WorldWideScience

Sample records for shell charge concentration

  1. Stability of charged thin shells

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-01-01

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  2. Coulomb energy of uniformly charged spheroidal shell systems.

    Science.gov (United States)

    Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera

    2015-03-01

    We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.

  3. Charged thin-shell gravastars in noncommutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Oevguen, Ali [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Eastern Mediterranean University, Physics Department, Famagusta, Northern Cyprus (Turkey); Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Jusufi, Kimet [State University of Tetovo, Physics Department, Tetovo (Macedonia, The Former Yugoslav Republic of); Institute of Physics, Ss. Cyril and Methodius University, Faculty of Natural Sciences and Mathematics, Skopje (Macedonia, The Former Yugoslav Republic of)

    2017-08-15

    In this paper we construct a charged thin-shell gravastar model within the context of noncommutative geometry. To do so, we choose the interior of the nonsingular de Sitter spacetime with an exterior charged noncommutative solution by cut-and-paste technique and apply the generalized junction conditions. We then investigate the stability of a charged thin-shell gravastar under linear perturbations around the static equilibrium solutions as well as the thermodynamical stability of the charged gravastar. We find the stability regions, by choosing appropriate parameter values, located sufficiently close to the event horizon. (orig.)

  4. Non-linear realizations of supersymmetry with off-shell central charges

    International Nuclear Information System (INIS)

    Santos Filho, P.B.; Oliveira Rivelles, V. de.

    1985-01-01

    A new class of non-linear realizations of the extended supersymmetry algebra with central charges is presented. They were obtained by applying the technique of dimensional reduction by Legendre transformation to a non-linear realization without central charges in one higher dimension. As a result an off-shell central charge is obtained. The non-linear lagrangian is the same as is the case of vanishing central charge. On-shell the central charge vanishes so this non-linear realization differs from that without central charges only off-shell. It is worked in two dimensions and its extension to higher dimensions is discussed. (Author) [pt

  5. Influence Analysis of Shell Material and Charge on Shrapnel Lethal Power

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available To compare the shrapnel lethal power with different shell material and charge, LS-DYNA was used to numerically simulate four kinds of shrapnel lethal power. The shell material was 58SiMn, 50SiMnVB or 40Cr, whereas the charge was RL-F. And the shell material was 58SiMn, whereas the charge was TNT. The shell rupture process and lethal power test were analyzed. The results show that, the lethal power of RL-F charge increase by 25%, 45%, 14% compared with the TNT charge, whereas the shell material was 58SiMn, 50SiMnVB, 40Cr. And then the guarantee range and lethal power can be improved by using the high explosive and changing shell material, whereas the projectile shape coefficient is invariable.

  6. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    . In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  7. Influence of the shell thickness and charge distribution on the effective interaction between two like-charged hollow spheres.

    Science.gov (United States)

    Angelescu, Daniel G; Caragheorgheopol, Dan

    2015-10-14

    The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.

  8. Self-force on an arbitrarily coupled scalar charge in cylindrical thin-shell spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Tomasini, C.; Rubin de Celis, E.; Simeone, C. [Universidad de Buenos Aires y IFIBA, CONICET, Ciudad Universitaria, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2018-02-15

    We consider the arbitrarily coupled field and self-force of a static massless scalar charge in cylindrical spacetimes with one or two asymptotic regions, with the only matter content concentrated in a thin-shell characterized by the trace of the extrinsic curvature jump κ. The self-force is studied numerically and analytically in terms of the curvature coupling ξ. We found the critical values ξ{sub c}{sup (n)} = n/(ρ(r{sub s})κ), with n element of N and ρ(r{sub s}) the metric's profile function at the position of the shell, for which the scalar field is divergent in the background configuration. The pathological behavior is removed by restricting the coupling to a domain of stability. The coupling has a significant influence over the self-force at the vicinities of the shell, and we identified ξ = 1/4 as the value for which the scalar force changes sign at a neighborhood of r{sub s}; if κ(1-4ξ) > 0 the shell acts repulsively as an effective potential barrier, while if κ(1-4ξ) < 0 it attracts the charge as a potential well. The sign of the asymptotic self-force only depends on whether there is an angle deficit or not on the external region where the charge is placed; conical asymptotics produce a leading attractive force, while Minkowski regions produce a repulsive asymptotic self-force. (orig.)

  9. Coulomb ionization of inner shells by heavy charged particles

    International Nuclear Information System (INIS)

    Lapicki, G.

    1975-01-01

    The theory of inner-shell Coulomb ionization by heavy charged particles, of atomic number small compared to the target atomic number, is developed through the extension of work by Brandt and his coworkers for K shells to L shells. In slow collisions relative to the characteristic times of the inner shell electrons, the quantum-mechanical predictions in the plane-wave Born approximation (PWBA) can exceed experimental cross sections by orders of magnitude. The effects of the perturbation of the atom by and the Coulomb deflection of the particle during collisions are included in the theory. The perturbed atomic states amount to a binding of the inner-shell electrons to the moving particle in slow collisions, and to a polarization of the inner shells by the particle passing at large impact parameters during nonadiabatic collisions. These effects, not contained in the PWBA, are treated in the framework of the perturbed stationary state (PSS) theory for slow collisions and in terms of the harmonic oscillator model of Ashley, Brandt, and Ritchie for stopping powers in fast collisions. The effect of the Coulomb deflection of the particle in the field of the target nucleus on the cross sections is incorporated in the semiclassical approximation of Bang and Hansteen. Except for the lightest target atoms, the contribution of electron capture by the particles to inner-shell ionizations is shown to be negligible. The theory as developed earlier for the K shell, and here for L shells, agrees well with the vast body of experimental data on inner-shell Coulomb ionization by heavy charged particles

  10. Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin de Celis, Emilio [Universidad de Buenos Aires y IFIBA, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2016-02-15

    The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a bulk field and a shell field. The bulk part corresponds to a field sourced by the test charge placed in a space-time without the shell. The shell field accounts for the discontinuity of the extrinsic curvature κ{sup p}{sub q}. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential produced by a non-gravitating charge distribution of total image charge Q, to interpret the shell field in both the interior and exterior regions of the space-time. The self-force on a point charge q in a locally flat geometry with a cylindrical thin-shell of matter is calculated. The charge is repelled from the shell if κ{sup p}{sub q} = κ < 0 (ordinarymatter) and attracted toward the shell if κ > 0 (exotic matter). The total image charge is zero for exterior problems, while for interior problems Q/q = κr{sub e}, with re the external radius of the shell. The procedure is general and can be applied to interpret self-forces in other space-times with shells, e.g., for locally flat wormholes we found Q{sub -+}{sup wh}/q = -1/(κ{sub wh}r{sub ±}). (orig.)

  11. Stability analysis of thin-shell wormholes from charged black string

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Azam, M., E-mail: msharif.math@pu.edu.pk, E-mail: azammath@gmail.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)

    2013-04-01

    In this paper, we construct thin-shell wormholes from charged black string through cut and paste procedure and investigate its stability. We assume modified generalized Chaplygin gas as a dark energy fluid (exotic matter) present in the thin layer of matter-shell. The stability of these constructed thin-shell wormholes is investigated in the scenario of linear perturbations. We conclude that static stable as well as unstable configurations are possible for cylindrical thin-shell wormholes.

  12. K-shell-hole production, multiple-hole production, charge transfer, and antisymmetry

    International Nuclear Information System (INIS)

    Reading, J.F.; Ford, A.L.

    1980-01-01

    In calculating K-shell-hole production when an ion collides with an atom, account must be taken of the fact that processes involving electrons other than the K-shell electron can occur. For example, after making a K-shell hole an L-shell electron may be knocked into it, or an L-shell vacancy may be produced and the K-shell electron promoted to that vacancy in the ''Fermi sea'' of the target-atom orbitals. In 1973 a theorem was proved by one of the present authors demonstrating that all these multielectron processes cancel in an independent-particle model for the target atom. In this paper it is shown that the same thing occurs for hole production by charge transfer to the ion. The authors demonstrate that multihole production does not obey this simple rule and that the probability for multihole production is not the product of independent single-electron probabilities. The correct expressions that should be used for these processes are given, together with new results for charge-transfer processes accompanied by hole production

  13. Pion-nucleus double charge exchange and the nuclear shell model

    International Nuclear Information System (INIS)

    Auerbach, N.; Gibbs, W.R.; Ginocchio, J.N.; Kaufmann, W.B.

    1988-01-01

    The pion-nucleus double charge exchange reaction is studied with special emphasis on nuclear structure. The reaction mechanism and nuclear structure aspects of the process are separated using both the plane-wave and distorted-wave impulse approximations. Predictions are made employing both the seniority model and a full shell model (with a single active orbit). Transitions to the double analog state and to the ground state of the residual nucleus are computed. The seniority model yields particularly simple relations among double charge exchange cross sections for nuclei within the same shell. Limitations of the seniority model and of the plane-wave impulse approximation are discussed as well as extensions to the generalized seniority scheme. Applications of the foregoing ideas to single charge exchange are also presented

  14. Charged shells in Lovelock gravity: Hamiltonian treatment and physical implications

    International Nuclear Information System (INIS)

    Dias, Goncalo A. S.; Gao, Sijie; Lemos, Jose P. S.

    2007-01-01

    Using a Hamiltonian treatment, charged thin shells, static and dynamic, in spherically symmetric spacetimes, containing black holes or other specific types of solutions, in d dimensional Lovelock-Maxwell theory are studied. The free coefficients that appear in the Lovelock theory are chosen to obtain a sensible theory, with a negative cosmological constant appearing naturally. Using an Arnowitt-Deser-Misner (ADM) description, one then finds the Hamiltonian for the charged shell system. Variation of the Hamiltonian with respect to the canonical coordinates and conjugate momenta, and the relevant Lagrange multipliers, yields the dynamic and constraint equations. The vacuum solutions of these equations yield a division of the theory into two branches, namely d-2k-1>0 (which includes general relativity, Born-Infeld type theories, and other generic gravities) and d-2k-1=0 (which includes Chern-Simons type theories), where k is the parameter giving the highest power of the curvature in the Lagrangian. There appears an additional parameter χ=(-1) k+1 , which gives the character of the vacuum solutions. For χ=1 the solutions, being of the type found in general relativity, have a black hole character. For χ=-1 the solutions, being of a new type not found in general relativity, have a totally naked singularity character. Since there is a negative cosmological constant, the spacetimes are asymptotically anti-de Sitter (AdS), and AdS when empty (for zero cosmological constant the spacetimes are asymptotically flat). The integration from the interior to the exterior vacuum regions through the thin shell takes care of a smooth junction, showing the power of the method. The subsequent analysis is divided into two cases: static charged thin shell configurations, and gravitationally collapsing charged dust shells (expanding shells are the time reversal of the collapsing shells). In the collapsing case, into an initially nonsingular spacetime with generic character or an empty

  15. Off-shell Noether current and conserved charge in Horndeski theory

    Directory of Open Access Journals (Sweden)

    Jun-Jin Peng

    2016-01-01

    Full Text Available We derive the off-shell Noether current and potential in the context of Horndeski theory, which is the most general scalar–tensor theory with a Lagrangian containing derivatives up to second order while yielding at most to second-order equations of motion in four dimensions. Then the formulation of conserved charges is proposed on basis of the off-shell Noether potential and the surface term got from the variation of the Lagrangian. As an application, we calculate the conserved charges of black holes in a scalar–tensor theory with non-minimal coupling between derivatives of the scalar field and the Einstein tensor.

  16. Deflection effects and charge transfer in inner-shell vacancy production

    International Nuclear Information System (INIS)

    Swafford, G.L.

    1978-01-01

    A method used in the calculation of inner shell ionization in asymmetric ion-atom collisions is extended to include projectile deflection effects and charge transfer to the projectile. Work is done in an independent electron model (Hartree-Fock) for the target, and the interaction is treated with the projectile as a time-dependent perturbation of the system. It is shown tht the time-dependent problem can be solved for the projectile moving along the classical hyperbolic trajectory that results from the nuclear repulsion. The method is very efficient due to the utilization the target-centered expansion of the system wave function. This means that all the required matrix elements can be pretabulated and are then available for use at all impact parameters. The method is first applied to the impact-parameter dependence of K-shell ionization by protons incident upon copper in the energy range 0.5 to 2 MeV. Excellent agreement with the experiments of Andersen et al., is found at the lower energy. Less satisfactory agreement is obtained in the higher energy region. Next the projectile is considered to move in a straight line path with constant velocity, and extend the method to include charge transfer between the target inner shells and the K-shell of the projectile. A critical feature of the results is the recognition of the importance of target continuum states of energy approximately equal to the kinetic energy (in the target frame) of the electron on the projectile. An approach is developed to properly include such resonance states in our pseudostate calculation. Selected numerical results are presented to illustrate the method and to demonstrate the projectile energy and nuclear charge dependence of the charge transfer cross sections

  17. Calculation of Ion Charge State Distributions After Inner-Shell Ionization in Xe Atom

    International Nuclear Information System (INIS)

    Mohammedein, A.M.; Ghoneim, A.A.; Kandil, M.K.; Kadad, I.M.

    2009-01-01

    The vacancy cascades following initial inner-shell vacancies in single and multi-ionized atoms often lead to highly charged residual ions. The inner-shell vacancy produced by ionization processes may decay by either a radiative or non-radiative transition. In addition to the vacancy filling processes, there is an electron shake off process due to the change of core potential of the atom. In the calculation of vacancy cascades, the radiative (x-ray) and non-radiative (Auger and Coster-Kronig) branching ratios give valuable information on the de-excitation dynamics of an atom with inner-shell vacancy. The production of multi-charged ions yield by the Auger cascades following inner shell ionization of an atom has been studied both experimentally and theoretically. Multi-charged Xe ions following de-excitation of K, L 1 , L 2,3 , M 1 , M 2,3 and M 4,5 subshell vacancies are calculated using Monte-Carlo algorithm to simulate the vacancy cascade development. Fluorescence yield (radiative) and Auger, Coster- Kronig yield (non- radiative) are evaluated. The decay of K hole state through radiative transitions is found to be more probable than non-radiative transitions in the first step of de-excitation. On the other hand, the decay of L, M vacancies through non-radiative transitions are more probable. The K shell ionization in Xe atom mainly yields Xe 7+ , Xe 8+ , Xe 9+ and Xe 1 0 + ions, and the charged X 8+ ions are the highest. The main product from the L 1 shell ionization is found to be Xe 8+ , Xe 9+ ions, while the charged Xe 8+ ions predominate at L 2,3 hole states. The charged Xe 6+ , Xe 7+ and Xe 8+ ions mainly yield from 3s 1/2 and 3p 1/2 , 3/2 ionization, while Xe in 3d 3/2 , 5/2 hole states mainly turns into Xe 4+ and Xe 5+ ions. The present results are found to agree well with the experimental data. (author)

  18. Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge

    OpenAIRE

    de Celis, Emilio Rubín

    2015-01-01

    The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a $bulk$ field and a $shell$ field. The $bulk$ part corresponds to a field sourced by the test charge placed in a space-time without the shell. The $shell$ field accounts for the discontinuity of the extrinsic curvature ${\\kappa^p}_q$. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential prod...

  19. The electric field of a uniformly charged cubic shell

    Science.gov (United States)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  20. Marginally bound resonances of charged massive scalar fields in the background of a charged reflecting shell

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar, E-mail: shaharhod@gmail.com [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Academic College, Jerusalem 91010 (Israel)

    2017-05-10

    We study analytically the characteristic resonance spectrum of charged massive scalar fields linearly coupled to a spherically symmetric charged reflecting shell. In particular, we use analytical techniques in order to solve the Klein–Gordon wave equation for the composed charged-shell–charged-massive-scalar-field system. Interestingly, it is proved that the resonant oscillation frequencies of this composed physical system are determined by the characteristic zeroes of the confluent hypergeometric function. Following this observation, we derive a remarkably compact analytical formula for the resonant oscillation frequencies which characterize the marginally-bound charged massive scalar field configurations. The analytically derived resonance spectrum is confirmed by numerical computations.

  1. Gravitational collapse of charged dust shell and maximal slicing condition

    International Nuclear Information System (INIS)

    Maeda, Keiichi

    1980-01-01

    The maximal slicing condition is a good time coordinate condition qualitatively when pursuing the gravitational collapse by the numerical calculation. The analytic solution of the gravitational collapse under the maximal slicing condition is given in the case of a spherical charged dust shell and the behavior of time slices with this coordinate condition is investigated. It is concluded that under the maximal slicing condition we can pursue the gravitational collapse until the radius of the shell decreases to about 0.7 x (the radius of the event horizon). (author)

  2. Zero-point energy of N perfectly conducting concentric cylindrical shells

    International Nuclear Information System (INIS)

    Tatur, K.; Woods, L.M.

    2008-01-01

    The zero-point (Casimir) energy of N perfectly conducting, infinitely long, concentric cylindrical shells is calculated utilizing the mode summation technique. The obtained convergent expression is studied as a function of size, curvature and number of shells. Limiting cases, such as infinitely close shells or infinite radius shells are also investigated

  3. Charge symmetry of the nuclear force as off-shell constraint

    International Nuclear Information System (INIS)

    Sauer, P.U.

    1975-01-01

    Off-shell changes are generated in the 1 S 0 nucleon-nucleon interaction using the Reid soft-core potential and unitary transformations of short range. Charge symmetry is assumed for the nuclear force. The same off-shell variations of the Reid potential are employed as the hadronic part of the proton-proton interaction and as neutron-neutron interaction. The Reid potential fits the experimental proton-proton data. It also accounts for the neutron-neutron scattering length with satisfying accuracy. The off-shell behavior of the Reid potential is varied in two different ways. First, off-shell changes consistent with the experimental proton-proton data can be selected. (auth) are performed which preserve the fit to the proton-proton data. Most transformed potentials of the type attempted here are unable to yield the correct experimental value of the neutron-neutron scattering length and have to be rejected. A simple practical rule is given according to which the off-shell changes consistent with the neutron-neutron scattering length can be selected. Second, off-shell changes are performed which leave the neutron-neutron scattering length unaltered. Transformed potentials of this type have usually been employed in nuclear-structure calculations. The potentials which exhibit large off-shell effects in nuclear structure are unable to account for the experimental proton-proton data. Their off-shell effects are therefore of no physical significance, and the potentials have to be rejected. A simple practical rule is given according to which the off-shell changes consistent with the experimental proton-proton data can be selected. (U.S.)

  4. Enhanced charge storage capability of Ge/GeO2 core/shell nanostructure

    International Nuclear Information System (INIS)

    Yuan, C L; Lee, P S

    2008-01-01

    A Ge/GeO 2 core/shell nanostructure embedded in an Al 2 O 3 gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO 2 core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO 2 shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering

  5. Enhanced charge storage capability of Ge/GeO(2) core/shell nanostructure.

    Science.gov (United States)

    Yuan, C L; Lee, P S

    2008-09-03

    A Ge/GeO(2) core/shell nanostructure embedded in an Al(2)O(3) gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO(2) core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO(2) shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering.

  6. Thin charged shells and the violation of the third law of black hole mechanics

    International Nuclear Information System (INIS)

    Proszynski, M.

    1983-01-01

    The collapse of an infinitely thin spherical shell of charged matter, which surrounds a spherically symmetric black hole or has a flat interior, is analyzed in connection with the laws of black hole mechanics and the cosmic censorship hypothesis. An effective potential is introduced to describe the motion of the shell. The process, proposed by Farrugia and Hajicek as a counterexample to the third law, is discussed and generalized to the case of nondust shells. (author)

  7. Interplay of electronic and geometry shell effects in properties of neutral and charged Sr clusters

    DEFF Research Database (Denmark)

    Lyalin, Andrey; Solov'yov, Ilia; Solov'yov, Andrey V.

    2007-01-01

    that the size evolution of structural and electronic properties of strontium clusters is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters......The optimized structure and electronic properties of neutral, singly, and doubly charged strontium clusters have been investigated using ab initio theoretical methods based on density-functional theory. We have systematically calculated the optimized geometries of neutral, singly, and doubly...... charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, the gap between the highest occupied and the lowest unoccupied molecular orbitals, and spectra of the density of electronic states (DOS). It is demonstrated...

  8. Electrostatics-driven shape transitions in soft shells.

    Science.gov (United States)

    Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica

    2014-09-02

    Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.

  9. Nuclear moments and charge radii of argon isotopes between the neutron-shell closures N=20 and N=28

    CERN Document Server

    Blaum, K; Lassen, J; Lievens, P; Marinova, K; Neugart, R

    2008-01-01

    We report the measurement of optical isotope shifts for $^{40-44}\\!$Ar relative to $^{38}$Ar from which changes in the mean square nuclear charge radii across the 1$\\scriptstyle{f}_{7/2}$ neutron shell are deduced. In addition, the hyperfine structure of $^{41\\!}$Ar and $^{43}$Ar yields the spins, magnetic dipole and electric quadrupole moments, in particular the spin $\\,\\scriptstyle\\textrm{I}$ = 5/2 for $\\,^{43}\\!$Ar. The investigations were carried out by fast-beam collinear laser spectroscopy using highly sensitive detection based on optical pumping and state-selective collisional ionization. Mean square charge radii are now known from $^{32}$Ar to $^{46}$Ar, covering sd-shell as well as $\\scriptstyle{f}_{7/2}$-shell nuclei. They are discussed in the framework of spherical SGII Skyrme-type Hartree-Fock calculations, semi-empirically corrected for quadrupole core polarization. The Zamick-Talmi formula excellently describes the charge radii across the $\\scriptstyle{f}_{7/2}$ neutron shell, as it does for the...

  10. Modeling the Electrostatics of Hollow Shell Suspensions: Ion Distribution, Pair Interactions, and Many-Body Effects.

    Science.gov (United States)

    Hallez, Yannick; Meireles, Martine

    2016-10-11

    Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.

  11. Thin-shell wormholes with charge in F(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Figueroa Aguirre, Griselda [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina)

    2016-03-15

    In this article, we construct a class of constant curvature and spherically symmetric thin-shell Lorentzian wormholes in F(R) theories of gravity and we analyze their stability under perturbations preserving the symmetry. We find that the junction conditions determine the equation of state of the matter at the throat. As a particular case, we consider configurations with mass and charge. We obtain that stable static solutions are possible for suitable values of the parameters of the model. (orig.)

  12. Thin-shell wormholes with charge in F(R) gravity

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Figueroa Aguirre, Griselda

    2016-01-01

    In this article, we construct a class of constant curvature and spherically symmetric thin-shell Lorentzian wormholes in F(R) theories of gravity and we analyze their stability under perturbations preserving the symmetry. We find that the junction conditions determine the equation of state of the matter at the throat. As a particular case, we consider configurations with mass and charge. We obtain that stable static solutions are possible for suitable values of the parameters of the model. (orig.)

  13. Charge regulation as a stabilization mechanism for shell-like assemblies of polyoxometalates

    NARCIS (Netherlands)

    Verhoeff, A.A.; Kistler, M.L.; Bhatt, A.; Pigga, J.; Groenewold, J.; Klokkenburg, M.; Veen, S.J.; Roy, S.; Liu, T.; Kegel, W.K.

    2007-01-01

    We show that the equilibrium size of single-layer shells composed of polyoxometalate macroions is inversely proportional to the dielectric constant of the medium in which they are dispersed. This behavior is consistent with a stabilization mechanism based on Coulomb repulsion combined with charge

  14. Investigation of magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures

    Science.gov (United States)

    Das, Kalipada

    2017-10-01

    In our present study, we address in detail the magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures. In these core-shell nanostructures, well-known half metallic La0.67Sr0.33MnO3 nanoparticles (average particle size, ˜20 nm) are wrapped by the charge ordered antiferromagnetic Pr0.67Ca0.33MnO3 (PCMO) matrix. The intrinsic properties of PCMO markedly modify it into such a core-shell form. The robustness of the PCMO matrix becomes fragile and melts at an external magnetic field (H) of ˜20 kOe. The analysis of magneto-transport data indicates the systematic reduction of the electron-electron and electron-magnon interactions in the presence of an external magnetic field in these nanostructures. The pronounced training effect appears in this phase separated compound, which was analyzed by considering the second order tunneling through the grain boundaries of the nanostructures. Additionally, the analysis of low field magnetoconductance data supports the second order tunneling and shows the close value of the universal limit (˜1.33).

  15. Thin Static Charged Dust Majumdar–Papapetrou Shells with High Symmetry in D ≥ 4

    Czech Academy of Sciences Publication Activity Database

    Čermák, Martin; Zouhar, M.

    2012-01-01

    Roč. 51, č. 8 (2012), s. 2455-2469 ISSN 0020-7748 Institutional research plan: CEZ:AV0Z20410507 Keywords : Majumdar–Papapetrou * Kastor–Traschen * higher dimensional thin charged shell Subject RIV: BE - Theoretical Physics Impact factor: 1.086, year: 2012

  16. Tunability of Open-Shell Character, Charge Asymmetry, and Third-Order Nonlinear Optical Properties of Covalently Linked (Hetero)Phenalenyl Dimers.

    Science.gov (United States)

    Minamida, Yuka; Kishi, Ryohei; Fukuda, Kotaro; Matsui, Hiroshi; Takamuku, Shota; Yamane, Masaki; Tonami, Takayoshi; Nakano, Masayoshi

    2018-02-06

    Tunability of the open-shell character, charge asymmetry, and third-order nonlinear optical (NLO) properties of covalently linked (hetero)phenalenyl dimers are investigated by using the density functional theory method. By changing the molecular species X and substitution position (i, j) for the linker part, a variety of intermonomer distances R and relative alignments between the phenalenyl dimers can be realized from the geometry optimizations, resulting in a wide-range tuning of diradical character y and charge asymmetry. It is found that the static second hyperpolarizabilities along the stacking direction, γ yyyy , are one-order enhanced for phenalenyl dimer systems exhibiting intermediate y, a feature that is in good agreement with the "y-γ correlation". By replacing the central carbon atoms of the phenalenyl rings with a boron or a nitrogen, we have also designed covalently linked heterophenalenyl dimers. The introduction of such a charge asymmetry to the open-shell systems, which leads to closed-shell ionic ground states, is found to further enhance the γ yyyy values of the systems having longer intermonomer distance R with intermediate ionic character, that is, charge asymmetry. The present results demonstrate a promising potential of covalently linked NLO dimers with intermediate open-shell/ionic characters as a new building block of highly efficient NLO systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Charge carrier dynamics investigation of CuInS{sub 2} quantum dots films using injected charge extraction by linearly increasing voltage (i-CELIV): the role of ZnS Shell

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Ke; Sui, Ning; Zhang, Liquan; Wang, Yinghui, E-mail: yinghui-wang@outlook.com; Liu, Qinghui, E-mail: liuqinghui@jlu.edu.cn; Tan, Mingrui [Jilin University, Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics (China); Zhou, Qiang [Jilin University, Key Laboratory of Superhard Materials, College of Physics (China); Zhang, Hanzhuang, E-mail: zhanghz@jlu.edu.cn [Jilin University, Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics (China)

    2016-12-15

    The role of ZnS shell on the photo-physical properties within CuInS{sub 2}/ZnS quantum dots (QDs) is carefully studied in optoelectronic devices. Linearly increasing voltage technique has been employed to investigate the charge carrier dynamics of both CuInS{sub 2} and CuInS{sub 2}/ZnS QDs films. This study shows that charge carriers follow a similar behavior of monomolecular recombination in this film, with their charge transfer rate correlates to the increase of applied voltage. It turns out that the ZnS shell could affect the carrier diffusion process through depressing the trapping states and would build up a potential barrier.

  18. The rates of charge separation and energy destructive charge recombination processes within an organic dyad in presence of metal-semiconductor core shell nanocomposites.

    Science.gov (United States)

    Mandal, Gopa; Bhattacharya, Sudeshna; Das, Subrata; Ganguly, Tapan

    2012-01-01

    Steady state and time resolved spectroscopic measurements were made at the ambient temperature on an organic dyad, 1-(4-Chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA), where the donor 1-methoxynaphthalene (1 MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond, in presence of Ag@TiO2 nanoparticles. Time resolved fluorescence and absorption measurements reveal that the rate parameters associated with charge separation, k(CS), within the dyad increases whereas charge recombination rate k(CR) reduces significantly when the surrounding medium is changed from only chloroform to mixture of chloroform and Ag@TiO2 (noble metal-semiconductor) nanocomposites. The observed results indicate that the dyad being combined with core-shell nanocomposites may form organic-inorganic nanocomposite system useful for developing light energy conversion devices. Use of metal-semiconductor nanoparticles may provide thus new ways to modulate charge recombination processes in light energy conversion devices. From comparison with the results obtained in our earlier investigations with only TiO2 nanoparticles, it is inferred that much improved version of light energy conversion device, where charge-separated species could be protected for longer period of time of the order of millisecond, could be designed by using metal-semiconductor core-shell nanocomposites rather than semiconductor nanoparticles only.

  19. Structures in the K-shell delta electron spectrum near threshold for ionization by fast charged particles

    International Nuclear Information System (INIS)

    Amundsen, P.A.; Aashamar, K.

    Results of calculations of the delta electron spectrum for K-shell ionization of atoms by fast charged particles for target charges in the range 6 2 <=40 are presented. Appreciable structure is found in the spectrum near the ionization threshold, in particular for fast projectiles and heavy target elements. The structure can be quite sensitive to the details of the effective atomic potentials. (Auth.)

  20. Direct femtosecond observation of charge carrier recombination in ternary semiconductor nanocrystals: The effect of composition and shelling

    KAUST Repository

    Bose, Riya

    2015-02-12

    Heavy-metal free ternary semiconductor nanocrystals are emerging as key materials in photoactive applications. However, the relative abundance of intra-bandgap defect states and lack of understanding of their origins within this class of nanocrystals are major factors limiting their applicability. To remove these undesirable defect states which considerably shorten the lifetimes of photogenerated excited carriers, a detailed understanding about their origin and nature is required. In this report, we monitor the ultrafast charge carrier dynamics of CuInS2 (CIS), CuInSSe (CISSe), and CuInSe2 (CISe) nanocrystals, before and after ZnS shelling, using state-of-the-art time-resolved laser spectroscopy with broadband capabilities. The experimental results demonstrate the presence of both electron and hole trapping intra-bandgap states in the nanocrystals which can be removed significantly by ZnS shelling, and the carrier dynamics is slowed down. Another important observation remains the reduction of carrier lifetime in the presence of Se, and the shelling strategy is observed to be less effective at suppressing trap states. This study provides quantitative physical insights into the role of anion composition and shelling on the charge carrier dynamics in ternary CIS, CISSe, and CISe nanocrystals which are essential to improve their applicability for photovoltaics and optoelectronics.

  1. Computation of Ion Charge State Distributions After Inner-shell Ionization in Ne, Ar and Kr Atoms Using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Ahmed Ghoneim, Adel Aly; Ghoneim, Adel A.; Al-Zanki, Jasem M.; El-Essawy, Ashraf H.

    2009-01-01

    Atomic reorganization starts by filling the initially inner-shell vacancy by a radiative transition (x-ray) or by a non-radiative transition (Auger and Coster-Kronig processes). New vacancies created during this atomic reorganization may in turn be filled by further radiative and non-radiative transitions until all vacancies reach the outermost occupied shells. The production of inner-shell vacancy in an atom and the de-excitation decays through radiative and non-radiative transitions may result in a change of the atomic potential; this change leads to the emission of an additional electron in the continuum (electron shake-off processes). In the present work, the ion charge state distributions (CSD) and mean atomic charge ions produced from inner shell vacancy de-excitation decay are calculated for neutral Ne , Ar and Kr atoms. The calculations are carried out using Monte Carlo (MC) technique to simulate the cascade development after primary vacancy production. The radiative and non-radiative transitions for each vacancy are calculated in the simulation. In addition, the change of transition energies and transition rates due to multi vacancies produced in the atomic configurations through the cascade development are considered in the present work. It is found that considering the electron shake off process and closing of non-allowed non-radiative channels improves the results of both charge state distributions (CSD) and average charge state. To check the validity of the present calculations, the results obtained are compared with available theoretical and experimental data. The present results are found to agree well with the available theoretical and experimental values. (author)

  2. Progress on precision measurements of inner shell transitions in highly charged ions at an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Csilla I.; Indelicato, Paul; LeBigot, Eric-Olivier; Vallette, Alexandre; Amaro, Pedro; Guerra, Mauro; Gumberidze, Alex [Laboratoire Kastler Brossel, Ecole Normale Superieure, CNRS, Universite Pierre et Marie Curie- Paris 6, Case 74, 4 place Jussieu, F-75005 Paris (France); Centro de Fisica Atomica, CFA, Departamento de Fisica (Portugal); Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Laboratoire Kastler Brossel, Ecole Normale Superieure, CNRS, Universite Pierre et Marie Curie- Paris 6, Case 74, 4 place Jussieu, F-75005 Paris (France)

    2012-05-25

    Inner shell transitions of highly charged ions produced in the plasma of an Electron Cyclotron Resonance Ion Source (ECRIS) were observed the first time by a Double Crystal Spectrometer (DCS). The DCS is a well-used tool in precision x-ray spectroscopy due to its ability of precision wavelength measurement traced back to a relative angle measurement. Because of its requirement for a bright x-ray source the DCS has not been used before in direct measurements of highly charged ions (HCI). Our new precision measurement of inner shell transitions in HCI is not just going to provide new x-ray standards for quantum metrology but can also give information about the plasma in which the ions reside. Ionic temperatures and with that the electron density can be determined by thorough examination of line widths measured with great accuracy.

  3. The semiclassical approximation for L- and M-shell coulomb ionization by heavy charged particles

    International Nuclear Information System (INIS)

    Kocbach, L.

    1975-08-01

    The semiclassical approximation with straight line trajectories is applied to the Coulomb ionization of K-, L- and M-shells by heavy charged particles. The calculational aspects are discussed in detail. Scaling relations for the experimentally relevant quantities are derived. The theoretical predictions are compared with experimental data. The relation of the present work to earlier SCA results and the PWBA results is discussed in detail. (auth)

  4. Efficient charge carriers induced by extra outer-shell electrons in iron-pnictides: a comparison between Ni- and Co-doped CaFeAsF

    International Nuclear Information System (INIS)

    Zhang Min; Yu Yi; Tan Shun; Zhang Yuheng; Zhang Changjin; Zhang Lei; Qu Zhe; Ling Langsheng; Xi, Chuanying

    2010-01-01

    A comprehensive study of the difference between CaFe 1-x Ni x AsF and CaFe 1-x Co x AsF systems has been carried out by measuring the efficient charge carrier concentration, the valence states and the superconducting phase diagram. It is found that at the same doping level, Ni doping introduces nearly twice the number of charge carriers as Co doping. However, x-ray absorption near-edge spectroscopy measurements reveal that the valence state of Fe in both systems is close to 2, indicating that there is no valence mismatch. We suggest that the charge carriers in CaFe 1-x M x AsF (M=transition metal elements) are not induced by valence mismatch but come from the difference in the number of outer-shell electrons. We also suggest that with Ni and Co doping, the systems change from a multi-band material in the underdoped regions to a single-band state in the overdoped regions.

  5. Charge radii of magnesium isotopes by laser spectroscopy a structural study over the $sd$ shell

    CERN Multimedia

    Schug, M; Krieger, A R

    We propose to study the evolution of nuclear sizes and shapes over the magnesium chain by measuring the root-mean-square charge radii of $^{21 - 32}$Mg, essentially covering the entire $\\textit{sd}$ shell. Our goal is to detect the structural changes, which in the neutron-deficient isotopes may originate from clustering, in a way similar to neon, and on the neutron-rich side would characterize the transition to the "island of inversion". We will combine, for the first time, the sensitive $\\beta$-detection technique with traditional fluorescence spectroscopy for isotope-shift measurements and in such a way gain access to the exotic species near the ${N}$ = 8 and ${N}$ = 20 shell closures.

  6. Charge radii and electromagnetic moments of Li and Be isotopes from the ab initio no-core shell model

    International Nuclear Information System (INIS)

    Forssen, C.; Caurier, E.; Navratil, P.

    2009-01-01

    Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using high-precision nucleon-nucleon potentials. The isotopic trends of our computed charge radii and quadrupole and magnetic-dipole moments are in good agreement with experimental results with the exception of the 11 Li charge radius. The magnetic moments are in particular well described, whereas the absolute magnitudes of the quadrupole moments are about 10% too small. The small magnitude of the 6 Li quadrupole moment is reproduced, and with the CD-Bonn NN potential, also its correct sign

  7. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.

    Science.gov (United States)

    Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath

    2015-02-14

    Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.

  8. Mechanical stability of cylindrical thin-shell wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2013-04-15

    In this paper, we apply the cut and paste procedure to the charged black string for the construction of a thin-shell wormhole. We consider the Darmois-Israel formalism to determine the surface stresses of the shell. We take the Chaplygin gas to deal with the matter distribution on shell. The radial perturbation approach (preserving the symmetry) is used to investigate the stability of static solutions. We conclude that stable static solutions exist both for uncharged and charged black string thin-shell wormholes for particular values of the parameters. (orig.)

  9. Shell and Double Concentric Tube Heat Exchanger Calculations and Analysis

    Directory of Open Access Journals (Sweden)

    Basma Abbas Abdulmajeed

    2015-01-01

    Full Text Available This study concerns a new type of heat exchangers, which is that of shell-and-double concentric tube heat exchangers. The case studies include both design calculations and performance calculations. The new heat exchanger design was conducted according to Kern method. The volumetric flow rates were 3.6 m3/h and 7.63 m3/h for the hot oil and water respectively. The experimental parameters studied were: temperature, flow rate of hot oil, flow rate of cold water and pressure drop. A comparison was made for the theoretical and experimental results and it was found that the percentage error for the hot oil outlet temperature was (- 1.6%. The percentage errors for the pressure drop in the shell and in the concentric tubes were (17.2% and (- 39% respectively. For cold water outlet temperature, the percentage error was (- 3.3%, while it was (18% considering the pressure drop in the annulus formed. The percentage error for the total power consumed was (-10.8% A theoretical comparison was made between the new design and the conventional heat exchanger from the point of view of, length, mass, pressure drop and total power consumed.

  10. Stationary spherical shells around Kerr-Newman naked singularities

    International Nuclear Information System (INIS)

    Zdenek Stuchlik; Stanislav Hledik

    1998-01-01

    It is shown that in the field of some Kerr-Newman naked singularities a stationary spherical shell of charged dust can exist, with the specific charge being the same for all particles of the dusty shell. Gravitational attractions acting on the particles are balanced by electromagnetic repulsion in such a way that the shell is stable against radial perturbations. Particles of the shell move along orbits with constant latitude and radius. Rotation of the shell is differential. The shell is corotating relative to static observers at infinity, but it is counter rotating relative to the family of locally non-rotating observers. No such a shell can exist in the field of Kerr-Newman black holes. (authors)

  11. Geometrically Nonlinear Shell Analysis of Wrinkled Thin-Film Membranes with Stress Concentrations

    Science.gov (United States)

    Tessler, Alexander; Sleight, David W.

    2006-01-01

    Geometrically nonlinear shell finite element analysis has recently been applied to solar-sail membrane problems in order to model the out-of-plane deformations due to structural wrinkling. Whereas certain problems lend themselves to achieving converged nonlinear solutions that compare favorably with experimental observations, solutions to tensioned membranes exhibiting high stress concentrations have been difficult to obtain even with the best nonlinear finite element codes and advanced shell element technology. In this paper, two numerical studies are presented that pave the way to improving the modeling of this class of nonlinear problems. The studies address the issues of mesh refinement and stress-concentration alleviation, and the effects of these modeling strategies on the ability to attain converged nonlinear deformations due to wrinkling. The numerical studies demonstrate that excessive mesh refinement in the regions of stress concentration may be disadvantageous to achieving wrinkled equilibrium states, causing the nonlinear solution to lock in the membrane response mode, while totally discarding the very low-energy bending response that is necessary to cause wrinkling deformation patterns.

  12. Charge-doping and chemical composition-driven magnetocrystalline anisotropy in CoPt core-shell alloy clusters

    Science.gov (United States)

    Ruiz-Díaz, P.; Muñoz-Navia, M.; Dorantes-Dávila, J.

    2018-03-01

    Charge-doping together with 3 d-4 d alloying emerges as promising mechanisms for tailoring the magnetic properties of low-dimensional systems. Here, throughout ab initio calculations, we present a systematic overview regarding the impact of both electron(hole) charge-doping and chemical composition on the magnetocrystalline anisotropy (MA) of CoPt core-shell alloy clusters. By taking medium-sized Co n Pt m ( N = n + m = 85) octahedral-like alloy nanoparticles for some illustrative core-sizes as examples, we found enhanced MA energies and large induced spin(orbital) moments in Pt-rich clusters. Moreover, depending on the Pt-core-size, both in-plane and off-plane directions of magnetization are observed. In general, the MA of these binary compounds further stabilizes upon charge-doping. In addition, in the clusters with small MA, the doping promotes magnetization switching. Insights into the microscopical origins of the MA behavior are associated to changes in the electronic structure of the clusters. [Figure not available: see fulltext.

  13. Hydrophobicity and charge shape cellular metabolite concentrations.

    Directory of Open Access Journals (Sweden)

    Arren Bar-Even

    2011-10-01

    Full Text Available What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations, are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass more than twenty conditions, each containing dozens (28-108 of simultaneously measured metabolites. We test for correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area, lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties elicits a ~100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects of biochemical evolution and the chemical constraints that bound metabolic engineering efforts.

  14. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.

    Science.gov (United States)

    Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan

    2013-08-15

    Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.

  15. Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of the projectile charge and velocity

    International Nuclear Information System (INIS)

    Rangama, J.

    2002-11-01

    Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of projectile charge and velocity. Auger electron spectroscopy is used for an experimental investigation of ionization and excitation of lithium atoms by ions (Kr34 + and Ar18 + ) and electrons at high impact velocities (from 6 to 60 a.u.). In particular, relative contributions of the mechanisms responsible for lithium K-shell ionization-excitation are determined for various projectile charges Zp and velocities vp. A large range of perturbation parameters |Zp|/vp is explored (|Zp|/vp = 0,05 - 0,7 a.u.). From single K-shell excitation results, it appears that the projectile-electron interaction gives mainly rise to a dipole-like transition 1s -> np Concerning K-shell ionization-excitation, the separation of the TS2 (two independent projectile-electron interactions) and TS1 (one projectile-electron interaction) mechanisms responsible for the formation of the 2snp 1,3P and 2sns 1,3S lithium states is performed. In TS1 process, the projectile-electron interaction can be followed by an electron-electron interaction (dielectronic process) or by an internal rearrangement of the residual target after a sudden potential change (shake process). From Born theory, ab initio calculations are performed. The good agreement between theoretical and experimental results confirms the mechanism identification. For the production of P states, TS1 is found to be strongly dominant for small |Zp|/vp values and TS2 is found to be most important for large |Zp|/vp values. Since P states cannot be formed significantly via a shake process, the TS1 and TS2 separation provides a direct signature of the dielectronic process. On the other hand, the TS1 process is shown to be the unique process for producing the S states. At the moment, only the shake aspect of the TS1 process can explain the fact that the 2s3s configuration is preferentially

  16. Shell structure of natural rubber particles: evidence of chemical stratification by electrokinetics and cryo-TEM.

    Science.gov (United States)

    Rochette, Christophe N; Crassous, Jérôme J; Drechsler, Markus; Gaboriaud, Fabien; Eloy, Marie; de Gaudemaris, Benoît; Duval, Jérôme F L

    2013-11-26

    The interfacial structure of natural rubber (NR) colloids is investigated by means of cryogenic transmission electron microscopy (cryo-TEM) and electrokinetics over a broad range of KNO3 electrolyte concentrations (4-300 mM) and pH values (1-8). The asymptotic plateau value reached by NR electrophoretic mobility (μ) in the thin double layer limit supports the presence of a soft (ion- and water-permeable) polyelectrolytic type of layer located at the periphery of the NR particles. This property is confirmed by the analysis of the electron density profile obtained from cryo-TEM that evidences a ∼2-4 nm thick corona surrounding the NR polyisoprene core. The dependence of μ on pH and salt concentration is further marked by a dramatic decrease of the point of zero electrophoretic mobility (PZM) from 3.6 to 0.8 with increasing electrolyte concentration in the range 4-300 mM. Using a recent theory for electrohydrodynamics of soft multilayered particles, this "anomalous" dependence of the PZM on electrolyte concentration is shown to be consistent with a radial organization of anionic and cationic groups across the peripheral NR structure. The NR electrokinetic response in the pH range 1-8 is indeed found to be equivalent to that of particles surrounded by a positively charged ∼3.5 nm thick layer (mean dissociation pK ∼ 4.2) supporting a thin and negatively charged outermost layer (0.6 nm in thickness, pK ∼ 0.7). Altogether, the strong dependence of the PZM on electrolyte concentration suggests that the electrostatic properties of the outer peripheral region of the NR shell are mediated by lipidic residues protruding from a shell containing a significant amount of protein-like charges. This proposed NR shell interfacial structure questions previously reported NR representations according to which the shell consists of either a fully mixed lipid-protein layer, or a layer of phospholipids residing exclusively beneath an outer proteic film.

  17. Charge-Dipole Acceleration of Polar Gas Molecules towards Charged Nanoparticles: Involvement in Powerful Charge-Induced Catalysis of Heterophase Chemical Reactions and Ball Lightning Phenomenon

    Directory of Open Access Journals (Sweden)

    Oleg Meshcheryakov

    2010-01-01

    Full Text Available In humid air, the substantial charge-dipole attraction and electrostatic acceleration of surrounding water vapour molecules towards charged combustible nanoparticles cause intense electrostatic hydration and preferential oxidation of these nanoparticles by electrostatically accelerated polar water vapour molecules rather than nonaccelerated nonpolar oxygen gas molecules. Intense electrostatic hydration of charged combustible nanoparticles converts the nanoparticle's oxide-based shells into the hydroxide-based electrolyte shells, transforming these nanoparticles into reductant/air core-shell nanobatteries, periodically short-circuited by intraparticle field and thermionic emission. Partially synchronized electron emission breakdowns within trillions of nanoparticles-nanobatteries turn a cloud of charged nanoparticles-nanobatteries into a powerful radiofrequency aerosol generator. Electrostatic oxidative hydration and charge-catalyzed oxidation of charged combustible nanoparticles also contribute to a self-oscillating thermocycling process of evolution and periodic autoignition of inflammable gases near to the nanoparticle's surface. The described effects might be of interest for the improvement of certain nanotechnological heterophase processes and to better understand ball lightning phenomenon.

  18. Luminescence study of Eu3+ doped GdVO4 nanoparticles: Concentration, particle size, and core/shell effects

    Science.gov (United States)

    Singh, N. Shanta; Ningthoujam, R. S.; Devi, L. Romila; Yaiphaba, N.; Sudarsan, V.; Singh, S. Dorendrajit; Vatsa, R. K.; Tewari, R.

    2008-11-01

    Nanoparticles of GdVO4 doped with Eu3+ and core/shell of GdVO4:Eu3+/GdVO4 are prepared by urea hydrolysis method using ethylene glycol as capping agent as well as reaction medium at 130 °C. Unit cell volume increases when GdVO4 is doped with Eu3+ indicating the substitution of Gd3+ lattice sites by Eu3+. From luminescence study, it is confirmed that there is no particle size effect on emission positions of Eu3+. Optimum luminescence intensity is found to be in 5-10 at. % Eu3+. Above these concentrations, luminescence intensity decreases due to concentration quenching effect. There is an enhancement in luminescence intensity of core/shell nanoparticles. This has been attributed to the reduction in surface inhomogenities of Eu3+ surroundings by bonding to GdVO4 shell. The lifetime for D50 level increases with annealing and core/shell formation.

  19. Strontium clusters: electronic and geometry shell effects

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2008-01-01

    charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, and spectra of the density of electronic states (DOS). It is demonstrated that the size-evolution of structural and electronic properties of strontium clusters...... is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It is shown that the excessive charge essentially affects the optimized geometry...

  20. Thin-shell wormholes in dilaton gravity

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2005-01-01

    In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed

  1. Off-shell representations of maximally-extended supersymmetry

    International Nuclear Information System (INIS)

    Cox, P.H.

    1985-01-01

    A general theorem on the necessity of off-shell central charges in representations of maximally-extended supersymmetry (number of spinor charges - 4 x largest spin) is presented. A procedure for building larger and higher-N representations is also explored; a (noninteracting) N=8, maximum spin 2, off-shell representation is achieved. Difficulties in adding interactions for this representation are discussed

  2. Shell model for REO{sub x} nanoclusters in amorphous SiO{sub 2}: charge trapping and electroluminescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Tiagulskyi, S.; Nazarov, A.; Tyagulskii, I.; Lysenko, V. [Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Prospekt Nauki 41, 03028 Kiev (Ukraine); Rebohle, L.; Lehmann, J.; Skorupa, W. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden Rossendorf e.V., POB 510119, 01314 Dresden (Germany)

    2012-06-15

    In this work charge trapping and electroluminescence (EL) quenching in rare-earth (RE) implanted SiO{sub 2} on Si as a function of injected charge into the dielectric were studied. The blocking of the luminescent REO{sub X} nanoclusters from the hot exciting electrons by negative charge trapping in a defect region (shell) located in the vicinity of the REO{sub X} nanocluster/SiO{sub 2} interface is considered as the main mechanism of EL quenching for small size (up to 10 nm) REO{sub X} nanoclusters. It is suggested that the increase of the nanoclusters size results in disordering of the SiO{sub 2} matrix but in a decrease of local blocking for excitation of the luminescent centers. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Stable Dyonic Thin-Shell Wormholes in Low-Energy String Theory

    Directory of Open Access Journals (Sweden)

    Ali Övgün

    2017-01-01

    Full Text Available Considerable attention has been devoted to the wormhole physics in the past 30 years by exploring the possibilities of finding traversable wormholes without the need for exotic matter. In particular, the thin-shell wormhole formalism has been widely investigated by exploiting the cut-and-paste technique to merge two space-time regions and to research the stability of these wormholes developed by Visser. This method helps us to minimize the amount of the exotic matter. In this paper, we construct a four-dimensional, spherically symmetric, dyonic thin-shell wormhole with electric charge Q, magnetic charge P, and dilaton charge Σ, in the context of Einstein-Maxwell-dilaton theory. We have applied Darmois-Israel formalism and the cut-and-paste method by joining together two identical space-time solutions. We carry out the dyonic thin-shell wormhole stability analyses by using a linear barotropic gas, Chaplygin gas, and logarithmic gas for the exotic matter. It is shown that, by choosing suitable parameter values as well as equation of state parameter, under specific conditions, we obtain a stable dyonic thin-shell wormhole solution. Finally, we argue that the stability domain of the dyonic thin-shell wormhole can be increased in terms of electric charge, magnetic charge, and dilaton charge.

  4. Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions.

    Science.gov (United States)

    Neville, Frances; Moreno-Atanasio, Roberto

    2018-01-01

    We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m 2 , could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process.

  5. Effects of acid concentration on intramolecular charge transfer ...

    Indian Academy of Sciences (India)

    rate. Time-dependent density functional theory calculations have been performed to understand the observed spectroscopic results. Keywords. Intramolecular charge transfer; absorption and fluorescence; time resolved fluorescence measurements; acid concentration dependence; time-dependent density functional theory.

  6. Off-Shell ADT charges of five-dimensional Myers-Perry black holes%五维Myers-Perry黑洞的离壳ADT荷

    Institute of Scientific and Technical Information of China (English)

    安旭强; 景艺德; 彭俊金

    2018-01-01

    In this work,we have calculated the conserved charges,such as mass and angular momentum,of five-dimensional rotating Myers-Perry black holes via the off-shell generalized Abbott-DeserTekin (ADT) method.These conserved charges strictly satisfy the differential and integral forms of the first law for black holes.Moreover,we compare the off-shell ADT conserved charges with those via both the formalisms of the well-known ADM and Komar integral,finding that all the results are correspondingly identified with each other.%基于离壳推广的Abbott-Deser-Tekin (ADT)定义,给出了五维时空中双转动的Myers-Perry黑洞的离壳ADT质量与角动量等守恒荷.在此基础上,验证了这些守恒荷严格满足黑洞热力学第一定律的微分与积分形式.此外,通过离壳推广的ADT方法与ADM定义以及Komar公式的比较,我们发现,对于五维Myers-Perry黑洞来说,此3种方法给出的守恒荷完全一致.

  7. Speciation dynamics of metals in dispersion of nanoparticles with discrete distribution of charged binding sites.

    Science.gov (United States)

    Polyakov, Pavel D; Duval, Jérôme F L

    2014-02-07

    We report a comprehensive theory to evaluate the kinetics of complex formation between metal ions and charged spherical nanoparticles. The latter consist of an ion-impermeable core surrounded by a soft shell layer characterized by a discrete axisymmetric 2D distribution of charged sites that bind metal ions. The theory explicitly integrates the conductive diffusion of metal ions from bulk solution toward the respective locations of the reactive sites within the particle shell volume. The kinetic constant k for outer-sphere nanoparticle-metal association is obtained from the sum of the contributions stemming from all reactive sites, each evaluated from the corresponding incoming flux of metal ions derived from steady-state Poisson-Nernst-Planck equations. Illustrations are provided to capture the basic intertwined impacts of particle size, overall particle charge, spatial heterogeneity in site distribution, type of particle (hard, core-shell or porous) and concentration of the background electrolyte on k. As a limit, k converges with predictions from previously reported analytical expressions derived for porous particles with low and high charge density, cases that correspond to coulombic and mean-field (smeared-out) electrostatic treatments, respectively. The conditions underlying the applicability of these latter approaches are rigorously identified in terms of (i) the extent of overlap between electric double layers around charged neighbouring sites, and (ii) the magnitude of the intraparticulate metal concentration gradient. For the first time, the proposed theory integrates the differentiated impact of the local potential around the charged binding sites amidst the overall particle field, together with that of the so-far discarded intraparticulate flux of metal ions.

  8. Investigation on photoluminescence quenching of CdSe/ZnS quantum dots by organic charge transporting materials

    Directory of Open Access Journals (Sweden)

    Yuqiu Qu

    2015-12-01

    Full Text Available The effect of different organic charge transporting materials on the photoluminescence of CdSe/ZnS core/shell quantum dots has been studied by means of steady-state and time-resolved photoluminescence spectroscopy. With an increase in concentration of the organic charge transporting material in the quantum dots solutions, the photoluminescence intensity of CdSe/ZnS quantum dots was quenched greatly and the fluorescence lifetime was shortened gradually. The quenching efficiency of CdSe/ZnS core/shell quantum dots decreased with increasing the oxidation potential of organic charge transporting materials. Based on the analysis, two pathways in the photoluminescence quenching process have been defined: static quenching and dynamic quenching. The dynamic quenching is correlated with hole transporting from quantum dots to the charge transporting materials.

  9. Application of walnut shell modified with Zinc Oxide (ZnO nanoparticles in removal of natural organic matters (NOMs from aqueous solution

    Directory of Open Access Journals (Sweden)

    ali naghizadeh

    2015-10-01

    Full Text Available Background & Aims of the Study: Natural organic matters (NOMs are a mixture of chemically complex polyelectrolytes produced mainly from the decomposition of plant and animal residues that are present in all surface and groundwater resources. This paper evaluates the aqueous NOMs adsorption efficiency on walnut shell modified with Zinc Oxide (ZnO. Materials & Methods: This study examined the feasibility of removing NOMs from aqueous solutions using walnut shell modified with ZnO. The effects of NOMs concentration, modified walnut shell with ZnO dosage, and pH on adsorption of NOMs by modified walnut shell with ZnO were evaluated. Results: The adsorption capacities of modified walnut shell with ZnO in the best conditions were 37.93 mg/g. The results also demonstrated that adsorption capacity of NOMs on modified walnut shell with ZnO was higher in lower pHs due to significantly high electrostatic attraction exists between the positively charged surface of the adsorbent and negatively charged NOMs. And finally adsorption capacity decreases as adsorbent dose increase. Conclusion: Walnut shell modified with ZnO can be proposed as a natural adsorbent in the removal of NOMs from aqueous solutions

  10. Combined effect of salt concentration and pressure gradients across charged membranes

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    2002-01-01

    The combined effect of both concentration and pressure differences on electrical potential (Deltaphi) for two ion-exchanger membranes, one positively charged (AE) and another negatively charged (CE), measured with the membranes in contact with NaCl solutions was studied. Results show a linear dep...

  11. Argon-ion charge distributions following near-threshold ionization

    International Nuclear Information System (INIS)

    Levin, J.C.

    1990-01-01

    When an atom is photoionized in an inner shell, there are two mechanisms by which the remaining electron cortege relaxes to fill the vacancy: x-ray emission and radiationless Auger and Coster-Kronig transitions. In the former, the inner-shell hole moves to a less tightly bound orbital without increasing the number of atomic vacancies. In Auger processes, however, the energy liberated by transfer of a less-tightly-bound electron to the inner-shell vacancy is transferred to another electron which is ejected into the continuum. In this case, the charge on the residual ion increases by one. Through a series of radiative and non-radiative processes, the initial vacancy bubbles up until all vacancies arrive at the outermost shell. Due to the many possible routes by which this may occur, there can be a broad distribution of residual ion charge states characteristic of the decay of a single inner-shell vacancy. Because so many processes can contribute to each charge state, it is difficult to determine the effect of each by examining the total ion charge distribution; the total-ion charge distribution represents an average over many effects. To overcome this limitation, the author has recently measured argon-ion production as a function of both photon energy and Auger decay channel following photoionization of K-shell electrons with highly monochromatic synchrotron radiation. When measured differential in decay channel, the ion charge distributions are greatly simplified. Analysis, in progress, of these simplified distributions will permit extraction of information about relative decay rates and shakeoff effects that is obscured in the single spectra

  12. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Yijie Zeng

    2014-10-01

    Full Text Available The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs with a diameter of 1.1–2.8 nm are calculated by means of the first principle calculation. Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of ZnSe/Si core-shell NWs are caused by the interface state. Fixing the ZnSe core size and enlarging the Si shell would turn the NWs from intrinsic to p-type, then to metallic. However, Fixing the Si core and enlarging the ZnSe shell would not change the band gap significantly. The partial charge distribution diagram shows that the conduction band maximum (CBM is confined in Si, while the valence band maximum (VBM is mainly distributed around the interface. Our findings also show that the band gap and conductivity type of ZnSe/Si core-shell NWs can be tuned by the concentration and diameter of the core-shell material, respectively.

  13. Dissociation of multiply charged ICN by Coulomb explosion

    Energy Technology Data Exchange (ETDEWEB)

    Eland, J. H. D. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Singh, R.; Hult Roos, A.; Andersson, J.; Squibb, R. J.; Feifel, R. [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Pickering, J. D.; Brouard, M. [Department of Chemistry, The Chemistry Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA (United Kingdom); Slater, C. S. [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Chemistry, The Chemistry Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA (United Kingdom); Zagorodskikh, S. [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2016-08-21

    The fragmentations of iodine cyanide ions created with 2 to 8 positive charges by photoionization from inner shells with binding energies from 59 eV (I 4d) to ca. 900 eV (I 3p) have been examined by multi-electron and multi-ion coincidence spectroscopy with velocity map imaging ion capability. The charge distributions produced by hole formation in each shell are characterised and systematic effects of the number of charges and of initial charge localisation are found.

  14. Optical properties of core-shell and multi-shell nanorods

    Science.gov (United States)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  15. Neighbouring charge fragmentations in low energy fission

    International Nuclear Information System (INIS)

    Montoya, M.

    1986-10-01

    Shell and odd-even effects in fission have been largely studied until now. The structure in fragment mass, charge and kinetic energy distributions of fragments were interpreted as shell and even-odd effects. In this paper, we want to show that the discret change of fragment charge symmetry should produce also structures in those distribution. 19 refs

  16. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    Science.gov (United States)

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  17. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    Science.gov (United States)

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  18. Inner-shell excitation and ionic fragmentation of molecules

    International Nuclear Information System (INIS)

    Hitchcock, A.P.; Tyliszczak, T.; Cavell, R.G.

    1997-01-01

    Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can reveal cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF 6 and CO 2 . Their work is illustrated using results from the carborane and PF 3 studies

  19. Inner-shell excitation and ionic fragmentation of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A.P.; Tyliszczak, T. [McMaster Univ., Hamilton, Ontario (Canada); Cavell, R.G. [Univ. of Alberta, Edmonton (Canada)] [and others

    1997-04-01

    Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can reveal cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF{sub 6} and CO{sub 2}. Their work is illustrated using results from the carborane and PF{sub 3} studies.

  20. Design and intestinal mucus penetration mechanism of core-shell nanocomplex.

    Science.gov (United States)

    Zhang, Xin; Cheng, Hongbo; Dong, Wei; Zhang, Meixia; Liu, Qiaoyu; Wang, Xiuhua; Guan, Jian; Wu, Haiyang; Mao, Shirui

    2018-02-28

    The objective of this study was to design intestinal mucus-penetrating core-shell nanocomplex by functionally mimicking the surface of virus, which can be used as the carrier for peroral delivery of macromolecules, and further understand the influence of nanocomplex surface properties on the mucosal permeation capacity. Taking insulin as a model drug, the core was formed by the self-assembly among positively charged chitosan, insulin and negatively charged sodium tripolyphosphate, different types of alginates were used as the shell forming material. The nanocomplex was characterized by dynamic light scattering (DLS), atomic force microscopy (AFM) and FTIR. Nanocomplex movement in mucus was recorded using multiple particle tracking (MPT) method. Permeation and uptake of different nanocomplex were studied in rat intestine. It was demonstrated that alginate coating layer was successfully formed on the core and the core-shell nanocomplex showed a good physical stability and improved enzymatic degradation protection. The mucus penetration and MPT study showed that the mucus penetration capacity of the nanocomplex was surface charge and coating polymer structure dependent, nanocomplex with negative alginate coating had 1.6-2.5 times higher mucus penetration ability than that of positively charged chitosan-insulin nanocomplex. Moreover, the mucus penetration ability of the core-shell nanocomplex was alginate structure dependent, whereas alginate with lower G content and lower molecular weight showed the best permeation enhancing ability. The improvement of intestine permeation and intestinal villi uptake of the core-shell nanocomplex were further confirmed in rat intestine and multiple uptake mechanisms were involved in the transport process. In conclusion, core-shell nanocomplex composed of oppositely charged materials could provide a strategy to overcome the mucus barrier and enhance the mucosal permeability. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

    Science.gov (United States)

    Coggins, Brian E; Zhou, Pei

    2008-12-01

    Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

  2. Self-Assembling of Tetradecylammonium Chain on Swelling High Charge Micas (Na-Mica-3 and Na-Mica-2): Effect of Alkylammonium Concentration and Mica Layer Charge.

    Science.gov (United States)

    Pazos, M Carolina; Cota, Agustín; Osuna, Francisco J; Pavón, Esperanza; Alba, María D

    2015-04-21

    A family of tetradecylammonium micas is synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg6F4O20·XH2O, where n = 2 and 3) exchanged with tetradecylammonium cations. The molecular arrangement of the surfactant is elucidated on the basis of XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas is investigated by IR/FT, (13)C, (27)Al, and (29)Si MAS NMR. The structural arrangement of the tetradecylammonium cation in the interlayer space of high-charge micas is more sensitive to the effect of the mica layer charge at high concentration. The surfactant arrangement is found to follow the bilayer-paraffin model for all values of layer charge and surfactant concentration. However, at initial concentration below the mica CEC, a lateral monolayer is also observed. The amount of ordered conformation all-trans is directly proportional to the layer charge and surfactant concentration.

  3. Electrosprayed core–shell solid dispersions of acyclovir fabricated using an epoxy-coated concentric spray head

    Science.gov (United States)

    Liu, Zhe-Peng; Cui, Lei; Yu, Deng-Guang; Zhao, Zhuan-Xia; Chen, Lan

    2014-01-01

    A novel structural solid dispersion (SD) taking the form of core–shell microparticles for poorly water-soluble drugs is reported for the first time. Using polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix, the SDs were fabricated using coaxial electrospraying (characterized by an epoxy-coated concentric spray head), although the core fluids were unprocessable using one-fluid electrospraying. Through manipulating the flow rates of the core drug-loaded solutions, two types of core–shell microparticles with tunable drug contents were prepared. They had average diameters of 1.36±0.67 and 1.74±0.58 μm, and were essentially a combination of nanocomposites with the active ingredient acyclovir (ACY) distributed in the inner core, and the sweeter sucralose and transmembrane enhancer sodium dodecyl sulfate localized in the outer shell. Differential scanning calorimetry and X-ray diffraction results demonstrated that ACY, sodium dodecyl sulfate, and sucralose were well distributed in the PVP matrix in an amorphous state because of favorable second-order interactions. In vitro dissolution and permeation studies showed that the core–shell microparticle SDs rapidly freed ACY within 1 minute and promoted nearly eightfold increases in permeation rate across the sublingual mucosa compared with raw ACY powders. PMID:24790437

  4. Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Dong, Wenhao; Pan, Feng; Xu, Leilei; Zheng, Minrui; Sow, Chorng Haur; Wu, Kai; Xu, Guo Qin

    2015-01-01

    Graphical abstract: - Highlights: • CdS nanorods were coated with amorphous TiO 2 shells under a mild condition. • The TiO 2 shell thickness can be controlled from 3.5 to 40 nm. • CdS@TiO 2 nanorods exhibit enhanced photocatalytic activities under visible light. • Efficient charge carriers separation leads to the improved photocatalytic activity. - Abstract: Amorphous TiO 2 layers with a controllable thickness from 3.5 to 40 nm were coated on the one-dimensional CdS nanorods surface under mild conditions. Compared to the bare CdS nanorods, the as-prepared CdS@TiO 2 nanorods exhibit enhanced photocatalytic activities for phenol photodecomposition under visible light irradiation. The improved photoactivity is ascribed to the efficient separation of photogenerated electron and hole charge carriers between CdS cores and TiO 2 shells. This study promises a simple approach to fabricating CdS@TiO 2 core–shell structure nanocomposites, and can be applied for other semiconductor cores with TiO 2 shells

  5. Stress distributions due to hydrogen concentrations in electrochemically charged and aged austenitic stainless steel

    International Nuclear Information System (INIS)

    Rozenak, P.; Loew, A.

    2008-01-01

    As a result of hydrogen concentration gradients in type austenitic stainless steels, formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses were developed. These stresses were measured by X-ray technique and the crack formation thus induced could be studied using equilibrium stress equations. After various electrochemical charging and aging times, X-ray diffraction patterns obtained from samples indicated that the reflected and broadened diffraction peaks are the result of the formation of a non-uniform but continuous solid solution in the austenitic matrix. Since both hydrogen penetrations during charging and hydrogen release during aging are diffusion controlled processes and huge hydrogen concentration gradients in the thin surface layer, at depths comparable with the depth of X-ray penetration, are observed. The non-uniform hydrogen concentration in the austenitic matrix, results to the non-uniform expansion of the atomic microstructure and latter inevitably leads to the development of internal stresses. The internal stresses development formulae's are very similar to those relating to non-uniform heating of the materials, where thermal stresses appear due to non-uniform expansion or contraction. The relevant well developed theory is applicable in our case of non-uniform hydrogen concentrations in a solid solution of electrochemically charged and aged austenitic matrix. A few cracks were present on the surface after some minutes of electrochemical charging and the severity of cracking increased as hydrogen was lost during subsequent aging. This is consistent with the expectation of high compressive stresses in the bulk of the specimen during charging and high tensile surface stresses (at the level of 1 x 10 11 Pa) during the aging process. These stresses can induce the formation of surface cracks during the aging process after electrochemical charging in the AISI 316 stainless steel

  6. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects

    International Nuclear Information System (INIS)

    Singh, L Robindro; Ningthoujam, R S; Sudarsan, V; Srivastava, Iti; Singh, S Dorendrajit; Dey, G K; Kulshreshtha, S K

    2008-01-01

    Nanoparticles of Eu 3+ doped Y 2 O 3 (core) and Eu 3+ doped Y 2 O 3 covered with Y 2 O 3 shell (core-shell) are prepared by urea hydrolysis for 3 h in ethylene glycol medium at a relatively low temperature of 140 deg. C, followed by heating at 500 and 900 deg. C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18 nm for 500 and 900 deg. C heated samples respectively. Based on the luminescence studies of 500 and 900 deg. C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu 3+ emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu 3+ concentration of 4-5 at.%. A luminescence study establishes that the Eu 3+ environment in amorphous Y (OH) 3 is different from that in crystalline Y 2 O 3 . For a fixed concentration of Eu 3+ doping, there is a reduction in Eu 3+ emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu 3+ increases with increase of crystallinity

  7. Hartree--Slater calculation of the cross section for L-shell ionization of argon by simple heavy charged particles

    International Nuclear Information System (INIS)

    Choi, B.

    1975-01-01

    The cross sections for L-shell and subshell ionization by direct Coulomb excitation of argon by incident heavy charged particles are evaluated. Incident particles are described in the plane-wave Born approximation, and nonrelativistic Hartree-Slater (HS) wave functions are used for the atomic electrons. Form factors, energy distributions, and ionization cross sections are compared with those obtained from screened hydrogenic wave functions. At most incident energies, the HS results for the total ionization cross section are only slightly smaller than those obtained with screened hydrogenic wave functions, but considerable discrepancies are found for form factors and energy distributions near the ionization threshold

  8. Cascade processes after 3p-shell threshold photoionization of Kr

    International Nuclear Information System (INIS)

    Matsui, T.; Yoshii, H.; Higurashi, A.; Hayaishi, T.; Murakami, E.; Aoto, T.; Onuma, T.; Morioka, Y.; Yagishita, A.

    2002-01-01

    Yield spectra of the multiply charged ions Kr 2+ , Kr 3+ , Kr 4+ and Kr 5+ in coincidence with threshold electrons (E k ≤0.03 eV) have been measured near the 3p-shell ionization region of Kr. Profiles of post-collision interaction (PCI) effects induced by Auger cascades following 3p-shell threshold ionization are derived from these coincidence spectra. On the basis of the PCI profiles, the number of Auger cascade steps for each of the decay channels leading to the formation of the multiply charged ions in 3p 3/2 - and 3p 1/2 -shell threshold ionization of Kr was determined, and the branching ratios of the decay channels were estimated. (author)

  9. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    Science.gov (United States)

    Yang, Chungja

    Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and

  10. High-resolution K-shell spectra from laser excited molybdenum plasmas

    Directory of Open Access Journals (Sweden)

    Szabo C.I.

    2013-11-01

    Full Text Available X-ray spectra from Molybdenum plasmas were recorded by a Cauchois-type cylindrically bent Transmission Crystal Spectrometer (TCS. The absolutely calibrated spectrometer provides an unprecedented resolution of inner shell transitions (K x-ray radiation. This tool allows us to resolve individual lines from different charge states existing inside the laser-produced plasma. The inner shell transitions from highly charged Molybdenum shown in this report have never been resolved before in such detail in a laser-produced plasma.

  11. Inner-shell vacancy production and mean charge states of MeV/u Fe, Co, Ni and Cu ions in Au and Bi solid targets

    Energy Technology Data Exchange (ETDEWEB)

    Ciortea, C. E-mail: ciortea@tandem.nipne.ro; Dumitriu, Dana; Enescu, Sanda E.; Enulescu, A.; Fluerasu, Daniela; Piticu, I.; Szilagyi, Z.S

    2002-06-01

    The average charge states of 0.1-1.5 MeV/u Fe, Co, Ni and Cu ions in solid Au and Bi targets have been determined, by estimating the mean numbers of outer-shell spectator vacancies during the K-vacancy decay. The latter quantities were obtained from the yield and energy shifts of the K{alpha}, {beta} X-rays, by comparing with calculations in the independent electron approximation. The reported equilibrium charges, mostly characteristic for the inside of the target, are in fairly agreement with Nikolaev and Dmitriev semi-empirical formula [Phys. Lett. 28A (1968) 277].

  12. Gauge constraints and electromagnetic properties of off-shell particles

    NARCIS (Netherlands)

    Nagorny, S.I.; Dieperink, A.E.L.

    The consequences of the gauge constraints for off-shellness in the electromagnetic (EM) vertices have been considered, using Compton scattering as an example. We have found that even if the gauge constraint for the 3-point EM Green function allows for off-shell effects in the charge (Dirac) form

  13. Magnetic charge, black holes, and cosmic censorship

    International Nuclear Information System (INIS)

    Hiscock, W.H.

    1981-01-01

    The possibility of converting a Reissner-Nordstroem black hole into a naked singularity by means of test particle accretion is considered. The dually charged Reissner-Nordstroem metric describes a black hole only when M 2 >Q 2 +P 2 . The test particle equations of motion are shown to allow test particles with arbitrarily large magnetic charge/mass ratios to fall radially into electrically charged black holes. To determine the nature of the final state (black hole or naked singularity) an exact solution of Einstein's equations representing a spherical shell of magnetically charged dust falling into an electrically charged black hole is studied. Naked singularities are never formed so long as the weak energy condition is obeyed by the infalling matter. The differences between the spherical shell model and an infalling point test particle are examined and discussed

  14. Facile fabrication of core–shell ZnO/Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} nanorods: Enhanced photoluminescence through electron charge

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shengfei; Gao, Hongli [School of Materials Science & Engineering, Beihang University, Beijing 100191 (China); Deng, Yuan, E-mail: dengyuan@buaa.edu.cn [School of Materials Science & Engineering, Beihang University, Beijing 100191 (China); Wang, Yao [School of Materials Science & Engineering, Beihang University, Beijing 100191 (China); Qu, Shengchun, E-mail: qsc@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2016-01-15

    Graphical abstract: - Highlights: • The Bi{sub 0.5}Sb{sub 1.5}Te{sub 3}/ZnO core–shells prepared by combining a facile hydrothermal growth and magnetron sputtering approach. • The light absorption and photoluminescence emission of the ZnO and the Bi{sub 0.5}Sb{sub 1.5}Te{sub 3}/ZnO core–shells are investigated. • The core–shell structure reveals a simultaneous novelty enhancement of the photoluminescence emission in the UV and visible range. • The mechanism for the PL simultaneous enhancement is described. - Abstract: Surface decoration techniques are emerging as promising strategy to improve the optical properties of the ZnO based materials. The core–shell ZnO/Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} nanorods were grown on a FTO substrate through a facile hydrothermal and magnetron sputtering combined approach. The microstructure of the core–shell nanorod arrays were investigated by the X-ray diffraction (XRD), a field emission Scanning electron microscopy (SEM) and high resolution transmission electron microscope (HTEM). The optical properties of the core–shell nanorod arrays were investigated through the diffuse reflectance absorption spectra and photoluminescence emission. The visible light absorption and especially the photoluminescence emission of the ZnO nanorods are enhanced markedly with the Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} grains coating the ZnO nanorods through the electron charge.

  15. Sensitivity of the CSR self-interaction to the local longitudinal charge concentration of an electron bunch

    CERN Document Server

    Li, R

    2001-01-01

    Recent measurements of the coherent synchrotron radiation (CSR) effects indicated that the observed emittance growth and energy modulation due to the orbit-curvature-induced bunch self-interaction are sometimes bigger than predictions based on Gaussian longitudinal charge distributions. In this paper, by performing a model study, we show both analytically and numerically that when the longitudinal bunch charge distribution involves concentration of charges in a small fraction of the bunch length, enhancement of the CSR self-interaction beyond the Gaussian prediction may occur. The level of this enhancement is sensitive to the level of the local charge concentration.

  16. Strontium and fluorine in tuatua shells

    International Nuclear Information System (INIS)

    Trompetter, W.J.; Coote, G.E.

    1993-01-01

    This report describes the research to date on the elemental distributions of strontium, calcium, and fluorine in a collection of 24 tuatua shells (courtesy of National Museum). Variations in elemental concentrations were measured in the shell cross-sections using a scanning proton microprobe (PIXE and PIGME). In this paper we report the findings to date, and present 2-D measurement scans as illustrative grey-scale pictures. Our results support the hypothesis that increased strontium concentrations are deposited in the shells during spawning, and that fluorine concentration is proportional to growth rate. (author). 15 refs.; 13 figs.; 1 appendix

  17. Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size

    Directory of Open Access Journals (Sweden)

    Nekić Nikolina

    2017-03-01

    Full Text Available Ge/Si core/shell quantum dots (QDs recently received extensive attention due to their specific properties induced by the confinement effects of the core and shell structure. They have a type II confinement resulting in spatially separated charge carriers, the electronic structure strongly dependent on the core and shell size. Herein, the experimental realization of Ge/Si core/shell QDs with strongly tunable optical properties is demonstrated. QDs embedded in an amorphous alumina glass matrix are produced by simple magnetron sputtering deposition. In addition, they are regularly arranged within the matrix due to their self-assembled growth regime. QDs with different Ge core and Si shell sizes are made. These core/shell structures have a significantly stronger absorption compared to pure Ge QDs and a highly tunable absorption peak dependent on the size of the core and shell. The optical properties are in agreement with recent theoretical predictions showing the dramatic influence of the shell size on optical gap, resulting in 0.7 eV blue shift for only 0.4 nm decrease at the shell thickness. Therefore, these materials are very promising for light-harvesting applications.

  18. Auger Spectra and Different Ionic Charges Following 3s, 3p and 3d Sub-Shells Photoionization of Kr Atoms

    Directory of Open Access Journals (Sweden)

    Yehia A. Lotfy

    2006-01-01

    Full Text Available The decay of inner-shell vacancy in an atom through radiative and non-radiative transitions leads to final charged ions. The de-excitation decay of 3s, 3p and 3d vacancies in Kr atoms are calculated using Monte-Carlo simulation method. The vacancy cascade pathway resulted from the de-excitation decay of deep core hole in 3s subshell in Kr atoms is discussed. The generation of spectator vacancies during the vacancy cascade development gives rise to Auger satellite spectra. The last transitions of the de-excitation decay of 3s, 3p and 3d holes lead to specific charged ions. Dirac-Fock-Slater wave functions are adapted to calculate radiative and non-radiative transition probabilities. The intensity of Kr^{4+} ions are high for 3s hole state, whereas Kr^{3+} and Kr^{2+} ions have highest intensities for 3p and 3d hole states, respectively. The present results of ion charge state distributions agree well with the experimental data.

  19. Cu–Ni core–shell nanoparticles: structure, stability, electronic, and magnetic properties: a spin-polarized density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: wangqiang@njtech.edu.cn; Wang, Xinyan; Liu, Jianlan; Yang, Yanhui [Nanjing Tech University, School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis (IAS) (China)

    2017-02-15

    Bimetallic core–shell nanoparticles (CSNPs) have attracted great interest not only because of their superior stability, selectivity, and catalytic activity but also due to their tunable properties achieved by changing the morphology, sequence, and sizes of both core and shell. In this study, the structure, stability, charge transfer, electronic, and magnetic properties of 13-atom and 55-atom Cu and Cu–Ni CSNPs were investigated using the density functional theory (DFT) calculations. The results show that Ni@Cu CSNPs with a Cu surface shell are more energetically favorable than Cu@Ni CSNPs with a Ni surface shell. Interestingly, three-shell Ni@Cu{sub 12}@Ni{sub 42} is more stable than two-shell Cu{sub 13}@Ni{sub 42}, while two-shell Ni{sub 13}@Cu{sub 42} is more stable than three-shell Cu@Ni{sub 12}@Cu{sub 42}. Analysis of Bader charge illustrates that the charge transfer increases from Cu core to Ni shell in Cu@Ni NPs, while it decreases from Ni core to Cu shell in Ni@Cu NPs. Furthermore, the charge transfer results that d-band states have larger shift toward the Fermi level for the Ni@Cu CSNPs with Cu surface shell, while the Cu@Ni CSNPs with Ni surface shell have similar d-band state curves and d-band centers with the monometallic Ni NPs. In addition, the Cu–Ni CSNPs possess higher magnetic moment when the Ni atoms aggregated at core region of CSNPs, while having lower magnetic moment when the Ni atoms segregate on surface region. The change of the Cu atom location in CSNPs has a weak effect on the total magnetic moment. Our findings provide useful insights for the design of bimetallic core–shell catalysts.

  20. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    International Nuclear Information System (INIS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi

    2015-01-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap

  1. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  2. Strength Calculation of Locally Loaded Orthotropic Shells

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available The article studies laminated orthotropic cylindrical, conic, spherical, and toroidal shells, which are often locally loaded in the aircraft designs over small areas of their surfaces.The aim of this work is to determine stress concentration in shells versus structure of orthotropic composite material, shell form and parameters, forms of loading areas, which borders do not coincide with lines of main curvatures of shells. For this purpose, an analytical computing algorithm to estimate strength of shells in terms of stress is developed. It enables us to have solution results of the boundary value problem with a controlled error. To solve differential equations an analytical method is used. An algorithm of the boundary value problem solution is multiplicative.The main results of researches are graphs of stress concentration in the orthotropic shells versus their parameters and areas of loading lineated by circles and ellipses.Among the other works aimed at determination of stress concentration in shells, the place of this one is defined by the analytical solution of applied problems for strength estimation in terms of shell stresses of classical forms.The developed effective analytical algorithm to solve the boundary value problem and received results are useful in research and development.

  3. Charge state of ions scattered by metal surface

    International Nuclear Information System (INIS)

    Kishinevsky, L.M.; Parilis, E.S.; Verleger, V.K.

    1976-01-01

    A model for description of charge distributions for scattering of heavy ions in the keV region, on metal surfaces developing and improving the method of Van der Weg and Bierman, and taking into account the connection between the ion charge state and scattering kinematics, is proposed. It is shown that multiple charged particles come from ions with a vacancy in the inner shell while the outer shell vacancies give only single charged ions and neutrals. The approximately linear increase of degree of ionization with normal velocity, and the non-monotonic charge dependence of the energy spectrum established by Chicherov and Buck et al is explained by considering irreversible neutralization in the depth of the metal, taking into account the connection of the charge state with the shape of trajectory and its location relative to the metal surface. The dependence of charge state on surface structure is discussed. Some new experiments are proposed. (author)

  4. Charge state distributions for heavy ions in carbon stripper foils

    International Nuclear Information System (INIS)

    McMahan, M.A.; Lebed, R.F.; Feinberg, B.

    1989-03-01

    We have extended the database of measured charge state distributions available in the literature through measurements at the SuperHILAC using carbon stripper foils in the energy range 1.2--8.5 MeV/u. Modifying a semi-empirical model to include the effect of electronic shells, we are able to correctly predict the mean charge state to within 1/2 a charge state for 6≤Z≤92 and energies from 30 keV/u to 16 MeV/u. We have determined parameters for the widths of the distributions for each electronic shell. For distributions lying across a shell boundary, we join the two Gaussians of different widths to get an asymmetric distribution. 18 refs., 4 figs., 2 tabs

  5. Distribution of a vacuum charge near supercharged nuclei

    International Nuclear Information System (INIS)

    Migdal, A.B.; Popov, V.S.; Voskresenskij, D.N.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental'noj Fiziki)

    1977-01-01

    The distribution of a vacuum charge near super-critical nuclei (Ze 2 > > 1) is found. The calculation is performed in the Thomas - Fermi approximation extended to the relativistic case. The characteristic parameter in the present problem is Ze 3 approximately Z/1600. For Ze 3 approximately 1 the total charge of the vacuum shell becomes comparable to the nuclear charge Z. The relativistic Thomas - Fermi equation for the vacuum shell of a supercritical atom is solved analytically for two extreme cases, Ze 3 3 > > 1. In the intermediate region, Ze 3 approximately 1, the equation is solved numerically. The Thomas - Fermi equation for a neutral atom (in which not only the vacuum but external electron shells as well are filled up) and also the equation in which allowance is made for exchange and correlation corrections (relativistic generalization of the Thomas -Fermi - Dirac equation) are also considered

  6. Hamiltonian treatment of the gravitational collapse of thin shells

    International Nuclear Information System (INIS)

    Crisostomo, Juan; Olea, Rodrigo

    2004-01-01

    A Hamiltonian treatment of the gravitational collapse of thin shells is presented. The direct integration of the canonical constraints reproduces the standard shell dynamics for a number of known cases. The formalism is applied in detail to three-dimensional spacetime and the properties of the (2+1)-dimensional charged black hole collapse are further elucidated. The procedure is also extended to deal with rotating solutions in three dimensions. The general form of the equations providing the shell dynamics implies the stability of black holes, as they cannot be converted into naked singularities by any shell collapse process

  7. Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes.

    Science.gov (United States)

    Lu, Xiaoyan; Shen, Chen; Zhang, Zeyang; Barrios, Elizabeth; Zhai, Lei

    2018-01-31

    Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn 2+ ). The obtained nanofibers were stabilized by Fe 3+ through the interaction between Fe 3+ ions and carboxylate groups. Subsequent oxidation of Mn 2+ by KMnO 4 produced uniform manganese dioxide (MnO 2 ) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe 3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO 2 @PAA/PPy core-shell composite fibers, MnO 2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO 2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO 2 @PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO 2 @PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.

  8. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  9. Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage

    International Nuclear Information System (INIS)

    Li, Qiyuan; Tehrani, S. Saeed Mostafavi; Taylor, Robert A.

    2017-01-01

    In this paper, the feasibility of a medium temperature, low profile concentrated solar thermal collector integrated with latent heat thermal energy storage (LHTES) is investigated. The proposed modular integrated collector storage (ICS) system consists of six solar receiver units and seven cylindrical shell and tube LHTES tanks. By implementing an innovative optical concentration assembly and an internal linear tracking mechanism, the collector can concentrate beam radiation to the tube receivers during the highest flux hours of a day without any external or rotational motion. The collector's efficiency correlations were obtained experimentally and its integrated performance – with the LHTES units – was evaluated numerically. To demonstrate the potential of this proposed ICS system, an annual analysis was carried out for a characteristic industrial application – a dairy dehydration process that requires a constant 50 kW th of heat in the 120–150 °C temperature range. It was found that adding the storage units will increase the capital costs by ∼10%, but it can increase the annual thermal output of the system by up to ∼20%. A solar fraction of 65% was achievable with some design alternatives, but the optimum techno-economic design had a solar fraction of ∼35% and an annual charging efficiency of nearly 100%. It was also found that if the capital cost of the ICS (collector and LHTES tank) system could be reduced by 50% from an estimated ∼1000 US$/m 2 to ∼500 US$/m 2 through mass production and/or further design optimizations, this system could provide industrial process heat with a levelized cost of heating (LCOH) of ∼0.065 US$/kWh th . - Highlights: • An innovative ICS system was proposed and analyzed for industrial heat applications. • The optimum design can achieve a ∼35% solar fraction with ∼100% charging efficiency. • A 0.12 US$/kWh LCOH was found, but further reductions could result in 0.065 US$/kWh. • Costs reductions of

  10. Preparation and characterization of sub-20 nm Cu{sub X}@Ag{sub 1} core-shell nanoparticles by changing concentration of silver precursor

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Sang-Soo; Lee, Jong-Hyun, E-mail: pljh@snut.ac.kr

    2017-01-01

    Ultrafine Ag-coated Cu (Cu@Ag) nanoparticles (NPs) less than 20 nm in diameter were prepared. After synthesizing ultrafine Cu NPs using a solvothermal method to serve as the core particles, Cu@Ag NPs were fabricated with different initial Ag precursor concentrations, resulting in different thicknesses, densities, and uniformities of Ag shells. The average thickness and density of the Ag shell increased with increasing initial Ag precursor concentration in a Cu:Ag atomic ratio from 6:1 to 1:1. However, excessive Ag precursor concentrations induced homogeneous nucleation and growth of surplus fine pure NPs. Ag dewetting behavior and Cu oxidation in the Cu{sub 4}@Ag{sub 1} NPs were observed, they occurred during heating at 200 and 250 °C, respectively. The electrical resistivities of sintered Cu{sub 4}@Ag{sub 1} films decreased with increasing temperature from 200 to 240 °C. The resistivity after washing the OA and sintering for 60 min at 240 °C in air was measured to be 4.96 × 10{sup −3} Ω cm. The film was sintered in nitrogen using the ink containing non-washed Cu{sub 4}@Ag{sub 1} NPs indicated the lower resistivity of 2.70 × 10{sup −3} Ω cm owing to the non-oxidation atmosphere, although the chemically capped oleylamine in the core-shell NPs hindered the sintering behavior. - Highlights: • Ultrafine Ag-coated Cu nanoparticles less than 20 nm in diameter were fabricated. • Different Ag precursor concentrations influenced thickness and density of Ag shell. • Excessive Ag precursor concentrations induced formation of surplus fine pure NPs. • Ag dewetting behavior and Cu oxidation in Cu{sub 4}@Ag{sub 1} nanoparticles were observed. • Electrical resistivities of sintered Cu{sub 4}@Ag{sub 1} films were 2.70–4.96 × 10{sup −3} Ω cm.

  11. Study of characterization of trace elements in marine shells of Sambaqui: correlation between recent and old shells

    International Nuclear Information System (INIS)

    Gomez, Mauro Roger Batista Pousada; Rocha, Flavio Roberto; Silva, Paulo Sergio Cardoso da

    2013-01-01

    Calcium carbonate of recent and ancient C. rhizophorae oyster shells was analyzed for the determination of trace elements by instrumental neutron activation analysis. The ancient shells belong to a Sambaqui located in Cananeia region, South of Sao Paulo state and the recent ones are from an oyster production farm in the same region Studies related to the element concentrations in molluscs shell has been done as a tentative of establishing the element concentrations with palio-environmental factor. In this study it was aimed to verify differences in the elemental constitution of recent and ancient oyster shells that present potential for being used as indicator of marine changes. Results indicated that the elements Br, Ce, La, Na, Sm and An are higher in recent shells and the elements Cr, Fe Sc and Th are higher in ancient shells. Statistical analyses performed indicated that the enrichment of the light rare earth elements related to Ca are possibly good candidates for these palio-environmental studies. (author)

  12. Form factors and transition charge densities for the quadrupole and hexadecupole electroexcitation of some 2p-1f shell nuclei

    International Nuclear Information System (INIS)

    Raina, P.K.; Sharma, S.K.

    1986-12-01

    A microscopic description of the recent data on the inelastic electron scattering form factors for the O + → 2 + as well as O + → 4 + transitions in some doubly even Ti, Cr, Fe, Ni and Zn isotopes is attempted in terms of the projected Hartree-Fock-Bogolubov wave functions resulting from realistic effective interactions operating in the 2p-1f shell. It turns out that the available form factor data out to about 2.5fm -1 can be reproduced in most of the cases in a fairly satisfactory manner in terms of reasonable values of effective charges. It is seen that the empirical transition charge densities in Ni and Zn isotopes extracted from the form factor data via the Fourier-Bessel analysis play a decisive role vis-a-vis the choice of a model of core-polarization contributions. (author). 28 refs, 8 figs, 2 tabs

  13. Probing nuclear correlations with pion-nucleus double charge exchange

    International Nuclear Information System (INIS)

    Ginocchio, J.N.

    1988-01-01

    In this paper we have calculated the lowest order pion double charge reaction mechanism using shell model wavefunctions of medium weight nuclei. We have the sequential reaction mechanism in which the pion undergoes two single-charge exchange scatterings on the valence neutrons. The distortion of the incoming, intermediate, and outgoing pion are included. The closure approximation is made for the intermediate states with an average excitation energy used in the pion propagator. The double-charge exchange is assumed to take place on the valence nucleons which are assumed to be in one spherical shell model orbital. 34 refs., 5 figs., 3 tabs

  14. Isolated effects of external bath osmolality, solute concentration, and electrical charge on solute transport across articular cartilage.

    Science.gov (United States)

    Pouran, Behdad; Arbabi, Vahid; Zadpoor, Amir A; Weinans, Harrie

    2016-12-01

    The metabolic function of cartilage primarily depends on transport of solutes through diffusion mechanism. In the current study, we use contrast enhanced micro-computed tomography to determine equilibrium concentration of solutes through different cartilage zones and solute flux in the cartilage, using osteochondral plugs from equine femoral condyles. Diffusion experiments were performed with two solutes of different charge and approximately equal molecular weight, namely iodixanol (neutral) and ioxaglate (charge=-1) in order to isolate the effects of solute's charge on diffusion. Furthermore, solute concentrations as well as bath osmolality were changed to isolate the effects of steric hindrance on diffusion. Bath concentration and bath osmolality only had minor effects on the diffusion of the neutral solute through cartilage at the surface, middle and deep zones, indicating that the diffusion of the neutral solute was mainly Fickian. The negatively charged solute diffused considerably slower through cartilage than the neutral solute, indicating a large non-Fickian contribution in the diffusion of charged molecules. The numerical models determined maximum solute flux in the superficial zone up to a factor of 2.5 lower for the negatively charged solutes (charge=-1) as compared to the neutral solutes confirming the importance of charge-matrix interaction in diffusion of molecules across cartilage. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Novel fluorescent core-shell nanocontainers for cell membrane transport.

    Science.gov (United States)

    Yin, Meizhen; Kuhlmann, Christoph R W; Sorokina, Ksenia; Li, Chen; Mihov, George; Pietrowski, Eweline; Koynov, Kaloian; Klapper, Markus; Luhmann, Heiko J; Müllen, Klaus; Weil, Tanja

    2008-05-01

    The synthesis and characterization of novel core-shell macromolecules consisting of a fluorescent perylene-3,4,9,10-tetracarboxdiimide chromophore in the center surrounded by a hydrophobic polyphenylene shell as a first and a flexible hydrophilic polymer shell as a second layer was presented. Following this strategy, several macromolecules bearing varying polymer chain lengths, different polymer shell densities, and increasing numbers of positive and negative charges were achieved. Because all of these macromolecules reveal a good water solubility, their ability to cross cellular membranes was investigated. In this way, a qualitative relationship between the molecular architecture of these macromolecules and the biological response was established.

  16. Polarization and charge transfer in the hydration of chloride ions

    International Nuclear Information System (INIS)

    Zhao Zhen; Rogers, David M.; Beck, Thomas L.

    2010-01-01

    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters. The quantum theory of atoms in molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. The clusters extracted from the AMOEBA simulations exhibit high probabilities of anisotropic solvation for chloride ions in bulk water. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared to the quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2-level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.

  17. Synthesis of low density foam shells for inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Lattaud, Cecile

    2011-01-01

    This work deals with the fabrication process of low density foam shells and the sharp control of their shape (diameter, thickness, density, sphericity, non-concentricity). During this PhD we focused on the non-concentricity criterion which has to be lower than 1%. The shells are synthesized using a microencapsulation process leading to a double emulsion and followed by a thermal polymerization at 60 C. According to the literature, three major parameters, the density of the three phases, the deformations of the shells along the process and the kinetics of the polymerization have a direct influence on the shells non-concentricity. The results obtained showed that when the density gap between the internal water phase and the organic phase increases, the TMPTMA shells non-concentricity improves. A density gap of 0.078 g.cm -3 at 60 C, leads to an average non-concentricity of 2.4% with a yield of shells of 58%. It was also shown that the synthesis process can be considered as reproducible. While using the same internal water phase, equivalent non-concentricity results are obtained using either a straight tube, a tube with areas of constriction or a short wound tube. The time required to fix the shell's shape is at least 20 minutes with thermal polymerization. So, it seems that the time spent by the shells inside the rotating flask allows the centering of the internal water phase inside the organic phase, whatever the circulation process used. In order to get higher polymerization rates and to avoid destabilization phenomena, we then focused our study on photo polymerization. When the synthesis is performed using a UV lamp with an efficient light intensity, the shells have a slightly higher thickness than the shells synthesized by thermal polymerization. Moreover, a really higher yield, around 80%, is achieved with UV polymerization. However, the average non-concentricity of the shells synthesized lays around 20%, which is really high compared to the 2.4% average

  18. Electronic shell structure in multiply charged silver clusters

    International Nuclear Information System (INIS)

    Kandler, O.; Athanassenas, K.; Echt, O.; Kreisle, D.; Leisner, T.; Recknagel, E.

    1991-01-01

    Silver clusters are generated by standard laser vaporization technique and ionized via multiphoton ionization. Time-of-flight mass spectrometry reveals singly, doubly and triply charged clusters, Ag n z+ (z=1, 2, 3). The spectra show, for all charge states, intensity variations, indicating enhanced stabilities for cluster sizes with closed electronic configurations in accord with the spherical jellium model. (orig.)

  19. Specific interactions within micelle microenvironment in different charged dye/surfa

    Directory of Open Access Journals (Sweden)

    Adina Roxana Petcu

    2016-01-01

    Full Text Available The interactions of two ionic dyes, Crystal Violet and Methyl Orange, with different charged surfactants and also with a nonionic surfactant were investigated using surface tension measurements and visible spectroscopy in pre-micellar and post-micellar regions. It was found that for the water dominant phase systems the dye was localized between the polar heads, at the exterior of the direct micelle shells for all the systems. For the oil dominant phase systems, in case of the same charged dye/surfactant couples, the dye was localized in the micelle shell between the hydrocarbon chain of the surfactant nearby the hydrophilic head groups while for nonionic surfactant and oppositely charged dye/surfactant, localization of dye was between the oxyethylenic head groups towards the interior of the micelle core. Mixed aggregates of the dye and surfactant (below the critical micellar concentration of cationic surfactant, dye-surfactant ion pair and surfactant-micelles were present. The values of equilibrium constants (for TX-114/MO and TX-114/CV systems were 0.97 and 0.98, respectively, partition coefficients between the micellar and bulk water phases and standard free energy (for the nonionic systems were −12.59 kJ/mol for MO and −10.97 kJ/mol for CV were calculated for all the studied systems. The partition processes were exothermic and occurred spontaneously.

  20. Design criteria of launching rockets for burst aerial shells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  1. Shells of Nerita gastropod bio-monitors of heavy metals pollution around the Indian Ocean

    International Nuclear Information System (INIS)

    Badran, M.I.

    1999-01-01

    Minor and heavy metals Mg, Sr, Mn, Fe and Zn were measured in individual shells of four different Nerita species collected from Phuket Island, Thailand. Shell weight and crystallography were also recorded. Heavy metal concentrations were poorly correlated with both shell weight and crystallography. Out of the four species, N. albicilla acquired the highest heavy metal concentrations. Subsequently shells of N. albicilla collected from different sites around the Indian Ocean were compared for their metal concentrations. Shells of industrial sites in Kenya and India had significantly higher heavy metal concentrations than shells from pristine sites in Mauritius and Aldabra. Discussing the factors that may affect the shell metal concentration, the variations encountered herein are best attributed to the ambient bio-available metal concentration. (author)

  2. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    Science.gov (United States)

    Sangeetha, P.; Jeganathan, K.; Ramakrishnan, V.

    2013-06-01

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E2 (high) and A1 (LO) phonon mode of InN core at 490 and 590 cm-1 respectively and E2 (high) phonon mode of GaN shell at 573 cm-1. The free carrier concentration of InN core is found to be low in the order ˜ 1016 cm-3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ˜15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ˜0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E2 (high) phonon mode of GaN shell at 573 cm-1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  3. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111 substrate

    Directory of Open Access Journals (Sweden)

    P. Sangeetha

    2013-06-01

    Full Text Available The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE on Si (111 substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E2 (high and A1 (LO phonon mode of InN core at 490 and 590 cm−1 respectively and E2 (high phonon mode of GaN shell at 573 cm−1. The free carrier concentration of InN core is found to be low in the order ∼ 1016 cm−3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ∼15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ∼0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E2 (high phonon mode of GaN shell at 573 cm−1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  4. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    International Nuclear Information System (INIS)

    Sangeetha, P.; Ramakrishnan, V.; Jeganathan, K.

    2013-01-01

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E 2 (high) and A 1 (LO) phonon mode of InN core at 490 and 590 cm −1 respectively and E 2 (high) phonon mode of GaN shell at 573 cm −1 . The free carrier concentration of InN core is found to be low in the order ∼ 10 16 cm −3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ∼15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ∼0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E 2 (high) phonon mode of GaN shell at 573 cm −1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  5. Analysis of trace elements in the shell of asari clams

    International Nuclear Information System (INIS)

    Arakawa, J.; Sakamoto, W.; Arai, N.; Yoshida, K.

    1999-01-01

    Strontium concentration in the shells of asari clams collected at different locations was analyzed by PIXE. The Sr concentration of external surface of shell umbo was ranged from 1000 to 3500 ppm for individuals. The Sr concentration of clams collected at Shirahama showed positive correlation with shell length, whereas clams collected at Maizuru did not show significant correlation. This result may be caused from the difference of the spawning seasons between two areas. (author)

  6. Horizon shells and BMS-like soldering transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); O’Loughlin, Martin [University of Nova Gorica,Vipavska 13, 5000 Nova Gorica (Slovenia)

    2016-03-07

    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  7. Active constrained layer damping treatments for shell structures: a deep-shell theory, some intuitive results, and an energy analysis

    Science.gov (United States)

    Shen, I. Y.

    1997-02-01

    This paper studies vibration control of a shell structure through use of an active constrained layer (ACL) damping treatment. A deep-shell theory that assumes arbitrary Lamé parameters 0964-1726/6/1/011/img1 and 0964-1726/6/1/011/img2 is first developed. Application of Hamilton's principle leads to the governing Love equations, the charge equation of electrostatics, and the associated boundary conditions. The Love equations and boundary conditions imply that the control action of the ACL for shell treatments consists of two components: free-end boundary actuation and membrane actuation. The free-end boundary actuation is identical to that of beam and plate ACL treatments, while the membrane actuation is unique to shell treatments as a result of the curvatures of the shells. In particular, the membrane actuation may reinforce or counteract the boundary actuation, depending on the location of the ACL treatment. Finally, an energy analysis is developed to determine the proper control law that guarantees the stability of ACL shell treatments. Moreover, the energy analysis results in a simple rule predicting whether or not the membrane actuation reinforces the boundary actuation.

  8. Acoustic resonance scattering by a system of concentrically multilayered shells: the inherent background and resonance coefficients

    CERN Document Server

    Choi, M S; Lee, S H

    1999-01-01

    The inherent background coefficients that exactly describe the background amplitudes in the scattered field have been presented for the scattering of plane acoustic waves by a system of concentrically multilayered solid and/or fluid shells submerged in a fluid. The coefficients have been obtained by replacing the mechanical surface admittance function with the zero-frequency limit of the admittance function for the analogous fluid system, where the shear wave speeds in the solid layers are set to zero. By taking advantage of the concept of incoming and outgoing waves, we find the surface admittance function for the fluid system in such a form that the analytical generalization for any number of layers and the physical interpretation are very easy. The background coefficients obtained are independent of the bulk wave speeds in the system: they depend on the mass densities and the thickness of the shells. With increasing frequency, the inherent background undergoes a transition from the soft to the rigid backgr...

  9. Entropy Generation of Shell and Double Concentric Tubes Heat Exchanger

    Directory of Open Access Journals (Sweden)

    basma abbas abdulmajeed

    2016-06-01

    Full Text Available Entropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger. Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Finally, in order to keep up with modern technology, infrared thermography camera was used in order to measure the temperatures. The entropy generation was determined with lower values when infrared thermography camera was used to measure the temperatures, compared with the values obtained by using thermocouples.

  10. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.

    Science.gov (United States)

    Tsai, Shin-Hung; Chang, Hung-Chih; Wang, Hsin-Hua; Chen, Szu-Ying; Lin, Chin-An; Chen, Show-An; Chueh, Yu-Lun; He, Jr-Hau

    2011-12-27

    A novel strategy employing core-shell nanowire arrays (NWAs) consisting of Si/regioregular poly(3-hexylthiophene) (P3HT) was demonstrated to facilitate efficient light harvesting and exciton dissociation/charge collection for hybrid solar cells (HSCs). We experimentally demonstrate broadband and omnidirectional light-harvesting characteristics of core-shell NWA HSCs due to their subwavelength features, further supported by the simulation based on finite-difference time domain analysis. Meanwhile, core-shell geometry of NWA HSCs guarantees efficient charge separation since the thickness of the P3HT shells is comparable to the exciton diffusion length. Consequently, core-shell HSCs exhibit a 61% improvement of short-circuit current for a conversion efficiency (η) enhancement of 31.1% as compared to the P3HT-infiltrated Si NWA HSCs with layers forming a flat air/polymer cell interface. The improvement of crystal quality of P3HT shells due to the formation of ordering structure at Si interfaces after air mass 1.5 global (AM 1.5G) illumination was confirmed by transmission electron microscopy and Raman spectroscopy. The core-shell geometry with the interfacial improvement by AM 1.5G illumination promotes more efficient exciton dissociation and charge separation, leading to η improvement (∼140.6%) due to the considerable increase in V(oc) from 257 to 346 mV, J(sc) from 11.7 to 18.9 mA/cm(2), and FF from 32.2 to 35.2%, which is not observed in conventional P3HT-infiltrated Si NWA HSCs. The stability of the Si/P3HT core-shell NWA HSCs in air ambient was carefully examined. The core-shell geometry should be applicable to many other material systems of solar cells and thus holds high potential in third-generation solar cells.

  11. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles

    Science.gov (United States)

    Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo

    2018-04-01

    Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.

  12. Shell-model computed cross sections for charged-current scattering of astrophysical neutrinos off 40Ar

    Science.gov (United States)

    Kostensalo, Joel; Suhonen, Jouni; Zuber, K.

    2018-03-01

    Charged-current (anti)neutrino-40Ar cross sections for astrophysical neutrinos have been calculated. The initial and final nuclear states were calculated using the nuclear shell model. The folded solar-neutrino scattering cross section was found to be 1.78 (23 ) ×10-42cm2 , which is higher than what the previous papers have reported. The contributions from the 1- and 2- multipoles were found to be significant at supernova-neutrino energies, confirming the random-phase approximation (RPA) result of a previous study. The effects of neutrino flavor conversions in dense stellar matter (matter oscillations) were found to enhance the neutrino-scattering cross sections significantly for both the normal and inverted mass hierarchies. For the antineutrino scattering, only a small difference between the nonoscillating and inverted-hierarchy cross sections was found, while the normal-hierarchy cross section was 2-3 times larger than that of the nonoscillating cross section, depending on the adopted parametrization of the Fermi-Dirac distribution. This property of the supernova-antineutrino signal could probably be used to distinguish between the two hierarchies in megaton LAr detectors.

  13. Synthesis of triangular Au core-Ag shell nanoparticles

    International Nuclear Information System (INIS)

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali

    2007-01-01

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules

  14. L and M shell coulomb ionization by heavy charged projectiles

    International Nuclear Information System (INIS)

    Karmaker, R.

    1980-01-01

    Universal cross sections for L and M shell ionization have been extracted from the semiclassical approximation (SCA) model in the straight line path approximation of the projectile. It has been shown that it is possible to organise the calculation of the SCA in a suitable way so that it is not necessary to calculate the cross section for different targets. The agreement between the theoretical curve in the SCA model and the available experimental data for different target elements, is reasonably good. Cross sections for L and M shell ionization in the straight line path of the projectile in the SCA model for Pb, Au and U targets by the impact of protons have been calculated. The results have been compared with those calculated in the Binary Encounter Approximation (BEA) and the Plane Wave Born Approximation (PWBA) as well as with the available experimental results. The present calculations are in good agreement with the existing theoretical and the experimental results. (author)

  15. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, P.; Ramakrishnan, V. [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai-625 021 (India); Jeganathan, K. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli-620 024 (India)

    2013-06-15

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E{sub 2} (high) and A{sub 1} (LO) phonon mode of InN core at 490 and 590 cm{sup -1} respectively and E{sub 2} (high) phonon mode of GaN shell at 573 cm{sup -1}. The free carrier concentration of InN core is found to be low in the order {approx} 10{sup 16} cm{sup -3} due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of {approx}15 nm. The phonon-life time of core-shell nanowire structure is estimated to be {approx}0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E{sub 2} (high) phonon mode of GaN shell at 573 cm{sup -1} as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  16. L-shell x-ray yields and production cross-sections of molybdenum induced by low-energy highly charged argon ions

    International Nuclear Information System (INIS)

    Du Juan; Xu Jinzhang; Chen Ximeng; Yang Zhihu; Shao Jianxiong; Cui Ying; Zhang Hongqiang; Gao Zhimin; Liu Yuwen

    2007-01-01

    L-shell x-ray yields of molybdenum bombarded by highly charged Ar q+ ions (q=11-16) are measured. The x-ray production cross-sections are extracted from the yields data. The energy of the incident Ar ions ranges from 200 to 350 keV. After the binding energy correction, experimental data are explained in the framework of binary-encounter-approximation (BEA). The direct ionization is treated in the united atom (UA) limit (Lapicki and Lichten 1985 Phys. Rev. A 31 1354), not in the separate atom (SA) limit. The calculation results of BEA (Gacia and Fortner 1973 Rev. Mod. Phys. 45 111) are much lower than the experimental results, while the results of binding energy modified BEA are basically in agreement with the experimental results

  17. The contribution of Skyrme Hartree-Fock calculations to the understanding of the shell model

    International Nuclear Information System (INIS)

    Zamick, L.

    1984-01-01

    The authors present a detailed comparison of Skyrme Hartree-Fock and the shell model. The H-F calculations are sensitive to the parameters that are chosen. The H-F results justify the use of effective charges in restricted model space calculations by showing that the core contribution can be large. Further, the H-F results roughly justify the use of a constant E2 effective charge, but seem to yield nucleus dependent E4 effective charges. The H-F can yield results for E6 and higher multipoles, which would be zero in s-d model space calculations. On the other side of the coin in H-F the authors can easily consider only the lowest rotational band, whereas in the shell model one can calculate the energies and properties of many more states. In the comparison some apparent problems remain, in particular E4 transitions in the upper half of the s-d shell

  18. Influence of cationic lipid concentration on properties of lipid–polymer hybrid nanospheres for gene delivery

    Directory of Open Access Journals (Sweden)

    Bose RJC

    2015-09-01

    Full Text Available Rajendran JC Bose,1,2 Yoshie Arai,1 Jong Chan Ahn,1 Hansoo Park,2 Soo-Hong Lee11Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 2Department of Integrative Engineering, Chung-Ang University, Seoul, South Korea Abstract: Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(D,l-lactic-co-glycolic acid (PLGA core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybrid nanocarriers investigated. Lipid–polymer hybrid nanospheres (LPHNSs were fabricated by the emulsion-solvent evaporation method using different concentrations of cationic lipids and characterized for size, surface charge, stability, plasmid DNA-binding capacity, cytotoxicity, and transfection efficiency. All LPHNSs had narrow size distribution with positive surface charges (ζ-potential 52–60 mV, and showed excellent plasmid DNA-binding capacity. In vitro cytotoxicity measurements with HEK293T, HeLa, HaCaT, and HepG2 cells also showed that LPHNSs exhibited less cytotoxicity than conventional transfection agents, such as Lipofectamine and polyethyleneimine–PLGA. As cationic lipid concentrations increased, the particle size of LPHNSs decreased while their ζ-potential increased. In addition, the in vitro transfection efficiency of LPHNSs increased as lipid concentration increased. Keywords: core–shell hybrid nanospheres, lipid concentration, surface modification, low cytotoxicity, transfection efficiency

  19. Study of the multiple ionization in the ion-atom collisions with highly charged sulfur as well as with neutral and lowly charged fluorine projectiles

    International Nuclear Information System (INIS)

    Konrad, J.

    1986-01-01

    With the collisional systems 115 MeV S +Q (Q=+13, +15, +16) on He, Ne, Ar, and Kr as well as 4 MeV F +Q (Q=-1, 0, +1) on Ne the multiple ionization in the ion-atom collision was studied. With the collisional system 4 MeV F +Q on Ne the multiple ionization of target and projectile was studied by coincidence measurement between the recoil ions and projectiles with the charge state Q' after the collision (Q'=-1 to +3). In the pure ionization (no change of the projectile charge) the measured ionization cross sections for the single positive and negative charged projectile are equally large, those of the neutral F projectiles are lower. The comparison with the point particles protons and electrons resulted that the ionization cross sections of the F projectiles are larger and more strongly higher charged recoil ions are produced. The measured ionization cross sections of the F projectile are larger than those of the Ne target atom which is to be reduced to the lower ionization energies of the F projectile. With the highly charged S projectiles the multiple ionization with capture into the projectile was studied. By the measurement of triple coincidcences between recoil ions, projectiles, and SKX-radiation the cases with and without capture into the K shell can be discriminated. The charge distribution with is shifted against that without capture into the K shell to higher charges. This shift is to be reduced to the decay of autoionization states which arise by the capture into the K shell. (orig./HSI) [de

  20. Inner shell Coulomb ionization by heavy charged particles studied by the SCA model

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1976-12-01

    The seven papers, introduced by the most recent, subtitled 'A condensed status review', form a survey of the work by the author and his colleagues on K-, L-, and M-shell ionisation by impinging protons, deuterons and α-particles in the period 1971-1976. The SCA model is discussed and compared with other approximations for inner shell Coulomb ionisation. The future aspects in this field are also discussed. (JIW)

  1. Isospin symmetry breaking in sd shell nuclei

    International Nuclear Information System (INIS)

    Lam, Y.W.

    2011-12-01

    In the thesis, we develop a microscopic approach to describe the isospin-symmetry breaking effects in sd-shell nuclei. The work is performed within the nuclear shell model. A realistic isospin-conserving Hamiltonian is perfected by a charge-dependent part consisting of the Coulomb interaction and Yukawa-type meson exchange potentials to model charge-dependent forces of nuclear origin. The extended database of the experimental isobaric mass multiplet equation coefficients was compiled during the thesis work and has been used in a fit of the Hamiltonian parameters. The constructed Hamiltonian provides an accurate theoretical description of the isospin mixing nuclear states. A specific behaviour of the IMME (Isobaric Multiplet Mass Equation) coefficients have been revealed. We present two important applications: (i) calculations of isospin-forbidden proton emission amplitudes, which is often of interest for nuclear astrophysics, and (ii) calculation on corrections to nuclear Fermi beta decay, which is crucial for the tests of fundamental symmetries of the weak interaction. (author)

  2. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    Science.gov (United States)

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery. Copyright © 2016. Published by Elsevier Inc.

  3. Charge state distributions from highly charged ions channeled at a metal surface

    International Nuclear Information System (INIS)

    Folkerts, L.; Meyer, F.W.; Schippers, S.

    1994-01-01

    The vast majority of the experimental work in the field of multicharged ion-surface interactions, to date, has focused on x-ray and particularly on electron emission. These experiments include measurements of the total electron yield, the emission statistics of the electrons, and, most of all, the electron energy distributions. So far, little attention has been paid to the fate of the multicharged projectile ions after the scattering. To our knowledge, the only measurement of the charge state distribution of the scattered ions is the pioneering experiment of de Zwart et al., who measured the total yield of scattered 1+, 2+, and 3+ ions as a function of the primary charge state q (q = 1--11) for 20 key Ne, Ar, and Kr ions after reflection from a polycrystalline tungsten target. Their main finding is the sudden onset of scattered 3+ ions when inner-shell vacancies are present in the primary particles. This suggests that a certain fraction of the inner-shell vacancies survives the entire collision event, and decays via autoionization on the outgoing path. Since the projectiles scattered in the neutral charge state could not be detected in the experiment of de Zwart et al., they were not able to provide absolute charge state fractions. In our present experiment, we focus on the scattered projectiles, measuring both the final charge state and the total scattering angle with a single 2D position sensitive detector (PSD). This method gives us the number of positive, as well as neutral and negative, scattered ions, thus allowing us to extract absolute charge state fractions. Using a well-prepared single Au(110) crystal and a grazing incidence geometry, we were able to observe surface channeling along the [001] channels

  4. Octahedral core–shell cuprous oxide/carbon with enhanced electrochemical activity and stability as anode for lithium ion batteries

    International Nuclear Information System (INIS)

    Xiang, Jiayuan; Chen, Zhewei; Wang, Jianming

    2015-01-01

    Highlights: • Core–shell octahedral Cu 2 O/C is prepared by a one-step method. • Carbon shell is amorphous and uniformly decorated at the Cu 2 O octahedral core. • Core–shell Cu 2 O/C exhibits markedly enhanced capability and reversibility. • Carbon shell provides fast ion/electron transfer channel. • Core–shell structure is stable during cycling. - Abstract: Core–shell Cu 2 O/C octahedrons are synthesized by a simple hydrothermal method with the help of carbonization of glucose, which reduces Cu(II) to Cu(I) at low temperature and further forms carbon shell coating at high temperature. SEM and TEM images indicate that the carbon shell is amorphous with thickness of ∼20 nm wrapping the Cu 2 O octahedral core perfectly. As anode of lithium ion batteries, the core–shell Cu 2 O/C composite exhibits high and stable columbic efficiency (98%) as well as a reversible capacity of 400 mAh g −1 after 80 cycles. The improved electrochemical performance is attributed to the novel core–shell structure, in which the carbon shell reduces the electrode polarization and promotes the charge transfer at active material/electrolyte interface, and also acts as a stabilizer to keep the octahedral structure integrity during discharge–charge processes

  5. Core-shell polymer nanorods by a two-step template wetting process

    International Nuclear Information System (INIS)

    Dougherty, S; Liang, J

    2009-01-01

    One-dimensional core-shell polymer nanowires offer many advantages and great potential for many different applications. In this paper we introduce a highly versatile two-step template wetting process to fabricate two-component core-shell polymer nanowires with controllable shell thickness. PLLA and PMMA were chosen as model polymers to demonstrate the feasibility of this process. Solution wetting with different concentrations of polymer solutions was used to fabricate the shell layer and melt wetting was used to fill the shell with the core polymer. The shell thickness was analyzed as a function of the polymer solution concentration and viscosity, and the core-shell morphology was observed with TEM. This paper demonstrates the feasibility of fabricating polymer core-shell nanostructures using our two-step template wetting process and opens the arena for optimization and future experiments with polymers that are desirable for specific applications.

  6. Synthesis of Cationic Core-Shell Latex Particles

    NARCIS (Netherlands)

    Dziomkina, N.; Hempenius, Mark A.; Vancso, Gyula J.

    2006-01-01

    Surfactant-free seeded (core-shell) polymerization of cationic polymer colloids is presented. Polystyrene core particles with sizes between 200 nm and 500 nm were synthesized. The number average diameter of the colloidal core particles increased with increasing monomer concentration. Cationic shells

  7. Critical charges on strange quark nuggets and other extended objects

    International Nuclear Information System (INIS)

    Dicus, Duane A.; Repko, Wayne W.; Teplitz, V. L.

    2008-01-01

    We investigate the behavior of the critical charge for spontaneous pair production, Z C , defined as the charge at which the total energy of a K-shell electron is E=-m e , as a function of the radius R of the charge distribution. Our approach is to solve the Dirac equation for a potential V(r) consisting of a spherically symmetrical charge distribution of radius R and a Coulomb tail. For a spherical shell distribution of the type usually associated with color-flavor locked strange quark nuggets, we confirm the relation Z C =0.71R (fm) for sufficiently large R obtained by Madsen, who used an approach based on the Thomas-Fermi model. We also present results for a uniformly charged sphere and again find that Z C ∼R for large enough R. Also discussed is the behavior of Z C when simple ad hoc modifications are made to the potential for 0≤r< R.

  8. Rapid synthesis and characterization of hybrid ZnO@Au core–shell nanorods for high performance, low temperature NO{sub 2} gas sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Ponnuvelu, Dinesh Veeran [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641 004 (India); Pullithadathil, Biji, E-mail: bijuja123@yahoo.co.in [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641 004 (India); Prasad, Arun K.; Dhara, Sandip [Surface and Nanoscience Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Ashok, Anuradha [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641 004 (India); Mohamed, Kamruddin; Tyagi, Ashok Kumar [Surface and Nanoscience Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Raj, Baldev [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641 004 (India)

    2015-11-15

    Graphical abstract: - Highlights: • Hybrid ZnO@Au core–shell nanorods were developed using rapid chemical method that can be used as a high performance, low temperature NO{sub 2} gas sensor. • Surface defect analysis (PL and XPS) clearly illustrates the presence of surface oxygen species and Zn interstitials involved in charge transport properties in-turn affecting gas sensing properties. • Hybrid ZnO@Au core–shell nanorods establish enhanced gas sensing performance at 150 °C compared to ZnO (300 °C) with a lower detection limit of 500 ppb using conventional electrodes. • The enhanced performance of ZnO@Au core–shell nanorods based sensor was owing to the presence of Au nanoclusters on the surface of ZnO nanorods which is attributed to the formation of Schottky contacts at the interfaces leading to sensitization effects. • The hybrid material found to be selective toward NO{sub 2} gas and highly stable in nature. - Abstract: A rapid synthesis route for hybrid ZnO@Au core–shell nanorods has been realized for ultrasensitive, trace-level NO{sub 2} gas sensor applications. ZnO nanorods and hybrid ZnO@Au core–shell nanorods are structurally analyzed using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Optical characterization using UV–visible (UV–vis), photoluminescence (PL) and Raman spectroscopies elucidate alteration in the percentage of defect and charge transport properties of ZnO@Au core–shell nanorods. The study reveals the accumulation of electrons at metal–semiconductor junctions leading to upward band bending for ZnO and thus favors direct electron transfer from ZnO to Au nanoclusters, which mitigates charge carrier recombination process. The operating temperature of ZnO@Au core–shell nanorods based sensor significantly decreased to 150 °C compared to alternate NO{sub 2} sensors (300 °C). Moreover, a linear sensor response in the range of 0.5–5

  9. Synthesis of porous MnCo2O4microspheres with yolk–shell structure induced by concentration gradient and the effect on their performance in electrochemical energy storage

    DEFF Research Database (Denmark)

    Huang, Guoyong; Yang, Yue; Sun, Hongyu

    2016-01-01

    In this study, novel spherical yolk–shell MnCo2O4 powders with concentration gradient have been synthesized. The porous microspheres with yolk–shell structure (2.00–3.00 μm in average diameter, ∼200 nm in thickness of shell) are built up by irregular nanoparticles attached to each other. It is sh...

  10. A space-charge treatment of the increased concentration of reactive species at the surface of a ceria solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zurhelle, Alexander F.; Souza, Roger A. de [Institute of Physical Chemistry, RWTH Aachen University (Germany); Tong, Xiaorui; Mebane, David S. [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Klein, Andreas [Institute of Materials Science, TU Darmstadt (Germany)

    2017-11-13

    A space-charge theory applicable to concentrated solid solutions (Poisson-Cahn theory) was applied to describe quantitatively as a function of temperature and oxygen partial pressure published data obtained by in situ X-ray photoelectron spectroscopy (XPS) for the concentration of Ce{sup 3+} (the reactive species) at the surface of the oxide catalyst Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}. In contrast to previous theoretical treatments, these calculations clearly indicate that the surface is positively charged and compensated by an attendant negative space-charge zone. The high space-charge potential that develops at the surface (>0.8 V) is demonstrated to be hardly detectable by XPS measurements because of the short extent of the space-charge layer. This approach emphasizes the need to take into account defect interactions and to allow deviations from local charge neutrality when considering the surfaces of oxide catalysts. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Projected shell model study of neutron- deficient 122Ce

    Indian Academy of Sciences (India)

    Projected shell model; band diagram; yrast energies; electromagnetic quan- ... signed to 122Ce by detecting γ-rays in coincidence with evaporated charged particles .... 0.75 from the free nucleon values to account for the core-polarization and ...

  12. Nuclear charge radius of $^{12}$Be

    CERN Document Server

    Krieger, Andreas; Bissell, Mark L; Frömmgen, Nadja; Geppert, Christopher; Hammen, Michael; Kreim, Kim; Kowalska, Magdalena; Krämer, Jörg; Neff, Thomas; Neugart, Rainer; Neyens, Gerda; Nörtershäuser, Wilfried; Novotny, Christian; Sanchez, Rodolfo; Yordanov, Deyan T

    2012-01-01

    The nuclear charge radius of $^{12}$Be was precisely determined using the technique of collinear laser spectroscopy on the $2s_{1/2}\\rightarrow 2p_{1/2, 3/2}$ transition in the Be$^{+}$ ion. The mean square charge radius increases from $^{10}$Be to $^{12}$Be by $\\delta ^{10,12} = 0.69(5)$ fm$^{2}$ compared to $\\delta ^{10,11} = 0.49(5)$ fm$^{2}$ for the one-neutron halo isotope $^{11}$Be. Calculations in the fermionic molecular dynamics approach show a strong sensitivity of the charge radius to the structure of $^{12}$Be. The experimental charge radius is consistent with a breakdown of the N=8 shell closure.

  13. Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity.

    Science.gov (United States)

    Chen, Zhang; Xu, Yi-Jun

    2013-12-26

    Development of various strategies for controllable fabrication of core-shell nanocomposites (CSNs) with highly active photocatalytic performance has been attracting ever-increasing research attention. In particular, control of the ultrathin layer TiO2 shell in constructing CSNs in an aqueous phase is a significant but technologically challenging issue. Here, this paper demonstrates the interface assembly synthesis of CdS nanospheres@TiO2 core-shell photocatalyst via the electrostatic interaction of negatively charged water-stable titania precursor with positively charged CdS nanospheres (CdS NSPs), followed by the formation of the ultrathin-layer TiO2 shell through a facile refluxing process in aqueous phase. The as-formed CdS NSPs@TiO2 core-shell nanohybrid exhibits a high visible-light-driven photoactivity for selective transformation and reduction of heavy metal ions. The ultrathin TiO2 layer coated on CdS NSPs results in excellent light transmission property, enhanced adsorption capacity, and improved transfer of charge carriers and lifespan of photoinduced electron-hole pairs, which would prominently contribute to the significant photoactivity enhancement. It is anticipated that this facile aqueous-phase synthesis strategy could be extended to design a variety of more efficient CSN photocatalysts with controllable morphology toward target applications in diverse photoredox processes.

  14. Nonadiabatic charged spherical evolution in the postquasistatic approximation

    International Nuclear Information System (INIS)

    Rosales, L.; Barreto, W.; Peralta, C.; Rodriguez-Mueller, B.

    2010-01-01

    We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of dissipative and electrically charged distributions in general relativity. The numerical implementation of our approach leads to a solver which is globally second-order convergent. We evolve nonadiabatic distributions assuming an equation of state that accounts for the anisotropy induced by the electric charge. Dissipation is described by streaming-out or diffusion approximations. We match the interior solution, in noncomoving coordinates, with the Vaidya-Reissner-Nordstroem exterior solution. Two models are considered: (i) a Schwarzschild-like shell in the diffusion limit; and (ii) a Schwarzschild-like interior in the free-streaming limit. These toy models tell us something about the nature of the dissipative and electrically charged collapse. Diffusion stabilizes the gravitational collapse producing a spherical shell whose contraction is halted in a short characteristic hydrodynamic time. The streaming-out radiation provides a more efficient mechanism for emission of energy, redistributing the electric charge on the whole sphere, while the distribution collapses indefinitely with a longer hydrodynamic time scale.

  15. Collective charge and mass transfer in heavy ion reactions

    International Nuclear Information System (INIS)

    Hahn, J.

    1982-01-01

    In this thesis the dynamics of the charge and mass asymmetry degree of freedom was studied in the framework of the fragmentation theory by means of a time-dependent Schroedinger equation. New is the introduction of a friction potential which describes the coupling of these collective degrees of freedom to the not explicitely treated other collective respectively internal degrees of freedom. Thereby it was shown that the measured widths of the isobaric charge distributions in the 86 Kr+sup(92,98)Mo reaction can be explained mainly by the quantum mechanical uncertainty in the charge asymmetry degree of freedom. The charge equilibration occurring at the begin of a deep inelastic collision can therefore by considered as a quantum mechanical, collective, damped motion which is connected with the excitation of the isovector giant dipole resonance of the nucleus-nucleus system. The study of the mass transfer in the reactions 132 Xe+ 120 Sn and 86 Kr+ 166 Er shows, how important at the begin of a deep inelastic collision shell structures and their conservation are for a large part of the reaction, even if the elemental distribution show no maxima in the region of magic shell closures. The experimental width are up to 10 MeV/A well described under conservation of the shell structure. (orig./HSI) [de

  16. Fabrication of Foam Shells for ICF Experiments

    Science.gov (United States)

    Czechowicz, D. G.; Acenas, O.; Flowers, J. S.; Nikroo, A.; Paguio, R. R.; Schroen, D. G.; Streit, J.; Takagi, M.

    2004-11-01

    The General Atomics/Schafer team has developed processes to fabricate foam shells targets suitable for ICF experiments. The two most common chemical systems used to produce foam shells have been resorcinol-formaldehyde (R/F) aerogel and divinylbenzene (DVB). Spherical targets have been made in the form of shells and beads having diameters ranging from approximately 0.5 mm to 4.0 mm, and having densities from approximately 100 mg/cc to 250 mg/cc. The work on R/F foam shells has been concentrated on 1) shell fabrication process improvement to obtain high yields ( ˜25%) and 2) depositing a reliable permeation barrier to provide shells for ongoing direct drive experiments at LLE. Development of divinylbenzene foam shells has been mainly directed towards Inertial Fusion Energy applications (at densities as low as 30 mg/cc) and recently for shells for experiments at LLE. Details of the relevant metrology and properties of these foams as well as the range of targets currently available will be discussed.

  17. Controllable synthesis of Au@SnO2 core-shell nanohybrids with enhanced photocatalytic activities

    Science.gov (United States)

    Zhang, Shaofeng; Hao, Jinggang; Ren, Feng; Wu, Wei; Xiao, Xiangheng

    2017-05-01

    Combination of semiconductors with plasmonic nanostructures is an effective route to promote the solar light harvesting as well as the efficiency of photocatalysis. In the present work, the Au@SnO2 hybrid nanostructures with Au nanorods as the cores and highly crystallized SnO2 nanoparticles as the shells were fabricated by a facile hydrothermal method. A critical factor, which influences the coating state of the SnO2 shells over Au NRs, was found to be the concentration of CTAB agent in the system and the corresponding mechanism was also proposed. The photocatalytic activities of the Au@SnO2 nanohybrids were examined by degradation of rhodamine B (RhB) dyes at room temperature. The Au@SnO2 nanohybrids exhibited much higher catalytic activities than that of the commercial SnO2 NPs, which could be attributed to the localized electric field enhancement effect of Au nanorods plasmon and charges transfer between the Au nanorods and SnO2.

  18. A login shell interface for INFN-GRID

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, S [INFN - Sezione di Napoli, Complesso di Monte S.Angelo - Via Cintia 80126 Napoli (Italy); Calloni, E; Rosa, R De; Garufi, F; Milano, L; Russo, G [Universita degli Studi di Napoli ' Federico M' , Dipartimento di Scienze Fisiche, Complesso di Monte S.Angelo - Via Cintia 80126 Napoli (Italy)], E-mail: silvio.pardi@na.infn.it

    2008-12-15

    The user interface is a crucial service to guarantee the Grid accessibility. The goal to achieve, is the implementation of an environment able to hide the grid complexity and offer a familiar interface to the final user. Currently many graphical interfaces have been proposed to simplify the grid access, but the GUI approach appears not very congenital to UNIX developers and users accustomed to work with command line interface. In 2004 the GridShell project proposed an extension of popular UNIX shells such as TCSH and BASH with features supporting Grid computing. Starting from the ideas included in GridShell, we propose IGSH (INFN-GRID SHELL) a new login shell for the INFN-GRID middleware, that interact with the Resource Broker services and integrates in a 'naturally way' the grid functionality with a familiar interface. The architecture of IGSH is very simple, it consist of a software layer on the top of the INFN-GRID middleware layer. When some operation is performed by the user, IGSH takes in charge to parse the syntax and translate it in the correspondents INFN-GRID commands according to some semantic rules specified in the next sections. The final user interacts with the underlying distributed infrastructure by using IGSH instead of his default login shell, with the sensation to work on a local machine.

  19. A login shell interface for INFN-GRID

    International Nuclear Information System (INIS)

    Pardi, S; Calloni, E; Rosa, R De; Garufi, F; Milano, L; Russo, G

    2008-01-01

    The user interface is a crucial service to guarantee the Grid accessibility. The goal to achieve, is the implementation of an environment able to hide the grid complexity and offer a familiar interface to the final user. Currently many graphical interfaces have been proposed to simplify the grid access, but the GUI approach appears not very congenital to UNIX developers and users accustomed to work with command line interface. In 2004 the GridShell project proposed an extension of popular UNIX shells such as TCSH and BASH with features supporting Grid computing. Starting from the ideas included in GridShell, we propose IGSH (INFN-GRID SHELL) a new login shell for the INFN-GRID middleware, that interact with the Resource Broker services and integrates in a 'naturally way' the grid functionality with a familiar interface. The architecture of IGSH is very simple, it consist of a software layer on the top of the INFN-GRID middleware layer. When some operation is performed by the user, IGSH takes in charge to parse the syntax and translate it in the correspondents INFN-GRID commands according to some semantic rules specified in the next sections. The final user interacts with the underlying distributed infrastructure by using IGSH instead of his default login shell, with the sensation to work on a local machine.

  20. Modeling of microencapsulated polymer shell solidification

    International Nuclear Information System (INIS)

    Boone, T.; Cheung, L.; Nelson, D.; Soane, D.; Wilemski, G.; Cook, R.

    1995-01-01

    A finite element transport model has been developed and implemented to complement experimental efforts to improve the quality of ICF target shells produced via controlled-mass microencapsulation. The model provides an efficient means to explore the effect of processing variables on the dynamics of shell dimensions, concentricity, and phase behavior. Comparisons with experiments showed that the model successfully predicts the evolution of wall thinning and core/wall density differences. The model was used to efficiently explore and identify initial wall compositions and processing temperatures which resulted in concentricity improvements from 65 to 99%. The evolution of trace amounts of water entering into the shell wall was also tracked in the simulations. Comparisons with phase envelope estimations from modified UNIFAP calculations suggest that the water content trajectory approaches the two-phase region where vacuole formation via microphase separation may occur

  1. Impact parameter dependence of inner-shell ionization probabilities

    International Nuclear Information System (INIS)

    Cocke, C.L.

    1974-01-01

    The probability for ionization of an inner shell of a target atom by a heavy charged projectile is a sensitive function of the impact parameter characterizing the collision. This probability can be measured experimentally by detecting the x-ray resulting from radiative filling of the inner shell in coincidence with the projectile scattered at a determined angle, and by using the scattering angle to deduce the impact parameter. It is conjectured that the functional dependence of the ionization probability may be a more sensitive probe of the ionization mechanism than is a total cross section measurement. Experimental results for the K-shell ionization of both solid and gas targets by oxygen, carbon and fluorine projectiles in the MeV/amu energy range will be presented, and their use in illuminating the inelastic collision process discussed

  2. Comparison of Active Carbon, Sawdust, Almond Shell and Hazelnut Shell Absorbent in Removal of Nickel from Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Moslem Mohammadi Galehzan

    2013-09-01

    Full Text Available The most important environmental pollutants are heavy metals in industrial wastewater effluents. Nickel is one of the toxic heavy metals which its high concentration causes skin allergy, heart disease and various cancers. So removal of this element from industrial effluent is of prime concern and necessary. The main purpose of this study is to compare kinetics and isotherms of nickel uptake by activated carbon (AC, sawdust (SD, hazelnut shell (SH and almond shells (AH. Adsorbents are initially prepared to remove nickel from solutions with concentrations 2.5 to 125 mg/l. pH test results showed that maximum absorption using AC, SH, SD and AH obtained at pH 6, 6, 6 and 7 respectively. Kinetics experiments showed that maximum absorption equilibrium time at concentration of 5 mg/l of AC, SH, SD and AH occur at 60, 75, 120 and 150 minutes respectively. Kinetic models fitting results showed that for sawdust and hazelnut shells, Lagergern model and for activated carbon and peanut shell Ho et al. model are suitable and have the lowest error and highest correlation coefficient at 95 percent confidence level. The results also revealed that rate of Nickel adsorption follows this order: AH

  3. L-shell x-ray fluorescence computed tomography (XFCT) imaging of Cisplatin

    International Nuclear Information System (INIS)

    Bazalova, Magdalena; Ahmad, Moiz; Pratx, Guillem; Xing, Lei

    2014-01-01

    X-ray fluorescence computed tomography (XFCT) imaging has been focused on the detection of K-shell x-rays. The potential utility of L-shell x-ray XFCT is, however, not well studied. Here we report the first Monte Carlo (MC) simulation of preclinical L-shell XFCT imaging of Cisplatin. We built MC models for both L- and K-shell XFCT with different excitation energies (15 and 30 keV for L-shell and 80 keV for K-shell XFCT). Two small-animal sized imaging phantoms of 2 and 4 cm diameter containing a series of objects of 0.6 to 2.7 mm in diameter at 0.7 to 16 mm depths with 10 to 250 µg mL −1  concentrations of Pt are used in the study. Transmitted and scattered x-rays were collected with photon-integrating transmission detector and photon-counting detector arc, respectively. Collected data were rearranged into XFCT and transmission CT sinograms for image reconstruction. XFCT images were reconstructed with filtered back-projection and with iterative maximum-likelihood expectation maximization without and with attenuation correction. While K-shell XFCT was capable of providing an accurate measurement of Cisplatin concentration, its sensitivity was 4.4 and 3.0 times lower than that of L-shell XFCT with 15 keV excitation beam for the 2 cm and 4 cm diameter phantom, respectively. With the inclusion of excitation and fluorescence beam attenuation correction, we found that L-shell XFCT was capable of providing fairly accurate information of Cisplatin concentration distribution. With a dose of 29 and 58 mGy, clinically relevant Cisplatin Pt concentrations of 10 µg mg −1  could be imaged with L-shell XFCT inside a 2 cm and 4 cm diameter object, respectively. (paper)

  4. Correlated electron capture and inner-shell excitation measurements in ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.; Bernstein, E.M.; Clark, M.W.

    1985-01-01

    In an ion-atom collision projectile excitation and charge transfer (electron capture) may occur together in a single encounter. If the excitation and capture are correlated, then the process is called resonant transfer and excitation (RTE); if they are uncorrelated, then the process is termed nonresonant transfer and excitation (NTE). Experimental work to date has shown the existence of RTE and provided strong evidence for NTE. Results presented here provide information on the relative magnitudes of RTE and NTE, the charge state dependence of RTE, the effect of the target momentum distribution on RTE, the magnitude of L-shell RTE compared to K-shell RTE, and the target Z dependences of RTE and NTE. 15 refs., 5 figs

  5. Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or physiological control?

    Science.gov (United States)

    Freitas, Pedro S.; Clarke, Leon J.; Kennedy, Hilary; Richardson, Christopher A.

    2016-12-01

    Manganese in the shell calcite of marine bivalves has been suggested to reflect ambient seawater Mn concentrations, thus providing a high-resolution archive of past seawater Mn concentrations. However, a quantitative relationship between seawater Mn and shell Mn/Ca ratios, as well as clear understanding of which process(es) control(s) shell Mn/Ca, are still lacking. Blue mussels, Mytilus edulis, were grown in a one-year duration field experiment in the Menai Strait, U.K., to study the relationship between seawater particulate and dissolved Mn2+ concentrations and shell calcite Mn/Ca ratios. Shell Mn/Ca showed a well-defined intra-annual double-peak, with maximum values during early spring and early summer and low values during autumn and winter. Seawater particulate Mn peaked during winter and autumn, with a series of smaller peaks during spring and summer, whereas dissolved Mn2+ exhibited a marked single maximum during late-spring to early-summer, being low during the remainder of the year. Consequently, neither seawater particulate Mn nor dissolved Mn2+ concentrations explain the intra-annual variation of shell Mn/Ca ratios. A physiological control on shell Mn/Ca ratios is evident from the strong similarity and timing of the double-peaked intra-annual variations of Mn/Ca and shell growth rate (SGR), the latter corresponding to periods of increased metabolic activity (as indicated by respiration rate). It is thus likely that in M. edulis SGR influences shell Mn/Ca by altering the concentration or activity of Mn2+ within the extra-pallial fluid (EPF), by changing the flux of Mn into or the proportion of protein bound Mn within the EPF. By linking shell Mn/Ca ratios to the endogenous and environmental factors that determine growth and metabolic activity, this study helps to explain the lack of a consistent relationship between shell Mn/Ca in marine bivalve shell calcite and seawater particulate and dissolved Mn2+ concentrations. The use of Mn content from M. edulis

  6. Removal of Arsenic with Oyster Shell: Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Md. Atiqur Rahman, , and

    2008-12-01

    Full Text Available Oyster shell has tremendous potential as a remediation material for the removal of arsenic from groundwater. A single arsenic removal system was developed with oyster shell for tube well water containing arsenic. The system removes arsenic from water by adsorption through fine oyster shell. Various conditions that affect the adsorption/desorption of arsenic were investigated. Adsorption column methods showed the removal of As(III under the following conditions: initial As concentration, 100 µg /L; oyster shell amount, 6 g; particle size, <355µm ; treatment flow rate, 1.7 mL/min; and pH 6.5. Arsenic concentration of the treated water were below the Bangladesh drinking water standard of 50 µg/L for As. The desorption efficiencies with 2M of KOH after the treatment of groundwater were in the range of 80-83%. A combination of techniques was used to measure the pH, conductivity, cations and anions. The average concentrations of other inorganic constituents of health concern (Na, K, Ca, Mg and Fe in treated water were below their respective WHO guideline for drinking. The present study might provide new avenues to achieve the arsenic concentrations required for drinking water recommended by Bangladesh and the World Health Organization (WHO.

  7. Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

    Directory of Open Access Journals (Sweden)

    Bartosz Bartosewicz

    2017-10-01

    Full Text Available Core–shell nanostructures have found applications in many fields, including surface enhanced spectroscopy, catalysis and solar cells. Titania-coated noble metal nanoparticles, which combine the surface plasmon resonance properties of the core and the photoactivity of the shell, have great potential for these applications. However, the controllable synthesis of such nanostructures remains a challenge due to the high reactivity of titania precursors. Hence, a simple titania coating method that would allow better control over the shell formation is desired. A sol–gel based titania coating method, which allows control over the shell thickness, was developed and applied to the synthesis of Ag@TiO2 and Au@TiO2 with various shell thicknesses. The morphology of the synthesized structures was investigated using scanning electron microscopy (SEM. Their sizes and shell thicknesses were determined using tunable resistive pulse sensing (TRPS technique. The optical properties of the synthesized structures were characterized using UV–vis spectroscopy. Ag@TiO2 and Au@TiO2 structures with shell thickness in the range of ≈40–70 nm and 90 nm, for the Ag and Au nanostructures respectively, were prepared using a method we developed and adapted, consisting of a change in the titania precursor concentration. The synthesized nanostructures exhibited significant absorption in the UV–vis range. The TRPS technique was shown to be a very useful tool for the characterization of metal–metal oxide core–shell nanostructures.

  8. Exploring effective interactions through transition charge density ...

    Indian Academy of Sciences (India)

    tematics like reduced transition probabilities B(E2) and static quadrupole moments Q(2) ... approximations of solving large scale shell model problems in Monte Carlo meth- ... We present the theoretical study of transition charge densities.

  9. The experimental and shell model approach to 100Sn

    International Nuclear Information System (INIS)

    Grawe, H.; Maier, K.H.; Fitzgerald, J.B.; Heese, J.; Spohr, K.; Schubart, R.; Gorska, M.; Rejmund, M.

    1995-01-01

    The present status of experimental approach to 100 Sn and its shell model structure is given. New developments in experimental techniques, such as low background isomer spectroscopy and charged particle detection in 4π are surveyed. Based on recent experimental data shell model calculations are used to predict the structure of the single- and two-nucleon neighbours of 100 Sn. The results are compared to the systematic of Coulomb energies and spin-orbit splitting and discussed with respect to future experiments. (author). 51 refs, 11 figs, 1 tab

  10. Spins, moments and charge radii beyond $^{48}$Ca

    CERN Multimedia

    Neyens, G; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Garcia ruiz, R F; Kreim, K D; Budincevic, I

    Laser spectroscopy of $^{49-54}$Ca is proposed as a continuation of the experimental theme initiated with IS484 “Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy” and expanded in INTC-I-117 “Moments, Spins and Charge Radii Beyond $^{48}$Ca.” It is anticipated that the charge radii of these isotopes can show strong evidence for the existence of a sub-shell closure at N=32 and could provide a first tentative investigation into the existence of a shell effect at N=34. Furthermore the proposed experiments will simultaneously provide model-independent measurements of the spins, magnetic moments and quadrupole moments of $^{51,53}$Ca permitting existing and future excitation spectra to be pinned to firm unambiguous ground states.

  11. Hydrothermal synthesis of core–shell TiO_2 to enhance the photocatalytic hydrogen evolution

    International Nuclear Information System (INIS)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2016-01-01

    Graphical abstract: Core–shell TiO_2 with interior cavity was synthesized by a hydrothermal approach to enhance the photocatalytic performance. - Highlights: • Core–shell TiO_2 with interior cavity can be synthesized by hydrothermal approach. • Multiple reflection of incident light in cavity can increase the absorption. • Rutile can optimize the bandgap and delay the charge recombination. - Abstract: A hydrothermal approach was designed to synthesize core–shell TiO_2 with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core–shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV–vis absorption proves core–shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core–shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  12. Central depression of the nuclear charge distribution

    International Nuclear Information System (INIS)

    Friedrich, J.; Voegler, N.; Reinhard, P.G.

    1986-01-01

    As a systematic feature of all measured charge distributions we find a shift in the form-factor zeroes as compared to a simple folding model. To first order, this shift can be interpreted as resulting from the central depression w, caused by the Coulomb repulsion. Accounting for it leads to an increase in the surface width of nuclear charge distributions by 0.105 fm. This interpretation of the experimental findings is compared with the droplet model, which relates w with the compression modulus K and the asymmetry energy J. Accounting for w leads to an increase in the extrapolated nuclear matter density by 7.5%. However, this macroscopic model is not able to describe the experimental results in detail since w is also influenced by shell effects. HF+BCS calculations with effective Skyrme-type interactions reproduce part of the data, revealing the influence of shells on w. Here, too, there remain discrepancies in details. A level of accuracy is reached at which most probably also the skewness of the charge distribution must be taken into account. (orig.)

  13. Lorentz-diffeomorphism quasi-local conserved charges and Virasoro algebra in Chern–Simons-like theories of gravity

    Directory of Open Access Journals (Sweden)

    M.R. Setare

    2016-08-01

    Full Text Available The Chern–Simons-like theories of gravity (CSLTG are formulated at first order formalism. In this formalism, the derivation of the entropy of a black hole on bifurcation surface, as a quasi-local conserved charge is problematic. In this paper we overcome these problems by considering the concept of total variation and the Lorentz–Lie derivative. We firstly find an expression for the ADT conserved current in the context of the CSLTG which is based on the concept of the Killing vector fields. Then, we generalize it to be conserved for all diffeomorphism generators. Thus, we can extract an off-shell conserved charge for any vector field which generates a diffeomorphism. The formalism presented here is based on the concept of quasi-local conserved charges which are off-shell. The charges can be calculated on any codimension two space-like surface surrounding a black hole and the results are independent of the chosen surface. By using the off-shell quasi-local conserved charge, we investigate the Virasoro algebra and find a formula to calculate the central extension term. We apply the formalism to the BTZ black hole solution in the context of the Einstein gravity and the Generalized massive gravity, then we find the eigenvalues of their Virasoro generators as well as the corresponding central charges. Eventually, we calculate the entropy of the BTZ black hole by the Cardy formula and we show that the result exactly matches the one obtained by the concept of the off-shell conserved charges.

  14. Charge transfer and excitation in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.

    1986-11-01

    Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture

  15. Lead reduces shell mass in juvenile garden snails (Helix aspersa)

    International Nuclear Information System (INIS)

    Beeby, Alan; Richmond, Larry; Herpe, Florian

    2002-01-01

    A high Pb diet causes differential depression of juvenile shell mass in populations of Helix. - In an earlier paper examining inherited tolerance to Pb, the shell growth of laboratory-bred offspring of Helix aspersa from contaminated sites was compared with that of juveniles from naieve populations on dosed and undosed diets. Eight-week-old snails were fed either 500 μg g -1 Pb or a control food in competitive trials between two populations. In the first series of trials, a parental history of exposure to Pb did not confer any advantage to either of two populations (BI and MI) competing with a naieve population (LE), whether Pb was present in the diet or not. However, in the analysis of their metal concentrations reported here, LE are found to retain higher levels of Pb in the soft tissues than either BI or MI. Compared to their siblings on the unleaded diet, dosed LE and BI juveniles had lower soft tissue concentrations of Ca and Mg. Although the growth in shell height is unaffected by diet, LE and BI juveniles build lighter shells on the Pb-dosed diet, achieving around 75% of the shell mass of their controls. In contrast, the shell weights of dosed MI juveniles are depressed by only 15% and show no change in the essential metal concentrations of their soft tissues. A second experiment using five populations fed only the dosed food show that the shell weight/soft tissue weight ratios are comparable to the dosed snails of the previous experiment. Building a lighter shell thus appears to be the common response of all Helix populations to a high Pb diet, at least amongst juveniles. The reduction in its mass means that less Ca and Mg is added to the shell and, along with the lowered soft tissue concentrations observed in some populations, may be a consequence of an increased effort to excrete Pb. The possibility that the MI population shows a genotypic adaptation, perhaps as some form of modification of its Ca metabolism, is briefly discussed

  16. Experimental approach towards shell structure at 100Sn and 78Ni

    International Nuclear Information System (INIS)

    Grawe, H.; Gorska, M.; Fahlander, C.

    2000-07-01

    The status of experimental approach to 100 Sn and 78 Ni is reviewed. Revised single particle energies for neutrons are deduced for the N=Z=50 shell closure and evidence for low lying I π =2 + and 3 - states is presented. Moderate E2 polarisation charges of 0.1 e and 0.6 e are found to reproduce the experimental data when core excitation of 100 Sn is properly accounted for in the shell model. For the neutron rich Ni region no conclusive evidence for a N=40 subshell is found, whereas firm evidence for the persistence of the N=50 shell at 78 Ni is inferred from the existence of seniority isomers. The disappearance of this isomerism in the mid νg 9/2 shell is discussed. (orig.)

  17. Ethanol production of banana shell and cassava starch

    International Nuclear Information System (INIS)

    Monsalve G, John F; Medina de Perez, Victoria Isabel; Ruiz colorado, Angela Adriana

    2006-01-01

    In this work the acid hydrolysis of the starch was evaluated in cassava and the cellulose shell banana and its later fermentation to ethanol, the means of fermentation were adjusted for the microorganisms saccharomyces cerevisiae nrrl y-2034 and zymomonas mobilis cp4. The banana shell has been characterized, which possesses a content of starch, cellulose and hemicelluloses that represent more than 80% of the shell deserve the study of this as source of carbon. The acid hydrolysis of the banana shell yield 20g/l reducing sugar was obtained as maximum concentration. For the cassava with 170 g/l of starch to ph 0.8 in 5 hours complete conversion is achieved to you reducing sugars and any inhibitory effect is not noticed on the part of the cultivations carried out with banana shell and cassava by the cyanide presence in the cassava and for the formation of toxic compounds in the acid hydrolysis the cellulose in banana shell. For the fermentation carried out with saccharomyces cerevisiae a concentration of ethanol of 7.92± 0.31% it is achieved and a considerable production of ethanol is not appreciated (smaller than 0.1 g/l) for none of the means fermented with zymomonas mobilis

  18. Neutrino nucleosynthesis in supernovae: Shell model predictions

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1989-01-01

    Almost all of the 3 · 10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. I will argue that these neutrinos interact with nuclei in the ejected shells of the supernovae to produce new elements. It appears that this nucleosynthesis mechanism is responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, and 180 Ta, and contributes significantly to the abundances of about 15 other light nuclei. I discuss shell model predictions for the charged and neutral current allowed and first-forbidden responses of the parent nuclei, as well as the spallation processes that produce the new elements. 18 refs., 1 fig., 1 tab

  19. L-shell dielectronic recombination for 0-like ions

    International Nuclear Information System (INIS)

    Omar, G.; Semedal, R.; Shahin, F.; El-Sherbini, T.H.

    2007-01-01

    In electron-Ion (e/I) collisions, a free electron may be captured by a positively charged ion having bound electrons with a simultaneous, excitation. This radiationless capture, most probably, creates resonance (d) states. These d- states may stabilize by emission of radiation (x-rays). This two-step process is known as Dielectronic recombination (D R). At high incident-electron energy, D R dominates over the radiative recombination (R R) and three- body recombination (Tbr) processes. Thus, D R is one of the most effective recombination for ionisation balance in solar corona and artificial plasma . In addition, the D R rates are needed for the development of nuclear fusion plasma. Thus, D R is still an interesting process m both experimental and theoretical research. Previously we have done the D R rates for 0-like AL 5+ , Cl 9+ Ti 14+ and Zn 22+ ions with K-shell excitation. In this work, the D R rates are calculated for the same ions, but with L-shell excitation. It is found that, the peak values of the D R rates for L-shell excitation are 1000 times larger than that for K-shell excitation. This means that, D R process is the most efficient mechanism for outer-shell excitations. It is found also that, the Dr rates for L-shell excitation peak at Kt = 6 Ry, 22 Ry for AL 5+ and Ti 14+ ions respectively. These Kt values are much smaller than that for for K-shell excitation

  20. Thin-shell wormholes in Born–Infeld electrodynamics with modified Chaplygin gas

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M., E-mail: msharif.math@pu.edu.pk [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan); Azam, M., E-mail: azam.math@ue.edu.pk [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan); Division of Science and Technology, University of Education, Township Campus, Lahore-54590 (Pakistan)

    2014-07-25

    In this paper, we construct spherically symmetric thin-shell wormholes in the scenario of Born–Infeld electrodynamics theory. We take the modified Chaplygin gas for the description of exotic matter around the wormhole throat. The stability of static wormhole solutions with different values of charge and Born–Infeld parameter is investigated. We compare our results with those obtained for generalized Chaplygin gas [36] and conclude that stable static wormhole solutions also exist even for large value of Born–Infeld parameter. - Highlights: • Constructed thin-shell wormholes in Born–Infeld electrodynamics for modified Chaplygin. • Studied its stability with different values of charge and Born–Infeld parameter. • New stable solutions are found even for large value of Born–Infeld parameter. • Selection of EoS significantly changes the presence and stability of static solutions.

  1. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes

    KAUST Repository

    Cui, Li-Feng

    2009-01-14

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon\\'s large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline- amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li ions. We demonstrate here that these core-shell nanowires have high charge storage capacity (̃1000 mAh/g, 3 times of carbon) with ̃90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, ̃20 times of carbon at 1 h rate). © 2009 American Chemical Society.

  2. Plasmonic Photovoltaic Cells with Dual-Functional Gold, Silver, and Copper Half-Shell Arrays.

    Science.gov (United States)

    Wu, Ling; Kim, Gyu Min; Nishi, Hiroyasu; Tatsuma, Tetsu

    2017-09-12

    Solid-state photovoltaic cells based on plasmon-induced charge separation (PICS) have attracted growing attention during the past decade. However, the power conversion efficiency (PCE) of the previously reported devices, which are generally loaded with dispersed metal nanoparticles as light absorbers, has not been sufficiently high. Here we report simpler plasmonic photovoltaic cells with interconnected Au, Ag, and Cu half-shell arrays deposited on SiO 2 @TiO 2 colloidal crystals, which serve both as a plasmonic light absorber and as a current collector. The well-controlled and easily prepared plasmonic structure allows precise comparison of the PICS efficiency between different plasmonic metal species. The cell with the Ag half-shell array has higher photovoltaic performance than the cells with Au and Cu half-shell arrays because of the high population of photogenerated energetic electrons, which gives a high electron injection efficiency and suppressed charge recombination probability, achieving the highest PCE among the solid-state PICS devices even without a hole transport layer.

  3. Charge radii of neutron-deficient Ca isotopes

    Science.gov (United States)

    Miller, A. J.; Minamisono, K.; Klose, A.; Everett, N.; Kalman, C.; Powel, R. C.; Watkins, J.; Garand, D.; Sumithrarachchi, C.; Krämer, J.; Maa, B.; Nörtershäuser, W.; Rossi, D. M.; Kujawa, C.; Pineda, S.; Lantis, J.; Liu, Y.; Mantica, P. F.; Pearson, M. R.

    2017-09-01

    Nucleon shell closures are generally associated with a local minimum in mean-square charge radii, 〈r2 〉 , along an isotopic chain. The 〈r2 〉 of 18Ar and 19K isotopes, however, do not show this signature at the N = 20 neutron shell closure. To gain a microscopic understanding of this abnormal behavior, measurements of 〈r2 〉 of neutron-deficient Ca isotopes below N = 20 have been proposed at the BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU. Preliminary results will be presented and the deduced charge radii will be compared to theoretical calculations and the trends in the nearby isotopic chains. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft through Grant SFB 1245.

  4. Effective interactions between concentration fluctuations and charge transfer in chemically ordering liquid alloys

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1992-08-01

    The correlations between long-wavelength fluctuations of concentration in a liquid binary alloy are determined by a balance between an elastic strain free energy and an Ornstein-Zernike effective interaction. The latter is extracted from thermodynamic data in the case of the Li-Pb system, which is well known to chemically order with stoichiometric composition corresponding to Li 4 Pb. Strong attractive interactions between concentration fluctuations near the composition of chemical ordering originate from electronic charge transfer, which is estimated from the electron-ion partial structure factors as functions of composition in the liquid alloy. (author). 20 refs, 2 figs

  5. Deposition of strontium and calcium in snail shell

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Jr, G M; Nelson, D J; Gardiner, D A

    1965-07-03

    The relative effects of strontium and calcium concentrations in the environment on their uptake and incorporation into snail shell were investigated. /sup 45/Ca and /sup 85/Sr were used as tracers and specific activities were used to determine deposition. Data are presented in tables and graphs. Deposition of both calcium and strontium in the snail shell depended primarily on the respective concentrations of these elements in the immediate environment. A slight effect of strontium on calcium deposition was observed. There was found to be a minimum strontium deposition for various combinations of strontium and calcium in the environment. It was concluded that strontium uptake is more closely associated with environmental strontium concentrations than with calcium concentrations.

  6. Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of the projectile charge and velocity; Ionisation et excitation de l'atome de lithium par impact de particules chargees rapides: Identification des mecanismes de creation de deux lacunes en couche K du lithium en fonction de la charge et de la vitesse du projectile

    Energy Technology Data Exchange (ETDEWEB)

    Rangama, J

    2002-11-01

    Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of projectile charge and velocity. Auger electron spectroscopy is used for an experimental investigation of ionization and excitation of lithium atoms by ions (Kr34{sup +} and Ar18{sup +}) and electrons at high impact velocities (from 6 to 60 a.u.). In particular, relative contributions of the mechanisms responsible for lithium K-shell ionization-excitation are determined for various projectile charges Zp and velocities vp. A large range of perturbation parameters |Zp|/vp is explored (|Zp|/vp = 0,05 - 0,7 a.u.). From single K-shell excitation results, it appears that the projectile-electron interaction gives mainly rise to a dipole-like transition 1s -> np Concerning K-shell ionization-excitation, the separation of the TS2 (two independent projectile-electron interactions) and TS1 (one projectile-electron interaction) mechanisms responsible for the formation of the 2snp 1,3P and 2sns 1,3S lithium states is performed. In TS1 process, the projectile-electron interaction can be followed by an electron-electron interaction (dielectronic process) or by an internal rearrangement of the residual target after a sudden potential change (shake process). From Born theory, ab initio calculations are performed. The good agreement between theoretical and experimental results confirms the mechanism identification. For the production of P states, TS1 is found to be strongly dominant for small |Zp|/vp values and TS2 is found to be most important for large |Zp|/vp values. Since P states cannot be formed significantly via a shake process, the TS1 and TS2 separation provides a direct signature of the dielectronic process. On the other hand, the TS1 process is shown to be the unique process for producing the S states. At the moment, only the shake aspect of the TS1 process can explain the fact that the 2s3s configuration is

  7. Porous spherical shells and microspheres by electrodispersion precipitation

    International Nuclear Information System (INIS)

    Harris, M.T.; Sisson, W.G.; Basaran, O.A.; Hayes, S.M.; Bobrowski, S.J.

    1994-01-01

    The ability to reproduce the synthesis of dense- and porous-microspheres and micron-sized spherical shells is very important in (a) the development of ceramics for structural, electronic, catalyst and thermal applications; and (b) the encapsulation of products for controlled-release of drugs, flavors and perfumes, and inks and dyes, and the protection of light-sensitive components and mechanical support of fragile materials. Larger metallic- and ceramic-spherical shells have been used in inertial confinement fusion (ICF) experiments and as catalyst supports. The current paper will focus on a recent technique that has been developed for synthesizing ceramic microspheres and micro-shells. Pulsed electric fields have been used to enhance the dispersion of aqueous metal (Zr and Al) salt solutions from a nozzle and into a nonconducting liquid continuous phase that is immiscible with the aqueous phase. The diameter of the resulting microdroplets ranged in size from approximately 0.1 to 10 μm. Precipitation of hydrous metal oxides occurred as ammonia, which was dissolved in varying amounts in the continuous phase, diffused into the aqueous microdroplets. Spherical shells were formed at higher ammonia concentrations and microspheres were produced at lower ammonia concentrations. Upon drying, dimples appeared in the particles that were synthesized at higher ammonia concentrations. The latter result accords with the well known fact that under certain conditions spherical shells collapse when a fluid is extracted from the core of the particle. No dimples were observed in the microspheres that were produced at lower ammonia concentrations. Analog X-ray dot maps for aluminum and zirconium were done to determine the spatial distribution of each metal in the particles

  8. Outer-shell excitation and capture processes: Alignment and orientation effects

    International Nuclear Information System (INIS)

    Andersen, N.; Dowek, D.; Dubois, A.; Hansen, J.P.; Nielsen, S.E.

    1990-01-01

    This contribution outlines some ongoing activities within a joint programme of experimental and theoretical studies of outer-shell excitation and charge transfer processes in atomic collisions. The main emphasis is presently on alignment and orientation phenomena. The aim is to reveal the shape and dynamics of the electronic charge cloud as it develops in time along the trajectory, and to understand these phenomena in terms of the underlying, basic mechanisms responsible for collisional excitation and transfer. (orig.)

  9. Charge-state correlated cross sections for the production of low-velocity highly charged Ne ions by heavy-ion bombardment

    International Nuclear Information System (INIS)

    Gray, T.J.; Cocke, C.L.; Justiniano, E.

    1980-01-01

    We report measured cross sections for the collisional production of highly charged low-velocity Ne recoil ions resulting from the bombardment of a thin Ne gas target by highly charged 1-MeV/amu C, N, O, and F projectiles. The measurements were made using time-of-flight techniques which allowed the simultaneous identification of the final charge state of both the low-velocity recoil ion and the high-velocity projectile for each collision event. For a given incident-projectile charge state, the recoil charge-state distribution is very dependent upon the final charge state of the projectile. Single- and double-electron capture events by incident bare nuclei and projectile K-shell ionization during the collision cause large shifts in the recoil charge-state distributions toward higher charge states. A previously proposed energy-deposition model is modified to include the effects of projectile charge-changing collisions during the collision for bare and hydrogenlike projectiles and is used to discuss the present experimental results

  10. Semiconductor nanoparticles with spatial separation of charge carriers: synthesis and optical properties

    International Nuclear Information System (INIS)

    Vasiliev, Roman B; Dirin, Dmitry N; Gaskov, Alexander M

    2011-01-01

    The results of studies on core/shell semiconductor nanoparticles with spatial separation of photoexcited charge carriers are analyzed and generalized. Peculiarities of the electronic properties of semiconductor/semiconductor heterojunctions formed inside such particles are considered. Data on the effect of spatial separation of charge carriers on the optical properties of nanoparticles including spectral shifts of the exciton bands, absorption coefficients and electron–hole pair recombination times are presented. Methods of synthesis of core/shell semiconductor nanoparticles in solutions are discussed. Specific features of the optical properties of anisotropic semiconductor nanoparticles with the semiconductor/semiconductor junctions are noted. The bibliography includes 165 references.

  11. Ionization of highly charged iodine ions near the Bohr velocity

    International Nuclear Information System (INIS)

    Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Ren, Jieru; Liu, Shidong; Deng, Jiachuan; Zhao, Yongtao; Xiao, Guoqing

    2015-01-01

    We have measured the L-shell X-rays of iodine from the collisions of 3 MeV I q+(q=15,20,22,25,26) ions with an iron target. It is found that the X-ray yield decreases with the increasing initial charge state. The energy of the subshell X-ray has a blue shift, which is independent of the projectile charge state. In addition, the relative intensity ratios of Lβ 1,3,4 and Lβ 2,15 to Lα 1,2 X-ray are obtained and compared with the theoretical calculations. That they are larger than for a singly ionized atom can be understood by the multiple ionization effect of the outer-shell electrons

  12. Monte Carlo simulations of the distributions of intra- and extra-vesicular ions and membrane associated charges in hybrid liposomes composed of negatively charged tetraether and zwitterionic diester phospholipids

    Directory of Open Access Journals (Sweden)

    István P. Sugár

    2017-04-01

    Full Text Available Here, we model a negatively charged lipid vesicle, composed of a mixture of bipolar tetraether and diester (or diether phospholipid molecules, by a spherical shell that has zero ion permeability. We take into consideration all the charge-charge interactions between intra-vesicular ions, extra-vesicular ions, and membrane lipid associated charges. Monte Carlo simulations result in homogeneous and double-exponential ion distribution, respectively, in the intra- and extra-vesicular space. The extra-vesicular ion concentration close to the membrane surface is proportional to the total amount of the membrane charges (Nm and is independent of the partitioning of the membrane charges between the outer (Nom and inner membrane (Nim surface. This result shows that one should not disregard the effect of the charges on the inner membrane surface when calculating the ion distributions around a charged vesicle. If the partitioning of the membrane charges is not restricted (i.e., lipid flip-flop is allowed, then at different Nm, the Nom/Nim ratio remains constant and the value of Nom/Nim, as a consequence of the interaction between every charges of the model, is close to, but significantly higher than, the ratio of the outer to the inner surface area of the membrane. These results indicate that the amount and the orientation of the negatively-charged tetraether lipids in the membrane are important determinants of membrane properties in tetraether/zwitterionic diester phospholipid liposomes. Finally we compared the results of our discrete charge model and continuous models based on the solutions of the Poisson-Boltzmann equation and pointed out qualitative similarities and sometimes major quantitative differences between these two types of models.

  13. Intrinsic Ge nanowire nonvolatile memory based on a simple core–shell structure

    International Nuclear Information System (INIS)

    Chen, Wen-Hua; Liu, Chang-Hai; Li, Qin-Liang; Sun, Qi-Jun; Liu, Jie; Gao, Xu; Sun, Xuhui; Wang, Sui-Dong

    2014-01-01

    Intrinsic Ge nanowires (NWs) with a Ge core covered by a thick Ge oxide shell are utilized to achieve nanoscale field-effect transistor nonvolatile memories, which show a large memory window and a high ON/OFF ratio with good retention. The retainable surface charge trapping is considered to be responsible for the memory effect, and the Ge oxide shell plays a key role as the insulating tunneling dielectric which must be thick enough to prevent stored surface charges from leaking out. Annealing the device in air is demonstrated to be a simple and effective way to attain thick Ge oxide on the Ge NW surface, and the Ge-NW-based memory corresponding to thick Ge oxide exhibits a much better retention capability compared with the case of thin Ge oxide. (paper)

  14. Quenching of the Gamow-Teller matrix element in closed LS-shell-plus-one nuclei

    International Nuclear Information System (INIS)

    Towner, I.S.

    1989-06-01

    It is evident that nuclear Gamow-Teller matrix elements determined from β-decay and charge-exchange reactions are significantly quenched compared to simple shell-model estimates based on one-body operators and free-nucleon coupling constants. Here we discuss the theoretical origins of this quenching giving examples from light nuclei near LS-closed shells, such as 16 0 and 40 Ca. (Author) 12 refs., 2 tabs

  15. Maximum entropy theory of recoil charge distributions in electron-capture collisions

    International Nuclear Information System (INIS)

    Aberg, T.; Blomberg, A.; Tulkki, J.; Goscinski, O.

    1984-01-01

    A generalized Fermi-Dirac distribution is derived and applied to charge-state distributions in single collisions between multiply charged ions and rare-gas atoms. It relates multiple electron loss in single-electron capture to multiple ionization in multiphoton absorption and discloses inner-shell vacancy formation in double- and triple-electron capture

  16. Surface Charges and Shell Crosslinks Each Play Significant Roles in Mediating Degradation, Biofouling, Cytotoxicity and Immunotoxicity for Polyphosphoester-based Nanoparticles

    Science.gov (United States)

    Elsabahy, Mahmoud; Zhang, Shiyi; Zhang, Fuwu; Deng, Zhou J.; Lim, Young H.; Wang, Hai; Parsamian, Perouza; Hammond, Paula T.; Wooley, Karen L.

    2013-11-01

    The construction of nanostructures from biodegradable precursors and shell/core crosslinking have been pursued as strategies to solve the problems of toxicity and limited stability, respectively. Polyphosphoester (PPE)-based micelles and crosslinked nanoparticles with non-ionic, anionic, cationic, and zwitterionic surface characteristics for potential packaging and delivery of therapeutic and diagnostic agents, were constructed using a quick and efficient synthetic strategy, and importantly, demonstrated remarkable differences in terms of cytotoxicity, immunotoxicity, and biofouling properties, as a function of their surface characteristics and also with dependence on crosslinking throughout the shell layers. For instance, crosslinking of zwitterionic micelles significantly reduced the immunotoxicity, as evidenced from the absence of secretions of any of the 23 measured cytokines from RAW 264.7 mouse macrophages treated with the nanoparticles. The micelles and their crosslinked analogs demonstrated lower cytotoxicity than several commercially-available vehicles, and their degradation products were not cytotoxic to cells at the range of the tested concentrations. PPE-nanoparticles are expected to have broad implications in clinical nanomedicine as alternative vehicles to those involved in several of the currently available medications.

  17. Bond index: relation to second-order density matrix and charge fluctuations

    International Nuclear Information System (INIS)

    Giambiagi, M.S. de; Giambiagi, M.; Jorge, F.E.

    1985-01-01

    It is shown that, in the same way as the atomic charge is an invariant built from the first-order density matrix, the closed-shell generalized bond index is an invariant associated with the second-order reduced density matrix. The active charge of an atom (sum of bond indices) is shown to be the sum of all density correlation functions between it and the other atoms in the molecule; similarly, the self-charge is the fluctuation of its total charge. (Author) [pt

  18. K-shell ionization by antiprotons

    International Nuclear Information System (INIS)

    Mehler, G.; Mueller, B.; Greiner, W.; Soff, G.

    1987-01-01

    We present first calculations for the impact parameter dependence of K-shell ionization rates in anti pCu and in anti pAg collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the anti-binding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross-sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross-sections for protons. (orig.)

  19. Autoionization of inner atomic shells during β decay

    International Nuclear Information System (INIS)

    Batkin, I.S.; Kopytin, I.V.; Smirnov, Y.G.; Churakova, T.A.

    1981-01-01

    A theory describing the autoionization of inner atomic shells in nuclear β decay has been developed. It is shown on the basis of diagram technique that in first order in Z -1 the matrix element of the process is represented in the form of the sum of two terms, one of which corresponds to ionization of an electron shell of an atom with sudden change of the charge of the nucleus, and the other to direct interaction of a β particle with the electrons of the atomic shell. Specific calculations are carried out in the nonrelativistic approximation with use of electron wave functions and a Green's function constructed with a Teitz screened Coulomb potential, the systematic inclusion of the contribution of the direct mechanism being carried out for the first time. For the case of β decay of the isotopes 35 S, 45 Ca, 63 Ni, 147 Pm, and 151 Sm we have calculated the shape of the spectrum of shakeup electrons and the integrated probability of autoionization of the K shell. It was found that the contribution of the direct mechanism in all cases considered is significant

  20. Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons

    Science.gov (United States)

    Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.

    2015-12-01

    Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.

  1. Wavefunction effects in inner shell ionization of light atoms by protons

    International Nuclear Information System (INIS)

    Aashamar, K.; Amundsen, P.A.

    An efficient computer code for calculating the impact parameter distribution of atomic ionization probabilities caused by charged particle impact, has been developed. The programme is based on the semiclassical approximation, and it allows the use of an arbitrary atomic central potential for deriving the one-electron orbitals that form the basis for the description of the atomic states. Extensive calculations are reported for proton induced K-shell ionization in carbon and neon, covering energies in the range 0.1-10 MeV. Some calculations on proton-argon L-shell ionization are also reported. Comparison of the results obtained using (screened) hydrogenic potentials and the recently reported energy- optimized effective atomic central potentials, respectively demonstrates that wavefunction effects are generally important for inner-shell ionization of light atoms. The agreement between theory and experiment in the K-shell case is improved for fast collisions upon using better wavefunctions. (Auth.)

  2. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells

    OpenAIRE

    Dolan, Laurie; Matulka, Ray; Worn, Jeffrey; Nizio, John

    2015-01-01

    Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control), 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermitt...

  3. Efficient photocatalytic degradation of malachite green dye under visible irradiation by water soluble ZnS:Mn/ZnS core/shell nanoparticles

    Science.gov (United States)

    Khaparde, Rohini A.; Acharya, Smita A.

    2018-05-01

    ZnS:Mn/ ZnS core/shell nanoparticles was prepared by two step synthesis method. In first step, oleic acid - coated Mn doped ZnS core nanoparticles were prepared which were charged through ligand exchange. Shell of ZnS NPs was finally deposited upon the surface of charged Mn doped ZnS core. Scanning electron microscopy (SEM) image exhibit morphological confirmation of ZnS:Mn/ZnS core/shell. As Nano ZnS are the most suitable candidates for photocatalyst that extensively involved in degradation and complete mineralization of various toxic organic pollutants owing to its high efficiency, strong oxidizing power, non-toxicity, high photochemical and biological stability, corrosive resistance and low cost. Photodegradation of malachite green is systematically investigated by adding different molar proportional of ZnS:Mn/ZnS core/shell in the dye. The rate of de-coloration of dye is detected by UV-VIS absorption spectroscopy. Efficient detoriation in the colour of dye is attributed to the core /shell morphology of the particles.

  4. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    International Nuclear Information System (INIS)

    Yang, Zhimin; Wang, Qiang; Shan, Xiaoye; Zhu, Hongjun; Li, Wei-qi; Chen, Guang-hui

    2015-01-01

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs

  5. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  6. Multiple photoionization following 3d5/2-shell threshold ionization of

    International Nuclear Information System (INIS)

    Matsui, T; Yoshii, H; Tsukamoto, K; Kawakita, S; Murakami, E; Adachi, J; Yagishita, A; Morioka, Y; Hayaishi, T

    2004-01-01

    Multiple photoionization of Xe near the 3d 5/2 -shell threshold photoionization region is studied by threshold electron-ion coincidence spectroscopy. The coincidence spectra of Xe 3+ to Xe 7+ ions exhibit characteristic profiles associated with multi-step post-collision interactions in Auger cascades following 3d 5/2 -shell threshold photoionization. The Auger cascade decay channels leading to the formation of multiply charged ions are deduced from the energies of the profile peaks, which increase gradually with increasing charge state. The formation of Xe 3+ to Xe 5+ ions is found to arise from cascades of normal Auger decays, whereas the formation of Xe 6+ and Xe 7+ ions involves double Auger decays. The branching ratio of double to normal Auger decays is estimated to be 0.25 (±0.1) for the decays following the creation of 3d 5/2 -hole states in Xe

  7. Trace metals in mussel shells and corresponding soft tissue samples: a validation experiment for the use of Perna perna shells in pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bellotto, V.R. [Vale do Itajai University (UNIVALI), CTTMAR (Center for Technology Earth and Ocean Science), Itajai (Brazil); Miekeley, N. [Pontifical Catholic University (PUC-Rio), Department of Chemistry, Rio de Janeiro (Brazil)

    2007-10-15

    The uptake of Cr, Mn, Ni, Cu, Zn, Cd and Pb in soft tissue of Perna perna mussels and their shells has been studied in aquarium experiments in which mussels were exposed for 30 or 60 days to seawater spiked with different concentrations of these contaminants (125 and 500 {mu}g L{sup -1}). Tissue samples were analyzed after acid digestion by conventional solution nebulization ICP-MS. Laser ablation ICP-MS was used for the quantitative determination of trace elements in different areas of the corresponding shells. With the exception of Mn and Zn, all other elements studied showed a significant concentration enhancements in soft tissue, with the magnitude of this enhancement following the order: Cr > Ni > Cd > Cu > Pb. A corresponding increase in most contaminants, although less pronounced, was also observed in the newly formed growth rings of mussel shells, contributing to the validation of Perna perna mussel shell as a bioindicator of toxic elements. (orig.)

  8. Core-shell architectures as nano-size transporters

    International Nuclear Information System (INIS)

    Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.

    2006-01-01

    Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated

  9. Optimal design of hollow core–shell structural active materials for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Wenjuan Jiang

    2015-01-01

    Full Text Available To mitigate mechanical and chemical degradation of active materials, hollow core–shell structures have been applied in lithium ion batteries. Without embedding of lithium ions, the rigid coating shell can constrain the inward volume deformation. In this paper, optimal conditions for the full use of inner hollow space are identified in terms of the critical ratio of shell thickness and inner size and the state of charge. It is shown that the critical ratios are 0.10 and 0.15 for Si particle and tube (0.12 and 0.18 for Sn particle and tube, and above which there is lack of space for further lithiation.

  10. Polydopamine and MnO2 core-shell composites for high-performance supercapacitors

    Science.gov (United States)

    Hou, Ding; Tao, Haisheng; Zhu, Xuezhen; Li, Maoguo

    2017-10-01

    Polydopamine and MnO2 core-shell composites (PDA@MnO2) for high-performance supercapacitors had been successfully synthesized by a facile and fast method. The morphology, crystalline phase and chemical composition of PDA@MnO2 composites are characterized using SEM, TEM, XRD, EDS and XPS. The performance of PDA@MnO2 composites are further investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte. The PDA@MnO2 core-shell nanostructure composites exhibit a high capacitance of 193 F g-1 at the current density of 1A g-1 and retained over 81.2% of its initial capacitance after 2500 cycles of charge-discharge at 2 A g-1. The results manifest that the PDA@MnO2 composites can be potentially applied in supercapacitors.

  11. The influence of the shell closure on the microscopic structure of even-even Hg isotopes

    International Nuclear Information System (INIS)

    Burghardt, A.J.C.

    1989-01-01

    Muonic X-ray data were obtained for 198 200 202 204 Hg at high-intensity muon-beam facility of SIN and an electron-scattering study was performed on 204 Hg with the 500 MeV, high-resolution electron-scattering facility of NIKHEF-K in a q-range from 0.4 to 2.9 fm -1 . The combined analysis of the elastic electron-scattering and muonic X-ray data has yielded the ground-state charge distribution of 204 Hg. Hartree-Fock calculations with four different interactions, with and without the inclusion of pairing correlations, are compared to this experimental result. The charge-density difference between 206 Pb (determined elsewhere) and 204 Hg is then used ot investigate the filling of the last proton orbit before the Z=82 shell closure, the 3s 1/2 orbit. The interpretation of this difference, also in terms of Hartree-Fock calculations, is discussed in conjunction with the earlier study of Frois et al. concerning 206 Pb and 205 Tl. Many excited states have been observed in the spectra of 204 Hg. The experimental excitation energies and the spins and parities assigned to a number of states are presented. From the cross-section data for these states transition charge distributions have been extracted. Shell-model predictions are compared with the observed level scheme and the shell-model calculation performed by Poppelier is used to interpret transition charge distributions of six states. 101 refs.; 32 figs.; 41 figs

  12. Core–shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinqin; Cui, Yingqi; Zeng, Qun; Yang, Mingli, E-mail: myang@scu.edu.cn [Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China); Yu, Shengping [College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041 (China)

    2016-04-07

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe){sub x}@(CdSe){sub y} and their Zn-substituted complexes of x = 2–4 and y = 16–28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn–Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition–structure–property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  13. Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles.

    Science.gov (United States)

    Huang, Xiaoxia; Huang, Xulin; Gong, Yushi; Xiao, Hang; McClements, David Julian; Hu, Kun

    2016-09-01

    Curcumin has strong antioxidant activity, but poor water-solubility and chemical stability, which limits its utilization as a nutraceutical in many applications. Previously, we developed a core-shell (zein-pectin) nanoparticle delivery system with high curcumin loading efficiency, high particle yield, and good water dispersibility. However, this system was unstable to aggregation around neutral pH and moderate ionic strengths due to weakening of electrostatic repulsion between nanoparticles. In the current study, we used a combination of alginate (high charge density) and pectin (low charge density) to form the shell around zein nanoparticles. Replacement of 30% of pectin with alginate greatly improved aggregation stability at pH 5 to 7 and at high ionic strengths (2000mM NaCl). Curcumin encapsulated within these core-shell nanoparticles exhibited higher antioxidant and radical scavenging activities than curcumin solubilized in ethanol solutions as determined by Fe (III) reducing power, 1, 1-Diphenyl-2-picrylhydrazyl free radical (DPPH·), and 2, 2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid radical cation (ABTS· + ) scavenging analysis. These core-shell nanoparticles may be useful for incorporating chemically unstable hydrophobic nutraceuticals such as curcumin into functional foods, dietary supplements, and pharmaceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire.

    Science.gov (United States)

    Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan

    2016-12-01

    In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

  15. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells

    Directory of Open Access Journals (Sweden)

    Laurie Dolan

    Full Text Available Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control, 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermittent decreases in food efficiency (150 000 ppm males only that were not biologically relevant. All animals survived and no adverse clinical signs or functional changes were attributable to the test material. There were no toxicologically relevant changes in hematology, clinical chemistry or urinalysis parameters or organ weights in rats ingesting pecan shell fiber. Any macroscopic or microscopic findings were incidental, of normal variation and/or of minimal magnitude for test substance association. Pecan shell fiber was non-mutagenic in a bacterial reverse mutation test and non-clastogenic in a mouse peripheral blood micronucleus test. Based on these results, pecan shell fiber has an oral subchronic (13-week no observable adverse effect level (NOAEL of 150 000 ppm in rats and is not genotoxic at the doses analyzed. Keywords: Pecan shell, Fiber, Rat, Diet, Toxicity, Mutagenicity

  16. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    Science.gov (United States)

    Shan, Qingsong; Li, Kuiying; Xue, Zhenjie; Lin, Yingying; Yin, Hua; Zhu, Ruiping

    2016-02-01

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core-shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core-shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core-shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10-8 to 2 × 10-3 s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space-charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  17. The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu [Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha University, Thandalam, Chennai – 602105 (India); Kalpana, P.; Jayakumar, K. [Department of Physics, Gandhigram Rural University, Gandhigram, Tamilnadu-624302 (India); Reuben, A. Merwyn Jasper D., E-mail: merwyn@gmail.com [Department of Physics, Saveetha School of Engineering, Saveetha University, Thandalam, Chennai – 602105 (India)

    2015-06-24

    The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.

  18. The diamagnetic susceptibility of a donor in a semiconductor core shell quantum dot

    Science.gov (United States)

    Sudharshan, M. S.; Subhash, P.; Shaik, Nagoor Babu; Kalpana, P.; Jayakumar, K.; Reuben, A. Merwyn Jasper D.

    2015-06-01

    The effect of Aluminium concentration, shell thickness and size of the core shell Quantum Dot on the Diamagnetic Susceptibility of a donor in the Core Shell Quantum Dot is calculated in the effective mass approximation using the variational method. The results are presented and discussed.

  19. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Schroedter, Lasse

    2013-08-15

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10{sup 15} W/cm{sup 2}. For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  20. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    International Nuclear Information System (INIS)

    Schroedter, Lasse

    2013-08-01

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10 15 W/cm 2 . For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  1. Nuclear charge radii of the 1fsub(7/2) shell nuclei from muonic atoms

    International Nuclear Information System (INIS)

    Wohlfahrt, H.D.

    1979-01-01

    Muonic X-ray of medium-weight nuclei have been performed in recent years by the Los Alamos muonic X-ray group, using the high intensity muon beam available at the LAMPF 800 MeV proton accelerator. These studies, which together include all stable 1fsub(7/2) neutron shell nuclei, provide information about the proton core polarization due to the successive addition of neutrons for the proton cores Z = 20 (Ca), 22 (Ti), 24(Cr), 26(Fe) and 28(Ni). In addition, these studies, which represent the first systematic investigations of isotone shifts, provide the opportunity to compare the core polarization caused by protons with core polarization caused by neutrons in the same (1fsub(7/2)) shell. (KBE)

  2. Core–shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells

    KAUST Repository

    Mahmood, Khalid; Swain, Bhabani Sankar; Amassian, Aram

    2015-01-01

    To achieve highly efficient mesoscopic perovskite solar cells (PSCs), the structure and properties of an electron transport layer (ETL) or material (ETM) have been shown to be of supreme importance. Particularly, the core-shell heterostructured mesoscopic ETM architecture has been recognized as a successful electrode design, because of its large internal surface area, superior light-harvesting efficiency and its ability to achieve fast charge transport. Here we report the successful fabrication of a hysteresis-free, 15.3% efficient PSC using vertically aligned ZnO nanorod/TiO2 shell (ZNR/TS) core-shell heterostructured ETMs for the first time. We have also added a conjugated polyelectrolyte polymer into the growth solution to promote the growth of high aspect ratio (AR) ZNRs and substantially improve the infiltration of the perovskite light absorber into the ETM. The PSCs based on the as-synthesized core-shell ZnO/TiO2 heterostructured ETMs exhibited excellent performance enhancement credited to the superior light harvesting capability, larger surface area, prolonged charge-transport pathways and lower recombination rate. The unique ETM design together with minimal hysteresis introduces core-shell ZnO/TiO2 heterostructures as a promising mesoscopic electrode approach for the fabrication of efficient PSCs. This journal is © The Royal Society of Chemistry.

  3. Metal shell technology based upon hollow jet instability

    International Nuclear Information System (INIS)

    Kendall, J.M.; Lee, M.C.; Wang, T.G.

    1982-01-01

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. We describe a technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal. We have produced shells in the 0.7--2.0 mm size range using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold--lead--antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise

  4. Magnetic monopole interactions: shell structure of meson and baryon states

    International Nuclear Information System (INIS)

    Akers, D.

    1986-01-01

    It is suggested that a low-mass magnetic monopole of Dirac charge g = (137/2)e may be interacting with a c-quark's magnetic dipole moment to produce Zeeman splitting of meson states. The mass M 0 = 2397 MeV of the monopole is in contrast to the 10 16 -GeV monopoles of grand unification theories (GUT). It is shown that shell structure of energy E/sub n/ = M 0 + 1/4nM 0 ... exists for meson states. The presence of symmetric meson states leads to the identification of the shell structure. The possible existence of the 2397-MeV magnetic monopole is shown to quantize quark masses in agreement with calculations of quantum chromodynamics (QCD). From the shell structure of meson states, the existence of two new mesons is predicted: eta(1814 +/- 50 MeV) with I/sup G/(J/sup PC/) = 0 + (0 -+ ) and eta/sub c/ (3907 +/- 100 MeV) with J/sup PC/ = 0 -+ . The presence of shell structure for baryon states is shown

  5. Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core-shell nanostructures for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Zhu, Jianxiao; Huang, Lei; Xiao, Yuxiu; Shen, Leo; Chen, Qi; Shi, Wangzhou

    2014-05-01

    We report a facile strategy to prepare 3D core-shell nanowire heterostructures with microporous hydrogenated CoOx (H-CoOx) nanowires as the conducting scaffold to support Ni(OH)2 nanosheets. Benefiting from the H-CoOx nanowire core to provide the effective pathway for charge transport and the core-shell heterostructures with synergistic effects, the H-CoOx@Ni(OH)2 core-shell nanowire electrode achieved the specific capacitance of 2196 F g-1 (areal capacitance of 5.73 F cm-2), which is approximately a 1.4-fold enhancement compared with the Co3O4@Ni(OH)2 core-shell nanowires. An aqueous asymmetric supercapacitor (ASC) device was fabricated by using H-CoOx@Ni(OH)2 nanowires as the positive electrode and reduced graphene oxide @Fe3O4 nanocomposites as the negative electrode. The ASCs achieved high energy density (~45.3 W h kg-1 at 1010 W kg-1), high power density (~7080 W kg-1 at 23.4 W h kg-1) and high cycling stability. Furthermore, after charging for ~1 min, one such 22 cm2 ASC device demonstrated to be able to drive a small windmill (0.8 V, 0.1 W) for 20 min. Two such ASCs connected in series can power up a seven-color LED (3.2 V) efficiently.We report a facile strategy to prepare 3D core-shell nanowire heterostructures with microporous hydrogenated CoOx (H-CoOx) nanowires as the conducting scaffold to support Ni(OH)2 nanosheets. Benefiting from the H-CoOx nanowire core to provide the effective pathway for charge transport and the core-shell heterostructures with synergistic effects, the H-CoOx@Ni(OH)2 core-shell nanowire electrode achieved the specific capacitance of 2196 F g-1 (areal capacitance of 5.73 F cm-2), which is approximately a 1.4-fold enhancement compared with the Co3O4@Ni(OH)2 core-shell nanowires. An aqueous asymmetric supercapacitor (ASC) device was fabricated by using H-CoOx@Ni(OH)2 nanowires as the positive electrode and reduced graphene oxide @Fe3O4 nanocomposites as the negative electrode. The ASCs achieved high energy density (~45.3 W h kg-1 at

  6. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, Daniel Bristol [Univ. of California, Davis, CA (United States)

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of

  7. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    International Nuclear Information System (INIS)

    Thorn, D. B.

    2008-01-01

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  8. Adsorption of copper to different biogenic oyster shell structures

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Chen, Jie [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China); Clark, Malcolm [Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480 (Australia); Yu, Yan, E-mail: yuyan_1972@126.com [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Adsorption of copper to waste oyster shell occurs rapidly at pH 5.5. • Copper adsorbs to the different structures of oyster shell at different rates. • The prismatic layer dominates copper sorption rather than the nacreous layer. • SEM analysis shows a porous open network structure to the prismatic layer. • Surface ζ-potentials establish electrostatic attraction to drive copper sorption. - Abstract: The removal of copper from solution by oyster shell powder was investigated for potential wastewater treatment uses. In particular, adsorption behavior differences between the prismatic (PP) and nacreous (NP) shell layers, and how this affects copper removal, were investigated. Experimental results indicated that copper adsorption was highly pH-dependent with optimal copper removal at pH 5.5, where the powdered whole raw shell (RP) removed up to 99.9% of the copper within 24 h at a 10 mg/L initial copper concentration. Langmuir and Freundlich models were used to analyze the isotherm PP, NP and RP data. These results showed a strong homogeneous Langmuir model for low initial copper concentrations (5–30 mg/L) to both RP and PP layer, while strong agreement with a heterogeneous Freundlich model for high initial copper concentrations (30–200 mg/L); nevertheless, a homogeneous Langmuir model provided the best fit for the more dense NP layer across the initial concentration range (5–200 mg/L). The distribution coefficient (K{sub d}) value of PP layer for each initial concentration investigated was substantially higher than the NP layer and it was also found that the PP layer dominated the adsorption process with an adsorption capacity of 8.9 mg/g, while the adsorption capacity of the NP layer was 2.6 mg/g. These differences are believed to be because of the more porous structure of the PP layer, which was confirmed by scanning electron microscopy, infrared spectroscopy, energy-dispersive X-ray spectroscopy, and

  9. Adsorption of copper to different biogenic oyster shell structures

    International Nuclear Information System (INIS)

    Wu, Qiong; Chen, Jie; Clark, Malcolm; Yu, Yan

    2014-01-01

    Graphical abstract: - Highlights: • Adsorption of copper to waste oyster shell occurs rapidly at pH 5.5. • Copper adsorbs to the different structures of oyster shell at different rates. • The prismatic layer dominates copper sorption rather than the nacreous layer. • SEM analysis shows a porous open network structure to the prismatic layer. • Surface ζ-potentials establish electrostatic attraction to drive copper sorption. - Abstract: The removal of copper from solution by oyster shell powder was investigated for potential wastewater treatment uses. In particular, adsorption behavior differences between the prismatic (PP) and nacreous (NP) shell layers, and how this affects copper removal, were investigated. Experimental results indicated that copper adsorption was highly pH-dependent with optimal copper removal at pH 5.5, where the powdered whole raw shell (RP) removed up to 99.9% of the copper within 24 h at a 10 mg/L initial copper concentration. Langmuir and Freundlich models were used to analyze the isotherm PP, NP and RP data. These results showed a strong homogeneous Langmuir model for low initial copper concentrations (5–30 mg/L) to both RP and PP layer, while strong agreement with a heterogeneous Freundlich model for high initial copper concentrations (30–200 mg/L); nevertheless, a homogeneous Langmuir model provided the best fit for the more dense NP layer across the initial concentration range (5–200 mg/L). The distribution coefficient (K d ) value of PP layer for each initial concentration investigated was substantially higher than the NP layer and it was also found that the PP layer dominated the adsorption process with an adsorption capacity of 8.9 mg/g, while the adsorption capacity of the NP layer was 2.6 mg/g. These differences are believed to be because of the more porous structure of the PP layer, which was confirmed by scanning electron microscopy, infrared spectroscopy, energy-dispersive X-ray spectroscopy, and

  10. Chemodynamics of metal ion complexation by charged nanoparticles: a dimensionless rationale for soft, core-shell and hard particle types.

    Science.gov (United States)

    Duval, Jérôme F L

    2017-05-17

    Soft nanoparticulate complexants are defined by a spatial confinement of reactive sites and electric charges inside their 3D body. In turn, their reactivity with metal ions differs significantly from that of simple molecular ligands. A revisited form of the Eigen mechanism recently elucidated the processes leading to metal/soft particle pair formation. Depending on e.g. particle size and metal ion nature, chemodynamics of nanoparticulate metal complexes is controlled by metal conductive diffusion to/from the particles, by intraparticulate complex formation/dissociation kinetics, or by both. In this study, a formalism is elaborated to achieve a comprehensive and systematic identification of the rate-limiting step governing the overall formation and dissociation of nanoparticulate metal complexes. The theory covers the different types of spherical particulate complexants, i.e. 3D soft/permeable and core-shell particles, and hard particles with reactive sites at the surface. The nature of the rate-limiting step is formulated by a dynamical criterion involving a power law function of the ratio between particle radius and an intraparticulate reaction layer thickness defined by the key electrostatic, diffusional and kinetic components of metal complex formation/dissociation. The analysis clarifies the intertwined contributions of particle properties (size, soft or hard type, charge, density or number of reactive sites) and aqueous metal ion dehydration kinetics in defining the chemodynamic behavior of nanoparticulate metal complexes. For that purpose, fully parameterized chemodynamic portraits involving the defining features of particulate ligand and metal ion as well as the physicochemical conditions in the local intraparticulate environment, are constructed and thoroughly discussed under conditions of practical interest.

  11. Electrical properties study under radiation of the 3D-open-shell-electrode detector

    Directory of Open Access Journals (Sweden)

    Manwen Liu

    2018-05-01

    Full Text Available Since the 3D-Open-Shell-Electrode Detector (3DOSED is proposed and the structure is optimized, it is important to study 3DOSED’s electrical properties to determine the detector’s working performance, especially in the heavy radiation environments, like the Large Hadron Collider (LHC and it’s upgrade, the High Luminosity (HL-LHC at CERN. In this work, full 3D technology computer-aided design (TCAD simulations have been done on this novel silicon detector structure. Simulated detector properties include the electric field distribution, the electric potential distribution, current-voltage (I-V characteristics, capacitance-voltage (C-V characteristics, charge collection property, and full depletion voltage. Through the analysis of calculations and simulation results, we find that the 3DOSED’s electric field and potential distributions are very uniform, even in the tiny region near the shell openings with little perturbations. The novel detector fits the designing purpose of collecting charges generated by particle/light in a good fashion with a well defined funnel shape of electric potential distribution that makes these charges drifting towards the center collection electrode. Furthermore, by analyzing the I-V, C-V, charge collection property and full depletion voltage, we can expect that the novel detector will perform well, even in the heavy radiation environments.

  12. Invertebrate shells (mollusca, foraminifera) as pollution indicators, Red Sea Coast, Egypt

    Science.gov (United States)

    Youssef, Mohamed; Madkour, Hashem; Mansour, Abbas; Alharbi, Wedad; El-Taher, Atef

    2017-09-01

    To assess the degree of pollution and its impact on the environment along the Red Sea Coast, the most abundant nine species of recent benthic foraminifera and three species of molluscan shells have been selected for the analysis of Fe, Mn, Zn, Cu, Pb, Ni, Co, and Cd concentrations. The selected foraminiferal species are: Textularia agglutinans, Amphispsorus hemprichii, Sorites marginalis, Peneroplis planatus, Borelis schlumbergeri, Amphistegina lessonii, Ammonia beccarii, Operculina gaimairdi, and Operculinella cumingii. The selected molluscan shells are: Lambis truncata and Strombus tricornis (gastropods) and Tridacana gigas (bivalves). The inorganic material analysis of foraminifera and molluscs from the Quseir and Safaga harbors indicates that foraminifera tests include higher concentrations of heavy metals such as Fe and Mn than molluscan shells. These results are supported by the black tests of porcelaneous foraminifera and reflect iron selectivity. The Cd and Pb concentrations in molluscan shells are high in the El Esh Area because of oil pollution at this site. The Cu, Zn, and Ni concentrations in the studied invertebrates are high at Quseir Harbor and in the El Esh Area because of the strong influence of terrigenous materials that are rich in these metals. The heavy metal contamination is mostly attributed to anthropogenic sources.

  13. Electrostatic Self-Assembly of Au Nanoparticles onto Thermosensitive Magnetic Core-Shell Microgels for Thermally Tunable and Magnetically Recyclable Catalysis.

    Science.gov (United States)

    Liu, Guoqiang; Wang, Daoai; Zhou, Feng; Liu, Weimin

    2015-06-01

    A facile route to fabricate a nanocomposite of Fe3O4@poly[N-isopropylacrylamide (NIPAM)-co-2-(dimethylamino)ethyl methacrylate (DMAEMA)]@Au (Fe3O4@PND@Au) is developed for magnetically recyclable and thermally tunable catalysis. The negatively charged Au nanoparticles with an average diameter of 10 nm are homogeneously loaded onto positively charged thermoresponsive magnetic core-shell microgels of Fe3O4@poly(NIPAM-co-DMAEMA) (Fe3O4@PND) through electrostatic self-assembly. This type of attachment offers perspectives for using charged polymeric shell on a broad variety of nanoparticles to immobilize the opposite-charged nanoparticles. The thermosensitive PND shell with swollen or collapsed properties can be as a retractable Au carrier, thereby tuning the aggregation or dispersion of Au nanoparticles, which leads to an increase or decrease of catalytic activity. Therefore, the catalytic activity of Fe3O4@PND@Au can be modulated by the volume transition of thermosensitive microgel shells. Importantly, the mode of tuning the aggregation or dispersion of Au nanoparticles using a thermosensitive carrier offers a novel strategy to adjust and control the catalytic activity, which is completely different with the traditional regulation mode of controlling the diffusion of reactants toward the catalytic Au core using the thermosensitive poly(N-isopropylacrylamide) network as a nanogate. Concurrent with the thermally tunable catalysis, the magnetic susceptibility of magnetic cores enables the Fe3O4@PND@Au nanocomposites to be capable of serving as smart nanoreactors for thermally tunable and magnetically recyclable catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nuclear structure in the vicinity of shell closures far from stability

    International Nuclear Information System (INIS)

    Grawe, H.; Gorska, M.; Doering, J.

    2000-09-01

    The status of experimental approach to 100 Sn and 78 Ni is reviewed. Revised single particle energies for neutrons are deduced for the N=Z=50 shell closure and evidence for low lying I π =2 + and 3 - states is presented. Moderate E2 polarization charges of 0.1 e and 0.6 e are found to reproduce the experimental data when core excitation of 100 Sn is properly accounted for in the shell model. For the neutron rich Ni region no conclusive evidence for an N=40 subshell is found, whereas firm evidence for the persistence of the N=50 shell at 78 Ni is inferred from the existence of seniority isomers. The disappearance of this isomerism in the mid νg 9/2 shell is discussed. The spectroscopy of 216 Th disproves the existence of a Z=92 shell gap as predicted by some recent mean field calculations. Inversion of the πh 9/2 and f 7/2 orbitals at Z=90 is ascribed to the coupling of the f 7/2 (and i 13/2 ) protons to the low-lying 3 - state (ℎω 3 =1.69 MeV). (orig.)

  15. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells.

    Science.gov (United States)

    Dolan, Laurie; Matulka, Ray; Worn, Jeffrey; Nizio, John

    2016-01-01

    Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control), 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermittent decreases in food efficiency (150 000 ppm males only) that were not biologically relevant. All animals survived and no adverse clinical signs or functional changes were attributable to the test material. There were no toxicologically relevant changes in hematology, clinical chemistry or urinalysis parameters or organ weights in rats ingesting pecan shell fiber. Any macroscopic or microscopic findings were incidental, of normal variation and/or of minimal magnitude for test substance association. Pecan shell fiber was non-mutagenic in a bacterial reverse mutation test and non-clastogenic in a mouse peripheral blood micronucleus test. Based on these results, pecan shell fiber has an oral subchronic (13-week) no observable adverse effect level (NOAEL) of 150 000 ppm in rats and is not genotoxic at the doses analyzed.

  16. Shell Venster

    International Nuclear Information System (INIS)

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  17. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Wang, Jin; Mora-Seró, Iván; Pan, Zhenxiao; Zhao, Ke; Zhang, Hua; Feng, Yaoyu; Yang, Guang; Zhong, Xinhua; Bisquert, Juan

    2013-10-23

    Searching suitable panchromatic QD sensitizers for expanding the light-harvesting range, accelerating charge separation, and retarding charge recombination is an effective way to improve power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs). One possible way to obtain a wide absorption range is to use the exciplex state of a type-II core/shell-structured QDs. In addition, this system could also provide a fast charge separation and low charge-recombination rate. Herein, we report on using a CdTe/CdSe type-II core/shell QD sensitizer with an absorption range extending into the infrared region because of its exciplex state, which is covalently linked to TiO2 mesoporous electrodes by dropping a bifunctional linker molecule mercaptopropionic acid (MPA)-capped QD aqueous solution onto the film electrode. High loading and a uniform distribution of QD sensitizer throughout the film electrode thickness have been confirmed by energy dispersive X-ray (EDX) elemental mapping. The accelerated electron injection and retarded charge-recombination pathway in the built CdTe/CdSe QD cells in comparison with reference CdSe QD-based cells have been confirmed by impedance spectroscopy, fluorescence decay, and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) analysis. With the combination of the high QD loading and intrinsically superior optoelectronic properties of type-II core/shell QD (wide absorption range, fast charge separation, and slow charge recombination), the resulting CdTe/CdSe QD-based regenerative sandwich solar cells exhibit a record PCE of 6.76% (J(sc) = 19.59 mA cm(-2), V(oc) = 0.606 V, and FF = 0.569) with a mask around the active film under a full 1 sun illumination (simulated AM 1.5), which is the highest reported to date for liquid-junction QDSCs.

  18. Cosmological constant is a conserved charge

    Science.gov (United States)

    Chernyavsky, Dmitry; Hajian, Kamal

    2018-06-01

    Cosmological constant can always be considered as the on-shell value of a top form in gravitational theories. The top form is the field strength of a gauge field, and the theory enjoys a gauge symmetry. We show that cosmological constant is the charge of the global part of the gauge symmetry, and is conserved irrespective of the dynamics of the metric and other fields. In addition, we introduce its conjugate chemical potential, and prove the generalized first law of thermodynamics which includes variation of cosmological constant as a conserved charge. We discuss how our new term in the first law is related to the volume–pressure term. In parallel with the seminal Wald entropy, this analysis suggests that pressure can also be considered as a conserved charge.

  19. Off-energy-shell variations of two-nucleon transition matrix and three-nucleon problem

    International Nuclear Information System (INIS)

    Stingl, M.; Sauer, P.U.

    1975-01-01

    For a schematic three-nucleon problem, approximate analytic expressions are derived for the functional derivatives of measurable three-particle quantities with respect to off-shell variations of the triplet-s two-nucleon transition matrix. Those quantities include neutron-deuteron scattering lengths, trinucleon binding energies, and the 3 He charge form-factor minimum; correlations between off-shell changes in the latter two are discussed. An indication is given how results of this kind may be to decide whether or not a given set of discrepancies between calculated and experimental three-nucleon observables can be reconciled in terms of off-shell variations of a nonretarded hermitean two-nucleon interaction. The treatment is not restricted to special classes of phase-shift equivalent potentials or phase-shift preserving transformations but instead makes use of a systematic parameterization of off-shell variations in terms of symmetric rational approximants of increasing order

  20. Charge-dependent and A-dependent effects in isotope shifts of Coulomb displacement energies

    International Nuclear Information System (INIS)

    Sherr, R.

    1977-01-01

    Coulomb displacement energies in a series of isotopes generally decrease with A. This decrease can arise from an increase with A of the average distance of interaction between pairs of protons. In the shell model a decrease can also result from charge-independence-breaking effects if the neutron-proton interaction for the valence nucleons is more attractive than the neutron-neutron interaction. Using the model recently proposed by Sherr and Talmi for the 1d/sub 3/2/ shell, existing data for this shell and also the 1d/sub 5/2/ and 1f/sub 7/2/ shells were analyzed allowing all matrix elements to vary as A/sup -lambda/3/. Least squares calculations of the rms deviation sigma were carried out for varying values of lambda from -2 to +2. It was found that although there was a minimum in sigma vs lambda it was too shallow to exclude any lambda for -1 to +1 in the 1d/sub 3/2/ and 1f/sub 7/2/ shells or 0 to +1 in the 1d/sub 5/2/ shell. It is therefore not possible to distinguish between A dependence and charge dependence in this model. The magnitude of the latter as expressed in terms of (np-nn) matrix elements depends strongly on the former. As lambda increases from -1 to +1, these (np-nn) matrix elements decrease roughly linearly in absolute magnitude and eventually change sign. For lambda = 0 they have appreciable and reasonable magnitudes for the 1d/sub 3/2/ and 1f/sub 7/2/ shells but for the 1d/sub 5/2/ shell the values are too small to be considered significant

  1. Silver-nickel oxide core-shell nanoflower arrays as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    Zhao, Wenjia; Du, Ning; Zhang, Hui; Yang, Deren

    2015-07-01

    We demonstrate the synthesis of Ag-NiO core-shell nanoflower arrays via a one-step solution-immersion process and subsequent RF-sputtering method. The aligned Ag nanoflower arrays on copper substrate are prepared by a facile displacement reaction in absence of any surfactant at a mild temperature. When used as anode materials for lithium-ion batteries, the Ag-NiO core-shell nanoflower arrays show better cycling performance and higher capacity than the planar NiO electrodes. The improved performance should be attributed to the core-shell structures that can enhance the conductivity and accommodate the volume change during the charge-discharge process.

  2. Importance-truncated shell model for multi-shell valence spaces

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.

  3. Performance analysis of nanodisk and core/shell/shell-nanowire type III-Nitride heterojunction solar cell for efficient energy harvesting

    Science.gov (United States)

    Routray, S. R.; Lenka, T. R.

    2017-11-01

    Now-a-days III-Nitride nanowires with axial (nanodisk) and radial (core/shell/shell-nanowire) junctions are two unique and potential methods for solar energy harvesting adopted by worldwide researchers. In this paper, polarization behavior of GaN/InGaN/GaN junction and its effect on carrier dynamics of nanodisk and CSS-nanowire type solar cells are intensively studied and compared with its planar counterpart by numerical simulations using commercially available Victory TCAD. It is observed that CSS-NW with hexagonal geometrical shapes are robust to detrimental impact of polarization charges and could be good enough to accelerate carrier collection efficiency as compared to nanodisk and planar solar cells. This numerical study provides an innovative aspect of fundamental device physics with respect to polarization charges in CSS-NW and nanodisk type junction towards photovoltaic applications. The internal quantum efficiencies (IQE) are also discussed to evaluate carrier collection mechanisms and recombination losses in each type of junctions of solar cell. Finally, it is interesting to observe a maximum conversion efficiency of 6.46% with 91.6% fill factor from n-GaN/i-In0.1Ga0.9N/p-GaN CSS-nanowire solar cell with an optimized thickness of 180 nm InGaN layer under one Sun AM1.5 illumination.

  4. Modelling of the concentration-time relationship based on global diffusion-charge transfer parameters in a flow-by reactor with a 3D electrode

    International Nuclear Information System (INIS)

    Nava, J.L.; Sosa, E.; Carreno, G.; Ponce-de-Leon, C.; Oropeza, M.T.

    2006-01-01

    A concentration versus time relationship model based on the isothermal diffusion-charge transfer mechanism was developed for a flow-by reactor with a three-dimensional (3D) reticulated vitreous carbon (RVC) electrode. The relationship was based on the effectiveness factor (η) which lead to the simulation of the concentration decay at different electrode polarisation conditions, i.e. -0.1, -0.3 and -0.59 V versus SCE; the charge transfer process was used for the former and mix and a mass transport control was used for the latter. Charge transfer and mass transport parameters were estimated from experimental data using Electrochemical Impedance Spectroscopy (EIS) and Linear Voltammetry (LV) techniques, respectively

  5. Modelling of the concentration-time relationship based on global diffusion-charge transfer parameters in a flow-by reactor with a 3D electrode

    Energy Technology Data Exchange (ETDEWEB)

    Nava, J.L. [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Av. San Rafael Atlixco 186, A.P. 55-534, C.P. 09340, Mexico D.F. (Mexico); Sosa, E. [Instituto Mexicano del Petroleo, Programa de Investigacion en Ingenieria Molecular, Eje Central 152, C.P. 07730, Mexico D.F. (Mexico); Carreno, G. [Universidad de Guanajuato, Facultad de Ingenieria en Geomatica e Hidraulica, Av. Juarez 77, C.P. 36000, Guanajuato, Gto. (Mexico); Ponce-de-Leon, C. [Electrochemical Engineering Group, School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)]. E-mail: capla@soton.ac.uk; Oropeza, M.T. [Centro de Graduados e Investigacion del Instituto Tecnologico de Tijuana, Blvd. Industrial, s/n, C.P. 22500, Tijuana B.C. (Mexico)

    2006-05-25

    A concentration versus time relationship model based on the isothermal diffusion-charge transfer mechanism was developed for a flow-by reactor with a three-dimensional (3D) reticulated vitreous carbon (RVC) electrode. The relationship was based on the effectiveness factor ({eta}) which lead to the simulation of the concentration decay at different electrode polarisation conditions, i.e. -0.1, -0.3 and -0.59 V versus SCE; the charge transfer process was used for the former and mix and a mass transport control was used for the latter. Charge transfer and mass transport parameters were estimated from experimental data using Electrochemical Impedance Spectroscopy (EIS) and Linear Voltammetry (LV) techniques, respectively.

  6. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2009-09-09

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of ∼2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of ∼4 mAh/cm2, which is comparable to commercial battery values. © 2009 American Chemical Society.

  7. Role of shell structure in the 2νββ nuclear matrix elements

    International Nuclear Information System (INIS)

    Nakada, H.

    1998-01-01

    Significance of the nuclear shell structure in the ββ nuclear matrix elements is pointed out. The 2νββ processes are mainly mediated by the low-lying 1 + states. The shell structure also gives rise to concentration or fragmentation of the 2νββ components over intermediate states, depending on nuclide. These roles of the shell structure are numerically confirmed by realistic shell model calculations. Some shell structure effects are suggested for 0νββ matrix elements; dominance of low-lying intermediate states and nucleus-dependence of their spin-parities. (orig.)

  8. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Qingsong; Li, Kuiying, E-mail: kuiyingli@ysu.edu.cn; Lin, Yingying; Yin, Hua; Zhu, Ruiping [State Key Laboratory of Metastable Materials Manufacture Technology and Science, Yanshan University, Qinhuangdao 066004 (China); Xue, Zhenjie [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-02-07

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core–shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core–shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core–shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10{sup −8} to 2 × 10{sup −3} s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space–charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  9. Kinetic energy and charge distributions of multiply charged ions produced by heavy ions and by synchrotron radiation

    International Nuclear Information System (INIS)

    Levin, J.C.; Biedermann, C.; Cederquist, H.; Liljeby, L.; Short, R.T.; Sellin, I.A.

    1989-01-01

    This paper contrasts two methods of production of multiply charged ions which may have application in future hot-atom chemistry experiments. Interest in extending the study of ion-atom collisions from MeV to keV to eV energies has grown rapidly in the last decade as previously inaccessible astrophysical, fusion, and spectroscopic problems have been addressed. One of these methods involves highly charged secondary beams formed from ions created in dilute gas samples irradiated by fast (MeV), high-charge-state, heavy ions. The measurements show, however, that such ions often have mean recoil energies two orders of magnitude higher than kinetic energies of ions in similar charge states resulting from vacancy cascades of atomic inner shells photoionized by synchrotron x rays. These results may be applicable to development of a cold source of highly charged ions featuring low energy spread and good angular definition. Results from other laboratories (Grandin et al at Ganil, Ullrich et al in Frankfurt, and Watson et al at Texas A ampersand M) will also be discussed

  10. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  11. Preparation and characterization of antibacterial Au/C core-shell composite

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yanhong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Zhang Nianchun [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Zhong Yuwen [Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Cai Huaihong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Liu Yingliang, E-mail: tliuyl@jnu.edu.cn [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China)

    2010-09-01

    An environment-friendly oxidation-reduction method was used to prepare Au/C core-shell composite using carbon as core and gold as shell. The chemical structures and morphologies of Au/C core-shell composite and carbon sphere were characterized by X-ray diffraction, transmission electron microscope, energy dispersion X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The antibacterial properties of the Au/C core-shell composite against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were examined by the disk diffusion assay and minimal inhibition concentration (MIC) methods. In addition, antibacterial ability of Au/C core-shell composite was observed by atomic force microscope. Results demonstrated that gold homogeneously supported on the surface of carbon spheres without aggregation and showed efficient antibacterial abilities.

  12. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  13. Charge state distribution of ionic kryptons after photoionization

    International Nuclear Information System (INIS)

    Cai Xiaohong

    1992-01-01

    Monochromatic X-rays from the 2.3 GeV synchrotron at University Bonn (Germany) are employed for inner shell excitation of krypton. Various ionic kryptons and a number of electrons are produced due to photoionization. In order to study the equilibrium charge state distribution of ionic kryptons, a time of flight mass spectrometer is set up and used to measure the resulting ionic charge spectra with photo energies near the L 1 - , L 2 - and L 3 - absorption edges of krypton. The energy dependence of relative probabilities is presented

  14. Amphiphilic core shell nanoparticles containing dense polyethyleneimine shells for efficient delivery of microRNA to Kupffer cells

    Directory of Open Access Journals (Sweden)

    Liu Z

    2016-06-01

    Full Text Available Zuojin Liu,1,* Dechao Niu,2,3,* Junyong Zhang,1 Wenfeng Zhang,1 Yuan Yao,2 Pei Li,2 Jianping Gong1 1Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 2Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 3Lab of Low-Dimensional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Efficient and targeted delivery approach to transfer exogenous genes into macrophages is still a great challenge. Current gene delivery methods often result in low cellular uptake efficiency in vivo in some types of cells, especially for the Kupffer cells (KCs. In this article, we demonstrate that amphiphilic core–shell nanoparticles (NPs consisting of well-defined hydrophobic poly(methyl methacrylate (PMMA cores and branched polyethyleneimine (PEI shells (denoted as PEI@PMMA NPs are efficient nanocarriers to deliver microRNA (miRNA-loaded plasmid to the KCs. Average hydrodynamic diameter of PEI@PMMA NPs was 279 nm with a narrow size distribution. The NPs also possessed positive surface charges up to +30 mV in water, thus enabling effective condensation of negatively charged plasmid DNA. Gel electrophoresis assay showed that the resultant PEI@PMMA NPs were able to completely condense miRNA plasmid at a weight ratio of 25:1 (N/P ratio equal to 45:1. The Cell Counting Kit-8 assay and flow cytometry results showed that the PEI@PMMA/miRNA NPs displayed low cytotoxicity and cell apoptosis activity against the KCs. The maximum cell transfection efficiency reached 34.7% after 48 hours, which is much higher than that obtained by using the commercial Lipofectamine™ 2000 (1.7%. Bio-transmission electron microscope observation revealed that the PEI@PMMA NPs were mainly distributed in

  15. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    Science.gov (United States)

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  16. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions.

    Science.gov (United States)

    Bazant, Martin Z; Kilic, Mustafa Sabri; Storey, Brian D; Ajdari, Armand

    2009-11-30

    The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e approximately 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V approximately 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.

  17. Anion exchange chromatography of 99mTc(Sn)-EHDP complexes: determination of the charge of the components and influence of pH and ligand concentration

    International Nuclear Information System (INIS)

    Huigen, Y.M.; Diender, M.; Gelsema, W.J.; De Ligny, C.L.

    1991-01-01

    The components of a 99m Tc(Sn)-EHDP complex mixture were separated by means of normal pressure and high-pressure anion exchange chromatography. Precautions were taken to prevent the dissociation of the complexes during chromatography. The charges of the components were determined according to the methods of Wilson and Pinkerton (1985) and Russell and Bischoff (1985). The values of the charges obtained with the two methods are not in agreement. Russell and Bischoff's method, in which a reference ion is used, must be preferred. However, even with this method the accuracy of the data obtained is probably limited, due to the difficulty of making corrections for activity coefficients of highly-charge ions at the rather high electrolyte concentrations that must be used in the ion exchange method. So, we think that it is only warranted to conclude that the mean charge of the components of 99m Tc(Sn)-EHDP is about -6 at pH 7, and that the charges of the individual components are in the range of -4 to -9. The influence of pH and ligand concentration in the reaction mixture was determined with high pressure anion exchange chromatography. It was found that a decrease in the pH of the reaction mixture favours the production of complexes with a long retention time, which leads to a slightly higher mean charge. The ligand concentration of the reaction mixture scarcely influenced the relative concentrations of the components. (author)

  18. How the charge affects the gravastar formation in a dark energy universe

    International Nuclear Information System (INIS)

    Brandt, Carlos Frederico Charret; Silva, Maria de Fatima Alves da; Rocha, Pedro Senna; Chan, Roberto

    2011-01-01

    Full text: Since the gravastar's model was proposed by Mazur and Motolla, it has received considerable attention, partially due to the tight connection between the cosmological constant and a currently accelerating universe, and partially due to the possibility of construction of an alternative to the black holes. It was shown by our group that, in fact, although it does exist a region for the space of the initial parameters where it is always formed stable gravastars, it still exists a large region of this space where we can find black hole formation. Then, it was concluded that gravastar does not represent an alternative model to black hole as it was originally proposed. Here we generalized a previous gravastar model in a de Sitter universe, which consisted of an internal de Sitter spacetime, a dynamical infinitely thin shell with the equation of state p = (1 - γ)ρ and a de Sitter exterior spacetime, by introducing now the electric charge in the shell via the de Sitter-Schwarzschild-Reissner Nordstroem exterior spacetime. Then, we analyze the influence of the presence of the charge. We obtained as final structures black holes, stable and bounded excursion gravastar. The presence of the charge in a stable gravastar leads to dispersion of the shell or its collapse into a black hole. In addition, it contributed to the stability of the gravastar. (author)

  19. How the charge affects the gravastar formation in a dark energy universe

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Carlos Frederico Charret; Silva, Maria de Fatima Alves da; Rocha, Pedro Senna [Universidade Estadual do Rio de Janeiro (UERJ), RJ (Brazil); Chan, Roberto [Observatorio Nacional (ON), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: Since the gravastar's model was proposed by Mazur and Motolla, it has received considerable attention, partially due to the tight connection between the cosmological constant and a currently accelerating universe, and partially due to the possibility of construction of an alternative to the black holes. It was shown by our group that, in fact, although it does exist a region for the space of the initial parameters where it is always formed stable gravastars, it still exists a large region of this space where we can find black hole formation. Then, it was concluded that gravastar does not represent an alternative model to black hole as it was originally proposed. Here we generalized a previous gravastar model in a de Sitter universe, which consisted of an internal de Sitter spacetime, a dynamical infinitely thin shell with the equation of state p = (1 - {gamma}){rho} and a de Sitter exterior spacetime, by introducing now the electric charge in the shell via the de Sitter-Schwarzschild-Reissner Nordstroem exterior spacetime. Then, we analyze the influence of the presence of the charge. We obtained as final structures black holes, stable and bounded excursion gravastar. The presence of the charge in a stable gravastar leads to dispersion of the shell or its collapse into a black hole. In addition, it contributed to the stability of the gravastar. (author)

  20. Study of characterization of trace elements in marine shells of Sambaqui: correlation between recent and old shells; Estudo de caracterizacao de elementos tracos em conchas marinhas de Sambaqui: correlacao entre conchas recentes e antigas

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Mauro Roger Batista Pousada; Rocha, Flavio Roberto; Silva, Paulo Sergio Cardoso da, E-mail: mauro_bpgomez@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Calcium carbonate of recent and ancient C. rhizophorae oyster shells was analyzed for the determination of trace elements by instrumental neutron activation analysis. The ancient shells belong to a Sambaqui located in Cananeia region, South of Sao Paulo state and the recent ones are from an oyster production farm in the same region Studies related to the element concentrations in molluscs shell has been done as a tentative of establishing the element concentrations with palio-environmental factor. In this study it was aimed to verify differences in the elemental constitution of recent and ancient oyster shells that present potential for being used as indicator of marine changes. Results indicated that the elements Br, Ce, La, Na, Sm and An are higher in recent shells and the elements Cr, Fe Sc and Th are higher in ancient shells. Statistical analyses performed indicated that the enrichment of the light rare earth elements related to Ca are possibly good candidates for these palio-environmental studies. (author)

  1. Nuclear ground state properties and self-consistent calculations with the Skyrme interaction. II. S-D shell nuclei

    International Nuclear Information System (INIS)

    Flocard, H.

    1975-04-01

    Hartree-Fock results concerning the ground state properties of some S-D shell nuclei are discussed. Two different Skyrme interactions have been used. They both lead to good agreement with the experimental total binding energies, charge radii and multipole moments. In particular the observed prolate-oblate transitions occuring in the S-D shell are reproduced. The calculated spectroscopic factors are also shown to be consistent with experimental data [fr

  2. The collective bands of positive parity states in odd-A (fp) shell nuclei

    International Nuclear Information System (INIS)

    Ahalpara, D.P.

    1979-01-01

    The low-lying collective bands of positive parity states in (fp) shell nuclei are described in the deformed Hartree-Fock method by projecting states of definite angular momenta from 'the lowest energy intrinsic states in (sd)sup(-1)(fp)sup(n+1) configurations. The modified Kuo-Brown effective interaction for (fp) shell and modified surface delta interaction (MSDI) for a hole in (sd) shell with a particle in (fp) shell have been used. The collective bands of states are in general well reproduced by the effective interactions. The excitation energies of the band head states are however off by about one MeV. The calculated magnetic moments of the band head j = 3/2 + states are in reasonable agreement with experiment. Using effective charges esub(p) = 1.33 e and esub(n) = 0.64 e fairly good agreement is obtained for E(2) transitions. The hindered M(1) transition strengths are reproduced to the correct order, however they are slightly higher compared to the experiment. (author)

  3. Laboratory Studies of X-ray Spectra Formed by Charge Exchange

    Science.gov (United States)

    Beiersdorfer, Peter; Ali, R.; Brown, G. V.; Koutroumpa, D.; Kelley, R. L.; Kilbourne, C.; Leutenegger, M. A.; Porter, F.

    2013-04-01

    Charge exchange between ions and neutral atoms or molecules has been accepted at an important soft producing process in our solar system. By extension, charge exchange may contribute to the X-ray emission of circumstellar material. It may also produce X-ray emission at the boundaries of supernova ejecta and star burst galaxies, or whenever hot plasma collides with neutral matter. X-ray spectra of K-shell and L-shell ions formed by charge exchange have now been studied in a variety of laboratory settings. These experiments have shown several characteristic features of line formation by charge exchange when compared to the X-ray emission produced by electron-impact excitation, e.g., enhancement emission of forbidden lines and of lines from levels with high principal quantum number. They have also shown a dependence on the interaction gas and on the energy of the ion-neutral collision. Moreover, the transfer of multiple electrons is typically preferred, provided the donor molecules or atoms have multiple valence-shell electrons. The laboratory measurements are in qualitative agreement with theory. However, the details of the observed X-ray spectra, especially those recorded with high spectral resolution, can differ substantially from predictions, especially for spectra produced at collision velocities equal to or lower than those found in thermal plasmas or produced with neutral gases other than atomic hydrogen. Puzzling discrepancies can be noted, such as enhanced emission from an upper level with the 'wrong' principal quantum number. Even more puzzling is a recent experiment in which two, co-mixed bare ion species of similar atomic number produce very different Lyman series emission upon charge exchange with a given neutral gas, defying both theoretical predictions and empirical scaling. Laboratory measurements have also shown that some of the characteristic features of charge exchange can be reproduced by radiative electron capture, i.e., by capture of a continuum

  4. Study of K, L vacancies production mechanisms by X spectrometry in the interaction induced by a few MeV/A charged particles

    International Nuclear Information System (INIS)

    Andriamonje, S.

    1982-01-01

    The analysis of different mechanisms producing electronic inner shell vacancies in ion atom collisions at a few MeV/A charged is presented. The mutual influence of nuclear and atomic excitation in the ionization probability has been discussed. The 106 Cd(p,p') 106 Cd reaction (Ep=10 MeV) has been particularly investigated from this point. The investigation is followed up by the description of the theoretical and experimental methods which permit the determination of the total and/or differential X rays production cross section for different interaction. The gold sub-shell L 1 , L 2 , L 3 ionization probability has been studied in the Au(H + ,H + )Au reaction at Ep=1 MeV. In the second part of the manuscript we investigate in detail the influence of the charge exchange process on inner shell vacancy production. The N 2 , Ar, Kr targets have been produced by a system jet gas and bombarded by 0.8 28 Si 14+ ions at E=125 MeV. The cross section for the capture of an electron in K shell, L shell and total charge exchange have been measured and compared to the CDW theory (Continuum Distorted Wave). In the CDW validity domain the experimental and theoretical results are a good agreement. In the collisions induced by H + , ionization is found to be the main excitation process. On the contrary, in collisions induced by 28 Si 14+ charge exchange is dominant compared to ionization [fr

  5. Potential distribution of a nonuniformly charged ellipsoid

    International Nuclear Information System (INIS)

    Kiwamoto, Y.; Aoki, J.; Soga, Y.

    2004-01-01

    A convenient formula is obtained for fast calculation of the three-dimensional potential distribution associated with a spatially varying charge-density distribution by reconstructing it as a superposed set of nested spheroidal shells. It is useful for experimental analyses of near-equilibrium states of non-neutral plasmas and for quick evaluation of the gravity field associated with stellar mass distributions

  6. FABRICATION AND PROPERTIES OVERCOATED RESORCINOL-FORMALDEHYDE SHELLS FOR OMEGA EXPERIMENTS

    International Nuclear Information System (INIS)

    NIKROO, A; CZECHOWICZ, D; PAGUIO, R; GREENWOOD, A.L; TAKAGI, M.

    2003-09-01

    OAK-B135 New high gain designs for direct drive ignition on NIF require foam shells. Scaled down versions of these designs are needed for near term experiments on the OMEGA laser facility at the Laboratory Laser Energetics (LLE). These shells need to be about 1 mm in diameter and 50-100 (micro)m wall thickness and densities of 100-250 mg/cc. In addition, a full density permeation seal needs to be deposited for retention of the fill gas at room temperature or the ice at cryogenic temperatures. They have fabricated such shells using Resorcinol-formaldehyde (R/F) as the selected foam material due to its transparency in the optical region. Extensive characterization of the wall uniformity of these shells has been performed. The foam shells have ∼ 5%-6% non-concentricities on the average. A full density permeation seal has been deposited on the R/F shells using two different techniques. In the first technique R/F shells are coated directly with plasma polymer to thicknesses of 3-4 (micro)m. In the second technique, R/F shells are coated with polyvinylphenol, using a chemical interfacial polymerization technique. Data on surface finish and gas retention for R/F shells coated by both methods are provided

  7. Multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels

    Science.gov (United States)

    Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.

    2017-04-01

    In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.

  8. Resonant Electron capture for be-like ions with K- and L- shell excitations

    International Nuclear Information System (INIS)

    Hanafy, H.

    2005-01-01

    Resonant electron capture in electron-ion collisions is known as dielectronic recombination (DR). It was proved that, DR dominants usually over radiative recombination (RR) at high energy. Since 1980's, DR is considered a very important process in thermal plasma. The DR is an effective process in self-cooling and ionization balance as well as plasma modeling. Experimental works are still carried out to understand the trends of DR process. In the present work, DR cross sections are calculated for Be-like ions with K- and L- shell excitations. It is found that, DR cross sections increase as the effective charge (Zeff) increases for both types of excitations. DR rates coefficient in case of L-shell excitation is found to be five times larger than that of K-shell excitation

  9. A magnetic field cloak for charged particle beams

    Science.gov (United States)

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; Feege, N.; Krahulik, T.; LaBounty, J.; Sekelsky, R.; Adhyatman, A.; Arrowsmith-Kron, G.; Coe, B.; Dehmelt, K.; Hemmick, T. K.; Jeffas, S.; LaByer, T.; Mahmud, S.; Oliveira, A.; Quadri, A.; Sharma, K.; Tishelman-Charny, A.

    2018-01-01

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. We demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), a cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. The ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.

  10. Self-Assembled Core-Shell CdTe/Poly(3-hexylthiophene) Nanoensembles as Novel Donor-Acceptor Light-Harvesting Systems.

    Science.gov (United States)

    Istif, Emin; Kagkoura, Antonia; Hernandez-Ferrer, Javier; Stergiou, Anastasios; Skaltsas, Theodosis; Arenal, Raul; Benito, Ana M; Maser, Wolfgang K; Tagmatarchis, Nikos

    2017-12-27

    The self-assembly of novel core-shell nanoensembles consisting of regioregular poly(3-hexylthiophene) nanoparticles (P3HT NPs ) of 100 nm as core and semiconducting CdTe quantum dots (CdTe QDs ) as shell with a thickness of a few tens of nanometers was accomplished by employing a reprecipitation approach. The structure, morphology, and composition of CdTe QDs /P3HT NPs nanoensembles were confirmed by high-resolution scanning transmission microscopy and dynamic light-scattering studies. Intimate interface contact between the CdTe QDs shell and the P3HT NPs core leads to the stabilization of the CdTe QDs /P3HT NPs nanoensemble as probed by the steady-state absorption spectroscopy. Effective quenching of the characteristic photoluminescence of CdTe QDs at 555 nm, accompanied by simultaneous increase in emission of P3HT NPs at 660 and 720 nm, reveals photoinduced charge-transfer processes. Probing the redox properties of films of CdTe QDs /P3HT NPs further proves the formation of a stabilized core-shell system in the solid state. Photoelectrochemical assays on CdTe QDs /P3HT NPs films show a reversible on-off photoresponse at a bias voltage of +0.8 V with a 3 times increased photocurrent compared to CdTe QDs . The improved charge separation is directly related to the unique core-shell configuration, in which the outer CdTe QDs shell forces the P3HT NPs core to effectively act as electron acceptor. The creation of novel donor-acceptor core-shell hybrid materials via self-assembly is transferable to other types of conjugated polymers and semiconducting nanoparticles. This work, therefore, opens new pathways for the design of improved optoelectronic devices.

  11. Dielectric sample with two-layer charge distribution for space charge calibration purposes

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Rasmussen, C.

    2002-01-01

    In the present paper is described a dielectric test sample with two very narrow concentrations of bulk charges, achieved by two internal electrodes not affecting the acoustical properties of the sample, a fact important for optimal application of most space charge measuring systems. Space charge...

  12. Ex-vivo evaluation of crab shell chitosan as absorption enhancer in ...

    African Journals Online (AJOL)

    This study was aimed at evaluating crab shell chitosan as absorption enhancer in ciprofloxacin tablet formulation using the ex-vivo model. Six batches of ciprofloxacin tablets containing varying concentrations of crab shell-derived chitosan ranging from 0 to 5% w/w at 1% w/w intervals were produced. Batch CTS-0 ...

  13. Dynamic Hydrogen Production from Methanol/Water Photo-Splitting Using Core@Shell-Structured CuS@TiO2 Catalyst Wrapped by High Concentrated TiO2 Particles

    Directory of Open Access Journals (Sweden)

    Younghwan Im

    2013-01-01

    Full Text Available This study focused on the dynamic hydrogen production ability of a core@shell-structured CuS@TiO2 photocatalyst coated with a high concentration of TiO2 particles. The rectangular-shaped CuS particles, 100 nm in length and 60 nm in width, were surrounded by a high concentration of anatase TiO2 particles (>4~5 mol. The synthesized core@shell-structured CuS@TiO2 particles absorbed a long wavelength (a short band gap above 700 nm compared to that pure TiO2, which at approximately 300 nm, leading to easier electronic transitions, even at low energy. Hydrogen evolution from methanol/water photo-splitting over the core@shell-structured CuS@TiO2 photocatalyst increased approximately 10-fold compared to that over pure CuS. In particular, 1.9 mmol of hydrogen gas was produced after 10 hours when 0.5 g of 1CuS@4TiO2 was used at pH = 7. This level of production was increased to more than 4-fold at higher pH. Cyclic voltammetry and UV-visible absorption spectroscopy confirmed that the CuS in CuS@TiO2 strongly withdraws the excited electrons from the valence band in TiO2 because of the higher reduction potential than TiO2, resulting in a slower recombination rate between the electrons and holes and higher photoactivity.

  14. Effect of dye-doped concentration on the charge carrier recombination in molecularly doped organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jiangshan; Ma Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Changchun 130022 (China)

    2006-05-21

    The effect of the concentration of 4-(dicyanomethylene)-2-t-butyl-6- (1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as dopant in tris(8-hydroxyquinoline) aluminium (Alq{sub 3}) on the charge carrier recombination was studied by transient electroluminescence (EL). The electron-hole recombination coefficient ({gamma}) was determined from the long-time component of the temporal decay of the EL intensity after a rectangular voltage pulse was turned off. It was found that the coefficient monotonically decreased with an increase in the DCJTB-doping concentration. The monotonic decrease is attributed to concentration quenching on the excitons and coincided well with the reduction of the EL efficiency.

  15. Dilaton thin-shell wormholes supported by a generalized Chaplygin gas

    International Nuclear Information System (INIS)

    Bejarano, Cecilia; Eiroa, Ernesto F.

    2011-01-01

    In this article, we construct spherical thin-shell wormholes with charge in dilaton gravity. The exotic matter required for the construction is provided by a generalized Chaplygin gas. We study the stability under perturbations preserving the symmetry. We find that the increase of the coupling between the dilaton and the electromagnetic fields reduces the range of the parameters for which stable configurations are possible.

  16. Towards a shell-model description of intruder states and the onset of deformation

    International Nuclear Information System (INIS)

    Heyde, K.; Van Isacker, P.; Casten, R.F.; Wood, J.L.

    1985-01-01

    Basing on the nuclear shell-model and concentrating on the monopole, pairing and quadrupole corrections originating from the nucleon-nucleon force, both the appearance of low-lying 0 + intruder states near major closed shells (Z = 50, 82) and sub-shell regions (Z = 40, 64) can be described. Moreover, a number of new facets related to the study of intruder states are presented. 19 refs., 3 figs

  17. The microwave properties of composites including lightweight core–shell ellipsoids

    International Nuclear Information System (INIS)

    Yuan, Liming; Xu, Yonggang; Dai, Fei; Liao, Yi; Zhang, Deyuan

    2016-01-01

    In order to study the microwave properties of suspensions including lightweight core–shell ellipsoids, the calculation formula was obtained by substituting an equivalent ellipsoid for the original core–shell ellipsoid. Simulations for Fe-coated diatomite/paraffin suspensions were performed. Results reveal that the calculated results fitted the measured results very well when the inclusion concentration was no more than 15 vol%, but there was an obvious deviation when the inclusion concentration reached 24 vol%. By comparisons, the formula for less diluted suspensions was more suitable for calculating the electromagnetic parameter of suspensions especially when the ratio was smaller between the electromagnetic parameter of the inclusion and that of the host medium. - Highlights: • The microwave properties of suspensions with core-shell inclusions were studied. • Less diluted suspensions were considered. • Flaky Fe-coated diatomite/paraffin suspensions were studied. • The microwave properties could be simulated successfully.

  18. The microwave properties of composites including lightweight core–shell ellipsoids

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liming, E-mail: lming_y@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China); Xu, Yonggang; Dai, Fei; Liao, Yi [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China); Zhang, Deyuan [School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2016-12-01

    In order to study the microwave properties of suspensions including lightweight core–shell ellipsoids, the calculation formula was obtained by substituting an equivalent ellipsoid for the original core–shell ellipsoid. Simulations for Fe-coated diatomite/paraffin suspensions were performed. Results reveal that the calculated results fitted the measured results very well when the inclusion concentration was no more than 15 vol%, but there was an obvious deviation when the inclusion concentration reached 24 vol%. By comparisons, the formula for less diluted suspensions was more suitable for calculating the electromagnetic parameter of suspensions especially when the ratio was smaller between the electromagnetic parameter of the inclusion and that of the host medium. - Highlights: • The microwave properties of suspensions with core-shell inclusions were studied. • Less diluted suspensions were considered. • Flaky Fe-coated diatomite/paraffin suspensions were studied. • The microwave properties could be simulated successfully.

  19. Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole

    Science.gov (United States)

    Storozhuk, E. A.; Chernyshenko, I. S.; Pigol', O. V.

    2017-11-01

    Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff-Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.

  20. Oxidation driven ZnS Core-ZnO shell photocatalysts under controlled oxygen atmosphere for improved photocatalytic solar water splitting

    Science.gov (United States)

    Bak, Daegil; Kim, Jung Hyeun

    2018-06-01

    Zinc type photocatalysts attract great attentions in solar hydrogen production due to their easy availability and benign environmental characteristics. Spherical ZnS particles are synthesized with a facile hydrothermal method, and they are further used as core materials to introduce ZnO shell layer surrounding the core part by partial oxidation under controlled oxygen contents. The resulting ZnS core-ZnO shell photocatalysts represent the heterostructural type II band alignment. The existence of oxide layer also influences on proton adsorption power with an aid of strong base cites derived from highly electronegative oxygen atoms in ZnO shell layer. Photocatalytic water splitting reaction is performed to evaluate catalyst efficiency under standard one sun condition, and the highest hydrogen evolution rate (1665 μmolg-1h-1) is achieved from the sample oxidized at 16.2 kPa oxygen pressure. This highest hydrogen production rate is achieved in cooperation with increased light absorption and promoted charge separations. Photoluminescence analysis reveals that the improved visible light response is obtained after thermal oxidation process due to the oxygen vacancy states in the ZnO shell layer. Therefore, overall photocatalytic efficiency in solar hydrogen production is enhanced by improved charge separations, crystallinity, and visible light responses from the ZnS core-ZnO shell structures induced by thermal oxidation.

  1. Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells

    Science.gov (United States)

    Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.

    2017-03-01

    Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness

  2. Multiple void formation in plasmas containing multispecies charged grains

    International Nuclear Information System (INIS)

    Liu, Y. H.; Chen, Z. Y.; Bogaerts, A.; Yu, M. Y.

    2006-01-01

    Self-organized separation of charged-dust species in two-dimensional dusty plasmas is studied by means of molecular-dynamics simulation. The multispecies dust grains, interacting through a screened Coulomb potential with a long-range attractive component, are confined by an external quadratic potential and subjected to a radially outward ion drag force. It is found that, in general, the species are spatially separated by bandlike dust-free (or void) regions, and grains of the same species tend to populate a common shell. At large ion drag and/or large plasma screening, a central disklike void as well as concentric bandlike voids separating the different species appear. Because of the outward drag and the attractive component of the dust-dust interaction forces, highly asymmetrical states consisting of species-separated dust clumps can also exist despite the fact that all the forces are either radial or central

  3. Forced vibrations of rotating circular cylindrical shells

    International Nuclear Information System (INIS)

    Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru

    1995-01-01

    Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)

  4. Moments and mean square charge radii of short-lived argon isotopes

    CERN Document Server

    Klein, A; Georg, U; Keim, M; Lievens, P; Neugart, R; Neuroth, M; Silverans, R E; Vermeeren, L

    1996-01-01

    We report on the measurement of optical isotope shifts for $^{32-40}$Ar and for $^{46}$Ar from which the changes in mean square nuclear charge radii across the N = 20 neutron shell closure are deducted. The investigations were carried out by collinear laser spectroscopy in fast beams of neutral argon atoms. The ultra-sensitive detection combines optical pumping, state-selective collisional ionization and counting of $\\beta$-radioactivity. By reaching far into the sd-shell, the results add new information to the systematics of radii in the calcium region (Z $\\approx$ 20). Contrary to all major neutron shell closures with N $\\geq$ 28, the N = 20 shell closure causes no significant slope change in the development of the radii. Information from the hyperfine structure of the odd-A isotopes includes includes the magnetic moments of $^{33}$Ar (I=1/2) and $^{39}$Ar (I=7/2), and the quadrupole moments of $^{35}$Ar, $^{37}$Ar (I=3/2) and $^{39}$Ar. The electromagnetic moments are compared to shell-model predictions fo...

  5. Geochemistry of amino acids in shells of the clam Saxidomus

    Science.gov (United States)

    Kvenvolden, K.A.; Blunt, D.J.; McMenamin, M.A.; Straham, S.E.

    1980-01-01

    Concentrations of amino acids and their corresponding d l enantiomeric ratios have been measured in shells of the bivalve mollusk Saxidomus from eleven localities, ranging in age from modern to probably more than 500,000 yr, along the Pacific coast of North America. Natural logarithms of amino acid concentrations correlate well with d l ratios, and the relationship provides a possible guide to the selection of fossils for use in amino acid dating. The relative order of the extents of racemization of amino acids at any given time appears to change with increasing sample age. Application of the amino acid dating method to shells from Whidbey Island, Washington, yields an age of about 80,000 yr, in contrast to the previously determined radiocarbon age of 36,000 yr which was measured on some shell carbonate and considered a minimum age. The amino acid age is compatible with the geologic record in the area. ?? 1980.

  6. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    Science.gov (United States)

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hi shells, supershells, shell-like objects, and ''worms''

    International Nuclear Information System (INIS)

    Heiles, C.

    1984-01-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo

  8. Effects of alga polysaccharide capsule shells on in-vivo bioavailability and disintegration

    Science.gov (United States)

    Li, Ting; Guo, Shuju; Ma, Lin; Yuan, Yi; Han, Lijun

    2012-01-01

    Gelatin has been used in hard capsule shells for more than a century, and some shortcomings have appeared, such as high moisture content and risk of transmitting diseases of animal origin to people. Based on available studies regarding gelatin and vegetable shells, we developed a new type of algal polysaccharide capsule (APPC) shells. To test whether our products can replace commercial gelatin shells, we measured in-vivo plasma concentration of 12 selected volunteers with a model drug, ibuprofen, using high performance liquid chromatography (HPLC), by calculating the relative bioavailability of APPC and Qualicaps® referenced to gelatin capsules and assessing bioequivalence of the three types of shells, and calculated pharmacokinetic parameters with the software DAS 2.0 (China). The results show that APPC shells possess bioequivalence with Qualicaps® and gelatin shells. Moreover, the disintegration behavior of four types of shells (APPC, Vegcaps®, Qualicaps® and gelatin shells) with the content of lactose and radioactive element (99mTc) was observed via gamma-scintigraphic images. The bioavailability and gamma-scintigraphic studies showed that APPC was not statistically different from other vegetable and gelatin capsule shells with respect to in-vivo behavior. Hence, it can be concluded that APPCs are exchangeable with other vegetable and gelatin shells.

  9. Facile morphology-controlled synthesis of nickel-coated graphite core-shell particles for excellent conducting performance of polymer-matrix composites and enhanced catalytic reduction of 4-nitrophenol

    Science.gov (United States)

    Bian, Juan; Lan, Fang; Wang, Yilong; Ren, Ke; Zhao, Suling; Li, Wei; Chen, Zhihong; Li, Jiangyu; Guan, Jianguo

    2018-04-01

    We have developed a novel seed-mediated growth method to fabricate nickel-coated graphite composite particles (GP@Ni-CPs) with controllable shell morphology by simply adjusting the concentration of sodium hydroxide ([NaOH]). The fabrication of two kinds of typical GP@Ni-CPs includes adsorption of Ni2+ via electrostatic attraction, sufficient heterogeneous nucleation of Ni atoms by an in situ reduction, and shell-controlled growth by regulating the kinetics of electroless Ni plating in turn. High [NaOH] results in fast kinetics of electroless plating, which causes heterogeneous nuclei to grow isotropically. After fast and uniform growth of Ni nuclei, GP@Ni-CPs with dense shells can be achieved. The first typical GP@Ni-CPs exhibit denser shells, smaller diameters and higher conductivities than the available commercial ones, indicating their important applications in the conducting of polymer-matrix composites. On the other hand, low [NaOH] favors slow kinetics. Thus, the reduction rate of Ni2+ slows down to a relatively low level so that electroless plating is dominated thermodynamically instead of kinetically, leading to an anisotropic crystalline growth of nuclei and finally to the formation of GP@Ni-CPs with nanoneedle-like shells. The second typical samples can effectively catalyze the reduction of p-nitrophenol into p-aminophenol with NaBH4 in comparison with commercial GP@Ni-CPs and RANEY® Ni, owing to the strong charge accumulation effect of needle-like Ni shells. This work proposes a model system for fundamental investigations and has important applications in the fields of electronic interconnection and catalysis.

  10. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis).

    Science.gov (United States)

    de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon

    2011-01-12

    The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.

  11. Characterization of Electrostatic Potential and Trapped Charge in Semiconductor Nanostructures using Off-Axis Electron Holography

    Science.gov (United States)

    Gan, Zhaofeng

    Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/Li xGe core/shell NW. The mean inner potential (MIP) and inelastic mean free path (IMFP) of ZnO NWs have been measured to be 15.3V+/-0.2V and 55+/-3nm, respectively, for 200keV electrons. These values were then used to characterize the thickness of a ZnO nano-sheet and gave consistent values. The MIP and IMFP for ZnTe thin films were measured to be 13.7+/-0.6V and 46+/-2nm, respectively, for 200keV electrons. A thin film expected to have a p-n junction was studied, but no signal due to the junction was observed. The importance of dynamical effects was systematically studied using Bloch wave simulations. The built-in potentials in Si NWs across the doped p-n junction and the Schottky junction due to Au catalyst were measured to be 1.0+/-0.3V and 0.5+/-0.3V, respectively. Simulations indicated that the dopant concentrations were ~1019cm-3 for donors and ~1017 cm-3 for acceptors. The effects of positively charged Au catalyst, a possible n+-n --p junction transition region and possible surface charge, were also systematically studied using simulations. Si-Ge heterojunction NWs were studied. Dopant concentrations were extracted by atom probe tomography. The built-in potential offset was measured to be 0.4+/-0.2V, with the Ge side lower. Comparisons with simulations indicated that Ga present in the Si region was only partially activated. In situ EH biasing experiments combined with simulations indicated the B dopant in Ge was mostly activated but not the P dopant in Si. I-V characteristic curves were measured and explained using simulations. The Ge/LixGe core/shell structure was studied during lithiation. The MIP for LixGe decreased with time due to increased Li

  12. Hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures for supercapacitors.

    Science.gov (United States)

    Wang, Hsin-Yi; Xiao, Fang-Xing; Yu, Le; Liu, Bin; Lou, Xiong Wen David

    2014-08-13

    A facile two-step solution-phase method has been developed for the preparation of hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures. Ultralong α-MnO2 nanowires were synthesized by a hydrothermal method in the first step. Subsequently, Ni1-x Mnx Oy nanoflakes were grown on α-MnO2 nanowires to form core-shell nanostructures using chemical bath deposition followed by thermal annealing. Both solution-phase methods can be easily scaled up for mass production. We have evaluated their application in supercapacitors. The ultralong one-dimensional (1D) α-MnO2 nanowires in hierarchical core-shell nanostructures offer a stable and efficient backbone for charge transport; while the two-dimensional (2D) Ni1-x Mnx Oy nanoflakes on α-MnO2 nanowires provide high accessible surface to ions in the electrolyte. These beneficial features enable the electrode with high capacitance and reliable stability. The capacitance of the core-shell α-MnO2 @Ni1-x Mnx Oy nanostructures (x = 0.75) is as high as 657 F g(-1) at a current density of 250 mA g(-1) , and stable charging-discharging cycling over 1000 times at a current density of 2000 mA g(-1) has been realized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ge/Si core/multi shell heterostructure FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Samuel T [Los Alamos National Laboratory; Dayeh, Shadi A [Los Alamos National Laboratory

    2010-01-01

    Concentric heterostructured materials provide numerous design opportunities for engineering strain and interfaces, as well as tailoring energy band-edge combinations for optimal device performance. Key to the realization of such novel device concepts is the complete understanding and full control over their growth, crystal structure, and hetero-epitaxy. We report here on a new route for synthesizing Ge/Si core/multi-shell heterostructure nanowires that eliminate Au seed diffusion on the nanowire sidewalls by engineering the interface energy density difference. We show that such control over core/shell synthesis enable experimental realization of heterostructure FET devices beyond those available in the literature with enhanced transport characteristics. We provide a side-by-side comparison on the transport properties of Ge/Si core/multi-shell nanowires grown with and without Au diffusion and demonstrate heterostructure FETs with drive currents that are {approx} 2X higher than record results for p-type FETs.

  14. Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang

    2017-01-01

    Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti3+ interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications.

  15. Correlated charge changing ion-atom collisions

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Tanis, J.A.

    1990-02-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant FG02-87ER13778 from August 15, 1987 through February 15, 1990. The general scope of this work involves the experimental investigation of fundamental atomic interactions in collisions of highly charged projectiles with neutral targets, with a particular emphasis on two-electron interactions. Inner-shell processes involving excitation, ionization, and charge transfer are investigated using, for the most part, coincidence techniques in which projectile charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. Measurements were conducted using accelerators at the Lawrence Berkeley Laboratory (LBL), Argonne National Laboratory (ANL), Hahn-Meitner-Institut, Berlin (HMI), and Western Michigan University (WMU). The research described here has resulted in 34 published papers, 14 invited presentations at national and international meetings, and 31 contributed presentations. Brief summaries of work completed and work in progress are discussed in this paper

  16. Shell launches its Claus off-gas desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Groenendaal, W; van Meurs, H C.A.

    1972-01-01

    The Shell Flue Gas Desulfurization (SFGD) Process was developed for removal of sulfur oxides from flue gases originating from oil-fired boilers or furnaces. It can also be used to remove sulfur dioxide from Claus sulfur recovery tail gases if they are combined with boiler/furnace flue gases. For Claus tail gas only, the Shell Claus off-gas desulfurization process was developed. Claus unit operation and desulfurization by low temperature Claus processes and conversion/concentration processes are discussed. The new Shell process consists of a conversion/concentration process involving a reduction section and an amine absorption section. In the reduction section, all sulfur compounds and free sulfur are completely reduced to hydrogen sulfide with hydrogen, or hydrogen plus carbon monoxide, over a cobalt/molybdenum-on-alumina catalyst at a temperature of about 300/sup 0/C. Extensive bench scale studies on the reduction system have been carried out. A life test of more than 4000 hr showed a stable activity of the reduction catalyst, which means that in commercial units, very long catalyst lives can be expected. The commercial feasibility of the reduction section was further demonstrated in the Godorf refinery of Deutsche Shell AG. More than 80 absorption units using alkanolamine (AIDP) solutions have been installed. Bench scale studies of the ADIP absorption units were compared to commercial experience.The total capital investment of the new Shell process is 0.7, 2.0, and 3.2 $ times 10 to the 6th power for 100, 500, and 1000 tons of sulfur/sd capacity Claus units, respectively. The total operating costs for these units are, respectively, 610, 1930 and 3310 $/stream day. The capital investment corresponds to about 75% of the capital investment of the preceding Claus unit.

  17. Rates of ionic reactions with charged nanoparticles in aqueous media

    NARCIS (Netherlands)

    Duval, J.F.L.; Leeuwen, van H.P.

    2012-01-01

    A theory is developed to evaluate the electrostatic correction for the rate of reaction between a small ion and a charged ligand nanoparticle. The particle is assumed to generally consist of an impermeable core and a shell permeable to water and ions. A derivation is proposed for the ion diffusion

  18. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    Science.gov (United States)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  19. High-temperature stability of the hydrate shell of a Na+ cation in a flat nanopore with hydrophobic walls

    Science.gov (United States)

    Shevkunov, S. V.

    2017-11-01

    The effect of elevated temperature has on the hydrate shell of a singly charged sodium cation inside a flat nanopore with smooth walls is studied using the Monte Carlo method. The free energy and the entropy of vapor molecule attachment are calculated by means of a bicanonical statistical ensemble using a detailed model of interactions. The nanopore has a stabilizing effect on the hydrate shell with respect to fluctuations and a destabilizing effect with respect to complete evaporation. At the boiling point of water, behavior is observed that is qualitatively similar to behavior at room temperature, but with a substantial shift in the vapor pressure and shell size.

  20. Electron capture by highly charged ions from surfaces and gases

    International Nuclear Information System (INIS)

    Allen, F.

    2008-01-01

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar 17+ and Ar 18+ ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu -1 , charge-selected and then decelerated down to 5 eVu -1 for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar 17+ and Ar 18+ ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu -1 , charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar 16+ and Xe 44+ and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  1. Superparamagnetic core/shell GoldMag nanoparticles: size-, concentration- and time-dependent cellular nanotoxicity on human umbilical vein endothelial cells and the suitable conditions for magnetic resonance imaging.

    Science.gov (United States)

    Gong, Mingfu; Yang, Hua; Zhang, Song; Yang, Yan; Zhang, Dong; Qi, Yueyong; Zou, Liguang

    2015-03-25

    GoldMag nanoparticles (GMNPs) possess the properties of colloid gold and superparamagnetic iron oxide nanoparticles, which make them useful for delivery, separation and molecular imaging. However, because of the nanometer effect, GMNPs are highly toxic. Thus, the biosafety of GMNPs should be fully studied prior to their use in biomedicine. The main purpose of this study was to evaluate the nanotoxicity of GMNPs on human umbilical vein endothelial cells (HUVECs) and determine a suitable size, concentration and time for magnetic resonance imaging (MRI). Transmission electron microscopy showed that GMNPs had a typical shell/core structure, and the shell was confirmed to be gold using energy dispersive spectrometer analysis. The average sizes of the 30 and 50 nm GMNPs were 30.65 ± 3.15 and 49.23 ± 5.01 nm, respectively, and the shell thickness were 6.8 ± 0.65 and 8.5 ± 1.36 nm, respectively. Dynamic light scattering showed that the hydrodynamic diameter of the 30 and 50 nm GMNPs were 33.2 ± 2.68 and 53.12 ± 4.56 nm, respectively. The r 2 relaxivity of the 50 nm GMNPs was 98.65 mM(-1) s(-1), whereas it was 80.18 mM(-1) s(-1) for the 30 nm GMNPs. The proliferation, cytoskeleton, migration, tube formation, apoptosis and ROS generation of labeled HUVECs depended on the size and concentration of GMNPs and the time of exposure. Because of the higher labeling rate, the 50 nm GMNPs exhibited a significant increase in nanotoxicity compared with the 30 nm GMNPs at the same concentration and time. At no more than 25 μg/mL and 12 hours, the 50 nm GMNPs exhibited no significant nanotoxicity in HUVECs, whereas no toxicity was observed at 50 μg/mL and 24 hours for the 30 nm GMNPs. These results demonstrated that the nanotoxicity of GMNPs in HUVECs depended on size, concentration and time. Exposure to larger GMNPs with a higher concentration for a longer period of time resulted in a higher labeling rate and ROS level for HUVECs. Coupled with r 2 relaxivity, it was suggested

  2. Binder-free ZnO@ZnSnO3 quantum dots core-shell nanorod array anodes for lithium-ion batteries

    Science.gov (United States)

    Tan, Hsiang; Cho, Hsun-Wei; Wu, Jih-Jen

    2018-06-01

    In this work, ZnSnO3 quantum dots (QDs), instead of commonly used conductive carbon, are grown on the ZnO nanorod (NR) array to construct the binder-free ZnO@ZnSnO3 QDs core-shell NR array electrode on carbon cloth for lithium-ion battery. The ZnO@ZnSnO3 QDs core-shell NR array electrode exhibits excellent lithium storage performance with an improved cycling performance and superior rate capability compared to the ZnO NR array electrode. At a current density of 200 mAg-1, 15.8% capacity loss is acquired in the ZnO@ZnSnO3 QDs core-shell NR array electrode after 110 cycles with capacity retention of 1073 mAhg-1. Significant increases in reversible capacities from 340 to 545 mAhg-1 and from 95 to 390 mAhg-1 at current densities of 1000 and 2000 mAg-1, respectively, are achieved as the ZnO NR arrays are coated with the ZnSnO3 QD shells. The remarkably improved electrochemical performances result from that the configuration of binder-free ZnO@ZnSnO3 QDs core-shell NR array electrode not only facilitates the charge transfer through the solid electrolyte interface and the electronic/ionic conduction boundary as well as lithium ion diffusion but also effectively accommodates the volume change during repeated charge/discharge processes.

  3. Collinear Laser Spectroscopy of Potassium Nuclear Charge Radii beyond N = 28

    CERN Document Server

    AUTHOR|(CDS)2078903; Jochim, Selim

    Nuclear ground-state properties, such as spin, charge radius, and magnetic dipole and electric quadrupole moments are important quantities to describe the nucleus. The comparison of experimental data to shell-model calculations gives insight in the underlying nuclear structure and composition of ground-state wave functions. Spins and charge radii can also be used to test the predictions of state-of-the-art microscopic models. This work contributes to these studies providing new measurements in the region of the nuclear chart around the magic proton number Z = 20. The data have been obtained at the collinear laser spectroscopy setup COLLAPS located at the radioactive-ion-beam facility ISOLDE at CERN. Using bunched-beam laser spectroscopy hyperne structure spectra of the potassium isotopes with mass number A = 48 51 could be recorded for the first time. Ground-state spins and isotope shifts could be deduced for 4851K contributing to the evolution of the d3=2 orbital beyond the shell closure at the magi...

  4. Subionization and decelerated-flow in the vicinity of a B-shell star

    International Nuclear Information System (INIS)

    Zorec, J.

    1981-01-01

    The author presents a simple calculation in which the wind is decelerated, and cooled, by interaction with the ISM and with the preceeding wind. He balances the momentum originally lying in the wind, having maximum velocity V 0 at a place where its particle concentration is N 0 , against that of wind+ISM at some shell-front, moving at Vsub(r) and with particle-concentration Nsub(r). He assumes the undisturbed ISM had concentration Nsub(m), and that the space between star and wind has been swept clean of ISM material, so that deceleration occurs only at the shell; but he ignores the details of shocks, compression, heating and eventual cooling, etc. (Auth.)

  5. Charge transport in a CoPt3 nanocrystal microwire

    International Nuclear Information System (INIS)

    Beecher, P.; De Marzi, G.; Quinn, A.J.; Redmond, G.; Shevchenko, E.V.; Weller, H.

    2004-01-01

    The electrical characteristics of single CoPt 3 nanocrystal microwires formed by magnetic field-directed growth from colloidal solutions are presented. The wires comprise disordered assemblies of discrete nanocrystals, separated from each other by protective organic ligand shells. Electrical data indicate that the activated charge transport properties of the wires are determined by the nanocrystal charging energy, governed by the size and capacitance of the individual nanocrystals. Focused ion beam-assisted deposition of Pt metal at the wire-electrode junctions is employed to optimize the wire-electrode contacts, whilst maintaining the nanocrystal-dominated transport characteristics of these one-dimensional nanocrystal structures

  6. Free vibration analysis of delaminated composite shells using different shell theories

    International Nuclear Information System (INIS)

    Nanda, Namita; Sahu, S.K.

    2012-01-01

    Free vibration response of laminated composite shells with delamination is presented using the finite element method based on first order shear deformation theory. The shell theory used is the extension of dynamic, shear deformable theory according to the Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. An eight-noded C 0 continuity, isoparametric quadrilateral element with five degrees of freedom per node is used in the formulation. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. The natural frequencies of the delaminated cylindrical (CYL), spherical (SPH) and hyperbolic paraboloid (HYP) shells are determined by using the above mentioned shell theories, namely Sanders', Love's, and Donnell's. The validity of the present approach is established by comparing the authors' results with those available in the literature. Additional studies on free vibration response of CYL, SPH and HYP shells are conducted to assess the effects of delamination size and number of layers considering all three shell theories. It is shown that shell theories according to Sanders and Love always predict practically identical frequencies. Donnell's theory gives reliable results only for shallow shells. Moreover, the natural frequency is found to be very sensitive to delamination size and number of layers in the shell.

  7. Spin density and orbital optimization in open shell systems: A rational and computationally efficient proposal

    Energy Technology Data Exchange (ETDEWEB)

    Giner, Emmanuel, E-mail: gnrmnl@unife.it; Angeli, Celestino, E-mail: anc@unife.it [Dipartimento di Scienze Chimiche e Famaceutiche, Universita di Ferrara, Via Fossato di Mortara 17, I-44121 Ferrara (Italy)

    2016-03-14

    The present work describes a new method to compute accurate spin densities for open shell systems. The proposed approach follows two steps: first, it provides molecular orbitals which correctly take into account the spin delocalization; second, a proper CI treatment allows to account for the spin polarization effect while keeping a restricted formalism and avoiding spin contamination. The main idea of the optimization procedure is based on the orbital relaxation of the various charge transfer determinants responsible for the spin delocalization. The algorithm is tested and compared to other existing methods on a series of organic and inorganic open shell systems. The results reported here show that the new approach (almost black-box) provides accurate spin densities at a reasonable computational cost making it suitable for a systematic study of open shell systems.

  8. Millimeter wave absorption by confined acoustic modes in CdSe/CdTe core-shell quantum dots

    International Nuclear Information System (INIS)

    Liu, T-M; Lu, J-Y; Kuo, C-C; Wen, Y-C; Lai, C-W; Yang, M-J; Chou, P-T; Murray, D B; Saviot, L; Sun, C-Kuang

    2007-01-01

    Taking advantage of the specific core-shell charge separation structure in the CdSe/CdTe core-shell Type-II quantum dots (QDs), we experimentally observed the resonant-enhanced dipolar interaction between millimeter-wave (MMW) photons and their corresponding (l = 1) confined acoustic phonons. With proper choice of size, the absorption band can be tuned to desired frequency of MMW imaging. Exploiting this characteristic absorption, in a fiber-scanned MMW imaging system, we demonstrated the feasibility of CdSe/CdTe QDs as the contrast agents of MMW imaging

  9. Impact of electrostatics on the chemodynamics of highly charged metal-polymer nanoparticle complexes.

    Science.gov (United States)

    Duval, Jérôme F L; Farinha, José Paulo S; Pinheiro, José P

    2013-11-12

    In this work, the impact of electrostatics on the stability constant, the rate of association/dissociation, and the lability of complexes formed between Cd(II), Pb(II), and carboxyl-modified polymer nanoparticles (also known as latex particles) of radius ∼ 50 nm is systematically investigated via electroanalytical measurements over a wide range of pHs and NaNO3 electrolyte concentrations. The corresponding interfacial structure and key electrostatic properties of the particles are independently derived from their electrokinetic response, successfully interpreted using soft particle electrohydrodynamic formalism, and complemented by Förster resonance energy transfer (FRET) analysis. The results underpin the presence of an ∼0.7-1 nm thick permeable and highly charged shell layer at the surface of the polymer nanoparticles. Their electrophoretic mobility further exhibits a minimum versus NaNO3 concentration due to strong polarization of the electric double layer. Integrating these structural and electrostatic particle features with recent theory on chemodynamics of particulate metal complexes yields a remarkable recovery of the measured increase in complex stability with increasing pH and/or decreasing solution salinity. In the case of the strongly binding Pb(II), the discrepancy at pH > 5.5 is unambiguously assigned to the formation of multidendate complexes with carboxylate groups located in the particle shell. With increasing pH and/or decreasing electrolyte concentration, the theory further predicts a kinetically controlled formation of metal complexes and a dramatic loss of their lability (especially for lead) on the time-scale of diffusion toward a macroscopic reactive electrode surface. These theoretical findings are again shown to be in agreement with experimental evidence.

  10. Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation

    Science.gov (United States)

    Chen, Xiaolang; Zhang, Huiqiang; Zhang, Dieqing; Miao, Yingchun; Li, Guisheng

    2018-03-01

    The successful application of hierarchically porous structure in environmental treatment has provided new insights for solving environmental problems. Hierarchically structured semiconductor materials were considered as promising photocatalysts for NO oxidation in gas phase. Multi-shelled ZnO microspheres (MMSZ) were controllably shaped with hierarchically porous structures via a facile hydrothermal route using amino acid (N-Acetyl-D-Proline) as template and post-calcination treatment. Symmetric Ostwald ripening was used to explain the morphological evolution of hierarchical nanostructure. MMSZ was proved highly efficient for oxidizing NO (400 ppb) in gas phase under UV light irradiation with a much higher photocatalytic removal rate (77.3%) than that of the as-obtained ZnO crystals with other hierachically porous structures, owing to its higher photocurrent intensity. Such greatly enhanced photocatalytic activity can be assigned to the enhanced crystallinity of ZnO, mesopores and unique multi-shelled structure. Enhanced crystallinity promotes photogenerated charges under light irradiation. Mesoporous porosity can ensure enough light scattering between the shells. Multi-shelled structure endows ZnO with higher specific surface area and high frequency of multiple light reflection, resulting in more exposed active sites, higher light utilization efficiency, and fast separation efficiency of photogenerated charge carriers. The experimental results demonstrated that the photogenerated holes (h+) are the main active species. Hierarchically structured ZnO is not only contributed to directly use solar energy to solving various problems caused by atmospheric pollution, but also has potential applications in energy converse and storage including solar cells, lithium batteries, water-splitting, etc.

  11. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe_2O_3@Carbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-01-01

    Core-shell nano-ring α-Fe_2O_3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe_2O_3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe_2O_3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe_2O_3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g"−"1 and retains 920/897 mAh g"−"1 after 200 cycles at 500 mA g"−"1 (0.5C). Even at 2000 mA g"−"1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g"−"1, and still maintains 630/610 mAh g"−"1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe_2O_3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe_2O_3 and facilitate the transportation of electrons and Li"+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe_2O_3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  12. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries

    Science.gov (United States)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-01

    Core-shell nano-ring α-Fe2O3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe2O3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe2O3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe2O3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g-1 and retains 920/897 mAh g-1 after 200 cycles at 500 mA g-1 (0.5C). Even at 2000 mA g-1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g-1, and still maintains 630/610 mAh g-1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe2O3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe2O3 and facilitate the transportation of electrons and Li+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe2O3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  13. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough

    Science.gov (United States)

    Zeng, Zhigang; Ma, Yao; Wang, Xiaoyuan; Chen, Chen-Tung Arthur; Yin, Xuebo; Zhang, Suping; Zhang, Junlong; Jiang, Wei

    2018-04-01

    To reveal differences in the behavior of benthic vent animals, and the sources and sinks of biogeochemical and fluid circulations, it is necessary to constrain the chemical characteristics of benthic animals from seafloor hydrothermal fields. We measured the abundances of 27 elements in shells of the crab Xenograpsus testudinatus and the snail Anachis sp., collected from the Kueishantao hydrothermal field (KHF) in the southwestern Okinawa Trough, with the aim of improving our understanding of the compositional variations between individual vent organisms, and the sources of the rare earth elements (REEs) in their shells. The Mn, Hg, and K concentrations in the male X. testudinatus shells are found to be higher than those in female crab shells, whereas the reverse is true for the accumulation of B, implying that the accumulation of K, Mn, Hg, and B in the crab shells is influenced by sex. This is inferred to be a result of the asynchronous molting of the male and female crab shells. Snail shells are found to have higher Ca, Al, Fe, Ni, and Co concentrations than crab shells. This may be attributed to different metal accumulation times. The majority of the light rare earth element (LREE) distribution patterns in the crab and snail shells are similar to those of Kueishantao vent fluids, with the crab and snail shells also exhibiting LREE enrichment, implying that the LREEs contained in crab and snail shells in the KHF are derived from vent fluids.

  14. K-shell transitions in L-shell ions with the EBIT calorimeter spectrometer

    Science.gov (United States)

    Hell, Natalie; Brown, G. V.; Wilms, J.; Beiersdorfer, P.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2015-08-01

    With the large improvement in effective area of Astro-H's micro-calorimeter soft X-ray spectrometer (SXS) over grating spectrometers, high-resolution X-ray spectroscopy with good signal to noise will become more commonly available, also for faint and extended sources. This will result in a range of spectral lines being resolved for the first time in celestial sources, especially in the Fe region. However, a large number of X-ray line energies in the atomic databases are known to a lesser accuracy than that expected for Astro-H/SXS, or have no known uncertainty at all. To benchmark the available calculations, we have therefore started to measure reference energies of K-shell transition in L-shell ions for astrophysically relevant elements in the range 11 ≤ Z ≤ 28 (Na to Ni), using the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with the NASA/GSFC EBIT calorimeter spectrometer (ECS). The ECS has a resolution of ~5eV, i.e., similar to Astro-H/SXS and Chandra/HETG. A comparison to crystal spectra of lower charge states of sulfur with ~0.6eV resolution shows that the analysis of spectra taken at ECS resolution allows us to determine the transition energies of the strongest components.Work at LLNL was performed under the auspices of DOE under contract DE-AC52-07NA27344 and supported by NASA's APRA program.

  15. Single- and double-charge exchange at low pion energies

    International Nuclear Information System (INIS)

    Baer, H.W.

    1991-01-01

    A review is given of pion single- and double-charge exchange reactions at incident energies of 25 to 65 MeV leading to isobaric analog states, and in the case of double-charge exchange leading to the ground state of the residual nucleus. The crucial role of the higher nuclear transparency at low pion energies for the analysis of the data in terms of single and double scattering is demonstrated. The large effects on double-charge exchange produced by the spatial correlations in nuclear wave functions are evident. The data on 1f 7/2 nuclei at 35 MeV are used to establish the general validity of a shell-model-based two-amplitude model for these transitions. Recent measurements of the energy dependence between 25 and 65 MeV of double-charge exchange cross sections at forward angles are presented and discussed. 33 refs., 19 figs

  16. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    Science.gov (United States)

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  17. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  18. Investigation of stresses in facetted glass shell structures

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Wester, Ture

    2007-01-01

    by in-plane forces in the facets and the transfer of distributed in-plane forces across the joints. It is described how these facets work structurally, specifically how bending moments develop and cause possible stress concentrations in the corners, which are subjected to uplift. Apart from local...... bending moments from distributed load, other types of bending moments are likely to occur, especially if the shell has areas of low stiffness, for example along a free edge. A facetted shell structure has been modelled in a finite element program, and the resulting stresses are presented and discussed....

  19. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.

    Science.gov (United States)

    Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia

    2017-11-01

    Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol.

    Science.gov (United States)

    Arslan, Yeşim; Eken-Saraçoğlu, Nurdan

    2010-11-01

    In this study, we investigated the use of hazelnut shell as a renewable and low cost lignocellulosic material for bioethanol production for the first time. High lignin content of hazelnut shell is an important obstacle for such a biotransformation. Biomass hydrolysis with acids yields reducing sugar with several inhibitors which limit the fermentability of sugars. The various conditioning methods for biomass and hydrolysate were performed to overcome the toxicity and their effects on the subsequent fermentation of hazelnut shell hydrolysate by Pichia stipitis were evaluated with shaking flasks experiments. Hazelnut shells hydrolysis with 0.7M H(2)SO(4) yielded 49 gl(-1) total reducing sugars and fermentation inhibitors in untreated hydrolysate. First, it was shown that several hydrolysate detoxification methods were solely inefficient in achieving cell growth and ethanol production in the fermentation of hazelnut shell hydrolysates derived from non-delignified biomass. Next, different pretreatments of hazelnut shells were considered for delignification and employed before hydrolysis in conjunction with hydrolysate detoxification to improve alcohol fermentation. Among six delignification methods, the most effective pretreatment regarding to ethanol concentration includes the treatment of shells with 3% (w/v) NaOH at room temperature, which was integrated with sequential hydrolysate detoxification by overliming and then treatment with charcoal twice at 60 degrees C. This treatment brought about a total reduction of 97% in furans and 88.4% in phenolics. Almost all trialed treatments caused significant sugar loss. Under the best assayed conditions, ethanol concentration of 16.79gl(-1) was reached from a hazelnut shell hyrolysate containing initial 50g total reducing sugar l(-1) after partial synthetic xylose supplementation. This value is equal to 91.25% of ethanol concentration that was obtained from synthetic d-xylose under same conditions. The present study

  1. Off-shell CHY amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  2. Addressing Challenges and Scalability in the Synthesis of Thin Uniform Metal Shells on Large Metal Nanoparticle Cores: Case Study of Ag-Pt Core-Shell Nanocubes.

    Science.gov (United States)

    Aslam, Umar; Linic, Suljo

    2017-12-13

    Bimetallic nanoparticles in which a metal is coated with an ultrathin (∼1 nm) layer of a second metal are often desired for their unique chemical and physical properties. Current synthesis methods for producing such core-shell nanostructures often require incremental addition of a shell metal precursor which is rapidly reduced onto metal cores. A major shortcoming of this approach is that it necessitates precise concentrations of chemical reagents, making it difficult to perform at large scales. To address this issue, we considered an approach whereby the reduction of the shell metal precursor was controlled through in situ chemical modification of the precursor. We used this approach to develop a highly scalable synthesis for coating atomic layers of Pt onto Ag nanocubes. We show that Ag-Pt core-shell nanostructures are synthesized in high yields and that these structures effectively combine the optical properties of the plasmonic Ag nanocube core with the surface properties of the thin Pt shell. Additionally, we demonstrate the scalability of the synthesis by performing a 10 times scale-up.

  3. Au@TiO2 yolk-shell nanostructures for enhanced performance in both photoelectric and photocatalytic solar conversion

    Science.gov (United States)

    He, Qinrong; Sun, Hang; Shang, Yinxing; Tang, Yanan; She, Ping; Zeng, Shan; Xu, Kongliang; Lu, Guolong; Liang, Song; Yin, Shengyan; Liu, Zhenning

    2018-05-01

    Solar energy conversion is an important field gaining increasing interest. Herein, bio-inspired Au@TiO2 yolk-shell nanoparticles (NPs) have been prepared via a facial one-pot hydrothermal approach. The Au@TiO2 yolk-shell NPs can self-assemble into 3D-structure to form photoelectrode for photoelectric conversion. The obtained photoelectrode demonstrates a swift and stable photocurrent of 3.5 μA/cm2, which is 4.2 and 1.6 times higher than those of the photocurrents generated by the counterparts of commercial TiO2 and Au@TiO2 core-shell NPs, respectively. Moreover, compared to the commercial TiO2 and Au@TiO2 core-shell NPs, the Au@TiO2 yolk-shell NPs also exhibit superior photocatalytic activity, delivering a H2 evolution rate of 4.92 mmol/g h. The performance improvement observed for the Au@TiO2 yolk-shell NPs is likely contributed by two synergistic factors, i.e. the incorporation of AuNPs and the unique hollow structure, which benefit the activity by simultaneously enhancing light utilization, charge separation and reaction site accessibility. The rational design and fabrication of Au@TiO2 yolk-shell NPs hold great promise for future application in efficient solar energy conversion.

  4. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance.

    Science.gov (United States)

    Liu, Yutao; Pan, Jie; Feng, Si-Shen

    2010-08-16

    This work developed a system of nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of anticancer drugs with paclitaxel as a model drug, in which the emphasis was given to the effects of the surfactant type and the optimization of the emulsifier amount used in the single emulsion solvent evaporation/extraction process for the nanoparticle preparation on the particle size, characters and in vitro performance. The drug loaded nanoparticles were characterized by laser light scattering (LLS) for size and size distribution, field-emission scanning electron microscopy (FESEM) for surface morphology, X-ray photoelectron spectroscopy (XPS) for surface chemistry, zetasizer for surface charge, and high performance liquid chromatography (HPLC) for drug encapsulation efficiency and in vitro drug release kinetics. MCF-7 breast cancer cells were employed to evaluate the cellular uptake and cytotoxicity. It was found that phospholipids of short chains such as 1,2-dilauroylphosphatidylocholine (DLPC) have great advantages over the traditional emulsifier poly(vinyl alcohol) (PVA), which is used most often in the literature, in preparation of nanoparticles of biodegradable polymers such as poly(D,L-lactide-co-glycolide) (PLGA) for desired particle size, character and in vitro cellular uptake and cytotoxicity. After incubation with MCF-7 cells at 0.250 mg/ml NP concentration, the coumarin-6 loaded PLGA NPs of DLPC shell showed more effective cellular uptake versus those of PVA shell. The analysis of IC(50), i.e. the drug concentration at which 50% of the cells are killed, demonstrated that our DLPC shell PLGA core NP formulation of paclitaxel could be 5.88-, 5.72-, 7.27-fold effective than the commercial formulation Taxol after 24, 48, 72h treatment, respectively. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Study of the pressure dependence of dielectric properties of ionic crystals with the exchange-charge model

    Energy Technology Data Exchange (ETDEWEB)

    Batana, A; Faour, J

    1987-03-01

    The formalism of the exchange-charge model (ECM) is extended for studying the pressure dependence of the static dielectric constant and the volume dependence of the effective ionic charge for b.c.c. lattices. Calculated values for CsCl, CsBr, CsI, and TlBr together with the simple shell model values and experimental values are listed and discussed.

  6. A Study of the Mortar Firing Process Taking into Account the Propellant Gases Flow from the Tail Tube into the Space Behind the Shell

    Directory of Open Access Journals (Sweden)

    A. K. Efremov

    2015-01-01

    Full Text Available Characteristics of inertial forces driving the arming process of fuse safety system mechanisms are determined by the parameters of shell motion in the barrel. The motion of the elements of fuse mechanisms is studied in a non-inertial coordinate system. Reasonable consideration of the reliability of unlocking the safety stages during the shot is obviously possible only when there is an adequate description of the inertia forces. The arming of inertial type safety mechanism should be completed before the moment when the level of the axial inertia force reaches a certain value rated to the maximum level (determined by the arming safety factor. Classical methods of internal ballistics do not identify the parameters of the part of the setback which is important for fuse arming.In the traditional method of calculating the process of mortar firing the pressure required to break the perforations in the tail stabilizer tube of the mortar shell performs the role of a "forcing pressure", and consequently the combustion of the main charge is supposed to begin instantaneously, i.e. it acts merely as an igniter for the additional charge. In reality (physically there is some initial portion of the pressure rise and, correspondingly, the force of inertia (setback.An approach is proposed to the study of a shot from a mortar based on consideration of the temporal process of the propellant gases flow after breaking the stabilizer tube perforations in the space behind the mortar shell. It is assumed that the ignition of the additional charge and the movement of shell begin simultaneously. This approach allows one to identify the leading portion of the setback curve, allowing a more adequate description of fuse mechanisms functioning during arming. The periods of shot are considered consecutively in cases of absence and availability of the additional charge. Differential equations are reduced to dimensionless form simplifying the procedure of computer aided solution

  7. Krypton K-shell X-ray spectra recorded by the HENEX spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seely, J.F. [Naval Research Laboratory, Space Science Division, Washington DC 20375 (United States)]. E-mail: john.seely@nrl.navy.mil; Back, C.A. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Constantin, C. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Lee, R.W. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Chung, H.-K. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Hudson, L.T. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Szabo, C.I. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Henins, A. [National Institute of Standards and Technology, Gaithersburg MD 20899 (United States); Holland, G.E. [SFA Inc., 9315 Largo Drive West Suite 200, Largo MD 20774 (United States); Atkin, R. [Tiger Innovations, L.L.C., 3610 Vacation Lane, Arlington VA 22207 (United States); Marlin, L. [Naval Research Laboratory, Space Science Division, Washington DC 20375 (United States)

    2006-05-15

    High-resolution X-ray spectra were recorded by the High-Energy Electronic X-ray (HENEX) spectrometer from a variety of targets irradiated by the Omega laser at the Laboratory for Laser Energetics. The HENEX spectrometer utilizes four reflection crystals covering the 1-20keV energy range and one quartz(10-11) transmission crystal (Laue geometry) covering the 11-40keV range. The time-integrated spectral images were recorded on five CMOS X-ray detectors. In the spectra recorded from krypton-filled gasbag and hohlraum targets, the helium-like K-shell transitions n=1-2, 1-3, and 1-4 appeared in the 13-17keV energy range. A number of additional spectral features were observed at energies lower than the helium-like n=1-3 and n=1-4 transitions. Based on computational simulations of the spectra using the FLYCHK/FLYSPEC codes, which included opacity effects, these additional features are identified to be inner-shell transitions from the Li-like through N-like krypton charge states. The comparisons of the calculated and observed spectra indicate that these transitions are characteristic of the plasma conditions immediately after the laser pulse when the krypton density is 2x10{sup 18}cm{sup -3} and the electron temperature is in the range 2.8-3.2keV. These spectral features represent a new diagnostic for the charge state distribution, the density and electron temperature, and the plasma opacity. Laboratory experiments indicate that it is feasible to record K-shell spectra from gold and higher Z targets in the >60keV energy range using a Ge(220) transmission crystal.

  8. Quantitative plasma spectroscopy in a resistive shell reversed-field pinch

    International Nuclear Information System (INIS)

    Hedqvist, Anders

    1999-10-01

    The subject addressed in this thesis is quantitative plasma spectroscopy. Measurements of electron temperature and impurity ion density, performed at EXTRAP-T2, are aimed to investigate the effects of operating a reversed- field pinch with a resistive shell and a graphite wall. The spectroscopic measurements are analyzed with a collisional-radiative model and a consistency check is performed for the measurements and the model itself. The resistive shell results in wall-locked modes, enhanced plasma-wall interaction and degraded confinement. Measurements of vacuum ultraviolet resonant transitions of carbon and oxygen show that the local heating of the wall, at the position of the locking, leads to influxes of hydrogen and impurities, resulting in a cold and resistive plasma. Effects on the local scale are also observed. Spatially-resolved measurements of line emission originating from charge exchange collisions are used to investigate the change in neutral hydrogen profile. Temporal correlations between soft x-ray emission and poloidal loop voltage at the position of the wall-locked modes are observed and in connection, a decrease in central electron temperature, indicating there is a direct energy loss channel between the center and the edge. The hydrogen recycling properties of the graphite wall are investigated in an isotope exchange experiment. The density of the hydrogen isotopes are measured from spectral line emission and compared with recycling models. In charge exchange collisions between fully stripped chlorine and thermal deuterium, observed in JET plasmas, only a single n-level is populated. This is different from most ions and may be used to test models for calculating charge exchange collision cross-sections

  9. Quantitative plasma spectroscopy in a resistive shell reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Hedqvist, Anders

    1999-10-01

    The subject addressed in this thesis is quantitative plasma spectroscopy. Measurements of electron temperature and impurity ion density, performed at EXTRAP-T2, are aimed to investigate the effects of operating a reversed- field pinch with a resistive shell and a graphite wall. The spectroscopic measurements are analyzed with a collisional-radiative model and a consistency check is performed for the measurements and the model itself. The resistive shell results in wall-locked modes, enhanced plasma-wall interaction and degraded confinement. Measurements of vacuum ultraviolet resonant transitions of carbon and oxygen show that the local heating of the wall, at the position of the locking, leads to influxes of hydrogen and impurities, resulting in a cold and resistive plasma. Effects on the local scale are also observed. Spatially-resolved measurements of line emission originating from charge exchange collisions are used to investigate the change in neutral hydrogen profile. Temporal correlations between soft x-ray emission and poloidal loop voltage at the position of the wall-locked modes are observed and in connection, a decrease in central electron temperature, indicating there is a direct energy loss channel between the center and the edge. The hydrogen recycling properties of the graphite wall are investigated in an isotope exchange experiment. The density of the hydrogen isotopes are measured from spectral line emission and compared with recycling models. In charge exchange collisions between fully stripped chlorine and thermal deuterium, observed in JET plasmas, only a single n-level is populated. This is different from most ions and may be used to test models for calculating charge exchange collision cross-sections.

  10. Correlated charge changing ion-atom collisions. Progress report, March 15, 1985-March 14, 1986

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Tanis, J.A.

    1986-04-01

    X-ray emission associated with projectile charge-changing events in ion-atom collisions has been used to isolate and investigate excitation, ionization, and charge transfer, as well as combinations of these processes. New measurements were made of K-shell and L-shell resonant transfer and excitation (RTE) for 210 to 300 MeV 20 Ca/sup 10,11+/ + H 2 collisions and 230 to 610 MeV 41 Nb 31+ + H 2 collisions, respectively. Nonresonant transfer and excitation (NTE) was studied for 40 to 160 MeV S 13+ + Ne. Single-electron capture and loss measurements, requiring accel-decel techniques, were made for 2.5 to 200 MeV S 13+ on He. In the case of Ca/sup 16,17,18,19 + / + H 2 collisions the single capture cross cross sections exhibit a nonmonotonic energy dependence which we attribute to RTE. Double-electron capture in single collisions was investigated for S 13+ + He and Ne and Ar 15+ + Ne and the cross sections were found to be 10 to 100 times smaller than the single-capture cross sections. Measured two-electron loss cross sections for Ca/sup q + / ions incident on H 2 vary with charge state and depend strongly on whether L- or K-shell electrons are removed. Measurements of simultaneous projectile excitation and electron loss for several collision systems indicate that K-vacancy production occurs primarily through excitation rather than loss of the 1s electron. 13 refs

  11. Leptonic signals from off-shell Z boson pairs at hadron colliders

    International Nuclear Information System (INIS)

    Zecher, C.; Matsuura, T.; Bij, J.J. van der

    1994-04-01

    We study the gluon fusion into pairs of off-shell Z bosons and their subsequent decay into charged lepton pairs at hadron colliders : g→ZZ→4l ± (l ± :charged lepton). Throughout this paper we do not restrict the intermediate state Z bosons to the narrow width approximation but allow for arbitrary invariant masses. We compare the strength of this process with the known leading order results for q anti q→ZZ→4l ± and for gg→H→ZZ→4l ± . At LHC energies (√s=14 TeV) the contribution from the gluon fusion background is around 20% of the contribution from quark-antiquark annihilation. These two processes do not form a severe irreducible background to the Higgs signal. At Higgs masses below 120 GeV the final state interference for the decay channel H→ZZ→4μ ± is increasingly constructive. This has no effect on the Higgs search as in this mass region the signal remains too small. One can extend the intermediate mass Higgs search via off-shell Z boson pairs at the LHC down to about 130 GeV Higgs mass. However careful study of the reducible background is needed for definite conclusions. (orig.)

  12. Facile and controllable construction of vanadium pentoxide@conducting polymer core/shell nanostructures and their thickness-dependent synergistic energy storage properties

    International Nuclear Information System (INIS)

    Tong, Zhongqiu; Liu, Shikun; Li, Xingang; Ding, Yanbo; Zhao, Jiupeng; Li, Yao

    2016-01-01

    Graphical abstract: Here, we report a novel approach to prepare metal oxide@conducting polymer core/shell hybrids with controlled shell thickness and morphology, and the influence of PANI shell thickness on the electrochemical performance of V 2 O 5 @PANI core/shell hybrids is systematically investigated. Thickness-dependent synergistic electron transport, Li-ion diffusion distance, and shell mechanical strength mechanisms are proposed. - Highlights: • Thickness- and morphology-controlled V 2 O 5 /PANI core/shell hybrid nanofibers are fabricated. • The enhancement of energy storage performance of core/shell hybrids varies with the shell thickness. • Thickness-dependent synergistic electron transport, Li-ion diffusion distances, and shell mechanical strength mechanisms are proposed. - Abstract: Thickness- and morphology-controlled vanadium pentoxide/polyaniline (V 2 O 5 /PANI) core/shell hybrid nanofibers are fabricated by electropolymerization of PANI on V 2 O 5 nanofibers for enhanced energy storage. By simply adjusting the electrodeposition time, the thickness of the PANI shells can be controlled from 5 nm to 47 nm, and the morphology can be changed from coaxial to branched. The influence of shell thickness on the improved Li-ion storage performance of the V 2 O 5 /PANI core/shell nanofibers is systematically investigated, and this enhancement of charge capability and cycling stability strongly varies with the shell thickness. Thickness-dependent synergistic electron transport, Li-ion diffusion distances, and shell mechanical strength mechanisms are also proposed. These results provide meaningful references for developing new functional core/shell materials and high-performance energy storage composite materials.

  13. r-Adaptive mesh generation for shell finite element analysis

    International Nuclear Information System (INIS)

    Cho, Maenghyo; Jun, Seongki

    2004-01-01

    An r-adaptive method or moving grid technique relocates a grid so that it becomes concentrated in the desired region. This concentration improves the accuracy and efficiency of finite element solutions. We apply the r-adaptive method to computational mesh of shell surfaces, which is initially regular and uniform. The r-adaptive method, given by Liao and Anderson [Appl. Anal. 44 (1992) 285], aggregate the grid in the region with a relatively high weight function without any grid-tangling. The stress error estimator is calculated in the initial uniform mesh for a weight function. However, since the r-adaptive method is a method that moves the grid, shell surface geometry error such as curvature error and mesh distortion error will increase. Therefore, to represent the exact geometry of a shell surface and to prevent surface geometric errors, we use the Naghdi's shell theory and express the shell surface by a B-spline patch. In addition, using a nine-node element, which is relatively less sensitive to mesh distortion, we try to diminish mesh distortion error in the application of an r-adaptive method. In the numerical examples, it is shown that the values of the error estimator for a cylinder, hemisphere, and torus in the overall domain can be reduced effectively by using the mesh generated by the r-adaptive method. Also, the reductions of the estimated relative errors are demonstrated in the numerical examples. In particular, a new functional is proposed to construct an adjusted mesh configuration by considering a mesh distortion measure as well as the stress error function. The proposed weight function provides a reliable mesh adaptation method after a parameter value in the weight function is properly chosen

  14. Charge and frequency resolved isochronous mass spectrometry and the mass of 51Co

    International Nuclear Information System (INIS)

    Shuai, P.; Xu, H.S.; Tu, X.L.; Zhang, Y.H.; Sun, B.H.; Wang, M.

    2014-01-01

    Revolution frequency measurements of individual ions in storage rings require sophisticated timing detectors. One of common approaches for such detectors is the detection of secondary electrons released from a thin foil due to penetration of the stored ions. A new method based on the analysis of intensities of secondary electrons was developed which enables determination of the charge of each ion simultaneously with the measurement of its revolution frequency. Although the mass-over-charge ratios of 51 Co 27+ and 34 Ar 18+ ions are almost identical, and therefore, the ions cannot be resolved in a storage ring, by applying the new method the mass excess of the short-lived 51 Co is determined for the first time to be ME( 51 Co)=−27342(48) keV. Shell-model calculations in the fp-shell nuclei compared to the new data indicate the need to include isospin-nonconserving forces

  15. Core-shell designed scaffolds for drug delivery and tissue engineering.

    Science.gov (United States)

    Perez, Roman A; Kim, Hae-Won

    2015-07-01

    Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core-shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core-shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core-shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core-Shell Architecture.

    Science.gov (United States)

    Felts, Ashley C; Slimani, Ahmed; Cain, John M; Andrus, Matthew J; Ahir, Akhil R; Abboud, Khalil A; Meisel, Mark W; Boukheddaden, Kamel; Talham, Daniel R

    2018-05-02

    The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb a Co b [Fe(CN) 6 ] c · mH 2 O (RbCoFe-PBA) as core with the isostructural K j Ni k [Cr(CN) 6 ] l · nH 2 O (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced. When coupled to the shell, the rate of the optically induced transition from low spin to high spin increases. Isothermal relaxation from the optically induced high spin state of the core back to the low spin state and activation energies associated with the transition between these states were measured. The presence of a shell decreases the activation energy, which is associated with the elastic properties of the core. Numerical simulations using an electro-elastic model for the spin transition in core-shell particles supports the findings, demonstrating how coupling of the core to the shell changes the elastic properties of the system. The ability to tune the rate of optically induced magnetic and structural phase transitions through control of mesoscale architecture presents a new approach to the development of photoswitchable materials with tailored properties.

  17. Dossier Shell Eco-Marathon; Dossier Shell Eco-Marathon

    Energy Technology Data Exchange (ETDEWEB)

    Matla, P.

    2012-05-15

    Three articles address subjects concerning the annual race with highly energy efficient cars: the Shell Eco-Marathon. [Dutch] In 3 artikelen wordt aandacht besteed aan de ontwerpen voor de jaarlijkse race met superzuinige auto's, de Shell Eco-Marathon.

  18. Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.

    Science.gov (United States)

    Gangil, Sandip

    2014-03-01

    Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Desorption of Reactive Red 198 from activated carbon prepared from walnut shells: effects of temperature, sodium carbonate concentration and organic solvent dose

    Directory of Open Access Journals (Sweden)

    Zohreh Alimohamadi

    2017-04-01

    Full Text Available This study investigated the effect of temperature, different concentrations of sodium carbonate,and the dose of organic solvent on the desorption of Reactive Red 198 dye from dye-saturated activated carbon using batch and continuous systems. The results of the batch desorption test showed 60% acetone in water as the optimum amount. However, when the concentration of sodium carbonate was raised, the dye desorption percentage increased from 26% to 42% due to economic considerations; 15 mg/L of sodium carbonate was selected to continue the processof desorption. Increasing the desorption temperature can improve the dye desorption efficiency.According to the column test results, dye desorption concentration decreased gradually with the passing of time. The column test results showed that desorption efficiency and the percentage of dye adsorbed decreased; however, it seemed to stabilize after three repeated adsorption/desorption cycles. The repeated adsorption–desorption column tests (3 cycles showed that the activated carbon which was prepared from walnut shell was a suitable and economical adsorbent for dye removal.

  20. Asymmetry of mass and charge division in spontaneous fission

    International Nuclear Information System (INIS)

    Chakraborty, P.P.; Iyer, M.R.; Ganguly, A.K.

    The order-disorder model (ODM) has been used to explain asymmetry of mass and charge division and related phenomena in fission. According to this model the fission process involves two steps consisting of charge polarisation into two impending fragments with beta stable neutron numbers and subsequent distribution of the balance neutrons between the two. The statistics developed on the principle of equal a priori probability of all charge polarisation is used. The shell effects comes into play only in deciding stable neutron number for the charges. The total isotopic yield distribution for a number of fission reactions are presented. These show asymmetry in the actinide region which reduces with increasing mass/charge of the fissioning nuclide and bunching of the higher z peaks. The mass yields obtained therefrom for a number of fission reactions are compared with experimental results. Though there is general agreement with experimental data, the peaks of the distributions are slightly shifted away from the symmetric point and the distributions are somewhat narrower. Charge distribution parameters obtained from these results are also presented. The model predicts preference of asymmetric division for super heavy nuclides. (author)

  1. Spherical thin shells in F(R) gravity. Construction and stability

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Figueroa Aguirre, Griselda [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina)

    2018-01-15

    We present a broad class of spherical thin shells of matter in F(R) gravity. We show that the corresponding junction conditions determine the equation of state between the energy density and the pressure/tension at the surface. We analyze the stability of the static configurations under perturbations preserving the symmetry. We apply the formalism to the construction of charged bubbles and we find that there exist stable static configurations for a suitable set of the parameters of the model. (orig.)

  2. Spherical thin shells in F(R) gravity. Construction and stability

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Figueroa Aguirre, Griselda

    2018-01-01

    We present a broad class of spherical thin shells of matter in F(R) gravity. We show that the corresponding junction conditions determine the equation of state between the energy density and the pressure/tension at the surface. We analyze the stability of the static configurations under perturbations preserving the symmetry. We apply the formalism to the construction of charged bubbles and we find that there exist stable static configurations for a suitable set of the parameters of the model. (orig.)

  3. Supramolecular core-shell nanoparticles for photoconductive device applications

    Science.gov (United States)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  4. Shell structure and level migrations in zinc studied using collinear laser spectroscopy

    CERN Multimedia

    Tungate, G; De rydt, M A E; Flanagan, K; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Kowalska, M; Campbell, P; Neugart, R; Kreim, K D; Stroke, H H; Krieger, A R; Procter, T J

    We propose to perform collinear laser spectroscopy of zinc isotopes to measure the nuclear spin, magnetic dipole moment, electric quadrupole moment and mean-square charge radius. The yield database indicates that measurements of the isotopes $^{60-81}$Zn will be feasible. These measurements will cross the N = 50 shell closure and provide nuclear moments in a region where an inversion of ground-state spin has been identified in neighbouring chains.

  5. Searching for nova shells around cataclysmic variables

    Science.gov (United States)

    Sahman, D. I.; Dhillon, V. S.; Knigge, C.; Marsh, T. R.

    2015-08-01

    We present the results of a search for nova shells around 101 cataclysmic variables (CVs), using H α images taken with the 4.2-m William Herschel Telescope (WHT) and the 2.5-m Isaac Newton Telescope Photometric H α Survey of the Northern Galactic Plane (IPHAS). Both telescopes are located on La Palma. We concentrated our WHT search on nova-like variables, whilst our IPHAS search covered all CVs in the IPHAS footprint. We found one shell out of the 24 nova-like variables we examined. The newly discovered shell is around V1315 Aql and has a radius of ˜2.5 arcmin, indicative of a nova eruption approximately 120 yr ago. This result is consistent with the idea that the high mass-transfer rate exhibited by nova-like variables is due to enhanced irradiation of the secondary by the hot white dwarf following a recent nova eruption. The implications of our observations for the lifetime of the nova-like variable phase are discussed. We also examined four asynchronous polars, but found no new shells around any of them, so we are unable to confirm that a recent nova eruption is the cause of the asynchronicity in the white dwarf spin. We find tentative evidence of a faint shell around the dwarf nova V1363 Cyg. In addition, we find evidence for a light echo around the nova V2275 Cyg, which erupted in 2001, indicative of an earlier nova eruption ˜300 yr ago, making V2275 Cyg a possible recurrent nova.

  6. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  7. Botanical pesticides effect from shells of bean’s cashew nut on biological agents of trichoderma sp. and gliocladium sp.

    Science.gov (United States)

    Bande, L. O. S.; Mariadi; Gusnawaty, HS; Nuriadi; Trisulpa, L.; Rahmania

    2018-02-01

    A shell of cashew nut (Anacardium occidentanle) has contained Cashew Nut Shell Liquid (CNSL) that is used as botanical pesticides. CNSL oil consists of active substance such as anacardat acid, cardol and cardanol. Utilization of the pesticides from shells of cashew nut to control pests and diseases of plants would be affected on biological agents. The objective of this research was to investigate pesticides inhibition on the increase of mycelium Trichoderma sp. and Gliocladium sp. by in vitro method. The tested concentration sample consisted of 0.0% (control), 2.5%, 7.5% and 10.0% in PDA media. The results of this research showed that 2.5% botanical pesticides concentration could minimize mycelium of Trichoderma sp. and Gliocladium sp. 22.73% and 21.04% respectively and also the increase shells of cashew extract could be affected the increase of mycelium inhibition. The extract with 2.5% concentration was the recommended concentration to control of fruit rot diseases and if concentration was 10.0% then its inhibition become 54.98% and 49.35%, respectively. The results proved that uncontrolled utilization of the pesticides could be affected on decrease of Trichoderma sp. and Gliocladium sp. growth.

  8. The charge form factor, the quadrupole moment and the photodisintegration of 6Li

    International Nuclear Information System (INIS)

    Susila, S.; Srinivasa Rao, K.

    1981-01-01

    The root mean square radius, the charge form factor, the charge density, the quadrupole moment and the bremsstrahlung weighted cross section for the photodisintegration of 6 Li, are calculated using a polarised cluster model wave function, which is modified to take into account, in its relative motion part, the requirement of a shell model node. A set of parameters, in the modified cluster model wave function, which account for the available experimental data for the afore-said quantities, is determined. (author)

  9. Investigation of dynamic characteristics of shells with holes and added mass

    Directory of Open Access Journals (Sweden)

    Seregin Sergey Valer’evich

    2014-04-01

    Full Text Available Thin cylindrical shells are widely used in construction, engineering and other industries. In case of designing a reservoir for the isothermal storage of liquefied gases such cases are inevitable, when housing requires various technical holes. A point wise added mass can appear into practice in the form of suspended spotlights, radar, architectural inclusions in buildings and structures of various purposes. It is known, that the dynamic asymmetry as an initial irregular geometric shape, including holes, and the added mass leads to specific effects in shells. In the paper the impact of a cut on the frequency and form of its own vibrations of thin circular cylindrical shells is theoretically examined with the help of the equations of linear shallow shell theory. For modal equations with Nav’e boundary conditions, we used the Bubnov - Galerkin method. The authors have expressed a formula for finding the lowest of the split-frequency vibrations of a shell with a cutout. It is stated, that in case of an appropriate choice of added mass value the lower frequencies are comparable with the case of vibrations of a shell with a hole. By numerical and experimental modeling and finite element method in the environment of MSC "Nastran" oscillation frequencies a shell supporting a concentrated mass and a shell with a cutout were compared. It is shown, that the results of the dynamic analysis of shells with holes with a suitable choice of the attached mass values are comparable with the results of the analysis of shells carrying a point mass. It was concluded that the edges in the holes, significantly affect the reduction in the lowest frequency, and need to be strengthened.

  10. Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring

    Science.gov (United States)

    Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.

    2017-10-01

    In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.

  11. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  12. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  13. Investigation into Photoconductivity in Single CNF/TiO2-Dye Core–Shell Nanowire Devices

    Directory of Open Access Journals (Sweden)

    Rochford Caitlin

    2010-01-01

    Full Text Available Abstract A vertically aligned carbon nanofiber array coated with anatase TiO2 (CNF/TiO2 is an attractive possible replacement for the sintered TiO2 nanoparticle network in the original dye-sensitized solar cell (DSSC design due to the potential for improved charge transport and reduced charge recombination. Although the reported efficiency of 1.1% in these modified DSSC’s is encouraging, the limiting factors must be identified before a higher efficiency can be obtained. This work employs a single nanowire approach to investigate the charge transport in individual CNF/TiO2 core–shell nanowires with adsorbed N719 dye molecules in dark and under illumination. The results shed light on the role of charge traps and dye adsorption on the (photo conductivity of nanocrystalline TiO2 CNF’s as related to dye-sensitized solar cell performance.

  14. In-depth nanocrystallization enhanced Li-ions batteries performance with nitrogen-doped carbon coated Fe3O4 yolk-shell nanocapsules

    Science.gov (United States)

    Wu, Qianhui; Zhao, Rongfang; Liu, Wenjie; Zhang, Xiue; Shen, Xiao; Li, Wenlong; Diao, Guowang; Chen, Ming

    2017-03-01

    In this paper nitrogen-doped carbon-encapsulation Fe3O4 yolk-shell magnetic nanocapsules (Fe3O4@C-N nanocapsules) have been successfully constructed though a facile hydrothermal method and subsequent annealing process. Fe3O4 nanoparticles are completely enclosed in nitrogen-doped carbon shells with void space between the nanoparticle and the shell. The yolk-shell structure allows Fe3O4 nanoparticles to expand freely without breaking the outer carbon shell during the lithiation/delithiation processes. The volume expansion of Fe3O4 results in the in-depth nanocrystallization. Fortunately, the new generated small nanoparticles can increase the capability with the cycle increase due to the unique confinement effect and excellent electronic conductivity of the nitrogen-doped carbon shells. Hence, after 150 cycles, the discharge capacity of Fe3O4@C-N-700 nanocapsules still remained 832 mA h g-1 at 500 mA g-1, which corresponds to 116.7% of the lowest capacity (713 mA h g-1) at the 16th cycle. We believe that the yolk-shell structure is conducive to enhance the capacity of easy pulverization metal oxidation during the charge/discharge processes.

  15. Massless charged particles: Cosmic censorship, and the third law of black hole mechanics

    Science.gov (United States)

    Fairoos, C.; Ghosh, Avirup; Sarkar, Sudipta

    2017-10-01

    The formulation of the laws of Black hole mechanics assumes the stability of black holes under perturbations in accordance with the "cosmic censorship hypothesis" (CCH). CCH prohibits the formation of a naked singularity by a physical process from a regular black hole solution with an event horizon. Earlier studies show that naked singularities can indeed be formed leading to the violation of CCH if a near-extremal black hole is injected with massive charged particles and the backreaction effects are neglected. We investigate the validity of CCH by considering the infall of charged massless particles as well as a charged null shell. We also discuss the issue of the third law of Black hole mechanics in the presence of null charged particles by considering various possibilities.

  16. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers.

    Science.gov (United States)

    Sun, Baichuan; Barnard, Amanda S

    2016-08-07

    Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.

  17. Links between phytoplankton dynamics and shell growth of Arctica islandica on the Faroe Shelf

    Science.gov (United States)

    Bonitz, Fabian Georg Wulf; Andersson, Carin; Trofimova, Tamara; Hátún, Hjálmar

    2018-03-01

    The phytoplankton dynamics on the Faroe Shelf are strongly connected to higher trophic levels, and their inter-annual variability has great importance for many organisms, including the principal fish stocks. Hence, information on the marked phytoplankton variability is scientifically and economically valuable. We show here that the shell growth variability in Arctica islandica shells has the potential to identify periods of increased and decreased phytoplankton concentrations on the Faroe Shelf and in the wider Faroese region in previous centuries. The growth of A. islandica has often been linked to changes in phytoplankton concentrations, i.e., food availability. By cross-matching life-collected and sub-fossil A. islandica shells from two separate locations on the Faroe Shelf, we have built a master chronology, which reaches back to the 17th century. This master chronology correlates well with a Primary Production index for the Faroe Shelf (r = 0.65; p phytoplankton concentrations over the wider Faroese Channel Region, as represented in the Continuous Plankton Recorder surveys, especially for the months June-September (r = 0.39; p < 0.01). In addition, an inverse relationship is observed between the master chronology and on-shelf water temperatures from June-September (r = - 0.29; p < 0.01), which is likely associated with a previously reported inverse relationship between temperatures and the on-shelf primary production. An analysis of the δ18O in the shells shows that the main growing season of the shells presumably occurs during the spring and summer months, which concurs with the main spring bloom.

  18. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    Science.gov (United States)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic

  19. Identification and concentration of selected pesticide residues in Ghanaian cocoa beans

    International Nuclear Information System (INIS)

    Sefakor, Adzo Fialor

    2017-07-01

    Pest and disease have been the major causes of low cocoa production worldwide and the use of chemicals in the form of pesticides is one of the main ways of mitigating their undesirable outcome. However, inappropriate application of pesticides does not only affect the quality of cocoa bean products and the well being of consumers of such products but can also damage the natural flora and fauna in the environment. Hence the reason why evaluating the concentrations of pesticide residues is necessary in establishing the quality of a cocoa. The goal of this study was therefore to determine the concentrations and distribution of specific pesticide residues in cocoa beans from the six cocoa growing regions of Ghana. Three classes of pesticides were tested for in cocoa beans obtained from seventeen (17) districts in the Brong Ahafo, Eastern, Central, Western North, Ashanti and Western South cocoa growing regions of Ghana. These were the neonicotinoids (Thiamethoxam, Clothianidin, Imidacloprid and Acetamiprid); the synthetic pyrethroids (Cypermethrin, Deltamethrin, Fenvalerate, Lambda Cyhalothrin and Permethrin) and the organophosphorous compound Chlorpyrifos. Pesticide residue analyses were done separately on the whole unshelled beans, the nibs and the shells using a GC/ECD for the synthetic pyrethroids and organophosphorous compound and a QqQ-LC/MS for the neonicotinoids. The results obtained showed that the mean concentrations of the neonicotinoids in all the three matrices ranged from <0.001 to 0.018 mg/kg in the shells, <0.001 to 0.0025 mg/kg in the nibs and <0.001 to 0.005 mg/kg in the whole beans with Imidacloprid being the predominant one. Ashanti Region had the highest concentration of Imidacloprid in all the three matrices whilst Eastern Region recorded the least concentration of Imidacloprid in the shells (0.009 mg/kg) and whole unshelled beans (0.002 mg/kg). In relations to the synthetic pyrethroids tested for, the results obtained indicated that out of the

  20. The SCA description of inner-shell Coulomb ionization and associated phenomena

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1989-01-01

    The semiclassical trajectory method for describing atomic processes induced by charged projectiles is outlined. The framework for the perturbative SCA formalism is sketched with emphasis on the first-order time-dependent approach. Selected results from computations on inner-shell Coulomb ionization and δ-electron emission are presented. The kinematic scaling law for ionization and pair-production phenomena is treated in detail. The importance of this scaling law for high-energy atomic collision physics is stressed. (orig.)

  1. Formation and evaporation of an electrically charged black hole in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo [Fudan University, Center for Field Theory and Particle Physics and Department of Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany); Modesto, Leonardo [Southern University of Science and Technology, Department of Physics, Shenzhen (China); Porey, Shiladitya [Novosibirsk State University, Novosibirsk (Russian Federation); Rachwal, Leslaw [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)

    2018-02-15

    Extending previous work on the formation and the evaporation of black holes in conformal gravity, in the present paper we study the gravitational collapse of a spherically symmetric and electrically charged thin shell of radiation. The process creates a singularity-free black hole. Assuming that in the evaporation process the charge Q is constant, the final product of the evaporation is an extremal remnant with M = Q, which is reached in an infinite amount of time. We also discuss the issue of singularity and thermodynamics of black holes in Weyl's conformal gravity. (orig.)

  2. Dissociative photoionization of IBr following I(4d) and Br(3d) inner-shell excitations in the range of 60 ∼ 133 eV: remarkable biased charge spread relevant to the core-hole states

    International Nuclear Information System (INIS)

    Boo, Bong Hyun; Koyano, Inosuke

    2002-01-01

    Dissociative photoionization of an interhalogen molecule, iodine monobromide (IBr), spanning the I(4d) and the Br(3d) inner-shell excitation/ionization regions has been studied by using time-of-flight (TOF) mass spectrometry coupled to synchrotron radiation in the range of 60 ∼ 133 eV. The total and the individual photoion yields have been recorded as functions of the photon energy. Here, a giant shape resonance has been observed owing to the I(4d 10 ) →I(4d 9 εf) transition, the transition probability for which outweighs that for the Br(3d 10 ) →Br(3d 9 εf) excitation. In addition to the huge resonance, discrete resonances owing to the Br(3d) -1 IBr(4pσ + ) and the Br(3d -1 )Br(5p) transitions, with very weak intensities, are observed at 70.5 and 73.6 eV and have spin-orbit splittings of = 1.0 and = 0.9 eV, respectively. The dissociation processes of singly and doubly charged parent ions have also been evaluated from the variations of the individual ion and photoion-photoion coincidence (PIPICO) yields with the photon energy. Below the Br(3d) threshold, including the Br(3d) discrete excitation region, 60 + and I 2+ ions are exclusively formed with a trace number of Br + ions. Slightly above the Br(3d) threshold, more specifically at 77.5 eV, however, photoionization events leading to the formations of Br + and Br 2- prevail. At higher energies beyond the Br(3d) threshold, 78 + and I 2+ turn out to exceed again those for Br + and Br 2+ , respectively. Over the entire energy range examined, a remarkable biased charge spread in dissociative photoionization events is observed, presumably reflecting the fact that charge localized mostly in the excited atoms relevant to the specific inner-shell excitation, which can be accounted for mainly by a two-step decay process via a fast dissociation followed by autoionization upon vuv absorption

  3. Analysis of trace elements in the shells of short-necked clam Ruditapes philippinarum (Mollusca: Bivalvia) with respect to reconstruction of individual life history

    International Nuclear Information System (INIS)

    Arakawa, Jumpei; Sakamoto, Wataru

    1998-01-01

    Strontium (Sr) concentration in the shells of short-necked clams collected at different locations (Shirahama, warm area and Maizuru, cold area, Japan) was analyzed by two methods, PIXE and EPMA. The Sr concentration of external surface of shell umbo, which was made during short term at early benthic phase, was analyzed by PIXE, and was ranged from 1000 to 3500 ppm for individuals. The Sr concentration of clams collected at Shirahama showed positive correlation with shell length (SL) in individuals with SL < 31 mm, whereas clams collected at Maizuru did not show significant correlation. This result may be caused from the difference of the spawning seasons between two areas. The Sr concentration of cross section of shell umbo, which develops thicker continuously during their life to form faint stratum structure, was analyzed by EPMA along the line across the stratum structure. Some surges and long term waving patterns of the Sr concentration were observed. These results suggest that the life histories of individual clams could be recorded in the shell umbo cross sections as variations of trace elements and analyses of trace elements could clarify the histories of individual clams. (author)

  4. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  5. Study of Charge Transport in Vertically Aligned Nitride Nanowire Based Core Shell P-I-N Junctions

    Science.gov (United States)

    2016-07-01

    Ci) [activity of radionuclides] 3.7 × 10 10 per second (s –1 ) [becquerel (Bq)] roentgen (R) [air exposure] 2.579 760 × 10 –4 coulomb per kilogram...objectives include: 1) design and simulation of core-shell structures for realistic estimation of performance metrics achievable from such

  6. Production of bioethanol from heart and pineapple shell using the yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Corella Quiros, Byron Antonio

    2013-01-01

    The performance of bioethanol production was evaluated from heart and pineapple shell, using the yeast Saccharomyces Cerevisiae, in which has been obtained a maximum output of 1,6% v/v. The research was divided into a phase of characterization and five experimental phases. The heart and pineapple shell were used as substrate for the study. The contents of glucose, reducing sugars and total, moisture, ash, crude fiber and soluble solids content were determined of the heart and golden pineapple shell (MD2). The shell has had a higher content of soluble solids, fiber content, ash and lower moisture content and reducing sugars. In the first experimental phase was made a fermentation of commercial sucrose, with the objective to corroborate the method of measurement of CO 2 and the pH was measured of the water that is collected the gas. Great variation between samples has not been observed, comparing the method to estimate the losses of gas, so it is reproducible and the losses of CO 2 has been at least of 22%. In the second experimental stage to compare measurement methods of ethanol, for collection of CO 2 and gas chromatography, it has been found that for concentrations from 0 to 0,79% v/v, the results have shown a quadratic behavior (second-degree polynomial with 0,83173x 2 +0,0024 x, R 2 =0,9984), while that for higher concentrations to 0,79% the relation has been linear (0,6372 x -0,099, R 2 =0,9424), in which x is the %v/v of ethanol, of the chromatographic method. In the third experimental stage were compared the effects of the filtration. The significant differences of this effect were not found for either of the two substrates used: hearts and shells. The adjustment parameters of the modified Gompertz equation for mixtures of 53% heart and 47% shell, and concentration of 280 g/L have been: Pm 0,72 %v/v; λ 0,3 h, Rm 0,047 (%v/v)/h; for a concentration of 400 g/L, have been Pm 1,3 %v/v λ 1,8 h and Rm 0,068 (%v/v)/h and for 523 g/L, using extract of yeast have

  7. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    Science.gov (United States)

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  8. K-shell excitation studied for H- and He-like bismuth ions in collisions with low-z target atoms

    International Nuclear Information System (INIS)

    Stoehlker, T.; Bosch, F.; Geissel, H.; Kozhuharov, C.; Ludziejewski, T.; Mokler, P.H.; Scheidenberger, C.; Stachura, Z.; Warczak, A.

    1997-09-01

    The formation of excited projectile states via Coulomb excitation is investigated for hydrogen- and helium-like bismuth projectiles (Z=83) in relativistic ion-atom collisions. The excitation process was unambiguously identified by observing the radiative decay of the excited levels to the vacant 1s shell in coincidence with ions that did not undergo charge exchange in the reaction target. In particular, owing to the large fine structure splitting of Bi, the excitation cross-sections to the various L-shell sublevels are determined separately. The results are compared with detailed relativistic calculations, showing that both the relativistic character of the bound-state wave-functions and the magnetic interaction are of considerable importance for the K-shell excitation process in high-Z ions like Bi. The experimental data confirm the result of the complete relativistic calculations, namely that the magnetic part of the Lienard-Wiechert interaction leads to a significant reduction of the K-shell excitation cross-section. (orig.)

  9. Mg/Ca of Continental Ostracode Shells

    Science.gov (United States)

    Ito, E.; Forester, R. M.; Marco-Barba, J.; Mezquita, F.

    2007-12-01

    Marine ionic chemistry is thought to remain constant. This, together with the belief that marine calcifiers partition Mg/Ca in a systematic manner as functions of temperature (and Mg/Ca) of water forms the basis of the Mg/Ca thermometer. In continental settings both of these assumptions are usually not true. Continental waters contain a wide variety of solutes in absolute and relative ion concentrations. Hence, waters with identical Mg/Ca may have very different concentrations of Mg and Ca and very different anions. Here we use two examples to focus on the effects of ion chemistry on Mg/Ca partitioning in continental ostracode shells and we ignore the complexities of solute evolution, which can change Mg/Ca over timescales of minutes to millennia. Palacios-Fest and Dettman (2001) conducted a monthly study of ,Cypridopsis vidua at El Yeso Lake in Sonora, Mexico. They established a relation between temperature and average shell Mg/Ca using regression analyses on averaged data. When their Mg/Ca-temperature relation is applied to monthly ,C. vidua data from Page Pond near Cleveland, Ohio, water temperatures of -8 to -1°C are obtained. The observed Mg/Ca ranges for El Yeso Lake (0.31 to 0.46) and Page Pond (0.33 to 0.46) are similar, as are their specific conductivities (700 to 850μS for El Yeso Lake; 400 to 600μS for Page Pond). However, [Ca] is 140-260 mg/L for El Yeso, but only 70-90 mg/L for Page Pond. Page Pond data, in fact, shows a good temperature shell Mg/Ca relation for .C. vidua, but the relation is different from that at El Yeso. Hence, shell Mg/Ca is a multi-valued, family of curves function of temperature and Mg/Ca of water that depends on the [Mg] and [Ca] values in water and perhaps other factors. Our second example comes from sites near Valencia, Spain and involves shell data for ,Cyprideis torosa, an estuarine ostracode that is tolerant of a wide range of salinity and can live in continental waters as long as the carbonate alkalinity to Ca ratio is

  10. Faceted shell structure in grain boundary diffusion-processed sintered Nd–Fe–B magnets

    International Nuclear Information System (INIS)

    Seelam, U.M.R.; Ohkubo, T.; Abe, T.; Hirosawa, S.; Hono, K.

    2014-01-01

    Graphical abstract: The grain boundary diffusion process (GBDP) using a heavy rare earth elements (HRE) such as Dy and Tb is known as an effective method to enhance the coercivity of Nd–Fe–B sintered magnets without reducing remanence. This process has been industrially implemented to manufacture Nd–Fe–B based sintered magnets with high coercivity and high remanence. In this process, Dy is considered to diffuse through grain boundaries (GBs) to form (Nd 1−x Dy x ) 2 Fe 14 B shells surrounding the Nd 2 Fe 14 B grains and the higher anisotropy field of the Dy-rich shell is considered to suppress the nucleation of reverse domains at low magnetic field. Although there are several investigations on the microstructure of HRE GBDP Nd–Fe–B magnets, no paper addressed the origin of the asymmetric formation of HRE rich shells. Based on detailed analysis of facet planes of core/shell interfaces, we propose a mechanism of the faceted core/shell microstructure formation in the GBDP sintered magnets. We believe that this gives new insights on understanding the coercivity enhancement by the GBDP. - Highlights: • Faceting was observed at the interfaces of cores and shells. • The core/shell interfaces are sharp with an abrupt change in Dy concentration. • Meting occurs at the interfaces of metalic Nd-rich/Nd 2 Fe 14 B phases above 685 °C due to eutectic reaction. • Solidification of Dy-enriched liquid phase from 900 °C can result in the shell formation. - Abstract: Dysprosium enriched shell structure formed by the grain boundary diffusion process (GBDP) of a sintered Nd–Fe–B magnet was characterized by using scanning electron microscopy, electron back-scattered diffraction and transmission electron microscopy. Faceted core–shell interfaces with an abrupt change in Dy concentration suggest the Dy-rich shells are formed by the solidification of the liquid phase during cooling from the GBDP temperature. The Nd-rich phases are almost free from Dy, and

  11. Underscreening in concentrated electrolytes.

    Science.gov (United States)

    Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan

    2017-07-01

    Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.

  12. Ivestigation of uranium adsorption by using coconut shell

    International Nuclear Information System (INIS)

    Aslani, M.A.A.; Akyil, S.; Aytas, S.; Eral, M.

    2001-01-01

    At the present study, we investigated the basic features of uranium uptake from dilute aqueous solution by using coconut shell and the effect of uranium on this adsorption phenomena. It has also been shown that the adsorption of uranium was affected with some factors such as pH, uranium concentration, and contact time

  13. Protective agent-free synthesis of Ni-Ag core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.-H. [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)]. E-mail: chendh@mail.ncku.edu.tw; Wang, S.-R. [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2006-12-10

    Ni-Ag core-shell nanoparticles have been prepared by successive hydrazine reduction in ethylene glycol in the absence of protective agents. TEM analysis indicated the product was very fine and the thickness of Ag nanoshells could be controlled by the added silver nitrate concentration. The analyses of electron diffraction pattern and XRD revealed that both Ni cores and Ag shells had a fcc structure. The surface composition analysis by XPS indicated that Ni cores were fully covered by Ag nanoshells. Because of the absence of protective agent, the appropriate nickel concentration for the coating of Ag nanoshells should be less than 1.0 mM to avoid particle agglomeration. The product possessed the surface character of Ag and the magnetic property of Ni, and may have many potential applications in optical, magnetic, catalytic, biochemical, and biomedical fields.

  14. Metal and transuranic records in mussel shells, byssal threads and tissues

    Science.gov (United States)

    Koide, Minoru; Lee, Dong Soo; Goldberg, Edward D.

    1982-12-01

    Bivalve shells offer several advantages over tissues for the monitoring of heavy metal pollutants in the marine environment. They are easier to handle and to store. The problem of whether to depurate the animals before analyses is avoided. The shells appear to be more sensitive to environmental heavy metals levels over the long term than do the soft parts. Of the substances examined (Cd, Cu, Zn, Pb, Ag, Ni, 238Pu and 239 + 240Pu) only Pb and Pu displayed a strong covariance between soft tissue and shell concentrations. There were strong correlations between metals in the shell but not in the soft tissues in general. The byssal threads, because of their enrichment of transuranic elements and of their ease in handling, may be useful in monitoring these metals. A very weak discharge of 238Pu to marine waters adjacent to a nuclear reactor was detected in the byssal threads of mussels.

  15. Precision laser spectroscopy of highly charged ions

    International Nuclear Information System (INIS)

    Kuehl, T.; Borneis, S.; Becker, S.; Dax, A.; Engel, T.; Grieser, R.; Huber, G.; Klaft, I.; Klepper, O.; Kohl, A.; Marx, D.; Meier, K.; Neumann, R.; Schmitt, F.; Seelig, P.; Voelker, L.

    1996-01-01

    Recently, intense beams of highly charged ions have become available at heavy ion cooler rings. The obstacle for producing these highly interesting candidates is the large binding energy of K-shell electrons in heavy systems in excess of 100 keV. One way to remove these electrons is to strip them off by passing the ion through material. In the cooler ring, the ions are cooled to a well defined velocity. At the SIS/ESR complex it is possible to produce, store, and cool highly charged ions up to bare uranium with intensities exceeding 10 8 atoms in the ring. This opens the door for precision laser spectroscopy of hydrogenlike-heavy ions, e.g. 209 Bi 82+ , and allows to examine the interaction of the single electron with the large fields of the heavy nucleus, exceeding any artificially produced electric and magnetic fields by orders of magnitude. In the electron cooler the interaction of electrons and highly charged ions otherwise only present in the hottest plasmas can be studied. (orig.)

  16. Indoor solar thermal energy saving time with phase change material in a horizontal shell and finned-tube heat exchanger.

    Science.gov (United States)

    Paria, S; Sarhan, A A D; Goodarzi, M S; Baradaran, S; Rahmanian, B; Yarmand, H; Alavi, M A; Kazi, S N; Metselaar, H S C

    2015-01-01

    An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises.

  17. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  18. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences

    Science.gov (United States)

    Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezső

    2018-02-01

    The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ɛ = 78.5), and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson's equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 - 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm-2. The anions are monovalent with a fixed diameter d- = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K). We provide all the raw data in the supplementary material (ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-084802">supplementary material).

  19. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences

    Directory of Open Access Journals (Sweden)

    Mónika Valiskó

    2018-02-01

    Full Text Available The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ϵ = 78.5, and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson’s equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 − 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm−2. The anions are monovalent with a fixed diameter d− = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K. We provide all the raw data in the supplementary material.

  20. Synthesis and characterization of Fe3O4–TiO2 core-shell nanoparticles

    International Nuclear Information System (INIS)

    Stefan, M.; Pana, O.; Leostean, C.; Silipas, D.; Bele, C.; Senila, M.; Gautron, E.

    2014-01-01

    Composite core-shell nanoparticles may have morpho-structural, magnetic, and optical (photoluminescence (PL)) properties different from each of the components considered separately. The properties of Fe 3 O 4 –TiO 2 nanoparticles can be controlled by adjusting the titania amount (shell thinness). Core–shell nanoparticles were prepared by seed mediated growth of semiconductor (TiO 2 ) through a modified sol-gel process onto preformed magnetite (Fe 3 O 4 ) cores resulted from the co-precipitation method. The structure and morphology of samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), and high resolution-TEM respectively. X-ray photoelectron spectroscopy was correlated with ICP-AES. Magnetic measurements, optical absorption spectra, as well as PL spectroscopy indicate the presence of a charge/spin transfer from the conduction band of magnetite into the band gap of titania nanocrystals. The process modifies both Fe 3 O 4 and TiO 2 magnetic and optical properties, respectively.

  1. Molluscan shell colour.

    Science.gov (United States)

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  2. Lactic acid demineralization of shrimp shell and chitosan synthesis

    Directory of Open Access Journals (Sweden)

    Alewo Opuada AMEH

    2015-05-01

    Full Text Available The use of lactic acid was compared to hydrochloric acid for shrimp shell demineralization in chitosan synthesis. Five different acid concentrations were considered for the study: 1.5M, 3.0M, 4.5M, 6.0M and 7.5M. After demineralization, the shrimp shell were deproteinized and subsequently deacetylated to produce chitosan using sodium hydroxide solution. The synthesized chitosan samples were characterized using solubility, FTIR, SEM, XRD and viscosity. The SEM, FTIR and XRD analysis indicated that chitosan was synthesized with a high degree of deacetylation (83.18±2.11 when lactic acid was used and 84.2±5.00 when HCl was used. The degree of deacetylation and the molecular weight of the chitosan samples were also estimated. ANOVA analysis (at 95% confidence interval indicated that acid type and concentration did not significantly affect the solubility, degree of deacetylation, viscosity and molecular weight of the chitosan within the range considered.

  3. Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass

    International Nuclear Information System (INIS)

    Dahiya, Sudhir; Tripathi, R.M.; Hegde, A.G.

    2008-01-01

    In this study biosorption potential of pre-treated arca shell biomass for lead, copper, nickel, cobalt and cesium was explored from the artificially prepared solution containing known amount of metals. The effects of pH, initial concentration, biosorbent dosage and contact time were studied in batch experiments. Effects of common ions like sodium, potassium, calcium and magnesium on the sorption capacity of pre-treated arca biomasses were also studied. To analyse the homogeneity of the biomaterial, experiments were performed for eight lots arca shell biomass for all the studies elements and it was observed that relative standard deviation in uptake capacity was within 10% for all elements. At equilibrium, the maximum total uptake by shell biomaterial was 18.33 ± 0.44, 17.64 ± 0.31, 9.86 ± 0.17, 3.93 ± 0.11 and 7.82 ± 0.36 mg/g for lead, copper, nickel, cesium and cobalt, respectively, under the optimised condition of pH, initial concentration, biosorbent dose and contact time. Effect of all the common ions jointly up to concentration of 50 ppm was negligible for all the elements but at higher levels the cations affects the uptake capacity. Sorption isotherms were studied to explain the removal mechanism of both elements by fitting isotherms data into Lagergren, Freundlich and Langmuir equations. Halls separation factor estimated under optimised condition also favours the sorption potential of these elements using arca shell biomass. Arca shell biomass can be effectively and efficiently employed for removal of studied elements after optimisation of parameters

  4. The influence of polarizability and charge transfer on specific ion effects in the dynamics of aqueous salt solutions

    Science.gov (United States)

    Nguyen, Mary; Rick, Steven W.

    2018-06-01

    The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.

  5. Electrostatic field and charge distribution in small charged dielectric droplets

    Science.gov (United States)

    Storozhev, V. B.

    2004-08-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.

  6. Electrostatic field and charge distribution in small charged dielectric droplets

    International Nuclear Information System (INIS)

    Storozhev, V.B.

    2004-01-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm

  7. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    International Nuclear Information System (INIS)

    Zhai, Jing; Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei; Chen, Jian-Feng

    2011-01-01

    Highlights: → We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. → The as-formed particles with controllable size and morphology are antioxidant. → The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 o C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  8. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jing [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China); Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Jian-Feng, E-mail: chenjf@mail.buct.edu.cn [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China)

    2011-06-15

    Highlights: {yields} We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. {yields} The as-formed particles with controllable size and morphology are antioxidant. {yields} The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 {sup o}C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  9. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  10. Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites

    Science.gov (United States)

    S, Abdul Khalil H. P.; Masri, M.; Saurabh, Chaturbhuj K.; Fazita, M. R. N.; Azniwati, A. A.; Sri Aprilia, N. A.; Rosamah, E.; Dungani, Rudi

    2017-03-01

    In the present study, a successful attempt has been made on enhancing the properties of hybrid kenaf/coconut fibers reinforced vinyl ester composites by incorporating nanofillers obtained from coconut shell. Coconut shells were grinded followed by 30 h of high energy ball milling for the production of nanoparticles. Particle size analyzer demonstrated that the size of 90% of obtained nanoparticles ranged between 15-140 nm. Furthermore, it was observed that the incorporation of coconut shell nanofillers into hybrid composite increased water absorption capacity. Moreover, tensile, flexural, and impact strength increased with the filler loading up to 3 wt.% and thereafter decrease was observed at higher filler concentration. However, elongation at break decreased and thermal stability increased in nanoparticles concentration dependent manner. Morphological analysis of composite with 3% of filler loading showed minimum voids and fiber pull outs and this indicated that the stress was successfully absorbed by the fiber.

  11. Critical Assessment of TD-DFT for Excited States of Open-Shell Systems: I. Doublet-Doublet Transitions.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2016-01-12

    A benchmark set of 11 small radicals is set up to assess the performance of time-dependent density functional theory (TD-DFT) for the excited states of open-shell systems. Both the unrestricted (U-TD-DFT) and spin-adapted (X-TD-DFT) formulations of TD-DFT are considered. For comparison, the well-established EOM-CCSD (equation-of-motion coupled-cluster with singles and doubles) is also used. In total, 111 low-lying singly excited doublet states are accessed by all the three approaches. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as the benchmark, it is found that both U-TD-DFT and EOM-CCSD perform well for those states dominated by singlet-coupled single excitations (SCSE) from closed-shell to open-shell, open-shell to vacant-shell, or closed-shell to vacant-shell orbitals. However, for those states dominated by triplet-coupled single excitations (TCSE) from closed-shell to vacant-shell orbitals, both U-TD-DFT and EOM-CCSD fail miserably due to severe spin contaminations. In contrast, X-TD-DFT provides balanced descriptions of both SCSE and TCSE. As far as the functional dependence is concerned, it is found that, when the Hartree-Fock ground state does not suffer from the instability problem, both global hybrid (GH) and range-separated hybrid (RSH) functionals perform grossly better than pure density functionals, especially for Rydberg and charge-transfer excitations. However, if the Hartree-Fock ground state is instable or nearly instable, GH and RSH tend to underestimate severely the excitation energies. The SAOP (statistically averaging of model orbital potentials) performs more uniformly than any other density functionals, although it generally overestimates the excitation energies of valence excitations. Not surprisingly, both EOM-CCSD and adiabatic TD-DFT are incapable of describing excited states with substantial double excitation characters.

  12. Weak polyelectrolyte complexation driven by associative charging

    Science.gov (United States)

    Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.

    2018-03-01

    Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.

  13. Studies on influence of environmental factors on concentration on concentration of radionuclides

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Environmental factors which seemed to influence the concentration of radionuclides to marine organisms including illumination, water temperature, coexisting stable elements, salt concentration, suspended matters in sea water and residue were studied. The influence of illumination was examined by algae using 137 Cs, 60 Co, 85 Sr, and 106 Ru as tracers, within 24 hours of illumination. The concentration of 137 Cs and 60 Co revealed remarkable increase of uptake in accordance with increasing illumination intensity, and 24 hours illumination showed 2 times concentration of that by 4 hours'. 85 Sr and 106 Ru showed no effect of illumination, and suggested their concentration was depending on adsorption to the surface. As for water temperature, the concentration factor of 65 Zn, 137 Cs obtained from fishes and shells by 22 0 C breeding was 2 times of that by 12 0 C breeding. Concerning the influence of coexisting stable elements, fishes and shells were examined by 54 Mn, 60 Co, and 65 Zn as tracers. When the stable elements concentration in sea water became 10 times the normal, concentration factor depending on adsorption and metabolism became respective one tenth and one second of the normal value. The influence of salt concentration was examined using 85 Sr, 65 Zn, and 137 Cs, and revealed that 28 to 40 per cent changes of salt level gave slight influence on concentration factor. In order to study the influence of suspended matters and quality of residue, 3 kinds of 106 Ru complex species were added. Concentration factor of Hijiki (Hijikia fusiforme) showed no remarkable difference between breeding in filtrated and non-filtrated sea water. However, clams living in the sand should be taken care of the concentration by the residue in the sea bottom. (Kanao, N.)

  14. Outer-shell transitions in collisions between multiply charged ions and atoms

    International Nuclear Information System (INIS)

    Bloemen, E.W.P.

    1980-01-01

    The study of collisions between multiply charged ions and atoms (molecules) is of importance in different areas of research. Usually, the most important process is capture of an electron from the target atom into the projectile ion. In most cases the electron goes to an excited state of the projectile ion. These electron capture processes are studied. The author also studied direct excitation of the target atom and of the projectile ion. (Auth.)

  15. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  16. Vibrationally resolved photoionization of the 1σg and 1σu shells of N2 molecule

    International Nuclear Information System (INIS)

    Semenov, S K; Cherepkov, N A; Matsumoto, M; Fujiwara, K; Ueda, K; Kukk, E; Tahara, F; Sunami, T; Yoshida, H; Tanaka, T; Nakagawa, K; Kitajima, M; Tanaka, H; De Fanis, A

    2006-01-01

    Theoretical and experimental study of vibrationally resolved partial photoionization cross sections and angular asymmetry parameter β for the 1σ g and 1σ u shells of N 2 molecule in the region of the σ* shape resonance is reported. The measurements were made at the synchrotron radiation facility SPring-8 in Japan. The calculations in the random phase approximation have been performed using the relaxed core Hartree-Fock wavefunctions with the fractional charge of the ion core equal to 0.7. With its help, the role of interchannel coupling between the closely spaced 1σ g and 1σ u shells was studied. The experiment demonstrates the existence of a correlational maximum in the 1σ u shell photoionization cross section induced by the σ* shape resonance in the 1σ g shell. This maximum reveals itself even more clearly in the angular asymmetry parameter β for the v' = 0 and v' = 1 vibrational states of the ion. The calculation in the random phase approximation gives a consistent interpretation of the experimental data

  17. Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot

    Science.gov (United States)

    Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.

    2017-02-01

    In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.

  18. Inner shell ionization by incident nuclei

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1974-10-01

    The atomic Coulomb excitation process induced by impinging heavy charged particles such as protons, deuterons, α-particles and complex heavy ions is reviewed. Recent experimental and theoretical efforts have led toimproved understanding of the atomic Coulomb excitation as well as to discovery of new types of ionization mechanisms. The following models are mentioned: the Plane Wave Born Approximation (PWBA); theeeeeeeeeeeee modified PWBA model; the Binary Encounter Approximation (BEA); the Semi-Classical Approximation (SCA); the Perturbed-Stationary-State model (PSS). The structure of the SCA model is more thoroughly treated. Experimental results on single Coulomb ionizations of the K-, L-, and M-shells, and of the connected sub-shells by protons are compared with predictions. Most calculations are based on straight line projectile paths and non-relativistic hydrogen-like target electron wave functions. The BEA model and the SCA model seem to work reasonably well for multiple Coulomb ionizations by stripped light ions. Background effects in ion-atom collisions are commented upon. Future aspects of atomic Coulomb excitation by incident nuclei and ions are discussed. The interplay between Coulomb induced processes and united atom phenomena is especially mentioned. The simple ionization models have yielded valuable insights but it is suggested that this branch of collision physics has reached a turning point where new and more advanced and unifying models are needed. (JIW)

  19. Eosin-Y sensitized core-shell TiO2-ZnO nano-structured photoanodes for dye-sensitized solar cell applications.

    Science.gov (United States)

    Manikandan, V S; Palai, Akshaya K; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    In the current investigation, TiO 2 and TiO 2 -ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO 2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO 2 -ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO 2 -ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO 2 -ZnO nanostructures were also compared with the pristine TiO 2 to investigate the shift of wavelength. The TiO 2 -ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (J sc ) from 1.67 mA/cm 2 to 2.1 mA/cm 2 has been observed for TiO 2 -ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO 2 . Henceforth, TiO 2 -ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO 2 -ZnO and TiO 2 , ensuring the potential for DSSC application. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Three-dimensional fabrication and characterisation of core-shell nano-columns using electron beam patterning of Ge-doped SiO2

    DEFF Research Database (Denmark)

    Gontard, Lionel C.; Jinschek, Joerg R.; Ou, Haiyan

    2012-01-01

    electron tomography. The results show that transformations in insulators that have been subjected to intense irradiation using charged particles can be studied directly in three dimensions. The fabricated structures include core-shell nano-columns, sputtered regions, voids, and clusters. (C) 2012 American......A focused electron beam in a scanning transmission electron microscope (STEM) is used to create arrays of core-shell structures in a specimen of amorphous SiO2 doped with Ge. The same electron microscope is then used to measure the changes that occurred in the specimen in three dimensions using...

  1. Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues

    International Nuclear Information System (INIS)

    Estevinho, B.N.; Ratola, N.; Alves, A.; Santos, L.

    2006-01-01

    Sorption with activated carbon has been the technique preferred for pentachlorophenol (PCP) removal from contaminated waters, but regeneration needs and high operation costs are supporting a renewed interest in the search for alternative sorbents. Among them, almond shell, an agricultural by-product, provides interesting economical advantages, once shells account for 50% (in mass) of the whole almond. In this work, the capacity of almond shells to remove PCP from waters without previous activation was studied in batch conditions. While PCP analysis was performed solid-phase microextraction (SPME) followed by gas chromatography with electron capture detection (GC-ECD), mercury porosimetry and Fourier transform infrared spectroscopy (FTIR) provided a preliminary physical and chemical characterization of the sorbent. Almond shells were essentially a macroporous material, with an average surface area of 12.9 ± 2.8 m 2 /g. The efficiency of PCP removal was 93 ± 14%, in 24 h, with an initial concentration of 100 μg/l PCP and 5 μg PCP/g shell. Isotherm data adjusted better to Freundlich equation, where K F and 1/n were 0.075 ± 0.081 mg 1-1/n l 1/n and 1.882 ± 0.289, respectively. Average desorption efficiency was 7%, indicating strong adsorption capacity. Results proved that almond shells may be an excellent low-cost alternative for PCP removal from contaminated waters

  2. TWO-DIMENSIONAL APPROXIMATION OF EIGENVALUE PROBLEMS IN SHELL THEORY: FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The eigenvalue problem for a thin linearly elastic shell, of thickness 2e, clamped along its lateral surface is considered. Under the geometric assumption on the middle surface of the shell that the space of inextensional displacements is non-trivial, the authors obtain, as ε→0,the eigenvalue problem for the two-dimensional"flexural shell"model if the dimension of the space is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the spectra of both flexural and membrane shells. The method consists of rescaling the variables and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable a priori estimates for the scaled eigenvalues.

  3. Relativistic structure, stability, and gravitational collapse of charged neutron stars

    International Nuclear Information System (INIS)

    Ghezzi, Cristian R.

    2005-01-01

    Charged stars have the potential of becoming charged black holes or even naked singularities. We present a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. We assume an equation of state of a neutron gas at zero temperature. The charge distribution is taken as being proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge-to-mass ratios arbitrarily close to the extremum case. We perform a direct check of the stability of the solutions under strong perturbations and for different values of the charge-to-mass ratio. The stars that are in the stable branch oscillate and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater than or equal to the extreme value explode. When a charged star is suddenly discharged, it does not necessarily collapse to form a black hole. A nonlinear effect that gives rise to the formation of a shell of matter (in supermassive stars), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture

  4. A new bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(IV) oxide support

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuichi [Department of Applied Chemistry, School of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Naya, Shin-ichi [Environmental Research Laboratory, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Tada, Hiroaki, E-mail: h-tada@apch.kindai.ac.jp [Department of Applied Chemistry, School of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Environmental Research Laboratory, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan)

    2015-10-01

    Ultrathin Cu layers (∼2 atomic layers) have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO{sub 2} (Au@Cu/TiO{sub 2}) by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO{sub 2} for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm). Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO{sub 2}.

  5. A new bimetallic plasmonic photocatalyst consisting of gold(core-copper(shell nanoparticle and titanium(IV oxide support

    Directory of Open Access Journals (Sweden)

    Yuichi Sato

    2015-10-01

    Full Text Available Ultrathin Cu layers (∼2 atomic layers have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO2 (Au@Cu/TiO2 by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO2 for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm. Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO2.

  6. Structural Arrangement of Water Molecules around Highly Charged Nanoparticles: Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Kim, Eunae; Yeom, Min Sun

    2014-01-01

    Molecular dynamics simulations were performed to understand the structural arrangement of water molecules around highly charged nanoparticles under aqueous conditions. The effect of two highly charged nanoparticles on the solvation charge asymmetry has been examined. We calculated the radial distribution functions of the components of water molecules around nanoparticles which have four charge types at two different salt concentrations. Even though the distributions of water molecules surrounding a sodium ion and a chloride ion are hardly affected by the charges of nanoparticles and the salt concentrations, those around highly charged nanoparticles are strongly influenced by the charges of nanoparticles, but hardly by the charges of nanoparticles and salt concentrations. We find that the distributions of hydrogen atoms in water molecules around one highly charged nanoparticle are dependent on the magnitude of the nanoparticle charge

  7. Polaronic effects on the off-center donor impurity in AlAs/GaAs/SiO2 spherical core/shell quantum dots

    Science.gov (United States)

    El Haouari, M.; Feddi, E.; Dujardin, F.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2017-11-01

    The ground state of a conduction electron coupled to an off-center impurity donor in a AlAS/GaAs spherical core/shell quantum dot is investigated theoretically. The image-charge effect and the influence of the electron-polar-LO-phonon interaction are considered. The electron-impurity binding energy is calculated via a variational procedure and is reported both as a function of the shell width and of the radial position of the donor atom. The polaronic effects on this quantity are particularly discussed.

  8. Photoinduced charge transfer within polyaniline-encapsulated quantum dots decorated on graphene.

    Science.gov (United States)

    Nguyen, Kim Truc; Li, Dehui; Borah, Parijat; Ma, Xing; Liu, Zhaona; Zhu, Liangliang; Grüner, George; Xiong, Qihua; Zhao, Yanli

    2013-08-28

    A new method to enhance the stability of quantum dots (QDs) in aqueous solution by encapsulating them with conducting polymer polyaniline was reported. The polyaniline-encapsulated QDs were then decorated onto graphene through π-π interactions between graphene and conjugated polymer shell of QDs, forming stable polyaniline/QD/graphene hybrid. A testing electronic device was fabricated using the hybrid in order to investigate the photoinduced charge transfer between graphene and encapsulated QDs within the hybrid. The charge transfer mechanism was explored through cyclic voltammetry and spectroscopic studies. The hybrid shows a clear response to the laser irradiation, presenting a great advantage for further applications in optoelectronic devices.

  9. Coupled-cluster calculations for ground and excited states of closed- and open-shell nuclei using methods of quantum chemistry

    International Nuclear Information System (INIS)

    Wloch, Marta; Gour, Jeffrey R; Piecuch, Piotr; Dean, David J; Hjorth-Jensen, Morten; Papenbrock, Thomas

    2005-01-01

    We discuss large-scale ab initio calculations of ground and excited states of 16 O and preliminary calculations for 15 O and 17 O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we are able to obtain the virtually converged results for 16 O and promising results for 15 O and 17 O at the level of two-body interactions. The calculated properties other than binding and excitation energies include charge radius and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to seven or eight major oscillator shells, for which nontruncated shell-model calculations for nuclei with A = 15-17 active particles are presently not possible

  10. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan-Hui, E-mail: sunyanhui0102@163.com; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-30

    Core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe{sub 2}O{sub 3} nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe{sub 2}O{sub 3} (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe{sub 2}O{sub 3} during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g{sup −1} and retains 920/897 mAh g{sup −1} after 200 cycles at 500 mA g{sup −1} (0.5C). Even at 2000 mA g{sup −1} (2C), the electrode delivers the initial capacities of 1400/900 mAh g{sup −1}, and still maintains 630/610 mAh g{sup −1} after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe{sub 2}O{sub 3}@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe{sub 2}O{sub 3} and facilitate the transportation of electrons and Li{sup +} ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe{sub 2}O{sub 3}@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  11. Acquiring Structural Information on Virus Particles with Charge Detection Mass Spectrometry

    Science.gov (United States)

    Keifer, David Z.; Motwani, Tina; Teschke, Carolyn M.; Jarrold, Martin F.

    2016-06-01

    Charge detection mass spectrometry (CDMS) is a single-molecule technique particularly well-suited to measuring the mass and charge distributions of heterogeneous, MDa-sized ions. In this work, CDMS has been used to analyze the assembly products of two coat protein variants of bacteriophage P22. The assembly products show broad mass distributions extending from 5 to 15 MDa for A285Y and 5 to 25 MDa for A285T coat protein variants. Because the charge of large ions generated by electrospray ionization depends on their size, the charge can be used to distinguish hollow shells from more compact structures. A285T was found to form T = 4 and T = 7 procapsids, and A285Y makes a small number of T = 3 and T = 4 procapsids. Owing to the decreased stability of the A285Y and A285T particles, chemical cross-linking was required to stabilize them for electrospray CDMS. Graphical Abstract[Figure not available: see fulltext.

  12. Trace determination of heavy metal concentrations in fauna, flora and salt samples from Black Sea waters by charged particles - induced X-rays

    International Nuclear Information System (INIS)

    Badica, T.; Ciortea, C.; Dima, S.; Petrovici, A.; Popescu, I.; Serbanescu, O.

    1977-01-01

    Studies were performed on Black Sea pollution by charged particles induced X-rays spectra analysis, using alpha and 16 O beams. Fauna, flora and salt samples were analysed. We found some of the concentrations of pollutant elements to be below the accepted levels. (author)

  13. Stable tetrabenzo-Chichibabin's hydrocarbons: Tunable ground state and unusual transition between their closed-shell and open-shell resonance forms

    KAUST Repository

    Zeng, Zebing

    2012-09-05

    Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabin\\'s hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin\\'s hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl 3 and/or concentrated H 2SO 4. The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm). © 2012 American Chemical Society.

  14. Three dimensional stress analysis of nozzle-to-shell intersections by the finite element method and a auto-mesh generation program

    International Nuclear Information System (INIS)

    Fujihara, Hirohiko; Ueda, Masahiro

    1975-01-01

    In the design of chemical reactors or nuclear pressure vessels it is often important to evaluate the stress distribution in nozzle-to-shell intersections. The finite element method is a powerful tool for stress analysis, but it has a defects to require troublesome work in preparing input data. Specially, the mesh data of oblique nozzles and tangential nozzles, in which stress concentration is very high, are very difficult to be prepared. The authors made a mesh generation program which can be used to any nozzle-to-shell intersections, and combining this program with a three dimensional stress analysis program by the finite element method they made the stress analysis of nozzle-to-shell intersections under internal pressure. Consequently, stresses, strains and deformations of nozzles nonsymmetrical to spherical shells and nozzles tangential to cylindrical shells were made clear and it was shown that the curvature of the inner surface of the nozzle corner was a controlling factor in reducing stress concentration. (auth.)

  15. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    International Nuclear Information System (INIS)

    Tamaki, Takashi; Tsujikawa, Shinji

    2008-01-01

    We derive analytic solutions of a chameleon scalar field φ that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m A inside of the body. The standard thin-shell field profile is recovered by taking the limit m A r c →∞, where r c is a radius of the body. We show the existence of ''no-shell'' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m A r c >>1, the effective coupling of φ with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value φ A at the extremum of an effective potential induced by the matter coupling.

  16. Faceted shell structure in grain boundary diffusion-processed sintered Nd–Fe–B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, U.M.R.; Ohkubo, T.; Abe, T.; Hirosawa, S.; Hono, K., E-mail: kazuhiro.hono@nims.go.jp

    2014-12-25

    Graphical abstract: The grain boundary diffusion process (GBDP) using a heavy rare earth elements (HRE) such as Dy and Tb is known as an effective method to enhance the coercivity of Nd–Fe–B sintered magnets without reducing remanence. This process has been industrially implemented to manufacture Nd–Fe–B based sintered magnets with high coercivity and high remanence. In this process, Dy is considered to diffuse through grain boundaries (GBs) to form (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B shells surrounding the Nd{sub 2}Fe{sub 14}B grains and the higher anisotropy field of the Dy-rich shell is considered to suppress the nucleation of reverse domains at low magnetic field. Although there are several investigations on the microstructure of HRE GBDP Nd–Fe–B magnets, no paper addressed the origin of the asymmetric formation of HRE rich shells. Based on detailed analysis of facet planes of core/shell interfaces, we propose a mechanism of the faceted core/shell microstructure formation in the GBDP sintered magnets. We believe that this gives new insights on understanding the coercivity enhancement by the GBDP. - Highlights: • Faceting was observed at the interfaces of cores and shells. • The core/shell interfaces are sharp with an abrupt change in Dy concentration. • Meting occurs at the interfaces of metalic Nd-rich/Nd{sub 2}Fe{sub 14}B phases above 685 °C due to eutectic reaction. • Solidification of Dy-enriched liquid phase from 900 °C can result in the shell formation. - Abstract: Dysprosium enriched shell structure formed by the grain boundary diffusion process (GBDP) of a sintered Nd–Fe–B magnet was characterized by using scanning electron microscopy, electron back-scattered diffraction and transmission electron microscopy. Faceted core–shell interfaces with an abrupt change in Dy concentration suggest the Dy-rich shells are formed by the solidification of the liquid phase during cooling from the GBDP temperature. The Nd-rich phases

  17. Culture growth of testate amoebae under different silicon concentrations.

    Science.gov (United States)

    Wanner, Manfred; Seidl-Lampa, Barbara; Höhn, Axel; Puppe, Daniel; Meisterfeld, Ralf; Sommer, Michael

    2016-10-01

    Testate amoebae with self-secreted siliceous shell platelets ("idiosomes") play an important role in terrestrial silicon (Si) cycles. In this context, Si-dependent culture growth dynamics of idiosomic testate amoebae are of interest. Clonal cultures of idiosomic testate amoebae were analyzed under three different Si concentrations: low (50μmolL -1 ), moderate/site-specific (150μmolL -1 ) and high Si supply (500μmolL -1 ). Food (Saccharomyces cerevisiae) was provided in surplus. (i) Shell size of four different clones of idiosomic testate amoebae either decreased (Trinema galeata, Euglypha filifera cf.), increased (E. rotunda cf.), or did not change (E. rotunda) under the lowest Si concentration (50μmolSiL -1 ). (ii) Culture growth of idiosomic Euglypha rotunda was dependent on Si concentration. The more Si available in the culture medium, the earlier the entry into exponential growth phase. (iii) Culture growth of idiosomic Euglypha rotunda was dependent on origin of inoculum. Amoebae previously cultured under a moderate Si concentration revealed highest sustainability in consecutive cultures. Amoebae derived from cultures with high Si concentrations showed rapid culture growth which finished early in consecutive cultures. (iv) Si (diluted in the culture medium) was absorbed by amoebae and fixed in the amoeba shells resulting in decreased Si concentrations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.

    Science.gov (United States)

    Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi

    2010-11-01

    Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.

  19. Nuclear-charge polarization at scission in fission from moderately excited light-actinide nuclei

    International Nuclear Information System (INIS)

    Nishinaka, Ichiro

    2009-01-01

    Fragment mass yields and the average neutron multiplicity in the proton-induced fission of 232 Th and 238 U were measured by a double time-of-flight method. The most probable charges of secondary fragments were evaluated from the fragment mass yields measured by the double time-of-flight method and the fractional cumulative and independent yields reported in literature. The nuclear-charge polarization of primary fragments at scission was obtained by correcting the most probable charge of secondary fragments for neutron evaporation. The results show that the nuclear-charge polarization at scission is associated with the liquid-drop properties of nuclei and the proton shell effect with Z = 50 of heavy fragments and that it is practically insensitive to mass and excitation energy of the fissioning nucleus in the region of light-actinide nuclei. (author)

  20. Facile synthesis of Ag@CeO{sub 2} core–shell plasmonic photocatalysts with enhanced visible-light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Linen; Fang, Siman [State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Ge, Lei, E-mail: gelei08@sina.com [State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Han, Changcun; Qiu, Ping; Xin, Yongji [Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China)

    2015-12-30

    Highlights: • Novel Ag@CeO{sub 2} core–shell nanostructures with well-controlled shape and shell thickness were successfully synthesized. • The Ag@CeO{sub 2} showed dramatic photocatalytic activity than pure CeO{sub 2}. • Improving activity is from a combination of SPR effect and hybrid effects. • The mechanism was proposed and confirmed by ESR and PL results. - Abstract: Novel Ag@CeO{sub 2} core–shell nanostructures with well-controlled shape and shell thickness were successfully synthesized via a green and facile template-free approach in aqueous solution. As-prepared samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (DRS), electron spin resonance (ESR) and photoluminescence spectroscopy (PL). The structures with different core shapes and controllable shell thickness exhibited unique optical properties. It is found that the nanoscale Ag@CeO{sub 2} core–shell photocatalysts exhibit significantly enhanced photocatalytic activities in the O{sub 2} evolution and MB dye degradation compared to pure CeO{sub 2} nanoparticals. The enhancement in photocatalytic activities can be ascribed to the localized surface plasmon resonance (SPR) of Ag cores. Moreover, larger active interfacial areas and contact between metal/semiconductor in the core–shell structure facilitate transfer of charge carriers and prolong lifetime of photogenerated electron-hole pairs. It is expected that the Ag@CeO{sub 2} core–shell structure may have great potential in a wider range of light-harvesting applications.

  1. Investigation of novel inverted NiO@NixCo1-xO core-shell nanoparticles

    Science.gov (United States)

    Hasan, Samiul; Mayanovic, R. A.; Benamara, Mourad

    2018-05-01

    Inverse core-shell nanoparticles, comprised of an antiferromagnetic (AFM) core covered by a ferromagnetic (FM) or ferrimagnetic (FiM) shell, are of current interest due to their different potential application and due to the tunability of their magnetic properties. The antiferromagnetic nature of NiO and high Néel temperature (523 K) makes this material well suited for inverse core-shell nanoparticle applications. Our primary objective in this project has been to synthesize and characterize inverted core-shell nanoparticles (CSNs) comprised of a NiO (AFM) core and a shell consisting of a NixCo1-xO (FiM) compound. The synthesis of the CSNs was made using a two-step process. The NiO nanoparticles were synthesized using a chemical reaction method. Subsequently, the NiO nanoparticles were used to grow the NiO@NixCo1-xO CSNs using our hydrothermal nano-phase epitaxy method. XRD structural characterization shows that the NiO@NixCo1-xO CSNs have the rock salt cubic crystal structure. SEM-EDS data indicates the presence of Co in the CSNs. Magnetic measurements show that the CSNs exhibit AFM/FiM characteristics with a small coercivity field of 30 Oe at 5 K. The field cooled vs zero field cooled hysteresis loop measurements show a magnetization axis shift which is attributed to the exchange bias effect between the AFM NiO core and an FiM NixCo1-xO shell of the CSNs. Our ab initio based calculations of the NixCo1-xO rock salt structure confirm a weak FiM character and a charge transfer insulator property of the compound.

  2. Investigation of novel inverted NiO@NixCo1-xO core-shell nanoparticles

    Directory of Open Access Journals (Sweden)

    Samiul Hasan

    2018-05-01

    Full Text Available Inverse core-shell nanoparticles, comprised of an antiferromagnetic (AFM core covered by a ferromagnetic (FM or ferrimagnetic (FiM shell, are of current interest due to their different potential application and due to the tunability of their magnetic properties. The antiferromagnetic nature of NiO and high Néel temperature (523 K makes this material well suited for inverse core-shell nanoparticle applications. Our primary objective in this project has been to synthesize and characterize inverted core-shell nanoparticles (CSNs comprised of a NiO (AFM core and a shell consisting of a NixCo1-xO (FiM compound. The synthesis of the CSNs was made using a two-step process. The NiO nanoparticles were synthesized using a chemical reaction method. Subsequently, the NiO nanoparticles were used to grow the NiO@NixCo1-xO CSNs using our hydrothermal nano-phase epitaxy method. XRD structural characterization shows that the NiO@NixCo1-xO CSNs have the rock salt cubic crystal structure. SEM-EDS data indicates the presence of Co in the CSNs. Magnetic measurements show that the CSNs exhibit AFM/FiM characteristics with a small coercivity field of 30 Oe at 5 K. The field cooled vs zero field cooled hysteresis loop measurements show a magnetization axis shift which is attributed to the exchange bias effect between the AFM NiO core and an FiM NixCo1-xO shell of the CSNs. Our ab initio based calculations of the NixCo1-xO rock salt structure confirm a weak FiM character and a charge transfer insulator property of the compound.

  3. Facile synthesis of flower like FePt@ZnO core–shell structure and its bifunctional properties

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Jerina [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, O.D., E-mail: ddjaya@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Mandal, B.P. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Salunke, H.G. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Naik, R. [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-06-01

    Graphical abstract: Flower shaped FePt and ZnO coated FePt with core–shell nanostructures are synthesized by a facile solvothermal procedure. Shell thickness of ZnO over FePt core was tuned by varying FePt concentration with respect to ZnO. Hybrid structure with lower FePt concentration exhibited bifunctionality such as near room temperature ferromagnetism and photoluminescence. Pristine FePt crystallize in the fct (L1{sub 0}) phase whereas it converts into fcc phase in presence of ZnO. - Highlights: • FePt@ZnO hybrid core–shell particles, with unique flower shape morphology have been prepared by solvothermal method. • Phase transition of fct-FePt to fcc-FePt has been found in presence of ZnO nanoparticles. • Plausible mechanism for growth of flowershaped nanoparticle is in accordance with energy minimization principle. • The core shell structure (FePt@ZnO) exhibits bi-functional properties. - Abstract: Flower shaped FePt and ZnO coated FePt (FePt@ZnO) core–shell nanostructures are synthesized by a facile solvothermal procedure. Two different compositions (molar ratio) of FePt and ZnO (FePt:ZnO = 1:3 and FePt:ZnO = 1:6) core–shells with different thicknesses of ZnO shells were synthesized. Hybrid FePt@ZnO core–shell flower structure with lower FePt concentration (FePt:ZnO = 1:6) exhibited bifunctionality including near room temperature ferromagnetism and photoluminescence at ambient conditions. X-ray diffraction patterns of pristine FePt showed partially ordered face centred tetragonal (fct) L1{sub 0} phase whereas ZnO coated FePt (FePt@ZnO) nanostructures showed hexagonal ZnO and disordered phase of FePt with fcc structure. The phase transition of fct FePt to fcc phase occurring in presence of ZnO is further confirmed by transmission electron microscopy and magnetic measurement studies. The formation of the nanoflowers was possibly due to growth along the [0 1 1] or [0 0 1] direction, keeping the core nearly spherical in accordance with the

  4. Absence of molecular deuterium dissociation during room-temperature permeation into polystyrene ICF target shells

    International Nuclear Information System (INIS)

    Honig, A.; Alexander, N.; Fan, Q.; Gram, R.; Kim, H.

    1991-01-01

    Polystyrene microshells filled with deuterium and tritium gas are important target shells for inertially confined fusion (ICF) and are particularly promising for target containing spin-polarized hydrogens fuels. A currently active approach to the latter uses polarized D in HD, in a method which requires preservation of the high purity of the initially prepared HD (very low specified H 2 and D 2 concentrations). This would not be possible if dissociation should occur during permeation into the target shells. We have thus tested polystyrene shells using a novel method which employs very pure polystyrene shells using a novel method which employs very pure ortho-D 2 as the test gas. An upper limit of 6 x 10 -4 was deduced for the dissociation of D 2 upon room temperature permeation through an approximately 8 um wall of polystyrene, clearing the way for use of polystyrene target shells for ICF fusion experiments with spin-polarized hydrogens fuels. 19 refs., 1 fig

  5. Synthesis of core-shell heterostructured Cu/Cu2O nanowires monitored by in situ XRD as efficient visible-light photocatalysts

    KAUST Repository

    Chen, Wei

    2013-01-01

    Core-shell heterostructured Cu/Cu2O nanowires with a high aspect ratio were synthesized from Cu foam using a novel oxidation/reduction process. In situ XRD was used as an efficient tool to acquire phase transformation details during the temperature-programmed oxidation of Cu foam and the subsequent reduction process. Based on knowledge of the crucial phase transformation, optimal synthesis conditions for producing high-quality CuO and core-shell Cu/Cu2O nanowires were determined. In favor of efficient charge separation induced by the special core-shell heterostructure and the advanced three-dimensional spatial configuration, Cu/Cu2O nanowires exhibited superior visible-light activity in the degradation of methylene blue. The present study illustrates a novel strategy for fabricating efficiently core-shell heterostructured nanowires and provides the potential for developing their applications in electronic devices, for environmental remediation and in solar energy utilization fields. This journal is © The Royal Society of Chemistry.

  6. The gauge-independent QCD effective charge

    International Nuclear Information System (INIS)

    Watson, N.J.

    1997-01-01

    It is shown how the QED concept of a gauge-, scale- and scheme-independent one-loop effective charge can be extended directly at the diagrammatic level to QCD, thus justifying explicitly the ''naive non-abelianization'' prescription used in renormalon calculus. It is first argued that, for on-shell external fields and at the strictly one-loop level, the required gluon self-energy-like function is precisely that obtained from S-matrix elements via the pinch technique. The generalization of the pinch technique to explicitly off-shell processes is then introduced. It is shown how, as a result of a fundamental cancellation among conventional perturbation theory diagrams, encoded in the QCD Ward identities, the pinch technique one-loop gluon self-energy iΠ μν ab (q) remains gauge-independent and universal regardless of the fact that the ''external'' fields in the given process are off-shell. This demonstration involves a simple technique enabling the isolation, in an arbitrary gauge, of iΠ μν ab (q) from subclasses of up to several hundred diagrams at once. Furthermore, it is shown how this one-loop cancellation mechanism iterates for the subclasses of n-loop diagrams containing implicitly the Dyson chains of n one-loop self-energies iΠ μν ab (q). The gauge cancellation required for the Dyson summation of iΠ μν ab (q) is thus demonstrated explicitly in a general class of ghost-free gauges for all orders n. (orig.)

  7. The gauge-independent QCD effective charge

    International Nuclear Information System (INIS)

    Watson, N.J.

    1999-01-01

    It is shown how the QCD concept of a gauge-, scale-and scheme-independent one-loop effective charge can be extended directly at the diagrammatic level to QCD, thus justifying explicitly the 'naive non-abelialization' prescription used in renormalon calculus. It is first argued that, for one-shell external fields and at the strictly one-loop level, the required gluon self-energy-like function is precisely that obtained from S-matrix elements via the pinch technique. The generalization of the pinch technique to explicitly off-shell processes is then introduced. It is shown how, as a result of a fundamental cancellation among conventional perturbation theory diagrams encoded in the QCD Ward identities, the pinch technique one-loop gluon self-energy iΠ μν ab (q) remains gauge-independent and universal regardless of the fact that the 'external' fields in the given process are off-shell. This demonstration involves a simple technique enabling the isolation in a arbitrary gauge, of iΠ μν ab (q) from subclasses of up to several hundreds diagrams at once. Furthermore, it is shown how this one-loop cancellation mechanism iterates for the subclasses of n-loop diagrams containing implicitly the Dyson chains of n-loop self energies iΠ μν ab (q). The gauge cancellation required for the Dyson summation of iΠ μν ab (q) is thus demonstrated explicitly in the class of ghost-free gauges for all orders n. (authors)

  8. Shell report 2001; Les personnes, la planete, les profits. Shell rapport 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In 2001, Shell saw mixed results across the social, environmental and economic spectrum. In order to contribute to the sustainable development, the Group is on track towards meeting its target to reduce greenhouse gas emissions to 10 % below 1990 levels by the end of 2002, although there was a significant increase in spill volumes and greenhouse gas emissions rose. Shell has articulated the business case and defined seven principles of sustainable development for use across the Group in business plans and daily operations: generating robust profitability; delivering value to customers; protecting the environment; managing resources; respecting and safeguarding people; benefiting communities; and working with stakeholders. Key points from the Shell Report include: in the framework of Managing, an independent review of the Shell Nigeria Community Development programme and testing of a human rights assessment tool in Shell South Africa and the implementing of a new Diversity and Inclusiveness Standard; in the framework of the economy the cost improvements of 5,1 billion dollars, ahead of target, the second highest earnings ever in difficult market conditions and the election of Shell top brand for fifth year running by motorists; in the framework of the Social, the safety performance, the avoidance of 100 contracts for incompatibility with Shell Business Principles; in the framework of the Environment, the publication of the Fresh water usage report for the first time, the Greenhouse gas emissions, the increase of spills as a result of a small number of incidents including a pipeline rupture in Nigeria and a well blow out in Oman. The economic, environmental and social data of the Shell Report are externally verified. (A.L.B.)

  9. Experimental and Numerical Investigations on Deformation of Cylindrical Shell Panels to Underwater Explosion

    Directory of Open Access Journals (Sweden)

    K. Ramajeyathilagam

    2001-01-01

    Full Text Available Experimental and numerical investigations on cylindrical shell panels subjected to underwater explosion loading are presented. Experiments were conducted on panels of size 0.8 × 0.6 × 0.00314 m and shell rise-to-span ratios h/l = 0.0, 0.05, 0.1 , using a box model set-up under air backed conditions in a shock tank. Small charges of PEK I explosive were employed. The plastic deformation of the panels was measured for three loading conditions. Finite element analysis was carried out using the CSA/GENSA [DYNA3D] software to predict the plastic deformation for various loading conditions. The analysis included material and geometric non-linearities, with strain rate effects incorporated based on the Cowper-Symonds relation. The numerical results for plastic deformation are compared with those from experiments.

  10. Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight

    Science.gov (United States)

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…

  11. Dietary calcium deficiency in laying ducks impairs eggshell quality by suppressing shell biomineralization.

    Science.gov (United States)

    Chen, Wei; Zhao, Fei; Tian, Zhi Mei; Zhang, Han Xing; Ruan, Dong; Li, Yan; Wang, Shuang; Zheng, Chun Tian; Lin, Ying Cai

    2015-10-01

    The objective of this study was to determine the effects of dietary calcium deficiency on the process of shell formation. Four hundred and fifty female ducks (Anas platyrhynchos) at 22 weeks were randomly assigned to three groups. Ducks were fed one of two calcium-deficient diets (containing 1.8% or 0.38% calcium, respectively) or a calcium-adequate control diet (containing 3.6% calcium) for 67 days (depletion period) and then all ducks were fed a calcium-adequate diet for an additional 67 days (repletion period). Compared with the calcium-adequate control, the average shell thickness, egg shell weight, breaking strength, mammillae density and mammillary knob thickness of shell from ducks that consumed the diet with 0.38% calcium were significantly decreased (Pducks fed 0.38% calcium but not 1.8% calcium. Plasma estradiol concentration was decreased by both of the calcium-deficient diets (Pstudy suggest that dietary calcium deficiency negatively affects eggshell quality and microarchitecture, probably by suppressing shell biomineralization. © 2015. Published by The Company of Biologists Ltd.

  12. Controllable synthesis of Zn{sub 2}TiO{sub 4}-carbon core/shell nanofibers with high photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng [Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Shao, Changlu, E-mail: clshao@nenu.edu.cn [Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Zhang, Mingyi; Guo, Zengcai; Mu, Jingbo; Zhang, Zhenyi; Zhang, Xin; Liang, Pingping; Liu, Yichun [Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China)

    2012-08-30

    Graphical abstract: We describe a controllable route to synthesize Zn{sub 2}TiO{sub 4}-carbon core/shell nanofibers with different thickness of carbon layers (from 2 to 8 nm) as high efficiency photocatalysts. Highlights: Black-Right-Pointing-Pointer Synthesis of Zn{sub 2}TiO{sub 4}-carbon nanofibers with different thickness of carbon layers. Black-Right-Pointing-Pointer Zn{sub 2}TiO{sub 4}-carbon NFs showed photocatalytic activity for the degradation of Rhodamine B. Black-Right-Pointing-Pointer Easy photocatalyst separation and reuse. Black-Right-Pointing-Pointer A general way to fabricate other carbon-coated core/shell photocatalysts. - Abstract: Zn{sub 2}TiO{sub 4}-carbon core/shell nanofibers (Zn{sub 2}TiO{sub 4}-C NFs) with different thickness of carbon layers (from 2 to 8 nm) were fabricated by combining the electrospinning technique and hydrothermal method. The results showed that a uniform carbon layer was formed around the electrospun Zn{sub 2}TiO{sub 4} nanofiber (Zn{sub 2}TiO{sub 4} NFs). By adjusting the hydrothermal fabrication parameters, the thickness of carbon layer varied linearly with the concentration of glucose. Furthermore, the core/shell structure formed between Zn{sub 2}TiO{sub 4} and carbon enhanced the charge separation of pure Zn{sub 2}TiO{sub 4} under ultraviolet excitation, as evidenced by photoluminescence spectra. The photocatalytic studies revealed that the Zn{sub 2}TiO{sub 4}-C NFs exhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B (RB) compared with the pure Zn{sub 2}TiO{sub 4} NFs under ultraviolet excitation, which might be attributed to the high separation efficiency of photogenerated electrons and holes based on the synergistic effect between carbon and Zn{sub 2}TiO{sub 4}. Notably, the Zn{sub 2}TiO{sub 4}-C NFs could be recycled easily by sedimentation without a decrease of the photocatalytic activity.

  13. Structural responses to plasma disruptions in toroidal shells

    International Nuclear Information System (INIS)

    Tillack, M.S.; Kazimi, M.S.; Lidsky, L.M.

    1985-01-01

    The induced pressures, stresses and strains in unrestrained axisymmetric toroidal shells are studied to scope the behavior of tokamak first walls during plasma disruptions. The modeling includes a circuit analog representation of the shell to solve for induced currents and pressures, and a separate quasi-static 1-D finite element solution for the mechanical response. This work demonstrates that the stresses in tokamkak first walls due to plasma disruption may be large, but to first order will not cause failure in the bulk structure. However, stress concentrations at structural supports and discontinuities together with resonant effects can result in large enhancements of the stresses, which could contribute to plastic deformation or failure when added to the already large steady state thermal and pressure loading of the first wall

  14. Indoor Solar Thermal Energy Saving Time with Phase Change Material in a Horizontal Shell and Finned-Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. Paria

    2015-01-01

    Full Text Available An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF. The focus of this study was on the behavior of PCM for storage (charging or melting and removal (discharging or solidification, as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises.

  15. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.

  16. Analysis of Experimental Research on Cyclones with Cylindrical and Spiral Shells

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2012-12-01

    Full Text Available The conducted investigation is aimed at providing information on air flow parameters in the cylindrical and spiral shell (devices are designed for separating solid particles from air flow having tangent flow inlet. Experimental research has employed multi-cyclones created by the Department of Environmental Protection at Vilnius Gediminas Technical University. The study is focused on investigating and comparing the distribution of the dynamic pressure of the airflow in six-channel cyclones inside the structures of devices. The paper establishes and estimates the efficiency of air cleaning changing air phase parameters using different particulate matters. The efficiency of the cyclone has been defined applying the weighted method based on LAND 28-98/M-08 methodology. The article presents the results of experimental research on the air cleaning efficiency of cylindrical and spiral shells using 20 µm glass and clay particulate matter under the initial concentration that may vary from 500 mg/m3 to 15 g/m3 using semi-rings with windows at different positions. The obtained results has shown that the maximum efficiency of the cylindrical shell increases up to 87,3 % while the initial concentration of glass makes 15 g/m3.Article in Lithuanian

  17. Mussel shell evaluation as bioindicator for heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Andrello, Avacir Casanova; Lopes, Fabio; Galvao, Tiago D. [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab. de Fisica Nuclear Aplicada

    2009-07-01

    , being close to 0.015, however, the ratio Cu/Ca varied among the shells, showing that this mollusk is sensitive to concentration of this element in the aquatic environment. The following steep of this work is to correlate the origin of these elements with anthropogenic activities. (author)

  18. Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl2 and CaCl2): Osmotic Pressure Calculations

    Science.gov (United States)

    2015-01-01

    Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831

  19. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  20. Characterization of a Porous Carbon Material Functionalized with Cobalt-Oxide/Cobalt Core-Shell Nanoparticles for Lithium Ion Battery Electrodes

    KAUST Repository

    Anjum, Dalaver H.

    2016-04-18

    A nanoporous carbon (C) material, functionalized with Cobalt-Oxide/Cobalt (CoO/Co) core-shell nanoparticles (NPs), was structurally and chemically characterized with transmission electron microcopy (TEM) while its electrochemical response for Lithium ion battery (LIB) applications was evaluated as well. The results herein show that the nanoporous C material was uniformly functionalized with the CoO/Co core-shell NPs. Further the NPs were crystalline with fcc-Type lattice on the Co2+ oxide shell and hcp-Type core of metallic Co0. The electrochemical study was carried out by using galvanostatic charge/discharge cycling at a current density of 1000 mA g-1. The potential of this hybrid material for LIB applications was confirmed and it is attributed to the successful dispersion of the Co2+/ Co0 NPs in the C support.

  1. Charged weak currents

    International Nuclear Information System (INIS)

    Turlay, R.

    1979-01-01

    In this review of charged weak currents I shall concentrate on inclusive high energy neutrino physics. There are surely still things to learn from the low energy weak interaction but I will not discuss it here. Furthermore B. Tallini will discuss the hadronic final state of neutrino interactions. Since the Tokyo conference a few experimental results have appeared on charged current interaction, I will present them and will also comment on important topics which have been published during the last past year. (orig.)

  2. Relativistic Bose-Einstein condensates thin-shell wormholes

    Science.gov (United States)

    Richarte, M. G.; Salako, I. G.; Graça, J. P. Morais; Moradpour, H.; Övgün, Ali

    2017-10-01

    We construct traversable thin-shell wormholes which are asymptotically Ads/dS applying the cut and paste procedure for the case of an acoustic metric created by a relativistic Bose-Einstein condensate. We examine several definitions of the flare-out condition along with the violation or not of the energy conditions for such relativistic geometries. Under reasonable assumptions about the equation of state of the matter located at the shell, we concentrate on the mechanical stability of wormholes under radial perturbation preserving the original spherical symmetry. To do so, we consider linearized perturbations around static solutions. We obtain that dS acoustic wormholes remain stable under radial perturbations as long as they have small radius; such wormholes with finite radius do not violate the strong/null energy condition. Besides, we show that stable Ads wormhole satisfy some of the energy conditions whereas unstable Ads wormhole with large radii violate them.

  3. Multistage process for the production of bioethanol from almond shell.

    Science.gov (United States)

    Kacem, Imen; Koubaa, Mohamed; Maktouf, Sameh; Chaari, Fatma; Najar, Taha; Chaabouni, Moncef; Ettis, Nadia; Ellouz Chaabouni, Semia

    2016-07-01

    This work describes the feasibility of using almond shell as feedstock for bioethanol production. A pre-treatment step was carried out using 4% NaOH for 60min at 121°C followed by 1% sulfuric acid for 60min at 121°C. Enzymatic saccharification of the pre-treated almond shell was performed using Penicillium occitanis enzymes. The process was optimized using a hybrid design with four parameters including the incubation time, temperature, enzyme loads, and polyethylene glycol (PEG) concentration. The optimum hydrolysis conditions led to a sugar yield of 13.5%. A detoxification step of the enzymatic hydrolysate was carried out at pH 5 using 1U/ml of laccase enzyme produced by Polyporus ciliatus. Fermenting efficiency of the hydrolysates was greatly improved by laccase treatment, increasing the ethanol yield from 30% to 84%. These results demonstrated the efficiency of using almond shell as a promising source for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    Science.gov (United States)

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  5. Nondipole effects in the angular distribution of photoelectrons from the C K shell of the CO molecule

    International Nuclear Information System (INIS)

    Hosaka, K.; Teramoto, T.; Adachi, J.; Yagishita, A.; Golovin, A. V.; Takahashi, M.; Watanabe, N.; Jahnke, T.; Weber, Th.; Schoeffler, M.; Schmidt, L.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.; Osipov, T.; Prior, M. H.; Landers, A. L.; Semenov, S. K.; Cherepkov, N. A.

    2006-01-01

    Measurements and calculations of a contribution of the nondipole terms in the angular distribution of photoelectrons from the C K shell of randomly oriented CO molecules are reported. In two sets of measurements, the angular distribution in the plane containing the photon polarization and the photon momentum vectors of linearly polarized radiation and the full three-dimensional photoelectron momentum distribution after absorption of circularly polarized light have been measured. Calculations have been performed in the relaxed core Hartree-Fock approximation with a fractional charge. Both theory and experiment show that the nondipole terms are very small in the photon energy region from the ionization threshold of the K shell up to about 70 eV above it

  6. Facile synthesis of core-shell Cu2O@ ZnO structure with enhanced photocatalytic H2 production

    Science.gov (United States)

    Zhang, Yong-Hui; Jiu, Bei-Bei; Gong, Fei-Long; Lu, Kuan; Jiang, Nan; Zhang, Hao-Li; Chen, Jun-Li

    2018-05-01

    Core-shell Cu2O@ZnO composites were synthesized successfully based on a one-pot hydrothermal method in the presence of dioctyl sulfosuccinate sodium salt (AOT) surfactant. The Cu2O can be converted to rough core-shell Cu2O@ZnO structure by adjusting the amount of zinc powder added. The as-synthesized Cu2O@ZnO composites exhibited excellent photocatalytic activity and the amount of H2 generated using these composites was 4.5-fold more than that produced with Cu2O cubes. A possible photocatalytic mechanism for the Cu2O@ZnO composites with enhanced photocatalytic activity could be the separation by ZnO of the effective charge carriers.

  7. Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretical study.

    Science.gov (United States)

    Flores, Efracio Mamani; Gouvea, Rogério Almeida; Piotrowski, Maurício Jeomar; Moreira, Mário Lucio

    2018-02-14

    The engineering of semiconductor materials for the development of solar cells is of great importance today. Two topics are considered to be of critical importance for the efficiency of Grätzel-type solar cells, the efficiency of charge separation and the efficiency of charge carrier transfer. Thus, one research focus is the combination of semiconductor materials with the aim of reducing charge recombination, which occurs by spatial charge separation. From an experimental point of view, the combining of materials can be achieved by decorating a core with a shell of another material resulting in a core-shell system, which allows control of the desired photoelectronic properties. In this context, a computational simulation is mandatory for the atomistic understanding of possible semiconductor combinations and for the prediction of their properties. Considering the construction of ZnO/ZnX (X = S, Se or Te) interfaces, we seek to investigate the electronic influence of the shell (ZnX) on the core (ZnO) and, consequently, find out which of the interfaces would present the appropriate properties for (Grätzel-type) solar cell applications. To perform this study, we have employed density functional theory (DFT) calculations, considering the Perdew-Burke-Ernzerhof (PBE) functional. However, it is well-known that plain DFT fails to describe strong electronic correlated materials where, in general, an underestimation of the band gap is obtained. Thus, to obtain the correct description of the electronic properties, a Hubbard correction was employed, i.e. PBE+U calculations. The PBE+U methodology provided the correct electronic structure properties for bulk ZnO in good agreement with experimental values (99.4%). The ZnO/ZnX interfaces were built and were composed of six ZnO layers and two ZnX layers, which represents the decoration process. The core-shell band gap was 2.2 eV for ZnO/ZnS, ∼1.71 eV for ZnO/ZnSe and ∼0.95 eV for ZnO/ZnTe, which also exhibited a type-II band

  8. Study of the effect of shell stabilization of the collective isovector valence-shell excitations along the N=80 isotonic chain

    CERN Multimedia

    It is proposed to investigate the microscopic mechanism which leads to a concentration or a fragmentation of the quadrupole-collective isovector valence-shell excitations, the so-called mixed-symmetry states (MSSs), an effect called shell stabilization of MSSs. This aim will be achieved by identification of MSSs of the unstable nuclei $^{140}$Nd and $^{142}$Sm. The first steps of this program have been undertaken in two subsequent REX-ISOLDE experiments (IS496) in which we have measured the B(E2; 2$^{+}_{1}$$\\rightarrow$ 0$^{+}_{1}$) transition strengths in the radioactive nuclei $^{140}$Nd and $^{142}$Sm. By using these data and the higher beam energy of HIE-ISOLDE we propose now to identify the MSSs of these nuclei by measuring their relative populations with respect to the population of the first 2$^{+}$ states in Coulomb excitation (CE) reactions.

  9. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya E.

    2014-03-01

    Full Text Available It is evidence for an extension of the Standard Model in particle physics, if static electric dipole moments (EDMs are measured for any elementary particle. The nuclear EDM arises mainly from two sources: one comes from asymmetric charge distribution in a nucleus and the other is due to the nucleon intrinsic EDM. We estimate the nuclear EDMs from two sources for the 1/21+ states in Xe isotopes by a shell model approach using full orbitals between magic numbers 50 and 82.

  10. Interelectron correlations in photoionization of outer shells near inner shell thresholds

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V; Drukarev, E G

    2015-01-01

    We have studied the role of virtual excitations of inner shells upon outer shell photoionization. The calculations were performed in the frames of the Random Phase Approximation with Exchange (RPAE) and its generalized version GRPAE that take into account variation of the atomic field due to electron elimination and the inner vacancies decay. We apply both analytic approximation and numeric computations. The results are presented for 3p electrons in Ar and for 4d-electrons in Pd near inner shells thresholds. The effect considered proved to be quite noticeable. (paper)

  11. Reduced Magnetism in Core–Shell Magnetite@MOF Composites

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K.; Sinnwell, Michael A.; Banerjee, Debasis; Devaraj, Arun; Kukkadapu, Ravi K.; Droubay, Timothy C.; Nie, Zimin; Kovarik, Libor; Murugesan, Vijayakumar; Manandhar, Sandeep; Nandasiri, Manjula I.; McGrail, Bernard P.; Thallapally, Praveen K.

    2017-10-17

    Rare-earth elements (REEs) have significant commercial and military uses.1-3 However, REE extraction through conventional mining processes is expensive and feasible at only a few locations worldwide. Alternative methods are needed to produce REEs from more geographically disperse resources and in a cost effective, environmental friendly manner.4,5 Among various sources, geothermal brine, used for generating geothermal energy can possess attractive concentrations (ppb to ppm level) of REEs along with other dissolved metal ions.6 A system that can selectively trap the REEs using an existing geothermal power plant infrastructure would be an attractive additional revenue stream for the plant operator that could accelerate the development and deployment of geothermal plants in the United States and rest of the world.7,8 Here, we demonstrate a magnetic core-shell approach that can effectively extract REEs in their ionic form from aqueous solution with up to 99.99% removal efficiency. The shell, composed of thermally and chemically stable functionalized metal-organic framework (MOF), is grown over a synthesized Fe3O4 magnetic core. Magnetic susceptibility of the particles was found to decline significantly after in situ growth of a MOF shell, which resulted from oxidation of Fe2+ species of the magnetite (Fe3O4) to Fe3+ species (maghemite). The core-shell particles can be completely removed from the mixture under an applied magnetic field, offering a practical, economic, and efficient REE-removal process.

  12. Au/BiOCl heterojunction within mesoporous silica shell as stable plasmonic photocatalyst for efficient organic pollutants decomposition under visible light

    International Nuclear Information System (INIS)

    Yan, Xiaoqing; Zhu, Xiaohui; Li, Renhong; Chen, Wenxing

    2016-01-01

    Highlights: • A heterojunction of Au/BiOCl was fabricated within the mesoporous silica shell. • The compact contact between Au and BiOCl enables electrons back flow from Au to BiOCl. • Au/BiOCl@mSiO 2 plasmonic photocatalyst shows efficient visible light photoactivity. • Hydroxyl radicals are the main oxidants in formaldehyde and Rhodamine B decomposition. - Abstract: A new mesoporous silica protected plasmonic photocatalyst, Au/BiOCl@mSiO 2 , was prepared by a modified AcHE method and a subsequent UV light induced photodeposition process. The surfactant-free heterojunction allows the electrons spontaneously flow from Au to nearby BiOCl surface, leading to the accumulation of positive charges on Au surface, and negative charges on Bi species under visible light. Au/BiOCl@mSiO 2 exhibits high visible light photocatalytic efficiency in complete oxidation of aqueous formaldehyde and Rhodamin B. We showed that a positive relationship exists between the LSPR effect and rate enhancements, and leads to a hypothesis that the metallic Au LSPR enhances the photocatalytic rates on nearby semiconductors by transferring energetic electrons to BiOCl and increasing the steady-state concentration of active ·OH species by a multi-electron reduction of molecular oxygen. The ·OH species is the main oxidant in photocatalytic transformations, whose intensity is greatly enhanced in the dye-involving systems due to the synergetic effect between LSPR and dye sensitization processes. In addition, the mesoporous SiO 2 shell not only inhibits the over growth of BiOCl nanocrystals within the silica frameworks, but also protects the dissolution of chloride or Au species into aqueous solution, which ultimately makes the Au/BiOCl@mSiO 2 catalysts rather stable during photocatalysis.

  13. Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries

    International Nuclear Information System (INIS)

    Schmuelling, Guido; Meyer, Hinrich-Wilhelm; Placke, Tobias; Winter, Martin; Oehl, Nikolas; Knipper, Martin; Kolny-Olesiak, Joanna; Plaggenborg, Thorsten; Parisi, Jürgen

    2014-01-01

    Tin is able to lithiate and delithiate reversibly with a high theoretical specific capacity, which makes it a promising candidate to supersede graphite as the state-of-the-art negative electrode material in lithium ion battery technology. Nevertheless, it still suffers from poor cycling stability and high irreversible capacities. In this contribution, we show the synthesis of three different nano-sized core/shell-type particles with crystalline tin cores and different amorphous surface shells consisting of SnO x and organic polymers. The spherical size and the surface shell can be tailored by adjusting the synthesis temperature and the polymer reagents in the synthesis, respectively. We determine the influence of the surface modifications with respect to the electrochemical performance and characterize the morphology, structure, and thermal properties of the nano-sized tin particles by means of high-resolution transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis. The electrochemical performance is investigated by constant current charge/discharge cycling as well as cyclic voltammetry. (paper)

  14. Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Min; Li, Ying; Hu, Yemin; Zhu, Mingyuan; Jin, Hongming; Li, Wenxian

    2015-01-01

    Graphical abstract: Nano-sized LiFePO4/C composite with core-shell structure was fabricated via a well-designed approach as cathode material forlithium ion battery. The nano-sized LiFePO4/C composite with whole carbon shell coating layer showed an excellent electrical performance. - Abstract: Nano-sized composite with LiFePO 4 -core and carbon-shell was synthesized via a facile route followed by heat treatment at 650 °C. X-ray diffraction (XRD) shows that the core is well crystallized LiFePO 4 . The electron microscopy (SEM and TEM) observations show that the core-shell structured LiFePO 4 /C composite coating with whole carbon shell layer of ∼2.8 nm, possesses a specific surface area of 51 m 2 g −1 . As cathode material for lithium ion battery, the core-shell LiFePO 4 /C composite exhibits high initial capacity of 161 mAh g −1 at 0.1 C, excellent high-rate discharge capacity of 135 mAh g −1 at 5 C and perfect cycling retention of 99.6% at 100 th cycle. All these promising results should be contributed to the core-shell nanostructure which prevents collapse of the particle structure in the long-term charge and discharge cycles, as well as the large surface area of the nano-sized LiFePO 4 /C composite which enhances the electronic conductivity and shortens the distance of lithium ion diffusion

  15. Fabrication and photoelectrochemical properties of silicon nanowires/g-C{sub 3}N{sub 4} core/shell arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhen [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Institute of Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Ma, Ge [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Chen, Zhihong, E-mail: chenzhihong1227@sina.com [Shenyang Institute of Automation, Guangzhou, Chinese Academy of Sciences, Guangzhou 511458 (China); Zhang, Yongguang [Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130 (China); Zhang, Zhe [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Gao, Jinwei [Institute of Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Meng, Qingguo; Yuan, Mingzhe [Shenyang Institute of Automation, Guangzhou, Chinese Academy of Sciences, Guangzhou 511458 (China); Wang, Xin, E-mail: wangxin@scnu.edu.cn [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Liu, Jun-ming [Institute of Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Zhou, Guofu [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China)

    2017-02-28

    Highlights: • A novel Silicon Nanowires/g-C{sub 3}N{sub 4} core/shell arrays photoanode prepared by a mild and inexpensive metal-catalyzed electroless etching (MCEE) process followed by liquid atomic layer deposition (LALD), wiich is a facile and low-cost method. • In comparison with FTO/g-C{sub 3}N{sub 4} and Si NWs samples, the Si NWs/g-C{sub 3}N{sub 4} samples showed significantly enhanced photocurrent which could be attributed to the SiNWs-based core/shell structure. • A systematical PEC mechanism of the Si NWs/g-C{sub 3}N{sub 4} was proposed is this manuscript. - Abstract: A photoelectrochemical (PEC) cell made of metal-free carbon nitride (g-C{sub 3}N{sub 4}) @siliconnanowire(Si NW) arrays (denoted as Si NWs/g-C{sub 3}N{sub 4}) is presented in this work. The as-prepared photoelectrodes with different mass contents of g-C{sub 3}N{sub 4} have been synthesized via a metal-catalyzed electroless etching (MCEE), liquid atomic layer deposition (LALD) and annealing methods. The amount of g-C{sub 3}N{sub 4} on the Si NW arrays can be controlled by tuning the concentration of the cyanamide solution used in the LALD procedure. The dense and vertically aligned Si NWs/g-C{sub 3}N{sub 4} core/shell nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In comparison with FTO/g-C{sub 3}N{sub 4} and Si NW samples, the Si NWs/g-C{sub 3}N{sub 4} samples showed significantly enhanced photocurrents over the entire potential sweep range. Electrochemical impedance spectroscopy (EIS) was conducted to investigate the properties of the charge transfer process, and the results indicated that the enhanced PEC performance may be due to the increased photo-generated interfacial charge transfer between the Si NWs and g-C{sub 3}N{sub 4}. The photocurrent density reached 45 μA/cm{sup 2} under 100 mW/cm{sup 2} (AM 1.5 G) illumination at 0 V (vs. Pt) in neutral Na{sub 2}SO{sub 4} solution (pH ∼ 7

  16. Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study.

    Science.gov (United States)

    Kuprianov, Vladimir I; Arromdee, Porametr

    2013-07-01

    Combustion of peanut and tamarind shells was studied in the conical fluidized-bed combustor using alumina sand as the bed material to prevent bed agglomeration. Morphological, thermogravimetric and kinetic characteristics were investigated to compare thermal and combustion reactivity between the biomass fuels. The thermogravimetric kinetics of the biomasses was fitted using the Coats-Redfern method. Experimental tests on the combustor were performed at 60 and 45 kg/h fuel feed rates, with excess air within 20-80%. Temperature and gas concentrations were measured along radial and axial directions in the reactor and at stack. The axial temperature and gas concentration profiles inside the combustor exhibited sensible effects of fuel properties and operating conditions on combustion and emission performance. High (≈ 99%) combustion efficiency and acceptable levels of CO, CxHy, and NO emissions are achievable when firing peanut shells at excess air of about 40%, whereas 60% is more preferable for burning tamarind shells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-01-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells

  18. Compton polarimetry of 6-35 keV X-rays. Influence of Breit interaction on the linear polarisation of KLL dielectronic recombination transitions in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Joerg, Holger Eric

    2016-12-21

    The polarisation of X-rays emitted during K shell dielectronic recombination (DR) into highly charged ions was studied using electron beam ion traps. In the first experiment, the degree of linear polarisation of X-rays due to K shell DR transitions of highly charged krypton ions was measured with a newly developed Compton polarimeter based on SiPIN diodes. Such polarisation measurements allow a study of the population mechanism of magnetic sublevels in collisions between electrons and ions. In a second experiment, the influence of Breit interaction between electrons on the polarisation of X-rays emitted during K shell DR into highly charged xenon ions was studied. Here, polarisation measurements provide an access to the finer details of the electron-electron interaction in electron-ion collisions. Furthermore, a second Compton polarimeter based on silicon drift detectors has been developed for polarisation measurements at synchrotrons. It has been developed for X-ray polarimetry with a high energy resolution for energies between 6 keV and 35 keV. It was tested in the course of polarisation measurements at an electron beam ion trap and at a synchrotron radiation source.

  19. Abbott-Deser-Tekin Charge of Dilaton Black Holes with Squashed Horizons

    Institute of Scientific and Technical Information of China (English)

    Jun-Jin Peng; Wen-Chang Xiang; Shao-Hong Cai

    2016-01-01

    We consider the conserved charge of static black holes with squashed horizons in the Einstein-Maxwell-dilaton theory via both the Abbott-Deser-Tekin (ADT) method and its off-shell generalization.We first make use of the original ADT method to compute the mass of the dilaton squashed black holes in terms of three different reference spacetimes,which are the asymptotic geometry,the fiat background and the spacetime of the KaluzaKlein monopole with boundary matched to the original metric,respectively.Each mass satisfies the first law of black hole thermodynamics,although the mass computed on the basis of the boundary matching the KaluzaKlein monopole is different from that of the other two reference spacetimes.Then the mass of the black holes is evaluated through the off-shell generalized ADT method.

  20. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  1. Instant Windows PowerShell

    CERN Document Server

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  2. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  3. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale.

    Science.gov (United States)

    Linville, Jessica L; Shen, Yanwen; Ignacio-de Leon, Patricia A; Schoene, Robin P; Urgun-Demirtas, Meltem

    2017-06-01

    A modified version of an in-situ CO 2 removal process was applied during anaerobic digestion of food waste with two types of walnut shell biochar at bench scale under batch operating mode. Compared with the coarse walnut shell biochar, the fine walnut shell biochar has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96-3.83 g biochar (g VS added ) -1 fine walnut shell biochar amended digesters produced biogas with 77.5%-98.1% CH 4 content by removing 40%-96% of the CO 2 compared with the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VS added ) -1 , the fine walnut shell biochar amended digesters (85.7% CH 4 content and 61% CO 2 removal) outperformed the coarse walnut shell biochar amended digesters (78.9% CH 4 content and 51% CO 2 removal). Biochar addition also increased alkalinity as CaCO 3 from 2800 mg L -1 in the control digesters to 4800-6800 mg L -1 , providing process stability for food waste anaerobic digestion.

  4. Combining protein-shelled platinum nanoparticles with graphene to build a bionanohybrid capacitor.

    Science.gov (United States)

    San, Boi Hoa; Kim, Jang Ah; Kulkarni, Atul; Moh, Sang Hyun; Dugasani, Sreekantha Reddy; Subramani, Vinod Kumar; Thorat, Nanasaheb D; Lee, Hyun Ho; Park, Sung Ha; Kim, Taesung; Kim, Kyeong Kyu

    2014-12-23

    The electronic properties of biomolecules and their hybrids with inorganic materials can be utilized for the fabrication of nanoelectronic devices. Here, we report the charge transport behavior of protein-shelled inorganic nanoparticles combined with graphene and demonstrate their possible application as a bionanohybrid capacitor. The conductivity of PepA, a bacterial aminopeptidase used as a protein shell (PS), and the platinum nanoparticles (PtNPs) encapsulated by PepA was measured using a field effect transistor (FET) and a graphene-based FET (GFET). Furthermore, we confirmed that the electronic properties of PepA-PtNPs were controlled by varying the size of the PtNPs. The use of two poly(methyl methacrylate) (PMMA)-coated graphene layers separated by PepA-PtNPs enabled us to build a bionanohybrid capacitor with tunable properties. The combination of bioinorganic nanohybrids with graphene is regarded as the cornerstone for developing flexible and biocompatible bionanoelectronic devices that can be integrated into bioelectric circuits for biomedical purposes.

  5. Nuclear shell theory

    CERN Document Server

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  6. Autoradiographic study on the distribution of 241Am in the shell of the freshwater zebra mussel Dreissena polymorpha

    International Nuclear Information System (INIS)

    Zuykov, M.; Pelletier, E.; Rouleau, C.; Popov, L.; Fowler, S.W.; Orlova, M.

    2009-01-01

    Autoradiography was used to identify α-track distributions in a series of shell sections from live mussels Dreissena polymorpha Pallas and dissected shells of dead mussels obtained from laboratory experiments using relatively high concentrations of 241 Am in the exposure media, a required condition for successful use of this autoradiographic technique. A comparable distribution of α-tracks was recorded on autoradiographs from both live and dead shells suggesting that metabolism does not lead to any sizable changes in the process of 241 Am adsorption (present in the extrapallial fluid) onto the inner surface of shell. Autoradiographs showed a preferential accumulation of 241 Am in the organic periostracum, whereas the outer and inner shell layers were characterized by a relatively low α-tracks density. No α-tracks were observed in the central part of the shell in any of the samples. These observations will be useful for the development of a general model to explain bioaccumulation and biosorption processes of radionuclides into mollusk shells. (author)

  7. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  8. Performance model of metallic concentric tube recuperator with counter flow arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Harshdeep [HIET, Department of Mechanical Engineering, Ghaziabad, Uttar Pradesh (India); Kumar, Anoop; Goel, Varun [NIT, Department of Mechanical Engineering, Hamirpur, Himachal Pradesh (India)

    2010-03-15

    A performance model for counter flow arrangement in concentric tube recuperator that can be used to utilize the waste heat in the temperature range of 900-1,400 C is presented. The arrangement consists of metallic tubular inner and outer concentric shell with a small annular gap between two concentric shells. Flue gases pass through the inner shell while air passes through the annular gap in the reverse direction (counter flow arrangement). The height of the recuperator is divided into elements and an energy balance is performed on each elemental height. Results give necessary information about surface, gas and air temperature distribution, and the influence of operating conditions on recuperator performance. The recuperative effectiveness is found to be increased with increasing inlet gas temperature and decreased with increasing fuel flow rate. The present model accounts for all heat transfer processes pertinent to a counterflow radiation recuperator and provide a valuable tool for performance considerations. (orig.)

  9. Tribo-electric charging of dielectric solids of identical composition

    Science.gov (United States)

    Angus, John C.; Greber, Isaac

    2018-05-01

    Despite its long history and importance in many areas of science and technology, there is no agreement on the mechanisms responsible for tribo-electric charging, including especially the tribo-charging of chemically identical dielectric solids. Modeling of the excitation, diffusional transport, and de-excitation of electrons from hot spots shows that a difference in local surface roughness of otherwise identical solid dielectric objects leads to different transient excited electron concentrations during tribo-processes. The model predicts that excited electron concentrations are lower and concentration gradients higher in solids with rougher rather than smoother surfaces. Consequently, during contact, the flux of charge carriers (electrons or holes) from hot spots will be greater into the rougher solid than into the smoother solid. These predictions are in agreement with current and historical observations of tribo-electric charge transfer between solids of the same composition. This effect can take place in parallel with other processes and may also play a role in the charging of solids of different composition.

  10. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  11. Shell Bed Identification of Kaliwangu Formation and its Sedimentary Cycle Significance, Sumedang, West Java

    Directory of Open Access Journals (Sweden)

    Aswan Aswan

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i1.151Kaliwangu Formation cropping out around Sumedang area contains mollusk fossils dominated by gastropods and bivalves. In terms of sequence stratigraphy, each sedimentary cycle generally consists of four shell bed types: Early Transgressive Systems Tract (Early TST deposited above an erosional surface or sequence boundary, that is characterized by shell disarticulation, trace fossils, gravelly content, no fossil orientation direction, and concretion at the bottom; Late Transgressive Systems Tract (Late TST identified by articulated (conjoined specimen in its life position, that shows a low level abration and fragmentation, adult specimen with complete shells, and variation of taxa; Early Highstand Systems Tract (Early HST characterized by adult taxa that was found locally in their life position with individual articulation, juvenile specimens frequently occured; Late Highstand Systems Tract (Late HST determined as multiple-event concentrations, disarticulated shell domination, and some carbon or amber intercalation indicating terrestrial influence. Shell bed identification done on this rock unit identified nineteen sedimentary cycles.

  12. Electrostatic charges generated on aerosolisation of dispersions

    International Nuclear Information System (INIS)

    Wang, Yanyang

    2001-01-01

    In responding to the international community's agreement of phasing out chlorofluorocarbon (CFC) propellants by the year 2000, hydrofluoroalkane (HFA) has been chosen to replace CFCs. Intensive investigations related to the new propellant products have been carried out. Aerosol electrostatics is one of the topics investigated. To understand and subsequently control the charging processes is the motive of the research reported here. To help elucidate the complex charging process occurring naturally during atomization of liquids from pressurised Metered Dose Inhalers (pMDIs), it has been broken down into a sequence of related, simpler sub processes-drop charging, streaming current charging (coarse spray), splashing charging and fine spray charging. Our initial studies are of single drops forming at and breaking away from the tips of capillary tubes. The drop forming processes are so slow that any hydrodynamic effect can be dismissed. Then the charge on the drop is measured. It is found that the charge on water drops is always negative (∼ 10 -14 C) at field-free condition and the magnitude of the charge increases as the drop size increases and the surrounding tube diameter decreases. With salt solutions, the charge on drops is negative at dilute solutions, decreases in magnitude as the concentration of electrolytes increases and finally reverses the sign of charge at approximately 1 M - drop charge becomes positive. All these experimental results can be explained in terms of contact potential between liquid and the inner wall of the capillary, which sets up an electric field between the pendant drop and the surrounding tube. Then computational simulation work is carried out and the data are compared with experimental results. It is found that the computer simulation data are in accord with experimental observations. This is a potential method to measure absolute potential difference between a liquid and a solid. Secondly, the hydrodynamic processes are investigated

  13. Robust electrodes based on coaxial TiC/C-MnO2 core/shell nanofiber arrays with excellent cycling stability for high-performance supercapacitors.

    Science.gov (United States)

    Zhang, Xuming; Peng, Xiang; Li, Wan; Li, Limin; Gao, Biao; Wu, Guosong; Huo, Kaifu; Chu, Paul K

    2015-04-17

    A coaxial electrode structure composed of manganese oxide-decorated TiC/C core/shell nanofiber arrays is produced hydrothermally in a KMnO4 solution. The pristine TiC/C core/shell structure prepared on the Ti alloy substrate provides the self-sacrificing carbon shell and highly conductive TiC core, thus greatly simplifying the fabrication process without requiring an additional reduction source and conductive additive. The as-prepared electrode exhibits a high specific capacitance of 645 F g(-1) at a discharging current density of 1 A g(-1) attributable to the highly conductive TiC/C and amorphous MnO2 shell with fast ion diffusion. In the charging/discharging cycling test, the as-prepared electrode shows high stability and 99% capacity retention after 5000 cycles. Although the thermal treatment conducted on the as-prepared electrode decreases the initial capacitance, the electrode undergoes capacitance recovery through structural transformation from the crystalline cluster to layered birnessite type MnO2 nanosheets as a result of dissolution and further electrodeposition in the cycling. 96.5% of the initial capacitance is retained after 1000 cycles at high charging/discharging current density of 25 A g(-1). This study demonstrates a novel scaffold to construct MnO2 based SCs with high specific capacitance as well as excellent mechanical and cycling stability boding well for future design of high-performance MnO2-based SCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Facile synthesis of core–shell structured PANI-Co_3O_4 nanocomposites with superior electrochemical performance in supercapacitors

    International Nuclear Information System (INIS)

    Hai, Zhenyin; Gao, Libo; Zhang, Qiang; Xu, Hongyan; Cui, Danfeng; Zhang, Zengxing; Tsoukalas, Dimitris; Tang, Jun; Yan, Shubin; Xue, Chenyang

    2016-01-01

    Graphical abstract: - Highlights: • PANI-Co_3O_4 is synthesized by carbon-assisted and in situ polymerization methods. • PANI coating improves the properties of Co_3O_4 affecting electrochemical performance. • The nanocomposites exhibit a high specific capacitance of 1184 F g"−"1 at 1.25 A g"−"1. - Abstract: Core–shell structured PANI-Co_3O_4 nanocomposites for supercapacitor applications were synthesized by combination of carbon-assisted method and in situ polymerization method. The crystalline structure, optical band gap, morphology, and hydrophilic property, as the major factors affecting the performances of supercapacitors, were investigated by X-ray diffraction (XRD), UV–vis spectrophotometry (UV–vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and water contact angle (WCA). The core–shell structured PANI-Co_3O_4 nanocomposites are characterized by amorphous PANI, small bandgaps, large surface area and favorable hydrophilicity, which indicates the superior electrochemical performances of the nanocomposites as electrode material for supercapacitors. Cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurements were conducted in 6 M KOH aqueous solution to evaluate the electrochemical performances. The results shows that core–shell structured PANI-Co_3O_4 nanocomposites exhibit a high specific capacitance of 1184 F g"−"1 at 1.25 A g"−"1, excellent cycling stability of a capacitance retention of 84.9% after 1000 galvanostatic charge/discharge cycles, good electrical conductivity and ion diffusion behavior.

  15. Removal of Nickel from Aqueous Solution by Hard-Shell Pistachios

    Directory of Open Access Journals (Sweden)

    Shayan Shamohammadi

    2013-08-01

    Full Text Available Nickel is one of the heavy metals which commonly can be found in industrial wastewater. Many studies have been done on agricultural waste for the removal of nickel from aqueous solutions. The purpose of this study is to identify hard-shell pistachios as a local attraction for removal of nickel from aqueous solution. Nickel adsorption isotherm models are studied using shell pistachios. Pistachio shell was chosen which its particle size is between 800-600 microns. The stock solution of nickel ions was prepared mixing nickel nitrate with distilled water. The results showed that the maximum absorption efficiency occurs (73.3% at pH=8. Also, it was shown that with increasing adsorbent dose, equilibrium time decreased within constant concentration. Examination of uptake isotherm models showed that models of Freundlich, BET, Radke-Praunitz, Redlich-Peterson and Sips describe data in 97% level of confidence well,  however Freundlich and Sips isotherm models has the lowest error factor 0.10597 and 0/10598 respectively and the highest correlation coefficient (0.9785. Comparison of adsorbent capacity within removal of nickel from aqueous solution shows that Pistachio shell with special absorbent surface of 1.7 m2/g and uptake capacity of 0.3984 mg/g is proper than adsorbents of Kaolinite, Bagasse, sludge-ash.

  16. Temperature and hydrostatic pressure effects on single dopant states in hollow cylindrical core-shell quantum dot

    Science.gov (United States)

    El-Yadri, M.; Aghoutane, N.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.

    2018-05-01

    This work reports on theoretical investigation of the temperature and hydrostatic pressure effects on the confined donor impurity in a AlGaAs-GaAs hollow cylindrical core-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with approximately rigid walls. Within the framework of the effective-mass approximation and by using a variational approach, we have computed the donor binding energies as a function of the shell size in order to study the behavior of the electron-impurity attraction for a very small thickness under the influence of both temperature and hydrostatic pressure. Our results show that the temperature and hydrostatic pressure have a significant influence on the impurity binding energy for large shell quantum dots. It will be shown that the binding energy is more pronounced with increasing pressure and decreasing temperature for any impurity position and quantum dot size. The photoionization cross section is also analyzed by considering only the in-plane incident radiation polarization. Its behavior is investigated as a function of photon energy for different values of pressure and temperature. The opposite effects caused by temperature and hydrostatic pressure reveal a big practical interest and offer an alternative way to tuning of correlated electron-impurity transitions in optoelectronic devices.

  17. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  18. Charge transport model in nanodielectric composites based on quantum tunneling mechanism and dual-level traps

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ (United Kingdom); Li, Shengtao, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-08

    Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loading concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.

  19. Using metal complex-labeled peptides for charge transfer-based biosensing with semiconductor quantum dots

    Science.gov (United States)

    Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi

    2009-02-01

    Luminescent colloidal semiconductor quantum dots (QDs) have unique optical and photonic properties and are highly sensitive to charge transfer in their surrounding environment. In this study we used synthetic peptides as physical bridges between CdSe-ZnS core-shell QDs and some of the most common redox-active metal complexes to understand the charge transfer interactions between the metal complexes and QDs. We found that QD emission underwent quenching that was highly dependent on the choice of metal complex used. We also found that quenching traces the valence or number of metal complexes brought into close proximity of the nanocrystal surface. Monitoring of the QD absorption bleaching in the presence of the metal complex provided insight into the charge transfer mechanism. The data suggest that two distinct charge transfer mechanisms can take place. One directly to the QD core states for neutral capping ligands and a second to surface states for negatively charged capping ligands. A basic understanding of the proximity driven charge-transfer and quenching interactions allowed us to construct proteolytic enzyme sensing assemblies with the QD-peptide-metal complex conjugates.

  20. Biodiesel Production from Castor Oil by Using Calcium Oxide Derived from Mud Clam Shell

    Directory of Open Access Journals (Sweden)

    S. Ismail

    2016-01-01

    Full Text Available The catalytic potential of calcium oxide synthesized from mud clam shell as a heterogeneous catalyst for biodiesel production was studied. The mud clam shell calcium oxide was characterized using particle size analyzer, Fourier transform infrared spectroscopy, scanning electron microscopy, and BET gas sorption analyzer. The catalyst performance of mud clam shell calcium oxide was studied in the transesterification of castor oil as biodiesel. Catalyst characterization and transesterification study results of synthesized catalyst proved the efficiency of the natural derived catalyst for biodiesel production. A highest biodiesel yield of 96.7% was obtained at optimal parameters such as 1 : 14 oil-to-methanol molar ratio, 3% w/w catalyst concentration, 60°C reaction temperature, and 2-hour reaction time. Catalyst reusability test shows that the synthesized calcium oxide from mud clam shell is reusable up to 5 times.

  1. Statistical Mechanics of Thin Spherical Shells

    Directory of Open Access Journals (Sweden)

    Andrej Košmrlj

    2017-01-01

    Full Text Available We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated “pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.

  2. In-vitro investigations of skin closure using diode laser and protein solder containing gold nano shells

    International Nuclear Information System (INIS)

    Nourbakhsh, M. S.; Etrati Khosroshahi, M.

    2011-01-01

    Laser tissue soldering is a new technique for repair of various tissues including the skin, liver, articular cartilage and nerves and is a promising alternative to suture. To overcome the problems of thermal damage to surrounding tissues and low laser penetration depth, some exogenous chromophores such as gold nano shells, a new class of nanoparticles consisting of a dielectric core surrounded by a thin metal shell, are used. The aims of this study were to use two different concentrations of gold nano shells as the exogenous material for skin tissue soldering and also to examine the effects of laser soldering parameters on the properties of the repaired skin. Material and Methods: Two mixtures of albumin solder and different concentrations of gold nano shells were prepared. A full thickness incision of 2*20 mm 2 was made on the surface and after placing 50 μ1 of the solder mixture on the incision, an 810 nm diode laser was used to irradiate it at different power densities. The changes of tensile strength, σt, due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. Results: The results showed that the tensile strength of the repaired skin increased with increasing irradiance for both gold nano shell concentrations. In addition, at constant laser irradiance (I), the tensile strength of the repaired incision increased with increasing Ns and decreasing Vs. In our case, this corresponded to σt = 1610 g/cm 2 at I ∼ 60 W cm-2, T ∼ 65 d egree C , Ns = 10 and Vs = 0.2 mms-1. Discussion and Conclusion: Gold nano shells can be used as an indocyanine green dye alterative for laser tissue soldering. Although by increasing the laser power density, the tensile strength of the repaired skin increases, an optimum power density must be considered due to the resulting increase in tissue temperature.

  3. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  4. Expert system development (ESD) shell

    International Nuclear Information System (INIS)

    Padmini, S.; Diwakar, M.P.; Rathode, N.C.; Bairi, B.R.

    1991-01-01

    An Expert System Development (ESD) Shell design implementation is desribed in detail. The shell provides high-level generic facilities for Knowledge Representation (KR) and inferencing and tools for developing user interfaces. Powerful set of tools in the shell relieves much of the programming burden in the ES development. The shell is written in PROLOG under IBM PC/AT. KR facilities are based on two very powerful formalisms namely, frames and rules. Inference Engine (IE) draws most of its power from unification and backward reasoning strategy in PROLOG. This basic mechanism is enhanced further by incorporating both forward and backward chaining of rules and frame-based inferencing. Overall programming style integrates multiple paradigms including logic, object oriented, access-oriented and imperative programming. This permits ES designer a lot of flexibility in organizing inference control. Creation and maintainance of knowledge base is a major activity. The shell, therefore, provides number of facilities to simplify these tasks. Shell design also takes note of the fact that final success of any system depends on end-user satisfaction and hence provides features to build use-friendly interfaces. The shell also provides a set of interfacing predicates so that it can be embedded within any PROLOG program to incorporate functionalilty of the shell in the user program. (author). 10 refs., 8 figs

  5. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    International Nuclear Information System (INIS)

    Carnevale, V.; Raugei, S.

    2009-01-01

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  6. Phase-pure β-NiMoO4 yolk-shell spheres for high-performance anode materials in lithium-ion batteries

    International Nuclear Information System (INIS)

    Ahn, Jee Hyun; Park, Gi Dae; Kang, Yun Chan; Lee, Jong-Heun

    2015-01-01

    Phase-pure β-NiMoO 4 yolk-shell spheres for lithium-ion battery anodes were prepared for the first time by one-pot spray pyrolysis, and their electrochemical properties were investigated. The yolk-shell-structured β-NiMoO 4 powders exhibited high initial discharge/charge capacities (1634/1253 mA h g −1 ) at a current density of 1000 mA g −1 . After 200 cycles, these powders exhibited a high discharge capacity of 1292 mA h g −1 , whereas the initial discharge capacity (1341 mA h g −1 ) of the filled structured NiMoO 4 powders was dramatically decreased to 479 mA h g −1 . The significant enhancement of the cycling performance of the β-NiMoO 4 powders with ultrafine crystallite size was attributed to the structural stability of the yolk-shell structure

  7. Investigation of spherical and concentric mechanism of compound droplets

    Directory of Open Access Journals (Sweden)

    Meifang Liu

    2016-07-01

    Full Text Available Polymer shells with high sphericity and uniform wall thickness are always needed in the inertial confined fusion (ICF experiments. Driven by the need to control the shape of water-in-oil (W1/O compound droplets, the effects of the density matching level, the interfacial tension and the rotation speed of the continuing fluid field on the sphericity and wall thickness uniformity of the resulting polymer shells were investigated and the spherical and concentric mechanisms were also discussed. The centering of W1/O compound droplets, the location and movement of W1/O compound droplets in the external phase (W2 were significantly affected by the density matching level of the key stage and the rotation speed of the continuing fluid field. Therefore, by optimizing the density matching level and rotation speed, the batch yield of polystyrene (PS shells with high sphericity and uniform wall thickness increased. Moreover, the sphericity also increased by raising the oil/water (O/W2 interfacial tension, which drove a droplet to be spherical. The experimental results show that the spherical driving force is from the interfacial tension affected by the two relative phases, while the concentric driving force, as a resultant force, is not only affected by the three phases, but also by the continuing fluid field. The understanding of spherical and concentric mechanism can provide some guidance for preparing polymer shells with high sphericity and uniform wall thickness.

  8. Fast ignition upon the implosion of a thin shell onto a precompressed deuterium-tritium ball

    Science.gov (United States)

    Gus'kov, S. Yu.; Zmitrenko, N. V.

    2012-11-01

    Fast ignition of a precompressed inertial confinement fusion (ICF) target by a hydrodynamic material flux is investigated. A model system of hydrodynamic objects consisting of a central deuterium-tritium (DT) ball and a concentric two-layer shell separated by a vacuum gap is analyzed. The outer layer of the shell is an ablator, while the inner layer consists of DT ice. The igniting hydrodynamic flux forms as a result of laser-driven acceleration and compression of the shell toward the system center. A series of one-dimensional numerical simulations of the shell implosion, the collision of the shell with the DT ball, and the generation and propagation of thermonuclear burn waves in both parts of the system are performed. Analytic models are developed that describe the implosion of a thin shell onto a central homogeneous ball of arbitrary radius and density and the initiation and propagation of a thermonuclear burn wave induced by such an implosion. Application of the solution of a model problem to analyzing the implosion of a segment of a spherical shell in a conical channel indicates the possibility of fast ignition of a spherical ICF target from a conical target driven by a laser pulse with an energy of 500-700 kJ.

  9. Design aids for stiffened composite shells with cutouts

    CERN Document Server

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  10. Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Lewicka Katarzyna

    2017-06-01

    Full Text Available Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN, walnut shells (WN and peanut shells (PN. Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g and WN900 at 25°C (4.34 mmol/g. All of the samples had a well-developed microporous structure.

  11. Gold nanorod@iron oxide core-shell heterostructures: synthesis, characterization, and photocatalytic performance.

    Science.gov (United States)

    Li, Yue; Zhao, Junwei; You, Wenlong; Cheng, Danhong; Ni, Weihai

    2017-03-17

    Iron oxides are directly coated on the surface of cetyl-trimethylammonium bromide (CTAB)-capped gold nanorods (AuNRs) in aqueous solutions at room temperature, which results in AuNR@Fe 2 O 3 , AuNR@Fe 3 O 4 , and AuNR@Fe 2 O 3 @Fe 3 O 4 core-shell heterostructures. The iron oxide shells are uniform, smooth, with characteristic porous structure, and their thickness can be readily tuned. The shell formation is highly dependent on the reaction parameters including pH and CTAB concentration. The Fe 2 O 3 shell is amorphous and exhibits nearly zero remanence and coercivity, while the Fe 3 O 4 shell is ferromagnetic with a low saturation magnetization of about 0.5 emu g -1 due to its low crystallinity and the porous structure. At elevated temperatures achieved by plasmonic heating of the Au core, the Fe 2 O 3 shell transforms from amorphous to γ-Fe 2 O 3 and α-Fe 2 O 3 phases, while the Fe 3 O 4 phase disappears because of the oxidation of Fe 2+ . A 1.4-fold increase of photocatalytic performance is observed due to the plasmonic resonance provided by the Au core. The photocatalytic efficiency of Fe 3 O 4 is about 1.7-fold higher than Fe 2 O 3 as more surface defects are present on the Fe 3 O 4 shell, promoting the adsorption and activation of reagents on the surface during the catalytic reactions. This approach can be readily extended to other nanostructures including Au spherical nanoparticles and nanostars. These highly uniform and multifunctional core-shell heterostructures can be of great potential in a variety of energy, magnetic, and environment applications.

  12. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-01-01

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  13. Charge separation sensitized by advanced II-VI semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, David F. [Univ.of California, Merced, CA (United States)

    2017-04-11

    This proposal focuses on how the composition and morphology of pure and alloyed II-VI semiconductor heterostructures control their spectroscopic and dynamical properties. The proposed research will use a combination of synthesis development, electron microscopy, time-resolved electronic spectroscopy and modeling calculations to study these nanostructures. The proposed research will examine the extent to which morphology, compression due to lattice mismatch and alloy effects can be used to tune the electron and hole energies and the spectroscopic properties of II-VI heterojunctions. It will also use synthesis, optical spectroscopy and HRTEM to examine the role of lattice mismatch and hence lattice strain in producing interfacial defects, and the extent to which defect formation can be prevented by controlling the composition profile through the particles and across the interfaces. Finally, we will study the magnitude of the surface roughness in core/shell nanostructures and the role of shell thickness variability on the inhomogeneity of interfacial charge transfer rates.

  14. Synthesis and characterization of Fe{sub 3}O{sub 4}–TiO{sub 2} core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, M., E-mail: maria.stefan@itim-cj.ro; Pana, O.; Leostean, C.; Silipas, D. [National Institute for R and D of Isotopic and Molecular Technology, 67–103 Donat St., 400295 Cluj-Napoca (Romania); Bele, C. [University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca (Romania); Senila, M. [INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 65 Donat St., 400293 Cluj-Napoca (Romania); Gautron, E. [Institute of Materials Jean Rouxel, 2 rue de la Houssière, P.O. Box 32229, 44322 Nantes Cedex 3 (France)

    2014-09-21

    Composite core-shell nanoparticles may have morpho-structural, magnetic, and optical (photoluminescence (PL)) properties different from each of the components considered separately. The properties of Fe{sub 3}O{sub 4}–TiO{sub 2} nanoparticles can be controlled by adjusting the titania amount (shell thinness). Core–shell nanoparticles were prepared by seed mediated growth of semiconductor (TiO{sub 2}) through a modified sol-gel process onto preformed magnetite (Fe{sub 3}O{sub 4}) cores resulted from the co-precipitation method. The structure and morphology of samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), and high resolution-TEM respectively. X-ray photoelectron spectroscopy was correlated with ICP-AES. Magnetic measurements, optical absorption spectra, as well as PL spectroscopy indicate the presence of a charge/spin transfer from the conduction band of magnetite into the band gap of titania nanocrystals. The process modifies both Fe{sub 3}O{sub 4} and TiO{sub 2} magnetic and optical properties, respectively.

  15. Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries

    Science.gov (United States)

    Kowalski, Damian; Mallet, Jeremy; Thomas, Shibin; Nemaga, Abirdu Woreka; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2017-09-01

    Silicon negative electrode for lithium ion battery was designed in the form of self-organized 1D core-shell nanotubes to overcome shortcomings linked to silicon volume expansion upon lithiation/delithiation typically occurring with Si nanoparticles. The negative electrode was formed on TiO2 nanotubes in two step electrochemical synthesis by means of anodizing of titanium and electrodeposition of silicon using ionic liquid electrolytes. Remarkably, it was found that the silicon grows perpendicularly to the z-axis of nanotube and therefore its thickness can be precisely controlled by the charge passed in the electrochemical protocol. Deposited silicon creates a continuous Si network on TiO2 nanotubes without grain boundaries and particle-particle interfaces, defining its electrochemical characteristics under battery testing. In the core-shell system the titania nanotube play a role of volume expansion stabilizer framework holding the nanostructured silicon upon lithiation/delithiation. The nature of Si shell and presence of titania core determine stable performance as negative electrode tested in half cell of CR2032 coin cell battery.

  16. Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.

    Science.gov (United States)

    Wieliczka, Brian M; Kaledin, Alexey L; Buhro, William E; Loomis, Richard A

    2018-05-25

    The synthesis of epitaxial CdSe/PbS core/shell quantum dots (QDs) is reported. The PbS shell grows in a rock salt structure on the zinc blende CdSe core, thereby creating a crystal structure mismatch through additive growth. Absorption and photoluminescence (PL) band edge features shift to lower energies with increasing shell thickness, but remain above the CdSe bulk band gap. Nevertheless, the profiles of the absorption spectra vary with shell growth, indicating that the overlap of the electron and hole wave functions is changing significantly. This leads to over an order of magnitude reduction of absorption near the band gap and a large, tunable energy shift, of up to 550 meV, between the onset of strong absorption and the band edge PL. While the bulk valence and conduction bands adopt an inverse type-I alignment, the observed spectroscopic behavior is consistent with a transition between quasi-type-I and quasi-type-II behavior depending on shell thickness. Three effective mass approximation models support this hypothesis and suggest that the large difference in effective masses between the core and shell results in hole localization in the CdSe core and a delocalization of the electron across the entire QD. These results show the tuning of wave functions and transition energies in CdSe/PbS nanoheterostructures with prospects for use in optoelectronic devices for luminescent solar concentration or multiexciton generation.

  17. Morphologic characterisation and elemental distribution of Octopus vulgaris Cuvier, 1797 vestigial shell

    International Nuclear Information System (INIS)

    Napoleao, P.; Reis, C. Sousa; Alves, L.C.; Pinheiro, T.

    2005-01-01

    The elemental composition of mineral structures in marine organisms can provide useful information to reconstruct environmental histories of individuals and distinguish populations or stocks. In cephalopods, as Octopus vulgaris, morpho-physiological description of vestigial shells may contribute to a better understanding of the physiology, of the process involved in the increment growth and may eventually provide important and useful tools for the validation of age determination methods. Nuclear microprobe analysis was used to map chemical elements in O. vulgaris vestigial shell. The maps contain elemental and morphological information, and enabled especially through Cl and Ca distributions to classify bands of concentric rings. The levels of P, Ca and Sr decrease from central region to external rings, while those of S and Cl showed an inverse tendency. Enhanced concentrations of Fe, Cu and Zn were found in external rings, and no significant variations were detected in the K and Br contents. The results indicate that three regions can be established on the basis of the elemental contents distributions. Specially, the P and Ca variability can distinguish rings from central and external regions. The differential incorporation of elements in the vestigial shell observed may reflect environmental and physiological factors that are affecting the life cycle of this species

  18. Kinetic study of Chromium VI adsorption onto palm kernel shell activated carbon

    Science.gov (United States)

    Mohammad, Masita; Sadeghi Louyeh, Shiva; Yaakob, Zahira

    2018-04-01

    Heavy metal contamination of industrial effluent is one of the significant environmental problems due to their toxicity and its accumulation throughout the food chain. Adsorption is one of the promising methods for removal of heavy metals from aqua solution because of its simple technique, efficient, reliable and low-cost due to the utilization of residue from the agricultural industry. In this study, activated carbon from palm kernel shells has been produced through chemical activation process using zinc chloride as an activating agent and carbonized at 800 °C. Palm kernel shell activated carbon, PAC was assessed for its efficiency to remove Chromium (VI) ions from aqueous solutions through a batch adsorption process. The kinetic mechanisms have been analysed using Lagergren first-order kinetics model, second-order kinetics model and intra-particle diffusion model. The characterizations such as BET surface area, surface morphology, SEM-EDX have been done. The result shows that the activation process by ZnCl2 was successfully improved the porosity and modified the functional group of palm kernel shell. The result shows that the maximum adsorption capacity of Cr is 11.40mg/g at 30ppm initial metal ion concentration and 0.1g/50mL of adsorbent concentration. The adsorption process followed the pseudo second orders kinetic model.

  19. Morphologic characterisation and elemental distribution of Octopus vulgaris Cuvier, 1797 vestigial shell

    Energy Technology Data Exchange (ETDEWEB)

    Napoleao, P. [Departamento de Biologia Animal, Faculdade de Ciencias de Lisboa, C2, Campo Grande 1749-016, Lisbon (Portugal); Reis, C. Sousa [Departamento de Biologia Animal, Faculdade de Ciencias de Lisboa, C2, Campo Grande 1749-016, Lisbon (Portugal); Alves, L.C. [Laboratotio de Feixes de Ioes, Instituto Tecnologico e Nuclear, Estrada Nacional no. 10, 2685-953 Sacavem, Lisbon (Portugal); Centro de Fisica Nuclear, Universidade de Lisboa, Av. Prof. Egas Moniz 1700, Lisbon (Portugal); Pinheiro, T. [Laboratotio de Feixes de Ioes, Instituto Tecnologico e Nuclear, Estrada Nacional no. 10, 2685-953 Sacavem, Lisbon (Portugal) and Centro de Fisica Nuclear, Universidade de Lisboa, Av. Prof. Egas Moniz 1700, Lisbon (Portugal)]. E-mail: murmur@itn.mces.pt

    2005-04-01

    The elemental composition of mineral structures in marine organisms can provide useful information to reconstruct environmental histories of individuals and distinguish populations or stocks. In cephalopods, as Octopus vulgaris, morpho-physiological description of vestigial shells may contribute to a better understanding of the physiology, of the process involved in the increment growth and may eventually provide important and useful tools for the validation of age determination methods. Nuclear microprobe analysis was used to map chemical elements in O. vulgaris vestigial shell. The maps contain elemental and morphological information, and enabled especially through Cl and Ca distributions to classify bands of concentric rings. The levels of P, Ca and Sr decrease from central region to external rings, while those of S and Cl showed an inverse tendency. Enhanced concentrations of Fe, Cu and Zn were found in external rings, and no significant variations were detected in the K and Br contents. The results indicate that three regions can be established on the basis of the elemental contents distributions. Specially, the P and Ca variability can distinguish rings from central and external regions. The differential incorporation of elements in the vestigial shell observed may reflect environmental and physiological factors that are affecting the life cycle of this species.

  20. Minimization of stress concentration factor in cylindrical pressure vessels with ellipsoidal heads

    International Nuclear Information System (INIS)

    Magnucki, K.; Szyc, W.; Lewinski, J.

    2002-01-01

    The paper presents the problem of stress concentration in a cylindrical pressure vessel with ellipsoidal heads subject to internal pressure. At the line, where the ellipsoidal head is adjacent to the circular cylindrical shell, a shear force and bending moment occur, disturbing the membrane stress state in the vessel. The degree of stress concentration depends on the ratio of thicknesses of both the adjacent parts of the shells and on the relative convexity of the ellipsoidal head, with the range for radius-to-thickness ratio between 75 and 125. The stress concentration was analytically described and, afterwards, the effect of these values on the stress concentration ratio was numerically examined. Results of the analysis are shown on charts