 10.3 ± 0.3 °C for six weeks. After this, shell heights were measured and the clams were again stained with calcein and cultured at 15.0 ± 0.4 °C for an additional 9.5 weeks. The average shell growth during the first phase of the experiment was 2.4 mm with a linear extension rate of 0.40 mm/week. The average shell growth during the second phase of the experiment was 3.2 mm with an extension rate of 0.34 mm/week. Average salinity values were 30.2 ± 0.7 and 30.7 ±0.7 in the first and second phases of the experiment, respectively. Oxygen isotopes from the cultured seawater were collected throughout the experiment and provide the basis for establishing if shells grew in oxygen isotopic equilibrium. Elemental ratios (primarily Ba/Ca, Mg/Ca, Sr/Ca) in the aragonitic shells were determined via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), while stable oxygen and carbon isotope ratios were measured using continuous flow isotope ratio mass spectrometry. Continuous sampling within and across the temperature conditions (from 10 °C to 15 °C) coupled with the calcein markings provides the ability to place each sample into a precise temporal framework. The

  16. Soft shell hard core concept for aircraft impact resistant design

    Chen, C.; Rieck, P.J.

    1978-01-01

    For nuclear power plants sited in the vicinity of airports, the hypothetical events of aircraft impact have to be designed for. The conventional design concept is to strengthen the exterior structure to resist the impact induced force. The stiffened structures have two (2) disadvantages; one is the high construction cost, and the other is the high reaction force induced as well as the vibrational effects on the interior equipment and piping systems. This new soft shell hard core concept can relieve the above shortcomings. In this concept, the essential equipment required for safety are installed inside the hard core area for protection and the non-essential equipment are maintained between the hard core and soft shell area. During a hypothetical impact event, the soft shell will collapse locally and absorb large amounts of kinetic energy; hence, it reduces the reaction force and the vibrational effects. The design and analysis of the soft shell concept are discussed. (Author)

  17. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  18. The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements

    Nemeth, Michael P.; Starnes, James H., Jr.

    1998-01-01

    A summary of the existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability-based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.

  19. Performance of fly ash based geopolymer incorporating palm kernel shell for lightweight concrete

    Razak, Rafiza Abd; Abdullah, Mohd Mustafa Al Bakri; Yahya, Zarina; Jian, Ang Zhi; Nasri, Armia

    2017-09-01

    A concrete which cement is totally replaced by source material such as fly ash and activated by highly alkaline solutions is known as geopolymer concrete. Fly ash is the most common source material for geopolymer because it is a by-product material, so it can get easily from all around the world. An investigation has been carried out to select the most suitable ingredients of geopolymer concrete so that the geopolymer concrete can achieve the desire compressive strength. The samples were prepared to determine the suitable percentage of palm kernel shell used in geopolymer concrete and cured for 7 days in oven. After that, other samples were prepared by using the suitable percentage of palm kernel shell and cured for 3, 14, 21 and 28 days in oven. The control sample consisting of ordinary Portland cement and palm kernel shell and cured for 28 days were prepared too. The NaOH concentration of 12M, ratio Na2SiO3 to NaOH of 2.5, ratio fly ash to alkaline activator solution of 2.0 and ratio water to geopolymer of 0.35 were fixed throughout the research. The density obtained for the samples were 1.78 kg/m3, water absorption of 20.41% and the compressive strength of 14.20 MPa. The compressive strength of geopolymer concrete is still acceptable as lightweight concrete although the compressive strength is lower than OPC concrete. Therefore, the proposed method by using fly ash mixed with 10% of palm kernel shell can be used to design geopolymer concrete.

  20. Design aids for stiffened composite shells with cutouts

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  1. Designing Pension Plans to Incorporate Recent Legislation.

    Biggs, John H.

    1983-01-01

    Two proposals before Congress threaten to offset the delicate balance in pension plan design. The significance of the normal retirement feature in plan design, some possible program design changes, and how the pension arrangements of higher education institutions would be affected are discussed. (MLW)

  2. Incorporating bioenergy into sustainable landscape designs

    Dale, Virginia H.; Kline, Keith L.; Buford, Marilyn A.

    2016-01-01

    The paper describes an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains...... land-management objectives from a wide array of stakeholders, up-front planning requirements, and the complexity and level of effort needed for successful stakeholder involvement. A landscape design process may be stymied by insufficient data or participation. An impetus for coordination is critical....... Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution...

  3. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall......The paper treats the redesign of the float structure of the Wavestar wave energy converter. Previously it was designed as a glass fiber structure, but due to cost reduction requirements a redesign has been initiated. The new float structure will be designed as a double curved Ultra High Performance...

  4. 7 CFR 801.12 - Design requirements incorporated by reference.

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Design requirements incorporated by reference. 801.12 Section 801.12 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.12 Design requirements incorporated...

  5. Theory and design of heat exchanger : shell and tube condenser and reboiler

    Min, Ui Dong

    1996-02-01

    This book gives descriptions of shell and tube heat exchanger including from, sorts, structure like shell and shell side, channel, and sliding bar, basic design of heat exchanger, flow-induced vibration, shell side condenser, tube side condenser and design of basic structure of condenser by types, selection of reboiler type, kettle type reboiler, internal reboiler, pump through reboiler, design of reboiler like kettle and internal reboiler, and horizontal and vertical thermosyphon reboiler.

  6. Incorporating ISO Metadata Using HDF Product Designer

    Jelenak, Aleksandar; Kozimor, John; Habermann, Ted

    2016-01-01

    The need to store in HDF5 files increasing amounts of metadata of various complexity is greatly overcoming the capabilities of the Earth science metadata conventions currently in use. Data producers until now did not have much choice but to come up with ad hoc solutions to this challenge. Such solutions, in turn, pose a wide range of issues for data managers, distributors, and, ultimately, data users. The HDF Group is experimenting on a novel approach of using ISO 19115 metadata objects as a catch-all container for all the metadata that cannot be fitted into the current Earth science data conventions. This presentation will showcase how the HDF Product Designer software can be utilized to help data producers include various ISO metadata objects in their products.

  7. Incorporating public outreach in the MRS Design

    Richardson, J.; Charles, C.

    1993-01-01

    As the design of the proposed DOE-OCRWM MRS facility progresses, facility layouts that allow for frequent and unhindered viewing of the MRS processes by the public should be developed. By allowing the public to observe operations, the DOE believes that trust and confidence in the program will greatly improve. A program should be developed to educate the public so that they can see for themselves that the MRS facility does not pose an undue risk to public health and that the DOE is open, honest, and can be trusted. At the same time, a positive safety message will be implicitly conveyed, which should engender more positive public feelings about nuclear energy. Visitory access to the MRS Facility should not be limited to a Visitors Center, but rather should be expanded to allow the general public a chance to view the actual processes, such as the cask handling and spent fuel transfers that go on within the facility. This paper will describe the desirable features of any approach to give unlimited public access to the MRS facility and operations and thereby enhance public understanding and acceptance

  8. Optical characterization of magnesium incorporation in p-GaN layers for core–shell nanorod light-emitting diodes

    Gîrgel, I.; Šatka, A.; Priesol, J.; Coulon, P.-M.; Le Boulbar, E. D.; Batten, T.; Allsopp, D. W. E.; Shields, P. A.

    2018-04-01

    III-nitride nanostructures are of interest for a new generation of light-emitting diodes (LEDs). However, the characterization of doping incorporation in nanorod (NR) structures, which is essential for creating the p-n junction diodes, is extremely challenging. This is because the established electrical measurement techniques (such as capacitance–voltage or Hall-effect methods) require a simple sample geometry and reliable ohmic contacts, both of which are difficult to achieve in nanoscale devices. The need for homogenous, conformal n-type or p-type layers in core–shell nanostructures magnifies these challenges. Consequently, we demonstrate how a combination of non-contact methods (micro-photoluminescence, micro-Raman and cathodoluminescence), as well as electron-beam-induced-current, can be used to analyze the uniformity of magnesium incorporation in core–shell NRs and make a first estimate of doping levels by the evolution of band transitions, strain and current mapping. These techniques have been used to optimize the growth of core–shell nanostructures for electrical carrier injection, a significant milestone for their use in LEDs.

  9. Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm

    Oguz Emrah Turgut

    2014-12-01

    Full Text Available This study explores the thermal design of shell and tube heat exchangers by using Improved Intelligent Tuned Harmony Search (I-ITHS algorithm. Intelligent Tuned Harmony Search (ITHS is an upgraded version of harmony search algorithm which has an advantage of deciding intensification and diversification processes by applying proper pitch adjusting strategy. In this study, we aim to improve the search capacity of ITHS algorithm by utilizing chaotic sequences instead of uniformly distributed random numbers and applying alternative search strategies inspired by Artificial Bee Colony algorithm and Opposition Based Learning on promising areas (best solutions. Design variables including baffle spacing, shell diameter, tube outer diameter and number of tube passes are used to minimize total cost of heat exchanger that incorporates capital investment and the sum of discounted annual energy expenditures related to pumping and heat exchanger area. Results show that I-ITHS can be utilized in optimizing shell and tube heat exchangers.

  10. Global Cr-isotope distributions in surface seawater and incorporation of Cr isotopes into carbonate shells

    Paulukat, Cora Stefanie; Frei, Robert; Vögelin, Andrea Regula

    produced carbonate shells (bivalves, gastropods) and corals. Our preliminary data set ranges approximately from d53Cr = -0.2 to +0.7‰. They are isotopically lighter than local seawater. This is in good agreement with [6], who measured a negative offset from seawater in corals. These offsets indicate some...

  11. The incorporation of User Centered Design and Industrial design

    Dai, Zheng; Ómarsson, Ólafur

    2011-01-01

    Abstract—Traditional Industrial Design (TID) has been an important aspect in the NPD process within the last decades. User centered design (UCD) is a growing research field for product innovation, starting from the end of 20th century. An NPD process needs support from both design knowledge...... and research methodologies. Both TID and UCD focus on user’s perspective when doing multi-disciplinary work together. They provide skills and methods for designing the style and usability, and balancing the users need and reality. The skills from TID help design expression and realization to communicate...... respectively. Their methodologies are essential for a designer to successfully come to a fruitful design solution, and at the same time the project improves the methodologies of TID and UCD through a reflection process....

  12. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    None

    2015-08-01

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  13. Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement

    Wu, K. Chauncey

    2008-01-01

    In this study, a sub-scale advanced composite shell design is evaluated to determine its potential for use on a future aircraft fuselage. Two composite shells with the same nominal 8-ply [+/-45/+/-Theta](sub s) layup are evaluated, where Theta indicates a tow-steered ply. To build this shell, a fiber placement machine would be used to steer unidirectional prepreg tows as they are placed around the circumference of a 17-inch diameter right circular cylinder. The fiber orientation angle varies continuously from 10 degrees (with respect to the shell axis of revolution) at the crown, to 45 degrees on the side, and back to 10 degrees on the keel. All 24 tows are placed at each point on every fiber path in one structure designated as the shell with overlaps. The resulting pattern of tow overlaps causes the laminate thickness to vary between 8 and 16 plies. The second shell without tow overlaps uses the capability of the fiber placement machine to cut and add tows at any point along the fiber paths to fabricate a shell with a nearly uniform 8-ply laminate thickness. Issues encountered during the design and analysis of these shells are presented and discussed. Static stiffness and buckling loads of shells with tow-steered layups are compared with the performance of a baseline quasi-isotropic shell using both finite element analyses and classical strength of materials theory.

  14. Applying and incorporating user driven innovation when designing concepts

    Thorp Hansen, Claus; Brønnum, Louise

    This paper addresses the difficulties seen when working within the user driven innovation [UDI] paradigm. We examine some of the circumstances that often make it difficult to work with user insights in concept design. UDI has become a recognized design approach, but has not yet accommodated...... a design practice explicitly considering the type of user insights this approach implies. For that reason UDI has yet to prove itself and its potential effect; a study of Danish initiative “program for user driven innovation” has shown little effect in this regard. However it has shown that radical new...... insights have been produced but at the same time to abstract when integrated in the design process. We will discuss and propose a framework for working with user insights in concept design, based on existing concept frameworks but actively addressing and incorporating user insights as a new type of input...

  15. Cholesteric Liquid Crystal Shells as Enabling Material for Information-Rich Design and Architecture.

    Schwartz, Mathew; Lenzini, Gabriele; Geng, Yong; Rønne, Peter B; Ryan, Peter Y A; Lagerwall, Jan P F

    2018-05-14

    The responsive and dynamic character of liquid crystals (LCs), arising from their ability to self-organize into long-range ordered structures while maintaining fluidity, has given them a role as key enabling materials in the information technology that surrounds us today. Ongoing research hints at future LC-based technologies of entirely different types, for instance by taking advantage of the peculiar behavior of cholesteric liquid crystals (CLCs) subject to curvature. Spherical shells of CLC reflect light omnidirectionally with specific polarization and wavelength, tunable from the UV to the infrared (IR) range, with complex patterns arising when many of them are brought together. Here, these properties are analyzed and explained, and future application opportunities from an interdisciplinary standpoint are discussed. By incorporating arrangements of CLC shells in smart facades or vehicle coatings, or in objects of high value subject to counterfeiting, game-changing future uses might arise in fields spanning information security, design, and architecture. The focus here is on the challenges of a digitized and information-rich future society where humans increasingly rely on technology and share their space with autonomous vehicles, drones, and robots. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. System 80+{trademark} standard design incorporates radiation protection lessons learned

    Crom, T.D.; Naugle, C.L. [Duke Engineering & Services, Inc., Charlotte, NC (United States); Turk, R.S. [ABB Combustion Engineering Nuclear Power, Windsor, CT (United States)

    1995-03-01

    Many lessons have been learned from the current generation of nuclear plants in the area of radiation protection. The following paper will outline how the lessons learned have been incorporated into the design and operational philosophy of the System 80+{trademark} Standard Design currently under development by ABB Combustion Engineering (ABB-CE) with support from Duke Engineering and Services, Inc. and Stone and Webster Engineering Corporation in the Balance-of-Plant design. The System 80+{trademark} Standard Design is a complete nuclear power plant for national and international markets, designed in direct response to utility needs for the 1990`s, and scheduled for Nuclear Regulatory Commission (NRC) Design Certification under the new standardization rule (10 CFR Part 52). System 80+{trademark} is a natural extension of System 80{sup R} technology, an evolutionary change based on proven Nuclear Steam Supply System (NSSS) in operation at Palo Verde in Arizona and under construction at Yonggwang in the Republic of Korea. The System 80+{trademark} Containment and much of the Balance of Plant design is based upon Duke Power Company`s Cherokee Plant, which was partially constructed in the late 1970`s, but, was later canceled (due to rapid declined in electrical load growth). The System 80+{trademark} Standard Design meets the requirements given in the Electric Power Research Institute (EPRI) Advanced Light Water Reactor (ALWR) Requirements Document. One of these requirements is to limit the occupational exposure to 100 person-rem/yr. This paper illustrates how this goal can be achieved through the incorporation of lessons learned, innovative design, and the implementation of a common sense approach to operation and maintenances practices.

  17. Incorporating climate change projections into riparian restoration planning and design

    Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  18. Current directions in core-shell nanoparticle design

    Schärtl, Wolfgang

    2010-06-01

    Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems.Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems

  19. Incorporating Handling Qualities Analysis into Rotorcraft Conceptual Design

    Lawrence, Ben

    2014-01-01

    This paper describes the initial development of a framework to incorporate handling qualities analyses into a rotorcraft conceptual design process. In particular, the paper describes how rotorcraft conceptual design level data can be used to generate flight dynamics models for handling qualities analyses. Also, methods are described that couple a basic stability augmentation system to the rotorcraft flight dynamics model to extend analysis to beyond that of the bare airframe. A methodology for calculating the handling qualities characteristics of the flight dynamics models and for comparing the results to ADS-33E criteria is described. Preliminary results from the application of the handling qualities analysis for variations in key rotorcraft design parameters of main rotor radius, blade chord, hub stiffness and flap moment of inertia are shown. Varying relationships, with counteracting trends for different handling qualities criteria and different flight speeds are exhibited, with the action of the control system playing a complex part in the outcomes. Overall, the paper demonstrates how a broad array of technical issues across flight dynamics stability and control, simulation and modeling, control law design and handling qualities testing and evaluation had to be confronted to implement even a moderately comprehensive handling qualities analysis of relatively low fidelity models. A key outstanding issue is to how to 'close the loop' with an overall design process, and options for the exploration of how to feedback handling qualities results to a conceptual design process are proposed for future work.

  20. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    Sencan Sahin, Arzu; Kilic, Bayram; Kilic, Ulas

    2011-01-01

    Highlights: → Artificial Bee Colony for shell and tube heat exchanger optimization is used. → The total cost is minimized by varying design variables. → This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  1. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    Sencan Sahin, Arzu, E-mail: sencan@tef.sdu.edu.tr [Department of Mechanical Education, Technical Education Faculty, Sueleyman Demirel University, 32260 Isparta (Turkey); Kilic, Bayram, E-mail: bayramkilic@hotmail.com [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey); Kilic, Ulas, E-mail: ulaskilic@mehmetakif.edu.tr [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)

    2011-10-15

    Highlights: {yields} Artificial Bee Colony for shell and tube heat exchanger optimization is used. {yields} The total cost is minimized by varying design variables. {yields} This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  2. Incorporating design for decommissioning into the layout of nuclear facilities

    Collum, B.; Druart, A.

    2008-01-01

    Design for Decommissioning (DfD) is the design of nuclear facilities in a manner that facilitates ultimate decommissioning in as safe, technically efficient and cost effective way as possible. Strictly speaking, (DfD) should need minimal introduction and this paper should ideally be aimed at discussing the finer points of some improvement to a practice that is already widely embedded throughout the nuclear industry. The reality though is quite different. As an industry, we all know what DfD is and indeed we do incorporate it into our designs. However, application is at best patchy and there is little evidence of applying it to the level that will be advocated here. When applied at its highest level, DfD is all about truly designing nuclear facilities with their whole life cycle in mind, such that the decommissioning phase is an integral part of the design of a facility from the very first day. In this way, when a facility comes to the end of its operational life, it can move smoothly to Post Operational Clean Out (POCO) and then through the various phases of decommissioning. Demonstrating from the start that the nuclear industry addresses the challenges posed by decommissioning will help it to gain support from the regulators and the general public for proposals to build new nuclear generating capacity. (author)

  3. Specific pathways for the incorporation of dissolved barium and molybdenum into the bivalve shell: an isotopic tracer approach in the juvenile Great Scallop (Pecten maximus).

    Tabouret, Hélène; Pomerleau, Sébastien; Jolivet, Aurélie; Pécheyran, Christophe; Riso, Ricardo; Thébault, Julien; Chauvaud, Laurent; Amouroux, David

    2012-07-01

    Dissolved barium and molybdenum incorporation in the calcite shell was investigated in the Great Scallop Pecten maximus. Sixty six individuals were exposed for 16 days to two successive dissolved Ba and Mo concentrations accurately differentiated by two different isotopic enrichments (⁹⁷Mo, ⁹⁵Mo; ¹³⁵Ba, ¹³⁷Ba). Soft tissue and shell isotopic composition were determined respectively by quantitative ICP-MS (Inductively Coupled Plasma Mass Spectrometer) and laser ablation--ICP-MS. Results from Ba enrichment indicate the direct incorporation of dissolved Ba into the shell in proportion to the levels in the water in which they grew with a 6-8 day delay. The low spike contributions and the low partition coefficient (D(Mo) = 0.0049 ± 0.0013), show that neither the soft tissue nor the shell were significantly sensitive to Mo enrichment. These results eliminate direct Mo shell enrichment by the dissolved phase, and favour a trophic uptake that will be investigated using the successive isotopic enrichment approach developed in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Design, fabrication and testing of a prototype stressed-shell fuel isolation container

    Crosthwaite, J.L.; Barrie, J.N.; Nuttall, K.

    1982-07-01

    Atomic Energy of Canada Limited is conducting and coordinating research into the development of engineered barriers for the disposal of unreprocessed irradiated fuel within a deep, stable geologic vault. In one approach, a containment shell of corrosion-resistant metal is proposed as the principal barrier to radionuclide release, giving a high probability of containment for at least 300 years, thus ensuring isolation of nearly all fission products for their hazardous lives. The simplest concept is the 'stressed-shell' container, designed with sufficient shell thickness to withstand the hydrostatic pressure within a 1000-m deep disposal vault postulated to have flooded with groundwater. This report describes the design, fabrication, analysis and hydrostatic testing of a full-scale stressed-shell prototype. The report concludes that the deformation and collapse performance of stressed-shell designs, based on short-term mechanical properties be modelled adequately by BOSOR 5, a commercially available stress-strain computer program. If the stressed-shell concept is retained as a viable fuel isolation concept, future analyses should include an assessment of the role of material creep on long-term container performance

  5. Control of the Helicity Content of a Gun-Generated Spheromak by Incorporating a Conducting Shell into a Magnetized Coaxial Plasma Gun

    Matsumoto, Tadafumi; Sekiguchi, Jun'ichi; Asai, Tomohiko

    In the formation of magnetized plasmoid by a magnetized coaxial plasma gun (MCPG), the magnetic helicity content of the generated plasmoid is one of the critical parameters. Typically, the bias coil to generate a poloidal flux is mounted either on the outer electrode or inside the inner electrode. However, most of the flux generated in the conventional method spreads even radially outside of the formation region. Thus, only a fraction of the total magnetic flux is actually exploited for helicity generation in the plasmoid. In the proposed system, the plasma gun incorporates a copper shell mounted on the outer electrode. By changing the rise time of the discharge bias coil current and the geometrical structure of the shell, the magnetic field structure and its time evolution can be controlled. The effect of the copper shell has been numerically simulated for the actual gun structure, and experimentally confirmed. This may increase the magnetic helicity content results, through increased poloidal magnetic field.

  6. Design and analysis of reactor containment of steel-concrete composite laminated shell

    Ichikawa, K.; Isobata, O.; Kawamata, S.

    1977-01-01

    A new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. Because of the compressive and shearing resistance of the concrete core, the layers behave as a composite solid shell. Membrane forces are shared by steel plates and partly by concrete core. Bending moment is effectively resisted by the section with extreme layers of steel. Therefore, both surfaces can be designed as extremely thin plates: the inner plate, which is a load carrying members as well as a liner, can be welded without the laborious process of stress-relieving, and various jointing methods can be applied to the outer plate which is free from the need for leak tightness. The capability of the composite layers of behaving as a unified solid shell section depends largely on the shearing rigidity of the concrete core. However, as its resisting capacity to transverse shearing force is comparatively low, a device for reducing the shearing stress at the junction to the base mat is needed. In the new scheme, this part of the cylindrical shell is divided into multiple layers of the same kind of composite shell. This device makes the stiffness of the bottom of the cylindrical shell to lateral movement minimum while maintaining the proper resistance to membrane forces. The analysis shows that the transverse shearing stress can be reduced to less than 1√n of the ordinary case by dividing the thickness of the shell into n layers which are able to slip against each other at the contact surface. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented

  7. Core-shell designed scaffolds for drug delivery and tissue engineering.

    Perez, Roman A; Kim, Hae-Won

    2015-07-01

    Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core-shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core-shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core-shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Incorporating alternative design clinical trials in network meta-analyses

    Thorlund K

    2014-12-01

    Full Text Available Kristian Thorlund,1–3 Eric Druyts,1,4 Kabirraaj Toor,1,5 Jeroen P Jansen,1,6 Edward J Mills1,3 1Redwood Outcomes, Vancouver, BC, 2Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada; 3Stanford Prevention Research Center, Stanford University, Stanford, CA, USA; 4Department of Medicine, Faculty of Medicine, 5School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; 6Department of Public Health and Community Medicine, Tufts University, Boston, MA, USA Introduction: Network meta-analysis (NMA is an extension of conventional pairwise meta-analysis that allows for simultaneous comparison of multiple interventions. Well-established drug class efficacies have become commonplace in many disease areas. Thus, for reasons of ethics and equipoise, it is not practical to randomize patients to placebo or older drug classes. Unique randomized clinical trial designs are an attempt to navigate these obstacles. These alternative designs, however, pose challenges when attempting to incorporate data into NMAs. Using ulcerative colitis as an example, we illustrate an example of a method where data provided by these trials are used to populate treatment networks. Methods: We present the methods used to convert data from the PURSUIT trial into a typical parallel design for inclusion in our NMA. Data were required for three arms: golimumab 100 mg; golimumab 50 mg; and placebo. Golimumab 100 mg induction data were available; however, data regarding those individuals who were nonresponders at induction and those who were responders at maintenance were not reported, and as such, had to be imputed using data from the rerandomization phase. Golimumab 50 mg data regarding responses at week 6 were not available. Existing relationships between the available components were used to impute the expected proportions in this missing subpopulation. Data for placebo maintenance

  9. Design and development by direct polishing of the WFXT thin polynomial mirror shells

    Proserpio, L.; Campana, S.; Citterio, O.; Civitani, M.; Combrinck, H.; Conconi, P.; Cotroneo, V.; Freeman, R.; Mattini, E.; Langstrof, P.; Morton, R.; Motta, G.; Oberle, O.; Pareschi, G.; Parodi, G.; Pels, C.; Schenk, C.; Stock, R.; Tagliaferri, G.

    2017-11-01

    The Wide Field X-ray Telescope (WFXT) is a medium class mission proposed to address key questions about cosmic origins and physics of the cosmos through an unprecedented survey of the sky in the soft X-ray band (0.2-6 keV) [1], [2]. In order to get the desired angular resolution of 10 arcsec (5 arcsec goal) on the entire 1 degrees Field Of View (FOV), the design of the optical system is based on nested grazing-incidence polynomial profiles mirrors, and assumes a focal plane curvature and plate scale corrections among the shells. This design guarantees an increased angular resolution also at large off-axis positions with respect to the usually adopted Wolter I configuration. In order to meet the requirements in terms of mass and effective area (less than 1200 kg, 6000 cm2 @ 1 keV), the nested shells are thin and made of quartz glass. The telescope assembly is composed by three identical modules of 78 nested shells each, with diameter up to 1.1 m, length in the range of 200-440 mm and thickness of less than 2.2 mm. At this regard, a deterministic direct polishing method is under investigation to manufacture the WFXT thin grazing-incidence mirrors made of quartz. The direct polishing method has already been used for past missions (as Einstein, Rosat, Chandra) but based on much thicker shells (10 mm ore more). The technological challenge for WFXT is to apply the same approach but for 510 times thinner shells. The proposed approach is based on two main steps: first, quartz glass tubes available on the market are ground to conical profiles; second the pre-shaped shells are polished to the required polynomial profiles using a CNC polishing machine. In this paper, preliminary results on the direct grinding and polishing of prototypes shells made by quartz glass with low thickness, representative of the WFXT optical design, are presented.

  10. 32 CFR 507.10 - Incorporation of designs or likenesses of approved designs in commercial articles.

    2010-07-01

    ... DECORATIONS, MEDALS, BADGES, INSIGNIA, COMMERCIAL USE OF HERALDIC DESIGNS AND HERALDIC QUALITY CONTROL PROGRAM... organizational insignia may be incorporated in articles manufactured for sale provided that permission has been... the coat of arms, crest, seal and organizational emblems. Such permission will be in writing...

  11. Optimal design of geometrically nonlinear shells of revolution with using the mixed finite element method

    Stupishin, L. U.; Nikitin, K. E.; Kolesnikov, A. G.

    2018-02-01

    The article is concerned with a methodology of optimal design of geometrically nonlinear (flexible) shells of revolution of minimum weight with strength, stability and strain constraints. The problem of optimal design with constraints is reduced to the problem of unconstrained minimization using the penalty functions method. Stress-strain state of shell is determined within the geometrically nonlinear deformation theory. A special feature of the methodology is the use of a mixed finite-element formulation based on the Galerkin method. Test problems for determining the optimal form and thickness distribution of a shell of minimum weight are considered. The validity of the results obtained using the developed methodology is analyzed, and the efficiency of various optimization algorithms is compared to solve the set problem. The developed methodology has demonstrated the possibility and accuracy of finding the optimal solution.

  12. Expert system development (ESD) shell

    Padmini, S.; Diwakar, M.P.; Rathode, N.C.; Bairi, B.R.

    1991-01-01

    An Expert System Development (ESD) Shell design implementation is desribed in detail. The shell provides high-level generic facilities for Knowledge Representation (KR) and inferencing and tools for developing user interfaces. Powerful set of tools in the shell relieves much of the programming burden in the ES development. The shell is written in PROLOG under IBM PC/AT. KR facilities are based on two very powerful formalisms namely, frames and rules. Inference Engine (IE) draws most of its power from unification and backward reasoning strategy in PROLOG. This basic mechanism is enhanced further by incorporating both forward and backward chaining of rules and frame-based inferencing. Overall programming style integrates multiple paradigms including logic, object oriented, access-oriented and imperative programming. This permits ES designer a lot of flexibility in organizing inference control. Creation and maintainance of knowledge base is a major activity. The shell, therefore, provides number of facilities to simplify these tasks. Shell design also takes note of the fact that final success of any system depends on end-user satisfaction and hence provides features to build use-friendly interfaces. The shell also provides a set of interfacing predicates so that it can be embedded within any PROLOG program to incorporate functionalilty of the shell in the user program. (author). 10 refs., 8 figs

  13. Simultaneous inhibition of aberrant cancer kinome using rationally designed polymer-protein core-shell nanomedicine.

    Chandran, Parwathy; Gupta, Neha; Retnakumari, Archana Payickattu; Malarvizhi, Giridharan Loghanathan; Keechilat, Pavithran; Nair, Shantikumar; Koyakutty, Manzoor

    2013-11-01

    Simultaneous inhibition of deregulated cancer kinome using rationally designed nanomedicine is an advanced therapeutic approach. Herein, we have developed a polymer-protein core-shell nanomedicine to inhibit critically aberrant pro-survival kinases (mTOR, MAPK and STAT5) in primitive (CD34(+)/CD38(-)) Acute Myeloid Leukemia (AML) cells. The nanomedicine consists of poly-lactide-co-glycolide core (~250 nm) loaded with mTOR inhibitor, everolimus, and albumin shell (~25 nm thick) loaded with MAPK/STAT5 inhibitor, sorafenib and the whole construct was surface conjugated with monoclonal antibody against CD33 receptor overexpressed in AML. Electron microscopy confirmed formation of core-shell nanostructure (~290 nm) and flow cytometry and confocal studies showed enhanced cellular uptake of targeted nanomedicine. Simultaneous inhibition of critical kinases causing synergistic lethality against leukemic cells, without affecting healthy blood cells, was demonstrated using immunoblotting, cytotoxicity and apoptosis assays. This cell receptor plus multi-kinase targeted core-shell nanomedicine was found better specific and tolerable compared to current clinical regime of cytarabine and daunorubicin. These authors demonstrate simultaneous inhibition of critical kinases causing synergistic lethality against leukemic cells, without affecting healthy blood cells by using rationally designed polymer-protein core-shell nanomedicine, provoding an advanced method to eliminate cancer cells, with the hope of future therapeutic use. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Incorporating Servqual-QFD with Taguchi Design for optimizing service quality design

    Arbi Hadiyat, M.

    2018-03-01

    Deploying good service design in service companies has been updated issue in improving customer satisfaction, especially based on the level of service quality measured by Parasuraman’s SERVQUAL. Many researchers have been proposing methods in designing the service, and some of them are based on engineering viewpoint, especially by implementing the QFD method or even using robust Taguchi method. The QFD method would found the qualitative solution by generating the “how’s”, while Taguchi method gives more quantitative calculation in optimizing best solution. However, incorporating both QFD and Taguchi has been done in this paper and yields better design process. The purposes of this research is to evaluate the incorporated methods by implemented it to a case study, then analyze the result and see the robustness of those methods to customer perception of service quality. Started by measuring service attributes using SERVQUAL and find the improvement with QFD, the deployment of QFD solution then generated by defining Taguchi factors levels and calculating the Signal-to-noise ratio in its orthogonal array, and optimized Taguchi response then found. A case study was given for designing service in local bank. Afterward, the service design obtained from previous analysis was then evaluated and shows that it was still meet the customer satisfaction. Incorporating QFD and Taguchi has performed well and can be adopted and developed for another research for evaluating the robustness of result.

  15. Pre-Rationalized Parametric Designing of Roof Shells Formed by Repetitive Modules of Catalan Surfaces

    Jolanta Dzwierzynska

    2018-04-01

    Full Text Available The aim of the study is to develop an original, methodical, and practical approach to the early stages of parametric design of roof shells formed by repetitive modules of Catalan surfaces. It is presented on the example of designing the roof shells compound of four concrete elements. The designing process proposed by us consists in linking geometric shaping of roofs’ models with their structural analysis and optimization. Contrary to other methods, which use optimization process in order to find free roof forms, we apply it in order to explore and improve design alternatives. It is realized with the application of designing tools working in Rhinoceros 3D software. The flexible scripts elaborated by us, in order to achieve roofs’ models of regular and symmetrical shapes, are converted into simulation models to perform structural analysis. It is mainly focused on how the roof shells perform dependently on their geometric characteristics. The simulation enables one to evaluate various roof shells’ shapes, as well as to select an optimal design solution. The proposed approach to the conceptual design process may drive the designing to achieve geometric and structural forms which not only follow the design intentions but also target better results.

  16. The design of trickling biological periwinkle shells filter for closed ...

    ... and economics of biofilter in reirculating aquaculture systems using local material ... The system with the designed biofilter served as the treatment system, while the ... The selected system recirculation rate was 10 times per hour, while the ...

  17. Harnessing the bistable composite shells to design a tunable phononic band gap structure

    Li, Yi; Xu, Yanlong

    2018-02-01

    By proposing a system composed of an array of bistable composite shells immersed in air, we develop a new class of periodic structure to control the propagation of sound. Through numerical investigation, we find that the acoustic band gap of this system can be switched on and off by triggering the snap through deformation of the bistable composite shells. The shape of cross section and filling fraction of unit cell can be altered by different number of bistable composite shells, and they have strong impact on the position and width of the band gap. The proposed concept paves the way of using the bistable structures to design a new class of metamaterials that can be enable to manipulate sound.

  18. Vibration isolation design for periodically stiffened shells by the wave finite element method

    Hong, Jie; He, Xueqing; Zhang, Dayi; Zhang, Bing; Ma, Yanhong

    2018-04-01

    Periodically stiffened shell structures are widely used due to their excellent specific strength, in particular for aeronautical and astronautical components. This paper presents an improved Wave Finite Element Method (FEM) that can be employed to predict the band-gap characteristics of stiffened shell structures efficiently. An aero-engine casing, which is a typical periodically stiffened shell structure, was employed to verify the validation and efficiency of the Wave FEM. Good agreement has been found between the Wave FEM and the classical FEM for different boundary conditions. One effective wave selection method based on the Wave FEM has thus been put forward to filter the radial modes of a shell structure. Furthermore, an optimisation strategy by the combination of the Wave FEM and genetic algorithm was presented for periodically stiffened shell structures. The optimal out-of-plane band gap and the mass of the whole structure can be achieved by the optimisation strategy under an aerodynamic load. Results also indicate that geometric parameters of stiffeners can be properly selected that the out-of-plane vibration attenuates significantly in the frequency band of interest. This study can provide valuable references for designing the band gaps of vibration isolation.

  19. Design and Manufacture of Conical Shell Structures Using Prepreg Laminates

    Khakimova, Regina; Burau, Florian; Degenhardt, Richard; Siebert, Mark; Castro, Saullo G. P.

    2016-06-01

    The design and manufacture of unstiffened composite conical structures is very challenging, as the variation of the fiber orientations, lay-up and the geometry of the ply pieces have a significant influence on the thickness imperfections and ply angle deviations imprinted to the final part. This paper deals with the manufacture of laminated composite cones through the prepeg/autoclave process. The cones are designed to undergo repetitive buckling tests without accumulating permanent damage. The aim is to define a process that allows the control of fiber angle deviations and the removal of thickness imperfections generated from gaps and overlaps between ply pieces. Ultrasonic scan measurements are used to proof the effectiveness of the proposed method.

  20. Design and optimization of the large span dry-coal-shed latticed shell in Liyuan of Henan province

    Du Wenfeng

    2017-01-01

    Full Text Available The design and optimization about the large span dry-coal-shed latticed shell in Liyuan of Henan province were studied. On the basis of the structural scheme of double-layer cylindrical reticulated shell, the optimization scheme of the folding double-layer cylindrical reticulated shell was proposed. Through the analysis of a plurality of calculation models, the optimal geometric parameters were obtained after discussing the influence of different slopes of folding lines and shell thickness on the structural bearing capacity and the amount of steel. The research results show that in the case of the same amount of steel, the ultimate bearing capacity of the double-layer folding cylindrical reticulated shell whose folding line slope is 9% and the shell thickness is about 4.4m can be increased 27.3% compared with the original design scheme.

  1. Rotorcraft Optimization Tools: Incorporating Rotorcraft Design Codes into Multi-Disciplinary Design, Analysis, and Optimization

    Meyn, Larry A.

    2018-01-01

    One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use

  2. Incorporation of Safety into Design Process : A Systems Engineering Perspective

    Rajabalinejad, M.

    2018-01-01

    This paper suggests integrating the best safety practices with the design process. This integration enriches the exploration experience for designers and adds extra values and competitor advantages for customers. The paper introduces the safety cube for combining common blocks for design, hazard

  3. Design and intestinal mucus penetration mechanism of core-shell nanocomplex.

    Zhang, Xin; Cheng, Hongbo; Dong, Wei; Zhang, Meixia; Liu, Qiaoyu; Wang, Xiuhua; Guan, Jian; Wu, Haiyang; Mao, Shirui

    2018-02-28

    The objective of this study was to design intestinal mucus-penetrating core-shell nanocomplex by functionally mimicking the surface of virus, which can be used as the carrier for peroral delivery of macromolecules, and further understand the influence of nanocomplex surface properties on the mucosal permeation capacity. Taking insulin as a model drug, the core was formed by the self-assembly among positively charged chitosan, insulin and negatively charged sodium tripolyphosphate, different types of alginates were used as the shell forming material. The nanocomplex was characterized by dynamic light scattering (DLS), atomic force microscopy (AFM) and FTIR. Nanocomplex movement in mucus was recorded using multiple particle tracking (MPT) method. Permeation and uptake of different nanocomplex were studied in rat intestine. It was demonstrated that alginate coating layer was successfully formed on the core and the core-shell nanocomplex showed a good physical stability and improved enzymatic degradation protection. The mucus penetration and MPT study showed that the mucus penetration capacity of the nanocomplex was surface charge and coating polymer structure dependent, nanocomplex with negative alginate coating had 1.6-2.5 times higher mucus penetration ability than that of positively charged chitosan-insulin nanocomplex. Moreover, the mucus penetration ability of the core-shell nanocomplex was alginate structure dependent, whereas alginate with lower G content and lower molecular weight showed the best permeation enhancing ability. The improvement of intestine permeation and intestinal villi uptake of the core-shell nanocomplex were further confirmed in rat intestine and multiple uptake mechanisms were involved in the transport process. In conclusion, core-shell nanocomplex composed of oppositely charged materials could provide a strategy to overcome the mucus barrier and enhance the mucosal permeability. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. On the optimal design of shell and tube heat exchanger for nuclear applications

    Abd Rabbo, F.M.M.; Fatb Allab, A.; El-Fawal, M.

    1997-01-01

    In nuclear industry, heat exchanger plays an important role in the transfer of heat from reactor core, where heat is generated, to the ultimate heat sink UHS, and then is dissipated. The actual design of heat exchanger not only relies on thermohydraulic considerations but also on economical aspects and radiological safety considerations. For optimal design of heat exchanger for a specific application a compromise should be made for determining the important factors affecting the design. In this paper, an optimization model is presented for shell and tube heat exchanger, which could be considered as a tool for computer aided design. A case study is presented to explore the present adopted model. 3 figs

  5. Incorporating Human Factors into design change processes - a regulator's perspective

    Staples, L.; McRobbie, H.

    2003-01-01

    Nuclear power plants in Canada must receive written approval from the Canadian Nuclear Safety Commission (CNSC) when making certain changes that are defined in their licenses. The CNSC expects the design change process to include a method for ensuring that the human-machine interface and workplace design support the safe and reliable performance of required tasks. When reviewing design changes for approval, the CNSC looks for evidence of analysis work, use of appropriate human factors design guide-lines, and verification and validation testing of the design. In addition to reviewing significant design changes, evaluations are conducted to ensure design change processes adequately address human performance. Findings from reviews and evaluations highlight the need to integrate human factors into the design change process, provide human factors training and support to engineering staff, establish processes to ensure coordination between the various groups with a vested interest in human factors, and develop more rigorous methods to validate changes to maintenance, field operations and testing interfaces. (author)

  6. Design and modeling of an additive manufactured thin shell for x-ray astronomy

    Feldman, Charlotte; Atkins, Carolyn; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Willingale, Richard; Doel, Peter

    2017-09-01

    Future X-ray astronomy missions require light-weight thin shells to provide large collecting areas within the weight limits of launch vehicles, whilst still delivering angular resolutions close to that of Chandra (0.5 arc seconds). Additive manufacturing (AM), also known as 3D printing, is a well-established technology with the ability to construct or `print' intricate support structures, which can be both integral and light-weight, and is therefore a candidate technique for producing shells for space-based X-ray telescopes. The work described here is a feasibility study into this technology for precision X-ray optics for astronomy and has been sponsored by the UK Space Agency's National Space Technology Programme. The goal of the project is to use a series of test samples to trial different materials and processes with the aim of developing a viable path for the production of an X-ray reflecting prototype for astronomical applications. The initial design of an AM prototype X-ray shell is presented with ray-trace modelling and analysis of the X-ray performance. The polishing process may cause print-through from the light-weight support structure on to the reflecting surface. Investigations in to the effect of the print-through on the X-ray performance of the shell are also presented.

  7. The Incorporation of Quality Attributes into Online Course Design in Higher Education

    Lenert, Kathleen Anne; Diane P. Janes

    2017-01-01

    A survey was designed incorporating questions on 28 attributes (compiled through a literature review) and considered to be quality features in online academic courses in higher education. This study sought to investigate the ongoing practice of instructional designers and instructors in the United States with respect to their incorporation of…

  8. Design of casks: incorporating operational feedback from maintenance

    Bimet, F.; Hartenstein, M. [COGEMA Logistics, Saint Quentin (France)

    2004-07-01

    Casks are designed to conform to regulations and to client specifications. Essential areas such as easy operation, low costs of maintenance, low operation and maintenance doses, limited waste, are not explicitly covered. Notwithstanding, COGEMA LOGISTICS uses all feedback available, so that casks are designed to be easy, safe and economical to operate and maintain. Maintenance is an activity where you do spot items that old-time designers could have made better, and things that users should not have done. Thanks to quality assurance, there are a number of data available, waiting to be collected and exploited; they have to be identified, located, retrieved, and analysed. Using information such as wear, damage, use of spare parts, access problems helps to make casks ever better. It leads to more efficient concepts, and to upgrades on existing designs; it also allows to integrate environmental considerations, inter alia in the choice of materials and in maintenance methods. It is necessary for the designer to interact with the users, the cask owners, the maintenance providers, in order to gather all relevant information and events. This is made easier when all these actors are ''under one roof'', or have very close ties. This paper presents COGEMA LOGISTICS methods for collecting and analysing all these experiences waiting to be used. It explains our process for analysing data, preparing yearly reports that are made available to our designers. It describes how each new design is subject to a maintainability study, using this feedback, so that the cask safety is always assured, that radiological doses are kept to a minimum, and that operating and maintenance costs will remain as low as possible.

  9. Design of casks: incorporating operational feedback from maintenance

    Bimet, F.; Hartenstein, M.

    2004-01-01

    Casks are designed to conform to regulations and to client specifications. Essential areas such as easy operation, low costs of maintenance, low operation and maintenance doses, limited waste, are not explicitly covered. Notwithstanding, COGEMA LOGISTICS uses all feedback available, so that casks are designed to be easy, safe and economical to operate and maintain. Maintenance is an activity where you do spot items that old-time designers could have made better, and things that users should not have done. Thanks to quality assurance, there are a number of data available, waiting to be collected and exploited; they have to be identified, located, retrieved, and analysed. Using information such as wear, damage, use of spare parts, access problems helps to make casks ever better. It leads to more efficient concepts, and to upgrades on existing designs; it also allows to integrate environmental considerations, inter alia in the choice of materials and in maintenance methods. It is necessary for the designer to interact with the users, the cask owners, the maintenance providers, in order to gather all relevant information and events. This is made easier when all these actors are ''under one roof'', or have very close ties. This paper presents COGEMA LOGISTICS methods for collecting and analysing all these experiences waiting to be used. It explains our process for analysing data, preparing yearly reports that are made available to our designers. It describes how each new design is subject to a maintainability study, using this feedback, so that the cask safety is always assured, that radiological doses are kept to a minimum, and that operating and maintenance costs will remain as low as possible

  10. Incorporating operational experience and design changes in availability forecasts

    Norman, D.

    1988-01-01

    Reliability or availability forecasts which are based solely on past operating experience will be precise if the sample is large enough, and unbiased if nothing in the future design, environment, operating region or anything else changes. Unfortunately, life is never like that. This paper considers the methodology and philosophy of modifying forecasts based on past experience to take account also of changes in design, construction methods, operating philosophy, environments, operator training and so on, between the plants which provided the operating experience and the plant for which the forecast is being made. This emphasises the importance of collecting, assessing, and learning from past data and of a thorough knowledge of future designs, and procurement, operation, and maintenance policies. The difference between targets and central estimates is also discussed. The paper concludes that improvements in future availability can be made by learning from past experience, but that certain conditions must be fulfilled in order to do so. (author)

  11. A Practitioner’s View of the Future of Organization Design: Future Trends and Implications for Royal Dutch Shell

    Jan Steinmetz

    2012-05-01

    Full Text Available Humanity is facing an increasingly challenging outlook for energy needs and the planet. Royal Dutch Shell is a global group of energy and petrochemicals companies with approximately 100,000 employees in more than 80 countries that is committed to help meet the challenges of the new energy environment in a sustainable and responsible manner. My statement will present some of the future trends and possible implications which can be seen for organization design within Royal Dutch Shell (Shell and which are applicable to other large, complex enterprises. It largely represents the personal views and reflections of a practitioner both inside and outside of Shell’s human resources (HR function in the United States. Using the lens of organization design, we will review the themes that emerged from the Shell Energy 2025 and Shell Energy 2050 global scenarios. Next, we will discuss Shell’s previous experience, challenges, and issues related to organization design, and how the recent redesign of the HR function has provided wider space and crisper focus to meet the challenges of the future. Finally, we will review the design challenges that the future trends impose upon the organization design practice. Although these challenges and implications are derived from experience working in Shell and its joint ventures, they are not confined solely to Shell. Because many of the challenges discussed below would benefit from scholarly research, the statement represents a practitioner’s view on how the future of organization design may play out.

  12. A design condition for incorporating human judgement into monitoring systems

    Tanaka, K.; Klir, G.J.

    1999-01-01

    In safety monitoring, there exists an uncertainty situation in which the sensor cannot detect whether or not the monitored object is in danger. For the uncertainty zone identified by a non-homogeneous safety monitoring system that utilizes two types of sensors with different thresholds, operators or experts are expected to judge whether the real state is safe or dangerous on the basis of additional information from a detailed inspection or other related sensors output. However, the activities for inspection performed by relevant humans may require additional cost and introduce inspection errors. The present article proposes two types of an automatic monitoring system not involving any human inspection or a human-machine (H-M) cooperative monitoring system with inspection. In order to compare the systems, an approach based on the Dempster-Shafer theory is proposed as uncertainty analysis by this theory (it is simpler than by the traditional Bayesian approach). By comparing their expected losses as a result of failed dangerous failures or failed safe failures as well as the inspection errors, the condition is determined under which H-M cooperative systems incorporating human judgements are more effective than automatic monitoring systems

  13. Incorporating anthropometry into design of ear-related products.

    Liu, Bor-Shong

    2008-01-01

    To achieve mass customization and collaborative product design, human factors and ergonomics should play a key development role. The purpose of this study was to provide product designers with the anthropometic dimensions of outer ears for different demographic data, including gender and age. The second purpose was to compare the dimensions of various ear-related products (i.e., earphone, bluetooth earphone and ear-cup earphone) with the anthropometic database and recommend appropriate solutions for design. Two hundred subjects aged 20-59 was selected for this study and divided into four age stratifications. Further, three different dimensions of the outer ear (i.e., the earhole length, the ear connection length and the length of the pinna) were measured by superimposed grid photographic technique. The analysis of variance (ANOVA) was used to investigate the effects of gender, and age on ear dimensions. The results showed that all ear dimensions had significant gender effects. A comparison between the anthropometric dimensions and those of current products revealed that most current ear-related products need to be redesigned using anthropometric data. The shapes of earhole and pinna are not circular. Consequently, ear products need to be elongated so that users may feel more comfortably and not have the product slip off easily.

  14. Station planning and design incorporating modern power system practice

    Martin, PC

    1991-01-01

    The planning and design of new power stations can involve complex interaction between the many engineering disciplines involved as well as environmental, planning, economical, political and social pressures. This volume aims to provide a logical review of the procedures involved in power station development. The engineering aspects are outlined in detail, with examples, showing the basis of the relationships involved together with ""non-engineering"" factors so that the engineer can draw on the information provided for specific projects. The civil engineering and building of power stations are

  15. Design of the RC containment shell of a nuclear reactor for aircraft impact

    Filho, F.V.; Coombs, R.F.; Barreto, L.C.

    1981-01-01

    This paper deals with the following points: i) Characterization of a particular region of the shell which is modeled as a one-degree-of freedom system for the non-linear dynamic analysis. This is achieved through a proper interpretation of the results of the global analysis. ii) Development of a method of non-linear dynamic analysis for the considered one-degree-of freedom model. iii) Comparative analysis of the design for flexural strength, and punching shear, according to American and German standards. Interaction diagrams for bending and normal force are developed according to the two standards. The concepts of the foregoing items are exemplified with the verification of the shell reinforcement of a PWR reactor. A simplified method of non-linear dynamic analysis for airplane crash is presented. This method takes into account all the important influences of the problem. The results of this analysis are used in the design of the shell reinforcement according to American and German Standards. (orig./HP)

  16. Design and analysis of reactor containment of steel-concrete composite laminated shell

    Ichikawa, K.

    1977-01-01

    Reinforced and prestressed concrete containments for reactors have been developed in order to avoid the difficulties of welding of steel containments encountered as their capacities have become large: growing thickness of steel shells gave rise to the requirement of stress relief at the construction sites. However, these concrete vessels also seem to face another difficulty: the lack of shearing resistance capacity. In order to improve the shearing resistance capacity of the containment vessel, while avoiding the difficulty of welding, a new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented. The results of model tests in 1:30 scale are also reported. (Auth.)

  17. The optimal design support system for shell components of vehicles using the methods of artificial intelligence

    Szczepanik, M.; Poteralski, A.

    2016-11-01

    The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.

  18. Pressure Shell Approach to Integrated Environmental Protection

    Kennedy, Kriss J.

    2011-01-01

    The next generation of exploration mission human systems will require environmental protection such as radiation protection that is effective and efficient. In order to continue human exploration, habitat systems will require special shells to protect astronauts from hostile environments. The Pressure Shell Approach to integrated environmental (radiation) protection is a multi-layer shell that can be used for multifunctional environmental protection. Self-healing, self-repairing nano technologies and sensors are incorporated into the shell. This shell consists of multiple layers that can be tailored for specific environmental protection needs. Mainly, this innovation focuses on protecting crew from exposure to micrometeorites, thermal, solar flares, and galactic cosmic ray (GCR) radiation. The Pressure Shell Approach consists of a micrometeoroid and secondary ejecta protection layer; a thin, composite shell placed in between two layers that is non-structural; an open cavity layer that can be filled with water, regolith, or polyethylene foam; a thicker composite shell that is a structural load bearing that is placed between two layers; and a bladder coating on the interior composite shell. This multi-layer shell creates an effective radiation protection system. Most of its layers can be designed with the materials necessary for specific environments. In situ materials such as water or regolith can be added to the shell design for supplemental radiation protection.

  19. Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models

    Duffy, Stephen F.

    1997-01-01

    Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineer's perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for "graceful" rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, Ni

  20. Memo, "Incorporation of HLW Glass Shell V2.0 into the Flowsheets," to ED Lee, CCN: 184905, October 20, 2009

    Gimpel, Rodney F.; Kruger, Albert A.

    2013-12-18

    Efforts are being made to increase the efficiency and decrease the cost of vitrifying radioactive waste stored in tanks at the U.S. Department of Energy Hanford Site. The compositions of acceptable and processable high-level waste (HL W) glasses need to be optimized to minimize the waste-form volume and, hence, to reduce cost. A database of glass properties of waste glass and associated simulated waste glasses was collected and documented in PNNL 18501, Glass Property Data and Models for Estimating High-Level Waste Glass Volume and glass property models were curve-fitted to the glass compositions. A routine was developed that estimates HL W glass volumes using the following glass property models: II Nepheline, II One-Percent Crystal Temperature (T1%), II Viscosity (11) II Product Consistency Tests (PCT) for boron, sodium, and lithium, and II Liquidus Temperature (TL). The routine, commonly called the HL W Glass Shell, is presented in this document. In addition to the use of the glass property models, glass composition constraints and rules, as recommend in PNNL 18501 and in other documents (as referenced in this report) were incorporated. This new version of the HL W Glass Shell should generally estimate higher waste loading in the HL W glass than previous versions.

  1. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-03-30

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  2. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-01-01

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control. PMID:29601543

  3. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    Haolong Shangguan

    2018-03-01

    Full Text Available 3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  4. Design of a novel instrument for active neutron interrogation of artillery shells.

    Bélanger-Champagne, Camille; Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter

    2017-01-01

    The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.

  5. Design of a novel instrument for active neutron interrogation of artillery shells.

    Camille Bélanger-Champagne

    Full Text Available The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.

  6. Design and synthesis of magnetic nanoparticles with gold shells for single particle optical tracking

    Lim, Jitkang

    The design, synthesis, and characterization of iron oxide core, gold shell nanoparticles are studied in this thesis. Firstly, nanoparticles with 18 +/- 1.7 nm diameter iron oxide cores with ˜5 nm thick gold shells were synthesized via a new seed-mediated electroless deposition method. The nanoparticles were superparamagnetic at room temperature and could be reversibly collected by a permanent magnet. These nanoparticles displayed a sharp localized surface plasmon resonance peak at 605 nm, as predicted by scattering theory, and their large scattering cross-section allowed them to be individually resolved in darkfield optical microscopy while undergoing Brownian motion in aqueous suspension. Later, commercially available 38 +/- 3.8 nm diameter spherical iron oxide nanoparticles (from Ocean Nanotech, Inc) were employed to make core-shell particles. These particles were decorated with cationic poly(diallyldimethylammonium chloride) (PDDA) which further promotes the attachment of small gold clusters. After gold seeding, the average hydrodynamic diameter of the core-shell particles is 172 +/- 65.9 nm. The magnetophoretic motion of these particles was guided by a piece of magnetized mu-metal. Individual particle trajectories were observed by darkfield optical microscopy. The typical magnetophoretic velocity achieved was within the range of 1--10 mum/sec. Random walk analysis performed on these particles while undergoing Brownian motion confirmed that individual particles were indeed being imaged. The particle size variation within the observed sample obtained through random walk analysis was within the size distribution obtained by dynamic light scattering. When the current to the solenoid used to magnetize the mu-metal was turned off, all the collected core-shell particles were readily redispersed by diffusion back into the surrounding environment. A Peclet number analysis was performed to probe the convective motion of nanospheres and nanorods under the influence of

  7. Design of cryogenic tanks for space vehicles shell structures analytical modeling

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.

    1991-01-01

    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  8. An Effective Multimedia Item Shell Design for Individualized Education: The Crome Project

    Irene Cheng

    2008-01-01

    Full Text Available There are several advantages to creating multimedia item types and applying computer-based adaptive testing in education. First is the capability to motivate learning by making the learners feel more engaged and in an interactive environment. Second is a better concept representation, which is not possible in conventional multiple-choice tests. Third is the advantage of individualized curriculum design, rather than a curriculum designed for an average student. Fourth is a good choice of the next question, associated with the appropriate difficulty level based on a student's response to the current question. However, many issues need to be addressed when achieving these goals, including: (a the large number of item types required to represent the current multiple-choice questions in multimedia formats, (b the criterion used to determine the difficulty level of a multimedia question item, and (c the methodology applied to the question selection process for individual students. In this paper, we propose a multimedia item shell design that not only reduces the number of item types required, but also computes difficulty level of an item automatically. The concept of question seed is introduced to make content creation more cost-effective. The proposed item shell framework facilitates efficient communication between user responses at the client, and the scoring agents integrated with a student ability assessor at the server. We also describe approaches for automatically estimating difficulty level of questions, and discuss preliminary evaluation of multimedia item types by students.

  9. Optimization of shell-and-tube heat exchangers conforming to TEMA standards with designs motivated by constructal theory

    Yang, Jie; Fan, Aiwu; Liu, Wei; Jacobi, Anthony M.

    2014-01-01

    Highlights: • A design method of heat exchangers motivated by constructal theory is proposed. • A genetic algorithm is applied and the TEMA standards are rigorously followed. • Three cases are studied to illustrate the advantage of the proposed design method. • The design method will reduce the total cost compared to two other methods. - Abstract: A modified optimization design approach motivated by constructal theory is proposed for shell-and-tube heat exchangers in the present paper. In this method, a shell-and-tube heat exchanger is divided into several in-series heat exchangers. The Tubular Exchanger Manufacturers Association (TEMA) standards are rigorously followed for all design parameters. The total cost of the whole shell-and-tube heat exchanger is set as the objective function, including the investment cost for initial manufacture and the operational cost involving the power consumption to overcome the frictional pressure loss. A genetic algorithm is applied to minimize the cost function by adjusting parameters such as the tube and shell diameters, tube length and tube arrangement. Three cases are studied which indicate that the modified design approach can significantly reduce the total cost compared to the original design method and traditional genetic algorithm design method

  10. Design concept of conducting shell and in-vessel components suitable for plasma vertical stability and remote maintenance scheme in DEMO reactor

    Utoh, Hiroyasu, E-mail: uto.hiroyasu@jaea.go.jp [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Takase, Haruhiko [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Sakamoto, Yoshiteru; Tobita, Kenji [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); Mori, Kazuo; Kudo, Tatsuya [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Someya, Youji; Asakura, Nobuyuki; Hoshino, Kazuo; Nakamura, Makoto; Tokunaga, Shinsuke [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan)

    2016-02-15

    Highlights: • Conceptual design of in-vessel component including conducting shell has been investigated. • The conducting shell design for plasma vertical stability was clarified from the plasma vertical stability analysis. • The calculation results showed that the double-loop shell has the most effect on plasma vertical stability. - Abstract: In order to realize a feasible DEMO, we designed an in-vessel component including the conducting shell. The project is affiliated with the broader approach DEMO design activities and is conceptualized from a plasma vertical stability and engineering viewpoint. The dependence of the plasma vertical stability on the conducing shell parameters and the electromagnetic force at plasma disruption were investigated in numerical simulations (programmed in the 3D eddy current analysis code and a plasma position control code). The simulations assumed the actual shape and position of the vacuum vessel and in-vessel components. The plasma vertical stability was most effectively maintained by the double-loop shell.

  11. Incorporating Flexibility in the Design of Repairable Systems - Design of Microgrids

    2014-01-01

    MICROGRIDS Vijitashwa Pandey1 Annette Skowronska1,2...optimization of complex systems such as a microgrid is however, computationally intensive. The problem is exacerbated if we must incorporate...flexibility in terms of allowing the microgrid architecture and its running protocol to change with time. To reduce the computational effort, this paper

  12. Design of an extrusion screw and solid fuel produced from coconut shell

    Madhiyanon, T

    2006-03-01

    Full Text Available The objectives were to design an extrusion screw to produce biomass solid fuel in a cold extrusion process, and investigate the effects of molasses used as a selected adhesive on the physical properties of extruded products. The material employed consisted of crushed coconut shell char and coconut fiber char mixed at a ratio of 40:60. The ratios of molasses in the mixture were 10:100, 15:100 and 20:100 (by weight and the extrusion die angles were 1.0, 1.1, 1.2, and 1.3 degrees gradation per experiment. The experimental results showed that the newly designed screw could function properly in the output range 0.75-0.90 kg/min, which is close to the design value. Regarding the molasses's effect on solid fuel properties, increasing the share of molasses was positive for both output and strength of the resulting briquettes, whereas the results of increasing die angle showed decreases in both output and strength. The compressive strength varied between 2.49-2.87 MPa in all circumstances, which was considerably higher than acceptable industrial level. Furthermore, the extruded solid fuel showed excellent resistance to impact force. Regarding energy consumption, the amount of electrical energy used in the extrusion process was insignificant, ranging between 0.040-0.079 kWh/kg.

  13. Fundamental basis and implementation of shell and tube heat exchanger project design: condenser and evaporator study

    Dalkilic, A. S.; Acikgoz, O.; Tapan, S.; Wongwises, S.

    2016-12-01

    A shell and tube heat exchanger is used as a condenser and an evaporator in this theoretical study. Parametric performance analyses for various actual refrigerants were performed using well-known correlations in open sources. Condensation and evaporation were occurred in the shell side while the water was flowing in the tube side of heat exchanger. Heat transfer rate from tube side was kept constant for condenser and evaporator design. Condensing temperatures were varied from 35 to 60 °C whereas evaporating temperatures were ranging from -15 to 10 °C for the refrigerants of R12, R22, R134a, R32, R507A, R404A, R502, R407C, R152A, R410A and R1234ZE. Variation of convective heat transfer coefficients of refrigerants, total heat transfer coefficients with Reynolds numbers and saturation temperatures were given as validation process considering not only fouling resistance and omission of it but also staggered (triangular) and line (square) arrangements. The minimum tube lengths and necessary pumping powers were calculated and given as case studies for the investigated refrigerants considering validation criteria. It was understood that refrigerant type, fouling resistance and arrangement type are one of the crucial issues regarding the determination of heat exchanger's size and energy consumption. Consequently, R32 and R152a were found to require the shortest tube length and lowest pumping power in the condenser, whereas R507 and R407C have the same advantages in the evaporator. Their heat transfer coefficients were also determined larger than others as expectedly.

  14. Design of shell-and-tube heat exchangers when the fouling depends on local temperature and velocity

    Butterworth, D. [HTFS, Hyprotech, Didcot (United Kingdom)

    2002-07-01

    Shell-and-tube heat exchangers are normally designed on the basis of a uniform and constant fouling resistance that is specified in advance by the exchanger user. The design process is then one of determining the best exchanger that will achieve the thermal duty within the specified pressure drop constraints. It has been shown in previous papers [Designing shell-and-tube heat exchangers with velocity-dependant fouling, 34th US national Heat Transfer Conference, 20-22 August 2000, Pittsburg, PA; Designing shell-and-tube heat exchangers with velocity-dependant fouling, 2nd Int. Conf. on Petroleum and Gas Phase Behavior and Fouling, 27-31 August 2000, Copenhagen] that this approach can be extended to the design of exchangers where the design fouling resistance depends on velocity. The current paper briefly reviews the main findings of the previous papers and goes on to treat the case where the fouling depends also on the local temperatures. The Ebert-Panchal [Analysis of Exxon crude-oil, slip-stream coking data, Engineering Foundation Conference on Fouling Mitigation of Heat Exchangers, 18-23 June 1995, California] form of fouling rate equation is used to evaluate this fouling dependence. When allowing for temperature effects, it becomes difficult to divorce the design from the way the exchanger will be operated up to the point when the design fouling is achieved. However, rational ways of separating the design from the operation are proposed. (author)

  15. Review of supercontainer copper shell-bentonite interactions and possible effects on buffer performance for the KBS-3H design

    King, F.; Wersin, P.

    2014-03-01

    A review is presented of the possible impact of the corrosion of a copper supercontainer shell on the performance of the bentonite buffer. The review is presented in two parts; first an assessment of the likely corrosion behaviour of the copper shell, including an assessment of the amount and speciation of copper corrosion products, and, second an assessment of the possible interactions of these copper corrosion products with the bentonite and the consequences for the buffer performance. The corrosion behaviour of oxygen-free copper in compacted bentonite is reviewed, including the effects of a possible lower-density region at the buffer-rock interface initially. Corrosion occurs under both aerobic conditions, due to the initial O 2 trapped in the bentonite and O 2 in the air or water-filled gap at the buffer/rock interface, and anaerobic conditions, due to sulphide present in the groundwater and that possibly produced by microbial activity in the bentonite. The reaction mechanism, the nature of the dissolved and precipitated corrosion products, and the evolution of the corrosion behaviour with time are discussed with reference to groundwater conditions at both Olkiluoto and Forsmark. Various interactions between the copper corrosion products (Cu(II) and Cu(I) species) and bentonite are considered, including diffusion and sorption and the incorporation of Cu into the bentonite. The available literature information on these processes is first reviewed and then this knowledge is used to predict the likely behaviour in a KBS-3H-style repository. Based on the information currently available, it is concluded that the corrosion of a copper supercontainer shell will only affect the bentonite within a distance of a few cm of the original location of the shell. Eventually, the copper shell will corrode to form an insoluble precipitate layer of Cu 2 S approximately 2-3 times the volume of the original shell. Bentonite within a few cm of this layer of precipitate may also

  16. Design, fabrication and test of a lightweight shell structure, phase 3

    1977-01-01

    Progress is reported in the construction of lightweight orthogrid shells. Graphite/epoxy panels are being used in the fabrication. The shell structure is diagramed in detail. Panel laminates, and panel stiffener flanges are described while illustrations delineate panel assembly procedures.

  17. A multiphoton objective design with incorporated beam splitter for enhanced fluorescence collection.

    McMullen, Jesse D; Zipfel, Warren R

    2010-03-15

    We present a de novo design of an objective for use in multi-photon (MPM) and second harmonic generation (SHG) microscopy. This objective was designed to have a large field of view (FOV), while maintaining a moderate numerical aperture (NA) and relative straight forward construction. A dichroic beam splitter was incorporated within the objective itself allowing for an increase in the front aperture of the objective and corresponding enhancement of the solid angle of collected emission by an order of magnitude over existing designs.

  18. The Acoustical Properties of the Polyurethane Concrete Made of Oyster Shell Waste Comparing Other Concretes as Architectural Design Components

    Setyowati, Erni; Hardiman, Gagoek; Purwanto

    2018-02-01

    This research aims to determine the acoustical properties of concrete material made of polyurethane and oyster shell waste as both fine aggregate and coarse aggregate comparing to other concrete mortar. Architecture needs aesthetics materials, so the innovation in architectural material should be driven through the efforts of research on materials for building designs. The DOE methods was used by mixing cement, oyster shell, sands, and polyurethane by composition of 160 ml:40 ml:100 ml: 120 ml respectively. Refer to the results of previous research, then cement consumption is reduced up to 20% to keep the concept of green material. This study compared three different compositions of mortars, namely portland cement concrete with gravel (PCG), polyurethane concrete of oyster shell (PCO) and concrete with plastics aggregate (PCP). The methods of acoustical tests were conducted refer to the ASTM E413-04 standard. The research results showed that polyurethane concrete with oyster shell waste aggregate has absorption coefficient 0.52 and STL 63 dB and has a more beautiful appearance when it was pressed into moulding. It can be concluded that polyurethane concrete with oyster shell aggregate (PCO) is well implemented in architectural acoustics-components.

  19. Mechanical Design and Dynamcis of an Autonomous Climbing Robot for Elliptic Half-shell Cleaning

    Houxiang Zhang

    2007-12-01

    Full Text Available This paper presents an auto-climbing robot for cleaning the elliptic half-shell of National Grand Theatre in China. The robot consists of a climbing mechanism, a moving mechanism, two cleaning brushes and supporting mechanisms. The mechanism and unique aspects are presented in detail. A distributed control system based on CAN bus is designed to meet the requirements of controlling the robot. After that the emphasis for discussion is on the motion realization which includes climbing and cleaning movements. The robot independently climbs and descends in the vertical direction and cleans in the horizontal direction. It takes the circling tracks as supports for climbing up and down between strips and moving horizontally along one strip around the ellipsoid. For system design and control purposes, the dynamic models of the climbing and cleaning processes are given applying of the Lagrange equation. Furthermore the force distribution of the front and rear supporting mechanisms is computed in a way that ensures the safety of the climbing process. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  20. Mechanical Design and Dynamcis of an Autonomous Climbing Robot for Elliptic Half-shell Cleaning

    Houxiang Zhang

    2008-11-01

    Full Text Available This paper presents an auto-climbing robot for cleaning the elliptic half-shell of National Grand Theatre in China. The robot consists of a climbing mechanism, a moving mechanism, two cleaning brushes and supporting mechanisms. The mechanism and unique aspects are presented in detail. A distributed control system based on CAN bus is designed to meet the requirements of controlling the robot. After that the emphasis for discussion is on the motion realization which includes climbing and cleaning movements. The robot independently climbs and descends in the vertical direction and cleans in the horizontal direction. It takes the circling tracks as supports for climbing up and down between strips and moving horizontally along one strip around the ellipsoid. For system design and control purposes, the dynamic models of the climbing and cleaning processes are given applying of the Lagrange equation. Furthermore the force distribution of the front and rear supporting mechanisms is computed in a way that ensures the safety of the climbing process. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  1. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-01-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  2. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-08-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  3. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-08-15

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  4. Design optimization of shell-and-tube heat exchangers using single objective and multiobjective particle swarm optimization

    Elsays, Mostafa A.; Naguib Aly, M; Badawi, Alya A.

    2010-01-01

    The Particle Swarm Optimization (PSO) algorithm is used to optimize the design of shell-and-tube heat exchangers and determine the optimal feasible solutions so as to eliminate trial-and-error during the design process. The design formulation takes into account the area and the total annual cost of heat exchangers as two objective functions together with operating as well as geometrical constraints. The Nonlinear Constrained Single Objective Particle Swarm Optimization (NCSOPSO) algorithm is used to minimize and find the optimal feasible solution for each of the nonlinear constrained objective functions alone, respectively. Then, a novel Nonlinear Constrained Mult-objective Particle Swarm Optimization (NCMOPSO) algorithm is used to minimize and find the Pareto optimal solutions for both of the nonlinear constrained objective functions together. The experimental results show that the two algorithms are very efficient, fast and can find the accurate optimal feasible solutions of the shell and tube heat exchangers design optimization problem. (orig.)

  5. Incorporating Kansei Engineering in Instructional Design: Designing Virtual Reality Based Learning Environments from a Novel Perspective

    Chuah, Kee Man; Chen, Chwen Jen; Teh, Chee Siong

    2008-01-01

    In recent years, the application of virtual reality (VR) technology in education is rapidly gaining momentum. The educational benefits offered by such technology have prompted many educators as well as instructional designers to investigate ways to create effective and engaging VR learning. Instructional designers have examined widely the…

  6. Design and optimization of Ag-dielectric core-shell nanostructures for silicon solar cells

    Feng-Xiang Chen

    2015-09-01

    Full Text Available Metal-dielectric core-shell nanostructures have been proposed as a light trapping scheme for enhancing the optical absorption of silicon solar cells. As a potential application of such enhanced effects, the scattering efficiencies of three core-shell structures (Ag@SiO2, Ag@TiO2, and Ag@ZrO2 are discussed using the Mie Scattering theory. For compatibility with experiment results, the core diameter and shell thickness are limited to 100 and 30 nm, respectively, and a weighted scattering efficiency is introduced to evaluate the scattering abilities of different nanoparticles under the solar spectrum AM 1.5. The simulated results indicate that the shell material and thickness are two key parameters affecting the weighted scattering efficiency. The SiO2 is found to be an unsuitable shell medium because of its low refractive index. However, using the high refractive index mediumTiO2 in Ag@TiO2 nanoparticles, only the thicker shell (30 nm is more beneficial for light scattering. The ZrO2 is an intermediate refractive index material, so Ag@ZrO2 nanoparticles are the most effective core-shell nanostructures in these silicon solar cells applications.

  7. What values in design? The challenge of incorporating moral values into design.

    Manders-Huits, Noëmi

    2011-06-01

    Recently, there is increased attention to the integration of moral values into the conception, design, and development of emerging IT. The most reviewed approach for this purpose in ethics and technology so far is Value-Sensitive Design (VSD). This article considers VSD as the prime candidate for implementing normative considerations into design. Its methodology is considered from a conceptual, analytical, normative perspective. The focus here is on the suitability of VSD for integrating moral values into the design of technologies in a way that joins in with an analytical perspective on ethics of technology. Despite its promising character, it turns out that VSD falls short in several respects: (1) VSD does not have a clear methodology for identifying stakeholders, (2) the integration of empirical methods with conceptual research within the methodology of VSD is obscure, (3) VSD runs the risk of committing the naturalistic fallacy when using empirical knowledge for implementing values in design, (4) the concept of values, as well as their realization, is left undetermined and (5) VSD lacks a complimentary or explicit ethical theory for dealing with value trade-offs. For the normative evaluation of a technology, I claim that an explicit and justified ethical starting point or principle is required. Moreover, explicit attention should be given to the value aims and assumptions of a particular design. The criteria of adequacy for such an approach or methodology follow from the evaluation of VSD as the prime candidate for implementing moral values in design.

  8. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  9. Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering.

    Sardi, Maria; Gasch, Audrey P

    2017-08-01

    Engineering microbes with new properties is an important goal in industrial engineering, to establish biological factories for production of biofuels, commodity chemicals and pharmaceutics. But engineering microbes to produce new compounds with high yield remains a major challenge toward economically viable production. Incorporating several modern approaches, including synthetic and systems biology, metabolic modeling and regulatory rewiring, has proven to significantly advance industrial strain engineering. This review highlights how comparative genomics can also facilitate strain engineering, by identifying novel genes and pathways, regulatory mechanisms and genetic background effects for engineering. We discuss how incorporating comparative genomics into the design-test-learn cycle of strain engineering can provide novel information that complements other engineering strategies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Shell coal gasification process

    Hennekes, B. [Shell Global Solutions (US) Inc. (United States). Technology Marketing

    2002-07-01

    The presentation, on which 17 slides/overheads are included in the papers, explained the principles of the Shell coal gasification process and the methods incorporated for control of sulfur dioxide, nitrogen oxides, particulates and mercury. The economics of the process were discussed. The differences between gasification and burning, and the differences between the Shell process and other processes were discussed.

  11. Shell Venster

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  12. Core/shell PLGA microspheres with controllable in vivo release profile via rational core phase design.

    Yu, Meiling; Yao, Qing; Zhang, Yan; Chen, Huilin; He, Haibing; Zhang, Yu; Yin, Tian; Tang, Xing; Xu, Hui

    2018-02-27

    the microspheres prepared by various methods were mainly controlled by either the porosity inside the microspheres or the degradation of materials, which could, therefore, lead to different release behaviours. This results indicated great potential of the PLGA microsphere formulation as an injectable depot for controllable in vivo release profile via rational core phase design. Core/shell microspheres fabricated by modified double emulsification-solvent evaporation methods, with various inner phases, to obtain high loading drugs system, as well as appropriate release behaviours. Accordingly, control in vivo release profile via rational core phase design.

  13. Computer-aided thermohydraulic design of TEMA type E shell and tube heat exchangers for use in low pressure, liquid-to-liquid, single phase applications

    Kolar, N. J.

    1985-04-01

    Classification, nomenclature, utilization and cost estimating of shell and tube heat exchangers are presented along with an historical overview of various methods currently employed in their design. A procedure for providing preliminary estimates of shell and tube heat exchanger design is developed in detail. The author formulates a computer program which employs this sizing algorithm for low pressure liquid-to-liquid heat exchanger applications. Additionally, problems encountered in the design and manufacture of shell and tube heat exchangers are described along with present methods of solution for each.

  14. Static and dynamic buckling of large thin shells. (Design procedure, computation tools. Physical understanding of the mechanisms)

    Combescure, A.

    1986-04-01

    During the last ten years, the French Research Institute for Nuclear Energy (Commissariat a l'Energie Atomique) achieved many theoretical as well as experimental studies for designing the first large size pool type fast breeder reactor. Many of the sensitive parts of this reactor are thin shells subjected to high temperatures and loads. Special care has been given to buckling, because it often governs design. Most of the thin shells structures of the french breeder reactor are axisymmetric. However, imperfections have to be accounted for. In order to keep the advantage of an axisymmetric analysis (low computational costs), a special element has been implemented and used with considerable success in the recent years. This element (COMU) is described in the first chapter, its main features are: either non axisymmetric imperfection or non axisymmetric load, large displacement, non linear material behaviour, computational costs about ten times cheaper than the equivalent three dimensional analysis. This paper based on a careful comparison between experimental and computational results, obtained with the COMU, will analyse three problems: First: design procedure against buckling of thin shells structures subjected to primary loads; Second: static post buckling; Third: buckling under seismic loads [fr

  15. Optimal design of hollow core–shell structural active materials for lithium ion batteries

    Wenjuan Jiang

    2015-01-01

    Full Text Available To mitigate mechanical and chemical degradation of active materials, hollow core–shell structures have been applied in lithium ion batteries. Without embedding of lithium ions, the rigid coating shell can constrain the inward volume deformation. In this paper, optimal conditions for the full use of inner hollow space are identified in terms of the critical ratio of shell thickness and inner size and the state of charge. It is shown that the critical ratios are 0.10 and 0.15 for Si particle and tube (0.12 and 0.18 for Sn particle and tube, and above which there is lack of space for further lithiation.

  16. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  17. SISGR - Design and Characterization of Novel Photocatalysts With Core-Shell Nanostructures

    Zaera, Francisco [Univ. of California, Riverside, CA (United States). Dept. of Chemistry; Bardeen, Christopher J. [Univ. of California, Riverside, CA (United States). Dept. of Chemistry; Yin, Yadong [Univ. of California, Riverside, CA (United States). Dept. of Chemistry

    2017-03-15

    The overall goal of this project has been to develop new a new and novel class of well-characterized nanostructured Metal@TiO2 core-shell and yolk-shell photocatalysts to address two fundamental issues presently limiting this field: (1) the fast recombination of electron-hole pairs once generated by light absorption, and (2) the recombination of H2 and O2 on the metal surface once produced. These model samples are also used to study the fundamentals of the photocatalytic processes.

  18. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis

    Amendt, Peter; Colvin, J.D.; Tipton, R.E.; Hinkel, D.E.; Edwards, M.J.; Landen, O.L.; Ramshaw, J.D.; Suter, L.J.; Varnum, W.S.; Watt, R.G.

    2002-01-01

    Analysis and design of indirect-drive National Ignition Facility double-shell targets with hohlraum temperatures of 200 eV and 250 eV are presented. The analysis of these targets includes the assessment of two-dimensional radiation asymmetry and nonlinear mix. Two-dimensional integrated hohlraum simulations indicate that the x-ray illumination can be adjusted to provide adequate symmetry control in hohlraums specially designed to have high laser-coupling efficiency [Suter et al., Phys. Plasmas 7, 2092 (2000)]. These simulations also reveal the need to diagnose and control localized 10-15 keV x-ray emission from the high-Z hohlraum wall because of strong absorption by the high-Z inner shell. Preliminary estimates of the degree of laser backscatter from an assortment of laser-plasma interactions suggest comparatively benign hohlraum conditions. The application of a variety of nonlinear mix models and phenomenological tools, including buoyancy-drag models, multimode simulations and fall-line optimization, indicates a possibility of achieving ignition, i.e., fusion yields greater than 1 MJ. Planned experiments on the Omega laser will test current understanding of high-energy radiation flux asymmetry and mix-induced yield degradation in double-shell targets

  19. Incorporating Renewable Energy Science in Regional Landscape Design: Results from a Competition in The Netherlands

    Renée M. de Waal

    2015-04-01

    Full Text Available Energy transition is expected to make an important contribution to sustainable development. Although it is argued that landscape design could foster energy transition, there is scant empirical research on how practitioners approach this new challenge. The research question central to this study is: To what extent and how is renewable energy science incorporated in regional landscape design? To address this knowledge gap, a case study of a regional landscape design competition in the Netherlands, held from 2010–2012, is presented. Its focus was on integral, strategic landscape transformation with energy transition as a major theme. Content analysis of the 36 competition entries was supplemented and triangulated with a survey among the entrants, observation of the process and a study of the competition documents and website. Results indicated insufficient use of key-strategies elaborated by renewable energy science. If landscape design wants to adopt a supportive role towards energy transition, a well-informed and evidence-based approach is highly recommended. Nevertheless, promising strategies for addressing the complex process of ensuring sustainable energy transition also emerged. They include the careful cultivation of public support by developing inclusive and bottom-up processes, and balancing energy-conscious interventions with other land uses and interests.

  20. Aplication of the statistical experimental design to optimize mine-impacted water (MIW) remediation using shrimp-shell.

    Núñez-Gómez, Dámaris; Alves, Alcione Aparecida de Almeida; Lapolli, Flavio Rubens; Lobo-Recio, María A

    2017-01-01

    Mine-impacted water (MIW) is one of the most serious mining problems and has a high negative impact on water resources and aquatic life. The main characteristics of MIW are a low pH (between 2 and 4) and high concentrations of SO 4 2- and metal ions (Cd, Cu, Ni, Pb, Zn, Fe, Al, Cr, Mn, Mg, etc.), many of which are toxic to ecosystems and human life. Shrimp shell was selected as a MIW treatment agent because it is a low-cost metal-sorbent biopolymer with a high chitin content and contains calcium carbonate, an acid-neutralizing agent. To determine the best metal-removal conditions, a statistical study using statistical planning was carried out. Thus, the objective of this work was to identify the degree of influence and dependence of the shrimp-shell content for the removal of Fe, Al, Mn, Co, and Ni from MIW. In this study, a central composite rotational experimental design (CCRD) with a quadruplicate at the midpoint (2 2 ) was used to evaluate the joint influence of two formulation variables-agitation and the shrimp-shell content. The statistical results showed the significant influence (p < 0.05) of the agitation variable for Fe and Ni removal (linear and quadratic form, respectively) and of the shrimp-shell content variable for Mn (linear form), Al and Co (linear and quadratic form) removal. Analysis of variance (ANOVA) for Al, Co, and Ni removal showed that the model is valid at the 95% confidence interval and that no adjustment needed within the ranges evaluated of agitation (0-251.5 rpm) and shrimp-shell content (1.2-12.8 g L -1 ). The model required adjustments to the 90% and 75% confidence interval for Fe and Mn removal, respectively. In terms of efficiency in removing pollutants, it was possible to determine the best experimental values of the variables considered as 188 rpm and 9.36 g L -1 of shrimp-shells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Incorporating full-scale experience into advanced limestone wet FGD designs

    Rader, P.C.; Bakke, E.

    1992-01-01

    Utilities choosing flue gas desulfurization as a strategy for compliance with Phase I of the 1990 Clean Air Act Amendments will largely turn to limestone wet scrubbing as the most cost-effective, least-risk option. State-of-the-art single absorber wet scrubbing systems can be designed to achieve: SO 2 removal efficiencies in excess of 95 %, system availabilities in excess of 98%, and byproducts which can be marketed or land filled. As a result of varying fuel characteristics, site considerations, and owner preferences, FGD plants for large central power stations are typically custom-designed. To avoid the risks associated with new, first-of-a-kind technologies, utilities have preferred to purchase FGD systems from suppliers with proven utility experience and reference plants as close as possible to the design envisioned. As the market for FGD systems is regulatory driven, the demand has shifted geographically in response to national environmental policies. Although limestone wet scrubbing has emerged as the overwhelming choice for SO 2 emission control in coal-fired power stations, the technology has evolved and been adapted to suit local and regional technical and economic situations. Global suppliers are able to benefit from experience and technological advances in the world market. With market units in the U.S., Denmark, Italy, Sweden, and Germany active in the design and supply of wet FGD plants, ABB has a unique ability to incorporate knowledge and experience gained throughout the industrialized world to acid rain retrofit projects in the U.S. This paper describes the design of advanced limestone wet scrubbing systems for application to acid rain retrofits. Specifically, the evolution of advanced design concepts from a global experience base is discussed

  2. Free-Standing and Self-Crosslinkable Hybrid Films by Core–Shell Particle Design and Processing

    Steffen Vowinkel

    2017-11-01

    Full Text Available The utilization and preparation of functional hybrid films for optical sensing applications and membranes is of utmost importance. In this work, we report the convenient and scalable preparation of self-crosslinking particle-based films derived by directed self-assembly of alkoxysilane-based cross-linkers as part of a core-shell particle architecture. The synthesis of well-designed monodisperse core-shell particles by emulsion polymerization is the basic prerequisite for subsequent particle processing via the melt-shear organization technique. In more detail, the core particles consist of polystyrene (PS or poly(methyl methacrylate (PMMA, while the comparably soft particle shell consists of poly(ethyl acrylate (PEA and different alkoxysilane-based poly(methacrylates. For hybrid film formation and convenient self-cross-linking, different alkyl groups at the siloxane moieties were investigated in detail by solid-state Magic-Angle Spinning Nuclear Magnetic Resonance (MAS, NMR spectroscopy revealing different crosslinking capabilities, which strongly influence the properties of the core or shell particle films with respect to transparency and iridescent reflection colors. Furthermore, solid-state NMR spectroscopy and investigation of the thermal properties by differential scanning calorimetry (DSC measurements allow for insights into the cross-linking capabilities prior to and after synthesis, as well as after the thermally and pressure-induced processing steps. Subsequently, free-standing and self-crosslinked particle-based films featuring excellent particle order are obtained by application of the melt-shear organization technique, as shown by microscopy (TEM, SEM.

  3. An expert system design incorporating fuzzy logic for diagnosing heat imbalances in a nuclear power plant

    Guth, M.A.S.

    1987-01-01

    This paper presents an expert system for diagnosing problems in the interface between the heat exchanger and the core of a nuclear power plant for a hypothetical pressurized water reactor (PWR). The expert system has a production rule backward-chaining-based architecture, and the knowledge base incorporates four kinds of information. First, the structural relationship between causes and consequences is given by nuclear engineering experts. Second, numerical values for the initiating events can be taken from observed performance of the reactor under normal conditions. Third, the causes of particular events are ranked in order of their likelihood based on a combination of a priori knowledge about the reactor design and actual data on the incidence of component failures. Fourth, Bellman-Zadeh Fuzzy Logic is introduced to maintain truth values for expert system rules that hold with varying degrees of certainty

  4. Design of 8-ft-Diameter Barrel Test Article Attachment Rings for Shell Buckling Knockdown Factor Project

    Lovejoy, Andrew E.; Hilburger, Mark W.

    2010-01-01

    The Shell Buckling Knockdown Factor (SBKF) project includes the testing of sub-scale cylinders to validate new shell buckling knockdown factors for use in the design of the Ares-I and Ares-V launch vehicles. Test article cylinders represent various barrel segments of the Ares-I and Ares-V vehicles, and also include checkout test articles. Testing will be conducted at Marshall Space Flight Center (MSFC) for test articles having an eight-foot diameter outer mold line (OML) and having lengths that range from three to ten feet long. Both ends of the test articles will be connected to the test apparatus using attachment rings. Three multiple-piece and one single-piece design for the attachment rings were developed and analyzed. The single-piece design was chosen and will be fabricated from either steel or aluminum (Al) depending on the required safety factors (SF) for test hardware. This report summarizes the design and analysis of these attachment ring concepts.

  5. Incorporating Sustainability and Green Design Concepts into Engineering and Technology Curricula

    Radian G. Belu

    2016-05-01

    Full Text Available Human society is facing an uncertain future due to the present day unsustainable use of natural resources and the growing imbalance with our natural environment. Sustainability is an endeavour with uncertain outcomes requiring collaboration, teamwork, and abilities to work with respect and learn from other disciplines and professions, as well as with governments, local communities, political and civic organizations. The creation of a sustainable society is a complex and multi-stage endeavour that will dominate twenty first century.  Sustainability has four basic aspects: environment, technology, economy, and societal organization. Schools with undergraduate engineering or engineering technology programs are working to include sustainability and green design concepts into their curricula. Teaching sustainability and green design has increasingly become an essential feature of the present day engineering education. It applies to all of engineering, as all engineered systems interact with the environment in complex and important ways. Our project main goals are to provide the students with multiple and comprehensive exposures, to what it mean to have a sustainable mindset and to facilitate the development of the passion and the skills to integrate sustainable practices into engineering tools and methods. In this study we are describing our approaches to incorporating sustainability and green design into our undergraduate curricula and to list a variety of existing resources that can easily be adopted or adapted by our faculty for this purpose. Our approaches are: (1 redesigning existing courses through development of new curricular materials that still meet the objectives of the original course and (2 developing upper division elective courses that address specific topics related to sustainability, green design, green manufacturing and life-cycle assessment. 

  6. Rational design and synthesis of yolk-shell ZnGa2O4@C nanostructure with enhanced lithium storage properties

    Han, Nao; Xia, Yuguo; Han, Yanyang; Jiao, Xiuling; Chen, Dairong

    2018-03-01

    The ability to create hybrid nanostructure with synergistic effect and confined morphology to achieve high performance and long-term stability is high desirable in lithium ion batteries. Although transition metal oxides as anode material reveal high theoretical capacities, the significant volume changes during repeated lithium insertion and extraction cause pulverization of electrode materials, resulting in rapid fade in capacity. Herein, yolk-shell nanostructure of ZnGa2O4 encapsulated by amorphous carbon is rationally designed and synthesized through two-step surface coating followed by thermal treatment and etching process. It is noteworthy that ZnGa2O4@C with yolk-shell structure is superior to pristine ZnGa2O4 and ZnGa2O4@C with core-shell structure in term of lithium storage. The stable reversible capacity of yolk-shell ZnGa2O4@C can be retained at 657.2 mAh g-1 at current density of 1 A g-1 after completion of 300 cycles, which also reveals superior rate performance. The appropriate carbon shell and void space involved in the yolk-shell structure are considered to be the crucial factor in accommodating volume expansion as well as preserving the structural integrity of yolk-shell ZnGa2O4@C.

  7. Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food.

    Ramos, Oscar L; Pereira, Ricardo N; Martins, Artur; Rodrigues, Rui; Fuciños, Clara; Teixeira, José A; Pastrana, Lorenzo; Malcata, F Xavier; Vicente, António A

    2017-05-03

    Whey proteins are widely used as nutritional and functional ingredients in formulated foods because they are relatively inexpensive, generally recognized as safe (GRAS) ingredient, and possess important biological, physical, and chemical functionalities. Denaturation and aggregation behavior of these proteins is of particular relevance toward manufacture of novel nanostructures with a number of potential uses. When these processes are properly engineered and controlled, whey proteins may be formed into nanohydrogels, nanofibrils, or nanotubes and be used as carrier of bioactive compounds. This review intends to discuss the latest understandings of nanoscale phenomena of whey protein denaturation and aggregation that may contribute for the design of protein nanostructures. Whey protein aggregation and gelation pathways under different processing and environmental conditions such as microwave heating, high voltage, and moderate electrical fields, high pressure, temperature, pH, and ionic strength were critically assessed. Moreover, several potential applications of nanohydrogels, nanofibrils, and nanotubes for controlled release of nutraceutical compounds (e.g. probiotics, vitamins, antioxidants, and peptides) were also included. Controlling the size of protein networks at nanoscale through application of different processing and environmental conditions can open perspectives for development of nanostructures with new or improved functionalities for incorporation and release of nutraceuticals in food matrices.

  8. Development of dose calculation program (DBADOSE) incorporating alternative source term due to design basis accident

    Bae, Young Jig; Nam, Ki Mun; Lee, Yu Jong; Chung, Chan Young

    2003-01-01

    Source terms presented in TID-14844 and Regulatory Guide 1.4 have been used for radiological analysis of design basis accidents for licensing existing pressurized water reactor (PWR). However, more realistic and physically-based source term based on results of study and experiments for about 30 years after the publication of TID-14844 was developed and presented in NUREG-1465 published by U.S NRC in 1995. In addition, ICRP has revised dose concepts and criteria through the publication of ICRP-9, 26, 60 and recommended effective dose concepts rather than critical organ concept since the publication of ICRP-26. Accordingly, multipurpose computer program called DBADOSE incorporating alternative source terms in NUREG-1465 and effective dose concepts in ICRP-60 was developed. Comparison of results of DBADOSE with those of POSTDBA and STARDOSE was performed and verified and no significant difference and inaccuracy were found. DBADOSE will be used to evaluate accidental doses for licensing application according to the domestic laws that are expected to be revised in the near future

  9. A rationally designed photo-chemo core-shell nanomedicine for inhibiting the migration of metastatic breast cancer cells followed by photodynamic killing.

    Malarvizhi, Giridharan Loghanathan; Chandran, Parwathy; Retnakumari, Archana Payickattu; Ramachandran, Ranjith; Gupta, Neha; Nair, Shantikumar; Koyakutty, Manzoor

    2014-04-01

    A multifunctional core-shell nanomedicine capable of inhibiting the migratory capacity of metastatic cancer cells followed by imparting cytotoxic stress by photodynamic action is reported. Based on in silico design, we have developed a core-shell nanomedicine comprising of ~80nm size poly(lactic-co-glycolic acid) (PLGA) nano-core encapsulating photosensitizer, m-tetra(hydroxyphenyl)chlorin (mTHPC), and ~20nm size albumin nano-shell encapsulating tyrosine kinase inhibitor, Dasatinib, which impair cancer migration. This system was prepared by a sequential process involving electrospray of polymer core and coacervation of protein shell. Cell studies using metastatic breast cancer cells demonstrated disruption of Src kinase involved in the cancer migration by albumin-dasatinib nano-shell and generation of photoactivated oxidative stress by mTHPC-PLGA nano-core. This unique combinatorial photo-chemo nanotherapy resulted synergistic cytotoxicity in ~99% of the motility-impaired metastatic cells. This approach of blocking cancer migration followed by photodynamic killing using rationally designed nanomedicine is a promising new strategy against cancer metastasis. A multifunctional core-shell nanomedicine capable of inhibiting metastatic cancer cell migration, in addition to inducing photodynamic effects, is described in this paper. The authors document cytotoxicity in approximately 99% of the studied metastatic breast cancer cells. Similar approaches would be a very welcome addition to the treatment protocols of advanced metastatic breast cancer and other types of neoplasms. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. On the optimal design of glass grid shells with planar quadrilateral elements

    Sassone, Mario; Pugnale, Alberto

    2010-01-01

    specific geometric rules in the grid generation phase but, when the architectural shape is already defined at the conceptual stage, an optimization procedure can yield to suitable configurations. A Relaxation method based on nodal planarity errors and an evolutionary population based Genetic Algorithm have...... been applied to set of benchmarks, in order to tune parameters and to obtain general information about the solution. the problem and their efficiency compared. The Relaxation method in general shows better efficiency in reaching optimal solutions, as an effect of the regularity of the target function......This paper presents an optimization procedure for the solution of the planarity problem, a requirement of grid shells with four or more sides faces that need of having four adjacent nodes laying on a plane in order to use plane glass slabs as cladding elements. It can be satisfied by applying...

  11. Development and design of a bone-equivalent cortical shell phantom to determine accuracy measures on DXA and PQCT scanners

    Khoo, B.C.C.; Beck, T.J. Johns; Turk, B.; Price, R.I.

    2004-01-01

    Full text: Hip Structural Analysis (HSA), is an algorithm that computes bone-structural geometry from dual energy X-ray absorptiometry (DXA) derived hip images and may be used in a complementary manner to DXA areal bone mineral density (BMD) for bone strength interpretation. DXA is normally used to facilitate the diagnosis and management of bone metabolic diseases such as osteoporosis. HSA provides a biomechanical interpretation of BMD, using its mass profiles to compute cross-sectional structural geometry. In essence, HSA provides insight into bone structural and biomechanical properties, particularly of long bones, which BMD alone cannot. While conventional (vendor-provided) phantoms calibrate DXA machines for densitometric precision, analogous phantoms for calibrating structural geometry are lacking. This paper describes the design and preliminary testing of a densitometric bone-equivalent cylindrical phantom with 'cortical' shells and 'cancellous' core, and the use of this phantom to do a performance test of structural geometry variables such as cortical thickness, bone width and section modulus derived, from pQCT and DXA scan data. Powdered calcium-sulphate (CSC) was water-mixed in vacuum and cured. This mixture exhibited hydroxyapatite-like DXA photon-attenuation properties with density monotonically related to added water-mass. Its mass and BMD maintained temporal stability (CV%=0.03%, n=4 specimens over 321 d). Using CSC designed for a BMD=1.04g/cm, (for plate-thickness 10mm), a cylindrical phantom with cortical shell thicknesses of 0.5, 1.0, 2.0, 4.0mm, an acrylic-based internal core diameter of 26mm, and an acrylic surrounding 'soft-tissue' were constructed. The phantom was scanned using a DXA scanner (Hologic QDRl000W) and pQCT (Stratec XCT2000, pixel resolution 0.15mm). Selected cortical structural-geometric variables, derived from calculated geometry; pQCT mass-projections, and DXA HSA. In conclusion, dimensions of this novel cortical-shell phantom

  12. Dynamic shear-bending buckling experiments of cylindrical shells

    Hagiwara, Y.; Akiyama, H.

    1995-01-01

    Dynamic experimental studies of the plastic shear/bending buckling of cylindrical shells were performed. They clarified the inelastic response reduction and the seismic margin of FBR reactor vessels. The test results were incorporated into the draft of the seismic buckling design guidelines of FBR. (author). 15 refs., 3 figs

  13. Incorporating the effects of lateral spread of the primary fluence, into compensator design

    Reece, P.J.; Hoban, P.

    2000-01-01

    Full text: In this study we extended ideas developed by Faddegon and Pfalzner on the construction of patient specific compensating filters. Their research was essentially focused on formulating a general method for creating compensators using a 3D planning system. In their work Faddegon and Pfalzner utilized a simple attenuation model to convert transmission arrays into filter thickness arrays. The compensators constructed from these arrays produce the primary fluence required to give a uniform dose distribution at a specified depth. This technique does not account for local geometric variations hi compensator scattering conditions. Therefore we have devised a method to incorporate the effects of lateral spread of the primary fluence passing through the compensating filter. A 2D Gaussian kernel, generated from Monte Carlo measurements, was used to model the spread of the primary fluence in the compensating filter. A 'maximum likelihood' optimisation algorithm was employed to deconvolve the kernel from the desired primary fluence to produce a more realistic incident fluence and compensator thickness array. The CMS FOCUS planning system was used to generate transmission maps corresponding to the desired influence of the compensating filter. Two compensating filters were constructed for each map, one using the standard attenuation method and the other with our method. For each method, an assessment was made using film dosimetry, on the degree of correlation between the desired primary fluence and the primary fluence produced by the compensating filter. Our results indicate that for compensating filters which are relatively uniform in thickness, there is good agreement between desired and delivered fluence maps for both methods. For non-uniform compensating filters the attenuation method deviates more notably from the desired fluence map. As expected, both methods also show significant deviations around the edges of the filter. It is anticipated that the work done here

  14. Incorporation of statistical distribution of particle properties in chemical reactor design and operation: the cooled tubular reactor

    Wijngaarden, R.J.; Westerterp, K.R.

    1992-01-01

    Pellet heat and mass transfer coefficients inside packed beds do not have definite deterministic values, but are stochastic quantities with a certain distribution. Here, a method is presented to incorporate the stochastic distribution of pellet properties in reactor design and operation models. The

  15. Core-shell Li2S@Li3PS4 nanoparticles incorporated into graphene aerogel for lithium-sulfur batteries with low potential barrier and overpotential

    Jiao, Zheng; Chen, Lu; Si, Jian; Xu, Chuxiong; Jiang, Yong; Zhu, Ying; Yang, Yaqing; Zhao, Bing

    2017-06-01

    Lithium sulfide as a promising cathode material not only have a high theoretical specific capacity, but also can be paired with Li-free anode material to avoid potential safety issues. However, how to prepare high electrochemical performance material is still challenge. Herein, we present a facile way to obtain high crystal quality Li2S nanomaterials with average particle size of about 55 nm and coated with Li3PS4 to form the nano-scaled core-shell Li2S@Li3PS4 composite. Then nano-Li2S@Li3PS4/graphene aerogel is prepared by a simple liquid infiltration-evaporation coating process and used directly as a composite cathode without metal substrate for lithium-sulfur batteries. Electrochemical tests demonstrate that the composite delivers a high discharge capacity of 934.4 mAh g-1 in the initial cycle and retains 485.5 mAh g-1 after 100 cycles at 0.1 C rate. In addition, the composite exhibits much lower potential barrier (∼2.40 V) and overpotential compared with previous reports, indicating that Li2S needs only a little energy to be activated. The excellent electrochemical performances could be attributed to the tiny particle size of Li2S and the superionic conducting Li3PS4 coating layer, which can shorten Li-ion and electron diffusion paths, improve the ionic conductivity, as well as retarding polysulfides dissolution into the electrolyte to some extent.

  16. Hybrid shell engineering of animal cells for immune protections and regulation of drug delivery: towards the design of "artificial organs".

    Dandoy, Philippe; Meunier, Christophe F; Michiels, Carine; Su, Bao-Lian

    2011-01-01

    With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient.

  17. Hybrid shell engineering of animal cells for immune protections and regulation of drug delivery: towards the design of "artificial organs".

    Philippe Dandoy

    Full Text Available BACKGROUND: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. METHODOLOGY/PRINCIPAL FINDINGS: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8 to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes. The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. CONCLUSIONS/SIGNIFICANCE: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin, substituting the declining organ functions of the patient.

  18. Development of a Flapping Wing Design Incorporating Shape Memory Alloy Actuation

    2010-03-01

    the test stand. These terminal points were fabricated from stainless - steel hypodermic tubing purchased from Small Parts Incorporated (http...be used as linkages to each bellcrank. These terminal ends were fabricated from the same stainless - steel hypodermic tubing used in the wire...Figure 8. Martensitic Fractional Variation........................................................................ 19 Figure 9. NiTi Yield Stress

  19. Incorporating functional requirements into the structural design of the Defense Waste Processing Facility

    Hsiu, F.J.; Ng, C.K.; Almuti, A.M.

    1986-01-01

    Vitrification Building-type structures have unique features and design needs. The structural design requires new concepts and custom detailing. The above special structural designs have demonstrated the importance of the five design considerations listed in the introduction. Innovative ideas and close coordination are required to achieve the design objectives. Many of these innovations have been applied to the DWPF facility which is a first of a kind

  20. New Buildings Energy Performance Improvement through Incorporation of New Proven Technologies into Standard Designs. Standard Design for TEMF

    Zhivov, Alexander M

    2004-01-01

    ISSUES: Current Army Standard Designs don't specify potential energy saving and sustainable design opportunities, available energy saving technologies, and technologies resulting in better indoor air quality...

  1. Engineering Encounters: Designing Healthy Ice Pops. A STEM Enrichment Project for Second Graders Incorporates Nutrition and Design Principles

    Bubnick, Laura; Enneking, Katie; Egbers, Julie

    2016-01-01

    Science, technology, engineering, and math (STEM) education piques students' innate curiosity and opens their eyes to hundreds of career possibilities. This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a STEM enrichment project for second graders that incorporates nutrition and…

  2. NIF Double Shell outer/inner shell collision experiments

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  3. Multifunctional Core-Shell and Nano-channel Design for Nano-sized Thermo-sensor

    2015-04-01

    based on the filling of metals into a nanochannel design. Particularly, different metal alloys with tunable metlingpoints were used to created...nanowires in nanopores of anodic aluminium oxide by mechanical pressure injection. These nanowires inside AAO channels can behave as effective thermal

  4. Incorporation of human factors into design change processes - a regulator's perspective

    Staples, L.; McRobbie, H.

    2003-01-01

    Nuclear power plants in Canada must receive written approval from the Canadian Nuclear Safety Commission (CNSC) when making certain changes that are defined in their licenses. The CNSC expects the design change process to include a method for ensuring that the human-machine interface and workplace design support the safe and reliable performance of required tasks. When reviewing design changes for approval, the CNSC looks for evidence of analysis work, use of appropriate human factors design guidelines, and verification and validation testing of the design. In addition to reviewing significant design changes, evaluations are conducted to ensure design change processes adequately address human performance. Findings from reviews and evaluations highlight the need to integrate human factors into the design change process, provide human factors training and support to engineering staff, establish processes to ensure coordination between the various groups with a vested interest in human factors, and develop more rigorous methods to validate changes to maintenance, field operations and testing interfaces. (author)

  5. Batch sorption-desorption of As(III) from waste water by magnetic palm kernel shell activated carbon using optimized Box-Behnken design

    Anyika, Chinedum; Asri, Nur Asilayana Mohd; Majid, Zaiton Abdul; Jaafar, Jafariah; Yahya, Adibah

    2017-12-01

    In this study, we converted activated carbon (AC) into magnetic activated carbon (MAC), which was established to have removed arsenic (III) from wastewater. Arsenic (III) is a toxic heavy metal which is readily soluble in water and can be detrimental to human health. The MAC was prepared by incorporating Fe3O4 into the AC by using Fe3O4 extracted from a ferrous sulfate solution, designated: magnetic palm kernel shell from iron suspension (MPKSF). Batch experiments were conducted using two methods: (1) one-factor-at-a-time and (2) Box-Behnken statistical analysis. Results showed that the optimum conditions resulted in 95% of As(III) removal in the wastewater sample. The adsorption data were best fitted to the Langmuir isotherm. The adsorption of As(III) onto the MPKSF was confirmed by energy dispersive X-ray spectrometry analysis which detected the presence of As(III) of 0.52% on the surface of the MPKSF. The Fourier transform infrared spectroscopy analysis of the MPKSF-As presented a peak at 573 cm-1, which was assigned to M-O (metal-oxygen) bending, indicating the coordination of As(III) with oxygen through the formation of inner-sphere complexation, thereby indicating a covalent bonding between the MPKSF functional groups and As(III). The findings suggested that the MPKSF exhibited a strong capacity to efficiently remove As(III) from wastewater, while the desorption studies showed that the As(III) was rigidly bound to the MPKSF thereby eliminating the possibility of secondary pollution.

  6. Incorporating Solid Modeling and Team-Based Design into Freshman Engineering Graphics.

    Buchal, Ralph O.

    2001-01-01

    Describes the integration of these topics through a major team-based design and computer aided design (CAD) modeling project in freshman engineering graphics at the University of Western Ontario. Involves n=250 students working in teams of four to design and document an original Lego toy. Includes 12 references. (Author/YDS)

  7. An Automated Design Approach for High-Lift Systems incorporating Eccentric Beam Actuators

    Steenhuizen, D.; Van Tooren, M.J.L.

    2010-01-01

    In order to asess the merit of novel high-lift structural concepts to the design of contemporary and future transport aircraft, a highly automated design routine is elaborated. The structure, purpose and evolution of this design routine is set-out with the use of Knowledge-Based Engineering

  8. A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model

    Sönmez, Ümit; Tutum, Cem Celal

    2008-01-01

    In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....

  9. Incorporating covariance estimation uncertainty in spatial sampling design for prediction with trans-Gaussian random fields

    Gunter eSpöck

    2015-05-01

    Full Text Available Recently, Spock and Pilz [38], demonstratedthat the spatial sampling design problem forthe Bayesian linear kriging predictor can betransformed to an equivalent experimentaldesign problem for a linear regression modelwith stochastic regression coefficients anduncorrelated errors. The stochastic regressioncoefficients derive from the polar spectralapproximation of the residual process. Thus,standard optimal convex experimental designtheory can be used to calculate optimal spatialsampling designs. The design functionals ̈considered in Spock and Pilz [38] did nottake into account the fact that kriging isactually a plug-in predictor which uses theestimated covariance function. The resultingoptimal designs were close to space-fillingconfigurations, because the design criteriondid not consider the uncertainty of thecovariance function.In this paper we also assume that thecovariance function is estimated, e.g., byrestricted maximum likelihood (REML. Wethen develop a design criterion that fully takesaccount of the covariance uncertainty. Theresulting designs are less regular and space-filling compared to those ignoring covarianceuncertainty. The new designs, however, alsorequire some closely spaced samples in orderto improve the estimate of the covariancefunction. We also relax the assumption ofGaussian observations and assume that thedata is transformed to Gaussianity by meansof the Box-Cox transformation. The resultingprediction method is known as trans-Gaussiankriging. We apply the Smith and Zhu [37]approach to this kriging method and show thatresulting optimal designs also depend on theavailable data. We illustrate our results witha data set of monthly rainfall measurementsfrom Upper Austria.

  10. Incorporation of human factors into ship collision risk models focusing on human centred design aspects

    Sotiralis, P.; Ventikos, N.P.; Hamann, R.; Golyshev, P.; Teixeira, A.P.

    2016-01-01

    This paper presents an approach that more adequately incorporates human factor considerations into quantitative risk analysis of ship operation. The focus is on the collision accident category, which is one of the main risk contributors in ship operation. The approach is based on the development of a Bayesian Network (BN) model that integrates elements from the Technique for Retrospective and Predictive Analysis of Cognitive Errors (TRACEr) and focuses on the calculation of the collision accident probability due to human error. The model takes into account the human performance in normal, abnormal and critical operational conditions and implements specific tasks derived from the analysis of the task errors leading to the collision accident category. A sensitivity analysis is performed to identify the most important contributors to human performance and ship collision. Finally, the model developed is applied to assess the collision risk of a feeder operating in Dover strait using the collision probability estimated by the developed BN model and an Event tree model for calculation of human, economic and environmental risks. - Highlights: • A collision risk model for the incorporation of human factors into quantitative risk analysis is proposed. • The model takes into account the human performance in different operational conditions leading to the collision. • The most important contributors to human performance and ship collision are identified. • The model developed is applied to assess the collision risk of a feeder operating in Dover strait.

  11. Design of Protein-Coated Carbon Nanotubes Loaded with Hydrophobic Drugs through Sacrificial Templating of Mesoporous Silica Shells.

    Fiegel, Vincent; Harlepp, Sebastien; Begin-Colin, Sylvie; Begin, Dominique; Mertz, Damien

    2018-03-26

    One key challenge in the fields of nanomedicine and tissue engineering is the design of theranostic nanoplatforms able to monitor their therapeutic effect by imaging. Among current developed nano-objects, carbon nanotubes (CNTs) were found suitable to combine imaging, photothermal therapy, and to be loaded with hydrophobic drugs. However, a main problem is their resulting low hydrophilicity. To face this problem, an innovative method is developed here, which consists in loading the surface of carbon nanotubes (CNTs) with drugs followed by a protein coating around them. The originality of this method relies on first covering CNTs with a sacrificial template mesoporous silica (MS) shell grafted with isobutyramide (IBAM) binders on which a protein nanofilm is strongly adhered through IBAM-mediated physical cross-linking. This concept is first demonstrated without drugs, and is further improved with the suitable loading of hydrophobic drugs, curcumin (CUR) and camptothecin (CPT), which are retained between the CNTs and human serum albumin (HSA) layer. Such novel nanocomposites with favorable photothermal properties are very promising for theranostic systems, drug delivery, and phototherapy applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. INCORPORATING THE BEHAVIORAL DIMENSION IN DESIGNING INCLUSIVE LEARNING ENVIRONMENT FOR AUTISM

    Rachna Khare

    2009-11-01

    Full Text Available In last two decades environment and behavior studies has profoundly influenced the practice of architecture and there is growing trend towards people-centered and evidence-based design. The field has tremendous application in designing for special needs; most of the researches on designing for special groups, accessibility codes and design guidelines are based on the functional needs of the users, necessity to explore potential of behavioral aspects to design for people with cognitive limitations is felt though. In the present research, the systematic study of behavioral features in autism has provided a wealth of understanding that is applied to the process of design. There are several stages to this research project, in initial stage, learning behaviors of children, their strength and weakness in educational spaces helped in defining ‘enabling environment’ for autism, which is tested in the subsequent stages to provide evidence based body of knowledge that is expected to help architects and designers to design autism friendly inclusive educational spaces. The purpose of this paper is to present the enabling aspects of educational environment for children with autism and measure their affects on functional performance.

  13. Making hospital mortality measurement more meaningful: incorporating advance directives and palliative care designations.

    Kroch, Eugene A; Johnson, Mark; Martin, John; Duan, Michael

    2010-01-01

    Accounting for patients admitted to hospitals at the end of a terminal disease process is key to signaling care quality and identifying opportunities for improvement. This study evaluates the benefits and caveats of incorporating care-limiting orders, such as do not resuscitate (DNR) and palliative care (PC) information, in a general multivariate model of mortality risk, wherein the unit of observation is the patient hospital encounter. In a model of the mortality gap (observed - expected from the baseline model), DNR explains 8% to 24% of the gap variation. PC provides additional explanatory power to some disease groupings, especially heart and digestive diseases. One caveat is that DNR information, especially if associated with the later stages of hospital care, may mask opportunities to improve care for certain types of patients. But that is not a danger for PC, which is unequivocally valuable in accounting for patient risk, especially for certain subpopulations and disease groupings.

  14. NEW REACTOR DESIGN AND ANALYSIS OF NON LINEAR VIBRATIONS OF DOUBLY CURVED SHALLOW SHELL UNDER A THERMAL GRADIENT

    Chanda, S.

    2004-01-01

    The present study concerns with the effects of material orthotropy,curvature, shear ratio and circumferential modulus under the influence of a temperature distribution throughout the shell structure. Here analysis is restricted to the study of nonlinear vibration of a doubly curved shell structure considering the periodic response of a simple bending mode due to curtailment of pages. Solutions of the problems with suitable illustrations are also presented

  15. INCORPORATING ENVIRONMENTAL AND ECONOMIC CONSIDERATIONS INTO PROCESS DESIGN: THE WASTE REDUCTION (WAR) ALGORITHM

    A general theory known as the WAste Reduction (WASR) algorithm has been developed to describe the flow and the generation of potential environmental impact through a chemical process. This theory integrates environmental impact assessment into chemical process design Potential en...

  16. A Study on Teacher Training to Incorporate Gamification in Class Design--Program Development and Implementation in a Teacher Training Course

    Shiota, Shingo; Abe, Manabu

    2015-01-01

    Having classes with "fun" incorporated into their design is crucial for learners. Students can learn from classes that combine learning with fun. In this study, we developed a program for university students in a teacher training course that aimed to teach ways of incorporating gamification into class design. [For the complete…

  17. Using the whole-building design approach to incorporate daylighting into a retail space: Preprint

    Hayter, S.; Torcellini, P.; Eastment, M.; Judkoff, R.

    2000-06-21

    This paper focuses on implementation of daylighting into the Bighorn Center, a collection of home improvement retail spaces in Silverthorne, Colorado, which were constructed in three phases. Daylighting was an integral part of the design of the Phase 3 building. Energy consultants optimized the daylighting design through detailed modeling using an hourly building energy simulation tool. Energy consultants also used this tool to address the building owner's concerns related to customer comfort and increased product sales.

  18. Incorporating risk measures in closed-loop supply chain network design

    Soleimani, H.; Seyyed-Esfahani, M.; Govindan, Kannan

    2014-01-01

    This paper considers a location-allocation problem in a closed-loop supply chain (CLSC) with two extensions: first, demand and prices of new and return products are regarded as non-deterministic parameters and second, the objective function is developed from expected profit to three types of mean......-risk ones. Indeed, design and planning an integrated CLSC in real-world volatile markets is an important and necessary issue. Further, risk-neutral approaches, which are considered expected values, are not efficient for such uncertain conditions. Hence, this paper, copes with the design and planning problem...

  19. Incorporating fuzzy data and logical relations in the design of expert systems for nuclear reactors

    Guth, M.A.S.

    1987-01-01

    This paper applies the method of assigning probability in Dempster-Shafer Theory (DST) to the components of rule-based expert systems used in the control of nuclear reactors. Probabilities are assigned to premises, consequences, and rules themselves. This paper considers how uncertainty can propagate through a system of Boolean equations, such as fault trees or expert systems. The probability masses assigned to primary initiating events in the expert system can be derived from observing a nuclear reactor in operation or based on engineering knowledge of the reactor parts. Use of DST mass assignments offers greater flexibility to the construction of expert systems in two important respects. First, DST mass assignments have the advantage over classical probability methods of accommodating when necessary uncommitted probability assignments. Thus the DST probability framework can incorporate expert system inputs from imprecise or fuzzy data. Second, DST applied to the Boolean rules themselves leads to a probabilistic logic, where a given rule may be valid with probability less than unity: fuzzy logical rules

  20. DESIGN AND CONTROL OF SOAP-FREE HYDROPHILIC-HYDROPHOBIC CORE-SHELL LATEX PARTICLES WITH HIGH CARBOXYL CONTENT IN THE CORE OF THE PARTICLES

    Wen-jiao Ji; Yi-ming Jiang; Bo-tian Li; Wei Deng; Cheng-you Kan

    2012-01-01

    Soap-free hydrophilic-hydrophobic core-shell latex particles with high carboxyl content in the core of the particles were synthesized via the seeded emulsion polymerization using methyl methacrylate (MMA),butyl acrylate (BA),methacrylic acid (MAA),styrene (St) and ethylene glycol dimethacrylate (EGDMA) as monomers,and the influences of MMA content used in the core preparation on polymerization,particle size and morphology were investigated by transmission electron microscopy,dynamic light scattering and conductometric titration.The results showed that the seeded emulsion polymerization could be carried out smoothly using "starved monomer feeding process" when MAA content in the core preparation was equal to or less than 24 wt%,and the encapsulating efficiency of the hydrophilic P(MMA-BA-MAA-EGDMA) core with the hydrophobic PSt shell decreased with the increase in MAA content.When an interlayer of P(MMA-MAA-St) with moderate polarity was inserted between the P(MMA-BA-MAA-EGDMA) core and the PSt shell,well designed soap-free hydrophilic-hydrophobic core-shell latex particles with 24 wt% MAA content in the core preparation were obtained.

  1. The assessment of eco-design with a comprehensive index incorporating environmental impact and economic profit

    Yang, Shuo; Fu, Yun; Wang, Xiuteng; Xu, Bingsheng; Li, Zheng

    2017-11-01

    Eco-design is an advanced design approach which plays an important part in the national innovation project and serves as a key point for the successful transformation of the supply structure. However, the practical implementation of the pro-environmental designs and technologies always faces a dilemma situation, where some processes can effectively control their emissions to protect the environment at relatively high costs, while others pursue the individual interest in making profit by ignoring the possible adverse environmental impacts. Thus, the assessment on the eco-design process must be carried out based on the comprehensive consideration of the economic and environmental aspects. Presently, the assessment systems in China are unable to fully reflect the new environmental technologies regarding their innovative features or performance. Most of the assessment systems adopt scoring method based on the judgments of the experts, which are easy to use but somewhat subjective. The assessment method presented in this paper includes the environmental impact (EI) assessment based on LCA principal and willingness-to-pay theory, and economic profit (EP) assessment mainly based on market price. The results from the assessment are in the form of EI/EP, which evaluate the targeted process from a combined perspective of environmental and economic performance. A case study was carried out upon the utilization process of coal fly ash, which indicates the proposed method can compare different technical processes in an effective and objective manner, and provide explicit and insightful suggestions for decision making.

  2. Incorporating Army Design Methodology into Army Operations: Barriers and Recommendations for Facilitating Integration

    2012-03-01

    interactively complex systems must be systemic, rather than reductionist, and qualitative rather than quantitative , and must use different heuristic...traditional approach and the military culture more broadly, and post- positivism that characterizes Design. He argues that the military culture is

  3. Nuclear power plant human computer interface design incorporating console simulation, operations personnel, and formal evaluation techniques

    Chavez, C.; Edwards, R.M.; Goldberg, J.H.

    1993-01-01

    New CRT-based information displays which enhance the human machine interface are playing a very important role and are being increasingly used in control rooms since they present a higher degree of flexibility compared to conventional hardwired instrumentation. To prototype a new console configuration and information display system at the Experimental Breeder Reactor II (EBR-II), an iterative process of console simulation and evaluation involving operations personnel is being pursued. Entire panels including selector switches and information displays are simulated and driven by plant dynamical simulations with realistic responses that reproduce the actual cognitive and physical environment. Careful analysis and formal evaluation of operator interaction while using the simulated console will be conducted to determine underlying principles for effective control console design for this particular group of operation personnel. Additional iterations of design, simulation, and evaluation will then be conducted as necessary

  4. Incorporation of environmental impact criteria in the design and operation of chemical processes

    P.E. Bauer

    2004-09-01

    Full Text Available Environmental impact assessment is becoming indispensable for the design and operation of chemical plants. Structured and consistent methods for this purpose have experienced a rapid development. The more rigorous and sophisticated these methods become, the greater is the demand for convenient tools. On the other hand, despite the incredible advances in process simulators, some aspects have still not been sufficiently covered. To date, applications of these programs to quantify environmental impacts have been restricted to straightforward examples of steady-state processes. In this work, a life-cycle assessment implementation with the aim of process design will be described, with a brief discussion of a dynamic simulation for analysis of transient state operations, such as process start-up. A case study shows the importance of this analysis in making possible operation at a high performance level with reduced risks to the environment.

  5. Incorporating Workflow Interference in Facility Layout Design: The Quartic Assignment Problem

    Wen-Chyuan Chiang; Panagiotis Kouvelis; Timothy L. Urban

    2002-01-01

    Although many authors have noted the importance of minimizing workflow interference in facility layout design, traditional layout research tends to focus on minimizing the distance-based transportation cost. This paper formalizes the concept of workflow interference from a facility layout perspective. A model, formulated as a quartic assignment problem, is developed that explicitly considers the interference of workflow. Optimal and heuristic solution methodologies are developed and evaluated.

  6. The Global Studio - Incorporating Peer-Learning into the Design Curriculum

    Aysar Ghassan

    2015-07-01

    Full Text Available In ‘tutor-led’ design education, lecturers reside at the centre of teaching & learning activi­ties. We argue that tutor-led design education does not prepare graduates sufficiently for working in highly complex professional capacities. We outline an alternative learning envi­­ron­ment named the Global Studio in which lecturers are more ‘distant’ in pedagogical activities. This ‘distance’ opens up learning spaces which expose students to complex project situations in preparation for professional working life. Global Studio projects are ‘student-led’ and contain explicit opportunities for peer tutoring to ensue. Feedback indicates that learners benefitted from engaging in peer tutoring. However, many students struggled with making important decisions when operating outside of the tutor-led learning environment. To maximise their benefit, we argue that student-led projects featuring peer-tutoring should be scaffolded throughout design programmes to provide students with a sufficient level of expo­sure to this mode of learning. Image by artist Malcom Jones. http://www.malcomjones.com/index.htm

  7. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov

    2013-01-01

    /DS or Alg/CS/DS particles in the mPEG-PLGA microparticles were significantly dependent on the operating conditions, including the flow rate ratio (Qout/Qin) and the viscosity of the polymer solutions (Vout, Vin) between the outer and the inner feeding channels. The core-shell composite microparticles.......e. more sustainable cell growth was induced by the DS released from the core-shell composite microparticles comprising Alg/CS/DS particles. After seeding fibroblasts onto the composite microparticles, excellent cell adhesion was observed, and a successful assembly of the cell-scaffold constructs...... was induced within 7 days. Therefore, the present study demonstrates a novel strategy for fabrication of core-shell composite microparticles comprising additional particulate drug carriers in the core, which provides controlled delivery of DS and favorable cell biocompatibility; an approach to potentially...

  8. Au-CuO core-shell nanoparticles design and development for the selective determination of Vitamin B6

    Kumar, Deivasigamani Ranjith; Manoj, Devaraj; Santhanalakshmi, Jayadevan; Shim, Jae-Jin

    2015-01-01

    Highlights: • Seed mediated growth of Au-CuO core-shell nanoparticle. • Au-CuO core-shell nanoparticle provided good peak current for pyridoxine. • Au-CuO/MWCNTs/GC exhibited excellent vitamin B 6 peak separation with other vitamin. - Abstract: This paper reports the synthesis of gold (core)-copper oxide (shell) nanoparticles using a simple seed mediated growth method. Pre-synthesized Au nanoparticles were used as seed materials for copper oxide shell growth, which were shown to be effective for Au-CuO core-shell formation. The novelty of this assembly strategy is that the exploitation of the Cu-ligand, which is thermolyzed on the Au nanoseed surface, results in the formation of CuO. Au-CuO core-shell nanoparticles were characterized by UV-visible spectroscopy, high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The as prepared Au-CuO was used to fabricate a Au-CuO/MWCNTs/GC-modified electrode, which was applied to Vitamin B 6 (pyridoxine) determination by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The MWCNTs enhance the pyridoxine oxidation rate by increasing the peak current with Au-CuO, hence pyridoxine oxidized lower operating potentials. The Au-CuO/MWCNTs/GC-modified electrode showed excellent electrochemical performance towards pyridoxine (PY) in the presence of other typical vitamins, such as riboflavin, ascorbic acid and uric acid. The linear calibration graph was obtained over the PY concentration range of 0.79 μM–18.4 μM and the detection limit (S/N = 3) was 0.15 μM. The Au-CuO/MWCNTs/GC-modified electrode showed good stability, repeatability and recovery of real sample analysis

  9. Design and evaluation of an imaging spectrophotometer incorporating a uniform light source.

    Noble, S D; Brown, R B; Crowe, T G

    2012-03-01

    Accounting for light that is diffusely scattered from a surface is one of the practical challenges in reflectance measurement. Integrating spheres are commonly used for this purpose in point measurements of reflectance and transmittance. This solution is not directly applicable to a spectral imaging application for which diffuse reflectance measurements are desired. In this paper, an imaging spectrophotometer design is presented that employs a uniform light source to provide diffuse illumination. This creates the inverse measurement geometry to the directional illumination/diffuse reflectance mode typically used for point measurements. The final system had a spectral range between 400 and 1000 nm with a 5.2 nm resolution, a field of view of approximately 0.5 m by 0.5 m, and millimeter spatial resolution. Testing results indicate illumination uniformity typically exceeding 95% and reflectance precision better than 1.7%.

  10. A Mass Balance Model for Designing Green Roof Systems that Incorporate a Cistern for Re-Use

    Manoj Chopra

    2012-11-01

    Full Text Available Green roofs, which have been used for several decades in many parts of the world, offer a unique and sustainable approach to stormwater management. Within this paper, evidence is presented on water retention for an irrigated green roof system. The presented green roof design results in a water retention volume on site. A first principle mass balance computer model is introduced to assist with the design of these green roof systems which incorporate a cistern to capture and reuse runoff waters for irrigation of the green roof. The model is used to estimate yearly stormwater retention volume for different cistern storage volumes. Additionally, the Blaney and Criddle equation is evaluated for estimation of monthly evapotranspiration rates for irrigated systems and incorporated into the model. This is done so evapotranspiration rates can be calculated for regions where historical data does not exist, allowing the model to be used anywhere historical weather data are available. This model is developed and discussed within this paper as well as compared to experimental results.

  11. Design considerations of a hollow microneedle-optofluidic biosensing platform incorporating enzyme-linked assays

    Ranamukhaarachchi, Sahan A.; Padeste, Celestino; Häfeli, Urs O.; Stoeber, Boris; Cadarso, Victor J.

    2018-02-01

    A hollow metallic microneedle is integrated with microfluidics and photonic components to form a microneedle-optofluidic biosensor suitable for therapeutic drug monitoring (TDM) in biological fluids, like interstitial fluid, that can be collected in a painless and minimally-invasive manner. The microneedle inner lumen surface is bio-functionalized to trap and bind target analytes on-site in a sample volume as small as 0.6 nl, and houses an enzyme-linked assay on its 0.06 mm2 wall. The optofluidic components are designed to rapidly quantify target analytes present in the sample and collected in the microneedle using a simple and sensitive absorbance scheme. This contribution describes how the biosensor components were optimized to detect in vitro streptavidin-horseradish peroxidase (Sav-HRP) as a model analyte over a large detection range (0-7.21 µM) and a very low limit of detection (60.2 nM). This biosensor utilizes the lowest analyte volume reported for TDM with microneedle technology, and presents significant avenues to improve current TDM methods for patients, by potentially eliminating blood draws for several drug candidates.

  12. Triazole incorporated thiazoles as a new class of anticonvulsants: design, synthesis and in vivo screening.

    Siddiqui, Nadeem; Ahsan, Waquar

    2010-04-01

    Various 3-[4-(substituted phenyl)-1,3-thiazol-2-ylamino]-4-(substituted phenyl)-4,5-dihydro-1H-1,2,4-triazole-5-thiones (7a-t) were designed keeping in view the structural requirements suggested in the pharmacophore model for anticonvulsant activity. Thiazole and triazole moieties being anticonvulsants were clubbed together to get the titled compounds and their in vivo anticonvulsant screening were performed by two most adopted seizure models, maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole (scPTZ). Two compounds 7d and 7f showed significant anticonvulsant activity in both the screens with ED(50) values 23.9 mg/kg and 13.4 mg/kg respectively in MES screen and 178.6 mg/kg and 81.6 mg/kg respectively in scPTZ test. They displayed a wide margin of safety with Protective index (PI), median hypnotic dose (HD(50)) and median lethal dose (LD(50)) much higher than the standard drugs. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  13. Shell supports

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  14. Incorporating the Tuning Approach in Higher Education curricular reforms and course design in Tanzania for enhancing graduates’ competencies: stakeholders’ views

    Johnson Muchunguzi Ishengoma

    2017-11-01

    Full Text Available Available documentary and research evidences reveal that the majority of Tanzania universities’ graduates (public and private universities lack competencies or technical skills (employability skills required for the job market and by potential employers, despite massive curricular reforms implemented in the public higher education sector since the early 1990s. Lack of employability skills which consequently leads to graduate unemployment or un-employability is attributable to the fact that curricular reforms and design in Tanzania public universities undertaken by lecturers and professors do not incorporate basic Tuning principles of competence-based teaching and learning which puts emphasis on competencies and skills by identifying generic and specific competencies during course design or curriculum reform. This study using the University of Dar es Salaam (UDSM’s School of Education sought to: (1 explore faculty and students’ views on the application of the Tuning approach in curricular reforms and degree/course design as a mitigation of university graduates’ unemployment and un-employability, (2 solicit stakeholders’(academic staff and students perceptions of Tuning approach and its relevance in higher education curriculum reforms and design to make higher education more competence-based, and (3 find out students perceived causes of graduate unemployment and un-employability and whether the application of Tuning approach in curriculum reforms and design in universities can be a solution to graduate unemployment. Findings from the study reveal that both faculty and students concur that application of Tuning approach in higher education reforms and curricular design could enhance graduates competences and skills and reduce graduate unemployment.First published online: 30 November 2017

  15. Plate shell structures of glass

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  16. Stiffness modulus and creep properties of the coconut shell in an ...

    Coconut shell (CS) is an agricultural waste engineered into a road construction material. This study was conducted to evaluate the stiffness modulus and dynamic creep properties of the asphaltic concrete containing CS as an aggregate replacement. A mixture design incorporating the bitumen penetration grade 60/70 was ...

  17. Imidazole incorporated semicarbazone derivatives as a new class of anticonvulsants: design, synthesis and in-vivo screening.

    Amir, Mohammad; Ali, Israr; Hassan, Mohd Zaheen

    2013-06-01

    A series of novel imidazole incorporated semicarbazones was synthesized using an appropriate synthetic route and characterized by spectral analysis (IR, 1H NMR, 13C NMR and Mass). The anticonvulsant activity of the synthesized compounds was determined using doses of 30, 100, and 300 mg kg-1 against maximal electroshock seizure (MES), subcutaneous pentylenetetrazole (scPTZ) induced seizure and minimal neurotoxicity test. Six compounds exhibited protection in both models and 2-(1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethylidene)-N-p-tolylsemicarbazone emerged as the most active compound of the series without any neurotoxicity and significant CNS depressant effect. Liver enzyme estimations (SGOT, SGPT, Alkaline phosphatase) of the compound also showed no significant change in the enzymes levels. Moreover, it caused 80% elevation of γ-amino butyric acid (GABA) levels in the whole mice brain, thus indicating that it could be a promising candidate in designing of a potent anticonvulsant drug.

  18. Design of a novel integration-deficient lentivector technology that incorporates genetic and posttranslational elements to target human dendritic cells.

    Tareen, Semih U; Kelley-Clarke, Brenna; Nicolai, Christopher J; Cassiano, Linda A; Nelson, Lisa T; Slough, Megan M; Vin, Chintan D; Odegard, Jared M; Sloan, Derek D; Van Hoeven, Neal; Allen, James M; Dubensky, Thomas W; Robbins, Scott H

    2014-03-01

    As sentinels of the immune system, dendritic cells (DCs) play an essential role in regulating cellular immune responses. One of the main challenges of developing DC-targeted therapies includes the delivery of antigen to DCs in order to promote the activation of antigen-specific effector CD8 T cells. With the goal of creating antigen-directed immunotherapeutics that can be safely administered directly to patients, Immune Design has developed a platform of novel integration-deficient lentiviral vectors that target and deliver antigen-encoding nucleic acids to human DCs. This platform, termed ID-VP02, utilizes a novel genetic variant of a Sindbis virus envelope glycoprotein with posttranslational carbohydrate modifications in combination with Vpx, a SIVmac viral accessory protein, to achieve efficient targeting and transduction of human DCs. In addition, ID-VP02 incorporates safety features in its design that include two redundant mechanisms to render ID-VP02 integration-deficient. Here, we describe the characteristics that allow ID-VP02 to specifically transduce human DCs, and the advances that ID-VP02 brings to conventional third-generation lentiviral vector design as well as demonstrate upstream production yields that will enable manufacturing feasibility studies to be conducted.

  19. Functionalized porous silica&maghemite core-shell nanoparticles for applications in medicine: design, synthesis and immunotoxicity

    Zasońska, Beata Anna; Líšková, A.; Kuricová, M.; Tulinská, J.; Pop-Georgievski, Ognen; Čiampor, F.; Vávra, I.; Dušinská, M.; Ilavská, S.; Horváthová, M.; Horák, Daniel

    2016-01-01

    Roč. 57, č. 2 (2016), s. 165-178 ISSN 0353-9504 R&D Projects: GA ČR(CZ) GC16-01128J Institutional support: RVO:61389013 Keywords : core-shell maghemite nanoparticles * proliferative activity of lymphocytes * phagocytic activity Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.619, year: 2016 http://www.cmj.hr/2016/57/2/27106358.htm

  20. Core-shell nanoparticles optical sensors - Rational design of zinc ions fluorescent nanoprobes of improved analytical performance

    Woźnica, Emilia; Gasik, Joanna; Kłucińska, Katarzyna; Kisiel, Anna; Maksymiuk, Krzysztof; Michalska, Agata

    2017-10-01

    In this work the effect of affinity of an analyte to a receptor on the response of nanostructural fluorimetric probes is discussed. Core-shell nanoparticles sensors are prepared that benefit from the properties of the phases involved leading to improved analytical performance. The optical transduction system chosen is independent of pH, thus the change of sample pH can be used to control the analyte - receptor affinity through the "conditional" binding constant prevailing within the lipophilic phase. It is shown that by affecting the "conditional" binding constant the performance of the sensor can be fine-tuned. As expected, increase in "conditional" affinity of the ligand embedded in the lipophilic phase to the analyte results in higher sensitivity over narrow concentration range - bulk reaction and sigmoidal shape response of emission intensity vs. logarithm of concentration changes. To induce a linear dependence of emission intensity vs. logarithm of analyte concentration covering a broad concentration range, a spatial confinement of the reaction zone is proposed, and application of core-shell nanostructures. The core material, polypyrrole nanospheres, is effectively not permeable for the analyte - ligand complex, thus the reaction is limited to the outer shell layer of the polymer prepared from poly(maleic anhydride-alt-1-octadecene). For herein introduced system a linear dependence of emission intensity vs. logarithm of Zn2+ concentration was obtained within the range from 10-7 to 10-1 M.

  1. Thermal design, rating and second law analysis of shell and tube condensers based on Taguchi optimization for waste heat recovery based thermal desalination plants

    Chandrakanth, Balaji; Venkatesan, G; Prakash Kumar, L. S. S; Jalihal, Purnima; Iniyan, S

    2018-03-01

    The present work discusses the design and selection of a shell and tube condenser used in Low Temperature Thermal Desalination (LTTD). To optimize the key geometrical and process parameters of the condenser with multiple parameters and levels, a design of an experiment approach using Taguchi method was chosen. An orthogonal array (OA) of 25 designs was selected for this study. The condenser was designed, analysed using HTRI software and the heat transfer area with respective tube side pressure drop were computed using the same, as these two objective functions determine the capital and running cost of the condenser. There was a complex trade off between the heat transfer area and pressure drop in the analysis, however second law analysis was worked out for determining the optimal heat transfer area vs pressure drop for condensing the required heat load.

  2. Formulation, evaluation and 3(2) full factorial design-based optimization of ondansetron hydrochloride incorporated taste masked microspheres.

    Kharb, Vandana; Saharan, Vikas Anand; Dev, Kapil; Jadhav, Hemant; Purohit, Suresh

    2014-11-01

    Masking the bitter taste of Ondansetron hydrochloride (ONS) may improve palatability, acceptance and compliance of ONS products. ONS-loaded, taste-masked microspheres were prepared with a polycationic pH-sensitive polymer and 3(2) full factorial design (FFD) was applied to optimize microsphere batches. Solvent evaporation, in acetone--methanol/liquid paraffin system, was used to prepare taste-masked ONS microspheres. The effect of varying drug/polymer (D/P) ratios on microspheres characteristics were studied by 3(2) FFD. Desirability function was used to search the optimum formulation. Microspheres were evaluated by FTIR, XRD and DSC to examine interaction and effect of microencapsulation process. In vitro taste assessment approach based on bitterness threshold and drug release was used to assess bitterness scores. Prepared ONS microspheres were spherical and surface was wrinkled. ONS was molecularly dispersed in microspheres without any incompatibility with EE100. In hydrochloric acid buffer pH 1.2, ONS released completely from microsphere in just 10 min. Contrary to this, ONS release at initial 5 min from taste-masked microspheres was less than the bitterness threshold. Full factorial design and in vitro taste assessment approach, coupled together, was successfully applied to develop and optimize batches of ONS incorporated taste-masked microspheres.

  3. Design Safety Considerations for Water Cooled Small Modular Reactors Incorporating Lessons Learned from the Fukushima Daiichi Accident

    2016-03-01

    The global future deployment of advanced nuclear reactors for electricity generation depends primarily on the ability of nuclear industries, utilities and regulatory authorities to further enhance their reliability and economic competitiveness while satisfying stringent safety requirements. The IAEA has a project to help coordinate Member States efforts in the development and deployment of small and medium sized or small modular reactor (SMR) technology. This project aims simultaneously to facilitate SMR technology developers and potential SMR uses, particularly States embarking on a nuclear power programme, in identifying key enabling technologies and enhancing capacity building by resolving issues relevant to deployment, including nuclear reactor safety. The objective of this publication is to explore common practices for Member States, which will be an essential resource for future development and deployment of SMR technology. The accident at the Fukushima Daiichi nuclear power plant was caused by an unprecedented combination of natural events: a strong earthquake, beyond the design basis, followed by a series of tsunamis of heights exceeding the design basis tsunami considered in the flood analysis for the site. Consequently, all the operating nuclear power plants and advanced reactors under development, including SMRs, have been incorporating lessons learned from the accident to assure and enhance the performance of the engineered safety features in coping with such external events

  4. Nonlinear theory of elastic shells

    Costa Junior, J.A.

    1979-08-01

    Nonlinear theory of elastic shells is developed which incorporates both geometric and physical nonlinearities and which does not make use of the well known Love-Kirchhoff hypothesis. The resulting equations are formulated in tensorial notation and are reduced to the ones of common use when simplifying assumptions encountered in the especific litterature are taken. (Author) [pt

  5. Determination of shell energies. Nuclear deformations and fission barriers

    Koura, Hiroyuki; Tachibana, Takahiro; Uno, Masahiro; Yamada, Masami.

    1996-01-01

    We have been studying a method of determining nuclear shell energies and incorporating them into a mass formula. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies. We adopt three assumptions, from which the shell energy of a deformed nucleus is deduced to be a weighted sum of spherical shell energies of its neighboring nuclei. This shell energy should be called intrinsic shell energy since the average deformation energy also acts as an effective shell energy. The ground-state shell energy of a deformed nucleus and its equilibrium shape can be obtained by minimizing the sum of these two energies with respect to variation of deformation parameters. In addition, we investigate the existence of fission isomers for heavy nuclei with use of the obtained shell energies. (author)

  6. Report on workshop to incorporate basin response in the design of tall buildings in the Puget Sound region, Washington

    Chang, Susan; Frankel, Arthur D.; Weaver, Craig S.

    2014-01-01

    On March 4, 2013, the City of Seattle and the U.S. Geological Survey (USGS) convened a workshop of 25 engineers and seismologists to provide recommendations to the City for the incorporation of amplification of earthquake ground shaking by the Seattle sedimentary basin in the design of tall buildings in Seattle. The workshop was initiated and organized by Susan Chang, a geotechnical engineer with the City of Seattle Department of Planning and Development, along with Art Frankel and Craig Weaver of the USGS. C.B. Crouse of URS Corporation, Seattle made key suggestions for the agenda. The USGS provided travel support for most of the out-of-town participants. The agenda and invited attendees are given in the appendix. The attendees included geotechnical and structural engineers working in Seattle, engineers with experience utilizing basin response factors in other regions, and seismologists who have studied basin response in a variety of locations. In this report, we summarize the technical presentations and the recommendations from the workshop.

  7. Preparation, Characterization, and Optimization of Folic Acid-Chitosan-Methotrexate Core-Shell Nanoparticles by Box-Behnken Design for Tumor-Targeted Drug Delivery.

    Naghibi Beidokhti, Hamid Reza; Ghaffarzadegan, Reza; Mirzakhanlouei, Sasan; Ghazizadeh, Leila; Dorkoosh, Farid Abedin

    2017-01-01

    The objective of this study was to investigate the combined influence of independent variables in the preparation of folic acid-chitosan-methotrexate nanoparticles (FA-Chi-MTX NPs). These NPs were designed and prepared for targeted drug delivery in tumor. The NPs of each batch were prepared by coaxial electrospray atomization method and evaluated for particle size (PS) and particle size distribution (PSD). The independent variables were selected to be concentration of FA-chitosan, ratio of shell solution flow rate to core solution flow rate, and applied voltage. The process design of experiments (DOE) was obtained with three factors in three levels by Design expert software. Box-Behnken design was used to select 15 batches of experiments randomly. The chemical structure of FA-chitosan was examined by FTIR. The NPs of each batch were collected separately, and morphologies of NPs were investigated by field emission scanning electron microscope (FE-SEM). The captured pictures of all batches were analyzed by ImageJ software. Mean PS and PSD were calculated for each batch. Polynomial equation was produced for each response. The FE-SEM results showed the mean diameter of the core-shell NPs was around 304 nm, and nearly 30% of the produced NPs are in the desirable range. Optimum formulations were selected. The validation of DOE optimization results showed errors around 2.5 and 2.3% for PS and PSD, respectively. Moreover, the feasibility of using prepared NPs to target tumor extracellular pH was shown, as drug release was greater in the pH of endosome (acidic medium). Finally, our results proved that FA-Chi-MTX NPs were active against the human epithelial cervical cancer (HeLa) cells.

  8. Preliminary recommendations on the design of the characterization program for the Hanford Site single-shell tanks: A system analysis

    Buck, J.W.; Peffers, M.S.; Hwang, S.T.

    1991-11-01

    The work described in this volume was conducted by Pacific Northwest Laboratory to provide preliminary recommendations on data quality objectives (DQOs) to support the Waste Characterization Plan (WCP) and closure decisions for the Hanford Site single-shell tanks (SSTs). The WCP describes the first of a two-phase characterization program that will obtain information to assess and implement disposal options for SSTs. This work was performed for the Westinghouse Hanford Company (WHC), the current operating contractor on the Hanford Site. The preliminary DQOs contained in this volume deal with the analysis of SST wastes in support of the WCP and final closure decisions. These DQOs include information on significant contributors and detection limit goals (DLGs) for SST analytes based on public health risk

  9. Design of epoxy-functionalized Fe3O4@MCM-41 core-shell nanoparticles for enzyme immobilization.

    Ulu, Ahmet; Ozcan, Imren; Koytepe, Suleyman; Ates, Burhan

    2018-05-01

    The scope of our research was to prepare the organosilane-modified Fe 3 O 4 @MCM-41 core-shell magnetic nanoparticles, used for L-ASNase immobilization and explored screening of immobilization conditions such as pH, temperature, thermal stability, kinetic parameters, reusability and storage stability. In this content, Fe 3 O 4 core-shell magnetic nanoparticles were prepared via co-precipitation method and coated with MCM-41. Then, Fe 3 O 4 @MCM-41 magnetic nanoparticles were functionalized by (3-glycidyloxypropyl) trimethoxysilane (GPTMS) as an organosilane compound. Subsequently, L-ASNase was covalently immobilized on epoxy-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles. The immobilized L-ASNase had greater activity at high pH and temperature values. It also maintained >92% of the initial activity after incubation at 55 °C for 3 h. Regarding kinetic values, immobilized L-ASNase showed a higher Vmax and lower Km compared to native L-ASNase. In addition, it displayed excellent reusability for 12 successive cycles. After 30 days of storage at 4 °C and 25 °C, immobilized L-ASNase retained 54% and 26% of its initial activities while native L-ASNase lost about 68% and 84% of its initial activity, respectively. As a result, the immobilization of L-ASNase onto magnetic nanoparticles may provide an advantage in terms of removal of L-ASNase from reaction media. Copyright © 2018. Published by Elsevier B.V.

  10. Study the Effect of the Flow on the Performance of a shell and Tube Type Heat Exchanger using Experimental Design Technique

    Zuher Hassan Abdullah

    2016-10-01

    Full Text Available In the current research an experimental study was done to show the effect of pulse flow on the effectiveness of shell and tube type heat exchanger. the study was in the case of steady and pulse flows with a changing mass flow rate of hot water flowing inside the pipes of the heat exchanger for the range between (0.0273-0.0819 kg / s  at fix mass flow rate of cold water that flows through the shell and on the outer surface of the pipes when (0.0416 kg / s, to obtain pulsing a used was solenoid valve. The research aims to measure the percentage effect of independent factors which were presenting the mass flow rate of hot water, flow type and the surrounding environment conditions of the experimental side upon shell and tube type heat exchanger performance using experimental design technique at the significant level (0.05.The results derived from the experimental tests showed that pulse flow leads to increase internal heat transfer coefficient (hi comparing with its value in the steady flow and the highest increase was by (9.75% at a mass flow rate of hot water (0.0416 kg / s and increases the overall heat transfer coefficient (U, where the highest percentage was by 4.68% at a mass flow rate of hot water (0.0416kg/s. The results also showed increasing both the number of transmitted units (NTU and the effectiveness of the shell and tube type heat exchanger ( in the case of pulse flow of its value in the steady flow and the highest percentage of increase occurring was (4.75% and (1.85%, respectively, and at the mass flow rate of hot water (0.0416 kg / s. Percentage effect of mass flow rate of hot water was (97%, 97.42%, 95.5%, 99.48% and the percentage effect of each flow type and the errors were (2.8%, 2.25%, 2.44%, 0.4% and (0. 2, 0.33%, 2.06%, 0.12 respectively

  11. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering.

    Luo, Yongxiang; Lode, Anja; Wu, Chengtie; Chang, Jiang; Gelinsky, Michael

    2015-04-01

    Composite scaffolds, especially polymer/hydroxyapatite (HAP) composite scaffolds with predesigned structures, are promising materials for bone tissue engineering. Various methods including direct mixing of HAP powder with polymers or incubating polymer scaffolds in simulated body fluid for preparing polymer/HAP composite scaffolds are either uncontrolled or require long times of incubation. In this work, alginate/nano-HAP composite scaffolds with designed pore parameters and core/shell structures were fabricated using 3D plotting technique and in situ mineralization under mild conditions (at room temperature and without the use of any organic solvents). Light microscopy, scanning electron microscopy, microcomputer tomography, X-ray diffraction, and Fourier transform infrared spectroscopy were applied to characterize the fabricated scaffolds. Mechanical properties and protein delivery of the scaffolds were evaluated, as well as the cell response to the scaffolds by culturing human bone-marrow-derived mesenchymal stem cells (hBMSC). The obtained data indicate that this method is suitable to fabricate alginate/nano-HAP composite scaffolds with a layer of nano-HAP, coating the surface of the alginate strands homogeneously and completely. The surface mineralization enhanced the mechanical properties and improved the cell attachment and spreading, as well as supported sustaining protein release, compared to pure alginate scaffolds without nano-HAP shell layer. The results demonstrated that the method provides an interesting option for bone tissue engineering application.

  12. MicroShell Minimalist Shell for Xilinx Microprocessors

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  13. Vibration of liquid-filled thin shells

    Kalnins, A.

    1979-01-01

    This paper describes the analysis of free and forced vibration of a thin, axisymmetric shell, which contains some liquid. The axis of symmetry is vertical. Only such vibration is considered which can be produced by a horizontal movement of the base of shell. The objective of this paper is to examine the response of the coupled shell-liquid system for a frequency range lying between zero and the lowest natural sloshing frequency of the liquid. The mass of the liquid is modeled by a stationary and one or more sloshing masses. It is shown how the stationary mass can be incorporated in the vibration analysis of the shell and how to natural frequency of the coupled shell-liquid system can be obtained from a simple formula, if the lowest natural frequency of the shell, plus the stationary mass of the liquid, can be determined. A numerical example is given. (orig.)

  14. Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application.

    Prabhakar, Neeraj; Näreoja, Tuomas; von Haartman, Eva; Karaman, Didem Şen; Jiang, Hua; Koho, Sami; Dolenko, Tatiana A; Hänninen, Pekka E; Vlasov, Denis I; Ralchenko, Victor G; Hosomi, Satoru; Vlasov, Igor I; Sahlgren, Cecilia; Rosenholm, Jessica M

    2013-05-07

    Recent advances within materials science and its interdisciplinary applications in biomedicine have emphasized the potential of using a single multifunctional composite material for concurrent drug delivery and biomedical imaging. Here we present a novel composite material consisting of a photoluminescent nanodiamond (ND) core with a porous silica (SiO2) shell. This novel multifunctional probe serves as an alternative nanomaterial to address the existing problems with delivery and subsequent tracing of the particles. Whereas the unique optical properties of ND allows for long-term live cell imaging and tracking of cellular processes, mesoporous silica nanoparticles (MSNs) have proven to be efficient drug carriers. The advantages of both ND and MSNs were hereby integrated in the new composite material, ND@MSN. The optical properties provided by the ND core rendered the nanocomposite suitable for microscopy imaging in fluorescence and reflectance mode, as well as super-resolution microscopy as a STED label; whereas the porous silica coating provided efficient intracellular delivery capacity, especially in surface-functionalized form. This study serves as a demonstration how this novel nanomaterial can be exploited for both bioimaging and drug delivery for future theranostic applications.

  15. Double containment shell for nuclear power plants

    Sykora, D.

    1977-01-01

    A double containment shell is proposed for nuclear power plants, especially those equipped with pressurized water reactors. The shell offers increased environmental protection from primary circuit accidents. The inner shell is built of steel or concrete while the outer shell is always built of concrete. The space between the two shells is filled with water and is provided with several manholes and with stiffeners designed for compensation for load due to the water hydrostatic pressure. Water serves the airtight separation of the containment shell inside from the environment and the absorption of heat released in a primary circuit accident. In case the inner shell is made of concrete, it is provided with heat-removal tubes in-built in its walls ensuring rapid heat transfer from the inside of the containment to the water in the interwall space. (Z.M.)

  16. Systematic molecular-level design of binders incorporating Meldrum's acid for silicon anodes in lithium rechargeable batteries.

    Kwon, Tae-woo; Jeong, You Kyeong; Lee, Inhwa; Kim, Taek-Soo; Choi, Jang Wook; Coskun, Ali

    2014-12-17

    Covalent or Noncovalent? Systematic investigation of polymeric binders incorporating Meldrum's acid reveals most critical binder properties for silicon -anodes in lithium ion batteries, that is self-healing effect facilitated by a series of noncovalent interactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tuning upconversion through energy migration in core-shell nanoparticles

    Wang, Feng; Deng, Renren; Wang, Juan; Wang, Qingxiao; Han, Yu; Zhu, Haomiao; Chen, Xueyuan; Liu, Xiaogang

    2011-01-01

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  18. Tuning upconversion through energy migration in core-shell nanoparticles

    Wang, Feng

    2011-10-23

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  19. Free vibration analysis of delaminated composite shells using different shell theories

    Nanda, Namita; Sahu, S.K.

    2012-01-01

    Free vibration response of laminated composite shells with delamination is presented using the finite element method based on first order shear deformation theory. The shell theory used is the extension of dynamic, shear deformable theory according to the Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. An eight-noded C 0 continuity, isoparametric quadrilateral element with five degrees of freedom per node is used in the formulation. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. The natural frequencies of the delaminated cylindrical (CYL), spherical (SPH) and hyperbolic paraboloid (HYP) shells are determined by using the above mentioned shell theories, namely Sanders', Love's, and Donnell's. The validity of the present approach is established by comparing the authors' results with those available in the literature. Additional studies on free vibration response of CYL, SPH and HYP shells are conducted to assess the effects of delamination size and number of layers considering all three shell theories. It is shown that shell theories according to Sanders and Love always predict practically identical frequencies. Donnell's theory gives reliable results only for shallow shells. Moreover, the natural frequency is found to be very sensitive to delamination size and number of layers in the shell.

  20. Fixed Full Arches Supported by Tapered Implants with Knife-Edge Thread Design and Nanostructured, Calcium-Incorporated Surface: A Short-Term Prospective Clinical Study

    Soheil Bechara

    2017-01-01

    Full Text Available Purpose. To evaluate implant survival, peri-implant bone loss, and complications affecting fixed full-arch (FFA restorations supported by implants with a knife-edge thread design and nanostructured, calcium-incorporated surface. Methods. Between January 2013 and December 2015, all patients referred for implant-supported FFA restorations were considered for enrollment in this study. All patients received implants with a knife-edge thread design and nanostructured calcium-incorporated surface (Anyridge®, Megagen, South Korea were restored with FFA restorations and enrolled in a recall program. The final outcomes were implant survival, peri-implant bone loss, biologic/prosthetic complications, and “complication-free” survival of restorations. Results. Twenty-four patients were selected. Overall, 215 implants were inserted (130 maxilla, 85 mandible, 144 in extraction sockets and 71 in healed ridges. Thirty-six FFAs were delivered (21 maxilla, 15 mandible: 27 were immediately loaded and 9 were conventionally loaded. The follow-up ranged from 1 to 3 years. Two fixtures failed, yielding an implant survival rate of 95.9% (patient-based. A few complications were registered, for a “complication-free” survival of restorations of 88.9%. Conclusions. FFA restorations supported by implants with a knife-edge thread design and nanostructured, calcium-incorporated surface are successful in the short term, with high survival and low complication rates; long-term studies are needed to confirm these outcomes.

  1. Self-Assembly of Fluorescent Hybrid Core-Shell Nanoparticles and Their Application.

    Wang, Chun; Tang, Fu; Wang, Xiaoyu; Li, Lidong

    2015-06-24

    In this work, a fluorescent hybrid core-shell nanoparticle was prepared by coating a functional polymer shell onto silver nanoparticles via a facile one-pot method. The biomolecule poly-L-lysine (PLL) was chosen as the polymer shell and assembled onto the silver core via the amine-reactive cross-linker, 3,3'-dithiobis(sulfosuccinimidylpropionate). The fluorescent anticancer drug, doxorubicin, was incorporated into the PLL shell through the same linkage. As the cross-linker possesses a thiol-cleavable disulfide bond, disassembly of the PLL shell was observed in the presence of glutathione, leading to controllable doxorubicin release. The silver core there provided an easily modified surface to facilitate the shell coating and ensures the efficient separation of as-prepared nanoparticles from their reaction mixture through centrifugation. Cell assays show that the prepared hybrid fluorescent nanoparticles can internalize into cells possessing excellent biocompatibility prior to the release of doxorubicin, terminating cancer cells efficiently as the doxorubicin is released at the intracellular glutathione level. Such properties are important for designing smart containers for target drug delivery and cellular imaging.

  2. INCORPORATION OF HUMAN FACTORS ENGINEERING ANALYSES AND TOOLS INTO THE DESIGN PROCESS FOR DIGITAL CONTROL ROOM UPGRADES

    O'HARA, J.M.; BROWN, W.

    2004-01-01

    Many nuclear power plants are modernizing with digital instrumentation and control systems and computer-based human-system interfaces (HSIs). The purpose of this paper is to summarize the human factors engineering (HFE) activities that can help to ensure that the design meets personnel needs. HFE activities should be integrated into the design process as a regular part of the engineering effort of a plant modification. The HFE activities will help ensure that human performance issues are addressed, that new technology supports task performance, and that the HSIs are designed in a manner that is compatible with human physiological, cognitive and social characteristics

  3. Au@TiO2 yolk-shell nanostructures for enhanced performance in both photoelectric and photocatalytic solar conversion

    He, Qinrong; Sun, Hang; Shang, Yinxing; Tang, Yanan; She, Ping; Zeng, Shan; Xu, Kongliang; Lu, Guolong; Liang, Song; Yin, Shengyan; Liu, Zhenning

    2018-05-01

    Solar energy conversion is an important field gaining increasing interest. Herein, bio-inspired Au@TiO2 yolk-shell nanoparticles (NPs) have been prepared via a facial one-pot hydrothermal approach. The Au@TiO2 yolk-shell NPs can self-assemble into 3D-structure to form photoelectrode for photoelectric conversion. The obtained photoelectrode demonstrates a swift and stable photocurrent of 3.5 μA/cm2, which is 4.2 and 1.6 times higher than those of the photocurrents generated by the counterparts of commercial TiO2 and Au@TiO2 core-shell NPs, respectively. Moreover, compared to the commercial TiO2 and Au@TiO2 core-shell NPs, the Au@TiO2 yolk-shell NPs also exhibit superior photocatalytic activity, delivering a H2 evolution rate of 4.92 mmol/g h. The performance improvement observed for the Au@TiO2 yolk-shell NPs is likely contributed by two synergistic factors, i.e. the incorporation of AuNPs and the unique hollow structure, which benefit the activity by simultaneously enhancing light utilization, charge separation and reaction site accessibility. The rational design and fabrication of Au@TiO2 yolk-shell NPs hold great promise for future application in efficient solar energy conversion.

  4. Design and deployment strategies for small and medium sized reactors (SMRs) to overcome loss of economies of scale and incorporate increased proliferation resistance

    Kuznetsov, V.

    2007-01-01

    The designers of innovative small and medium sized reactors pursue new design and deployment strategies making use of certain advantages provided by smaller reactor size and capacity to achieve reduced design complexity and simplified operation and maintenance requirements, and to provide for incremental capacity increase through multi-module plant clustering. Competitiveness of SMRs (Small and Medium size Reactor) depends on the incorporated strategies to overcome loss of economies of scale but equally it depends on finding appropriate market niches for such reactors. For many less developed countries, these are the features of enhanced proliferation resistance and increased robustness of barriers for sabotage protection that may ensure the progress of nuclear power. For such countries, small reactors without on-site refuelling, designed for infrequent replacement of well-contained fuel cassette(s) in a manner that impedes clandestine diversion of nuclear fuel material, may provide a solution. Based on the outputs of recent IAEA activities for innovative SMRs, the paper provides a summary of the state-of-the-art in approaches to improve SMR competitiveness and incorporate enhanced proliferation resistance and energy security. (author)

  5. A conceptual composite blanket design for the Tokamak type of thermonuclear reactor incorporating thermoelectric pumping of liquid lithium

    Dutta Gupta, P.B.

    1981-01-01

    The conceptual liquid lithium blanket design for the tokamak type of thermonuclear reactor put forward is a modification of the initial simple but novel design concept enunciated earlier that exploits the availability of suitably oriented magnetic fields and temperature gradients within the blanket to pump the liquid as has been shown feasible by laboratory model experiments. The modular construction of the blanket cells is retained but the earlier simple back to back double spiralling channel module is replaced by a composite unit of three radially nested layer-structures to optimise heat and tritium extraction from the blanket. The layer-structure at the first wall generates liquid lithium circulation by thermoelectric magnetohydrodynamic forces and the segregated double spiralling channels serve as inlet-outlet driving devices. The outermost layer-structure is cooled by helium. Liquid lithium in the intermediate layer-structure is pumped at a very slow rate. The choice of the relative dimensional proportions of the three layer-structure and the channel cross-section, material property and the spiralling contour is of critical importance for the design. This paper presents the design data for a conceptual design of such a blanket with a 5000 MW (th) rating. (author)

  6. An EM Simulation-Based Design Flow for Custom-Built MR Coils Incorporating Signal and Noise.

    Horneff, Andreas; Eder, Michael; Hell, Erich; Ulrici, Johannes; Felder, Jorg; Rasche, Volker; Anders, Jens

    2018-02-01

    Developing custom-built MR coils is a cumbersome task, in which an a priori prediction of the coils' SNR performance, their sensitivity pattern, and their depth of penetration helps to greatly speed up the design process by reducing the required hardware manufacturing iterations. The simulation-based design flow presented in this paper takes the entire MR imaging process into account. That is, it includes all geometric and material properties of the coil and the phantom, the thermal noise as well as the target MR sequences. The proposed simulation-driven design flow is validated using a manufactured prototype coil, whose performance was optimized regarding its SNR performance, based on the presented design flow, by comparing the coil's measured performance against the simulated results. In these experiments, the mean and the standard deviation of the relative error between the simulated and measured coil sensitivity pattern were found to be and . Moreover, the peak deviation between the simulated and measured voxel SNR was found to be less than 4%, indicating that simulations are in good accordance with the measured results, validating the proposed software-based design approach.

  7. Incorporation of expert variability into breast cancer treatment recommendation in designing clinical protocol guided fuzzy rule system models.

    Garibaldi, Jonathan M; Zhou, Shang-Ming; Wang, Xiao-Ying; John, Robert I; Ellis, Ian O

    2012-06-01

    It has been often demonstrated that clinicians exhibit both inter-expert and intra-expert variability when making difficult decisions. In contrast, the vast majority of computerized models that aim to provide automated support for such decisions do not explicitly recognize or replicate this variability. Furthermore, the perfect consistency of computerized models is often presented as a de facto benefit. In this paper, we describe a novel approach to incorporate variability within a fuzzy inference system using non-stationary fuzzy sets in order to replicate human variability. We apply our approach to a decision problem concerning the recommendation of post-operative breast cancer treatment; specifically, whether or not to administer chemotherapy based on assessment of five clinical variables: NPI (the Nottingham Prognostic Index), estrogen receptor status, vascular invasion, age and lymph node status. In doing so, we explore whether such explicit modeling of variability provides any performance advantage over a more conventional fuzzy approach, when tested on a set of 1310 unselected cases collected over a fourteen year period at the Nottingham University Hospitals NHS Trust, UK. The experimental results show that the standard fuzzy inference system (that does not model variability) achieves overall agreement to clinical practice around 84.6% (95% CI: 84.1-84.9%), while the non-stationary fuzzy model can significantly increase performance to around 88.1% (95% CI: 88.0-88.2%), psystems in any application domain. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Designing and Incorporating Green Chemistry Courses at a Liberal Arts College to Increase Students' Awareness and Interdisciplinary Collaborative Work

    Manchanayakage, Renuka

    2013-01-01

    Two green chemistry courses have been introduced into the liberal arts curriculum at Susquehanna University. Green chemistry was integrated into an existing course, Chemical Concepts, and offered as Green Chemical Concepts for nonscience majors. This course is designed to instill an appreciation for green chemistry in a large and diverse group of…

  9. Design implications of incorporating employee profiles and workplace activity levels in travel demand management led parking demand assessments

    Letebele, MO

    2008-07-01

    Full Text Available spaces when the demand for parking is ever increasing. A more fundamental question, however, is how to better understand travel behaviour to enable the design of sustainable transport services, of which parking form part, in line with policy instruments...

  10. Tube in shell heat exchangers

    Hayden, O.; Willby, C.R.; Sheward, G.E.; Ormrod, D.T.; Firth, G.F.

    1980-01-01

    An improved tube-in-shell heat exchanger to be used between liquid metal and water is described for use in the liquid metal coolant system of fast breeder reactors. It is stated that this design is less prone to failures which could result in sodium water reactions than previous exchangers. (UK)

  11. Soft template synthesis of yolk/silica shell particles.

    Wu, Xue-Jun; Xu, Dongsheng

    2010-04-06

    Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed.

  12. Multifunctional landscapes: Site characterization and field-scale design to incorporate biomass production into an agricultural system

    Ssegane, Herbert; Negri, M. Cristina; Quinn, John; Urgun-Demirtas, Meltem

    2015-01-01

    Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. We developed an approach to design such landscapes at a field scale to minimize concerns of land use change, water quality, and greenhouse gas emissions associated with production of food and bioenergy. This study leverages concepts of nutrient recovery and phytoremediation to place bioenergy crops on the landscape to recover nutrients released to watersheds by commodity crops. Crop placement is determined by evaluating spatial variability of: 1) soils, 2) surface flow pathways, 3) shallow groundwater flow gradients, 4) subsurface nitrate concentrations, and 5) primary crop yield. A 0.8 ha bioenergy buffer was designed within a 6.5 ha field to intercept concentrated surface flow, capture and use nitrate leachate, and minimize use of productive areas. Denitrification-Decomposition (DNDC) simulations show that on average, a switchgrass (Panicum Virgatum L.) or willow (Salix spp.) buffer within this catchment according to this design could reduce annual leached NO 3 by 61 or 59% and N 2 O emission by 5.5 or 10.8%, respectively, produce 8.7 or 9.7 Mg ha −1 of biomass respectively, and displace 6.7 Mg ha −1 of corn (Zea mays L.) grain. Therefore, placement of bioenergy crops has the potential to increase environmental sustainability when the pairing of location and crop type result in minimal disruption of current food production systems and provides additional environmental benefits. - Highlights: • Design of a multifunctional landscape by integrating cellulosic biofuel production into an existing agricultural system. • The design does not adversely offset current grain production for bioenergy crops. • Maps of concentrated flow paths, subsurface flow direction, NO 3 –N hotspots, and intra-field corn yield variability.

  13. Foam shell project: Progress report

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-01-01

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 μm thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D 2 or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE

  14. GEBCO-NF Alumni Team's entry for Shell Ocean Discovery XPRIZE. An innovative seafloor mapping system of an AUV integrated with the newly designed USV SEA-KIT.

    Wigley, R. A.; Anderson, R.; Bazhenova, E.; Falconer, R. K. H.; Kearns, T.; Martin, T.; Minami, H.; Roperez, J.; Rosedee, A.; Ryzhov, I.; Sade, H.; Seeboruth, S.; Simpson, B.; Sumiyoshi, M.; Tinmouth, N.; Zarayskaya, Y.; Zwolak, K.

    2017-12-01

    The international team of Nippon Foundation/GEBCO Alumni was formed to compete in the Shell Ocean Discovery XPRIZE competition. The aim of the Team is to build an innovative seafloor mapping system, not only to successfully compete in the XPRIZE challenge, but also to make a step towards autonomously mapping the complex global seafloor at resolutions not achievable by standard surface mapping systems. This new technology is linked to goals of the recently announced Nippon Foundation-GEBCO Seabed 2030 Project, aiming in highest possible resolution bathymetric mapping of global World Ocean floor by 2030. The mapping system is composed of three main elements: an Unmanned Surface Vessel (USV), an Autonomous Underwater Vehicle (AUV) and an on-shore control station. A newly designed, USV, called SEA-KIT, was be built to interact with any AUV, acting as remote surface access to the deep ocean. The major function of the SEA-KIT in the system design is 1) the potential transportation of a commercially available AUV to and from the launch site to the survey site and 2) the deployment and recovery of the AUV. In further development stages, options for AUV charging and data transfer are considered. Additionally, the SEA-KIT will offer a positioning solution during AUV operations, utilizing an Ultra Short Base Line (USBL) acoustic system. The data acquisition platform (AUV) is equipped with a high-end technology interferometric sonar with synthetic aperture options, providing the possibility of collecting bathymetric data co-registered with seafloor object imagery. An automated data processing workflow is highly desirable due to the large amount of data collected during each mission. The processing workflow is being designed to be as autonomous as possible and an algorithm for automated data processing onboard are being considered to reduce the time of data processing and make a final products available as soon as possible after the completion of data collection. No human

  15. Multifunctional landscapes: Site characterization and field-scale design to incorporate biomass production into an agricultural system

    Ssegane, Herbert; Negri, M. Cristina; Quinn, John; Urgun-Demirtas, Meltem

    2015-09-01

    Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. We developed an approach to design such landscapes at a field scale to minimize concerns of land use change, water quality, and greenhouse gas emissions associated with production of food and bioenergy. This study leverages concepts of nutrient recovery and phytoremediation to place bioenergy crops on the landscape to recover nutrients released to watersheds by commodity crops. Crop placement is determined by evaluating spatial variability of: 1) soils, 2) surface flow pathways, 3) shallow groundwater flow gradients, 4) subsurface nitrate concentrations, and 5) primary crop yield. A 0.8 ha bioenergy buffer was designed within a 6.5 ha field to intercept concentrated surface flow, capture and use nitrate leachate, and minimize use of productive areas. Denitrification-Decomposition (DNDC) simulations show that on average, a switchgrass (Panicum Virgatum L.) or willow (Salix spp.) buffer within this catchment according to this design could reduce annual leached NO3 by 61 or 59% and N2O emission by 5.5 or 10.8%, respectively, produce 8.7 or 9.7 Mg ha-1 of biomass respectively, and displace 6.7 Mg ha-1 of corn (Zea mays L.) grain. Therefore, placement of bioenergy crops has the potential to increase environmental sustainability when the pairing of location and crop type result in minimal disruption of current food production systems and provides additional environmental benefits.

  16. Design of steel energy-absorbing restrainers and their incorporation into nuclear power plants for enhanced safety. Progress report

    1980-03-01

    This program for the development of steel energy-absorbing restrainers originated as a five year multi-institutional, interdisciplinary program. The resources of the University of California, Berkeley (UCB), the Earthquake Engineering Research Center, Richmond (EERC), Massachusetts Institute of Technology (MIT), and Battelle Pacific Northwestern Laboratories (BPNL) are utilized as well as advisors from industry, the utilities and the US Nuclear Regulatory Commission. The present progress report involves the areas of experimental testing on the shaking table at the EERC, restrainer device design and testing, structural analyses and materials testing

  17. How do we incorporate patient views into the design of healthcare services for older people: a discussion paper.

    Brocklehurst, Paul R; McKenna, Gerald; Schimmel, Martin; Kossioni, Anastassia; Jerković-Ćosić, Katarina; Hayes, Martina; da Mata, Cristiane; Müller, Frauke

    2018-04-06

    Across the European Union costs for the treatment of oral disease is expected to rise to €93 Billion by 2020 and be higher than those for stroke and dementia combined. A significant proportion of these costs will relate to the provision of care for older people. Dental caries severity and experience is now a major public health issue in older people and periodontal disease disproportionately affects older adults. Poor oral health impacts on older people's quality of life, their self-esteem, general health and diet. Oral health care service provision for older people is often unavailable or poor, as is the standard of knowledge amongst formal and informal carers. The aim of this discussion paper is to explore some of the approaches that could be taken to improve the level of co-production in the design of healthcare services for older people. People's emotional and practical response to challenges in health and well-being and the responsiveness of systems to their needs is crucial to improve the quality of service provision. This is a particularly important aspect of care for older people as felt, expressed and normative needs may be fundamentally different and vary as they become increasingly dependent. Co-production shifts the design process away from the traditional 'top-down' medical model, where needs assessments are undertaken by someone external to a community and strategies are devised that encourage these communities to become passive recipients of services. Instead, an inductive paradigm of partnership working and shared leadership is actively encouraged to set priorities and ultimately helps improve the translational gap between research, health policy and health-service provision. The four methodological approaches discussed in this paper (Priority Setting Partnerships, Discrete Choice Experiments, Core Outcome Sets and Experience Based Co-Design) represent an approach that seeks to better engage with older people and ensure an inductive, co

  18. Developing an integrated design model incorporating technology philosophy for the design of healthcare environments : a case analysis of facilities for psychogeriatric and psychiatric care in The Netherlands

    van Hoof, J.; Verkerk, M.J.

    The design of healthcare facilities is a complex and dynamic process, which involves many stakeholders each with their own set of needs. In the context of healthcare facilities, this complexity exists at the intersection of technology and society because the very design of these buildings forces us

  19. Design, Synthesis and Biological Evaluation of Novel Bromophenol Derivatives Incorporating Indolin-2-One Moiety as Potential Anticancer Agents

    Li-Jun Wang

    2015-02-01

    Full Text Available A series of bromophenol derivatives containing indolin-2-one moiety were designed and evaluated that for their anticancer activities against A549, Bel7402, HepG2, HeLa and HCT116 cancer cell lines using MTT assay in vitro. Among them, seven compounds (4g–4i, 5h, 6d, 7a, 7b showed potent activity against the tested five human cancer cell lines. Wound-healing assay demonstrated that compound 4g can be used as a potent compound for inactivating invasion and metastasis by inhibiting the migration of cancer cells. The structure–activity relationships (SARs of bromophenol derivatives had been discussed, which were useful for exploring and developing bromophenol derivatives as novel anticancer drugs.

  20. Steric and thermodynamic limits of design for the incorporation of large unnatural amino acids in aminoacyl-tRNA synthetase enzymes.

    Armen, Roger S; Schiller, Stefan M; Brooks, Charles L

    2010-06-01

    Orthogonal aminoacyl-tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM-based molecular docking and free energy calculations were used to evaluate rational design of specific protein-ligand interactions for aminoacyl-tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p-benzoyl-L-phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man-alpha-O-Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable.

  1. Designing of an artificial light energy converter in the form of short-chain dyad when combined with core-shell gold/silver nanocomposites.

    Dutta Pal, Gopa; Paul, Somnath; Bardhan, Munmun; De, Asish; Ganguly, Tapan

    2017-06-05

    UV-vis absorption, steady state and time resolved fluorescence and absorption spectroscopic investigations demonstrate that the short chain dyad MNTMA when combined with gold-silver core-shell (Au@Ag) nanocomposite , forms elongated conformers in the excited state whereas for the dyad - Ag (spherical) system the majority of dyads remains in a folded conformation. In the dyad-core-shell nanocomposite system, energy wasting charge recombination rate slows down primarily due to elongated conformation and thus it may be anticipated that this hybrid nanocomposite system may serve as a better light energy conversion device. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Incorporating location, routing, and inventory decisions in a bi-objective supply chain design problem with risk-pooling

    Tavakkoli-Moghaddam, Reza; Forouzanfar, Fateme; Ebrahimnejad, Sadoullah

    2013-07-01

    This paper considers a single-sourcing network design problem for a three-level supply chain. For the first time, a novel mathematical model is presented considering risk-pooling, the inventory existence at distribution centers (DCs) under demand uncertainty, the existence of several alternatives to transport the product between facilities, and routing of vehicles from distribution centers to customer in a stochastic supply chain system, simultaneously. This problem is formulated as a bi-objective stochastic mixed-integer nonlinear programming model. The aim of this model is to determine the number of located distribution centers, their locations, and capacity levels, and allocating customers to distribution centers and distribution centers to suppliers. It also determines the inventory control decisions on the amount of ordered products and the amount of safety stocks at each opened DC, selecting a type of vehicle for transportation. Moreover, it determines routing decisions, such as determination of vehicles' routes starting from an opened distribution center to serve its allocated customers and returning to that distribution center. All are done in a way that the total system cost and the total transportation time are minimized. The Lingo software is used to solve the presented model. The computational results are illustrated in this paper.

  3. Analysis of thermal-plastic response of shells of revolution by numerical integration

    Leonard, J.W.

    1975-01-01

    A numerical method based instead on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motions are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behavior, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. The elasto-plastic constitutive relations adopted are in accordance with currently recommended constitutive equations for inelastic design analysis of FFTF Components. The Von Mises yield criteria and associated flow rule is used and the kinematic hardening law is followed. Examples are considered in which stainless steels common to LMFBR application are used

  4. Structural shell analysis understanding and application

    Blaauwendraad, Johan

    2014-01-01

    The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...

  5. Design of a core–shell Pt–SiO2 catalyst in a reverse microemulsion system: Distinctive kinetics on CO oxidation at low temperature

    Al Mana, Noor; Phivilay, Somphonh Peter; Laveille, Paco; Hedhili, Mohamed N.; Fornasiero, Paolo; Takanabe, Kazuhiro; Basset, Jean-Marie

    2016-01-01

    The mechanism of formation of Pt@SiO2 as a model of core–shell nanoparticles via water-in-oil reverse microemulsions was studied in detail. By controlling the time of growth of Pt precursors, Pt(OH)x, after hydrolysis in NH3 aq. before adding SiO2

  6. Interior-exterior connection in architectural design based on the incorporation of spatial in between layers. Study of four architectural projects

    Krstić Hristina

    2016-01-01

    Full Text Available Different spatial layers in the architectural structure of a building can create particular spatial relations and an architectural space that cannot be defined as an inner space or as an outer space, but one which has the characteristics of both. This space, which can be called “in between space”, appears as the result of a specific design concept in which the architectural composition is created by gradual insertion of volumes one inside another, like a box that is placed inside a box, inside of which is placed another smaller box and so on. The incorporation of various layers in the spatial arrangement of volumes in certain architectural compositions can be conceived as a possible approach in connecting the interior and exterior. This kind of conceptual design distinguishes itself from the common approach by its specific architecture that offers richness, variety, complexity and unique perception of space, thereby increasing its value. The paper investigates this particular concept through the analysis of four residential houses (Villa Le Lac by Le Corbusier, Solar House by Oswald Mathias Ungers, House N by Sou Fujimoto and Guerrero House by Alberto Campo Baeza, and it strives to find out the concept’s use and advantages, all with the aim of opening up new possibilities in the design of buildings and enriching the design process.

  7. Strength Calculation of Locally Loaded Orthotropic Shells

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available The article studies laminated orthotropic cylindrical, conic, spherical, and toroidal shells, which are often locally loaded in the aircraft designs over small areas of their surfaces.The aim of this work is to determine stress concentration in shells versus structure of orthotropic composite material, shell form and parameters, forms of loading areas, which borders do not coincide with lines of main curvatures of shells. For this purpose, an analytical computing algorithm to estimate strength of shells in terms of stress is developed. It enables us to have solution results of the boundary value problem with a controlled error. To solve differential equations an analytical method is used. An algorithm of the boundary value problem solution is multiplicative.The main results of researches are graphs of stress concentration in the orthotropic shells versus their parameters and areas of loading lineated by circles and ellipses.Among the other works aimed at determination of stress concentration in shells, the place of this one is defined by the analytical solution of applied problems for strength estimation in terms of shell stresses of classical forms.The developed effective analytical algorithm to solve the boundary value problem and received results are useful in research and development.

  8. Incorporating prosocial behavior to promote physical activity in older adults: rationale and design of the Program for Active Aging and Community Engagement (PACE).

    Foy, Capri G; Vitolins, Mara Z; Case, L Douglas; Harris, Susan J; Massa-Fanale, Carol; Hopley, Richard J; Gardner, Leah; Rudiger, Nicole; Yamamoto, Kathryn; Swain, Brittany; Goff, David C; Danhauer, Suzanne C; Booth, Deborah; Gaspari, Jamie

    2013-09-01

    Despite the benefits of regular physical activity among older adults, physical activity rates are low in this population. The Program for Active Aging and Community Engagement (PACE) is an ongoing randomized controlled trial designed to compare the effects of two interventions on physical activity at 12 months among older adults. A total of 300 men and women aged 55 years or older will be randomized into either a healthy aging (HA) control intervention (n = 150), which is largely based upon educational sessions, or a prosocial behavior physical activity (PBPA) intervention (n = 150), which incorporates structured physical activity sessions, cognitive-behavioral counseling, and opportunities to earn food for donation to a regional food bank based on weekly physical activity and volunteering. The PBPA intervention is delivered at a local YMCA, and a regional grocery store chain donates the food to the food bank. Data will be collected at baseline, 3, 6, and 12 months. The primary outcome is physical activity as assessed by the Community Healthy Activities Model Program for Seniors (CHAMPS) Questionnaire at 12 months. Secondary outcomes include physical function and health-related quality of life. If successful, the PACE study will demonstrate that prosocial behavior and volunteerism may be efficaciously incorporated into interventions and will provide evidence for a novel motivating factor for physical activity. © 2013.

  9. A Bayesian approach for incorporating economic factors in sample size design for clinical trials of individual drugs and portfolios of drugs.

    Patel, Nitin R; Ankolekar, Suresh

    2007-11-30

    Classical approaches to clinical trial design ignore economic factors that determine economic viability of a new drug. We address the choice of sample size in Phase III trials as a decision theory problem using a hybrid approach that takes a Bayesian view from the perspective of a drug company and a classical Neyman-Pearson view from the perspective of regulatory authorities. We incorporate relevant economic factors in the analysis to determine the optimal sample size to maximize the expected profit for the company. We extend the analysis to account for risk by using a 'satisficing' objective function that maximizes the chance of meeting a management-specified target level of profit. We extend the models for single drugs to a portfolio of clinical trials and optimize the sample sizes to maximize the expected profit subject to budget constraints. Further, we address the portfolio risk and optimize the sample sizes to maximize the probability of achieving a given target of expected profit.

  10. Designing pedagogy incorporating executive function.

    Wasserman, Theodore

    2013-01-01

    The National Academy of Neuropsychology defines clinical neuropsychology as "a sub-field of psychology concerned with the applied science of brain-behavior relationships. Clinical neuropsychologists use this knowledge in the assessment, diagnosis, treatment, and/or rehabilitation of patients across the lifespan with neurological, medical, neurodevelopmental and psychiatric conditions, as well as other cognitive and learning disorders" (National Academy of Neuropsychology, 2011 ). Pediatric neuropsychologists have long been concerned about another area of functionality, making their recommendations educationally relevant. This article describes accommodated metacognitive instruction, a pedagogy based on cognitive neuropsychological principles of learning and used to instruct college faculty on a methodology for teaching in all-inclusive environments.

  11. Linux command line and shell scripting bible

    Blum, Richard

    2014-01-01

    Talk directly to your system for a faster workflow with automation capability Linux Command Line and Shell Scripting Bible is your essential Linux guide. With detailed instruction and abundant examples, this book teaches you how to bypass the graphical interface and communicate directly with your computer, saving time and expanding capability. This third edition incorporates thirty pages of new functional examples that are fully updated to align with the latest Linux features. Beginning with command line fundamentals, the book moves into shell scripting and shows you the practical application

  12. Coal option. [Shell Co

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  13. Shell-like structures

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  14. Design of a core–shell Pt–SiO2 catalyst in a reverse microemulsion system: Distinctive kinetics on CO oxidation at low temperature

    Al Mana, Noor

    2016-06-28

    The mechanism of formation of Pt@SiO2 as a model of core–shell nanoparticles via water-in-oil reverse microemulsions was studied in detail. By controlling the time of growth of Pt precursors, Pt(OH)x, after hydrolysis in NH3 aq. before adding SiO2 precursor (TEOS), Pt nanoparticles with a narrow size distribution were produced, from ultrafine metal nanoparticles (<1 nm) to 6 nm nanocrystals. Separately, the thickness of SiO2 was controllably synthesized from 1 to 15 nm to yield different Pt@SiO2 materials. The Pt@SiO2 core–shell catalysts exhibited a higher rate of CO oxidation by one order of magnitude with a positive order regarding CO pressure. The SiO2 shell did not perturb the Pt chemical nature, but it provided different coverage of CO in steady-state CO oxidation. © 2016 Elsevier Inc.

  15. Creep buckling of shells

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading

  16. Development of Mortar Simulator with Shell-In-Shell System – Problem of External Ballistics

    A. Fedaravicius

    2007-01-01

    Full Text Available The shell-in-shell system used in the mortar simulator raises a number of non-standard technical and computational problems starting from the requirement to distribute the propelling blast energy between the warhead and the ballistic barrel, finishing with the requirement that the length of warhead's flight path must be scaled to combat shell firing tables. The design problem of the simulator is split into two parts – the problem of external ballistics where the initial velocities of the warhead must be determined, and the problem of internal ballistics – where the design of the cartridge and the ballistic barrel must be performed.

  17. Axisymmetric vibrations of thick shells of revolution

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)

  18. Wrinkling of Pressurized Elastic Shells

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-01-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells

  19. Molluscan shell colour.

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  20. BENCHPAR PROJECT. How to Incorporate ThermaI-Hydro-Mechanical Coupled Processes into Performance Assessments and Design Studies for Radioactive Waste Disposal in Geological Formations. Guidance Document

    Stephansson, O.; Andersson, Johan

    2005-02-01

    The objective of this Guidance Document is to provide advice on how to incorporate thermo-hydro-mechanical (THM) coupled processes into Performance Assessments (PAS) and design studies for radioactive waste disposal in geological formations to be experienced in a European context. The document has been generated by the EU research project BENCHPAR: Benchmark Tests and Guidance on Coupled Processes for Performance Assessment of Nuclear Waste Repositories. The document starts in Section 1 with an explanation of why numerical analyses incorporating THM mechanisms are required for radioactive waste studies and provides background material on the subject. Then, the THM processes and their interactions are explained in Section 2. Three case examples of THM numerical analysis are presented in Section 3 to illustrate the type of work that can be conducted to study the near-field, upscaling, and the far-field. For the three cases, there is discussion on the main findings, the relevance to a safety case, the relative importance of the different couplings, and the uncertainties involved. The importance and priority of the THM couplings are then summarized in Section 4. It is especially important to be able to technically audit the numerical analyses in order to establish that all the relevant variables, parameters and mechanisms have been included in the modelling and hence that the numerical model adequately represents the rock and engineering reality. Accordingly, recommended soft and hard auditing procedures are presented in Section 5. In this Guidance Document, we emphasize especially that the most important step in numerical modelling is not executing the calculations per se, but the earlier conceptualization of the problem regarding the dominant processes, the material properties and parameters, the engineering perturbations, and their mathematical presentations. The associated modelling component of addressing the uncertainties and estimating their influence on the

  1. Nuclear shell theory

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  2. Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture

    Stanca, S E; Cranfield, C G; Biskup, C [Biomolecular Photonics Group, University Hospital Jena, Teichgraben 8, 07743 Jena (Germany); Nietzsche, S [Centre for Electron Microscopy, University Hospital Jena, Ziegel-muehlenweg 1, 07743 Jena (Germany); Fritzsche, W, E-mail: sarmiza.stanca@mti.uni-jena.de, E-mail: charles.cranfield@mti.uni-jena.de, E-mail: christoph.biskup@mti.uni-jena.de [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena (Germany)

    2010-02-05

    In this study, we describe the design of new ratiometric fluorescent nanosensors, whose architecture is based on a gold core surrounded by a poly(vinyl alcohol)-polyacetal shell. To the gold core, indicator dyes and reference dyes are attached via a cysteine linker. This nanosensor architecture is flexible with regards to the number and types of fluorophore linkages possible. The robust poly(vinyl alcohol)-polyacetal shell protects the fluorophores linked to the core from non-specific interactions with intracellular proteins. The nanosensors developed in this way are biocompatible and can be easily incorporated into mammalian cells without the use of transfection agents. Here, we show the application of these nanosensors for intracellular pH and sodium ion measurements.

  3. Shell Buckling Knockdown Factors

    National Aeronautics and Space Administration — The Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment #: 07-010-E, was established in March of 2007 by the NESC in...

  4. Shells and Patterns

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  5. Off-shell CHY amplitudes

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  6. Axisymmetric vibrations of thin shells of revolution

    Suzuki, Katsuyoshi; Kikuchi, Norio; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    The problem of free vibration of axisymmetric shells of revolution is important in connection with the design of pressure vessels, chemical equipment, aircrafts, structures and so on. In this study, the axisymmetrical vibration of a thin shell of revolution having a constant curvature in meridian direction was analyzed by thin shell theory. First, the Lagrangian during one period of the vibration of a shell of revolution was determined by the primary approximate theory of Love, and the vibration equations and boundary conditions were derived from its stopping condition. The vibration equations were strictly analyzed by using the series solution. The basic equations for the strain and strain energy of a shell were based on those of Novozhilov. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. The theory and the numerical calculation ore described. Especially in the frequency curves, the waving phenomena were observed frequently, which were not seen in non-axisymmetric vibration, accordingly also the vibration mode changed in complex state on the frequency curves of same order. The numerical calculation was carried out in the large computer center in Tohoku University. (Kako, I.)

  7. Hazard assessments of double-shell flammable gas tanks

    Fox, G.L.; Stepnewski, D.D.

    1994-01-01

    This report is the fourth in a series of hazard assessments performed on the double-shell flammable gas watch list tanks. This report focuses on hazards associated with the double-shell watch list tanks (101-AW, 103-AN, 104-AN, and 105-AN). While a similar assessment has already been performed for tank 103-SY, it is also included here to incorporate a more representative slurry gas mixture and provide a consistent basis for comparing results for all the flammable gas tanks. This report is intended to provide an in-depth assessment by considering the details of the gas release event and slurry gas mixing as the gas is released from the waste. The consequences of postulated gas ignition are evaluated using a plume burn model and updated ignition frequency predictions. Tank pressurization which results from a gas burn, along with the structural response, is also considered. The report is intended to support the safety basis for work activities in flammable gas tanks by showing margins to safety limits that are available in the design and procedures

  8. Thermally Stable Gold Nanoparticles with a Crosslinked Diblock Copolymer Shell

    Jang, Se Gyu; Khan, Anzar; Hawker, Craig J.; Kramer, Edward J.

    2010-03-01

    The use of polymer-coated Au nanoparticles prepared using oligomeric- or polymeric-ligands tethered by Au-S bonds for incorporation into block copolymer templates under thermal processing has been limited due to dissociation of the Au-S bond at T > 100^oC where compromises their colloidal stability. We report a simple route to prepare sub-5nm gold nanoparticles with a thermally stable polymeric shell. An end-functional thiol ligand consisting of poly(styrene-b-1,2&3,4-isoprene-SH) is synthesized by anionic polymerization. After a standard thiol ligand synthesis of Au nanoparticles, the inner PI block is cross-linked through reaction with 1,1,3,3-tetramethyldisiloxane. Gold nanoparticles with the cross-linked shell are stable in organic solvents at 160^oC as well as in block copolymer films of PS-b-P2VP annealed in vacuum at 170^oC for several days. These nanoparticles can be designed to strongly segregate to the PS-P2VP interface resulting in very large Au nanoparticle volume fractions φp without macrophase separation as well as transitions between lamellar and bicontinuous morphologies as φp increases.

  9. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  10. Radar attenuation in Europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure

    Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.

    2017-03-01

    Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.

  11. Nondestructive pasteurization of shell eggs using radio frequency energy

    Shell eggs are on the top of the list of the 10 riskiest foods regulated by the Food and Drug Administration and 352 outbreaks from 1990 to 2006 were linked to eggs. The goals of this study were to design and assemble an apparatus to apply RF energy to shell eggs and to develop a process for pasteur...

  12. Dyson shells: a retrospective

    Bradbury, Robert J.

    2001-08-01

    More than 40 years have passed since Freeman Dyson suggested that advanced technological civilizations are likely to dismantle planets in their solar systems to harvest all of the energy their stars wastefully radiate into space. Clearly this was an idea that was ahead of its time. Since that time, dozens of SETI searches have been conducted and almost all of them have focused their attention on stars which by definition cannot be the advanced civilizations that Dyson envisioned. I will review the data that created the confusion between Dyson spheres and Dyson shells. The sources that disprove Dyson spheres while still allowing Dyson shells will be discussed. The use of outmoded ideas that have biased the few searches for Dyson Shells that have occurred will be pointed out. An update of the concept of Dyson shells to include our current knowledge of biotechnology, nanotechnology and computer science will be explored. Finally, an approach to setting limits on the abundance of Dyson shells in our galaxy using existing optical astronomical data and future optical satellites will be proposed.

  13. Characteristics of mutants designed to incorporate a new ion pair into the structure of a cold adapted subtilisin-like serine proteinase.

    Sigurdardóttir, Anna Gudný; Arnórsdóttir, Jóhanna; Thorbjarnardóttir, Sigrídur H; Eggertsson, Gudmundur; Suhre, Karsten; Kristjánsson, Magnús M

    2009-03-01

    Structural comparisons of VPR, a subtilisin-like serine proteinase from a psychrotrophic Vibrio species and a thermophilic homologue, aqualysin I, have led us to hypothesize about the roles of different residues in the temperature adaptation of the enzymes. Some of these hypotheses are now being examined by analysis of mutants of the enzymes. The selected substitutions are believed to increase the stability of the cold adapted enzyme based on structural analysis of the thermostable structure. We report here on mutants, which were designed to incorporate an ion pair into the structure of VPR. The residues Asp17 and Arg259 are assumed to form an ion pair in aqualysin I. The cold adapted VPR contains Asn (Asn15) and Lys (Lys257) at corresponding sites in its structure. In VPR, Asn 15 is located on a surface loop with its side group pointing towards the side chain of Lys257. By substituting Asn15 by Asp (N15D) it was considered feasible that a salt bridge would form between the oppositely charged groups. To mimic further the putative salt bridge from the thermophile enzyme the corresponding double mutant (N15D/K257R) was also produced. The N15D mutation increased the thermal stability of VPR by approximately 3 degrees C, both in T(50%) and T(m). Addition of the K257R mutation did not however, increase the stability of the double mutant any further. Despite this stabilization of the VPR mutants the catalytic activity (k(cat)) against the substrate Suc-AAPF-NH-Np was increased in the mutants. Molecular dynamics simulations on wild type and the two mutant proteins suggested that indeed a salt bridge was formed in both cases. Furthermore, a truncated form of the N15D mutant (N15DDeltaC) was produced, lacking a 15 residue long C-terminal extended sequence not present in the thermophilic enzyme. In wild type VPR this supposedly moveable, negatively charged arm on the protein molecule might interfere with the new salt bridge introduced as a result of the N15D mutation

  14. Functions and Requirements for Automated Liquid Level Gauge Instruments in Single-Shell and Double-Shell Tank Farms

    CARPENTER, K.E.

    1999-01-01

    This functions and requirements document defines the baseline requirements and criteria for the design, purchase, fabrication, construction, installation, and operation of automated liquid level gauge instruments in the Tank Farms. This document is intended to become the technical baseline for current and future installation, operation and maintenance of automated liquid level gauges in single-shell and double-shell tank farms

  15. A novel platform designed by Au core/inorganic shell structure conjugated onto MTX/LDH for chemo-photothermal therapy.

    Tian, De-Ying; Wang, Wei-Yuan; Li, Shu-Ping; Li, Xiao-Dong; Sha, Zhao-Lin

    2016-05-30

    A novel platform making up of methotrexate intercalated layered double hydroxide (MTX/LDH) hybrid doped with gold nanoparticles (NPs) may have great potential both in chemo-photothermal therapy and the simultaneous drug delivery. In this paper, a promising platform of Au@PDDA-MTX/LDH was developed for anti-tumor drug delivery and synergistic therapy. Firstly, Au NPs were coated using Layer-by-Layer (LbL) technology by alternate deposition of poly (diallyldimethylammonium chloride) (PDDA) and MTX molecules, and then the resulting core-shell structures (named as Au@PDDA-MTX) were directly conjugated onto the surface of MTX/LDH hybrid by electrostatic attraction to afford Au@PDDA-MTX/LDH NPs. Here MTX was used as both the agent for surface modification and the anti-tumor drug for chemotherapy. The platform of Au@PDDA-MTX/LDH NPs not only had a high drug-loading capacity, but also showed excellent colloidal stability and interesting pH-responsive release profile. In vitro drug release studies demonstrated that MTX released from Au@PDDA-MTX/LDH was relatively slow under normal physiological pH, but it was enhanced significantly at a weak acidic pH value. Furthermore, the combined treatment of cancer cells by using Au@PDDA-MTX/LDH for synergistic hyperthermia ablation and chemotherapy was demonstrated to exhibit higher therapeutic efficacy than either single treatment alone, underscoring the great potential of the platform for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Membrane reinforcement in concrete shells: A review

    Gupta, A.K.

    1984-01-01

    A historical evolution of the membrane reinforcement design in concrete shells is presented. Theoretical developments, experimental verifications and the history of US codes and standards have been traced. For two decades now, the evidence is converging towards application of the principle of minimum resistance. This principle is rational, and it can reasonably explain the experimental results. (orig.)

  17. Coulomb ionization of inner shells by heavy charged particles

    Lapicki, G.

    1975-01-01

    The theory of inner-shell Coulomb ionization by heavy charged particles, of atomic number small compared to the target atomic number, is developed through the extension of work by Brandt and his coworkers for K shells to L shells. In slow collisions relative to the characteristic times of the inner shell electrons, the quantum-mechanical predictions in the plane-wave Born approximation (PWBA) can exceed experimental cross sections by orders of magnitude. The effects of the perturbation of the atom by and the Coulomb deflection of the particle during collisions are included in the theory. The perturbed atomic states amount to a binding of the inner-shell electrons to the moving particle in slow collisions, and to a polarization of the inner shells by the particle passing at large impact parameters during nonadiabatic collisions. These effects, not contained in the PWBA, are treated in the framework of the perturbed stationary state (PSS) theory for slow collisions and in terms of the harmonic oscillator model of Ashley, Brandt, and Ritchie for stopping powers in fast collisions. The effect of the Coulomb deflection of the particle in the field of the target nucleus on the cross sections is incorporated in the semiclassical approximation of Bang and Hansteen. Except for the lightest target atoms, the contribution of electron capture by the particles to inner-shell ionizations is shown to be negligible. The theory as developed earlier for the K shell, and here for L shells, agrees well with the vast body of experimental data on inner-shell Coulomb ionization by heavy charged particles

  18. Peptide Microencapsulation by Core-Shell Printing Technology for Edible Film Application

    Blanco-Pascual, N.; Koldeweij, R.B.J.; Stevens, R.S.A.; Montero, M.P.; Gómez-Guillén, M.C.; Cate, A.T.T.

    2014-01-01

    This paper presents a new microencapsulation methodology for incorporation of functional ingredients in edible films. Core-shell microcapsules filled with demineralized water (C) or 1 % (w/v) peptide solution (Cp) were prepared using the microencapsulation printer technology. Shell material,

  19. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei; Cui, Yi

    2009-01-01

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires

  20. Double shell tanks emergency pumping plan

    Tangen, M.J.

    1994-01-01

    At the request of the Department of Energy (DOE), a formal plan for the emergency transfer of waste from a leaking double shell tank to a designated receiver tank has been developed. This plan is in response to the priority 2 safety issue ''Response to a leaking double-shell tank'' in the DOE Report to Congress, 1991. The plan includes the tanks in four of the east tank farms and one of the west farms. The background information and supporting calculations used for the creation of the emergency plan are discussed in this document. The scope of this document is all of the double shell tanks in the AN, AP, AW, AY, and SY farms. The transfer lines, flush pits, and valve pits involved in the transfer of waste between these farms are also included in the scope. Due to the storage of high heat waste, AZ farm is excluded at this time

  1. Folding of non-Euclidean curved shells

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan

    2015-03-01

    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  2. Open source integrated modeling environment Delta Shell

    Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.

    2012-04-01

    In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.

  3. Sidewall coring shell

    Edelman, Ya A; Konstantinov, L P; Martyshin, A N

    1966-12-12

    A sidewall coring shell consists of a housing and a detachable core catcher. The core lifter is provided with projections, the ends of which are situated in another plane, along the longitudinal axis of the lifter. The chamber has corresponding projections.

  4. Stability of charged thin shells

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-01-01

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  5. Temporal structures in shell models

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  6. Double-shell tank system dangerous waste permit application

    1991-06-01

    This appendix contains the engineering design drawings for the double-shell tank system. Included are drawings of the electrical systems, structural members, piping systems, instrumentation and the many auxiliary systems. (JL)

  7. Improving the performance parameters of metal cylindrical grid shell ...

    Improving the performance parameters of metal cylindrical grid shell structures. ... Finite element models are designed taking into account minimization of production and ... The force factors and deformation parameters of the basic circuits of a ...

  8. Performance Requirements for the Double Shell Tank (DST) System

    SMITH, D.F.

    2001-01-01

    This document identifies the upper-level Double-Shell Tank (DST) System functions and bounds the associated performance requirements. The functions and requirements are provided along with supporting bases. These functions and requirements, in turn, will be incorporated into specifications for the DST System

  9. Optimizing adaptive design for Phase 2 dose-finding trials incorporating long-term success and financial considerations: A case study for neuropathic pain.

    Gao, Jingjing; Nangia, Narinder; Jia, Jia; Bolognese, James; Bhattacharyya, Jaydeep; Patel, Nitin

    2017-06-01

    In this paper, we propose an adaptive randomization design for Phase 2 dose-finding trials to optimize Net Present Value (NPV) for an experimental drug. We replace the traditional fixed sample size design (Patel, et al., 2012) by this new design to see if NPV from the original paper can be improved. Comparison of the proposed design to the previous design is made via simulations using a hypothetical example based on a Diabetic Neuropathic Pain Study. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Experimental study of enhancing heating performance of the air-source heat pump by using a novel heat recovery device designed for reusing the energy of the compressor shell

    Huang, Bi; Jian, Qifei; Luo, Lizhong; Zhao, Jing

    2017-01-01

    Highlights: • A novel heat recovery device was designed and tested. • Aiming at avoiding liquid slugging in cold areas. • Recovery of the waste energy of compressor housing. • Refrigerant is heated with the energy recovered before it is sucked into the compressor. • Requires no extra power while the recovery system is operating. - Abstract: A novel heat recovery device designed to recover the heat that is released from the outer surface of heat pump compressors, and to enhance the performance of heat pumps in cold areas was made and tested in this study. The novel heat recovery device consists of three fundamental units: a heat absorption unit, a heat emission unit and heat pipes. An amount of work focused on recovering the heat of compressors through oil system, but few studies concentrated on the housing. The main advantage of the heat recovery device is no need for extra energy consumption for its only driving force is the temperature difference between the compressor shell and the working fluid inside the suction line. The experimental results were obtained from a series of tests with a R410A air-source heat pump. Effects of the device are analyzed with respect of the suction temperature, temperature distribution among the housing, input power and exergy destruction. Moreover, the impact on the heating capacity is also discussed. Further, direction for improvement is also given based on the analysis.

  11. Effect of Hybrid Talc-Basalt Fillers in the Shell Layer on Thermal and Mechanical Performance of Co-Extruded Wood Plastic Composites.

    Huang, Runzhou; Mei, Changtong; Xu, Xinwu; Kärki, Timo; Lee, Sunyoung; Wu, Qinglin

    2015-12-08

    Hybrid basalt fiber (BF) and Talc filled high density polyethylene (HDPE) and co-extruded wood-plastic composites (WPCs) with different BF/Talc/HDPE composition levels in the shell were prepared and their mechanical, morphological and thermal properties were characterized. Incorporating BFs into the HDPE-Talc composite substantially enhanced the thermal expansion property, flexural, tensile and dynamic modulus without causing a significant decrease in the tensile and impact strength of the composites. Strain energy estimation suggested positive and better interfacial interactions of HDPE with BFs than that with talc. The co-extruded structure design improved the mechanical properties of WPC due to the protective shell layer. The composite flexural and impact strength properties increased, and the thermal expansion decreased as BF content increased in the hybrid BF/Talc filled shells. The cone calorimetry data demonstrated that flame resistance of co-extruded WPCs was improved with the use of combined fillers in the shell layer, especially with increased loading of BFs. The combined shell filler system with BFs and Talc could offer a balance between cost and performance for co-extruded WPCs.

  12. Properties of polymethyl methacrylate-based nanocomposites: Reinforced with ultra-long chitin nanofiber extracted from crab shells

    Chen, Chuchu; Li, Dagang; Hu, Qinqin; Wang, Ru

    2014-01-01

    Highlights: • Using waste crab shells to develop high-performance composites by simple method. • Combining the anatomic analysis of crab shell with the design of composite. • Introducing a 4-step all-mechanical treatment to prepare ultra-long chitin fiber. • Incorporation of chitin nanofiber improves properties of PMMA/Chitin composite. - Abstract: Ultra-long chitin nanofibers were incorporated into polymethyl methacrylate (PMMA) resin to prepared PMMA/Chitin nanocomposites with improved properties. Transmission electron microscopy (TEM) images showed that through the introduced 4-step all-mechanical treatment, the average aspect ratio of the obtained chitin fiber was up to 1000 with the length at dozens of micron range. Due to the laminated structure formed by “layer-by-layer” effect, tensile strength and Young’s modulus of the prepared composite were significantly enhanced after the filling of chitin nanofibers, as compared with neat PMMA. Light transmittance test indicated that increasing the fiber content causes little light scattering because the nano-scalar network which is smaller enough than the visible wavelength could well preserve the original transparency of PMMA. Furthermore, chitin nanofiber film with extremely low thermal expansion improved the thermal stability of PMMA in a great degree. This could lead to various commercial applications including flexible electronic printing, organic thin-film photovoltaic devices, and is a significantly environmental move towards the sustainable utilization of marine-river crab shell wastes

  13. Shells on elastic foundations

    Das, Y.C.; Kedia, K.K.

    1977-01-01

    No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)

  14. A new method to make poly acrylate foam shells

    Fan Yongheng; Luo Xuan; Fang Yu; Ren Hongbo; Zhang Lin; Cui Yi

    2009-01-01

    A triple-orifice droplet generator was designed and developed for the size-controllable continuous fabrication of hollow foam micro-shells. Solutions of an internal water phase, an oil phase (trimethylpropane triacrylate monomer, dibutyl phthalate solvent, and benzoin ethyl ether initiator), and an external water phase were used to prepare micro-shells whose diameters are between 1.5 mm and 4.0 mm successfully. Characterization of the foam shells was carried out using a scanning electron microscope and X-ray radiography. The results show that cell diameters of the shells are not above 1 um. The refractive index of the polymer framework is around 1.50. Furthermore, the shells fabricated through the triple-orifice droplet generator have a high survival probability of 93% and exhibit narrow size distribution. (authors)

  15. Equivalence of the spherical and deformed shell-model approach to intruder states

    Heyde, K.; Coster, C. de; Ryckebusch, J.; Waroquier, M.

    1989-01-01

    We point out that the description of intruder states, incorporating particle-hole (p-h) excitation across a closed shell in the spherical shell model or a description starting from the Nilsson model are equivalent. We furthermore indicate that the major part of the nucleon-nucleon interaction, responsible for the low excitation energy of intruder states comes as a two-body proton-neutron quadrupole interaction in the spherical shell model. In the deformed shell model, quadrupole binding energy is gained mainly through the one-body part of the potential. (orig.)

  16. Fabricating a Shell-Core Delayed Release Tablet Using Dual FDM 3D Printing for Patient-Centred Therapy.

    Okwuosa, Tochukwu C; Pereira, Beatriz C; Arafat, Basel; Cieszynska, Milena; Isreb, Abdullah; Alhnan, Mohamed A

    2017-02-01

    Individualizing gastric-resistant tablets is associated with major challenges for clinical staff in hospitals and healthcare centres. This work aims to fabricate gastric-resistant 3D printed tablets using dual FDM 3D printing. The gastric-resistant tablets were engineered by employing a range of shell-core designs using polyvinylpyrrolidone (PVP) and methacrylic acid co-polymer for core and shell structures respectively. Filaments for both core and shell were compounded using a twin-screw hot-melt extruder (HME). CAD software was utilized to design a capsule-shaped core with a complementary shell of increasing thicknesses (0.17, 0.35, 0.52, 0.70 or 0.87 mm). The physical form of the drug and its integrity following an FDM 3D printing were assessed using x-ray powder diffractometry (XRPD), thermal analysis and HPLC. A shell thickness ≥0.52 mm was deemed necessary in order to achieve sufficient core protection in the acid medium. The technology proved viable for incorporating different drug candidates; theophylline, budesonide and diclofenac sodium. XRPD indicated the presence of theophylline crystals whilst budesonide and diclofenac sodium remained amorphous in the PVP matrix of the filaments and 3D printed tablets. Fabricated tablets demonstrated gastric resistant properties and a pH responsive drug release pattern in both phosphate and bicarbonate buffers. Despite its relatively limited resolution, FDM 3D printing proved to be a suitable platform for a single-process fabrication of delayed release tablets. This work reveals the potential of dual FDM 3D printing as a unique platform for personalising delayed release tablets to suit an individual patient's needs.

  17. Shell Measuring Machine. History and Status Report

    Birchler, Wilbur D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fresquez, Philip R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2000-06-01

    Commercialization of the Ring Rotacon Shell Measuring Machine project is a CRADA (NO. LA98C10358) between The University of California (Los Alamos National Laboratory) and Moore Tool Company, Bridgeport, CT. The actual work started on this CRADA in December of 1998. Several meetings were held with the interested parties (Los Alamos, Oak Ridge, Moore Tool, and the University of North Carolina). The results of these meetings were that the original Ring Rotacon did not measure up to the requirements of the Department of Energy and private industry, and a new configuration was investigated. This new configuration (Shell Measuring Machine [SMM]) much better fits the needs of all parties. The work accomplished on the Shell Measuring Machine in FY 99 includes the following; Specifications for size and weight were developed; Performance error budgets were established; Designs were developed; Analyses were performed (stiffness and natural frequency); Existing part designs were compared to the working SMM volume; Peer reviews were conducted; Controller requirements were studied; Fixture requirements were evaluated; and Machine motions were analyzed. The consensus of the Peer Review Committee was that the new configuration has the potential to satisfy the shell inspection needs of Department of Energy as well as several commercial customers. They recommended that more analyses be performed on error budgets, structural stiffness, natural frequency, and thermal effects and that operational processes be developed. Several design issues need to be addressed. They are the type of bearings utilized to support the tables (air bearings or mechanical roller type bearings), the selection of the probes, the design of the probe sliding mechanisms, and the design of the upper table positioning mechanism. Each item has several possible solutions, and more work is required to obtain the best design. This report includes the background and technical objectives; minutes of the working

  18. Elastic-plastic-creep analysis of shells

    Pai, D.H.

    1979-01-01

    This paper presents the recent experience of a designer/fabricator of nuclear heat transport components in the area of elastic-plastic-creep analysis of shell-like structures. A brief historical perspective is first given to highlight the evolution leading to the present industry practice. The ASME elevated temperature design criteria will be discussed followed by examples of actual computations performed to support the design/analysis and fabrication of a breeder reactor component in which a substantial amount of elastic-plastic-creep analysis was performed. Mathematical challenges encountered by the design analyst in these problems will be highlighted. Developmental needs and future trends will then be given

  19. Computational design and fabrication of core-shell magnetic molecularly imprinted polymer for dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography for the determination of rhodamine 6G.

    Xie, Jin; Xie, Jie; Deng, Jian; Fang, Xiangfang; Zhao, Haiqing; Qian, Duo; Wang, Hongjuan

    2016-06-01

    A novel core-shell magnetic nano-adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro-solid-phase extraction followed by determination of rhodamine 6G using high-performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m-aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (3(4) ) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid-base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano-adsorbent was successfully applied to dispersive micro-solid-phase extraction coupled to high-performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0-99.1, 89.5-92.7, and 86.9-105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Incorporation of Certain Hydrophobic Excipients in the Core of Melt ...

    Patrick Erah

    incorporation of hydrophobic materials (talc or magnesium stearate) in the core of such granules may further retard .... (500mg) was filled into a capsule shell and ... of the drug particles. The effect of melt granulation on the release profiles of paracetamol is shown in Fig 1. The melt granulations displayed a retarded release.

  1. Wrinkling of Pressurized Elastic Shells

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  2. BOWOOSS: bionic optimized wood shells with sustainability

    Pohl, Göran

    2011-04-01

    In architecture, shell construction is used for the most efficient, large spatial structures. Until now the use of wood rather played a marginal role, implementing those examples of architecture, although this material offers manifold advantages, especially against the background of accelerating shortage of resources and increasing requirements concerning the energy balance. Regarding the implementation of shells, nature offers a wide range of suggestions. The focus of the examinations is on the shells of marine plankton, especially of diatoms, whose richness in species promises the discovery of entirely new construction principles. The project is targeting at transferring advantageous features of these organisms on industrial produced, modular wood shell structures. Currently a transfer of these structures in CAD - models is taking place, helping to perform stress analysis by computational methods. Micro as well as macro structures are the subject of diverse consideration, allowing to draw the necessary conclusions for an architectural design. The insights of these tests are the basis for the development of physical models on different scales, which are used to verify the different approaches. Another important aim which is promoted in the project is to enhance the competitiveness of timber construction. Downsizing of the prefabricated structural elements leads to considerable lower transportation costs as abnormal loads can be avoided as far as possible and means of transportation can be loaded with higher efficiency so that an important contribution to the sustainability in the field of architecture can also be made.

  3. Design and synthesis of core-shell Fe3O4@PTMT composite magnetic microspheres for adsorption of heavy metals from high salinity wastewater.

    Huang, Xin; Yang, Jinyue; Wang, Jingkang; Bi, Jingtao; Xie, Chuang; Hao, Hongxun

    2018-05-10

    In this study, a novel magnetic nanoparticles (MNP) modified by an organodisulfide polymer (PTMT) was designed for adsorption of heavy metals (Hg(II), Pb(II) and Cd(II)) from simulated coal chemical high salinity wastewater. The MNP-PTMT nano-composite was synthesize and characterized by SEM, TEM, FTIR, BET, VSM, TGA and XRD. The results indicate that the wanted MNP-PTMT magnetic nanoparticles were successfully obtained by modification. Adsorption experiments were systematically carried out to evaluate the performance of the obtained nanoparticles and to build up the adsorption models. The results demonstrate that the adsorption kinetic and isotherms thermodynamic followed the pseudo-second-order model and the Freundlich equation, respectively. In the presence of the inorganic salt in high salinity wastewater, the adsorption efficiency of MNP-PTMT for heavy metals was still excellent. The magnetic adsorbent could be recovered from aqueous solution by an external magnetic field in 20s and the subsequent regeneration of Hg(II)/Pb(II) loaded MNP-PTMT can be efficiently achieved by using EDTA-2Na solution as desorbent. The novel MNP-PTMT nanoparticles could be used reproductively for five times without apparent decrease in sorption capacity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Seismic analysis of axisymmetric shells

    Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.

    1984-01-01

    Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt

  5. Creep analysis of orthotropic shells

    Mehra, V.K.; Ghosh, A.

    1975-01-01

    A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)

  6. Incorporating 3D-printing technology in the design of head-caps and electrode drives for recording neurons in multiple brain regions.

    Headley, Drew B; DeLucca, Michael V; Haufler, Darrell; Paré, Denis

    2015-04-01

    Recent advances in recording and computing hardware have enabled laboratories to record the electrical activity of multiple brain regions simultaneously. Lagging behind these technical advances, however, are the methods needed to rapidly produce microdrives and head-caps that can flexibly accommodate different recording configurations. Indeed, most available designs target single or adjacent brain regions, and, if multiple sites are targeted, specially constructed head-caps are used. Here, we present a novel design style, for both microdrives and head-caps, which takes advantage of three-dimensional printing technology. This design facilitates targeting of multiple brain regions in various configurations. Moreover, the parts are easily fabricated in large quantities, with only minor hand-tooling and finishing required. Copyright © 2015 the American Physiological Society.

  7. Design and operating experience of the cryogenic system of the U.S. SCMS as incorporated into the bypass loop of the U-25 MHD generator facility

    Niemann, R.C.; Mataya, K.F.; McWilliams, D.A.; Borden, R.; Streeter, M.H.; Wickson, R.; Smelser, P.; Privalov, N.P.

    1978-01-01

    The design features and accumulated operating experience, from a cryogenics point of view, of the United States Superconducting Magnet System (U.S. SCMS) are presented. The principal cryogenic system design parameters are enumerated. Details of the cryogenic aspects of magnetic system commissioning, standby mode, and operation with MHD generators are discussed. Included are system operation, problems encountered and corrective actions taken, and measured operating parameters which include liquid helium boiloff, cryostat pressure and level versus time, etc. The aspects of the transition between operation in the laboratory and in an MHD plant are elaborated

  8. Lens Systems Incorporating A Zero Power Corrector Principle Of The Design And Its Application In Large Aperture, Moderate Field Of View Optical Systems

    Klee, H. W.; McDowell, M. W.

    1986-02-01

    A new lens design concept, based on the use of a zero (or near zero) power corrector, will be described. The logical development of the design, based on the work of Schmidt', Houghton' and others will be discussed and examples will be given of moderate field of view lenses with apertures ranging from f/0.35 to f/2. It will also be shown that the lens configuration is relatively insensitive to the aperture stop location and that for less demanding applications only very basic optical glass types need be used.

  9. Tube-in-shell heat exchangers

    Richardson, J.

    1976-01-01

    Tube-in-shell heat exchangers normally comprise a bundle of parallel tubes within a shell container, with a fluid arranged to flow through the tubes in heat exchange with a second fluid flowing through the shell. The tubes are usually end supported by the tube plates that separate the two fluids, and in use the tube attachments to the tube plates and the tube plates can be subject to severe stress by thermal shock and frequent inspection and servicing are required. Where the heat exchangers are immersed in a coolant such as liquid Na such inspection is difficult. In the arrangement described a longitudinally extending central tube is provided incorporating axially spaced cylindrical tube plates to which the opposite ends of the tubes are attached. Within this tube there is a tubular baffle that slidably seals against the wall of the tube between the cylindrical tube plates to define two co-axial flow ducts. These ducts are interconnected at the closed end of the tube by the heat exchange tubes and the baffle comprises inner and outer spaced walls with the interspace containing Ar. The baffle is easily removable and can be withdrawn to enable insertion of equipment for inspecting the wall of the tube and tube attachments and to facilitate plugging of defective tubes. Cylindrical tube plates are believed to be superior for carrying pressure loads and resisting the effects of thermal shock. Some protection against thermal shock can be effected by arranging that the secondary heat exchange fluid is on the tube side, and by providing a thermal baffle to prevent direct impingement of hot primary fluid on to the cylindrical tube plates. The inner wall of the tubular baffle may have flexible expansible region. Some nuclear reactor constructions incorporating such an arrangement are described, including liquid metal reactors. (U.K.)

  10. The direct manipulation shell

    Allen, M.E.; Christiansen, M.

    1992-01-01

    Accelerator controls systems provide parameter display pages which allow the operator to monitor and manipulate selected control points in the system. Display pages are generally implemented as either hand-crafted, purpose-built programs; or by using a specialized display page layout tool. These two methods of display page development exhibit the classic trade-off between functionality vs. ease of implementation. In the Direct Manipulation Shell we approach the process of developing a display page in a manifestly object-oriented manner. This is done by providing a general framework for interactively instantiating and manipulating display objects. (author)

  11. The R-Shell approach - Using scheduling agents in complex distributed real-time systems

    Natarajan, Swaminathan; Zhao, Wei; Goforth, Andre

    1993-01-01

    Large, complex real-time systems such as space and avionics systems are extremely demanding in their scheduling requirements. The current OS design approaches are quite limited in the capabilities they provide for task scheduling. Typically, they simply implement a particular uniprocessor scheduling strategy and do not provide any special support for network scheduling, overload handling, fault tolerance, distributed processing, etc. Our design of the R-Shell real-time environment fcilitates the implementation of a variety of sophisticated but efficient scheduling strategies, including incorporation of all these capabilities. This is accomplished by the use of scheduling agents which reside in the application run-time environment and are responsible for coordinating the scheduling of the application.

  12. Water Quality of Trickling Biological Periwinkle Shells Filter for ...

    Studies were carried on the design, efficiency and economics of trickling biological periwinkle shells filter in recirculating aquaculture systems for catfish production. The designed biofilter and other system components were constructed, assembled and commissioned for pilot catfish production. The system with the designed ...

  13. Dossier Shell Eco-Marathon; Dossier Shell Eco-Marathon

    Matla, P.

    2012-05-15

    Three articles address subjects concerning the annual race with highly energy efficient cars: the Shell Eco-Marathon. [Dutch] In 3 artikelen wordt aandacht besteed aan de ontwerpen voor de jaarlijkse race met superzuinige auto's, de Shell Eco-Marathon.

  14. Property-based design and synthesis of new chloroquine hybrids via simple incorporation of 2-imino-thiazolidine-4-one or 1h-pyrrol-2, 5-dione fragments on the 4-amino-7-chloroquinoline side chain

    Rojas, Fernando A.; Kouznetsov, Vladimir V.

    2011-01-01

    In the present work, the syntheses of new 4-amino-7-chloroquinoline N-derivatives were performed by selective modification of the side chain amino group of N-(7-chloroquinoline-4-yl) alkyldiamines, basis framework of chloroquine (CQ) drug through the incorporation of heterocyclic 2-imino-thiazolidine-4-one and 1 H-pyrrol-2,5-dione systems. These potential activity modulators were selected thanks to their characteristic properties, and evaluated by virtual screening employing the OSIRIS and Molinspirations platforms. Designed and synthesized quinolinic derivatives could increase the antimalarial activity of CQ analogues without affecting the lipophilicity as described in literature, suggesting them as candidates for further biological assessments. (author)

  15. Property-based design and synthesis of new chloroquine hybrids via simple incorporation of 2-imino-thiazolidine-4-one or 1h-pyrrol-2, 5-dione fragments on the 4-amino-7-chloroquinoline side chain

    Rojas, Fernando A; Kouznetsov, Vladimir V., E-mail: kouznet@uis.edu.co [Laboratorio de Quimica Organica y Biomolecular, Escuela de Quimica, Universidad Industrial de Santander, Bucaramanga (Colombia)

    2011-09-15

    In the present work, the syntheses of new 4-amino-7-chloroquinoline N-derivatives were performed by selective modification of the side chain amino group of N-(7-chloroquinoline-4-yl) alkyldiamines, basis framework of chloroquine (CQ) drug through the incorporation of heterocyclic 2-imino-thiazolidine-4-one and {sup 1}H-pyrrol-2,5-dione systems. These potential activity modulators were selected thanks to their characteristic properties, and evaluated by virtual screening employing the OSIRIS and Molinspirations platforms. Designed and synthesized quinolinic derivatives could increase the antimalarial activity of CQ analogues without affecting the lipophilicity as described in literature, suggesting them as candidates for further biological assessments. (author)

  16. Advances in global development and deployment of small modular reactors and incorporating lessons learned from the Fukushima Daiichi accident into the designs of engineered safety features of advanced reactors

    Hadid Subki, M.; )

    2014-01-01

    The IAEA has been facilitating the Member States in incorporating the lessons-learned from the Fukushima Dai-ichi Accident into the designs of engineered safety features of advanced reactors, including small modular reactors. An extended assessment is required to address challenges for advancing reactor safety in the new evolving generation of SMR plants to preserve the historic lessons in safety, through: assuring the diversity in emergency core cooling systems following loss of onsite AC power; ensuring diversity in reactor depressurization following a transient or accident; confirming independence in reactor trip and safety systems for sensors, power supplies and actuation systems, and finally diversity in maintaining containment integrity following a severe accident

  17. Design optimization for 25 Gbit/s DML InGaAlAs/InGaAsP/InP SL-MQW laser diode incorporating temperature effect

    Ke, Cheng; Li, Xun; Xi, Yanping; Yu, Yang

    2017-11-01

    In this paper, a detailed carrier dynamics model for quantum well lasers is used to study the modulation bandwidth of the directly modulated strained-layer multiple quantum well (SL-MQW) laser. The active region of the directly modulated laser (DML) is optimized in terms of the number of QWs and barrier height. To compromise the device dynamic performance at different operating temperatures, we present an overall optimized design for a 25 Gbps DML under an ambient temperature ranging from 25 to 85°C. To further enhance the modulation bandwidth, we have also proposed a mixed QWs design that increases the 3 dB bandwidth by almost 44% compared to the one without undergoing optimization. The experimental results show that the 3 dB bandwidth of the optimized DML can reach 19 GHz. A clear eye diagram with a bit rate of 25 Gbps was observed at 25°C.

  18. Hi shells, supershells, shell-like objects, and ''worms''

    Heiles, C.

    1984-01-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo

  19. Buckling analysis of a cylindrical shell, under neutron radiation environment

    Arani, A. Ghorbanpour; Ahmadi, M.; Ahmadi, A.; Rastgoo, A.; Sepyani, H.A.

    2012-01-01

    Highlights: ► The work investigates the buckling of a shell in the neutron radiation environment. ► Radiation induced porosity in elastic materials affects the material's properties. ► The data based technique was used to determine the volume fraction porosity. ► The theoretical formulations are presented based on the classical shell theory (CST). ► It was concluded that both T and neutron induced swelling have significant effects. - Abstract: This research investigates the buckling of a cylindrical shell in the neutron radiation environment, subjected to combined static and periodic axial forces. Radiation induced porosity in elastic materials affects the thermal, electrical and mechanical properties of the materials. In this study, the data based technique was used to determine the volume fraction porosity, P, of shell material. A least-squares fit of the Young's module data yielded the estimated Young's modulus. The shell assumed made of iron irradiated in the range of 2–15e−7 dPa/s at 345–650 °C and theoretical formulations are presented based on the classical shell theory (CST). The research deals with the problem theoretically; keeping in mind that one means of generating relevant design data is to investigate prototype structures. A parametric study is followed and the stability of shell is discussed. It is concluded that both temperature and neutron induced swelling have significant effects on the buckling load.

  20. Shell Trumpets from Western Mexico

    Robert Novella

    1991-11-01

    Full Text Available Marine shells have been used as musical instruments in almost all parts of the world (Izikowitz 1935, including Mesoamerica, where large univalves, also called conch shells in the literature, had a utilitarian function as trumpets. Their use is well documented in most cultural areas of Mesoamerica, as in Western Mexico, through their various occurrences in archaeological contexts and museums collections.

  1. Cylindrical thin-shell wormholes

    Eiroa, Ernesto F.; Simeone, Claudio

    2004-01-01

    A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands forever, depending only on the sign of its initial velocity

  2. Shell model and spectroscopic factors

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  3. Conventional shell model: some issues

    Vallieres, M.; Pan, X.W.; Feng, D.H.; Novoselsky, A.

    1997-01-01

    We discuss some important issues in shell-model calculations related to the effective interactions used in different regions of the periodic table; in particular the quality of different interactions is discussed, as well as the mass dependence of the interactions. Mention is made of the recently developed Drexel University shell-model (DUSM). (orig.)

  4. Curvature-driven morphing of non-Euclidean shells

    Pezzulla, Matteo; Stoop, Norbert; Jiang, Xin; Holmes, D. P.

    2017-05-01

    We investigate how thin structures change their shape in response to non-mechanical stimuli that can be interpreted as variations in the structure's natural curvature. Starting from the theory of non-Euclidean plates and shells, we derive an effective model that reduces a three-dimensional stimulus to the natural fundamental forms of the mid-surface of the structure, incorporating expansion, or growth, in the thickness. Then, we apply the model to a variety of thin bodies, from flat plates to spherical shells, obtaining excellent agreement between theory and numerics. We show how cylinders and cones can either bend more or unroll, and eventually snap and rotate. We also study the nearly isometric deformations of a spherical shell and describe how this shape change is ruled by the geometry of a spindle. As the derived results stem from a purely geometrical model, they are general and scalable.

  5. Dynamic centering of liquid shells

    Tsamopoulos, J.A.; Brown, R.A.

    1987-01-01

    The moderate-amplitude axisymmetric oscillations of an inviscid liquid shell surrounding an incompressible gas bubble are calculated by a multiple-time-scale expansion for initial deformations composed of two-lobed perturbations of the shell and a displacement of the bubble from the center of mass of the liquid. Two types of small-amplitude motion are identified and lead to very different nonlinear dynamic interactions, as described by the results valid up to second order in the amplitude of the initial deformation. In the ''bubble mode,'' the oscillations of the captive bubble and the liquid shell are exactly in phase and the bubble vibrates about its initial eccentric location. The bubble moves toward the center of the drop when the shell is perturbed into a ''sloshing mode'' of oscillation where both interfaces move out of phase. These results explain the centering of liquid shells observed in several experiments

  6. Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design

    Gönen, Seza Özge, E-mail: gonens@itu.edu.tr; Erol Taygun, Melek; Aktürk, Ayşen; Küçükbayrak, Sadriye

    2016-10-01

    The current research was conducted to propose a nanocomposite material, which could be suitable to be used as a scaffold for bone tissue engineering applications. For this purpose, nanocomposite fibers of gelatin, poly(ε-caprolactone) (PCL), and bioactive glass were successfully fabricated via electrospinning process. In this context, response surface methodology based on a three-level, four-variable Box-Behnken design was adopted as an optimization tool to choose the most appropriate parameter settings to obtain the desired fiber diameter. The investigation, based on a second order polynomial model, focused on the analysis of the effect of both solution and processing parameters on the fiber diameter and its standard deviation. In optimum conditions (bioactive glass content of 7.5% (w/v), applied voltage of 25 kV, tip-to-collector distance of 12.5 cm, and flow rate of 1 mL/h), the fiber diameter was found to be 584 ± 337 nm which was in good agreement with the predicted value by the developed models (523 ± 290 nm). Analytical tools such as scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and differential thermal analyzer were used for further evaluation of the optimized nanocomposite mat. The overall results showed that nanocomposite scaffolds could be promising candidates for tissue engineering applications. - Highlights: • Nanocomposite fibers of gelatin, PCL, and bioactive glass were successfully fabricated. • Three-level, four-variable Box-Behnken design was adopted as an optimization tool. • The individual and interactive effects of the electrospinning parameters were determined. • Quadratic models were used to adjust the fiber diameter and its standard deviation.

  7. Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design

    Gönen, Seza Özge; Erol Taygun, Melek; Aktürk, Ayşen; Küçükbayrak, Sadriye

    2016-01-01

    The current research was conducted to propose a nanocomposite material, which could be suitable to be used as a scaffold for bone tissue engineering applications. For this purpose, nanocomposite fibers of gelatin, poly(ε-caprolactone) (PCL), and bioactive glass were successfully fabricated via electrospinning process. In this context, response surface methodology based on a three-level, four-variable Box-Behnken design was adopted as an optimization tool to choose the most appropriate parameter settings to obtain the desired fiber diameter. The investigation, based on a second order polynomial model, focused on the analysis of the effect of both solution and processing parameters on the fiber diameter and its standard deviation. In optimum conditions (bioactive glass content of 7.5% (w/v), applied voltage of 25 kV, tip-to-collector distance of 12.5 cm, and flow rate of 1 mL/h), the fiber diameter was found to be 584 ± 337 nm which was in good agreement with the predicted value by the developed models (523 ± 290 nm). Analytical tools such as scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and differential thermal analyzer were used for further evaluation of the optimized nanocomposite mat. The overall results showed that nanocomposite scaffolds could be promising candidates for tissue engineering applications. - Highlights: • Nanocomposite fibers of gelatin, PCL, and bioactive glass were successfully fabricated. • Three-level, four-variable Box-Behnken design was adopted as an optimization tool. • The individual and interactive effects of the electrospinning parameters were determined. • Quadratic models were used to adjust the fiber diameter and its standard deviation.

  8. Intrinsic hierarchical structural imperfections in a natural ceramic of bivalve shell with distinctly graded properties.

    Jiao, Da; Liu, Zengqian; Zhang, Zhenjun; Zhang, Zhefeng

    2015-07-22

    Despite the extensive investigation on the structure of natural biological materials, insufficient attention has been paid to the structural imperfections by which the mechanical properties of synthetic materials are dominated. In this study, the structure of bivalve Saxidomus purpuratus shell has been systematically characterized quantitatively on multiple length scales from millimeter to sub-nanometer. It is revealed that hierarchical imperfections are intrinsically involved in the crossed-lamellar structure of the shell despite its periodically packed platelets. In particular, various favorable characters which are always pursued in synthetic materials, e.g. nanotwins and low-angle misorientations, have been incorporated herein. The possible contributions of these imperfections to mechanical properties are further discussed. It is suggested that the imperfections may serve as structural adaptations, rather than detrimental defects in the real sense, to help improve the mechanical properties of natural biological materials. This study may aid in understanding the optimizing strategies of structure and properties designed by nature, and accordingly, provide inspiration for the design of synthetic materials.

  9. Methodology of shell structure reinforcement layout optimization

    Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof

    2018-01-01

    This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.

  10. Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box-Behnken design.

    Gönen, Seza Özge; Erol Taygun, Melek; Aktürk, Ayşen; Küçükbayrak, Sadriye

    2016-10-01

    The current research was conducted to propose a nanocomposite material, which could be suitable to be used as a scaffold for bone tissue engineering applications. For this purpose, nanocomposite fibers of gelatin, poly(ε-caprolactone) (PCL), and bioactive glass were successfully fabricated via electrospinning process. In this context, response surface methodology based on a three-level, four-variable Box-Behnken design was adopted as an optimization tool to choose the most appropriate parameter settings to obtain the desired fiber diameter. The investigation, based on a second order polynomial model, focused on the analysis of the effect of both solution and processing parameters on the fiber diameter and its standard deviation. In optimum conditions (bioactive glass content of 7.5% (w/v), applied voltage of 25kV, tip-to-collector distance of 12.5cm, and flow rate of 1mL/h), the fiber diameter was found to be 584±337nm which was in good agreement with the predicted value by the developed models (523±290nm). Analytical tools such as scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and differential thermal analyzer were used for further evaluation of the optimized nanocomposite mat. The overall results showed that nanocomposite scaffolds could be promising candidates for tissue engineering applications. Copyright © 2016. Published by Elsevier B.V.

  11. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa

    2017-04-26

    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  12. Vocational rehabilitation services for patients with cancer: design of a feasibility study incorporating a pilot randomised controlled trial among women with breast cancer following surgery

    Ayansina Dolapo

    2011-03-01

    Full Text Available Abstract Background Due to improvements in cancer survival the number of people of working age living with cancer across Europe is likely to increase. UK governments have made commitments to reduce the number of working days lost to ill-health and to improve access to vocational rehabilitation (VR services. Return to work for people with cancer has been identified as a priority. However, there are few services to support people to remain in or return to work after cancer and no associated trials to assess their impact. A pilot randomised controlled trial among women with breast cancer has been designed to assess the feasibility of a larger definitive trial of VR services for people with cancer. Methods Patients are being recruited from three clinical sites in two Scottish National Health Service (NHS Boards for 6 months. Eligible patients are all women who are: (1 aged between 18 and 65 years; (2 in paid employment or self-employed; (3 living or working in Lothian or Tayside, Scotland, UK; (4 diagnosed with an invasive breast cancer tumour; (5 treated first with surgery. Patients are randomly allocated to receive referral to a VR service or usual care, which involves no formal employment support. The primary outcome measure is self-reported sickness absence in the first 6 months following surgery. Secondary outcome measures include changes in quality of life (FACT-B, fatigue (FACIT-Fatigue and employment status between baseline and 6- and 12-months post-surgery. A post-trial evaluation will be conducted to assess the acceptability of the intervention among participants and the feasibility of a larger, more definitive, trial with patients with lung and prostate cancer. Discussion To our knowledge this is the first study to determine the feasibility of a randomised controlled trial of the effectiveness of VR services to enable people with cancer to remain in or return to employment. The study will provide evidence to assess the relevance and

  13. Molluscan shell evolution with review of shell calcification hypothesis

    Furuhashi, T.; Schwarzinger, C.; Mikšík, Ivan; Smrž, Miloslav; Beran, A.

    2009-01-01

    Roč. 154, č. 3 (2009), s. 351-371 ISSN 1096-4959 Institutional research plan: CEZ:AV0Z50110509 Keywords : mollusca * shell * biomineralization Subject RIV: CE - Biochemistry Impact factor: 1.607, year: 2009

  14. Buckling strength of spherical shells under combined loads

    Nagashima, H.; Kokubo, K.; Takayanagi, M.; Hayasaka, Y.; Kume, T.; Nagata, T.

    1995-01-01

    Many studies on buckling of cylindrical shells have been conducted, and many buckling evaluation equations have been proposed for actual plant designs; however, buckling of spherical shells under combined horizontal and vertical loads cannot be evaluated due to insufficient data. There is a particular lack of buckling data for spherical shells under lateral loads. To establish a method for estimating the buckling strength of spherical shells, we investigate the interactions between horizontal and vertical (compressive tensile) loads by conducting buckling tests. Applying several combinations of these loads in tests and using computer linear analysis, we obtain interaction curves. This study reports on the buckling tests conducted using spherical shell 1120 mm in dia., 0.7 mm thick and 696 mm high, which are shaped individually by press-forming and finally joined together by four meridional welds, using a specially made jig. Initial imperfections before testing and local deformations after each loading increment during testing are measured with special measuring equipment, and the interaction curve of horizontal and vertical loads and effect of imperfection on the buckling strength of spherical shells are obtained. Nonlinear FEM programs are developed using an 8-node isoparametric shell element and a four-node quadrilateral element of C 0 type with reduced integration based upon a Mindlin-Reissner theory which includes transverse shear. Actual initial imperfections are generally in irregular patterns. Thus, there may be several definitions of the equivalent magnitudes of initial imperfections related to buckling loads. Equivalent magnitudes have no practical meaning unless they can be obtained easily not only for small structures such as test shells but also for large actual structures. In the present study, we define the equivalent magnitude of initial imperfections as the maximum local ruggedness measured radially from a circular temperature having a radius equal

  15. Multidimensional Analysis of Direct-Drive Plastic-Shell Implosions on OMEGA

    Radha, P. B.

    2004-11-01

    Direct-drive implosions of plastic shells with the OMEGA laser are used as energy-scaled warm surrogates for ignition cryogenic targets designed for use on the National Ignition Facility. Plastic targets involve varying shell thickness (15 to 33 μm), fill pressures (3 to 15 atm), and shell adiabats. The multidimensional hydrodynamics code DRACO is used to evaluate the effects of capsule-surface roughness and illumination nonuniformities on target performance. These simulations indicate that shell stability during the acceleration phase plays a critical role in determining fusion yields. For shells that are thick enough to survive the Rayleigh--Taylor growth, target yields are significantly reduced by growth of the long (ℓ surrogacy between these plastic-shell implosions and the cryogenic ignition designs.

  16. The role of fullerene shell upon stuffed atom polarization potential

    Amusia, M. Ya.; Chernysheva, L. V.

    2015-01-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes pol...

  17. New-generation Monte Carlo shell model for the K computer era

    Shimizu, Noritaka; Abe, Takashi; Yoshida, Tooru; Otsuka, Takaharu; Tsunoda, Yusuke; Utsuno, Yutaka; Mizusaki, Takahiro; Honma, Michio

    2012-01-01

    We present a newly enhanced version of the Monte Carlo shell-model (MCSM) method by incorporating the conjugate gradient method and energy-variance extrapolation. This new method enables us to perform large-scale shell-model calculations that the direct diagonalization method cannot reach. This new-generation framework of the MCSM provides us with a powerful tool to perform very advanced large-scale shell-model calculations on current massively parallel computers such as the K computer. We discuss the validity of this method in ab initio calculations of light nuclei, and propose a new method to describe the intrinsic wave function in terms of the shell-model picture. We also apply this new MCSM to the study of neutron-rich Cr and Ni isotopes using conventional shell-model calculations with an inert 40 Ca core and discuss how the magicity of N = 28, 40, 50 remains or is broken. (author)

  18. Core/Shell Conjugated Polymer/Quantum Dot Composite Nanofibers through Orthogonal Non-Covalent Interactions

    Brad W. Watson

    2016-11-01

    Full Text Available Nanostructuring organic polymers and organic/inorganic hybrid materials and controlling blend morphologies at the molecular level are the prerequisites for modern electronic devices including biological sensors, light emitting diodes, memory devices and solar cells. To achieve all-around high performance, multiple organic and inorganic entities, each designed for specific functions, are commonly incorporated into a single device. Accurate arrangement of these components is a crucial goal in order to achieve the overall synergistic effects. We describe here a facile methodology of nanostructuring conjugated polymers and inorganic quantum dots into well-ordered core/shell composite nanofibers through cooperation of several orthogonal non-covalent interactions including conjugated polymer crystallization, block copolymer self-assembly and coordination interactions. Our methods provide precise control on the spatial arrangements among the various building blocks that are otherwise incompatible with one another, and should find applications in modern organic electronic devices such as solar cells.

  19. Instant Windows PowerShell

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  20. Patterning of the turtle shell.

    Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F

    2017-08-01

    Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes

    Cui, Li-Feng; Ruffo, Riccardo; Chan, Candace K.; Peng, Hailin; Cui, Yi

    2009-01-01

    fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower

  2. 40 Years of Shell Scenarios

    NONE

    2013-02-15

    Shell has been using scenario planning for four decades. During that time these scenarios have helped the company and governments across the world to make better strategic choices. Scenarios provide lenses that help see future prospects more clearly, make richer judgments and be more sensitive to uncertainties. Discover how the Shell Scenarios team has helped guide decision makers at major moments in history and get a peek at the team future focus, including the intricate relationship between energy, water and food.

  3. Performance requirements for the double-shell tank system: Phase 1

    Claghorn, R.D.

    1998-01-01

    This document establishes performance requirements for the double-shell tank system. These requirements, in turn, will be incorporated in the System Specification for the Double-Shell Tank System (Grenard and Claghorn 1998). This version of the document establishes requirements that are applicable to the first phase (Phase 1) of the Tank Waste Remediation System (TWRS) mission described in the TWRS Mission Analysis Report (Acree 1998). It does not specify requirements for either the Phase 2 mission or the double-shell tank system closure period

  4. Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex

    Ghosh, Arun K.; Brindisi, Margherita; Nyalapatla, Prasanth R.; Takayama, Jun; Ella-Menye, Jean-Rene; Yashchuk, Sofiya; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2017-10-01

    Based upon molecular insights from the X-ray structures of inhibitor-bound HIV-1 protease complexes, we have designed a series of isophthalamide-derived inhibitors incorporating substituted pyrrolidines, piperidines and thiazolidines as P2-P3 ligands for specific interactions in the S2-S3 extended site. Compound 4b has shown an enzyme Ki of 0.025 nM and antiviral IC50 of 69 nM. An X-ray crystal structure of inhibitor 4b-HIV-1 protease complex was determined at 1.33 Å resolution. We have also determined X-ray structure of 3b-bound HIV-1 protease at 1.27 Å resolution. These structures revealed important molecular insight into the inhibitor–HIV-1 protease interactions in the active site.

  5. Simulation and design of distillation units for treatment of sulfite pulping condensates to recover methanol and furfural. Part I. Incorporation with an evaporation unit and use of secondary steam

    Zacchi, G.; Aly, G.

    1979-06-01

    A distillation unit was simulated using DESTLA, a computer program for steady-state calculations of general multicomponent distillation units. Vapor-liquid and liquid-liquid equilibria were both computed by EQUIL, a computer program for computation and plotting of such equilibria. The simulations resulted in a distillation unit consisting of three columns. Energy consumed in the first column dominates the operating costs of the unit. The first of the three different alternatives studied for satisfying the energy requirements of the first column is presented. Incorporating the first column into an evaporation unit yields low steam consumption. However, a decrease in evaporation capacity due to the temperature drop in the first column and complex control design are the disadvantages associated with this alternative.

  6. Topology optimization of 3D shell structures with porous infill

    Clausen, Anders; Andreassen, Erik; Sigmund, Ole

    2017-01-01

    This paper presents a 3D topology optimization approach for designing shell structures with a porous or void interior. It is shown that the resulting structures are significantly more robust towards load perturbations than completely solid structures optimized under the same conditions. The study...... indicates that the potential benefit of using porous structures is higher for lower total volume fractions. Compared to earlier work dealing with 2D topology optimization, we found several new effects in 3D problems. Most notably, the opportunity for designing closed shells significantly improves...

  7. Isogeometric shell formulation based on a classical shell model

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  8. Core–shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    Wang, Xinqin; Cui, Yingqi; Zeng, Qun; Yang, Mingli, E-mail: myang@scu.edu.cn [Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China); Yu, Shengping [College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041 (China)

    2016-04-07

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe){sub x}@(CdSe){sub y} and their Zn-substituted complexes of x = 2–4 and y = 16–28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn–Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition–structure–property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  9. Predictable Particle Engineering: Programming the Energy Level, Carrier Generation, and Conductivity of Core-Shell Particles.

    Yuan, Conghui; Wu, Tong; Mao, Jie; Chen, Ting; Li, Yuntong; Li, Min; Xu, Yiting; Zeng, Birong; Luo, Weiang; Yu, Lingke; Zheng, Gaofeng; Dai, Lizong

    2018-06-20

    Core-shell structures are of particular interest in the development of advanced composite materials as they can efficiently bring different components together at nanoscale. The advantage of this structure greatly relies on the crucial design of both core and shell, thus achieving an intercomponent synergistic effect. In this report, we show that decorating semiconductor nanocrystals with a boronate polymer shell can easily achieve programmable core-shell interactions. Taking ZnO and anatase TiO 2 nanocrystals as inner core examples, the effective core-shell interactions can narrow the band gap of semiconductor nanocrystals, change the HOMO and LUMO levels of boronate polymer shell, and significantly improve the carrier density of core-shell particles. The hole mobility of core-shell particles can be improved by almost 9 orders of magnitude in comparison with net boronate polymer, while the conductivity of core-shell particles is at most 30-fold of nanocrystals. The particle engineering strategy is based on two driving forces: catechol-surface binding and B-N dative bonding and having a high ability to control and predict the shell thickness. Also, this approach is applicable to various inorganic nanoparticles with different components, sizes, and shapes.

  10. A rapidly evolving secretome builds and patterns a sea shell

    Green Kathryn

    2006-11-01

    Full Text Available Abstract Background Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. In mollusks, the mantle is responsible for the extracellular production of the shell, directing the ordered biomineralization of CaCO3 and the deposition of architectural and color patterns. The evolutionary origins of the ability to synthesize calcified structures across various metazoan taxa remain obscure, with only a small number of protein families identified from molluskan shells. The recent sequencing of a wide range of metazoan genomes coupled with the analysis of gene expression in non-model animals has allowed us to investigate the evolution and process of biomineralization in gastropod mollusks. Results Here we show that over 25% of the genes expressed in the mantle of the vetigastropod Haliotis asinina encode secreted proteins, indicating that hundreds of proteins are likely to be contributing to shell fabrication and patterning. Almost 85% of the secretome encodes novel proteins; remarkably, only 19% of these have identifiable homologues in the full genome of the patellogastropod Lottia scutum. The spatial expression profiles of mantle genes that belong to the secretome is restricted to discrete mantle zones, with each zone responsible for the fabrication of one of the structural layers of the shell. Patterned expression of a subset of genes along the length of the mantle is indicative of roles in shell ornamentation. For example, Has-sometsuke maps precisely to pigmentation patterns in the shell, providing the first case of a gene product to be involved in molluskan shell pigmentation. We also describe the expression of two novel genes involved in nacre (mother of pearl deposition. Conclusion The unexpected complexity and evolvability of this secretome and the modular design of the molluskan mantle enables

  11. Research advances in contact model and mechanism configuration for nut shelling manipulation based on metamorphic method

    Xiulan BAO

    2017-04-01

    Full Text Available Nuts are the important economic forest tree species of China. De-shell is the key operation of nut deep processing. There are some problems in the current nut cracking devices such as the low decorticating rate, the high nuts losses rate and nutmeat integrity problems, etc.. The foundation of force analysis is to establish contact model for nut and mechanical. The nut surface is rough and irregular, so the contact area cannot be modeled as regular shape. How to set up contact constraint model is the key problem to accomplish non-loss shelling. In order to study the shell-breaking mechanism and structural design of the nut shelling manipulation, a multi-fingered metamorphic manipulator is presented. An overview of the nut shelling technology and the contact manipulator modeling are proposed. The origin and application of metamorphic mechanisms are introduced. Then the research contents and development prospects of nut shelling manipulator are described.

  12. Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics

    McClelland, Ryan S.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.

  13. FABRICATION AND PROPERTIES OVERCOATED RESORCINOL-FORMALDEHYDE SHELLS FOR OMEGA EXPERIMENTS

    NIKROO, A; CZECHOWICZ, D; PAGUIO, R; GREENWOOD, A.L; TAKAGI, M.

    2003-09-01

    OAK-B135 New high gain designs for direct drive ignition on NIF require foam shells. Scaled down versions of these designs are needed for near term experiments on the OMEGA laser facility at the Laboratory Laser Energetics (LLE). These shells need to be about 1 mm in diameter and 50-100 (micro)m wall thickness and densities of 100-250 mg/cc. In addition, a full density permeation seal needs to be deposited for retention of the fill gas at room temperature or the ice at cryogenic temperatures. They have fabricated such shells using Resorcinol-formaldehyde (R/F) as the selected foam material due to its transparency in the optical region. Extensive characterization of the wall uniformity of these shells has been performed. The foam shells have ∼ 5%-6% non-concentricities on the average. A full density permeation seal has been deposited on the R/F shells using two different techniques. In the first technique R/F shells are coated directly with plasma polymer to thicknesses of 3-4 (micro)m. In the second technique, R/F shells are coated with polyvinylphenol, using a chemical interfacial polymerization technique. Data on surface finish and gas retention for R/F shells coated by both methods are provided

  14. Preventing recurrence of endometriosis by means of long-acting progestogen therapy (PRE-EMPT): report of an internal pilot, multi-arm, randomised controlled trial incorporating flexible entry design and adaption of design based on feasibility of recruitment.

    Middleton, Lee J; Daniels, Jane P; Weckesser, Annalise; Bhattacharya, Siladitya

    2017-03-11

    Endometriosis is associated with the growth of endometrium in ectopic sites mainly within the pelvis. This results in inflammation and scarring, causing pain and impaired quality of life. Endometriotic lesions can be excised or ablated surgically, but the risk of recurrence is high. A Heath Technology Assessment commissioning call in 2011 sought applications for trials aimed at evaluating long-term effectiveness of postoperative, long-acting, reversible contraceptives (LARCs) in preventing recurrence of endometriosis. A survey of gynaecologists indicated that there was no consensus about which LARC (Levonorgestrel Intrauterine System (LNG-IUS) or depot medroxyprogesterone acetate injection (DMPA)) or comparator (combined oral contraceptive pill (COCP) or no treatment) should be evaluated. Hence, we designed a 'flexible-entry' internal pilot to assess whether a four-arm trial was feasible including a possible design adaption based on pilot findings. In this pilot, women could be randomised to two, three or four treatment options provided that one was a LARC and one was a non-LARC. An assessment of feasibility based on recruitment to these options and a revised substantive trial design was considered by an independent oversight committee. The study ran for 1 year from April 2014 and 77 women were randomised. Only 5 (6%) women accepted randomisation to all groups, with 63 (82%) having a LARC preference and 55 (71%) a non-LARC preference. Four-way and three-way designs were ruled out with a two-way LARC versus COCP design, stratified by prerandomisation choice of LARC and optional subrandomisation to LNG-IUS versus DMPA considered a feasible substantive study. Multi-arm studies are potentially efficient as they can answer multiple questions simultaneously but are difficult to recruit to if there are strong patient or clinician preferences. A flexible approach to randomisation in a pilot phase can be used to assess feasibility of such studies and modify a trial design

  15. Incorporating Feminist Standpoint Theory

    Ahlström, Kristoffer

    2005-01-01

    As has been noted by Alvin Goldman, there are some very interesting similarities between his Veritistic Social Epistemology (VSE) and Sandra Harding’s Feminist Standpoint Theory (FST). In the present paper, it is argued that these similarities are so significant as to motivate an incorporation...

  16. Differentiating leucine incorporation of

    Yokokawa, T.; Sintes, E.; de Corte, D.; Olbrich, K.; Herndl, G.J.

    2012-01-01

    The abundance (based on catalyzed reporter deposition-fluorescence in situ hybrid ization, CARD-FISH) and leucine incorporation rates of Archaea and Bacteria were determined throughout the water column in the eastern Atlantic. Bacteria dominated throughout the water column, although their

  17. The evolution of mollusc shells.

    McDougall, Carmel; Degnan, Bernard M

    2018-05-01

    Molluscan shells are externally fabricated by specialized epithelial cells on the dorsal mantle. Although a conserved set of regulatory genes appears to underlie specification of mantle progenitor cells, the genes that contribute to the formation of the mature shell are incredibly diverse. Recent comparative analyses of mantle transcriptomes and shell proteomes of gastropods and bivalves are consistent with shell diversity being underpinned by a rapidly evolving mantle secretome (suite of genes expressed in the mantle that encode secreted proteins) that is the product of (a) high rates of gene co-option into and loss from the mantle gene regulatory network, and (b) the rapid evolution of coding sequences, particular those encoding repetitive low complexity domains. Outside a few conserved genes, such as carbonic anhydrase, a so-called "biomineralization toolkit" has yet to be discovered. Despite this, a common suite of protein domains, which are often associated with the extracellular matrix and immunity, appear to have been independently and often uniquely co-opted into the mantle secretomes of different species. The evolvability of the mantle secretome provides a molecular explanation for the evolution and diversity of molluscan shells. These genomic processes are likely to underlie the evolution of other animal biominerals, including coral and echinoderm skeletons. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties. © 2018 Wiley Periodicals, Inc.

  18. Creep buckling of shell structures

    Miyazaki, Noriyuki; Hagihara, Seiya

    2015-01-01

    The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)

  19. Core-Shell-Corona Micelles with a Responsive Shell.

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  20. Double-Shell Tank (DST) Utilities Specification

    SUSIENE, W.T.

    2000-01-01

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  1. Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.

    Gangil, Sandip

    2014-03-01

    Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Shell model Monte Carlo methods

    Koonin, S.E.; Dean, D.J.; Langanke, K.

    1997-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)

  3. Cask for concrete shells transportation

    Labergri, F.

    2001-01-01

    Nowadays, nuclear plant radioactive waste are conditioned in situ into concrete shells. Most of them enter in the industrial waste category defined by the regulations of radioactive material transportation. However, the content of a few ones exceeds the limits set for low specific activity substances. Thus, these shells must be transported into type B packagings. To this end, Robatel has undertaken, for EDF (Electricite de France), the development of a container, named ROBATEL TM R68, for further licensing. The particularity of this packaging is that the lid must have a wide opening to allow the usual handling operations of the concrete shells. This leads to a non-conventional conception, and makes the package more vulnerable to drop test solicitations. In order to define a minimal drop test program on a reduced scale model, we use a simple method to find the most damageable drop angle. (author)

  4. Shell model Monte Carlo methods

    Koonin, S.E.

    1996-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs

  5. Windows PowerShell 20 Bible

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  6. Learning Shell scripting with Zsh

    Festari, Gaston

    2014-01-01

    A step-by-step tutorial that will teach you, through real-world examples, how to configure and use Zsh and its various features. If you are a system administrator, developer, or computer professional involved with UNIX who are looking to improve on their daily tasks involving the UNIX shell, ""Learning Shell Scripting with Zsh"" will be great for you. It's assumed that you have some familiarity with an UNIX command-line interface and feel comfortable with editors such as Emacs or vi.

  7. Stabilization of thin shell modes by a rotating secondary wall

    Gimblett, C.G.

    1989-01-01

    A simple model is developed to investigate if and under what circumstances the thin shell instabilities of a Reverse Field Pinch can be stabilized by a rotating secondary wall. The principles may be applicable to reactor designs that utilize a flowing liquid blanket (author)

  8. Comparison of Cashew Nut Shell Liquid (CNS) Resin with Polyester ...

    Akorede

    cobalt amine (accelerator), methyl ethyl ketone peroxide (catalyst) to develop two sets of ... shell liquid (CNSL) resin were comparable to those developed with polyester resin. ... permit diffusion of water, this function is often not adequately ... When designed ... blades in gas turbine engines, wing leading edges and flaps.

  9. Preparation of yolk-shell MoS2 nanospheres covered with carbon shell for excellent lithium-ion battery anodes

    Guo, Bangjun; Feng, Yu; Chen, Xiaofan; Li, Bo; Yu, Ke

    2018-03-01

    Molybdenum disulfide is regarded as one of the most promising electrode materials for high performance lithium-ion batteries. Designing firm basal structure is a key point to fully utilize the high capacity of layered MoS2 nanomaterials. Here, yolk-shell structured MoS2 nanospheres is firstly designed and fabricated to meet this needs. This unique yolk-shell nanospheres are transformed from solid nanospheres by a simply weak alkaline etching method. Then, the yolk-shell MoS2/C is synthesized by a facile process to protect the outside MoS2 shell and promote the conductivity. Taking advantages of high capacity and well-defined cavity space, allowing the core MoS2 to expand freely without breaking the outer shells, yolk-shell MoS2/C nanospheres delivers long cycle life (94% of capacity retained after 200 cycles) and high rate behaviour (830 mA h g-1 at 5 A g-1). This design of yolk-shell structure may set up a new strategy for preparing next generation anode materials for LIBs.

  10. Comparing the effects of oil palm kernel shell and cockle shell on properties of pervious concrete pavement

    Elnaz Khankhaje

    2017-09-01

    Full Text Available Nowadays, pervious concrete pavement is one of the best materials used in construction industry as a top layer of permeable pavement system to control the storm water at source. In addition, increasing production of waste materials, increased the interest in utilising the waste materials for environmental and technical benefits. Therefore, this paper compared the effect of using two different sizes of oil palm kernel shell (OPKS and cockleshell (CS as partial replacement of natural coarse aggregate on properties of pervious concrete pavement. Thirteen mixtures were made, in which 6.30-mm natural gravel was replaced with 0, 25, 50 and 75% of 6.30-mm and 4.75-mm of both shells. The relationships between the properties of pervious concrete mixtures was also determined. The replacement of OPKS and CS as the natural aggregate decreased the compressive strength, while the angular shape of both shells caused higher void content and permeability as compared to those of control pervious concrete. On the other hand, pervious concrete containing CS showed better properties than those of incorporating OPKS. Apart from that, strong relationships between density, void content, permeability, compressive strength values indicated that they can be used as a pervious concrete quality control tests for prediction of properties of pervious concrete pavement before placement in the field. Keywords: Pervious concrete pavement, Void content, Permeability, Cockleshell, Palm oil kernel shell

  11. Isogeometric shell formulation based on a classical shell model

    Niemi, Antti; Collier, Nathan; Dalcí n, Lisandro D.; Ghommem, Mehdi; Calo, Victor M.

    2012-01-01

    The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  12. An Energy Decaying Scheme for Nonlinear Dynamics of Shells

    Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.

  13. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  14. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste

    Yao, Z.T., E-mail: sxyzt@126.com [College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Chen, T. [Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058 (China); Li, H.Y. [Zhoushan Ocean Research Institute, Zhejiang University, Zhoushan 316021 (China); Xia, M.S., E-mail: msxia@zju.edu.cn [Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058 (China); Ye, Y.; Zheng, H. [Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058 (China)

    2013-11-15

    Highlights: • Adding modified shell powder could significantly increase the properties of PP. • The modified shell powder could act as a nucleating agent in PP matrix. • The modified shell powder has a potential to be used as a bio-filler. -- Abstract: Shell waste, with its high content of calcium carbonate (CaCO{sub 3}) plus organic matrix, has a potential to be used as a bio-filler. In this work, shell waste was modified by furfural and then incorporated to reinforce polypropylene (PP). The shell waste and modified powder were characterized by means of X-ray diffraction (XRD), scanning electron microscopy equipped with an energy dispersive spectrometer (SEM-EDS), X-ray photoelectronic spectroscopy (XPS), and Fourier transformed infrared spectroscopy (FTIR). The mechanical and thermal properties of neat PP and PP composites were investigated as well. Thermal gravimetric (TG) analyses confirmed the reinforcing role of modified powder in PP composites. The mechanical properties studied showed that adding modified powder could significantly increase the impact strength, elongation at break point and flexural modulus of composites. The maximum incorporation content could reach 15 wt.% with a good balance between toughness and stiffness of PP composites. Differential scanning calorimetry (DSC) results showed that the modified powder could act as a nucleating agent and thus increase the crystallization temperature of PP. Polarized optical microscopy (POM) observation also indicated that the introduction of modified powder could promote the heterogeneous nucleation of PP matrix.

  15. Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

    Lewicka Katarzyna

    2017-06-01

    Full Text Available Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN, walnut shells (WN and peanut shells (PN. Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g and WN900 at 25°C (4.34 mmol/g. All of the samples had a well-developed microporous structure.

  16. Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system.

    Yan, Le-Ping; Oliveira, Joaquim M; Oliveira, Ana L; Reis, Rui L

    2017-11-01

    Hydrogels of spatially controlled physicochemical properties are appealing platforms for tissue engineering and drug delivery. In this study, core-shell silk fibroin (SF) hydrogels of spatially controlled conformation were developed. The core-shell structure in the hydrogels was formed by means of soaking the preformed (enzymatically crosslinked) random coil SF hydrogels in methanol. When increasing the methanol treatment time from 1 to 10 min, the thickness of the shell layer can be tuned from about 200 to about 850 μm as measured in wet status. After lyophilization of the rehydrated core-shell hydrogels, the shell layer displayed compact morphology and the core layer presented porous structure, when observed by scanning electron microscopy. The conformation of the hydrogels was evaluated by Fourier transform infrared spectroscopy in wet status. The results revealed that the shell layer possessed dominant β-sheet conformation and the core layer maintained mainly random coil conformation. Enzymatic degradation data showed that the shell layers presented superior stability to the core layer. The mechanical analysis displayed that the compressive modulus of the core-shell hydrogels ranged from about 25 kPa to about 1.1 MPa by increasing the immersion time in methanol. When incorporated with albumin, the core-shell SF hydrogels demonstrated slower and more controllable release profiles compared with the non-treated hydrogel. These core-shell SF hydrogels of highly tuned properties are useful systems as drug-delivery system and may be applied as cartilage substitute. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Deposition of strontium and calcium in snail shell

    Rosenthal, Jr, G M; Nelson, D J; Gardiner, D A

    1965-07-03

    The relative effects of strontium and calcium concentrations in the environment on their uptake and incorporation into snail shell were investigated. /sup 45/Ca and /sup 85/Sr were used as tracers and specific activities were used to determine deposition. Data are presented in tables and graphs. Deposition of both calcium and strontium in the snail shell depended primarily on the respective concentrations of these elements in the immediate environment. A slight effect of strontium on calcium deposition was observed. There was found to be a minimum strontium deposition for various combinations of strontium and calcium in the environment. It was concluded that strontium uptake is more closely associated with environmental strontium concentrations than with calcium concentrations.

  18. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-01-01

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal

  19. Adaptative mixed methods to axisymmetric shells

    Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.

    1989-09-01

    The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt

  20. Influence of initial imperfections on ultimate strength of spherical shells

    Chang-Li Yu

    2017-09-01

    Full Text Available Comprehensive consideration regarding influence mechanisms of initial imperfections on ultimate strength of spherical shells is taken to satisfy requirement of deep-sea structural design. The feasibility of innovative numerical procedure that combines welding simulation and non-linear buckling analysis is verified by a good agreement to experimental and theoretical results. Spherical shells with a series of wall thicknesses to radius ratios are studied. Residual stress and deformations from welding process are investigated separately. Variant influence mechanisms are discovered. Residual stress is demonstrated to be influential to stress field and buckling behavior but not to the ultimate strength. Deformations are proved to have a significant impact on ultimate strength. When central angles are less than critical value, concave magnitudes reduce ultimate strengths linearly. However, deformations with central angles above critical value are of much greater harm. Less imperfection susceptibility is found in spherical shells with larger wall thicknesses to radius ratios.

  1. Ge/Si core/multi shell heterostructure FETs

    Picraux, Samuel T [Los Alamos National Laboratory; Dayeh, Shadi A [Los Alamos National Laboratory

    2010-01-01

    Concentric heterostructured materials provide numerous design opportunities for engineering strain and interfaces, as well as tailoring energy band-edge combinations for optimal device performance. Key to the realization of such novel device concepts is the complete understanding and full control over their growth, crystal structure, and hetero-epitaxy. We report here on a new route for synthesizing Ge/Si core/multi-shell heterostructure nanowires that eliminate Au seed diffusion on the nanowire sidewalls by engineering the interface energy density difference. We show that such control over core/shell synthesis enable experimental realization of heterostructure FET devices beyond those available in the literature with enhanced transport characteristics. We provide a side-by-side comparison on the transport properties of Ge/Si core/multi-shell nanowires grown with and without Au diffusion and demonstrate heterostructure FETs with drive currents that are {approx} 2X higher than record results for p-type FETs.

  2. Free vibration of complex systems of shells of revolution

    Markov, P.

    1987-01-01

    Simplified relations are presented for shells of revolution and the finite difference energy method is described as is its numerical application to the problems of the mechanics of the shells of revolution of a complex and branched meridian, used in the BOSOR4 program. Also presented are two examples of calculating the free vibration of systems of shells of revolution using the said program. Both problems stemmed from the needs of SKODA, Energeticke Strojirenstvi. The first concerns the free vibration of the system of WWER-440 reactor vessels, approximating its internals. The second concerns the eigenfrequencies and corresponding shapes of the vibrations of the DK3 diagnostic assembly which was designed and manufactured for improved knowledge of events taking place in the reactor core during different operating modes. (author). 7 figs., 2 tabs., 7 refs

  3. Double-shell target fabrication workshop-2016 report

    Wang, Y. Morris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oertel, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Farrell, Michael [General Atomics, San Diego, CA (United States); Baumann, Ted [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Huang, Haibo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikroo, Abbas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-10

    On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activities at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.

  4. Acoustic resonances in two-dimensional radial sonic crystal shells

    Torrent, Daniel; Sanchez-Dehesa, Jose, E-mail: jsdehesa@upvnet.upv.e [Wave Phenomena Group, Departamento de Ingenieria Electronica, Universidad Politecnica de Valencia, C/Camino de Vera s.n., E-46022 Valencia (Spain)

    2010-07-15

    Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sanchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.

  5. Modal sensing and control of paraboloidal shell structronic system

    Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen

    2018-02-01

    Paraboloidal shells of revolution are commonly used as important components in the field of advanced aerospace structures and aviation mechanical systems. This study is to investigate the modal sensing behavior and the modal vibration control effect of distributed PVDF patches laminated on the paraboloidal shell. A paraboloidal shell sensing and control testing platform is set up first. Frequencies of lower order modes of the shell are obtained with the PVDF sensor and compared with the previous testing results to prove its accuracy. Then sensor patches are laminated on different positions (or different sides) of the shell and tested to reveal the relation between the sensing behaviors and their locations. Finally, a mathematical model of the structronic system is built by parameter identifications and the transfer function is derived. Independent and coupled modal controllers are designed based on the pole placement method and modal vibration control experiments are performed. The amplitude suppression ratio of each mode controlled by the pole placement controller is calculated and compared with the results obtained by using a PPF controller. Advantages of both methods are concluded and suggestions are given on how to choose control algorithm for different purpose.

  6. Geometrically controlled snapping transitions in shells with curved creases.

    Bende, Nakul Prabhakar; Evans, Arthur A; Innes-Gold, Sarah; Marin, Luis A; Cohen, Itai; Hayward, Ryan C; Santangelo, Christian D

    2015-09-08

    Curvature and mechanics are intimately connected for thin materials, and this coupling between geometry and physical properties is readily seen in folded structures from intestinal villi and pollen grains to wrinkled membranes and programmable metamaterials. While the well-known rules and mechanisms behind folding a flat surface have been used to create deployable structures and shape transformable materials, folding of curved shells is still not fundamentally understood. Shells naturally deform by simultaneously bending and stretching, and while this coupling gives them great stability for engineering applications, it makes folding a surface of arbitrary curvature a nontrivial task. Here we discuss the geometry of folding a creased shell, and demonstrate theoretically the conditions under which it may fold smoothly. When these conditions are violated we show, using experiments and simulations, that shells undergo rapid snapping motion to fold from one stable configuration to another. Although material asymmetry is a proven mechanism for creating this bifurcation of stability, for the case of a creased shell, the inherent geometry itself serves as a barrier to folding. We discuss here how two fundamental geometric concepts, creases and curvature, combine to allow rapid transitions from one stable state to another. Independent of material system and length scale, the design rule that we introduce here explains how to generate snapping transitions in arbitrary surfaces, thus facilitating the creation of programmable multistable materials with fast actuation capabilities.

  7. Experimental Confirmation of CH Mandrel Removal from Be Shells

    Cook, B; Letts, S; Buckley, S

    2004-01-01

    Sputtered Be shells are made by sputter deposition of Be, with a radially graded Cu dopant as necessary, onto plastic mandrels supplied by General Atomics. Although the plastic mandrel may not be a design issue, it is a fielding issue because at cryo temperatures the plastic shrinks more than the Be and delaminates. We described in previous memos a proposed method for thermally removing the plastic by burning it in air at elevated temperature. A key aspect to this process is getting air in and out of the shell through the small diameter hole that must be laser drilled in the capsule wall to serve as a fill hole for the fuel. Because the hole is quite small, gas flow through the orifice must be forced, and an external pressure variation was suggested to do this. Further calculations showed that since the volume of the capsule is quite small and the amount of plastic in the shell by comparison is large, the ''pumping'' of air in and out of the shell must occur at least once per minute in order to supply enough O 2 to completely burn the plastic to CO 2 and H 2 O in a reasonable time. Such an apparatus has been now built and this memo details both its construction and operation, as well as provides the first evidence of plastic mandrel removal from Be shells

  8. Three-dimensional flat shell-to-shell coupling: numerical challenges

    Guo, Kuo; Haikal, Ghadir

    2017-11-01

    The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  9. Three-dimensional flat shell-to-shell coupling: numerical challenges

    Guo Kuo

    2017-11-01

    Full Text Available The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love plate and thick (Reissner-Mindlin plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  10. Shell theorem for spontaneous emission

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  11. Shell energy scenarios to 2050

    2008-01-01

    Shell developed two scenarios that describe alternative ways the energy future may develop. In the first scenario (Scramble) policymakers pay little attention to more efficient energy use until supplies are tight. Likewise, greenhouse gas emissions are not seriously addressed until there are major climate shocks. In the second scenario (Blueprints) growing local actions begin to address the challenges of economic development, energy security and environmental pollution. A price is applied to a critical mass of emissions giving a huge stimulus to the development of clean energy technologies, such as carbon dioxide capture and storage, and energy efficiency measures. The result is far lower carbon dioxide emissions. Both these scenarios can help Shell to test their strategy against a range of possible developments over the long-term. However, according to Shell, the Blueprints' outcomes offer the best hope for a sustainable future, whether or not they arise exactly in the way described. However, with the right combination of policy, technology and commitment from governments, industry and society globally, Shell believes it can be realized. But achieving the targets will not be easy, and time is short. Clear thinking, huge investment, and effective leadership are required

  12. Collapse analysis of toroidal shell

    Pomares, R.J.

    1990-01-01

    This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation

  13. On the dynamic buckling of thin shells

    Combescure, A.; Hoffmann, A.; Homan, R.

    1986-10-01

    The shells of a pool type reactor like Super Phenix 1 or the Super Phenix 2 project are relatively thin compared to the diameter. Normal loads and mainly seismic loads due to strong fluid-structure interaction and giving pressure of the same order then static collapse pressure. This is a main difficulty for a good and safe design of LMFBR. The paper describes the experimental results obtained at CEA-DEMT on the seismic buckling of structures filled with fluid. A general tendency is given on all experimental results. The experimental results are analysed by two simple models and the main results are explained. A strategy to design a structure against dynamic buckling is then presented. 7 refs

  14. Studies of dust shells around stars

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  15. ECO-TECHNIQUE OF SEWER RENOVATION USING COMPOSITE SHELLS: STRUCTURAL ANALYSIS

    B. Attaf

    2015-07-01

    Full Text Available An eco-technical renovation of the sewage system is developed in this paper; this technique involves incorporating into the existing sewer a series of jointed prefabricated sandwich or composite shells. The purpose of his study is to determine the structural shell deflection, the high displacement areas and to validate the non-failure criterion for each ply constituting the inner and outer laminate facings. The numerical results were obtained at low cost by using the finite element method. Studies have focused on structural analysis of a typical shell unit with an ovoid form (egg-shaped section when it is subjected, during annular space filling operation, to pressure forces generated by wet concrete. To ensure the safety of the composite shell structure, Tsai-Hill criterion function is applied and results are presented for the most stressed plies

  16. Spherical implosion experiments on OMEGA: measurements of the cold, compressed shell

    Yaakobi, B.; Smalyuk, V.A.; Delettrez, J.A.; Town, R.P.J.; Marshall, F.J.; Glebov, V.Y.; Petrasso, R.D.; Soures, J.M.; Meyerhofer, D.D.; Seka, W. [Rochester Univ., NY (United States). Lab. for Laser Energetics

    2000-07-01

    Targets in which a titanium-doped layer is incorporated into the shell provide a variety of diagnostic signatures (absorption lines, K-edge absorption, K{alpha} imaging) for determining the areal density and dimensions of the shell around peak compression. Here we apply these methods to demonstrate the improvement in target performance when SSD is implemented on slow-rising laser pulses. We introduce a new method to study the uniformity of imploded shells: using a recently developed pinhole-array x-ray spectrometer, we obtain core images at energies below and above the K-edge energy of titanium. The ratio between such images reflects the nonuniformity of the shell alone. Finally, we compare the results with those of 1-D LILAC simulations, as well as 2-D ORCHID simulations that allow for the imprinting of laser non-uniformity on the target. The experimental results are replicated much better by ORCHID than by LILAC. (authors)

  17. Dynamics of two coaxial cylindrical shells containing viscous fluid

    Yeh, T.T.; Chen, S.S.

    1976-09-01

    This study was motivated by the need to design the thermal shield in reactor internals and other system components to avoid detrimental flow-induced vibrations. The system component is modeled as two coaxial shells separated by a viscous fluid. In the analysis, Flugge's shell equations of motion and linearized Navier-Stokes equation for viscous fluid are employed. First, a traveling-wave type solution is taken for shells and fluid. Then, from the interface conditions between the shells and fluid, the solution for the fluid medium is expressed in terms of shell displacements. Finally, using the shell equations of motion gives the frequency equation, from which the natural frequency, mode shape, and modal damping ratio of coupled modes can be calculated. The analytical results show a fairly good qualitative agreement with the published experimental data. Some important conclusions are as follows: (1) In computing the natural frequencies and mode shapes of uncoupled modes and coupled modes, the fluid may be considered inviscid and incompressible. (2) There exists out-of-phase and in-phase modes. The lowest natural frequency is always associated with the out-of-phase mode. (3) The lowest natural frequency of coupled modes is lower than the uncoupled modes. (4) The fluid viscosity contributes significantly to damping, in particular, the modal damping of the out-of-phase modes isrelatively large for small gaps. (5) If the fluid gap is small, or the fluid viscosity is relatively high, the simulation of the vibration Reynolds number should be included to ensure that modal damping of the model is properly accounted for. With the presented analysis and results, the frequency and damping characteristics can be analyzed and design parameters can be related to frequency and damping

  18. 7 CFR 983.29 - Shelled pistachios.

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means pistachio...

  19. Thin-shell wormholes in dilaton gravity

    Eiroa, Ernesto F.; Simeone, Claudio

    2005-01-01

    In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed

  20. Shell film- and video catalogue 1996

    1996-01-01

    An overview is given of films and videos that are available through 'Shell Nederland Filmcentrale' (Shell Netherlands Film Center), subdivided into the subjects (1) About Shell; (2) Health, Safety and Environment; (3) Science and Technology; (4) The History of Car(racing); and (5) Historical Overview. 5 ills

  1. A finite element for plates and shells

    Muller, A.; Feijoo, R.A.; Bevilacqua, L.

    1981-08-01

    A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt

  2. Vibrations of Thin Piezoelectric Shallow Shells

    Abstract. In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  3. 7 CFR 981.6 - Shelled almonds.

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds after...

  4. Smart construction of polyaniline shell on cobalt oxides as integrated core-shell arrays for enhanced lithium ion batteries

    Qi, Meili; Xie, Dong; Zhong, Yu; Chen, Minghua; Xia, Xinhui

    2017-01-01

    Smart construction of advanced anode materials is extremely critical to develop high-performance lithium ion batteries. In this work, we have reported a facile strategy for fabricating Co 3 O 4 /polyaniline (PANI) core–shell arrays (CSAs) by chemical bath deposition (CBD) + electrodeposition methods Electrodeposited PANI shell is intimately decorated on the CBD-Co 3 O 4 nanorods forming composite CSAs. Highly conductive network and stress buffer layer are achieved with the aid of tailored PANI shell. Due to these advantages above, the designed Co 3 O 4 /PANI CSA S exhibit good electrochemical performance with higher reversible capacity (787 mAh g −1 ) and better cycle stability than the unmodified Co 3 O 4 counterpart. Our results show a new way for preparing advanced inorganic-organic composite electrodes for electrochemical energy storage.

  5. Linux shell scripting cookbook

    Tushar, Shantanu

    2013-01-01

    This book is written in a Cookbook style and it offers learning through recipes with examples and illustrations. Each recipe contains step-by-step instructions about everything necessary to execute a particular task. The book is designed so that you can read it from start to end for beginners, or just open up any chapter and start following the recipes as a reference for advanced users.If you are a beginner or an intermediate user who wants to master the skill of quickly writing scripts to perform various tasks without reading the entire manual, this book is for you. You can start writing scri

  6. A novel Rapid Additive Manufacturing concept for architectural composite shell construction inspired by the shell formation in land snails.

    Felbrich, Benjamin; Wulle, Frederik; Allgaier, Christoph; Menges, Achim; Verl, Alexander; Wurst, Karl-Heinz; Nebelsick, James

    2018-01-04

    State of the art rapid additive manufacturing (RAM), specifically Fused Filament Fabrication (FFF) has gained popularity among architects, engineers and designers for quick prototyping of technical devices, rapid production of small series and even construction scale fabrication of architectural elements. The spectrum of producible shapes and the resolution of detail, however, are determined and constrained by the layer-based nature of the fabrication process. These aspects significantly limit FFF-based approaches for the prefabrication and in-situ fabrication of freeform shells at the architectural scale. Snails exhibit a shell building process that suggests ways to overcome these limits. They produce a soft, pliable proteinaceous film - the periostracum - which later hardens and serves, among other functions, as a form-giving surface for an inner calcium carbonate layer. Snail shell formation behavior is interpreted from a technical point of view to extract potentially useful aspects for a biomimetic transfer. A RAM concept for continuous extrusion of thin free form composite shells inspired by the snail shell formation is presented. © 2018 IOP Publishing Ltd.

  7. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  8. Designated Places

    California Natural Resource Agency — Census 2000 Place Names provides a seamless statewide GIS layer of places, including census designated places (CDP), consolidated cities, and incorporated places,...

  9. Derived Requirements for Double Shell Tank (DST) High Level Waste (HLW) Auxiliary Solids Mobilization

    TEDESCHI, A.R.

    2000-02-28

    The potential need for auxiliary double-shell tank waste mixing and solids mobilization requires an evaluation of optional technologies. This document formalizes those operating and design requirements needed for further engineering evaluations.

  10. Derived Requirements for Double-Shell Tank (DST) High Level Waste (HLW) Auxiliary Solids Mobilization

    TEDESCHI, A.R.

    2000-01-01

    The potential need for auxiliary double-shell tank waste mixing and solids mobilization requires an evaluation of optional technologies. This document formalizes those operating and design requirements needed for further engineering evaluations

  11. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  12. Shell-and-tube heat exchanger selection aid

    Lupton, L.R.; Basso, R.A.J.

    1989-11-01

    A prototype has been developed to investigate the feasibility of using expert systems to aid junior process system designers with the selection of components for shell-and-tube heat exchangers. The selection criteria for heat exchanger design were based on process, environmental and administrative constraints. The system was developed using EXSYS and consists of approximately 140 rules. This paper describes the development process and the lessons learned

  13. 241-AN Double Shell Tanks (DST) Integrity Assessment Report

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-AN double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  14. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  15. 241-SY Double Shell Tanks (DST) Integrity Assessment Report

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-SY double-shell tank farm facility located in the 200 West Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  16. 241-AZ Double-Shell Tanks (DST) Integrity Assessment Report

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-A2 double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  17. 241-AW Double Shell Tanks (DST) Integrity Assessment Report

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-AW double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  18. Design

    Volf, Mette

    This publication is unique in its demystification and operationalization of the complex and elusive nature of the design process. The publication portrays the designer’s daily work and the creative process, which the designer is a part of. Apart from displaying the designer’s work methods...... and design parameters, the publication shows examples from renowned Danish design firms. Through these examples the reader gets an insight into the designer’s reality....

  19. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  20. Recent developments in anisotropic heterogeneous shell theory

    Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G

    2016-01-01

    This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.

  1. Thin-shell wormholes supported by total normal matter

    Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)

    2014-09-15

    The Zipoy-Voorhees-Weyl (ZVW) spacetime characterized by mass (M) and oblateness (δ) is proposed in the construction of viable thin-shell wormholes (TSWs). A departure from spherical/cylindrical symmetry yields a positive total energy in spite of the fact that the local energy density may take negative values. We show that oblateness of the bumpy sources/black holes can be incorporated as a new degree of freedom that may play a role in the resolution of the exotic matter problem in TSWs. A small velocity perturbation reveals, however, that the resulting TSW is unstable. (orig.)

  2. Nyctemeral variations of magnesium intake in the calcitic layer of a Chilean mollusk shell ( Concholepas concholepas, Gastropoda)

    Lazareth, Claire E.; Guzman, Nury; Poitrasson, Franck; Candaudap, Frederic; Ortlieb, Luc

    2007-11-01

    Mollusk shells are increasingly used as records of past environmental conditions, particularly for sea-surface temperature (SST) reconstructions. Many recent studies tackled SST (and/or sea-surface salinity) tracers through variations in the elementary (Mg and Sr) or stable isotope (δ 18O) composition within mollusk shells. But such attempts, which sometimes include calibration studies on modern specimens, are not always conclusive. We present here a series of Mg and Sr analyses in the calcitic layer of Concholepas concholepas (Muricidae, Gastropoda) with a very high time-resolution on a time window covering about 1 and a half month of shell formation, performed by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry (LA-ICP-MS) and electron probe micro-analysis (EPMA). The selected specimen of this common Chilean gastropod was grown under controlled environmental conditions and precise weekly time-marks were imprinted in the shell with calcein staining. Strontium variations in the shell are too limited to be interpreted in terms of environmental parameter changes. In contrast, Mg incorporation into the shell and growth rate appear to change systematically between night and day. During the day, Mg is incorporated at a higher rate than at night and this intake seems positively correlated with water temperature. The nightly reduced Mg incorporation is seemingly related to metabolically controlled processes, formation of organic-rich shell increments and nocturnal feeding activity of the animals. The nyctemeral Mg changes in the C. concholepas shell revealed in this study might explain at least part of the discrepancies observed in previous studies on the use of Mg as a SST proxy in mollusk shells. In the case of C. concholepas, Mg cannot be used straightforwardly as a SST proxy.

  3. Electrostatics-driven shape transitions in soft shells.

    Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica

    2014-09-02

    Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.

  4. Au/ZnS core/shell nanocrystals as an efficient anode photocatalyst in direct methanol fuel cells.

    Chen, Wei-Ta; Lin, Yin-Kai; Yang, Ting-Ting; Pu, Ying-Chih; Hsu, Yung-Jung

    2013-10-04

    Au/ZnS core/shell nanocrystals with controllable shell thicknesses were synthesized using a cysteine-assisted hydrothermal method. Incorporating Au/ZnS nanocrystals into the traditional Pt-catalyzed half-cell reaction led to a 43.3% increase in methanol oxidation current under light illumination, demonstrating their promising potential for metal/semiconductor hybrid nanocrystals as the anode photocatalyst in direct methanol fuel cells.

  5. Atomic inner-shell physics

    Crasemann, B.

    1985-01-01

    This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions

  6. Slow pyrolysis of pistachio shell

    Apaydin-Varol, Esin; Putun, Ersan; Putun, Ayse E [Anadolu University, Eskisehir (Turkey). Department of Chemical Engineering

    2007-08-15

    In this study, pistachio shell is taken as the biomass sample to investigate the effects of pyrolysis temperature on the product yields and composition when slow pyrolysis is applied in a fixed-bed reactor at atmospheric pressure to the temperatures of 300, 400, 500, 550, 700{sup o}C. The maximum liquid yield was attained at about 500-550{sup o}C with a yield of 20.5%. The liquid product obtained under this optimum temperature and solid products obtained at all temperatures were characterized. As well as proximate and elemental analysis for the products were the basic steps for characterization, column chromatography, FT-IR, GC/MS and SEM were used for further characterization. The results showed that liquid and solid products from pistachio shells show similarities with high value conventional fuels. 31 refs., 9 figs., 1 tab.

  7. Shell trips over its reserves

    Jemain, A.

    2004-01-01

    Some mistakes in the evaluation of the proven reserves of Royal Dutch Shell group, the second world petroleum leader, will oblige the other oil and gas companies to be more transparent and vigilant in the future. The proven reserves ('P90' in petroleum professionals' language) are the most important indicators of the mining patrimony of companies. These strategic data are reported each year in the annual reports of the companies and are examined by the security exchange commission. The evaluation of reserves is perfectly codified by the US energy policy and conservation act and its accountable translation using the FAS 69 standard allows to establish long-term cash-flow forecasts. The revision announced by Shell on January 9 leads to a 20% reduction of its proven reserves. Short paper. (J.S.)

  8. Læren fra Shell

    Ørding Olsen, Anders

    2017-01-01

    Hvad kan afsløringerne om Shells mere end 25 år gamle viden om klimaforandringer lære virksomheder om disruption og strategi? Først og fremmest at undgå at se disruption som en mulig trussel, men i stedet som en fremtidig realitet og chance for vækst......Hvad kan afsløringerne om Shells mere end 25 år gamle viden om klimaforandringer lære virksomheder om disruption og strategi? Først og fremmest at undgå at se disruption som en mulig trussel, men i stedet som en fremtidig realitet og chance for vækst...

  9. The shell coal gasification process

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  10. Summary compilation of shell element performance versus formulation.

    Heinstein, Martin Wilhelm; Hales, Jason Dean (Idaho National Laboratory, Idaho Falls, ID); Breivik, Nicole L.; Key, Samuel W. (FMA Development, LLC, Great Falls, MT)

    2011-07-01

    This document compares the finite element shell formulations in the Sierra Solid Mechanics code. These are finite elements either currently in the Sierra simulation codes Presto and Adagio, or expected to be added to them in time. The list of elements are divided into traditional two-dimensional, plane stress shell finite elements, and three-dimensional solid finite elements that contain either modifications or additional terms designed to represent the bending stiffness expected to be found in shell formulations. These particular finite elements are formulated for finite deformation and inelastic material response, and, as such, are not based on some of the elegant formulations that can be found in an elastic, infinitesimal finite element setting. Each shell element is subjected to a series of 12 verification and validation test problems. The underlying purpose of the tests here is to identify the quality of both the spatially discrete finite element gradient operator and the spatially discrete finite element divergence operator. If the derivation of the finite element is proper, the discrete divergence operator is the transpose of the discrete gradient operator. An overall summary is provided from which one can rank, at least in an average sense, how well the individual formulations can be expected to perform in applications encountered year in and year out. A letter grade has been assigned albeit sometimes subjectively for each shell element and each test problem result. The number of A's, B's, C's, et cetera assigned have been totaled, and a grade point average (GPA) has been computed, based on a 4.0-system. These grades, combined with a comparison between the test problems and the application problem, can be used to guide an analyst to select the element with the best shell formulation.

  11. Shell Models of Superfluid Turbulence

    Wacks, Daniel H; Barenghi, Carlo F

    2011-01-01

    Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.

  12. Double Shell Tank (DST) Transfer Piping Subsystem Specification

    GRAVES, C.E.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of Waste Feed Delivery. This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of waste feed delivery. This subsystem transfers waste between transfer-associated structures (pits) and to the River Protection Project (RPP) Privatization Contractor Facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  13. Plastic buckling of cylindrical shells

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-01-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads

  14. Buckling shells are also swimmers

    Quilliet, Catherine; Dyfcom Bubbleboost Team

    We present an experimental and numerical study on the displacement of shells undergoing deformations in a fluid. When submitted to cycles of pressure difference between outside and inside, a shell buckles and debuckles, showing a succession of shapes and a dynamics that are different during the two phases. Hence such objects are likely to swim, including at low Reynolds (microscopic scale). We studied the swimming of buckling/debuckling shells at macroscopic scale using different approaches (force quantization, shape recording, displacement along a frictionless rail, study of external flow using PIV), and showed that inertia plays a role in propulsion, even in situations where dimensionless numbers correspond also to microswimmers in water. Different fluid viscosities were explored, showing an optimum for the displacement. Interestingly, the most favorable cases lead to displacements in the same direction and sense during both motor stroke (buckling phase) and recovery stroke (de-buckling phase). This work opens the route for the synthesis with high throughput of abusively simple synthetic swimmers, possibly gathered into nanorobots, actuated by a scalar field such as the pressure in echographic devices. Universite Grenoble Alpes, CNRS, European Research Council.

  15. Design of a High Gradient Quadrupole for the LHC Interaction Regions

    Bossert, R.; Gourlay, S.A.; Heger, T.; Huang, Y.; Kerby, J.; Lamm, M.J.; Limon, P.J.; Mazur, P.O.; Nobrega, F.; Ozelis, J.P.; Sabbi, G.; Strait, J.; Zlobin, A.V.; Caspi, S.; Dell'orco, D.; McInturff, A.D.; Scanlan, R.M.; Van Oort, J.M.; Gupta, R.C.

    1997-03-01

    A collaboration of Fermilab, Lawrence Berkeley National Laboratory and Brookhaven National Laboratory is currently engaged in the design of a high gradient quadrupole suitable for use in the LHC interaction regions. The cold iron design incorporates a two-shell, cos2θ coil geometry with a 70 mm aperture. This paper summarizes the progress on a magnetic and mechanical design that meets the requirements of maximum gradient ≥250 T/m, operation at 1.8K, high field quality and provision for adequate cooling in a high radiation environment

  16. PENIS ENLARGEMENT USING SILICONE SHELL IMPLANTS

    R. T. Adamyan

    2016-01-01

    Full Text Available Abstract. To date, the vast majority of penis thickening techniques based on the patient's own tissue. Methods with synthetic autotransplants are often inefficient, or accompanied by a large number of complications. In the article the technique of thickening the penis using specially designed enveloped silicone implants is described. During the procedure, silicone shell implants are inserted under the Buck’s fascia in the previously prepared tunnels. This placement of implants prevents their offset. At the moment, 15 operations is made successfully. The absolute majority of the patients are satisfied with the result. The uniqueness of the presented method is ease of performance, high efficiency with minimal rehabilitation period. The technique can be recommended for plastic surgeons and urologists. 

  17. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag2S core@shell structures with gradually varying shell thickness.

    Jiang, Qian; Zeng, Wenxia; Zhang, Canying; Meng, Zhaoguo; Wu, Jiawei; Zhu, Qunzhi; Wu, Daxiong; Zhu, Haitao

    2017-12-19

    Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag 2 S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag 2 S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag 2 S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag 2 S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.

  18. Hanford double shell tank corrosion monitoring instrument trees

    Nelson, J.L.

    1995-03-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks - (DSTs and SSTS). Westinghouse Hanford Company is considering installation of a prototype corrosion monitoring instrument tree in at least one DST in the summer of 1995. The instrument tree will have the ability to detect and discriminate between uniform corrosion, stress corrosion cracking (SCC), and pitting. Additional instrument trees will follow in later years. Proof-of-technology testing is currently underway for the use of commercially available electric field pattern (EFP) analysis and electrochemical noise (EN) corrosion monitoring equipment. Creative use and combinations of other existing technologies is also being considered. Successful demonstration of these technologies will be followed by the development of a Hanford specific instrument tree. The first instrument tree will incorporate one of these technologies. Subsequent trees may include both technologies, as well as a more standard assembly of corrosion coupons. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other U.S. Department of Energy (DOE) sites

  19. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    the concrete tanks, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford Single-Shell Tanks is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65 year old tank was tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar completed. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide indication of Hanford Single-Shell Tank structural integrity.

  20. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-01-01

    the concrete tanks, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford Single-Shell Tanks is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65 year old tank was tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar completed. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide indication of Hanford Single-Shell Tank structural integrity

  1. Incorporation of T4 bacteriophage in electrospun fibres.

    Korehei, R; Kadla, J

    2013-05-01

    Antibacterial food packaging materials, such as bacteriophage-activated electrospun fibrous mats, may address concerns triggered by waves of bacterial food contamination. To address this, we investigated several efficient methods for incorporating T4 bacteriophage into electrospun fibrous mats. The incorporation of T4 bacteriophage using simple suspension electrospinning led to more than five orders of magnitude decrease in bacteriophage activity. To better maintain bacteriophage viability, emulsion electrospinning was developed where the T4 bacteriophage was pre-encapsulated in an alginate reservoir via an emulsification process and subsequently electrospun into fibres. This resulted in an increase in bacteriophage viability, but there was still two orders of magnitude drop in activity. Using a coaxial electrospinning process, full bacteriophage activity could be maintained. In this process, a core/shell fibre structure was formed with the T4 bacteriophage being directly incorporated into the fibre core. The core/shell fibre encapsulated bacteriophage exhibited full bacteriophage viability after storing for several weeks at +4°C. Coaxial electrospinning was shown to be capable of encapsulating bacteriophages with high loading capacity, high viability and long storage time. These results are significant in the context of controlling and preventing bacterial infections in perishable foods during storage. © 2013 The Society for Applied Microbiology.

  2. NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins.

    Cheng, Liyuan; Zhou, Xuegang; Zhong, Hong; Deng, Xuliang; Cai, Qing; Yang, Xiaoping

    2014-01-01

    A kind of core-shell nanofibers containing sodium fluoride (NaF) was produced and used as reinforcing materials for dimethacrylate-based dental restorative resins in this study. The core-shell nanofibers were prepared by coaxial-electrospinning with polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) solutions as core and shell fluids, respectively. The produced PAN-PMMA nanofibers varied in fiber diameter and the thickness of PMMA shell depending on electrospinning parameters. NaF-loaded nanofibers were obtained by incorporating NaF nanocrystals into the core fluid at two loadings (0.8 or 1.0wt.%). Embedment of NaF nanocrystals into the PAN core did not damage the core-shell structure. The addition of PAN-PMMA nanofibers into Bis-GMA/TEGDMA clearly showed the reinforcement due to the good interfacial adhesion between fibers and resin. The flexural strength (Fs) and flexural modulus (Ey) of the composites decreased slightly as the thickness of PMMA shell increasing. Sustained fluoride releases with minor initial burst release were achieved from NaF-loaded core-shell nanofibers and the corresponding composites, which was quite different from the case of embedding NaF nanocrystals into the dental resin directly. The study demonstrated that NaF-loaded PAN-PMMA core-shell nanofibers were not only able to improve the mechanical properties of restorative resin, but also able to provide sustained fluoride release to help in preventing secondary caries. © 2013.

  3. Yolk@Shell Nanoarchitectures with Bimetallic Nanocores-Synthesis and Electrocatalytic Applications.

    Guiet, Amandine; Unmüssig, Tobias; Göbel, Caren; Vainio, Ulla; Wollgarten, Markus; Driess, Matthias; Schlaad, Helmut; Polte, Jörg; Fischer, Anna

    2016-10-10

    In the present paper, we demonstrate a versatile approach for the one-pot synthesis of metal oxide yolk@shell nanostructures filled with bimetallic nanocores. This novel approach is based on the principles of hydrophobic nanoreactor soft-templating and is exemplified for the synthesis of various AgAu NP @tin-rich ITO (AgAu@ITO TR ) yolk@shell nanomaterials. Hydrophobic nanoreactor soft-templating thereby takes advantage of polystyrene-block-poly(4-vinylpiridine) inverse micelles as two-compartment nanoreactor template, in which the core and the shell of the micelles serve as metal and metal oxide precursor reservoir, respectively. The composition, size and number of AuAg bimetallic nanoparticles incorporated within the ITO TR yolk@shell can easily be tuned. The conductivity of the ITO TR shell and the bimetallic composition of the AuAg nanoparticles, the as-synthesized AuAg NP @ITO TR yolk@shell materials could be used as efficient electrocatalysts for electrochemical glucose oxidation with improved onset potential when compared to their gold counterpart.

  4. Analysis of thermal-plastic response of shells of revolution by numerical integration

    Leonard, J.W.

    1975-01-01

    An economic technique for the numerical analysis of the elasto-plastic behaviour of shells of revolution would be of considerable value in the nuclear reactor industry. A numerical method based on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motion are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behaviour, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. (Auth.)

  5. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  6. Design/build/mockup of the Waste Isolation Pilot Plant gas generation experiment glovebox

    Rosenberg, K.E.; Benjamin, W.W.; Knight, C.J.; Michelbacher, J.A.

    1996-01-01

    A glovebox was designed, fabricated, and mocked-up for the WIPP Gas Generation Experiments (GGE) being conducted at ANL-W. GGE will determine the gas generation rates from materials in contact handled transuranic waste at likely long term repository temperature and pressure conditions. Since the customer's schedule did not permit time for performing R ampersand D of the support systems, designing the glovebox, and fabricating the glovebox in a serial fashion, a parallel approach was undertaken. As R ampersand D of the sampling system and other support systems was initiated, a specification was written concurrently for contracting a manufacturer to design and build the glovebox and support equipment. The contractor understood that the R ampersand D being performed at ANL-W would add additional functional requirements to the glovebox design. Initially, the contractor had sufficient information to design the glovebox shell. Once the shell design was approved, ANL-W built a full scale mockup of the shell out of plywood and metal framing; support systems were mocked up and resultant information was forwarded to the glovebox contractor to incorporate into the design. This approach resulted in a glovebox being delivered to ANL-W on schedule and within budget

  7. Mussel Shell Impaction in the Esophagus

    Sunmin Kim

    2013-03-01

    Full Text Available Mussels are commonly used in cooking around the world. The mussel shell breaks more easily than other shells, and the edge of the broken mussel shell is sharp. Impaction can ultimately cause erosion, perforation and fistula. Aside from these complications, the pain can be very intense. Therefore, it is essential to verify and remove the shell as soon as possible. In this report we describe the process of diagnosing and treating mussel shell impaction in the esophagus. Physicians can overlook this unusual foreign body impaction due to lack of experience. When physicians encounter a patient with severe chest pain after a meal with mussels, mussel shell impaction should be considered when diagnosing and treating the patient.

  8. Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  9. Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells.

    Tendler, Avichai; Mayo, Avraham; Alon, Uri

    2015-03-07

    Organisms that need to perform multiple tasks face a fundamental tradeoff: no design can be optimal at all tasks at once. Recent theory based on Pareto optimality showed that such tradeoffs lead to a highly defined range of phenotypes, which lie in low-dimensional polyhedra in the space of traits. The vertices of these polyhedra are called archetypes- the phenotypes that are optimal at a single task. To rigorously test this theory requires measurements of thousands of species over hundreds of millions of years of evolution. Ammonoid fossil shells provide an excellent model system for this purpose. Ammonoids have a well-defined geometry that can be parameterized using three dimensionless features of their logarithmic-spiral-shaped shells. Their evolutionary history includes repeated mass extinctions. We find that ammonoids fill out a pyramid in morphospace, suggesting five specific tasks - one for each vertex of the pyramid. After mass extinctions, surviving species evolve to refill essentially the same pyramid, suggesting that the tasks are unchanging. We infer putative tasks for each archetype, related to economy of shell material, rapid shell growth, hydrodynamics and compactness. These results support Pareto optimality theory as an approach to study evolutionary tradeoffs, and demonstrate how this approach can be used to infer the putative tasks that may shape the natural selection of phenotypes.

  10. Enhanced efficiency of a fluorescing nanoparticle with a silver shell

    Choy, Wallace C H; Chen Xuewen [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); He Sailing [Centre for Optical and Electromagnetic Research, Zhejiang University, Zhijingang campus, Hangzhou 310058 (China)], E-mail: chchoy@eee.hku.hk

    2009-09-01

    Spontaneous emission (SE) rate and the fluorescence efficiency of a bare fluorescing nanoparticle (NP) and the NP with a silver nanoshell are analyzed rigorously by using a classical electromagnetic approach with the consideration of the nonlocal effect of the silver nano-shell. The dependences of the SE rate and the fluorescence efficiency on the core-shell structure are carefully studied and the physical interpretations of the results are addressed. The results show that the SE rate of a bare NP is much slower than that in the infinite medium by almost an order of magnitude and consequently the fluorescence efficiency is usually low. However, by encapsulating the NP with a silver shell, highly efficient fluorescence can be achieved as a result of a large Purcell enhancement and high out-coupling efficiency (OQE) for a well-designed core-shell structure. We also show that a higher SE rate may not offer a larger fluorescence efficiency since the fluorescence efficiency not only depends on the internal quantum yield but also the OQE.

  11. Multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels

    Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.

    2017-04-01

    In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.

  12. The Mg - SST relationship in mollusc shells: is there a rule? Examples from three tropical species

    Lazareth, C. E.; Guzmán, N.; Lecornec, F.; Cabioch, G.; Ortlieb, L.

    2009-04-01

    The geochemistry of mollusc shells is currently viewed as a powerful tool for paleoenvironmental reconstructions. Indeed, molluscs are ubiquitous animals, with a worldly geographical and environmental distribution, providing various environmental records. Moreover, mollusc shells are abundantly found in fossil and archaeological settings. In the paleoclimatic reconstructions, the sea-surface temperatures (SST) are a key parameter. If shell stable oxygen isotope signatures can provide accurate SST records, this proxy is also influenced by the water isotopic composition. To find another tracer which would depend on the SST solely, the relationship between Mg content changes in mollusc shell and SST has been investigated for a few years. Nevertheless, if the reliability of shell Mg as SST tracer has been proven in some species, this is clearly not a "universal" and definitive rule. To reconstruct the past tropical SSTs, Mg calibration studies were undertaken on Concholepas concholepas (gastropod, South America), Protothaca thaca (bivalve, South America) and Tridacna squamosa (bivalve, New Caledonia). The very high-resolution (infra-daily) analyses of the C. concholepas gastropod revealed a significant metabolism control, at the nyctemeral scale, on the Mg incorporation into the calcite shell layer. Over a two months period, the Mg fluctuations in C. concholepas shell do not match with the SST instrumental measurements. Mg content changes along the aragonitic shell growth axis of several living P. thaca from a same Peruvian site are significantly different indicating no relationship between Mg and SST. The Mg variations measured in a Chilean P. thaca shell are, surprisingly, similar to variations of the instrumental SST. Unless this quite reliable relationship between P. thaca shell and SST is confirmed, and that the inter-site difference in Mg response to environmental forcing is understood, P. thaca shell Mg cannot be used as SST proxy. Lastly, a preliminary work

  13. Towards the Shell Biorefinery: Sustainable Synthesis of the Anticancer Alkaloid Proximicin A from Chitin.

    Sadiq, Alejandro D; Chen, Xi; Yan, Ning; Sperry, Jonathan

    2018-02-09

    A shell biorefinery would involve fractionation of crustacean shells and incorporation of the components into value-added products, particularly those that contain nitrogen. In a proof-of-concept study that validates this concept, the anticancer alkaloid proximicin A has been synthesized from the chitin-derived platform chemical 3-acetamido-5-acetylfuran (3A5AF). This study accentuates the leading role chitin is likely to play in the sustainable production of nitrogen-containing fine chemicals that are not directly attainable from lignocellulose. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. History and future perspectives of the Monte Carlo shell model -from Alphleet to K computer-

    Shimizu, Noritaka; Otsuka, Takaharu; Utsuno, Yutaka; Mizusaki, Takahiro; Honma, Michio; Abe, Takashi

    2013-01-01

    We report a history of the developments of the Monte Carlo shell model (MCSM). The MCSM was proposed in order to perform large-scale shell-model calculations which direct diagonalization method cannot reach. Since 1999 PC clusters were introduced for parallel computation of the MCSM. Since 2011 we participated the High Performance Computing Infrastructure Strategic Program and developed a new MCSM code for current massively parallel computers such as K computer. We discuss future perspectives concerning a new framework and parallel computation of the MCSM by incorporating conjugate gradient method and energy-variance extrapolation

  15. Nuclear structure of s-d shell nuclei: what is new?

    Shanmugam, G.

    1995-01-01

    In this paper the shape evolution of the even-even s-d shell nuclei with temperature and spin is studied using Landau theory of phase transitions. The most important thermal fluctuations are incorporated in this study. The ground state pairing is also included in the calculations. Both the summation and Strutinsky methods are used for extracting the Landau constants. Both yield qualitatively similar results. To conclude, Landau theory of phase transitions can be effectively and economically used to study the structure of excited s-d shell nuclei. 10 refs., 2 tabs., 8 figs

  16. Ancient shell industry at Bet Dwarka island

    Gaur, A.S.; Sundaresh; Patankar, V.

    for the manufacture of beads, bangles, etc. 12 . Shell species found at the sites include T. pyrum (cha nk), Chicoreus ramosus , Fasciolaria trapezium , Cypraea (cowries), Arabica arabica (cowries), Babylonia spirata , dentalium, mussel and Arca... muscles are attached. Average length of a shell can be up to 15 to 20 cm and width 10 ? 15 cm 8 . It provides a unique structure for the manufacture of several bangles from a single shell. The organ ism living inside is also edible...

  17. Integrable structure in discrete shell membrane theory.

    Schief, W K

    2014-05-08

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.

  18. Magnetically controlled multifrequency invisibility cloak with a single shell of ferrite material

    Wang, Xiaohua; Liu, Youwen

    2015-02-01

    A magnetically controlled multifrequency invisibility cloak with a single shell of the isotropic and homogeneous ferrite material has been investigated based on the scattering cancellation method from the Mie scattering theory. The analytical and simulated results have demonstrated that such this shell can drastically reduce the total scattering cross-section of this cloaking system at multiple frequencies. These multiple cloaking frequencies of this shell can be externally controlled since the magnetic permeability of ferrites is well tuned by the applied magnetic field. This may provide a potential way to design a tunable multifrequency invisibility cloak with considerable flexibility.

  19. Fast Ignition Thermonuclear Fusion: Enhancement of the Pellet Gain by the Colossal-Magnetic-Field Shells

    Stefan, V. Alexander

    2013-10-01

    The fast ignition fusion pellet gain can be enhanced by a laser generated B-field shell. The B-field shell, (similar to Earth's B-field, but with the alternating B-poles), follows the pellet compression in a frozen-in B-field regime. A properly designed laser-pellet coupling can lead to the generation of a B-field shell, (up to 100 MG), which inhibits electron thermal transport and confines the alpha-particles. In principle, a pellet gain of few-100s can be achieved in this manner. Supported in part by Nikola Tesla Labs, Stefan University, 1010 Pearl, La Jolla, CA 92038-1007.

  20. Cu–Ni core–shell nanoparticles: structure, stability, electronic, and magnetic properties: a spin-polarized density functional study

    Wang, Qiang, E-mail: wangqiang@njtech.edu.cn; Wang, Xinyan; Liu, Jianlan; Yang, Yanhui [Nanjing Tech University, School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis (IAS) (China)

    2017-02-15

    Bimetallic core–shell nanoparticles (CSNPs) have attracted great interest not only because of their superior stability, selectivity, and catalytic activity but also due to their tunable properties achieved by changing the morphology, sequence, and sizes of both core and shell. In this study, the structure, stability, charge transfer, electronic, and magnetic properties of 13-atom and 55-atom Cu and Cu–Ni CSNPs were investigated using the density functional theory (DFT) calculations. The results show that Ni@Cu CSNPs with a Cu surface shell are more energetically favorable than Cu@Ni CSNPs with a Ni surface shell. Interestingly, three-shell Ni@Cu{sub 12}@Ni{sub 42} is more stable than two-shell Cu{sub 13}@Ni{sub 42}, while two-shell Ni{sub 13}@Cu{sub 42} is more stable than three-shell Cu@Ni{sub 12}@Cu{sub 42}. Analysis of Bader charge illustrates that the charge transfer increases from Cu core to Ni shell in Cu@Ni NPs, while it decreases from Ni core to Cu shell in Ni@Cu NPs. Furthermore, the charge transfer results that d-band states have larger shift toward the Fermi level for the Ni@Cu CSNPs with Cu surface shell, while the Cu@Ni CSNPs with Ni surface shell have similar d-band state curves and d-band centers with the monometallic Ni NPs. In addition, the Cu–Ni CSNPs possess higher magnetic moment when the Ni atoms aggregated at core region of CSNPs, while having lower magnetic moment when the Ni atoms segregate on surface region. The change of the Cu atom location in CSNPs has a weak effect on the total magnetic moment. Our findings provide useful insights for the design of bimetallic core–shell catalysts.

  1. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.

  2. Statistics and the shell model

    Weidenmueller, H.A.

    1985-01-01

    Starting with N. Bohr's paper on compound-nucleus reactions, we confront regular dynamical features and chaotic motion in nuclei. The shell-model and, more generally, mean-field theories describe average nuclear properties which are thus identified as regular features. The fluctuations about the average show chaotic behaviour of the same type as found in classical chaotic systems upon quantisation. These features are therefore generic and quite independent of the specific dynamics of the nucleus. A novel method to calculate fluctuations is discussed, and the results of this method are described. (orig.)

  3. Electron Shell as a Resonator

    Karpeshin, F. F.

    2002-01-01

    Main principles of the resonance effect arising in the electron shells in interaction of the nuclei with electromagnetic radiation are analyzed and presented in the historical aspect. Principles of NEET are considered from a more general position, as compared to how this is usually presented. Characteristic features of NEET and its reverse, TEEN, as internal conversion processes are analyzed, and ways are offered of inducing them by laser radiation. The ambivalent role of the Pauli exclusion principles in NEET and TEEN processes is investigated.

  4. Modified solvothermal synthesis and characterization of CdS/ZnS core/shell nanorods

    Baby Suganthi, A.R.; Sagayaraj, P.

    2013-01-01

    Core/shell CdS/ZnS nanorods were synthesized using a two-step solvothermal approach. The first step is the formation of CdS nanoparticles initiated using nucleation followed by growth through coalescence-exchange and particle coagulation. The second step leads to the formation of ZnS and further coalescence-exchange leading to deposition and growth of a ZnS shell around CdS nanoparticles. The structural, morphological and chemical studies were performed using X-ray diffraction, Energy Dispersive X-ray spectroscopy (EDX) Scanning electron Microscopy (SEM), UV–vis absorption spectra and Transmission Electron Microscopy (TEM), provide direct evidence for shell growth. The present synthesis provides a rational approach to the design of novel core/shell nanomaterials with appealing applications in optoelectronic devices. - Graphical abstract: From the resulting TEM images, the formation of core/shell could be observed. The apparent microscopy contrast between the CdS core and the ZnS shell offers evidence for the formation of CdS/ZnS core/shell nanostructures. It is clearly evident that the surfaces of the nanorods became rough after coating and also the diameter of the nanorod is seen increased up to 40–50 nm. Highlights: ► CdS/ZnS core/shell nanorods were synthesized using two-step solvothermal approach. ► The nanoparticles were characterized by XRD, EDX, SEM, UV–vis and TEM. ► SEM images revealed the surface roughness after ZnS shell growth. ► TEM microscopy offers evidence for the formation of core/shell nanostructures

  5. Investigation of dynamic characteristics of shells with holes and added mass

    Seregin Sergey Valer’evich

    2014-04-01

    Full Text Available Thin cylindrical shells are widely used in construction, engineering and other industries. In case of designing a reservoir for the isothermal storage of liquefied gases such cases are inevitable, when housing requires various technical holes. A point wise added mass can appear into practice in the form of suspended spotlights, radar, architectural inclusions in buildings and structures of various purposes. It is known, that the dynamic asymmetry as an initial irregular geometric shape, including holes, and the added mass leads to specific effects in shells. In the paper the impact of a cut on the frequency and form of its own vibrations of thin circular cylindrical shells is theoretically examined with the help of the equations of linear shallow shell theory. For modal equations with Nav’e boundary conditions, we used the Bubnov - Galerkin method. The authors have expressed a formula for finding the lowest of the split-frequency vibrations of a shell with a cutout. It is stated, that in case of an appropriate choice of added mass value the lower frequencies are comparable with the case of vibrations of a shell with a hole. By numerical and experimental modeling and finite element method in the environment of MSC "Nastran" oscillation frequencies a shell supporting a concentrated mass and a shell with a cutout were compared. It is shown, that the results of the dynamic analysis of shells with holes with a suitable choice of the attached mass values are comparable with the results of the analysis of shells carrying a point mass. It was concluded that the edges in the holes, significantly affect the reduction in the lowest frequency, and need to be strengthened.

  6. Nb3Sn Quadrupoles Designs For The LHC Upgrades

    Felice, Helene

    2008-01-01

    In preparation for the LHC luminosity upgrades, high field and large aperture Nb 3 Sn quadrupoles are being studied. This development has to incorporate all the relevant features for an accelerator magnet like alignment and cooling channels. The LARP HQ model is a high field and large bore quadrupole that will meet these requirements. The 2-layer coils are surrounded by a structure based on key and bladder technology with supporting iron yoke and aluminum shell. This structure is aimed at pre-stress control, alignment and field quality. We present here the magnetic and mechanical design of HQ, along with recent progress on the development of the first 1-meter model.

  7. Use of LS-DYNA(Registered TradeMark) to Assess the Energy Absorption Performance of a Shell-Based Kevlar(TradeMark)/Epoxy Composite Honeycomb

    Polanco, Michael

    2010-01-01

    The forward and vertical impact stability of a composite honeycomb Deployable Energy Absorber (DEA) was evaluated during a full-scale crash test of an MD-500 helicopter at NASA Langley?s Landing and Impact Research Facility. The lower skin of the helicopter was retrofitted with DEA components to protect the airframe subfloor upon impact and to mitigate loads transmitted to Anthropomorphic Test Device (ATD) occupants. To facilitate the design of the DEA for this test, an analytical study was conducted using LS-DYNA(Registered TradeMark) to evaluate the performance of a shell-based DEA incorporating different angular cell orientations as well as simultaneous vertical and forward impact conditions. By conducting this study, guidance was provided in obtaining an optimum design for the DEA that would dissipate the kinetic energy of the airframe while maintaining forward and vertical impact stability.

  8. Nepal CRS project incorporates.

    1983-01-01

    The Nepal Contraceptive Retail Sales (CRS) Project, 5 years after lauching product sales in June 1978, incorporated as a private, nonprofit company under Nepalese management. The transition was finalized in August 1983. The Company will work through a cooperative agreement with USAID/Kathmandu to complement the national family planning goals as the program continues to provide comtraceptives through retail channels at subsidized prices. Company objectives include: increase contraceptive sales by at least 15% per year; make CRS cost effective and move towards self sufficiency; and explore the possibility of marketing noncontraceptive health products to improve primary health care. After only5 years the program can point to some impressive successes. The number of retial shops selling family planning products increased from 100 in 1978 to over 8000, extending CRS product availability to 66 of the country's 75 districts. Retail sales have climbed dramatically in the 5-year period, from Rs 46,817 in 1978 to Rs 271,039 in 1982. Sales in terms of couple year protection CYP) have grown to 24,451 CYP(1982), a 36% increase over 1980 CYP. Since the beginning of the CRS marketing program, total distribution of contraceptives--through both CRS and the Family Planning Maternal and Child Haelth (FP/MCH) Project--has been increasing. While the FP/MCH program remains the largest distributor,contribution of CRS Products is increasing, indicating that CRS is creating new product acceptors. CRS market share in 1982 was 43% for condoms and 16% for oral contraceptives (OCs). CRS markets 5 products which are subsidized in order to be affordable to consumers as well as attractive to sellers. The initial products launched in June 1978 were Gulaf standard dose OCs and Dhaal lubricated colored condoms. A less expensive lubricates, plain Suki-Dhaal condom was introduced in June 1980 in an attempt to reach poorer rural populations, but rural distribution costs are excessive and Suki

  9. Carbon isotopes in mollusk shell carbonates

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  10. Can the shell of the green-lipped mussel Perna viridis from the west coast of Peninsular Malaysia be a potential biomonitoring material for Cd, Pb and Zn?

    Yap, C. K.; Ismail, A.; Tan, S. G.; Abdul Rahim, I.

    2003-07-01

    The distributions of Cd, Pb and Zn in the total soft tissues and total shells of the green-lipped mussel Perna viridis were studied in field collected samples as well as from laboratory experimental samples. The results showed that Cd, Pb and Zn were readily accumulated in the whole shells. In mussels sampled from 12 locations along the west coast of Peninsular Malaysia, the ratios of the shell metals to the soft tissue metals were different at each sampling site. Nevertheless, the Cd and Pb levels in the shells were always higher than those in the soft tissues, while the Zn level was higher in the soft tissues than in the shells. In comparison with soft tissues, the degrees of variability for Pb and Cd concentrations in the shells were lower. The lower degrees of variability and significant ( Pwork showed that the pattern of depuration in the shell was not similar to that of the soft tissue although their patterns of accumulation were similar. This indicated that the depuration of heavy metals in the shell was not affected by the physiological conditions of the mussels. Although Zn could be regulated by the soft tissue, the incorporated Cd, Pb and Zn remained in the shell matrices. The present results support the use of the total shell of P. viridis as a potential biomonitoring material for long-term contamination of Cd, Pb and Zn.

  11. Retrieval technology development for Hanford double-shell tanks

    Bamberger, J.A.; Wise, B.M.; Miller, W.C.

    1992-05-01

    This paper describes the combined analytical, computational, and experimental program developed for identifying operating strategies for mobilization and retrieval of radioactive waste stored in double-shell tanks at Hanford. Sludge mobilization, slurry uniformity, and slurry retrieval investigations will produce guidelines for mixer pump and retrieval pump operation based on the physical properties of the waste and the geometric properties of the system (number of operating pumps and pump design and placement)

  12. Stable isotope ratios in freshwater mussel shells as high resolution recorders of riverine environmental variation

    Kukolich, S.; Kendall, C.; Dettman, D. L.

    2017-12-01

    The geochemical record stored in growth increments of freshwater mussel shells reveals annual to sub-annual changes in environmental conditions during the lifetime of the organism. The carbon, nitrogen, and oxygen stable isotope composition of aragonite shells responds to changes in water chemistry, temperature, streamflow, turbidity, growth rate, size, age, and reproduction. The goals of this study are to determine how stable isotopes can be used to reconstruct the conditions in which the mussels lived and to illuminate any vital effects that might obscure the isotopic record of those conditions. Previous research has suggested that annual δ13C values decrease in older freshwater mussel shells due to lower growth rates and greater incorporation of dietary carbon into the shell with increasing age. However, a high-resolution, seasonal investigation of δ13C, δ15N, and δ18O as they relate to organism age has not yet been attempted in freshwater mussels. A total of 28 Unionid mussels of three different species were collected live in 2011 in the Tennessee River near Paducah, Kentucky, USA. In this study, we analyzed the shell nacre and external organic layers for stable carbon, nitrogen, and oxygen isotope ratios, focusing on growth bands formed between 2006 and 2011. We present a time series of shell δ13C, δ18O, and δ15N values with monthly resolution. We also compare the shell-derived geochemical time series to a time series of the δ13C and δ15N of particulate organic matter, δ13C of DIC, δ18OWater, and water temperature in which the mussels lived. Results show that environmental factors such as water temperature and primary productivity dominate shell chemistry while animal age has little or no effect.

  13. Analysis of thin-walled cylindrical composite shell structures subject to axial and bending loads: Concept development, analytical modeling and experimental verification

    Mahadev, Sthanu

    distinguished with respect to the circumferential arc angle, thickness-to-mean radius ratio and total laminate thickness. The potential of this methodology is challenged to analytically determine the location of the centroid. This precise location dictates the decoupling of extension-bending type deformational response in tension loaded composite structures. Upon the cross-validation of the centroidal point through the implementation of an ANSYS based finite element routine, influence of centroid is analytically examined under the application of a concentrated longitudinal tension and bending type loadings on a series of cylindrical shells characterized by three different symmetric-balanced stacking sequences. In-plane ply-stresses are computed and analyzed across the circumferential contour. An experimental investigation has been incorporated via designing an ad-hoc apparatus and test-up that accommodates the quantification of in-plane strains, computation of ply-stresses and addresses the physical characteristics for a set of auto-clave fabricated cylindrical shell articles. Consequently, this work is shown to essentially capture the mechanical aspects of cylindrical shells, thus facilitating structural engineers to design and manufacture viable structures.

  14. Fabrication of CuO–Pt core–shell nanohooks by in situ reconstructing the Pt-shells

    Cao, Fan; Zheng, He; Zhao, Ligong; Huang, Rui; Jia, Shuangfeng; Liu, Huihui; Li, Lei; Wang, Zhao; Hu, Yongming; Gu, Haoshuang; Wang, Jianbo

    2018-05-01

    The design of various nanostructures with specific compositions and shapes is highly demanded due to the widespread use of micro/nano electro-mechanical systems. In this work, one-dimensional CuO–Pt core–shell nanowires (NWs) are acquired by depositing Pt nanoparticles onto CuO NWs and then mechanically-shaped into nanohooks. Subsequently, the hook-like shape is maintained by the Pt-shell which is reconstructed via Joule heat and re-solidified after cooling down, during which the elastic strain energy is stored in the CuO-core. The results provide a simple strategy to design nanostructures with various compositions and shapes, implying the potential applications in mechanical energy storage and shape memory nanodevices.

  15. Design

    Volf, Mette

    Design - proces & metode iBog®  er enestående i sit fokus på afmystificering og operationalisering af designprocessens flygtige og komplekse karakter. Udgivelsen går bag om designerens daglige arbejde og giver et indblik i den kreative skabelsesproces, som designeren er en del af. Udover et bredt...... indblik i designerens arbejdsmetoder og designparametre giver Design - proces & metode en række eksempler fra anerkendte designvirksomheder, der gør det muligt at komme helt tæt på designerens virkelighed....

  16. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  17. Transitional nuclei near shell closures

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  18. Structural Color Palettes of Core-Shell Photonic Ink Capsules Containing Cholesteric Liquid Crystals.

    Lee, Sang Seok; Seo, Hyeon Jin; Kim, Yun Ho; Kim, Shin-Hyun

    2017-06-01

    Photonic microcapsules with onion-like topology are microfluidically designed to have cholesteric liquid crystals with opposite handedness in their core and shell. The microcapsules exhibit structural colors caused by dual photonic bandgaps, resulting in a rich variety of color on the optical palette. Moreover, the microcapsules can switch the colors from either core or shell depending on the selection of light-handedness. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Design

    Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene

    2013-01-01

    Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…

  20. Crafting user experiences by incorporating dramaturgical techniques of storytelling

    Atasoy, B.; Martens, J.B.O.S.

    2011-01-01

    Design is changing into an experience-oriented discipline and therefore designers need appropriate tools and methods to incorporate experiential aspects into their designs. We argue that the creative skills required of designers are starting to overlap with those required of professional

  1. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  2. Material Distribution Optimization for the Shell Aircraft Composite Structure

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2016-09-01

    One of the main goal in aircraft structures designing isweight decreasing and stiffness increasing. Composite structures recently became popular in aircraft because of their mechanical properties and wide range of optimization possibilities.Weight distribution and lay-up are keys to creating lightweight stiff strictures. In this paperwe discuss optimization of specific structure that undergoes the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflowinduced vibrations at the constrained weight of the part. Initial model was created with CAD tool Siemens NX, finite element analysis and post processing were performed with COMSOL Multiphysicsr and MATLABr. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. Wall thickness has been changed using parametric approach by an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. To avoid a local stress concentration, wall thickness increment was defined as smooth function on the shell surface dependent of auxiliary sphere position and size. Our study consists of multiple steps: CAD/CAE transformation of the model, determining wind pressure for different flow angles, optimizing wall thickness distribution for specific flow angles, designing a lay-up for optimal material distribution. The studied structure was improved in terms of maximum and average strain energy at the constrained expense ofweight growth. Developed methods and tools can be applied to wide range of shell-like structures made of multilayered quasi-isotropic laminates.

  3. Synthesis of hydrophobic zeolite X-SiO{sub 2} core-shell composites

    Liu Liying [School of Material and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Cooperative Research Centre for Greenhouse Gas Technologies (CO-2CRC) (Australia); Singh, Ranjeet; Li Gang; Xiao Gongkui [Cooperative Research Centre for Greenhouse Gas Technologies (CO-2CRC) (Australia); Department of Chemical Engineering, Monash University, Clayton, Victoria 3800 (Australia); Webley, Paul A., E-mail: paul.webley@eng.monash.edu.au [Cooperative Research Centre for Greenhouse Gas Technologies (CO-2CRC) (Australia); Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010 (Australia); Zhai Yuchun [School of Material and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Hydrophobic 13X zeolite composites with silicalite and mesoporous silica shells are designed. Black-Right-Pointing-Pointer These core-shell composites are silynated and their hydrophobicity is tested. Black-Right-Pointing-Pointer Addition of silica layer increases the density of surface hydroxyl groups which makes the improvement of the hydrophobicity possible by further silynation. - Abstract: Core-shell structures of zeolite X coated with silicalite as well as mesoporous (MCM-41) have been synthesized. Furthermore, the surfaces of the silicalite and mesoporous silica shells were silylated using organosilanes. The materials were characterized by X-ray diffraction, nitrogen adsorption/desorption, scanning and transmission electron microscopy. The results show that the properties of zeolite 13X-silicalite and zeolite 13X-mesoporous silica core-shells composite structures are well maintained even after the modification. As expected, the shell thickness increased with increase in synthesis time, however, the micropore volume decreased. Silylation with smaller organosilanes (trimethyl chlorosilane) resulted in decrease in surface area as they diffused through the pores; however, bulkier silane reacted with surface hydroxyl groups and maintained the pore structure. Contact angle measurements revealed that hydrophobicity of zeolite 13X was enhanced by the microporous and mesoporous shell coating and was further improved by silylation.

  4. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.

    Sun, Jing Ya; Wang, Zhi Kui; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Tran, Toan Trong; Lu, Xianmao

    2010-12-28

    The intriguing optical and catalytic properties of metal-silica core-shell nanoparticles, inherited from their plasmonic metallic cores together with the rich surface chemistry and increased stability offered by their silica shells, have enabled a wide variety of applications. In this work, we investigate the confined vibrational modes of a series of monodisperse Ag@SiO(2) (cubic core)-shell nanospheres synthesized using a modified Stöber sol-gel method. The particle-size dependence of their mode frequencies has been mapped by Brillouin light scattering, a powerful tool for probing hypersonic vibrations. Unlike the larger particles, the observed spheroidal-like mode frequencies of the smaller ones do not scale with inverse diameter. Interestingly, the onset of the deviation from this linearity occurs at a smaller particle size for higher-energy modes than for lower-energy ones. Finite element simulations show that the mode displacement profiles of the Ag@SiO(2) core-shells closely resemble those of a homogeneous SiO(2) sphere. Simulations have also been performed to ascertain the effects that the core shape and the relative hardness of the core and shell materials have on the vibrations of the core-shell as a whole. As the vibrational modes of a particle have a bearing on its thermal and mechanical properties, the findings would be of value in designing core-shell nanostructures with customized thermal and mechanical characteristics.

  5. Experimental buckling investigation of ring-stiffened cylindrical shells under unsymmetrical axial loads

    Baker, W.E.; Babock, C.D.; Bennett, J.G.

    1983-01-01

    Six steel shells having nuclear containment-like features were fabricated and loaded to failure with an offset axial load. The shells of R/t = 500 buckled plastically. Four of the shells had reinforced circular cutouts. These penetrations were sized to cut no ring-stiffener, a single, two- or three-ring stiffeners. Reinforcing and framing around the penetrations were based upon the area-replacement rule of the applicable portion of the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and were of a design to stimulate actual practice for nuclear steel containments. Prior to testing, imperfections were measured and strain gages were applied to determine information on load distribution at the ends of the cylinder and strain fields at areas likely to buckle. Buckling loads were determined for an axial load applied with an eccentricity of R/2 where R is the cylinder radius. The results showed that the buckling load and mode for the shell having a penetration that did not cut a ring stiffener were essentially the same as those for the unpenetrated shell. The buckling loads for the penetrated shells in which stiffeners were interrupted were less than that for the unpenetrated shells. Results of all tests are compared to numerical solutions carried out using a nonlinear collapse analysis and to the predictions of ASME Code Case N-284

  6. Evolution of shell gaps with neutron richness

    Basu, Moumita Ray; Ray, I.; Kshetri, Ritesh; Saha Sarkar, M.; Sarkar, S.

    2006-01-01

    In the present work, an attempt has been made to coordinate the recent data available over the periodic table, specially near the shell gaps and studied the evolution of the shell gaps as function of neutron numbers and/or other related quantities

  7. Microsoft Exchange Server PowerShell cookbook

    Andersson, Jonas

    2015-01-01

    This book is for messaging professionals who want to build real-world scripts with Windows PowerShell 5 and the Exchange Management Shell. If you are a network or systems administrator responsible for managing and maintaining Exchange Server 2013, you will find this highly useful.

  8. Shell effects in the nuclear deformation energy

    Ross, C.K.

    1973-01-01

    A new approach to shell effects in the Strutinsky method for calculating nuclear deformation energy is evaluated and the suggestion of non-conservation of angular momentum in the same method is resolved. Shell effects on the deformation energy in rotational bands of deformed nuclei are discussed. (B.F.G.)

  9. Intershell correlations in photoionization of outer shells

    Amusia, M.Ya. [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Chernysheva, L.V. [A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Drukarev, E.G. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg 188300 (Russian Federation)

    2016-02-15

    We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.

  10. Radiometric measuring method for egg shells

    Forberg, S; Svaerdstroem, K

    1973-02-01

    A description is given of a fast nondestructive radiometric method for registration of the thickness of egg shells of the tawny owl, hen, osprey, and Canada goose. Certain errors are discussed. Measurement of the thickness of egg shells (mineral content per cm/sup 2/) with an accuracy better than 1% is possible in less than one minute under field conditions. (auth)

  11. Statistical Mechanics of Thin Spherical Shells

    Andrej Košmrlj

    2017-01-01

    Full Text Available We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated “pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.

  12. Thick-shell nanocrystal quantum dots

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  13. Fabrication of Foam Shells for ICF Experiments

    Czechowicz, D. G.; Acenas, O.; Flowers, J. S.; Nikroo, A.; Paguio, R. R.; Schroen, D. G.; Streit, J.; Takagi, M.

    2004-11-01

    The General Atomics/Schafer team has developed processes to fabricate foam shells targets suitable for ICF experiments. The two most common chemical systems used to produce foam shells have been resorcinol-formaldehyde (R/F) aerogel and divinylbenzene (DVB). Spherical targets have been made in the form of shells and beads having diameters ranging from approximately 0.5 mm to 4.0 mm, and having densities from approximately 100 mg/cc to 250 mg/cc. The work on R/F foam shells has been concentrated on 1) shell fabrication process improvement to obtain high yields ( ˜25%) and 2) depositing a reliable permeation barrier to provide shells for ongoing direct drive experiments at LLE. Development of divinylbenzene foam shells has been mainly directed towards Inertial Fusion Energy applications (at densities as low as 30 mg/cc) and recently for shells for experiments at LLE. Details of the relevant metrology and properties of these foams as well as the range of targets currently available will be discussed.

  14. Intershell correlations in photoionization of outer shells

    Amusia, M.Ya.; Chernysheva, L.V.; Drukarev, E.G.

    2016-01-01

    We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.

  15. Statistical mechanics of microscopically thin thermalized shells

    Kosmrlj, Andrej

    Recent explosion in fabrication of microscopically thin free standing structures made from graphene and other two-dimensional materials has led to a renewed interest in the mechanics of such structures in presence of thermal fluctuations. Since late 1980s it has been known that for flat solid sheets thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli in a scale-dependent fashion. However, much is still unknown about the mechanics of thermalized flat sheets of complex geometries and about the mechanics of thermalized shells with non-zero background curvature. In this talk I will present recent development in the mechanics of thermalized ribbons, spherical shells and cylindrical tubes. Long ribbons are found to behave like hybrids between flat sheets with renormalized elastic constants and semi-flexible polymers, and these results can be used to predict the mechanics of graphene kirigami structures. Contrary to the anticipated behavior for ribbons, the non-zero background curvature of shells leads to remarkable novel phenomena. In shells, thermal fluctuations effectively generate negative surface tension, which can significantly reduce the critical buckling pressure for spherical shells and the critical axial load for cylindrical tubes. For large shells this thermally generated load becomes big enough to spontaneously crush spherical shells and cylindrical tubes even in the absence of external loads. I will comment on the relevance for crushing of microscopic shells (viral capsids, bacteria, microcapsules) due to osmotic shocks and for crushing of nanotubes.

  16. Biomineral repair of abalone shell apertures.

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Design and testing of a combustion-heated nineteen-converter SAVTEC array

    Nyren, T.; Fitzpatrick, G.O.; Korringa, M.; McVey, J.; Sahines, T.

    1984-01-01

    The SAVTEC (Self-Adjusting Versatile Thermionic Energy Converter) is a new design approach for achieving very close (<12μ) interelectrode spacing in a thermionic converter. Techniques were developed for fabricating an array of nineteen SAVTEC converters. The array was incorporated in an SiC protective ''hot shell'' which also served as a radiant heat source for the emitter of each converter. The completed assembly was tested with a specially constructed combustion heat source. Electric output was generated by sixteen of the nineteen converters, despite poor thermal contact in a cooling block, which resulted in high collector temperatures. Details of the array design and test results are described

  18. Performance of an anisotropic Allman/DKT 3-node thin triangular flat shell element

    Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.

    1992-05-01

    A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular flat shell element in global coordinates is presented. An Allman triangle (AT) is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending element. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, the membrane and bending strain-displacement matrices. Using the aforementioned approach, the objective of this study is to develop and test the performance of a practical 3-node flat shell element that could be used in plate problems with unsymmetrically stacked composite laminates. The performance of the latter element is tested on plates of varying aspect ratios. The developed 3-node shell element should simplify the programming task and have the potential of reducing the computational time.

  19. Contribution of Brazil nut shell fiber and electron-beam irradiation in thermomechanical properties of HDPE

    Polato, Pamella; Lorusso, Leandro Alex; Souza, Clecia de Moura; Moura, Esperidiana Augusta Barretos de; Chinellato, Anne; Rosa, Ricardo de

    2010-01-01

    In the present work, the influence of electron-beam irradiation on thermo-mechanical properties of HDPE and HDPE/Brazil nut shell fiber composite was investigated. The materials were irradiated at radiation dose 50 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated samples were submitted to thermo-mechanical tests and the correlation between their properties was discussed. The results showed that the incorporation of Brazil nut shell fiber represented a significant gain (p < 0,05) in tensile strength at break, flexural strength, flexural module, Vicat softening temperature and heat distortion temperature (HDT) properties of the HDPE. In addition, the irradiated HDPE/Brazil nut shell fiber composite presented a significant increase (p < 0.05) in this properties compared with irradiated HDPE. (author)

  20. Development and application of General Purpose Data Acquisition Shell (GPDAS) at advanced photon source

    Chung, Youngjoo; Kim, Keeman.

    1991-01-01

    An operating system shell GPDAS (General Purpose Data Acquisition Shell) on MS-DOS-based microcomputers has been developed to provide flexibility in data acquisition and device control for magnet measurements at the Advanced Photon Source. GPDAS is both a command interpreter and an integrated script-based programming environment. It also incorporates the MS-DOS shell to make use of the existing utility programs for file manipulation and data analysis. Features include: alias definition, virtual memory, windows, graphics, data and procedure backup, background operation, script programming language, and script level debugging. Data acquisition system devices can be controlled through IEEE488 board, multifunction I/O board, digital I/O board and Gespac crate via Euro G-64 bus. GPDAS is now being used for diagnostics R ampersand D and accelerator physics studies as well as for magnet measurements. Their hardware configurations will also be discussed. 3 refs., 3 figs

  1. Application of protease technology in dermatology: rationale for incorporation into skin care with initial observations on formulations designed for skin cleansing, maintenance of hydration, and restoration of the epidermal permeability barrier.

    Del Rosso, James Q

    2013-06-01

    This article reviews background on proteases and their functions, their physiological significance in skin, and the potential implications of incorporating specific proteases and protease blends into dermatological products, including skin care formulations. The history of protease blend formulations used in wound model studies and for other disorders is reviewed. In vitro data with use of a specific 3-protease blend with evaluation of the impact on various skin proteins and peptides is also discussed in this article.

  2. Application of Protease Technology in Dermatology: Rationale for Incorporation into Skin Care with Initial Observations on Formulations Designed for Skin Cleansing, Maintenance of Hydration, and Restoration of the Epidermal Permeability Barrier

    Del Rosso, James Q.

    2013-01-01

    This article reviews background on proteases and their functions, their physiological significance in skin, and the potential implications of incorporating specific proteases and protease blends into dermatological products, including skin care formulations. The history of protease blend formulations used in wound model studies and for other disorders is reviewed. In vitro data with use of a specific 3-protease blend with evaluation of the impact on various skin proteins and peptides is also ...

  3. Obtainment of calcium carbonate from mussels shell

    Hamester, M.R.R.; Becker, D.

    2010-01-01

    The mussels and oyster shell are discarded at environment, and this accumulation is causing negative consequences to ecosystem. Calcium carbonate is main constituent of the shell chemical composition. Aiming to reduce environmental aggression and generate income to shellfish producer, there was the possibility of using these shells as an alternative to commercial calcium carbonate. For this physics, chemicals and thermal properties were evaluated, using X-ray fluorescence, thermogravimetric analysis, size distribution, abrasiveness and scanning electronic microscopy. The results indicate that mussels shells have an initial degradation temperature higher than commercial calcium carbonate e same lost weight behavior and 95% of shell chemical composition is calcium carbonate. The sample size distribution was influenced by grinding condition and time as well as its abrasiveness. (author)

  4. Semiclassical shell structure in rotating Fermi systems

    Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.

    2010-01-01

    The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.

  5. Optical properties of core-shell and multi-shell nanorods

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  6. On the core-mass-shell-luminosity relation for shell-burning stars

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  7. Faraday Wave Turbulence on a Spherical Liquid Shell

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  8. Gravity on-shell diagrams

    Herrmann, Enrico [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA 95616 (United States)

    2016-11-22

    We study on-shell diagrams for gravity theories with any number of supersymmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only dlog-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N=8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in http://dx.doi.org/10.1007/JHEP06(2015)202.

  9. Stability of accelerated metal shells

    Tahsiri, H.

    1976-01-01

    A systematic treatment has been developed for the Rayleigh-Taylor instability of an accelerated liner. It is applicable to one-dimensional models either compressible or incompressible. With this model several points have been clarified. For an incompressible liner model, the Rayleigh-Taylor instability will have about five e-folding periods and the usual growth rate is independent of the current distribution or current rise time. Adequate stability will therefore depend on the magnitude of the initial perturbations or the precision of the initial liner and the thickness over which the shell is accelerated. However, for a compressible model, theory predicts that the current rise time is important and the Rayleigh-Taylor instability is suppressed if the current rise time is less than the shock transit time

  10. PF-WFS Shell Inspection Update December 2016

    Vigil, Anthony Eugene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ledoux, Reina Rebecca [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzales, Antonio R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montano, Joshua Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Savage, Lowell Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Randles, Wayne Alfred [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-26

    Since the last project update in FY16:Q2, PF-WFS personnel have advanced in understanding of shell inspection on Coordinate Measuring Machines {CMM} and refined the PF-WFS process to the point it was decided to convert shell inspection from the Sheffield #1 gage to Lietz CM Ms. As a part of introspection on the quality of this process many sets of data have been reviewed and analyzed. This analysis included Sheffield to CMM comparisons, CMM inspection repeatability, fixturing differences, quality check development, probing approach changes. This update report will touch on these improvements that have built the confidence in this process to mainstream it inspecting shells. In addition to the CMM programming advancements, the continuation in refinement of input and outputs for the CMM program has created an archiving scheme, input spline files, an output metafile, and inspection report package. This project will continue to mature. Part designs may require program modifications to accommodate "new to this process" part designs. Technology limitations tied to security and performance are requiring possible changes to computer configurations to support an automated process.

  11. Simplified vibrocreep buckling analysis of circular cylindrical shells

    Simeonova, K.; Hadjikov, L.; Georgiev, K.; Iotov, I.

    1981-01-01

    The circular cylindrical shells are used as a mathematical model in the investigation of the reactions of the supporting elements in nuclear reactor core, airplane designing etc. The buckling in the process of vibrocreep is one of the possible catastrophes during the exploitation of those elements. The paper presents a simplified investigation of the vibro-creep stability of a shell axially pressed. The main simplification consists of the fact that the average process of vibro-creep is considered stationary. The modified constitutive equations of Maxwell-Gurevitch-Rabinovitch, concerning elasto-viscous and elasto-plastic material is used. The critical time is calculated after two criteria. Theoretical relations between the critical time and the dynamic loading velocity amplitude are obtained. Those relations are compared to relations experimentally proved. (orig.)

  12. [Cooling shell in renal transplantation. Thermometric evaluation of a prototype].

    Desgrandchamps, F; Eugene, M; Tuchschmid, Y; Muller, F; Teillac, P; Idatte, J M; Le Duc, A

    1996-02-01

    We have developed a cooling system for renal transplants designed to eliminate the second period of warm ischaemia corresponding to the vascular anastomosis phase of renal transplantation. This is an autonomous and independent system which forms a shell around the transplant. Following application of the system, cooling is achieved by refrigeration of a Multitherm sponge contained in the wall of the shell. The thermometric characteristics of a prototype were evaluated in vitro and in vivo in pigs. This system allows the kidney to be preserved at a temperature of less than 10 degrees C for 1 hour without inducing any risk of lesions of the renal surface. Human applications should be developed in the near future.

  13. Gamma ray attenuation studies on concrete reinforced with coconut shells

    Vishnu, C.V.; Antony, Joseph

    2017-01-01

    The fact that radiation could be harmful has led to the development of wide variety of shields to protect against it. For nuclear radiation shielding, a larger quantity of shielding material is required and therefore, the study of propagation of radiation flux in shielding materials is an essential requirement for shield design. Concrete has proven to be an excellent and versatile shielding material with well-established linear attenuation for neutrons and gamma rays. Coconut being naturally available, it can be used readily in concrete, still maintaining almost all the qualities of the original form of concrete. Concrete obtained using coconut shell as a coarse aggregate satisfies the requirements of concrete. Coconut shell aggregate possess acceptable strength which is required for structural concrete

  14. Active Full-Shell Grazing-Incidence Optics

    Davis, Jacqueline M.; Elsner, Ronald F.; Ramsey, Brian D.; O'Dell, Stephen L.; Kolodziejczak, Jeffery; Weisskopf, Martin C.; Gubarev, Mikhail V.

    2016-01-01

    MSFC has a long history of developing full-shell grazing-incidence x-ray optics for both narrow (pointed) and wide field (surveying) applications. The concept presented in this paper shows the potential to use active optics to switch between narrow and wide-field geometries, while maintaining large effective area and high angular resolution. In addition, active optics has the potential to reduce errors due to mounting and manufacturing lightweight optics. The design presented corrects low spatial frequency error and has significantly fewer actuators than other concepts presented thus far in the field of active x-ray optics. Using a finite element model, influence functions are calculated using active components on a full-shell grazing-incidence optic. Next, the ability of the active optic to effect a change of optical prescription and to correct for errors due to manufacturing and mounting is modeled.

  15. Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots.

    Reid, Kemar R; McBride, James R; Freymeyer, Nathaniel J; Thal, Lucas B; Rosenthal, Sandra J

    2018-02-14

    Thick-shell (>5 nm) InP-ZnSe colloidal quantum dots (QDs) grown by a continuous-injection shell growth process are reported. The growth of a thick crystalline shell is attributed to the high temperature of the growth process and the relatively low lattice mismatch between the InP core and ZnSe shell. In addition to a narrow ensemble photoluminescence (PL) line-width (∼40 nm), ensemble and single-particle emission dynamics measurements indicate that blinking and Auger recombination are reduced in these heterostructures. More specifically, high single-dot ON-times (>95%) were obtained for the core-shell QDs, and measured ensemble biexciton lifetimes, τ 2x ∼ 540 ps, represent a 7-fold increase compared to InP-ZnS QDs. Further, high-resolution energy dispersive X-ray (EDX) chemical maps directly show for the first time significant incorporation of indium into the shell of the InP-ZnSe QDs. Examination of the atomic structure of the thick-shell QDs by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals structural defects in subpopulations of particles that may mitigate PL efficiencies (∼40% in ensemble), providing insight toward further synthetic refinement. These InP-ZnSe heterostructures represent progress toward fully cadmium-free QDs with superior photophysical properties important in biological labeling and other emission-based technologies.

  16. Preliminary engineering studies for the support shell of the outer tracker of the SDC detector

    Vandergriff, D.H.; Mayhall, J.

    1991-09-01

    The Solenoidal Detector Collaboration (SDC) detector is in the conceptual design phase. ORNL is currently working with various sub-groups on the design of the outer tracker portion of the SDC detector. A major focus in the outer tracker design is the structure that mounts and supports the tracking elements. This structure must meet extreme requirements of alignment and stability while containing a minimum of material. This report describes the requirements, evaluations, and analyses that have been performed on the two options being explored; a cylindrical support shell and a modular support shell

  17. Flow induced vibration in shell and tube heat exchangers

    Soper, B.M.H.

    1981-01-01

    Assessing heat exchanger designs, from the standpoint of flow induced vibration, is becoming increasingly important as shell side flow velocities are increased in a quest for better thermal performance. This paper reviews the state of the art concerning the main sources of vibration excitation, i.e. vortex shedding resonance, turbulent buffeting, fluidelastic instability and acoustic resonance, as well as the structural dynamics of the tubes. It is concluded that there are many areas which require further investigation but there are sufficient data available at present to design, with reasonable confidence, units that will be free from flow induced vibration. Topics which are considered to be key areas for further work are listed

  18. Design

    Jensen, Ole B.; Pettiway, Keon

    2017-01-01

    In this chapter, Ole B. Jensen takes a situational approach to mobilities to examine how ordinary life activities are structured by technology and design. Using “staging mobilities” as a theoretical approach, Jensen considers mobilities as overlapping, actions, interactions and decisions by desig...... by providing ideas about future research for investigating mobilities in situ as a kind of “staging,” which he notes is influenced by the “material turn” in social sciences....... with a brief description of how movement is studied within social sciences after the “mobilities turn” versus the idea of physical movement in transport geography and engineering. He then explains how “mobilities design” was derived from connections between traffic and architecture. Jensen concludes...

  19. Stability of inner baffle-shell of pool type LMFBR - experimental and theoretical studies

    Lebey, J.; Combescure, A.

    1987-01-01

    I pool type LMFBR, the primary coolant circuit, inside the main vessel, comprises a hot plenum separated from a cold plenum by an inner baffle. For Superphenix 1 reactor, it was judged advisable to built a double-shell baffle, each shell withstanding only one type of loading (primary loading for one shell, secondary loading for the other). Due to the size and intricacy of the structure, this design involves unnegligible supplementary costs and manufacturing difficulties. Thus, an alternative solution has been studied for future plants projects. It consists of a single shell baffle having a shape especially studied to sustain the two types of applied loadings (thermal plus primary loadings). Such a shape was calculated by NOVATOME, and it was decided to check the ability of methods of analysis to predict the ruin of this structure under primary loading. For this purpose, a mock-up has been tested, and the experimental results compared with the calculated ones. (orig./GL)

  20. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.