Shell Buckling Knockdown Factors
National Aeronautics and Space Administration — The Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment #: 07-010-E, was established in March of 2007 by the NESC in...
Lovejoy, Andrew E.; Hilburger, Mark W.
2010-01-01
The Shell Buckling Knockdown Factor (SBKF) project includes the testing of sub-scale cylinders to validate new shell buckling knockdown factors for use in the design of the Ares-I and Ares-V launch vehicles. Test article cylinders represent various barrel segments of the Ares-I and Ares-V vehicles, and also include checkout test articles. Testing will be conducted at Marshall Space Flight Center (MSFC) for test articles having an eight-foot diameter outer mold line (OML) and having lengths that range from three to ten feet long. Both ends of the test articles will be connected to the test apparatus using attachment rings. Three multiple-piece and one single-piece design for the attachment rings were developed and analyzed. The single-piece design was chosen and will be fabricated from either steel or aluminum (Al) depending on the required safety factors (SF) for test hardware. This report summarizes the design and analysis of these attachment ring concepts.
Pre-Test Analysis Predictions for the Shell Buckling Knockdown Factor Checkout Tests - TA01 and TA02
Thornburgh, Robert P.; Hilburger, Mark W.
2011-01-01
This report summarizes the pre-test analysis predictions for the SBKF-P2-CYL-TA01 and SBKF-P2-CYL-TA02 shell buckling tests conducted at the Marshall Space Flight Center (MSFC) in support of the Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment. The test article (TA) is an 8-foot-diameter aluminum-lithium (Al-Li) orthogrid cylindrical shell with similar design features as that of the proposed Ares-I and Ares-V barrel structures. In support of the testing effort, detailed structural analyses were conducted and the results were used to monitor the behavior of the TA during the testing. A summary of predicted results for each of the five load sequences is presented herein.
Creep buckling of shell structures
International Nuclear Information System (INIS)
Miyazaki, Noriyuki; Hagihara, Seiya
2015-01-01
The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)
International Nuclear Information System (INIS)
Bushnell, D.
1982-12-01
Under Task 4 the PANDA computer program was modified to permit calculation of critical load interaction curves for buckling of stiffened cylindrical shells with stiffeners running axially or circumferentially or both. Knockdown factors for geometric imperfections and plasticity reduction factors were introduced so that interaction curves can now be calculated for imperfect elastic-plastic shells. The knockdown factors and plasticity reduction factors are computed from a modified form of ASME Code Case N-284. The new version of PANDA was checked by making numerous comparisons with tests on fabricated stiffened cylinders
Buckling strength of spherical shells under combined loads
International Nuclear Information System (INIS)
Nagashima, H.; Kokubo, K.; Takayanagi, M.; Hayasaka, Y.; Kume, T.; Nagata, T.
1995-01-01
Many studies on buckling of cylindrical shells have been conducted, and many buckling evaluation equations have been proposed for actual plant designs; however, buckling of spherical shells under combined horizontal and vertical loads cannot be evaluated due to insufficient data. There is a particular lack of buckling data for spherical shells under lateral loads. To establish a method for estimating the buckling strength of spherical shells, we investigate the interactions between horizontal and vertical (compressive tensile) loads by conducting buckling tests. Applying several combinations of these loads in tests and using computer linear analysis, we obtain interaction curves. This study reports on the buckling tests conducted using spherical shell 1120 mm in dia., 0.7 mm thick and 696 mm high, which are shaped individually by press-forming and finally joined together by four meridional welds, using a specially made jig. Initial imperfections before testing and local deformations after each loading increment during testing are measured with special measuring equipment, and the interaction curve of horizontal and vertical loads and effect of imperfection on the buckling strength of spherical shells are obtained. Nonlinear FEM programs are developed using an 8-node isoparametric shell element and a four-node quadrilateral element of C 0 type with reduced integration based upon a Mindlin-Reissner theory which includes transverse shear. Actual initial imperfections are generally in irregular patterns. Thus, there may be several definitions of the equivalent magnitudes of initial imperfections related to buckling loads. Equivalent magnitudes have no practical meaning unless they can be obtained easily not only for small structures such as test shells but also for large actual structures. In the present study, we define the equivalent magnitude of initial imperfections as the maximum local ruggedness measured radially from a circular temperature having a radius equal
Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell Structures
Hilburger, Mark W.; Haynie, Waddy T.; Lovejoy, Andrew E.; Roberts, Michael G.; Norris, Jeffery P.; Waters, W. Allen; Herring, Helen M.
2012-01-01
New analysis-based shell buckling design factors (aka knockdown factors), along with associated design and analysis technologies, are being developed by NASA for the design of launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s launch vehicle development and performance risks by reducing the reliance on testing, providing high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale level. This paper describes recent buckling test efforts at NASA on two different orthogrid-stiffened metallic cylindrical shell test articles. One of the test articles was an 8-ft-diameter orthogrid-stiffened cylinder and was subjected to an axial compression load. The second test article was a 27.5-ft-diameter Space Shuttle External Tank-derived cylinder and was subjected to combined internal pressure and axial compression.
Sensitivity study of buckling strength for cylindrical shells
Energy Technology Data Exchange (ETDEWEB)
Kato, Hideo; Sasaki, Toru [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)
2001-09-01
Aiming at making clear buckling behavior of cylindrical shells under earthquake loadings, we investigated procedure of recent elastic-plastic buckling analysis by finite element method (FEM). Thereby it is confirmed that the buckling strength becomes as well as that of a shell with a cross section of a perfect cylinder, if we apply the first buckling eigenvector to imperfection mode and assume the maximum imperfection amplitude to be 1% of the wall thickness. And then, by carrying out sensitivity study of buckling with geometrical parameters, such as length (L), radius (R), wall thickness (t), and load parameter, such as pressure, we obtained several characteristics about buckling strength and buckling mode for cylindrical shells. From the geometrical parameter analysis, it is seen that bending buckling occurs for small R/t (thick wall) and elastic buckling occurs for 2{<=}L/R{<=}4 and R/t{>=}400. And from the load parameter analysis, it is shown that hoop stress caused by the inner pressure increases shear buckling strength but decreases bending buckling strength, and hoop stress by hydrostatic pressure changes buckling mode and generates local deformation. (author)
Plastic buckling of cylindrical shells
International Nuclear Information System (INIS)
Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.
1994-01-01
Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads
Buckling shells are also swimmers
Quilliet, Catherine; Dyfcom Bubbleboost Team
We present an experimental and numerical study on the displacement of shells undergoing deformations in a fluid. When submitted to cycles of pressure difference between outside and inside, a shell buckles and debuckles, showing a succession of shapes and a dynamics that are different during the two phases. Hence such objects are likely to swim, including at low Reynolds (microscopic scale). We studied the swimming of buckling/debuckling shells at macroscopic scale using different approaches (force quantization, shape recording, displacement along a frictionless rail, study of external flow using PIV), and showed that inertia plays a role in propulsion, even in situations where dimensionless numbers correspond also to microswimmers in water. Different fluid viscosities were explored, showing an optimum for the displacement. Interestingly, the most favorable cases lead to displacements in the same direction and sense during both motor stroke (buckling phase) and recovery stroke (de-buckling phase). This work opens the route for the synthesis with high throughput of abusively simple synthetic swimmers, possibly gathered into nanorobots, actuated by a scalar field such as the pressure in echographic devices. Universite Grenoble Alpes, CNRS, European Research Council.
The status of experimental buckling investigations of shells
International Nuclear Information System (INIS)
Singer, J.
1982-01-01
The recent developments in shell buckling experiments are surveyed and related to a review of the progress in the seventies. Model fabrication, imperfection measurements, boundary conditions, nondestructive testing, combined loading, postbuckling behavior, composite shells and other aspects of shell buckling tests are discussed. The motivation for experiments and the conclusions drawn in the previous review are reassessed. (orig.)
Snap-Through Buckling Problem of Spherical Shell Structure
Directory of Open Access Journals (Sweden)
Sumirin Sumirin
2014-12-01
Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.
Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test
Pena, Francisco; Richards, W. Lance; Parker, Allen R.; Piazza, Anthony; Schultz, Marc R.; Rudd, Michelle T.; Gardner, Nathaniel W.; Hilburger, Mark W.
2018-01-01
The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by
On buckling of double-shell-stiffened cylindrical steel structures
International Nuclear Information System (INIS)
Chen, S.J.; Chiu, K.D.; Odar, E.
1981-01-01
Buckling analysis methods and acceptance criteria for single shells of various configurations are well documented and adequately covered by many codes. There are, however, no guidelines or criteria for large Double-Shell-Stiffened (DSS) structures, which have been used recently in nuclear power plant applications. The existing codes for buckling analysis cannot be directly utilized because of the uniqueness of structural configuration and complexity of loading. This paper discusses a method for determining the critical buckling loads for this type of structure under a multitude load and suggests buckling criteria for the design of DSS structures. The method commonly used to determine the critical buckling loads for a single shell with or without stiffeners applies reduction factors to the theoretical results. The capacity reduction factors, which are often obtained from experimental results, include plasticity corrections and account for the difference between actual and theoretical buckling loads resulting from the effects of imperfections and nonlinearities. The interaction formulas derived from experimental results can be used to compute the interaction effects of three stress components. This paper extends these concepts and discusses their applicability to a DSS cylindrical structure. (orig./HP)
Dynamic plastic buckling of cylindrical and spherical shells
International Nuclear Information System (INIS)
Jones, N.; Okawa, D.M.
1975-01-01
A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell in order to examine various features of plastic buckling and to assess the importance of several approximations with previous authors have introduced in dynamic plastic buckling studies. The influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. A summary of all previously published theoretical investigations known to the authors is undertaken for the dynamic plastic behavior of cylindrical shells and rings which are made from rigid-plastic, rigid-visco-plastic, elastic-plastic and elastic-visco-plastic materials and subjected to initial axisymmetric impulsive velocity fields. The theoretical predictions of the dominant motions, critical mode numbers, and threshold impulses are compared and critically reviewed. An experimental investigation was also undertaken into the dynamic plastic buckling of circular rings subjected to uniformly distributed external impulsive velocities. It appears that no experiments have been reported previously on mild steel cylindrical shells with an axial length (L) less than four times the shell radius (R). The experimental values of the average final radial deflections, critical mode numbers and dimensions of the permanent wrinkles in the mild steel and some aliminium 6,061 T6 specimens are compared with all the previously published theoretical predictions and experimental results on cylindrical shells with various axial lengths. (orig./HP) [de
Dynamic shear-bending buckling experiments of cylindrical shells
International Nuclear Information System (INIS)
Hagiwara, Y.; Akiyama, H.
1995-01-01
Dynamic experimental studies of the plastic shear/bending buckling of cylindrical shells were performed. They clarified the inelastic response reduction and the seismic margin of FBR reactor vessels. The test results were incorporated into the draft of the seismic buckling design guidelines of FBR. (author). 15 refs., 3 figs
Buckling of long liquid-filled cylindrical shells
International Nuclear Information System (INIS)
Saal, H.
1982-01-01
The experimental investigation confirms the stresses and displacements which result from a nonlinear analysis of the shell. The linear analysis gives a good approximation for the stresses and deformations which significantly deviate from those according to beam theory. This approximation is to the safe side - (remarkably only for the displacements and circumferential stresses). The application of an equivalent cylinder model to the determination of the buckling load gives rather good agreement with the experimental results. There is only little imperfection sensitivity in this load case as the experiments show. Again the theoretical buckling load which is based on the stresses and displacements from linear shell theory is on the safe side. (orig./RW)
Reversible patterning of spherical shells through constrained buckling
Marthelot, J.; Brun, P.-T.; Jiménez, F. López; Reis, P. M.
2017-07-01
Recent advances in active soft structures envision the large deformations resulting from mechanical instabilities as routes for functional shape morphing. Numerous such examples exist for filamentary and plate systems. However, examples with double-curved shells are rarer, with progress hampered by challenges in fabrication and the complexities involved in analyzing their underlying geometrical nonlinearities. We show that on-demand patterning of hemispherical shells can be achieved through constrained buckling. Their postbuckling response is stabilized by an inner rigid mandrel. Through a combination of experiments, simulations, and scaling analyses, our investigation focuses on the nucleation and evolution of the buckling patterns into a reticulated network of sharp ridges. The geometry of the system, namely, the shell radius and the gap between the shell and the mandrel, is found to be the primary ingredient to set the surface morphology. This prominence of geometry suggests a robust, scalable, and tunable mechanism for reversible shape morphing of elastic shells.
International Nuclear Information System (INIS)
Baker, W.E.; Babock, C.D.; Bennett, J.G.
1983-01-01
Six steel shells having nuclear containment-like features were fabricated and loaded to failure with an offset axial load. The shells of R/t = 500 buckled plastically. Four of the shells had reinforced circular cutouts. These penetrations were sized to cut no ring-stiffener, a single, two- or three-ring stiffeners. Reinforcing and framing around the penetrations were based upon the area-replacement rule of the applicable portion of the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and were of a design to stimulate actual practice for nuclear steel containments. Prior to testing, imperfections were measured and strain gages were applied to determine information on load distribution at the ends of the cylinder and strain fields at areas likely to buckle. Buckling loads were determined for an axial load applied with an eccentricity of R/2 where R is the cylinder radius. The results showed that the buckling load and mode for the shell having a penetration that did not cut a ring stiffener were essentially the same as those for the unpenetrated shell. The buckling loads for the penetrated shells in which stiffeners were interrupted were less than that for the unpenetrated shells. Results of all tests are compared to numerical solutions carried out using a nonlinear collapse analysis and to the predictions of ASME Code Case N-284
International Nuclear Information System (INIS)
Stone, C.M.; Nickell, R.E.
1977-01-01
Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading
Nonlinear Dynamic Buckling of Damaged Composite Cylindrical Shells
Institute of Scientific and Technical Information of China (English)
WANG Tian-lin; TANG Wen-yong; ZHANG Sheng-kun
2007-01-01
Based on the first order shear deformation theory(FSDT), the nonlinear dynamic equations involving transverse shear deformation and initial geometric imperfections were obtained by Hamilton's philosophy. Geometric deformation of the composite cylindrical shell was treated as the initial geometric imperfection in the dynamic equations, which were solved by the semi-analytical method in this paper. Stiffness reduction was employed for the damaged sub-layer, and the equivalent stiffness matrix was obtained for the delaminated area. By circumferential Fourier series expansions for shell displacements and loads and by using Galerkin technique, the nonlinear partial differential equations were transformed to ordinary differential equations which were finally solved by the finite difference method. The buckling was judged from shell responses by B-R criteria, and critical loads were then determined. The effect of the initial geometric deformation on the dynamic response and buckling of composite cylindrical shell was also discussed, as well as the effects of concomitant delamination and sub-layer matrix damages.
Hilburger, Mark W.; Lovejoy, Andrew E.; Thornburgh, Robert P.; Rankin, Charles
2012-01-01
NASA s Shell Buckling Knockdown Factor (SBKF) project has the goal of developing new analysis-based shell buckling design factors (knockdown factors) and design and analysis technologies for launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale levels. This paper describes the design and analysis of three different orthogrid-stiffeNed metallic cylindrical-shell test articles. Two of the test articles are 8-ft-diameter, 6-ft-long test articles, and one test article is a 27.5-ft-diameter, 20-ft-long Space Shuttle External Tank-derived test article.
Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells
Anastasiadis, John S.; Simitses, George J.
A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.
Method for studying the plastic buckling of shells. Testing
International Nuclear Information System (INIS)
Alix, M.; Combescure, A.; Hoffmann, A.; Roche, R.
1980-05-01
In this article a description is given of the method selected for studying the elasto-plastic buckling of shells of any shape. The emphasis is mainly on three points: the difficulty in making a strict formulation with respect to plasticity, the model selected (MOTAN model) is presented; the effect of so called 'non conservative' forces; and the effect of great deformations that might precede the buckling. The method is compared to tests: basket handle buckling of bottoms, buckling of elliptical bottoms under internal pressure, of compresses thin tubes, of metal drums, spherical diaphragm, shearing rings [fr
Dynamic plastic buckling of rings and cylindrical shells
International Nuclear Information System (INIS)
Jones, N.; Okawa, D.M.
1975-01-01
A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell. This theoretical work is used to examine various features of plastic buckling and to assess the importance of several approximations which previous authors have introduced in dynamic plastic buckling studies. In particular, the influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. (Auth.)
Buckling analysis of a cylindrical shell, under neutron radiation environment
International Nuclear Information System (INIS)
Arani, A. Ghorbanpour; Ahmadi, M.; Ahmadi, A.; Rastgoo, A.; Sepyani, H.A.
2012-01-01
Highlights: ► The work investigates the buckling of a shell in the neutron radiation environment. ► Radiation induced porosity in elastic materials affects the material's properties. ► The data based technique was used to determine the volume fraction porosity. ► The theoretical formulations are presented based on the classical shell theory (CST). ► It was concluded that both T and neutron induced swelling have significant effects. - Abstract: This research investigates the buckling of a cylindrical shell in the neutron radiation environment, subjected to combined static and periodic axial forces. Radiation induced porosity in elastic materials affects the thermal, electrical and mechanical properties of the materials. In this study, the data based technique was used to determine the volume fraction porosity, P, of shell material. A least-squares fit of the Young's module data yielded the estimated Young's modulus. The shell assumed made of iron irradiated in the range of 2–15e−7 dPa/s at 345–650 °C and theoretical formulations are presented based on the classical shell theory (CST). The research deals with the problem theoretically; keeping in mind that one means of generating relevant design data is to investigate prototype structures. A parametric study is followed and the stability of shell is discussed. It is concluded that both temperature and neutron induced swelling have significant effects on the buckling load.
International Nuclear Information System (INIS)
Zerna, W.; Mungan, I.; Steffen, W.
1980-01-01
The equations of the bending and stability theories for the orthotropic shell are solved using the FEM. A biaxial material law for concrete and a nearly bilinear stress-strain diagram for reinforcing steel were considered. Taking a layered ring element the influence of bending moments together with the membrane forces can be followed under increasing load up to failure of concrete or steel. At each level the bucking factor can be calculated considering the stress dependent buckling stiffness. The method of calculation is applied to a cooling tower shell under dead load acting simultaneously with an axi-symmetric loading to compensate for the wind effect. Due to orthotropy and descending tangent modulus at the ultimate load the buckling load factor drops to the half of the value obtained assuming a linear elastic behaviour. Additional parametric studies demonstrate the effect of some hypothetic cracks of different position and depth of the bifurcation results. The variation of the safety factors against buckling and ultimate load is obtained by changing the shell thickness. For the shell investigated it turns out that the buckling safety is influenced much more than the safety against material failure if the wall thickness is varied. It is recommended to split the buckling analysis of reinforced concrete shells in two parts. For shells of parts of a shell under only slightly disturbed membrane stress state the buckling analysis governs, otherwise the ultimate state considering the geometric and material nonlinearities is decisive to obtain not only the wall thickness but also the amount of reinforced necessary. (orig./HP) [de
Buckling Experiment on Anisotropic Long and Short Cylinders
Directory of Open Access Journals (Sweden)
Atsushi Takano
2016-07-01
Full Text Available A buckling experiment was performed on anisotropic, long and short cylinders with various radius-to-thickness ratios. The 13 cylinders had symmetric and anti-symmetric layups, were between 2 and 6 in terms of the length-to-radius ratio, between 154 and 647 in radius-to-thickness ratio, and made of two kinds of carbon fiber reinforced plastic (CFRP prepreg with high or low fiber modulus. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length and compared with the test results. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length. The knockdown factor, defined as the ratio of the experimental value to the theoretical value, was found to be between 0.451 and 0.877. The test results indicated that a large length-to-radius ratio reduces the knockdown factor, but the radius-to-thickness ratio and other factors do not affect it.
International Nuclear Information System (INIS)
Baker, W.E.; Bennett, J.G.; Babcock, C.D.
1983-01-01
Six steel shells having nuclear containment-like features were fabricated and loaded to failure with an offset axial load. The shells of R/t = 500 buckled plastically. Four of the shells had reinforced circular cutouts. These penetrations were sized to cut no ring-stiffener, a single, two- or three-ring stiffeners. Reinforcing and framing around the penetrations were based upon the area-replacement rule of the applicable portion of the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and were of a design to simulate actual practice for nuclear steel containments. Prior to testing, imperfections were measured and strain gages were applied to determine information on load distribution at the ends of the cylinder and strain fields at areas likely to buckle. Buckling loads were determined for an axial load applied with an eccentricity of R/2 where R is the cylinder radius
On the dynamic buckling of thin shells
International Nuclear Information System (INIS)
Combescure, A.; Hoffmann, A.; Homan, R.
1986-10-01
The shells of a pool type reactor like Super Phenix 1 or the Super Phenix 2 project are relatively thin compared to the diameter. Normal loads and mainly seismic loads due to strong fluid-structure interaction and giving pressure of the same order then static collapse pressure. This is a main difficulty for a good and safe design of LMFBR. The paper describes the experimental results obtained at CEA-DEMT on the seismic buckling of structures filled with fluid. A general tendency is given on all experimental results. The experimental results are analysed by two simple models and the main results are explained. A strategy to design a structure against dynamic buckling is then presented. 7 refs
Lai, Changliang; Wang, Junbiao; Liu, Chuang
2014-10-01
Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.
Institute of Scientific and Technical Information of China (English)
PENG Fan; FU YiMing; CHEN YaoJun
2008-01-01
The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated. The viscoelastic behavior of laminas is modeled by Schapery's integral constitutive equation with growing ma-trix cracks. The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from meso-mechanics approach, and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress. The gov-erning equations for pre-buckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Karman-Donnell geometrically nonlinear relationship. Corresponding solution strategy is constructed by inte-grating finite-difference technique, trigonometric series expansion method and Taylor's numerical recursive scheme for convolution integration. The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parame-ters and parameters of damage evolution as well as boundary conditions. The nu-merical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads, and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells, also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.
Buckling Capacity Curves for Steel Spherical Shells Loaded by the External Pressure
Błażejewski, Paweł; Marcinowski, Jakub
2015-03-01
Assessment of buckling resistance of pressurised spherical cap is not an easy task. There exist two different approaches which allow to achieve this goal. The first approach involves performing advanced numerical analyses in which material and geometrical nonlinearities would be taken into account as well as considering the worst imperfections of the defined amplitude. This kind of analysis is customarily called GMNIA and is carried out by means of the computer software based on FEM. The other, comparatively easier approach, relies on the utilisation of earlier prepared procedures which enable determination of the critical resistance pRcr, the plastic resistance pRpl and buckling parameters a, b, h, l 0 needed to the definition of the standard buckling resistance curve. The determination of the buckling capacity curve for the particular class of spherical caps is the principal goal of this work. The method of determination of the critical pressure and the plastic resistance were described by the authors in [1] whereas the worst imperfection mode for the considered class of spherical shells was found in [2]. The determination of buckling parameters defining the buckling capacity curve for the whole class of shells is more complicated task. For this reason the authors focused their attention on spherical steel caps with the radius to thickness ratio of R/t = 500, the semi angle j = 30o and the boundary condition BC2 (the clamped supporting edge). Taking into account all imperfection forms considered in [2] and different amplitudes expressed by the multiple of the shell thickness, sets of buckling parameters defining the capacity curve were determined. These parameters were determined by the methods proposed by Rotter in [3] and [4] where the method of determination of the exponent h by means of additional parameter k was presented. As a result of the performed analyses the standard capacity curves for all considered imperfection modes and amplitudes 0.5t, 1.0t, 1.5t
Post buckling of three dimensional shells
International Nuclear Information System (INIS)
Hoffman, A.; Combescure, A.; Verpeaux, A.
1984-01-01
The paper presented here gives a general description of the methods currently used in the CEASEMT System Computer Codes for the non linear analysis of thin shells. For post buckling two methods are presented: the first one is a controlled step by step calculation in order to obtain the load-displacement curve. The second consist of the calculation of a global parameter based on energetic consideration, which can be easily interpreted as a time of collapse of the structure. Some examples are given and compared with experimental values. (Author) [pt
Institute of Scientific and Technical Information of China (English)
2008-01-01
The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated.The viscoelastic behavior of laminas is modeled by Schapery’s integral constitutive equation with growing matrix cracks.The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from mesomechanics approach,and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress.The governing equations for prebuckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Kármán-Donnell geometrically nonlinear relationship.Corresponding solution strategy is constructed by integrating finite-difference technique,trigonometric series expansion method and Taylor’s numerical recursive scheme for convolution integration.The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parameters and parameters of damage evolution as well as boundary conditions.The numerical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads,and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells,also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.
Elastoplastic buckling of quasi axisymmetric shells of revolution
International Nuclear Information System (INIS)
Combescure, A.
1987-01-01
This paper gives the formulation of a finite element which allows the computation of quasi axisymmetric shells of revolution. This element has two nodes and the displacement field is developped in Fourier series. In this paper, an emphasis is put on the elastic and plastic buckling formulation. Two examples are developped in details showing the applicability and the interest of such a finite element. (orig.)
The effect of thermal loads on buckling strength of cylindrical shells
International Nuclear Information System (INIS)
Kawamoto, Y.; Kodama, T.; Matsuura, S.
1993-01-01
Nuclear power plant components must be designed taking account of strong seismic loads in countries with frequent earthquakes like Japan. When designing such thin-walled shell components as a main vessel of a fast breeder reactor (FBR), one should consider the possibility that buckling might occur. In Japan, a series of buckling research has been conducted under contract with the Ministry of International Trade and Industry to develop the aseismic design method for a demonstration FBR. This study has been also done as a part of them. The problem of thermal loads on buckling strength is one of the important problems in the buckling research for FBR because axial temperature gradient is produced in a main vessel and the significant thermal stress is shown. Some studies on the effect of thermal loads on buckling strength were carried out (Brochard, 1987), (Nakamura, 1987), but its effect in the actual vessel has not been evaluated quantitatively. We have already reported the effect of thermal loads on buckling strength of a pool-type reactor vessel. (Kawamoto ,1989) In this paper, we focus on a loop-type reactor vessel and investigate the effect of thermal loads accompanying with axial temperature change near the sodium level. And the reduction of buckling strength due to the thermal loads is quantitatively evaluated
Nemeth, Michael P.
2014-01-01
Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.
Post buckling of three dimensional shells
International Nuclear Information System (INIS)
Hoffmann, A.; Combescure, A.; Verpeaux, A.
1984-10-01
The paper presented here gives a general description of the methods currently used in the CEASEMT System Computer Codes for the non linear analysis of thin shells. For post buckling two methods are presented: the first one is a controlled step by step calculation in order to obtain the load-displacement curve. The second consist of the calculation of a global parameter based on energetic consideration, which can be easily interpreted as a time of collapse of the structure. When dynamic loads are concerned like seismic loads this parameter can be very useful. Some examples are given and compared with experimental values
Contribution of apparently non-operating loadings to the buckling of thin shells and plates
International Nuclear Information System (INIS)
Delaigue, Didier.
1980-02-01
This work includes four parts: in the first part, the Kirchhoff-Love theory of thin shells is described, a theory taken up and developed by Koiter and whose modelling seems to meet the problems of engineers. The second part deals with the buckling of a thin plate subjected to a load along a part of its edge, of which a part or all is seemingly inoperative. In the third part the study is extended to shells of any shape subjected to a conservative loading of the ''dead-loading'' type along part of their edges. On the basis of the results of the previous study, a study is then made on the taking into account of any load applied to the edge of a thin shell. In the fourth part the previous results are applied to the study of the buckling of a thin shell with a circular base subjected along a part of its edge to a normal prestress and to twisting moments linear density [fr
Simplified vibrocreep buckling analysis of circular cylindrical shells
International Nuclear Information System (INIS)
Simeonova, K.; Hadjikov, L.; Georgiev, K.; Iotov, I.
1981-01-01
The circular cylindrical shells are used as a mathematical model in the investigation of the reactions of the supporting elements in nuclear reactor core, airplane designing etc. The buckling in the process of vibrocreep is one of the possible catastrophes during the exploitation of those elements. The paper presents a simplified investigation of the vibro-creep stability of a shell axially pressed. The main simplification consists of the fact that the average process of vibro-creep is considered stationary. The modified constitutive equations of Maxwell-Gurevitch-Rabinovitch, concerning elasto-viscous and elasto-plastic material is used. The critical time is calculated after two criteria. Theoretical relations between the critical time and the dynamic loading velocity amplitude are obtained. Those relations are compared to relations experimentally proved. (orig.)
Buckling tests of sandwich cylindrical shells with and without cut-outs
Bisagni, C.; Davidson, B.D.; Czabaj, M.W.; Ratcliffe, J.G.
2016-01-01
The results of buckling tests performed during the project DESICOS funded by the European Commission in the FP7 Programme are here presented. The tested structures are sandwich cylindrical shells that consist of reduced models of a component of the Ariane 5 launcher: the Dual Launch System. In
Energy Technology Data Exchange (ETDEWEB)
MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK
2007-02-14
This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global
International Nuclear Information System (INIS)
Combescure, A.
1986-04-01
During the last ten years, the French Research Institute for Nuclear Energy (Commissariat a l'Energie Atomique) achieved many theoretical as well as experimental studies for designing the first large size pool type fast breeder reactor. Many of the sensitive parts of this reactor are thin shells subjected to high temperatures and loads. Special care has been given to buckling, because it often governs design. Most of the thin shells structures of the french breeder reactor are axisymmetric. However, imperfections have to be accounted for. In order to keep the advantage of an axisymmetric analysis (low computational costs), a special element has been implemented and used with considerable success in the recent years. This element (COMU) is described in the first chapter, its main features are: either non axisymmetric imperfection or non axisymmetric load, large displacement, non linear material behaviour, computational costs about ten times cheaper than the equivalent three dimensional analysis. This paper based on a careful comparison between experimental and computational results, obtained with the COMU, will analyse three problems: First: design procedure against buckling of thin shells structures subjected to primary loads; Second: static post buckling; Third: buckling under seismic loads [fr
Preliminary Sizing Study of Ares-I and Ares-V Liquid Hydrogen Tanks
Oliver, Stanley T.; Harper, David W.
2012-01-01
A preliminary sizing study of two cryogenic propellant tanks was performed using a FORTRAN optimization program to determine weight efficient orthogrid designs for the tank barrels sections only. Various tensile and compressive failure modes were considered, including general buckling of cylinders with a shell buckling knockdown factor. Eight independent combinations of three design requirements were also considered and their effects on the tanks weight. The approach was to investigate each design case with a variable shell buckling knockdown factor, determining the most weight efficient combination of orthogrid design parameters. Numerous optimization analyses were performed, and the results presented herein compare the effects of the different design requirements and shell buckling knockdown factor. Through a series of comparisons between design requirements or shell buckling knockdown factors, the relative change in overall tank barrel weights is shown. The findings indicate that the design requirements can substantually increase the tank weight while a less conservative shell buckling knockdown factor can modestly reduce the tank weight.
Hilburger, Mark W.; Waters, W. Allen, Jr.; Haynie, Waddy T.; Thornburgh, Robert P
2017-01-01
Results from the testing of cylinder test article SBKF-P2-CYL-TA02 (referred to herein as TA02) are presented. TA02 is an 8-foot-diameter (96-inches), 78.0-inch-long, aluminum-lithium (Al-Li), orthogrid-stiffened cylindrical shell similar to those used in current state-of-the-art launch-vehicle structures and was designed to exhibit global buckling when subjected to combined compression and bending loads. The testing was conducted at the Marshall Space Flight Center (MSFC), February 3-6, 2009, in support of the Shell Buckling Knockdown Factor Project (SBKF). The test was used to verify the performance of a newly constructed buckling test facility at MSFC and to verify the test article design and analysis approach used by the SBKF researchers.
Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium
International Nuclear Information System (INIS)
Sofiyev, A.H.; Kuruoglu, N.
2013-01-01
In this paper, the non-linear buckling of the truncated conical shell made of functionally graded materials (FGMs) surrounded by an elastic medium has been studied using the large deformation theory with von Karman–Donnell-type of kinematic non-linearity. A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction. The FGM properties are assumed to vary continuously through the thickness direction. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of the FGM truncated conical shell resting on the Pasternak-type elastic foundation are derived. By using the Superposition and Galerkin methods, the non-linear stability equations for the FGM truncated conical shell is solved. Finally, influences of variations of Winkler foundation stiffness and shear subgrade modulus of the foundation, compositional profiles and shell characteristics on the dimensionless critical non-linear axial load are investigated. The present results are compared with the available data for a special case. -- Highlights: • Nonlinear buckling of FGM conical shell surrounded by elastic medium is studied. • Pasternak foundation model is used to describe the shell–foundation interaction. • Nonlinear basic equations are derived. • Problem is solved by using Superposition and Galerkin methods. • Influences of various parameters on the nonlinear critical load are investigated
International Nuclear Information System (INIS)
Mackey, T.C.; Johnson, K.I.; Deibler, J.E.; Pilli, S.P.; Rinker, M.W.; Karri, N.K.
2007-01-01
This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES and H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to
Creep buckling analysis of shells
International Nuclear Information System (INIS)
Stone, C.M.; Nickell, R.E.
1977-01-01
The current study was conducted in an effort to determine the degree of conservatism or lack of conservatism in current ASME design rules concerning time-dependent (creep) buckling. In the course of this investigation, certain observations were made concerning the numerical solution of creep buckling problems. It was demonstrated that a nonlinear finite element code could be used to solve the time-dependent buckling problem. A direct method of solution was presented which proved to be computationally efficient and provided answers which agreed very well with available analytical solutions. It was observed that the calculated buckling times could vary widely for small errors in computed displacements. The presence of high creep strain rates contributed to the prediction of early buckling times when calculated during the primary creep stage. The predicted time estimates were found to increase with time until the secondary stage was reached and the estimates approached the critical times predicted without primary creep. It can be concluded, therefore, that for most nuclear piping components, whose primary creep stage is small compared to the secondary stage, the effect of primary creep is negligible and can be omitted from the calculations. In an evaluation of the past and current ASME design rules for time-dependent, load controlled buckling, it was concluded that current use of design load safety factors is not equivalent to a safety factor of ten on service life for low creep exponents
Energy Technology Data Exchange (ETDEWEB)
MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK
2009-01-14
This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor bolt
International Nuclear Information System (INIS)
Mackey, T.C.; Johnson, K.I.; Deibler, J.E.; Pilli, S.P.; Rinker, M.W.; Karri, N.K.
2009-01-01
This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES and H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor
International Nuclear Information System (INIS)
Hoffman, E.L.; Ammerman, D.J.
1995-01-01
A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. During the pulse buckling tests, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. Numerical simulations of the test were performed using PRONTO, a Sandia developed transient dynamics analysis code, and ABAQUS/Explicit with both shell and continuum elements. The calculations are compared to the tests with respect to deformed shape and impact load history
An experimental and theoretical investigation of creep buckling
International Nuclear Information System (INIS)
Ohya, H.
1977-01-01
The purpose of the present paper is to investigate creep buckling phenomena and the methods of analysis. Creep buckling experiments were performed on aluminum alloy 2024-T4 cylindrical shells having radius to thickness ratios of 16, 25, 50 and 80, in single, double and triple step axial compression at 250 0 C. It was observed that buckling occurred at one of the edges and the buckling mode depended on the radius to thickness ratio and also on the applied stress level. Thicker cylinders buckled in axisymmetric mode. Thinner ones under higher applied stress levels buckled in the asymmetric mode, whereas they under lower applied stress levels buckled in the axisymmetric mode. Creep buckling times were obtained from end shortening record of the cylinders. Experimental results were compared with theoretical values obtained by the following two methods. One is a simplified method to estimate buckling times, proposed by Gerard et al., Papirno et al. and others. The method is based on the fact that the creep buckling solutions are analogous to those of plastic buckling under a certain assumption. It was found that the bukling times could be reasonably estimated by this simplified method. The other is a finite element computer program for axisymmetric thin shells. This program is based on the incremental theory and can treat thermoelastoplastic creep analysis of axisymmetric thin shells with large deflection. Creep deformation behavior of cylindrical shells under axial compression and buckling times were calculated by the program and the effects of plasticity on buckling times were also investigated
International Nuclear Information System (INIS)
Bennett, J.G.; Fly, G.W.; Baker, W.E.
1984-01-01
The Steel Containment Buckling program is in its fourth phase of work directed at the evaluation of the effects of the structural failure mode of steel containments when the membrane stresses are compressive. The structural failure mode for this state of stress is instability or buckling. The program to date has investigated: (1) the effect on overall buckling capacity of the ASME area replacement method for reinforcing around circular penetrations; (2) a set of benchmark experiments on ring-stiffened shells having reinforced and framed penetrations; (3) large and small scale experiments on knuckle region buckling from internal pressure and post-buckling behavior to failure for vessel heads having torispherical geometries; and (4) buckling under time-dependent loadings (dynamic buckling). The first two investigations are complete, the knuckle buckling experimental efforts are complete with data analysis and reporting in progress, and the dynamic buckling experimental and analytical work is in progress
Thornton, W. A.; Majumder, D. K.
1974-01-01
The investigation reported demonstrates that in the case considered perturbation methods can be used in a straightforward manner to obtain reanalysis information. A perturbation formula for the buckling loads of a general shell of revolution is derived. The accuracy of the obtained relations and their range of application is studied with the aid of a specific example involving a particular stiffened shell of revolution.
Phenomenology and control of buckling dynamics in multicomponent colloidal droplets
Pathak, Binita; Basu, Saptarshi
2015-06-01
Self-assembly of nano sized particles during natural drying causes agglomeration and shell formation at the surface of micron sized droplets. The shell undergoes sol-gel transition leading to buckling at the weakest point on the surface and produces different types of structures. Manipulation of the buckling rate with inclusion of surfactant (sodium dodecyl sulphate, SDS) and salt (anilinium hydrochloride, AHC) to the nano-sized particle dispersion (nanosilica) is reported here in an acoustically levitated single droplet. Buckling in levitated droplets is a cumulative, complicated function of acoustic streaming, chemistry, agglomeration rate, porosity, radius of curvature, and elastic energy of shell. We put forward our hypothesis on how buckling occurs and can be suppressed during natural drying of the droplets. Global precipitation of aggregates due to slow drying of surfactant-added droplets (no added salts) enhances the rigidity of the shell formed and hence reduces the buckling probability of the shell. On the contrary, adsorption of SDS aggregates on salt ions facilitates the buckling phenomenon with an addition of minute concentration of the aniline salt to the dispersion. Variation in the concentration of the added particles (SDS/AHC) also leads to starkly different morphologies and transient behaviour of buckling (buckling modes like paraboloid, ellipsoid, and buckling rates). Tuning of the buckling rate causes a transition in the final morphology from ring and bowl shapes to cocoon type of structure.
Computerized Buckling Analysis of Shells
1981-06-01
Simple Examples to Illu-trate Various Types of Buckling Column Buckling In order to make the discussion of the basic concepts introduced in connec...the optimum design of a square box column obtained from an "* analysis in which the effective width concept is used and collapse is assumed to occur...nology, Delft., pp 335-344 (1969). 120 Save, M., "Verification experimentale de l’analyse limite plastique des plaques et des coques en acier doux
DEFF Research Database (Denmark)
Gaiotti, Marco; Rizzo, Cesare M.; Branner, Kim
2014-01-01
This paper describes the experimental and numerical studies carried out on delaminated fiberglass epoxy resin laminates made-up by different fabrication methods, namely by vacuum infusion and prepreg. While the tested specimens were originally intended for the assessment of buckling behavior...... of composite laminates of wind turbine blades, results were found valuable for the marine industry as well, because similar laminates are used for the hull shell and stiffeners. Systematic calculations were carried out to assess the effects of an embedded delamination on the buckling load, varying the size...
Post-buckling analysis of composite beams: A simple intuitive ...
Indian Academy of Sciences (India)
and lateral displacement functions at any discrete location of the beam. ..... shells under combined axial compression and radial pressure. ... Razakamiadana A and Zidi M 1999 Buckling and post-buckling of concentric cylindrical tubes under.
Hilburger, Mark W.; Waters, W. Allen, Jr.; Haynie, Waddy T.
2015-01-01
Results from the testing of cylinder test article SBKF-P2-CYLTA01 (referred to herein as TA01) are presented. The testing was conducted at the Marshall Space Flight Center (MSFC), November 19?21, 2008, in support of the Shell Buckling Knockdown Factor (SBKF) Project.i The test was used to verify the performance of a newly constructed buckling test facility at MSFC and to verify the test article design and analysis approach used by the SBKF project researchers. TA01 is an 8-foot-diameter (96-inches), 78.0-inch long, aluminum-lithium (Al-Li), orthogrid-stiffened cylindrical shell similar to those used in current state-of-the-art launch vehicle structures and was designed to exhibit global buckling when subjected to compression loads. Five different load sequences were applied to TA01 during testing and included four sub-critical load sequences, i.e., loading conditions that did not cause buckling or material failure, and one final load sequence to buckling and collapse. The sub-critical load sequences consisted of either uniform axial compression loading or combined axial compression and bending and the final load sequence subjected TA01 to uniform axial compression. Traditional displacement transducers and strain gages were used to monitor the test article response at nearly 300 locations and an advanced digital image correlation system was used to obtain low-speed and high-speed full-field displacement measurements of the outer surface of the test article. Overall, the test facility and test article performed as designed. In particular, the test facility successfully applied all desired load combinations to the test article and was able to test safely into the postbuckling range of loading, and the test article failed by global buckling. In addition, the test results correlated well with initial pretest predictions.
Simplified dynamic buckling assessment of steel containments
International Nuclear Information System (INIS)
Farrar, C.R.; Duffey, T.A.; Renick, D.H.
1993-01-01
A simplified, three-degree-of-freedom analytical procedure for performing a response spectrum buckling analysis of a thin containment shell is developed. Two numerical examples with R/t values which bound many existing steel containments are used to illustrate the procedure. The role of damping on incipient buckling acceleration level is evaluated for a regulatory seismic spectrum using the two numerical examples. The zero-period acceleration level that causes incipient buckling in either of the two containments increases 31% when damping is increased from 1% to 4% of critical. Comparisons with finite element results on incipient buckling levels are favorable
Containment vessel stability analysis
International Nuclear Information System (INIS)
Harstead, G.A.; Morris, N.F.; Unsal, A.I.
1983-01-01
The stability analysis for a steel containment shell is presented herein. The containment is a freestanding shell consisting of a vertical cylinder with a hemispherical dome. It is stiffened by large ring stiffeners and relatively small longitudinal stiffeners. The containment vessel is subjected to both static and dynamic loads which can cause buckling. These loads must be combined prior to their use in a stability analysis. The buckling loads were computed with the aid of the ASME Code case N-284 used in conjunction with general purpose computer codes and in-house programs. The equations contained in the Code case were used to compute the knockdown factors due to shell imperfections. After these knockdown factors were applied to the critical stress states determined by freezing the maximum dynamic stresses and combining them with other static stresses, a linear bifurcation analysis was carried out with the aid of the BOSOR4 program. Since the containment shell contained large penetrations, the Code case had to be supplemented by a local buckling analysis of the shell area surrounding the largest penetration. This analysis was carried out with the aid of the NASTRAN program. Although the factor of safety against buckling obtained in this analysis was satisfactory, it is claimed that the use of the Code case knockdown factors are unduly conservative when applied to the analysis of buckling around penetrations. (orig.)
Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder
Schultz, Marc R.; Sleight, David W.; Gardner, Nathaniel W.; Rudd, Michelle T.; Hilburger, Mark W.; Palm, Tod E.; Oldfield, Nathan J.
2018-01-01
Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses.
Thermal-buckling analysis of an LMFBR overflow vessel
International Nuclear Information System (INIS)
Severud, L.K.
1983-01-01
During a reactor scram, cold sodium flows into the hot overflow vessel. The effect on the vessel is a compressive thermal stress in a zone just above the sodium level. This condition must be sufficiently controlled to preclude thermal buckling. Also, under repeated scrams, the vessel should not suffer thermal stress low cycle fatigue. To evaluate the closeness to buckling and satisfaction of ASMA Code limits, a combination of simple approximations, detailed elastic shell buckling analyses, and correlations to results of thermal buckling tests were employed. This paper describes the analysis methods, special considerations, and evaluations accomplished for this FFTF vessel to assure satisfaction of ASME buckling design criteria, rules, and limits
Relevance of capsid structure in the buckling and maturation of spherical viruses
International Nuclear Information System (INIS)
Aznar, María; Luque, Antoni; Reguera, David
2012-01-01
The shape and mechanical properties of viral capsids play an important role in several biological processes during the virus life cycle. In particular, to become infective, many viruses require a maturation stage where the capsid undergoes a buckling transition, from an initial spherical procapsid into a final icosahedral faceted shell. Here we study, using a minimal physical model, how the capsid shape and the buckling transition depend on the triangulation number T and the icosahedral class P of the virus structure. We find that, for small shells, capsids with P = 1 are most likely to produce polyhedral shapes that minimize their energy and accumulated stress, whereas viruses with P = 3 prefer to remain spherical. For big capsids, all shells are more stable adopting an icosahedral shape, in agreement with continuum elastic theory. Moreover, spherical viruses show a buckling transition to polyhedral shells under expansion, in consonance with virus maturation. The resulting icosahedral shell is mechanically stiffer, tolerates larger expansions and withstands higher internal pressures before failing, which could explain why some dsDNA viruses, which rely on the pressurization of their genetic material to facilitate the infection, undergo a buckling transition. We emphasize that the results are general and could also be applied to non-biological systems. (paper)
Baumgarten, Lorenz; Kierfeld, Jan
2018-05-01
We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy
An experimental and theoretical investigation of creep buckling
International Nuclear Information System (INIS)
Ohya, H.
1977-01-01
Creep buckling is one of the failure modes which must be taken into consideration for the design of structures exposed to elevated temperatures. And, rules are provided in ASME Boiler and Pressure Vessel Code Case 1592 to prevent the creep buckling. However, methods of analysis are not provided in Code Case, and selecting the methods of analysis is left to owners and manufacturers. The purpose of the present paper is to investigate creep buckling phenomena and the methods of analysis. Creep buckling experiments were performed on aluminum alloy 2024-T4 cylindrical shells having radius to thickness ratios of 16, 25, 50 and 80, in single, double and triple step axial compression at 250 0 C. It was observed that buckling occurred at one of the edges and the buckling mode depended on the radius to thickness ratio and also on the applied stress level. Thicker cylinders buckled in axisymmetric mode. Thinner ones under higher applied stress levels buckled in the asymmetric mode, whereas under lower applied stress levels they buckled in the axisymmetric mode. Creep buckling times were obtained from end shortening record of the cylinders. Experimental results were compared with theoretical values obtained by two methods. (Auth.)
Liang, Ke; Sun, Qin; Liu, Xiaoran
2018-05-01
The theoretical buckling load of a perfect cylinder must be reduced by a knock-down factor to account for structural imperfections. The EU project DESICOS proposed a new robust design for imperfection-sensitive composite cylindrical shells using the combination of deterministic and stochastic simulations, however the high computational complexity seriously affects its wider application in aerospace structures design. In this paper, the nonlinearity reduction technique and the polynomial chaos method are implemented into the robust design process, to significantly lower computational costs. The modified Newton-type Koiter-Newton approach which largely reduces the number of degrees of freedom in the nonlinear finite element model, serves as the nonlinear buckling solver to trace the equilibrium paths of geometrically nonlinear structures efficiently. The non-intrusive polynomial chaos method provides the buckling load with an approximate chaos response surface with respect to imperfections and uses buckling solver codes as black boxes. A fast large-sample study can be applied using the approximate chaos response surface to achieve probability characteristics of buckling loads. The performance of the method in terms of reliability, accuracy and computational effort is demonstrated with an unstiffened CFRP cylinder.
Buckling of shells under internal pressure, practical formulas for sizing
International Nuclear Information System (INIS)
Roche, R.; Alix, M.; Perez, A.; Autrusson, B.
1983-10-01
For metallic dished heads which have great diameter/thickness ratio, elastic plastic internal pressure buckling may occur. Recently, the French Pressure Vessel Code (CODAP) made available rules to assist the designer with this buckling problem. The aim of this paper is to give a comparison between these rules and available experimental results [fr
Stress analysis and torsional buckling analysis of U-shaped bellows
International Nuclear Information System (INIS)
Watanabe, Osamu; Ohtsubo, Hideomi.
1986-01-01
This paper presents analysis of elastic stress and torsional buckling of U-shaped bellows using ring elements. The expansion joint is considered to be composed of the two toroidal sections and inner-connecting annular plates. The general thin shell theory is employed to derive strain-displacement relations of shells and plates, valid for any loadings. Numerical examples under internal pressure or axial loading are described and compared with the results of existing appropriate analysis. The fundamental aspects of torsional buckling, which have not been studied previously, will also be investigated. (author)
Lower bound buckling loads for design of laminate composite cylinders
Croll, James G. A.; Wang, Hongtao
2017-01-01
Over a period of more than 45 years, an extensive research program has allowed a series of very simple propositions, relating to the safe design of shells experiencing imperfection sensitive buckling, to be recast in the form of a series of lemmas. These are briefly summarized and their practical use is illustrated in relation to the prediction of safe lower bounds to the imperfection sensitive buckling of axially loaded, fiber reinforced polymeric, laminated cylinders. With a fundamental aspect of the approach, sometimes referred to as the reduced stiffness method, being the delineation of the various shell membrane and bending stiffness (or perhaps more appropriately energy) components contributing to the buckling resistance, the method will be shown to also provide a powerful way of making rational design decisions to optimize the use of fiber reinforcement.
International Nuclear Information System (INIS)
Hoffman, E.L.; Ammerman, D.J.
1995-04-01
A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement
International Nuclear Information System (INIS)
Aillaud, P.; Buland, P.; Combescure, A.; Queval, J.C.; Garuti, G.
1983-08-01
The buckling of shells subjected to seismic type of loads is not very well known. To study this type of phenomenon we have performed theorical and experimental investigations on structures consisting of two shells separed by a thin fluid layer, and submitted to a seismic type of load. The objectives of these investigations are the following: study the coupling between buckling modes and vibrations modes and buckling of the effects of this coupling on the level of the pressure; study of the appearance on such structures of dynamic instabilities processes; qualification of computer codes of the CEASEMT system; and, qualification or criticism of the methodology used in the design based on a ''static equivalent'' idea. The experiments are made on two types of structures: spherical and cylindrical shells. The load applied on the shells consists of a permanent pressure and of a dynamic pressure due to fluid structure interaction. The systeme is put on the vibrating table and excitation is vertical for the hemispherical case, and horizontal for the cylindrical cases. Six models of each type are tested, with sinusoidal excitation at resonance. The tests on the spherical shells are presented and compared with calculations. The correlation is good and the main results is, as predicted by numerical calculation, that if the sum of the permanent and oscillatory pressure is greater than the static buckling load, the shells buckle. This results validates the static methodology. The tests on the cylindrical tanks will be exploited by the end of the year and presented in this paper
Wrinkling of Pressurized Elastic Shells
Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki
2011-01-01
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells
Creep buckling problems in fast reactor components
International Nuclear Information System (INIS)
Ramesh, R.; Damodaran, S.P.; Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.
1995-01-01
Creep buckling analyses for two important components of 500 M We Prototype Fast Breeder Reactor (PFBR), viz. Intermediate Heat Exchanger (IHX) and Inner Vessel (IV), are reported. The INCA code of CASTEM system is used for the large displacement elasto-plastic-creep analysis of IHX shell. As a first step, INCA is validated for a typical benchmark problem dealing with the creep buckling of a tube under external pressure. Prediction of INCA is also compared with the results obtained using Hoff's theory. For IV, considering the prohibitively high computational cost for the actual analysis, a simplified analysis which involves only large displacement elastoplastic buckling analysis is performed using isochronous stress strain curve approach. From both of these analysis is performed using isochronous stress strain curve approach. From both of these analysis, it has been inferred that creep buckling failure mode is not of great concern in the design of PFBR components. It has also been concluded from the analysis that Creep Cross Over Curve given in RCC-MR is applicable for creep buckling failure mode also. (author). 8 refs., 9 figs., 1 tab
Evaluation of design safety factors for time-dependent buckling
International Nuclear Information System (INIS)
Stone, C.M.; Nickell, R.E.
1977-02-01
The ASME Boiler and Pressure Vessel Code rules concerning time-dependent (creep) buckling for Class 1 nuclear components have recently been changed. Previous requirements for a factor of ten on service life have been replaced with a factor of safety of 1.5 on loading for load-controlled buckling. This report examines the supposed equivalence of the two rules from the standpoint of materials behavior--specifically, the secondary creep strain rate exponent. The comparison is made using results obtained numerically for an axially-loaded, cylindrical shell with varying secondary creep exponents. A computationally efficient scheme for analyzing creep buckling problems is also presented
International Nuclear Information System (INIS)
Combescure, A.
1983-05-01
The buckling of shells subjected to seismic type of loads is not very well known. To study this type of phenomenon, theoretical and experimental investigations on structures consisting of two shells separed by a thin fluid layer , and submitted to a seismic type of load have been performed. The objectives of these investigations are the following: study coupling between buckling modes vibrations modes and buckling, and the effects of this coupling on the level of pressure; study of the appearance on such structures of dynamic instabilities processes; qualification of computer codes of the CEASEMT system; and, qualification or criticism of the methodology used in the design based on a ''static equivalent'' idea
Buckling Optimization of Thick Stiffened Cylindrical Shell
Directory of Open Access Journals (Sweden)
Qasim Hassan Bader
2016-03-01
Full Text Available In this work the critical pressure due to buckling was calculated numerically by using ANSYS15 for both stiffened and un-stiffened cylinder for various locations and installing types , strengthening of the cylinder causes a more significant increase in buckling pressures than non reinforced cylinder . The optimum design of structure was done by using the ASYS15 program; in this step the number of design variables 21 DVs. These variables are Independent variables that directly affect. The design variables represented the thickness of the cylinder and( height and width of 10 stiffeners. State variables (SVs, these variables are dependent variables that change as a result of changing the DVs and are necessary to constrain the design. The objective function is the one variable in the optimization that needs to be minimized. In this case the state variable is critical pressure (CP and the objective function is the total (volume of the structure. The optimum weight of the structure with reasonable required conditions for multi types of structure was found. The result shows the best location of stiffener at internal side with circumferential direction. In this case the critical pressure can be increased about 18.6% and the total weight of the structure decreases to 15.8%.
Design rules against buckling of dished heads
International Nuclear Information System (INIS)
Roche, R.L.; Alix, M.; Autrusson, B.
1984-01-01
The aim of this paper is to present the validation of the rules of the French code of presure vessels CODAP. First, it is shown that the theories of buckling cannot give alone a sufficient base of validation and that the experimental justification is necessary. Then, the admissible pressure values corresponding to the CODAP formules are compared with the experimental results. This comparison furnishes the safety margins given by the CODAP formules. Finally, buckling tests of torispherical shells carried out at the CEA Saclay (France) are presented. The results obtained can be represented by a simple semi-empiric formula [fr
Buckling localization in a cylindrical panel under axial compression
DEFF Research Database (Denmark)
Tvergaard, Viggo; Needleman, A.
2000-01-01
Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum......, but where subsequently the load starts to increase again, it is found that near the local load minimum, the buckling pattern switches back to a periodic type of pattern. The inelastic material behavior of the panel is described in terms of J(2) corner theory, which avoids the sometimes unrealistically high...
Simulation of thermal stress and buckling instability in Si/Ge and Ge/Si core/shell nanowires.
Das, Suvankar; Moitra, Amitava; Bhattacharya, Mishreyee; Dutta, Amlan
2015-01-01
The present study employs the method of atomistic simulation to estimate the thermal stress experienced by Si/Ge and Ge/Si, ultrathin, core/shell nanowires with fixed ends. The underlying technique involves the computation of Young's modulus and the linear coefficient of thermal expansion through separate simulations. These two material parameters are combined to obtain the thermal stress on the nanowires. In addition, the thermally induced stress is perceived in the context of buckling instability. The analysis provides a trade-off between the geometrical and operational parameters of the nanostructures. The proposed methodology can be extended to other materials and structures and helps with the prediction of the conditions under which a nanowire-based device might possibly fail due to elastic instability.
International Nuclear Information System (INIS)
Hoffman, E.L.; Ammerman, D.J.
1993-01-01
A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several finite element simulations of the event. The purpose of the study is to compare the performance of the various analysis codes and element types with respect to a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry
Elastic and plastic buckling of shells. The CEASEMT system. Available results. Comparison with tests
International Nuclear Information System (INIS)
Hoffmann, A.; Roche, R.; Jeanpierre, F.; Goldstein, S.
1977-01-01
Specific routines for the analysis of elastic and elastic-plastic buckling have been written in the CEASEMT system of analysis by the finite element method. The basis of formulation are reviewed with emphasis on important points like: the correct and comprehensive formulation of the second order terms, the nonconservative loads. Some computational results are given and a comparison is made with experimental results (Euler type buckling of a long tube, elastic-plastic buckling of torispherical ends) [fr
Buckling rules in design codes: state of the art and future developments
Energy Technology Data Exchange (ETDEWEB)
Turbat, A. [FRAMATOME ANP, 69 - Lyon (France); Meziere, Y. [Electricite de France (EDF SEPTEN), 69 - Villeurbanne (France)
2001-07-01
Buckling, which can affect structures like bars, beams and shells when they are submitted to compressive stresses, can lead to unacceptable deformations and ruptures. Consequently, main Design Codes, especially those used in nuclear industry, include rules and analysis methods in order to prevent this phenomenon. In this paper, a review of buckling rules and/or analysis methods existing in ASME, RCC-M, RCC-MR and European Recommendations is performed. Then, these rules and methods are applied to the case of a cylinder filled with water and submitted to a seismic loading and results are compared. In the last part, current developments of methods to analyse creep buckling and dynamic buckling which should come and complete RCC-MR soon are presented. (author)
Buckling rules in design codes: state of the art and future developments
International Nuclear Information System (INIS)
Turbat, A.; Meziere, Y.
2001-01-01
Buckling, which can affect structures like bars, beams and shells when they are submitted to compressive stresses, can lead to unacceptable deformations and ruptures. Consequently, main Design Codes, especially those used in nuclear industry, include rules and analysis methods in order to prevent this phenomenon. In this paper, a review of buckling rules and/or analysis methods existing in ASME, RCC-M, RCC-MR and European Recommendations is performed. Then, these rules and methods are applied to the case of a cylinder filled with water and submitted to a seismic loading and results are compared. In the last part, current developments of methods to analyse creep buckling and dynamic buckling which should come and complete RCC-MR soon are presented. (author)
A new robust design for imperfection sensitive stiffened cylinders used in aerospace engineering
Liang, K.; Zhang, Y.; Sun, Q.; Ruess, M.
2015-01-01
A knock-down factor is commonly used to take into account the obvious decline of the buckling load in a cylindrical shell caused by the inevitable imperfections. In 1968, NASA guideline SP-8007 gave knock-down factors which rely on a lower-bound curve taken from experimental data. Recent research
Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio
Chang, T. Y.; Sawamiphakdi, K.
1984-01-01
A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.
Curvature-Induced Instabilities of Shells
Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark P.; Bade, Abdikhalaq J.; Holmes, Douglas P.
2018-01-01
Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood. Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing scaling predictions for the instabilities that are in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.
Dynamic buckling and nonlinear response of FBR main vessels under earthquake loading
International Nuclear Information System (INIS)
Hagiwara, Yutaka; Kawamoto, Yoji; Nakagawa, Masaki; Akiyama, Hiroshi.
1991-01-01
Pseudo-dynamic tests of cylindrical shells under high temperature were performed in order to study elasto-plastic shear-bending buckling and the nonlinear response of FBR main vessels under earthquake loading. The test results showed a response reduction effect due to pre-buckling plasticity, and a large seismic margin due to post-buckling energy absorption of the cylinders. A simple expression of the response reduction effect was proposed, as a contribution to the safe and effective seismic design of FBRs. Two methods for seismic margin evaluation were also proposed, and it was shown that appropriate seismic margins can be ensured, when the response reduction effect is incorporated into the seismic design. (author)
International Nuclear Information System (INIS)
Koo, Gyeong-Hoi; Lee, Jae-Han
2004-01-01
In the KALIMER (Korea Advanced Liquid Metal Reactor) design, the reactor baffle structure is adopted to prevent the hot pool sodium from directly contacting the reactor vessel and to guide the hot sodium overflow in severe transient operating conditions. The parts in the vicinity of the hot pool free surface region could be repeatedly subjected to a moving axial temperature gradient and this might result in thermal ratcheting deformation. In this paper, the progressive thermal buckling behaviour following thermal ratcheting due to the moving axial temperature gradients in a cylindrical shell structure with an open free edge is investigated using numerical inelastic analysis with Chaboche's model. To do this, the analyses of the moving temperature distribution are carried out with a simple model and the severe moving axial temperature gradients are assumed to be sufficient for the evolution of thermal ratcheting
Ravichandran, Rajeswari; Venugopal, Jayarama Reddy; Mueller, Martina; Sundarrajan, Subramanian; Mukherjee, Shayanti; Pliska, Damian; Wintermantel, Erich; Ramakrishna, Seeram
2013-12-01
Myocardial infarction is caused after impairment of heart wall muscle following an immense cell loss and also when the myocardial tissue is lacking the inherent capacity to regenerate for normal functioning of myocardium. An immediate challenge in cardiac regeneration is to devise a strategy that leads to a reproducible degree of cardiac differentiation. We have speculated that ex vivo pretreatment of adipose-derived stem cells (ADSCs) using 5-azacytidine and a suitable patterned nanofibrous construct could lead to cardiomyogenic differentiation and results in superior biological and functional effects on cardiac regeneration of infarcted myocardium. Polyglycerol sebacate/gelatin fibers were fabricated by core/shell electrospinning with polyglycerol sebacate as the core material and gelatin as the shell material. Patterning of the core/shell fibers to form orthogonal and looped buckled nanostructures was achieved. Results demonstrated that the buckled fibers showing an orthogonal orientation and looped pattern had a Young's modulus of approximately 3.59 ± 1.58 MPa and 2.07 ± 0.44 MPa, respectively, which was comparable to that of native myocardium. The ADSCs cultured on these scaffolds demonstrated greater expression of the cardiac-specific marker proteins actinin, troponin and connexin 43, as well as characteristic multinucleation as shown by immunocytochemical and morphological analysis, indicating complete cardiogenic differentiation of ADSCs. In the natural milieu, cardiomyogenic differentiation probably involves multiple signaling pathways and we have postulated that a buckled structure combination of chemical treatment and environment-driven strategy induces cardiogenic differentiation of ADSCs. The combination of patterned buckled fibrous structures with stem cell biology may prove to be a productive device for myocardial infarction.
Viswanathan, A. V.; Tamekuni, M.
1973-01-01
Analytical methods based on linear theory are presented for predicting the thermal stresses in and the buckling of heated structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Uniaxially stiffened plates and shells of arbitrary cross section are typical examples. For the buckling analysis the structure or selected elements may be subjected to mechanical loads, in additional to thermal loads, in any desired combination of inplane transverse load and axial compression load. The analysis is also applicable to stiffened structures under inplane loads varying through the cross section, as in stiffened shells under bending. The buckling analysis is general and covers all modes of instability. The analysis has been applied to a limited number of problems and the results are presented. These while showing the validity and the applicability of the method do not reflect its full capability.
Buckling behavior of origami unit cell facets under compressive loads
Kshad, Mohamed Ali Emhmed; Naguib, Hani E.
2018-03-01
Origami structures as cores for sandwich structures are designed to withstand the compressive loads and to dissipate compressive energy. The deformation of the origami panels and the unit cell facets are the primary factors behind the compressive energy dissipation in origami structures. During the loading stage, the origami structures deform through the folding and unfolding process of the unit cell facets, and also through the plastic deformation of the facets. This work presents a numerical study of the buckling behavior of different origami unit cell elements under compressive loading. The studied origami configurations were Miura and Ron-Resch-like origami structures. Finite element package was used to model the origami structures. The study investigated the buckling behavior of the unit cell facets of two types of origami structures Miura origami and Ron-Resch-Like origami structures. The simulation was conducted using ANSYS finite element software, in which the model of the unit cell represented by shell elements, and the eigenvalues buckling solver was used to predict the theoretical buckling of the unit cell elements.
Yield stress independent column buckling curves
DEFF Research Database (Denmark)
Stan, Tudor‐Cristian; Jönsson, Jeppe
2017-01-01
of the yield stress is to some inadequate degree taken into account in the Eurocode by specifying that steel grades of S460 and higher all belong to a common set of “raised” buckling curves. This is not satisfying as it can be shown theoretically that the current Eurocode formulation misses an epsilon factor......Using GMNIA and shell finite element modelling of steel columns it is ascertained that the buckling curves for given imperfections and residual stresses are not only dependent on the relative slenderness ratio and the cross section shape but also on the magnitude of the yield stress. The influence...... in the definition of the normalised imperfection magnitudes. By introducing this factor it seems that the GMNIA analysis and knowledge of the independency of residual stress levels on the yield stress can be brought together and give results showing consistency between numerical modelling and a simple modified...
Buckling Analysis of Bucket Foundations for Wind Turbines in Deep Water
DEFF Research Database (Denmark)
Madsen, Søren; Andersen, Lars; Ibsen, Lars Bo
2011-01-01
Using large suction caissons for offshore wind turbines is an upcoming technology also referred to as bucket foundations. The bucket foundation does not require heavy installation equipment, but since it is constructed as a thin steel shell structure, instability, in form of buckling, becomes...
Directory of Open Access Journals (Sweden)
Kołakowski Zbigniew
2016-06-01
Full Text Available A review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled structures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling is limited in practice to columns, single plates and shells. The applications of finite element method (FEM or/and analytical-numerical method (ANM to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered.
MECHANICAL PROPERTIES OF THIN GDP SHELLS USED AS CRYOGENIC DIRECT DRIVE TARGETS AT OMEGA
International Nuclear Information System (INIS)
NIKROO, A.; CZECHOWICZ, D.; CHEN, K.C.; DICKEN, M.; MORRIS, C.; ANDREWS, R.; GREENWOOD, A.L; CASTILLO, E.
2003-09-01
OAK-B135 Thin glow discharge polymer (GDP) shells are currently used as the targets for cryogenic direct drive laser fusion experiments. These shells need to be filled with nearly 1000 atm of D 2 and cooled to cryogenic temperatures without failing due to buckling and bursting pressures they experience in this process. Therefore, the mechanical and permeation properties of these shells are of utmost importance in successful and rapid filling with D 2 . In this paper, they present an overview of buckle and burst pressures of several different types of GDP shells. These include those made using traditional GDP deposition parameters (standard GDP) using a high deposition pressure and using modified parameters (strong GDP) of low deposition pressure that leads to more robust shells
Mechanical response and buckling of a polymer simulation model of the cell nucleus
Banigan, Edward; Stephens, Andrew; Marko, John
The cell nucleus must robustly resist extra- and intracellular forces to maintain genome architecture. Micromanipulation experiments measuring nuclear mechanical response reveal that the nucleus has two force response regimes: a linear short-extension response due to the chromatin interior and a stiffer long-extension response from lamin A, comprising the intermediate filament protein shell. To explain these results, we developed a quantitative simulation model with realistic parameters for chromatin and the lamina. Our model predicts that crosslinking between chromatin and the lamina is essential for responding to small strains and that changes to the interior topological organization can alter the mechanical response of the whole nucleus. Thus, chromatin polymer elasticity, not osmotic pressure, is the dominant regulator of this force response. Our model reveals a novel buckling transition for polymer shells: as force increases, the shell buckles transverse to the applied force. This transition, which arises from topological constrains in the lamina, can be mitigated by tuning the properties of the chromatin interior. Thus, we find that the genome is a resistive mechanical element that can be tuned by its organization and connectivity to the lamina.
Dehydration of core/shell fruits
Liu, Y.; Yang, Xiaosong; Cao, Y.; Wang, Z.; Chen, B.; Zhang, Jian J.; Zhang, H.
2015-01-01
Dehydrated core/shell fruits, such as jujubes, raisins and plums, show very complex buckles and wrinkles on their exocarp. It is a challenging task to model such complicated patterns and their evolution in a virtual environment even for professional animators. This paper presents a unified physically-based approach to simulate the morphological transformation for the core/shell fruits in the dehydration process. A finite element method (FEM), which is based on the multiplicative decomposition...
FEM Modelling of Lateral-Torsional Buckling Using Shell and Solid Elements
DEFF Research Database (Denmark)
Valeš, Jan; Stan, Tudor-Cristian
2017-01-01
The paper describes two methods of FEM modelling of I-section beams loaded by bending moments. Series of random realizations with initial imperfections following the first eigenmode of lateral-torsional buckling were created. Two independent FEM software products were used for analyses of resista...... of resistance. At the end the difference and correlation between the results as well as advantages and disadvantages of both methods are discussed....
Shama, Mohamed
2013-01-01
Buckling of Ship Structures presents a comprehensive analysis of the buckling problem of ship structural members. A full analysis of the various types of loadings and stresses imposed on ship plating and primary and secondary structural members is given. The main causes and consequences of the buckling mode of failure of ship structure and the methods commonly used to control buckling failure are clarified. This book contains the main equations required to determine the critical buckling stresses for both ship plating and the primary and secondary stiffening structural members. The critical buckling stresses are given for ship plating subjected to the induced various types of loadings and having the most common boundary conditions encountered in ship structures. The text bridges the gap existing in most books covering the subject of buckling of ship structures in the classical analytical format, by putting the emphasis on the practical methods required to ensure safety against buckling of ship structur...
International Nuclear Information System (INIS)
Hsieh, B.J.
1977-01-01
A rectilinear shell element formulated in the convected (co-rotational) coordinates is used to investigate the effects of edge conditions on the behaviors of thin shells of revolution under suddenly applied uniform loading. The equivalent generalized nodal forces under uniform loading are computed to the third order of the length of each element. A dynamic buckling load is defined as the load at which a great change in the response is observed for a small change in the loading. The problem studied is a shallow spherical cap. The cap is discretized into a finite number of elements. This discretization introduces some initial imperfections into the shell model. Nonetheless, the effect of this artificial imperfection is isolated from the effect of the edge conditions provided the same number of elements is used in all the cases. Four different edge conditions for the cap are used. These boundary conditions are fixed edge, hinged edge, roller edge and free edge. The apex displacement of the cap is taken as the measure for the response of the cap, and the dynamic buckling load is obtained by examining the response of the cap under different levels of loadings. Dynamic buckling loads can be found for all cases but for the free edge case. They are 0.28q for both fixed and hinged cases and 0.13 q for the roller case, where q is the classic static buckling load of a complete spherical shell with the same geometric dimensions and material properties. In the case of free edge, the motions of the cap are composed of mostly rigid body motion and small vibrations. The vibration of the cap is stable up to 1 q loading. The cap does snap through at higher loading. However, no loading can be clearly identified as buckling load
An embeddable optical strain gauge based on a buckled beam.
Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie
2017-11-01
We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.
An embeddable optical strain gauge based on a buckled beam
Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie
2017-11-01
We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.
Wrinkling of Pressurized Elastic Shells
Vella, Dominic
2011-10-01
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.
Buckling Analysis of Grid-Stiffened Composite Shells
Wang, D.; Abdalla, M.M.
2014-01-01
There is a renewed interest in grid-stiffened composite structures; they are not only competitive with conventional stiffened constructions and sandwich shells in terms of weight but also enjoy superior damage tolerance properties. In this paper, both global and local structural instabilities are
The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements
Nemeth, Michael P.; Starnes, James H., Jr.
1998-01-01
A summary of the existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability-based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.
Buckling of Bucket Foundations
DEFF Research Database (Denmark)
Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2012-01-01
In this paper, the risk of structural buckling during installation of large-diameter bucket foundations is addressed using numerical methods. Imperfect geometries are introduced based on the pre-buckling mode shapes from a linear Eigenvalue buckling analysis. Various imperfect geometries are intr...
Influence of initial imperfections on ultimate strength of spherical shells
Directory of Open Access Journals (Sweden)
Chang-Li Yu
2017-09-01
Full Text Available Comprehensive consideration regarding influence mechanisms of initial imperfections on ultimate strength of spherical shells is taken to satisfy requirement of deep-sea structural design. The feasibility of innovative numerical procedure that combines welding simulation and non-linear buckling analysis is verified by a good agreement to experimental and theoretical results. Spherical shells with a series of wall thicknesses to radius ratios are studied. Residual stress and deformations from welding process are investigated separately. Variant influence mechanisms are discovered. Residual stress is demonstrated to be influential to stress field and buckling behavior but not to the ultimate strength. Deformations are proved to have a significant impact on ultimate strength. When central angles are less than critical value, concave magnitudes reduce ultimate strengths linearly. However, deformations with central angles above critical value are of much greater harm. Less imperfection susceptibility is found in spherical shells with larger wall thicknesses to radius ratios.
Thermal ratcheting and progressive buckling
International Nuclear Information System (INIS)
Lebey, J.; Brouard, D.; Roche, R.L.
1983-01-01
Pure elastic buckling is not a frequent mode of failure and plastic deformations often occurs before buckling - like instability does. Elastic-plastic buckling is very difficult to analyse. The most important difficulty is the material modeling. In the elastic plastic buckling phenomena, small modifications of the material constitutive equation used are of great influence on the final result. When buckling cannot occurs, it is well known that distortion due to applied loads is greatly amplified when there is also some cyclic straining (like thermal stresses). This effect is called ratcheting - and thermal ratcheting when caused by cyclic thermal transients. As cyclic thermal stresses can be applied in addition of load able to cause buckling failure of a component, the question arise of the effect of cyclic thermal stresses on the critical buckling load. The aim of the work presented here is to answer that question: 'Is the critical buckling load reduced when cyclic straining is added'. It seems sensible to avoid premature computation based only on arbitrary assumptions and to prefer obtaining a sound experimental basis for analysis. Sufficient experimental knowledge is needed in order to check the validity of the material modeling (and imperfections) used in analysis. Experimental tests on buckling of compressed columns subjected to cyclic straining have been performed. These experiments are described and results are given. The most important result is cyclic straining reduces the critical buckling load. It appears that distortion can be increasing progressively during cyclic straining and that buckling can happen at last at compressive loads too small to cause buckling in the absence of cyclic straining. (orig./RW)
Karam, Gebran Nizar
1994-01-01
Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.
Buckling Analysis of Grid-Stiffened Composite Shells
Wang, D.; Abdalla, M.M.
2014-01-01
There is a renewed interest in grid-stiffened composite structures; they are not only competitive with conventional stiffened constructions and sandwich shells in terms of weight but also enjoy superior damage tolerance properties. In this paper, both global and local structural instabilities are investigated for grid-stiffened composite panels using homogenization theory. Characteristic cell configurations with periodic boundary constraints are employed for orthogrid- and isogrid-stiffened s...
Cellular buckling in long structures
Hunt, G.W.; Peletier, M.A.; Champneys, A.R.; Woods, P.D.; Wadee, M.A.; Budd, C.J.; Lord, G.J.
2000-01-01
A long structural system with an unstable (subcritical)post-buckling response that subsequently restabilizes typically deformsin a cellular manner, with localized buckles first forming and thenlocking up in sequence. As buckling continues over a growing number ofcells, the response can be described
Comparison of Methods to Predict Lower Bound Buckling Loads of Cylinders Under Axial Compression
Haynie, Waddy T.; Hilburger, Mark W.
2010-01-01
Results from a numerical study of the buckling response of two different orthogrid stiffened circular cylindrical shells with initial imperfections and subjected to axial compression are used to compare three different lower bound buckling load prediction techniques. These lower bound prediction techniques assume different imperfection types and include an imperfection based on a mode shape from an eigenvalue analysis, an imperfection caused by a lateral perturbation load, and an imperfection in the shape of a single stress-free dimple. The STAGS finite element code is used for the analyses. Responses of the cylinders for ranges of imperfection amplitudes are considered, and the effect of each imperfection is compared to the response of a geometrically perfect cylinder. Similar behavior was observed for shells that include a lateral perturbation load and a single dimple imperfection, and the results indicate that the predicted lower bounds are much less conservative than the corresponding results for the cylinders with the mode shape imperfection considered herein. In addition, the lateral perturbation technique and the single dimple imperfection produce response characteristics that are physically meaningful and can be validated via testing.
DEFF Research Database (Denmark)
Rahmani, Omid; Khalili, S.M.R.; Thomsen, Ole Thybo
2012-01-01
A new model based on the high order sandwich panel theory is proposed to study the effect of external loads on the free vibration of circular cylindrical composite sandwich shells with transversely compliant core, including also the calculation of the buckling loads. In the present model......, which is based on a 3D elasticity solution for the core material, can be used as a benchmark in future studies of the free vibration and buckling of circular cylindrical composite sandwich shells with a transversely compliant core....
Buckling of Actin-Coated Membranes under Application of a Local Force
International Nuclear Information System (INIS)
Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; MacKintosh, F. C.; Chatenay, D.
2001-01-01
The mechanical properties of composite membranes obtained by self-assembly of actin filaments with giant fluid vesicles are studied by micromanipulation with optical tweezers. These complexes exhibit typical mechanical features of a solid shell, including a finite in-plane shear elastic modulus (∼10 -6 N /m). A buckling instability is observed when a localized force of the order of 0.5pN is applied perpendicular to the membrane plane. Although predicted for polymerized vesicles, this is the first evidence of such an instability
Buckling a Semiflexible Polymer Chain under Compression
Directory of Open Access Journals (Sweden)
Ekaterina Pilyugina
2017-03-01
Full Text Available Instability and structural transitions arise in many important problems involving dynamics at molecular length scales. Buckling of an elastic rod under a compressive load offers a useful general picture of such a transition. However, the existing theoretical description of buckling is applicable in the load response of macroscopic structures, only when fluctuations can be neglected, whereas membranes, polymer brushes, filaments, and macromolecular chains undergo considerable Brownian fluctuations. We analyze here the buckling of a fluctuating semiflexible polymer experiencing a compressive load. Previous works rely on approximations to the polymer statistics, resulting in a range of predictions for the buckling transition that disagree on whether fluctuations elevate or depress the critical buckling force. In contrast, our theory exploits exact results for the statistical behavior of the worm-like chain model yielding unambiguous predictions about the buckling conditions and nature of the buckling transition. We find that a fluctuating polymer under compressive load requires a larger force to buckle than an elastic rod in the absence of fluctuations. The nature of the buckling transition exhibits a marked change from being distinctly second order in the absence of fluctuations to being a more gradual, compliant transition in the presence of fluctuations. We analyze the thermodynamic contributions throughout the buckling transition to demonstrate that the chain entropy favors the extended state over the buckled state, providing a thermodynamic justification of the elevated buckling force.
Theoretical and experimental investigations of creep buckling on NiCr 22 Co 12 Mo tubes
International Nuclear Information System (INIS)
Ahmed, K.; Breitbach, G.; Over, H.; Schubert, F.; Nickel, H.
1988-08-01
The postulated pressure loss of the secondary circuit is one of the hardest loading conditions for the heat exchanging components in a HTGR plant. It is to proof for the design that the heat exchanging metallic components (heat exchanger or reformer tubes of a PNP plant for instance) do not collapse under such an emergency condition. An external pressure p a stressed tubes or cylindric shells at a pressure loss of a secondary circuit side. This external pressure buckles the tubes in dependence of the fabrication implied out of roundness 0 (fabrication tolerances) by material creep in the high temperature region. This creep buckling ends in a failure (collapse) of the component after a critical time t cr . The aim of the work is the experimental verification of creep buckling behaviour for the heat exchanger components and the comparison with different constitutive equations. With these equations safety factors can be formulated against as well the critical collapse time and pressure as the permissible out of roundness from fabrication. (orig.) [de
Habibi, M.; Rahmani, Y.; Bonn, D.; Ribe, N.M.
2010-01-01
Under appropriate conditions, a column of viscous liquid falling onto a rigid surface undergoes a buckling instability. Here we show experimentally and theoretically that liquid buckling exhibits a hitherto unsuspected complexity involving three different modes—viscous, gravitational, and
Local buckling of composite channel columns
Szymczak, Czesław; Kujawa, Marcin
2018-05-01
The investigation concerns local buckling of compressed flanges of axially compressed composite channel columns. Cooperation of the member flange and web is taken into account here. The buckling mode of the member flange is defined by rotation angle a flange about the line of its connection with the web. The channel column under investigation is made of unidirectional fibre-reinforced laminate. Two approaches to member orthotropic material modelling are performed: the homogenization with the aid of theory of mixture and periodicity cell or homogenization upon the Voigt-Reuss hypothesis. The fundamental differential equation of local buckling is derived with the aid of the stationary total potential energy principle. The critical buckling stress corresponding to a number of buckling half-waves is assumed to be a minimum eigenvalue of the equation. Some numerical examples dealing with columns are given here. The analytical results are compared with the finite element stability analysis carried out by means of ABAQUS software. The paper is focused on a close analytical solution of the critical buckling stress and the associated buckling mode while the web-flange cooperation is assumed.
Evaluation of buckling on containment metallic vessels
International Nuclear Information System (INIS)
Silveira, Renato Campos da; Mattar Neto, Miguel
2000-01-01
The buckling analysis represents one of the most important aspects of the structural projects of nuclear power plants containment metallic vessels and in this work the Case N-284-1 ASME Code is used for evaluation of those structures submitted to this failure mode. From the stress analysis, performed by using finite element method on discrete structures with shell elements, the procedure of the Code Case are applied to the evaluation of the containment metallic vessel of the Angra 2 nuclear power plant submitted to the own weight, seismic loads and uplift in case of accident. A study of pressure vessel reinforced by rings submit ed to the external pressure. Conclusions and commentaries are established based on the obtained results
Radiologic Findings in Hydrated Hydrogel Buckles
International Nuclear Information System (INIS)
Lee, Sung Bok; Lee, Nam Ho; Jo, Young Joon; Kim, Jung Yeul; Lee, Yeon Hee; Kim, Song Soo
2008-01-01
Hydrogel buckles, which are used in scleral buckling surgery for retinal detachment, have been associated with late complications after successful retinal reattachment surgery, including strabismus, extraocular motility restriction, extrusion through the eyelid or conjunctiva, intraocular erosion, and scleral erosion. Hydrogel buckles sometimes appear as well-marginated, circumferential, lobulating, contoured cystic masses mimicking orbital cysts on orbital CT or MRI. We report the radiologic findings in 5 patients whose hydrogel buckles needed to be differentiated from orbital cysts
Radiologic Findings in Hydrated Hydrogel Buckles
Energy Technology Data Exchange (ETDEWEB)
Lee, Sung Bok; Lee, Nam Ho; Jo, Young Joon; Kim, Jung Yeul; Lee, Yeon Hee; Kim, Song Soo [Chungnam National University, Daejeon (Korea, Republic of)
2008-11-15
Hydrogel buckles, which are used in scleral buckling surgery for retinal detachment, have been associated with late complications after successful retinal reattachment surgery, including strabismus, extraocular motility restriction, extrusion through the eyelid or conjunctiva, intraocular erosion, and scleral erosion. Hydrogel buckles sometimes appear as well-marginated, circumferential, lobulating, contoured cystic masses mimicking orbital cysts on orbital CT or MRI. We report the radiologic findings in 5 patients whose hydrogel buckles needed to be differentiated from orbital cysts.
Buckling feedback of the spectral calculations
International Nuclear Information System (INIS)
Jing Xingqing; Shan Wenzhi; Luo Jingyu
1992-01-01
This paper studies the problems about buckling feedback of spectral calculations in physical calculations of the reactor and presents a useful method by which the buckling feedback of spectral calculations is implemented. The effect of the buckling feedback in spectra and the broad group cross section, convergence of buckling feedback iteration and the effect of the spectral zones dividing are discussed in the calculations. This method has been used for the physical design of HTR-10 MW Test Module
About two new efficient nonlinear shell elements
International Nuclear Information System (INIS)
Yin, J.; Suo, X.Z.; Combescure, A.
1989-01-01
The aim of the paper is to present the development of two shell elements for non linear analysis. The first one is an axisymetric curved shell element and it is developed for buckling analysis. The formulation is given, as well as some typical applications. The second one is an extension of the classical DKT element to large strains taking into account all aspects of non linearities. This element is used for the simulation of four point bending of cracked pipes. The whole experiment is simulated by the calculation taking into account very large strains at the crack tip and propagation of the crack
A practical rule for progressive buckling
International Nuclear Information System (INIS)
Clement, G.; Acker, D.; Lebey, J.
1989-01-01
Thin structures submitted to compressive loads must be carefully designed to avoid any risk of failure by buckling. When cyclic loadings are concerned, the question to assess their possible detrimental effect on the buckling resistance of thin structures arises. The aim of this paper is, first, to evidence that the critical buckling load may be notably lowered when cyclic strains are added to the compressive load and, secondly, to propose a practical rule of prevention against the failure due to the progressive buckling phenomenon. This rule is validated by the results of numerous tests related to the entire range of modes of buckling (i.e. from fully plastic to fully elastic). Practical cases of interest for its use would mainly be those where cyclic thermal stresses are involved. (orig.)
International Nuclear Information System (INIS)
Hagiwara, Y.; Yamamoto, K.; Akiyama, H.
1993-01-01
Reactor vessels of FBR are cylindrical shell structures, whose critical failure mode during earthquakes is plastic buckling in shear or bending mode. In buckling prevention of the vessels, it is of primary importance to realistically evaluate the plastic response reduction effect in the pre-buckling stage. Though the authors have already proposed a empirical formula to estimate the response reduction effect, the formula depends only on the pre-buckling ductility factor in the evaluation for the purpose of easy design practice. In this study, the effect of seismic motion characteristics on the response reduction effect was investigated both experimentally and numerically, and a improved version of the empirical expression of the reduction factor was proposed. In this new method, the response reduction effect is evaluated by an initial acceleration amplification factor in addition to the ductility of structures. (author)
Sinusoidal velaroidal shell – numerical modelling of the nonlinear ...
African Journals Online (AJOL)
The nonlinearity, applied to a sinusoidal velaroidal shell with the inner radius r0, the outer variables radii from 10m to 20m and the number of waves n=8, will give rise to the investigation of its nonlinear buckling resistance. The building material is a high-performant concrete. The investigation emphasizes more on the ...
Coulomb energy of uniformly charged spheroidal shell systems.
Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera
2015-03-01
We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.
Review of strain buckling: analysis methods
International Nuclear Information System (INIS)
Moulin, D.
1987-01-01
This report represents an attempt to review the mechanical analysis methods reported in the literature to account for the specific behaviour that we call buckling under strain. In this report, this expression covers all buckling mechanisms in which the strains imposed play a role, whether they act alone (as in simple buckling under controlled strain), or whether they act with other loadings (primary loading, such as pressure, for example). Attention is focused on the practical problems relevant to LMFBR reactors. The components concerned are distinguished by their high slenderness ratios and by rather high thermal levels, both constant and variable with time. Conventional static buckling analysis methods are not always appropriate for the consideration of buckling under strain. New methods must therefore be developed in certain cases. It is also hoped that this review will facilitate the coding of these analytical methods to aid the constructor in his design task and to identify the areas which merit further investigation
Shell stability analysis in a computer aided engineering (CAE) environment
Arbocz, J.; Hol, J. M. A. M.
1993-01-01
The development of 'DISDECO', the Delft Interactive Shell DEsign COde is described. The purpose of this project is to make the accumulated theoretical, numerical and practical knowledge of the last 25 years or so readily accessible to users interested in the analysis of buckling sensitive structures. With this open ended, hierarchical, interactive computer code the user can access from his workstation successively programs of increasing complexity. The computational modules currently operational in DISDECO provide the prospective user with facilities to calculate the critical buckling loads of stiffened anisotropic shells under combined loading, to investigate the effects the various types of boundary conditions will have on the critical load, and to get a complete picture of the degrading effects the different shapes of possible initial imperfections might cause, all in one interactive session. Once a design is finalized, its collapse load can be verified by running a large refined model remotely from behind the workstation with one of the current generation 2-dimensional codes, with advanced capabilities to handle both geometric and material nonlinearities.
Micro-buckling in the nanocomposite structure of biological materials
Su, Yewang; Ji, Baohua; Hwang, Keh-Chih; Huang, Yonggang
2012-10-01
Nanocomposite structure, consisting of hard mineral and soft protein, is the elementary building block of biological materials, where the mineral crystals are arranged in a staggered manner in protein matrix. This special alignment of mineral is supposed to be crucial to the structural stability of the biological materials under compressive load, but the underlying mechanism is not yet clear. In this study, we performed analytical analysis on the buckling strength of the nanocomposite structure by explicitly considering the staggered alignment of the mineral crystals, as well as the coordination among the minerals during the buckling deformation. Two local buckling modes of the nanostructure were identified, i.e., the symmetric mode and anti-symmetric mode. We showed that the symmetric mode often happens at large aspect ratio and large volume fraction of mineral, while the anti-symmetric happens at small aspect ratio and small volume fraction. In addition, we showed that because of the coordination of minerals with the help of their staggered alignment, the buckling strength of these two modes approached to that of the ideally continuous fiber reinforced composites at large aspect ratio given by Rosen's model, insensitive to the existing "gap"-like flaws between mineral tips. Furthermore, we identified a mechanism of buckling mode transition from local to global buckling with increase of aspect ratio, which was attributed to the biphasic dependence of the buckling strength on the aspect ratio. That is, for small aspect ratio, the local buckling strength is smaller than that of global buckling so that it dominates the buckling behavior of the nanocomposite; for comparatively larger aspect ratio, the local buckling strength is higher than that of global buckling so that the global buckling dominates the buckling behavior. We also found that the hierarchical structure can effectively enhance the buckling strength, particularly, this structural design enables
Scleral buckle infection with Alcaligenes xylosoxidans
Directory of Open Access Journals (Sweden)
Chih-Kang Hsu
2014-01-01
Full Text Available We describe a rare case of extraocular inflammation secondary to scleral buckle infection with Alcaligenes xylosoxidans. A 60-year-old female with a history of retinal detachment repair with open-book technique of scleral buckling presented with purulent discharge and irritation in the right eye that had begun 4 weeks earlier and had been treated ineffectively at another hospital. Conjunctival erosion with exposure of the scleral buckle was noted. The scleral buckle was removed and cultured. The explanted material grew gram-negative rod later identified as A. xylosoxidans. On the basis of the susceptibility test results, the patient was treated by subconjunctival injection and fortified topical ceftazidime. After 4 weeks of treatment, the infection resolved.
A strategy to compute plastic post-buckling of structures
International Nuclear Information System (INIS)
Combescure, A.
1983-01-01
All the methods presented here give in some cases, some interesting computed solutions. It has been remarked that the different strategies do not always give the same post buckling path. More foundamentally, it has been observed that the post buckling path, when buckling is unstable, is characterized by a dynamic movement. All inertial effects are neglected in all the approaches presented here. So that the post buckling load deflections curve is valid only if there is a very little kinetic energy associated with the post buckling. The method is also, as it is presented, limited to a load depending of a simple parameter lambda. The case of more than one parameter is not very clear yet. In conclusion, the method presented here gives a way to solve class of the post buckling behavior of a structure. If the post buckling occurs with a small kinetic energy (displacement controlled buckling) and if the loads depend of only one parameter. These methods should give good results even into the plastic range. If the buckling is unstable and that a large kinetic energy is involved with the post buckling these methods are not realistic. (orig./RW)
Buckling Instability Causes Inertial Thrust for Spherical Swimmers at All Scales
Djellouli, Adel; Marmottant, Philippe; Djeridi, Henda; Quilliet, Catherine; Coupier, Gwennou
2017-12-01
Microswimmers, and among them aspirant microrobots, generally have to cope with flows where viscous forces are dominant, characterized by a low Reynolds number (Re). This implies constraints on the possible sequences of body motion, which have to be nonreciprocal. Furthermore, the presence of a strong drag limits the range of resulting velocities. Here, we propose a swimming mechanism which uses the buckling instability triggered by pressure waves to propel a spherical, hollow shell. With a macroscopic experimental model, we show that a net displacement is produced at all Re regimes. An optimal displacement caused by nontrivial history effects is reached at intermediate Re. We show that, due to the fast activation induced by the instability, this regime is reachable by microscopic shells. The rapid dynamics would also allow high-frequency excitation with standard traveling ultrasonic waves. Scale considerations predict a swimming velocity of order 1 cm /s for a remote-controlled microrobot, a suitable value for biological applications such as drug delivery.
DNA nanoparticles with core-shell morphology.
Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc
2014-10-14
Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.
Buckling of stiff polymers: Influence of thermal fluctuations
Emanuel, Marc; Mohrbach, Hervé; Sayar, Mehmet; Schiessel, Helmut; Kulić, Igor M.
2007-12-01
The buckling of biopolymers is a frequently studied phenomenon The influence of thermal fluctuations on the buckling transition is, however, often ignored and not completely understood. A quantitative theory of the buckling of a wormlike chain based on a semiclassical approximation of the partition function is presented. The contribution of thermal fluctuations to the force-extension relation that allows one to go beyond the classical Euler buckling is derived in the linear and nonlinear regimes as well. It is shown that the thermal fluctuations in the nonlinear buckling regime increase the end-to-end distance of the semiflexible rod if it is confined to two dimensions as opposed to the three-dimensional case. The transition to a buckled state softens at finite temperature. We derive the scaling behavior of the transition shift with increasing ratio of contour length versus persistence length.
FASOR - A second generation shell of revolution code
Cohen, G. A.
1978-01-01
An integrated computer program entitled Field Analysis of Shells of Revolution (FASOR) currently under development for NASA is described. When completed, this code will treat prebuckling, buckling, initial postbuckling and vibrations under axisymmetric static loads as well as linear response and bifurcation under asymmetric static loads. Although these modes of response are treated by existing programs, FASOR extends the class of problems treated to include general anisotropy and transverse shear deformations of stiffened laminated shells. At the same time, a primary goal is to develop a program which is free of the usual problems of modeling, numerical convergence and ill-conditioning, laborious problem setup, limitations on problem size and interpretation of output. The field method is briefly described, the shell differential equations are cast in a suitable form for solution by this method and essential aspects of the input format are presented. Numerical results are given for both unstiffened and stiffened anisotropic cylindrical shells and compared with previously published analytical solutions.
Non-linear general instability of ring-stiffened conical shells under external hydrostatic pressure
International Nuclear Information System (INIS)
Ross, C T F; Kubelt, C; McLaughlin, I; Etheridge, A; Turner, K; Paraskevaides, D; Little, A P F
2011-01-01
The paper presents the experimental results for 15 ring-stiffened circular steel conical shells, which failed by non-linear general instability. The results of these investigations were compared with various theoretical analyses, including an ANSYS eigen buckling analysis and another ANSYS analysis; which involved a step-by-step method until collapse; where both material and geometrical nonlinearity were considered. The investigation also involved an analysis using BS5500 (PD 5500), together with the method of Ross of the University of Portsmouth. The ANSYS eigen buckling analysis tended to overestimate the predicted buckling pressures; whereas the ANSYS nonlinear results compared favourably with the experimental results. The PD5500 analysis was very time consuming and tended to grossly underestimate the experimental buckling pressures and in some cases, overestimate them. In contrast to PD5500 and ANSYS, the design charts of Ross of the University of Portsmouth were the easiest of all these methods to use and generally only slightly underestimated the experimental collapse pressures. The ANSYS analyses gave some excellent graphical displays.
Distortional buckling modes of semi-discretized thin-walled columns
DEFF Research Database (Denmark)
Andreassen, Michael Joachim; Jönsson, Jeppe
2012-01-01
buckling, distortional buckling and local buckling are given and it is shown how the novel approach may be used to develop signature curves and elastic buckling curves. In order to assess the accuracy of the method some of the results are compared to results found using the commercial FE program Abaqus...
Wang, Bo; Tian, Kuo; Zhao, Haixin; Hao, Peng; Zhu, Tianyu; Zhang, Ke; Ma, Yunlong
2017-06-01
In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.
Buckling Analysis of Edge Cracked Sandwich Plate
Directory of Open Access Journals (Sweden)
Rasha Mohammed Hussein
2016-07-01
Full Text Available This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.
International Nuclear Information System (INIS)
Hagiwara, Yutaka; Yamamoto, Kohsuke; Kawamoto, Yoji; Nakagawa, Masaki; Akiyama, Hiroshi
1998-01-01
Plastic shear-bending buckling under seismic loadings is one of the major problems in the structural design of FBR main vessels. Pseudo-dynamic and dynamic buckling tests of cylinders were performed in order to study the effects of nonlinear seismic response on buckling strength, ductility, and plastic response reduction. The buckling strength formulae and the rule for ductility factors both derived from static tests were confirmed to be valid for the tests under dynamic loads. The displacement-constant rule for response reduction effect was modified by acceleration amplification factor in order to maintain applicability for various spectral profiles of seismic excitations. The response reduction estimated by the proposed rule was reasonably conservative for all cases of the pseudo-dynamic and the dynamic tests. Finally, a seismic safety assessment rule was proposed for plastic shear-bending buckling of cylinders, which include the proposed response reduction rule. (author)
Circumferential buckling instability of a growing cylindrical tube
Moulton, D.E.
2011-03-01
A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure. © 2011 Elsevier Ltd. All rights reserved.
Cylindrical Shells Made of Stainless Steel - Investigation of Postbuckling
Stehr, Sebastian; Stranghöner, Natalie
2017-06-01
The relevant load case of open thin-walled shells is often wind loading during construction. Because of the missing stabilization effect of the roof they show a very high sensitivity to buckling which results into higher wall thicknesses. As part of the European RFCS research project BiogaSS the Institute for Metal and Lightweight Structures of the University of Duisburg-Essen carried out investigations on open thin-walled tanks made of austenitic and duplex stainless steels under wind load to study a possible economic advantage which might be gained from the consideration of the elastic postbuckling behaviour. This contribution presents not only experimental and numerical results but also first recommendations regarding the range of possible buckling reduction factors which might be incorporated in future revisions of EN 1993-1-6 and EN 1993-4-2.
Random three-dimensional jammed packings of elastic shells acting as force sensors
Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout
2016-06-01
In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing. A full experimental characterization requires measurement of all the interparticle forces, but so far such measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the topology of (elastic) shells are good local force sensors as relatively large deformations of the shells result from relatively small forces. We recently introduced such fluorescent shells as a model granular system in which force distributions can be determined in three dimensions using confocal microscopy and quantitative image analysis. An interesting aspect about these shells that differentiates them from other soft deformable particles is their buckling behavior at higher compression. This leads to deformations that do not conserve the inner volume of the particle. Here we use this system to accurately measure the contact forces in a three-dimensional packing of shells subjected to a static anisotropic compression and to shear. At small deformations forces are linear, however, for a buckled contact, the restoring force is related to the amount of deformation by a square root law, as follows from the theory of elasticity of shells. Near the unjamming-jamming transition (point J ), we found the probability distribution of the interparticle forces P (f ) to decay nearly exponentially at large forces, with little evidence of long-range force chains in the packings. As the packing density is increased, the tail of the distribution was found to crossover to a Gaussian, in line with other experimental and simulation studies. Under a small shear strain, up to 0.216, applied at an extremely low shear rate, we observed a shear-induced anisotropy in both the pair correlation function and contact force network; however, no appreciable change was seen in the number of contacts per particle.
Buckling Behavior of Substrate Supported Graphene Sheets
Directory of Open Access Journals (Sweden)
Kuijian Yang
2016-01-01
Full Text Available The buckling of graphene sheets on substrates can significantly degrade their performance in materials and devices. Therefore, a systematic investigation on the buckling behavior of monolayer graphene sheet/substrate systems is carried out in this paper by both molecular mechanics simulations and theoretical analysis. From 70 simulation cases of simple-supported graphene sheets with different sizes under uniaxial compression, two different buckling modes are investigated and revealed to be dominated by the graphene size. Especially, for graphene sheets with length larger than 3 nm and width larger than 1.1 nm, the buckling mode depends only on the length/width ratio. Besides, it is revealed that the existence of graphene substrate can increase the critical buckling stress and strain to 4.39 N/m and 1.58%, respectively, which are about 10 times those for free-standing graphene sheets. Moreover, for graphene sheets with common size (longer than 20 nm, both theoretical and simulation results show that the critical buckling stress and strain are dominated only by the adhesive interactions with substrate and independent of the graphene size. Results in this work provide valuable insight and guidelines for the design and application of graphene-derived materials and nano-electromechanical systems.
Flexural-torsional buckling analysis of angle-bar stiffened plates
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Rahbar Ranji [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2015-09-15
The interaction of flexural-torsional buckling modes is critical for stiffened plates with asymmetric stiffeners. However, this interaction is ignored in all design rules because it is complex to characterize. In the literature, the presence of an attached plate is ignored, and stiffened plate is treated as an ordinary asymmetric beam. In the flexural buckling mode, stiffener and the attached plate buckle together; in the torsional buckling mode, the attached plate cannot freely rotate with stiffener. Basic equations of the flexural-torsional buckling modes are deduced based on hybrid beam concept and a new strain distribution assumption for sideway bending of stiffeners. Elastic buckling stresses of different angle-bar stiffened plates are calculated and compared with those generated by the Finite element method (FEM) and those available in the literature. The present method has better agreements with FEM.
Statistical mechanics of microscopically thin thermalized shells
Kosmrlj, Andrej
Recent explosion in fabrication of microscopically thin free standing structures made from graphene and other two-dimensional materials has led to a renewed interest in the mechanics of such structures in presence of thermal fluctuations. Since late 1980s it has been known that for flat solid sheets thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli in a scale-dependent fashion. However, much is still unknown about the mechanics of thermalized flat sheets of complex geometries and about the mechanics of thermalized shells with non-zero background curvature. In this talk I will present recent development in the mechanics of thermalized ribbons, spherical shells and cylindrical tubes. Long ribbons are found to behave like hybrids between flat sheets with renormalized elastic constants and semi-flexible polymers, and these results can be used to predict the mechanics of graphene kirigami structures. Contrary to the anticipated behavior for ribbons, the non-zero background curvature of shells leads to remarkable novel phenomena. In shells, thermal fluctuations effectively generate negative surface tension, which can significantly reduce the critical buckling pressure for spherical shells and the critical axial load for cylindrical tubes. For large shells this thermally generated load becomes big enough to spontaneously crush spherical shells and cylindrical tubes even in the absence of external loads. I will comment on the relevance for crushing of microscopic shells (viral capsids, bacteria, microcapsules) due to osmotic shocks and for crushing of nanotubes.
Buckling of Carbon Nanotubes: A State of the Art Review
Shima, Hiroyuki
2011-01-01
The nonlinear mechanical response of carbon nanotubes, referred to as their “buckling" behavior, is a major topic in the nanotube research community. Buckling means a deformation process in which a large strain beyond a threshold causes an abrupt change in the strain energy vs. deformation profile. Thus far, much effort has been devoted to analysis of the buckling of nanotubes under various loading conditions: compression, bending, torsion, and their certain combinations. Such extensive studies have been motivated by (i) the structural resilience of nanotubes against buckling and (ii) the substantial influence of buckling on their physical properties. In this contribution, I review the dramatic progress in nanotube buckling research during the past few years. PMID:28817032
A new periodic imperfect quasi axisymmetric shell element
International Nuclear Information System (INIS)
Combescure, A.; Garuti, G.
1983-08-01
The object of this paper is to give the formulation and the validation of a ''quasi axisymmetric'' shell element: the main idea is to develop the theory of an imperfect quasi axisymmetric shell element. The imperfection is a variation of the circumferential radius of curvature rsub(theta). The equations are obtained by transporting the equilibrium equations from the actual geometry onto the theoretical axisymmetric (rsub(theta)=r 0 geometry. It is shown that the main hypothesis convenient to perform simply this transformation is that the membrane strains associated with that variation of geometry are less than 1% (that is always the case if you suppose that the imperfect structure is obtained from the perfect one by an inextensional displacement field). The formulation of the element is given in the general case. The rigidity matrices, are given in the particular case in which the imperfection has a component on a single Fourier harmonic. The comparison of theoretical and computed, 3D and quasi axisymmetric, solution or a very simple case shows the influence of the number of the Fourier harmonics chosen on the response of the structure. The influence of the initial imperfections on the natural frequency are studied with element and compared with 3D calculations. Comparison of 3D, quasi axisymmetric, and analytical buckling loads are given and explained. This element gives a very efficient tool for the calculation of thin shells of revolution (which are always imperfect) and especially unables easy parametric study of the variation of the buckling load and eigen frequencies with the amplitude and shapes of non axisymmetric imperfections
Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates
Energy Technology Data Exchange (ETDEWEB)
Xiao, J; Huang, Y [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 (United States); Ryu, S Y; Paik, U [Division of Materials Science and Engineering, Hanyang University, 17 Hangdang-dong, Sungdong-gu, Seoul 133-791 (Korea, Republic of); Hwang, K-C [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Rogers, J A, E-mail: y-huang@northwestern.edu, E-mail: jrogers@uiuc.edu [Department of Materials Science and Engineering, Frederick-Seitz Materials Research Laboratory and Beckman Institute, University of Illinois at Urbana-Champaign, Illinois 61801 (United States)
2010-02-26
A continuum mechanics theory is established for the in-surface buckling of one-dimensional nanomaterials on compliant substrates, such as silicon nanowires on elastomeric substrates observed in experiments. Simple analytical expressions are obtained for the buckling wavelength, amplitude and critical buckling strain in terms of the bending and tension stiffness of the nanomaterial and the substrate elastic properties. The analysis is applied to silicon nanowires, single-walled carbon nanotubes, multi-walled carbon nanotubes, and carbon nanotube bundles. For silicon nanowires, the measured buckling wavelength gives Young's modulus to be 140 GPa, which agrees well with the prior experimental studies. It is shown that the energy for in-surface buckling is lower than that for normal (out-of-surface) buckling, and is therefore energetically favorable.
Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates
International Nuclear Information System (INIS)
Xiao, J; Huang, Y; Ryu, S Y; Paik, U; Hwang, K-C; Rogers, J A
2010-01-01
A continuum mechanics theory is established for the in-surface buckling of one-dimensional nanomaterials on compliant substrates, such as silicon nanowires on elastomeric substrates observed in experiments. Simple analytical expressions are obtained for the buckling wavelength, amplitude and critical buckling strain in terms of the bending and tension stiffness of the nanomaterial and the substrate elastic properties. The analysis is applied to silicon nanowires, single-walled carbon nanotubes, multi-walled carbon nanotubes, and carbon nanotube bundles. For silicon nanowires, the measured buckling wavelength gives Young's modulus to be 140 GPa, which agrees well with the prior experimental studies. It is shown that the energy for in-surface buckling is lower than that for normal (out-of-surface) buckling, and is therefore energetically favorable.
Chen, Chunhong; Li, Xuefeng; Jiang, Deng; Wang, Zhe; Wang, Yong
2018-06-19
To realize the asymmetry for the hollow carbonaceous nanostructures remains to be a great challenge, especially when biomass is chosen as the carbon resource via hydrothermal carbonization (HTC). Herein, a simple and straightforward solvent induced buckling strategy is demonstrated for the synthesis of asymmetric spherical and bowllike carbonaceous nanomaterials. The formation of the bowllike morphology was attributed to the buckling of the spherical shells induced by the dissolution of the oligomers. The bowllike particles made by this solvent-driven approach demonstrated a well-controlled morphology and a uniform particle size of ~360 nm. The obtained nanospheres and nanobowls can be loaded with CoS2 nanoparticles to act as novel heterogeneous catalysts for the selective hydrogenation of aromatic nitro compounds. With the bowllike structure in hand, as expected, the CoS2/nanobowls catalyst showed good tolerance to a wide scope of reducible groups and afforded both high activity and selectivity in almost all the tested substrates (14). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
European column buckling curves and finite element modelling including high strength steels
DEFF Research Database (Denmark)
Jönsson, Jeppe; Stan, Tudor-Cristian
2017-01-01
Eurocode allows for finite element modelling of plated steel structures, however the information in the code on how to perform the analysis or what assumptions to make is quite sparse. The present paper investigates the deterministic modelling of flexural column buckling using plane shell elements...... imperfections may be very conservative if considered by finite element analysis as described in the current Eurocode code. A suggestion is given for a slightly modified imperfection formula within the Ayrton-Perry formulation leading to adequate inclusion of modern high grade steels within the original four...... bucking curves. It is also suggested that finite element or frame analysis may be performed with equivalent column bow imperfections extracted directly from the Ayrton-Perry formulation....
Mechanical model for filament buckling and growth by phase ordering.
Rey, Alejandro D; Abukhdeir, Nasser M
2008-02-05
A mechanical model of open filament shape and growth driven by phase ordering is formulated. For a given phase-ordering driving force, the model output is the filament shape evolution and the filament end-point kinematics. The linearized model for the slope of the filament is the Cahn-Hilliard model of spinodal decomposition, where the buckling corresponds to concentration fluctuations. Two modes are predicted: (i) sequential growth and buckling and (ii) simultaneous buckling and growth. The relation among the maximum buckling rate, filament tension, and matrix viscosity is given. These results contribute to ongoing work in smectic A filament buckling.
Buckling of Aluminium Sheet Components
Hegadekatte, Vishwanath; Shi, Yihai; Nardini, Dubravko
Wrinkling is one of the major defects in sheet metal forming processes. It may become a serious obstacle to implementing the forming process and assembling the parts, and may also play a significant role in the wear of the tool. Wrinkling is essentially a local buckling phenomenon that results from compressive stresses (compressive instability) e.g., in the hoop direction for axi-symmetric systems such as beverage cans. Modern beverage can is a highly engineered product with a complex geometry. Therefore in order to understand wrinkling in such a complex system, we have started by studying wrinkling with the Yoshida buckling test. Further, we have studied the buckling of ideal and dented beverage cans under axial loading by laboratory testing. We have modelled the laboratory tests and also the imperfection sensitivity of the two systems using finite element method and the predictions are in qualitative agreement with experimental data.
International Nuclear Information System (INIS)
Kim, D. H.; Ko, K. H.; Lee, J. H.
2002-01-01
This work was done as one of the pre-research of buckling behavior for LMR reactor vessel. For the reduced scale buckling test, the three types of test specimen(slenderness ratio 1.0, 2.0, 4.8) was selected. Using the buckling formulae by Okada and the elastic-plastic finite element method, the buckling characteristics are investigated. From the results of buckling load evaluations, as the slenderness ratio decreases, the buckling load increases and a deflection shape approaches shear buckling mode. As the slenderness increases, the deflection approaches bending buckling mode. In comparison of buckling loads, the calculated buckling loads by the elastic-plastic finite element method are in good agreement with those of the evaluation formulae considering with plastic effect
Elastic Buckling Behaviour of General Multi-Layered Graphene Sheets
Directory of Open Access Journals (Sweden)
Rong Ming Lin
2015-04-01
Full Text Available Elastic buckling behaviour of multi-layered graphene sheets is rigorously investigated. Van der Waals forces are modelled, to a first order approximation, as linear physical springs which connect the nodes between the layers. Critical buckling loads and their associated modes are established and analyzed under different boundary conditions, aspect ratios and compressive loading ratios in the case of graphene sheets compressed in two perpendicular directions. Various practically possible loading configurations are examined and their effect on buckling characteristics is assessed. To model more accurately the buckling behaviour of multi-layered graphene sheets, a physically more representative and realistic mixed boundary support concept is proposed and applied. For the fundamental buckling mode under mixed boundary support, the layers with different boundary supports deform similarly but non-identically, leading to resultant van der Waals bonding forces between the layers which in turn affect critical buckling load. Results are compared with existing known solutions to illustrate the excellent numerical accuracy of the proposed modelling approach. The buckling characteristics of graphene sheets presented in this paper form a comprehensive and wholesome study which can be used as potential structural design guideline when graphene sheets are employed for nano-scale sensing and actuation applications such as nano-electro-mechanical systems.
Elastic plastic buckling of elliptical vessel heads
International Nuclear Information System (INIS)
Alix, M.; Roche, R.L.
1981-08-01
The risks of buckling of dished vessel head increase when the vessel is thin walled. This paper gives the last results on experimental tests of 3 elliptical heads and compares all the results with some empirical formula dealing with elastic and plastic buckling
The cutting of metals via plastic buckling
Udupa, Anirudh; Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan
2017-06-01
The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components-sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces.
Post-Buckling Strength of Uniformly Compressed Plates
Bakker, M.C.M.; Rosmanit, M.; Hofmeyer, H.; Camotim, D; Silvestre, N; Dinis, P.B.
2006-01-01
In this paper it is discussed how existing analytical and semi-analytical formulas for describing the elastic-post-buckling behavior of uniformly compressed square plates with initial imperfections, for loads up to three times the buckling load can be simplified and improved. For loads larger than
Benchmark study of shear buckling of a cylindrical vessel
International Nuclear Information System (INIS)
Dostal, M.; Austin, N.M.; Peano, A.; Combescure, A.; Bastien, R.; Carnoy, E.G.
1986-01-01
The possibility of a buckling failure of the primary vessel subjected to seismic excitation has been considered, by all major designers of loop and pool type liquid metal cooled fast breeder reactors. The problem is particularly onerous in this type of reactor due to their large size, coupled with small wall thicknesses. This report details the results of the first phase in a joint European code validation exercise on the static shear buckling behaviour of thin, low aspect ratio stainless steel cylinders. Linear and non-linear finite element analyses were performed by four organizations using three different computer codes, i.e. NNC (UK)-ABAQUS, ISMES (Italy)-ABAQUS, CEA (France)-BILBO/INCA and NOVATOME (France)-NOVNL. The computed results were compared directly with experimental results. It was discovered that refined finite element models were essential if accurate buckling loads were to be calculated. Buckling analyses in 3D were therefore computationally expensive and 2D analyses, where applicable, proved an useful alternative. Traditional linear (Euler) bifurcation analysis seriously over-estimated the buckling loads by around 50 %. Extrapolation techniques can however be used to reduce this discrepancy. Elasto-plastic bifurcation analysis predicted conservative buckling loads close to the experimental value. Non-linear, large displacement analyses were performed on the vessel. The effect of geometrical imperfections in the vessel was considered. These analyses all over-estimated the experimental buckling load by 10 %-25 % and appeared to be largely insensitive to the initial imperfection size. Each of the codes appeared to predict reasonably well the final buckled geometry although the analytical load-deflection estimate did not agree exactly with the experiment
Macro stress mapping on thin film buckling
Energy Technology Data Exchange (ETDEWEB)
Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.
2002-11-06
Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.
Elastic torsional buckling of thin-walled composite cylinders
Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.
1974-01-01
The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.
Buckling Response of a Large-Scale, Seamless, Orthogrid-Stiffened Metallic Cylinder
Rudd, Michelle Tillotson; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.
2018-01-01
Results from the buckling test of a compression-loaded 8-ft-diameter seamless (i.e., without manufacturing joints), orthogrid-stiffened metallic cylinder are presented. This test was used to assess the buckling response and imperfection sensitivity characteristics of a seamless cylinder. In addition, the test article and test served as a technology demonstration to show the application of the flow forming manufacturing process to build more efficient buckling-critical structures by eliminating the welded joints that are traditionally used in the manufacturing of large metallic barrels. Pretest predictions of the cylinder buckling response were obtained using a finite-element model that included measured geometric imperfections. The buckling load predicted using this model was 697,000 lb, and the test article buckled at 743,000 lb (6% higher). After the test, the model was revised to account for measured variations in skin and stiffener geometry, nonuniform loading, and material properties. The revised model predicted a buckling load of 754,000 lb, which is within 1.5% of the tested buckling load. In addition, it was determined that the load carrying capability of the seamless cylinder is approximately 28% greater than a corresponding cylinder with welded joints.
Experimental study on dynamic buckling phenomena for supercavitating underwater vehicle
Directory of Open Access Journals (Sweden)
Minho Chung
2012-09-01
Full Text Available Dynamic buckling, also known as parametric resonance, is one of the dynamic instability phenomena which may lead to catastrophic failure of structures. It occurs when compressive dynamic loading is applied to the structures. Therefore it is essential to establish a reliable procedure to test and evaluate the dynamic buckling behaviors of structures, especially when the structure is designed to be utilized in compressive dynamic loading environment, such as supercavitating underwater vehicle. In the line of thought, a dynamic buckling test system is designed in this work. Using the test system, dynamic buckling tests including beam, plate, and stiffened plate are carried out, and the dynamic buckling characteristics of considered structures are investigated experimentally as well as theoretically and numerically.
Micro-wrinkling and delamination-induced buckling of stretchable electronic structures
International Nuclear Information System (INIS)
Oyewole, O. K.; Yu, D.; Du, J.; Asare, J.; Fashina, A.; Oyewole, D. O.; Anye, V. C.; Zebaze Kana, M. G.
2015-01-01
This paper presents the results of experimental and theoretical/computational micro-wrinkles and buckling on the surfaces of stretchable poly-dimethylsiloxane (PDMS) coated with nano-scale Gold (Au) layers. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. The critical stresses required for wrinkling and buckling are analyzed using analytical models. The possible interfacial cracking that can occur along with film buckling is also studied using finite element simulations of the interfacial crack growth. The implications of the results are discussed for potential applications of micro-wrinkles and micro-buckles in stretchable electronic structures and biomedical devices
Nanomechanics of biocompatible hollow thin-shell polymer microspheres.
Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis
2009-07-07
The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.
Buckling of Thin Films in Nano-Scale
Directory of Open Access Journals (Sweden)
Li L.A.
2010-06-01
Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.
Circumferential buckling instability of a growing cylindrical tube
Moulton, D.E.; Goriely, A.
2011-01-01
A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common
Strengthening of Steel Columns under Load: Torsional-Flexural Buckling
Directory of Open Access Journals (Sweden)
Martin Vild
2016-01-01
Full Text Available The paper presents experimental and numerical research into the strengthening of steel columns under load using welded plates. So far, the experimental research in this field has been limited mostly to flexural buckling of columns and the preload had low effect on the column load resistance. This paper focuses on the local buckling and torsional-flexural buckling of columns. Three sets of three columns each were tested. Two sets corresponding to the base section (D and strengthened section (E were tested without preloading and were used for comparison. Columns from set (F were first preloaded to the load corresponding to the half of the load resistance of the base section (D. Then the columns were strengthened and after they cooled, they were loaded to failure. The columns strengthened under load (F had similar average resistance as the columns welded without preloading (E, meaning the preload affects even members susceptible to local buckling and torsional-flexural buckling only slightly. This is the same behaviour as of the tested columns from previous research into flexural buckling. The study includes results gained from finite element models of the problem created in ANSYS software. The results obtained from the experiments and numerical simulations were compared.
International Nuclear Information System (INIS)
Butler, T.A.; Baker, W.E.
1987-01-01
Two aspects of buckling of a free-standing nuclear containment building were investigated in a combined experimental and analytical program. In the first part of the study, the response of a scale model of a containment building to dynamic base excitation is investigated. A simple harmonic signal was used for preliminary studies followed by experiments with scaled earthquake signals as the excitation source. The experiments and accompanying analyses indicate that the scale model response to earthquake-type excitations is very complex and that current analytical methods may require that a dynamic capacity reduction factor be incorporated. The second part of the study quantified the effects of framing at large penetrations on the static buckling capacity of scale model containments. Results show little effect from the framing for the scale models constructed from the polycarbonate, Lexan. However, additional studies with a model constructed of the prototypic steel material are recommended. (orig.)
International Nuclear Information System (INIS)
Butler, T.A.; Baker, W.E.
1986-01-01
Two aspects of buckling of a free-standing nuclear steel containment building were investigated in a combined experimental and analytical program. In the first part of the study, the response of a scale model of a containment building to dynamic base excitation is investigated. A simple harmonic signal was used for preliminary studies followed by experiments with scaled earthquake signals as the excitation source. The experiments and accompanying analyses indicate that the scale model response to earthquake-type excitations is very complex and that current analytical methods may require a dynamic capacity reduction factor to be incorporated. The second part of the study quantified the effects of framing at large penetrations on the static buckling capacity of scale model containments. Results show little effect from the framing for the scale models constructed from the polycarbonate, Lexan. However, additional studies with a model constructed of the prototypic steel material are suggested
Buckling behavior of fiber reinforced plastic–metal hybrid-composite beam
International Nuclear Information System (INIS)
Eksi, Secil; Kapti, Akin O.; Genel, Kenan
2013-01-01
Highlights: ► We developed a new plastic–metal hybrid-composite tubular beam structure. ► This structure offers innovative design solutions with weight reduction. ► It prevents premature buckling without adding significant weight to the structure. ► The composite interaction gives better mechanical properties to the products. ► Buckling and bending loads of the beam increased 3.2 and 7.6 times, respectively. - Abstract: It is known that the buckling is characterized by a sudden failure of a structural member subjected to high compressive load. In this study, the buckling behavior of the aluminum tubular beam (ATB) was analyzed using finite element (FE) method, and the reinforcing arrangements as well as its combinations were decided for the composite beams based on the FE results. Buckling and bending behaviors of thin-walled ATBs with internal cast polyamide (PA6) and external glass and carbon fiber reinforcement polymers (GFRPs and CFRPs) were investigated systematically. Experimental studies showed that the 219% increase in buckling load and 661% in bending load were obtained with reinforcements. The use of plastics and metal together as a reinforced structure yields better mechanical performance properties such as high resistance to buckling and bending loads, dimensional stability and high energy absorption capacity, including weight reduction. While the thin-walled metallic component provides required strength and stiffness, the plastic component provides the support necessary to prevent premature buckling without adding significant weight to the structure. It is thought that the combination of these materials will offer a promising new focus of attention for designers seeking more appropriate composite beams with high buckling loads beside light weight. The developed plastic–metal hybrid-composite structure is promising especially for critical parts serving as a support member of vehicles for which light weight is a critical design
On the buckling of an elastic rotating beam
DEFF Research Database (Denmark)
Furta, Stanislaw D.; Kliem, Wolfhard; Pommer, Christian
1997-01-01
problem is integrated and this results in a second order differential equation of the Fuchs type, which allows an asymptotic expansion of the buckling equation. By means of Lyapunov and Chetaev functions, a rigorous proof is given that the loss of stability of the trivial equilibrium shape occurs for any......A nonlinear model is developed, which describes the buckling phenomena of an elastic beam clamped to the interior of a rotating wheel. We use a power series method to obtain an approximate expression of the buckling equation and compare this with previous results in the literature. The linearized...
Nemeth, Michael P.
2013-01-01
A detailed exposition on a refined nonlinear shell theory suitable for nonlinear buckling analyses of laminated-composite shell structures is presented. This shell theory includes the classical nonlinear shell theory attributed to Leonard, Sanders, Koiter, and Budiansky as an explicit proper subset. This approach is used in order to leverage the exisiting experience base and to make the theory attractive to industry. In addition, the formalism of general tensors is avoided in order to expose the details needed to fully understand and use the theory. The shell theory is based on "small" strains and "moderate" rotations, and no shell-thinness approximations are used. As a result, the strain-displacement relations are exact within the presumptions of "small" strains and "moderate" rotations. The effects of transverse-shearing deformations are included in the theory by using analyst-defined functions to describe the through-the-thickness distributions of transverse-shearing strains. Constitutive equations for laminated-composite shells are derived without using any shell-thinness approximations, and simplified forms and special cases are presented.
Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement
Wu, K. Chauncey
2008-01-01
In this study, a sub-scale advanced composite shell design is evaluated to determine its potential for use on a future aircraft fuselage. Two composite shells with the same nominal 8-ply [+/-45/+/-Theta](sub s) layup are evaluated, where Theta indicates a tow-steered ply. To build this shell, a fiber placement machine would be used to steer unidirectional prepreg tows as they are placed around the circumference of a 17-inch diameter right circular cylinder. The fiber orientation angle varies continuously from 10 degrees (with respect to the shell axis of revolution) at the crown, to 45 degrees on the side, and back to 10 degrees on the keel. All 24 tows are placed at each point on every fiber path in one structure designated as the shell with overlaps. The resulting pattern of tow overlaps causes the laminate thickness to vary between 8 and 16 plies. The second shell without tow overlaps uses the capability of the fiber placement machine to cut and add tows at any point along the fiber paths to fabricate a shell with a nearly uniform 8-ply laminate thickness. Issues encountered during the design and analysis of these shells are presented and discussed. Static stiffness and buckling loads of shells with tow-steered layups are compared with the performance of a baseline quasi-isotropic shell using both finite element analyses and classical strength of materials theory.
Uncertainty modelling of critical column buckling for reinforced ...
Indian Academy of Sciences (India)
Buckling is a critical issue for structural stability in structural design. In most of the buckling analyses, applied loads, structural and material properties are considered certain. However, in reality, these parameters are uncertain. Therefore, a prognostic solution is necessary and uncertainties have to be considered. Fuzzy logic ...
Progressive buckling under both constant axial load and cyclic distortion
International Nuclear Information System (INIS)
Clement, G.; Acker, D.; Lebey, J.
1988-09-01
Thin structures submitted to compressive loads must be carefully designed to avoid any risk of ruin by buckling. The aim of this paper is, first, to evidence that the critical buckling load may be notably lowered when cyclic strains are added to the compressive load and, secondly, to propose a practical rule of prevention against the ruin due to the progressive buckling phenomenon. This rule is validated by the results of numerous tests related to the entire range of modes of buckling (i.e. from fully plastic to fully elastic). Practical cases of interest for its use could mainly be those where cyclic thermal stresses are involved
Buckling instability in amorphous carbon films
Energy Technology Data Exchange (ETDEWEB)
Zhu, X D [CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Narumi, K [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Naramoto, H [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)
2007-06-13
In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 deg. C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with {pi}-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 {mu}m with a height of {approx}500 nm and a wavelength of {approx}8.2 {mu}m. However, the length decreases dramatically to 70 {mu}m as the deposition temperature is increased to 550 deg. C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542)
Buckling instability in amorphous carbon films
International Nuclear Information System (INIS)
Zhu, X D; Narumi, K; Naramoto, H
2007-01-01
In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 deg. C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with π-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 μm with a height of ∼500 nm and a wavelength of ∼8.2 μm. However, the length decreases dramatically to 70 μm as the deposition temperature is increased to 550 deg. C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542)
The buckling of fuel rods in transportation casks under hypothetical accident conditions
International Nuclear Information System (INIS)
Bjorkman, G.S.
2004-01-01
The buckling analysis of fuel rods during an end drop impact of a spent fuel transportation cask has traditionally been performed to demonstrate the structural integrity of the fuel rod cladding or the integrity of the fuel geometry in criticality evaluations following a cask drop event. The actual calculation of the fuel rod buckling load, however, has been the subject of some controversy, with estimates of the critical buckling load differing by as much as a factor of 5. Typically, in the buckling analysis of a fuel rod, assumptions are made regarding the percentage of fuel mass that is bonded to or participates with the cladding during the buckling process, with estimates ranging from 0 to 100%. The greater the percentage of fuel mass that is assumed to be bonded to the cladding the higher the inertia loads on the cladding, and, therefore, the lower the ''g'' value at which buckling occurs. Current published solutions do not consider displacement compatibility between the fuel and the cladding. By invoking displacement compatibility between the fuel column and the cladding column, this paper presents an exact solution for the buckling of fuel rods under inertia loading. The results show that the critical inertia load magnitude for the buckling of a fuel rod depends on the weight of the cladding and the total weight of the fuel, regardless of the percentage of fuel mass that is assumed to be attached to or participate with the cladding in the buckling process. Therefore, 100% of the fuel always participates in the buckling of a fuel rod under inertia loading
Effect of scleral buckle removal on strabismus surgery outcomes after retinal detachment repair
Chang, Jee Ho; Hutchinson, Amy; Zhang, Monica; Lambert, Scott R.
2015-01-01
Background/Aims To investigate the effect of scleral buckle removal on the outcomes of strabismus surgery in patients with a prior history of retinal detachment surgery. Methods We reviewed the medical records of 18 patients who underwent strabismus surgery following a scleral buckling procedure at one institution. We investigated the effect of multiple variables on outcome, including: gender, age, surgeon, number of strabismus surgeries, adjustable suture use, previous pars plana vitrectomy, preoperative best-corrected visual acuity and time of surgery. Outcomes were considered successful if there was ≤ 10 prism diopter (PD) residual horizontal and/or ≤ 4 PD residual vertical deviation. Outcomes were analyzed statistically using Fisher's exact test and Mann-Whitney test. Results Strabismus surgery coupled with scleral buckle removal was associated with a higher rate of success (success with buckle removal, 62.5%; success without buckle removal, 10.0%; p=0.04). There were no significant difference in preoperative findings between the scleral buckle removal and non- removal groups. No retinal redetachments occurred after scleral buckle removal. Conclusion In our series, scleral buckle removal was associated with improved surgical outcome in patients with strabismus following a scleral buckling procedure. PMID:24299332
Buckling of Flat Thin Plates under Combined Loading
Directory of Open Access Journals (Sweden)
Ion DIMA
2015-03-01
Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces applied to the central plane of a flat isotropic plate at which a change to the stable configuration of equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations, the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative, there will be presented only the most used configurations such as: rectangular flat thin plates, boundary conditions with simply supported (hinged or clamped (fixed edges, combined loadings with single compression or single shear or combination between them, compression and shear, with or without transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and elevator. The reserve factor and the critical stresses will be calculated using comparatively two methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – AIRBUS France software, a dedicated software to local calculations, for a simply supported plate under combined loading, compression on the both sides and shear.
Critical thickness ratio for buckled and wrinkled fruits and vegetables
Dai, Hui-Hui; Liu, Yang
2014-11-01
This work aims at establishing the geometrical constraint for buckled and wrinkled shapes by modeling a fruit/vegetable with exocarp and sarcocarp as a hyperelastic layer-substrate structure subjected to uniaxial compression. A careful analysis on the derived bifurcation condition leads to the finding of a critical thickness ratio which separates the buckling and wrinkling modes, and remarkably, which is independent of the material stiffnesses. More specifically, it is found that if the thickness ratio is smaller than this critical value a fruit/vegetable should be in a buckled shape (under a sufficient stress); if a fruit/vegetable is in a wrinkled shape the thickness ratio is always larger than this critical value. To verify the theoretical prediction, we consider four types of buckled fruits/vegetables and four types of wrinkled fruits/vegetables with three samples in each type. The geometrical parameters for the 24 samples are measured and it is found that indeed all the data fall into the theoretically predicted buckling or wrinkling domains.
Pattern Transitions in a Soft Cylindrical Shell
Yang, Yifan; Dai, Hui-Hui; Xu, Fan; Potier-Ferry, Michel
2018-05-01
Instability patterns of rolling up a sleeve appear more intricate than the ones of walking over a rug on floor, both characterized as systems of uniaxially compressed soft film on stiff substrate. This can be explained by curvature effects. To investigate pattern transitions on a curved surface, we study a soft shell sliding on a rigid cylinder by experiments, computations and theoretical analyses. We reveal a novel postbuckling phenomenon involving multiple successive bifurcations: smooth-wrinkle-ridge-sagging transitions. The shell initially buckles into periodic axisymmetric wrinkles at the threshold and then a wrinkle-to-ridge transition occurs upon further axial compression. When the load increases to the third bifurcation, the amplitude of the ridge reaches its limit and the symmetry is broken with the ridge sagging into a recumbent fold. It is identified that hysteresis loops and the Maxwell equal-energy conditions are associated with the coexistence of wrinkle-ridge or ridge-sagging patterns. Such a bifurcation scenario is inherently general and independent of material constitutive models.
A strategy to compute plastic post-buckling of structures
International Nuclear Information System (INIS)
Combescure, A.
1983-08-01
The paper gives a general framework to the different strategies used to compute the post-buckling of structures. Two particular strategies are studied in more details and it is shown how they can be applied in the plastic regime. All the methods suppose that the loads F are proportional to a simple parameter lambda; more precisely: eq (1) F = lambda F 0 . The paper shows how these methods can be implemented in a very simple way. In the elastic case we show the application of the method to the calculation of post buckling response of a clamped arch. The method is also applied to a very simple case of two bars which can be calculated analytically. In the plastic range, the method is applied to the post-buckling of an imperfect ring which can be calculated analytically. Another example is the comparison of the comparison of the computed post-buckling of a thin cylinder under axial compression, and of the experimental behavior on the same cylinder. The limitation of these types of strategies are also mentionned and the physical signifiance of calculations in the post-buckling regime are discussed
Dynamic buckling of inelastic structures
International Nuclear Information System (INIS)
Pegon, P.; Guelin, P.
1983-01-01
The aim of this paper is to provide research engineers with a method of approach, qualitative feature and order of magnitude of the relevant parameters in the field of dynamic buckling of structures exhibiting constitutive irreversibility and geometrical, constitutive or loading imperfections. It is difficult to adjust some of the classical analysis of the quasi-static elastic case. There remain also some difficulties in justifying the choice of constitutive schemes and in dealing with general kinematic formulation. Moreover, the interpretation of dynamical experimental data is not an easy matter. Consequently, the attempts described here use a simple symbolic model including all essential physical aspects. This symbolic model, of discrete character, is an n-hinged strut with masses located at each n+1 joint. The constitutive properties of the strut and hinge are defined using the same method: a dash-pot is in parallel with a two fold element (spring and friction-slider in series). The intrinsic restrictions are: the two dimensionality assumption, however no additional hypothesis are made concerning the kinematic of the constitutive elements; the use of simple sources of intrinsic dissipation. The relevant question of the longitudinal-transverse coupling effects is studied. Then, after various validation, we verify that a Lagrange resolution of this n+1 body problem gives physical relevant qualitative results concerning rods and cylindrical shells subjected to impact loading. (orig./RW)
Analysis of Lateral Buckling of Bar with Axial Force Accumulation in Truss
Wattanamankong, Nuttapon; Petchsasithon, Arthit; Dhirasedh, Suwat
2017-06-01
This research studies the lateral buckling behavior in truss and lateral buckling coefficient of truss. Lateral buckling analysis of truss is performed by simulating the structural model with both end supports being pinned and roller-supports. The analysis is indirectly conducted using Elastic Theory to evaluate the length of lateral buckling by calculating the determinant of the Matrix [K]. Results from the analysis are marginally different from those obtained from finite element program and are considerably less than those obtained from Eurocode standard. This can be concluded that using elastic theory to evaluate lateral buckling coefficient of truss member will result in more economical section.
Scleral Buckle Infection With Pseudallescheria boydii.
Law, Janice C; Breazzano, Mark P; Eliott, Dean
2017-08-01
Pseudallescheria boydii is a ubiquitous fungus that infects soft tissues and is known to cause ocular disease, including keratitis and endophthalmitis, in rare cases. In immunocompromised hosts, P. boydii can disseminate to or from the eye and other organs with lethal consequences. Postoperative P. boydii infections have, in rare cases, complicated several types of ocular surgeries in immunocompetent patients, but never for a scleral buckle. The authors present the first case of an infected scleral buckle from P. boydii. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:676-678.]. Copyright 2017, SLACK Incorporated.
Buckling driven debonding in sandwich columns
DEFF Research Database (Denmark)
Østergaard, Rasmus Christian
2008-01-01
results from two mechanisms: (a) interaction of local debond buckling and global buckling and (b) the development of a damaged zone at the debond crack tip. Based on the pronounced imperfection sensitivity, the author predicts that an experimental measurement of the strength of sandwich structures may......A compression loaded sandwich column that contains a debond is analyzed using a geometrically non-linear finite element model. The model includes a cohesive zone along one face sheet/core interface whereby the debond can extend by interface crack growth. Two geometrical imperfections are introduced...
International Nuclear Information System (INIS)
NIKROO, A; CZECHOWICZ, DG; CASTILLO, ER; PONTELANDOLFO, JM
2002-01-01
OAK A271 PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA. Thin walled polymer shells are needed for OMEGA cryogenic laser experiments. These capsules need to be about 900 (micro)m in diameter and as thin as possible (approx 1-2 (micro)m), while having enough strength to be filled with DT as fast as possible to about 1000 atm. The authors have found that by optimizing the coating parameters in the glow discharge polymer (GDP) deposition system, traditionally used for making ICF targets, they can routinely make robust, ∼ 1.5 (micro)m thick, 900 (micro)m diameter GDP shells with buckle strengths of over 0.3 atm. This is twice the strength of shells made prior to the optimization and is comparable to values quoted for polyimide shells. In addition, these shells were found to be approximately three times more permeable and over 20% denser than previously made GDP shells. The combination of higher strength and permeability is ideal for direct drive cryogenic targets at OMEGA. Shells as thin as 0.5 (micro)m have been made. In this paper, the authors discuss the shell fabrication process, effects of modifying various GDP deposition parameters on shell properties and chemical composition
Effect of geometrical imperfection on buckling failure of ITER VVPSS tank
International Nuclear Information System (INIS)
Jha, Saroj Kumar; Gupta, Girish Kumar; Pandey, Manish Kumar; Bhattacharya, Avik; Jogi, Gaurav; Bhardwaj, Anil Kumar
2015-01-01
The 'Vacuum Vessel Pressure Suppression System' (VVPSS) is Part of ITER machine, which is designed to protect the ITER Vacuum Vessel and its connected systems, from an over-pressure situation. It is comprised of a partially evacuated tank of stainless steel approximately 46 meters long and 6 meters in diameter and thickness 30mm. It is to hold approximately 675 tonnes of water at room temperature to condense the steam resulting from the adverse water leakage into the Vacuum Vessel chamber. For any vacuum vessel, geometrical imperfection has significant effect on buckling failure and structural integrity. Major geometrical imperfection in VVPSS tank depends on form tolerances. To study the effect of geometrical imperfection on buckling failure of VVPSS tank, finite element analysis (FEA) has been performed in line with ASME section VIII division 2 part 5, 'design by analysis method'. Linear buckling analysis has been performed to get the buckled shape and displacement. Geometrical imperfection due to form tolerance is incorporated in FEA model of VVPSS tank by scaling the resulted buckled shape by a factor '60'. This buckled shape model is used as input geometry for plastic collapse and buckling failure assessment. Plastic collapse and buckling failure of VVPSS tank has been assessed by using the elastic-plastic analysis method. This analysis has been performed for different values of form tolerance. The results of analysis show that displacement and load proportionality factor (LPF) vary inversely with form tolerance. For higher values of form tolerance LPF reduces significantly with high values of displacement. (author)
International Nuclear Information System (INIS)
Mallett, R.H.
1986-12-01
This report documents analytical and experimental results from a survey of the technical literature on buckling of thick-walled cylinders under external pressure. Based upon these results, a load factor is suggested for the design of waste package containers for disposal of high-level radioactive waste in repositories mined in salt formations. The load factor is defined as a ratio of buckling pressure to allowable pressure. Specifically, a load factor which ranges from 1.5 for plastic buckling to 3.0 for elastic buckling is included in a set of proposed buckling design criteria for waste disposal containers. Formulas are given for buckling design under axisymmetric conditions. Guidelines are given for detailed inelastic buckling analyses which are generally required for design of disposal containers
Shaping through buckling in elastic gridshells: from camping tents to architectural roofs
Reis, Pedro
Elastic gridshells comprise an initially planar network of elastic rods that is actuated into a 3D shell-like structure by loading its extremities. This shaping results from elastic buckling and the subsequent geometrically nonlinear deformation of the grid structure. Architectural elastic gridshells first appeared in the 1970's. However, to date, only a limited number of examples have been constructed around the world, primarily due to the challenges involved in their structural design. Yet, elastic gridshells are highly appealing: they can cover wide spans with low self-weight, they allow for aesthetically pleasing shapes and their construction is typically simple and rapid. We study the mechanics of elastic gridshells by combining precision model experiments that explore their scale invariance, together with computer simulations that employ the Discrete Elastic Rods method. Excellent agreement is found between the two. Upon validation, the numerics are then used to systematically explore parameter space and identify general design principles for specific target final shapes. Our findings are rationalized using the theory of discrete Chebyshev nets, together with the group theory for crystals. Higher buckling modes occur for some configurations due to geometric incompatibility at the boundary and result in symmetry breaking. Along with the systematic classification of the various possible modes of deformation, we provide a reduced model that rationalizes form-finding in elastic gridshells. This work was done in collaboration with Changyeob Baek, Khalid Jawed and Andrew Sageman-Furnas. We are grateful to the NSF for funding (CAREER, CMMI-1351449).
WELWING, Material Buckling for HWR with Annular Fuel Elements
International Nuclear Information System (INIS)
Grosskopf, O.G.P.
1973-01-01
1 - Nature of the physical problem solved: WELWING was developed to calculate the material buckling of reactor systems consisting of annular fuel elements in heavy water as moderator for various moderator to fuel ratios. The moderator to fuel ratio for the maximum material buckling for the particular system is selected automatically and the corresponding material buckling is calculated. 2 - Method of solution: The method used is an analytical solution of the one-group diffusion equations with various corrections and approximations. 3 - Restrictions on the complexity of the problem: Up to 32 different materials in the fuel element may be used
Cholesterol-Induced Buckling in Physisorbed Polymer-Tethered Lipid Monolayers
Directory of Open Access Journals (Sweden)
Christoph A. Naumann
2013-04-01
Full Text Available The influence of cholesterol concentration on the formation of buckling structures is studied in a physisorbed polymer-tethered lipid monolayer system using epifluorescence microscopy (EPI and atomic force microscopy (AFM. The monolayer system, built using the Langmuir-Blodgett (LB technique, consists of 3 mol % poly(ethylene glycol (PEG lipopolymers and various concentrations of the phospholipid, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC, and cholesterol (CHOL. In the absence of CHOL, AFM micrographs show only occasional buckling structures, which is caused by the presence of the lipopolymers in the monolayer. In contrast, a gradual increase of CHOL concentration in the range of 0–40 mol % leads to fascinating film stress relaxation phenomena in the form of enhanced membrane buckling. Buckling structures are moderately deficient in CHOL, but do not cause any notable phospholipid-lipopolymer phase separation. Our experiments demonstrate that membrane buckling in physisorbed polymer-tethered membranes can be controlled through CHOL-mediated adjustment of membrane elastic properties. They further show that CHOL may have a notable impact on molecular confinement in the presence of crowding agents, such as lipopolymers. Our results are significant, because they offer an intriguing prospective on the role of CHOL on the material properties in complex membrane architecture.
Buckle initiation and delamination of patterned ITO layers on a polymer substrate
Abdallah, Amir; Bouten, P.C.P.; Toonder, den J.M.J.; With, de G.
2011-01-01
Buckle initiation and delamination of patterned ITO layers on a polymer substrate were studied. Various buckle modes have been observed depending on the type of etch defects and the crack patterns. The buckle density was found to be dependent on the number of etch defects, imperfections, applied
Thermal buckling comparative analysis using Different FE (Finite Element) tools
Energy Technology Data Exchange (ETDEWEB)
Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)
2009-12-19
High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)
Computational modelling of buckling of woven fabrics
CSIR Research Space (South Africa)
Anandjiwala, RD
2006-02-01
Full Text Available for reducing unit production cost is critically important if garment industries in developed countries are keen to improve their competitiveness vis-à-vis low labour cost countries. The mechanics of the buckling behaviour of woven fabric started... of woven fabric. INTRODUCTION The buckling, bending and drape behaviours of a woven fabric influence its performance during actual use and during the process of making-up into the end product. These properties are important, particularly when the fabric...
Buckling of paramagnetic chains in soft gels
Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M.; Auernhammer, Günter K.
We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.
Scleral buckle infection by Serratia species.
Venkatesh, Ramesh; Agarwal, Manisha; Singh, Shalini; Mayor, Rahul; Bansal, Aditya
2017-01-01
We describe a rare case of scleral buckle (SB) infection with Serratia species. A 48-year-old male with a history of retinal detachment repair with scleral buckling presented with redness, pain, and purulent discharge in the left eye for 4 days. Conjunctival erosion with exposure of the SB and scleral thinning was noted. The SB was removed and sent for culture. Blood and chocolate agar grew Gram-negative rod-shaped bacillus identified as Serratia marcescens . On the basis of the susceptibility test results, the patient was treated with oral and topical antibiotics. After 6 weeks of the treatment, his infection resolved.
Scleral buckle infection by Serratia species
Directory of Open Access Journals (Sweden)
Ramesh Venkatesh
2017-01-01
Full Text Available We describe a rare case of scleral buckle (SB infection with Serratia species. A 48-year-old male with a history of retinal detachment repair with scleral buckling presented with redness, pain, and purulent discharge in the left eye for 4 days. Conjunctival erosion with exposure of the SB and scleral thinning was noted. The SB was removed and sent for culture. Blood and chocolate agar grew Gram-negative rod-shaped bacillus identified as Serratia marcescens. On the basis of the susceptibility test results, the patient was treated with oral and topical antibiotics. After 6 weeks of the treatment, his infection resolved.
Buckling of a stiff thin film on an elastic graded compliant substrate
Chen, Zhou; Chen, Weiqiu; Song, Jizhou
2017-12-01
The buckling of a stiff film on a compliant substrate has attracted much attention due to its wide applications such as thin-film metrology, surface patterning and stretchable electronics. An analytical model is established for the buckling of a stiff thin film on a semi-infinite elastic graded compliant substrate subjected to in-plane compression. The critical compressive strain and buckling wavelength for the sinusoidal mode are obtained analytically for the case with the substrate modulus decaying exponentially. The rigorous finite element analysis (FEA) is performed to validate the analytical model and investigate the postbuckling behaviour of the system. The critical buckling strain for the period-doubling mode is obtained numerically. The influences of various material parameters on the results are investigated. These results are helpful to provide physical insights on the buckling of elastic graded substrate-supported thin film.
Haftka, Raphael T.; Cohen, Gerald A.; Mroz, Zenon
1990-01-01
A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order postbuckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.
Optimization Formulations for the Maximum Nonlinear Buckling Load of Composite Structures
DEFF Research Database (Denmark)
Lindgaard, Esben; Lund, Erik
2011-01-01
This paper focuses on criterion functions for gradient based optimization of the buckling load of laminated composite structures considering different types of buckling behaviour. A local criterion is developed, and is, together with a range of local and global criterion functions from literature......, benchmarked on a number of numerical examples of laminated composite structures for the maximization of the buckling load considering fiber angle design variables. The optimization formulations are based on either linear or geometrically nonlinear analysis and formulated as mathematical programming problems...... solved using gradient based techniques. The developed local criterion is formulated such it captures nonlinear effects upon loading and proves useful for both analysis purposes and as a criterion for use in nonlinear buckling optimization. © 2010 Springer-Verlag....
Local buckling failure analysis of high-strength pipelines
Institute of Scientific and Technical Information of China (English)
Yan Li; Jian Shuai; Zhong-Li Jin; Ya-Tong Zhao; Kui Xu
2017-01-01
Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load.This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength,which are under different conditions,including pure bending and bending combined with internal pressure.Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes.In parametric analysis,a series of parameters,including pipe geometrical dimension,pipe material properties and internal pressure,were selected to study their influences on the critical bending moment,critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg-Osgood constitutive model.Results showed that geometrical dimensions,material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress,which have different,even reverse effects on the critical compressive strain.Based on these analyses,more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bending conditions,which provide theoretical methods for highstrength pipeline engineering.
International Nuclear Information System (INIS)
Lefrancois, A.
1976-01-01
The method of dimensional analysis is applied to the evaluation of deformation, stress, and ideal buckling strength (which is independent of the values of the elastic range), of shells subject to external pressure. The relations obtained are verified in two examples: a cylindrical ring and a tube with free ends and almost circular cross-section. Further, it is shown how and to what extent the results obtained from model tests can be used to predict the behaviour of geometrically similar shells which are made of the same material, or even of a different material. (Author) [fr
Engineering electronic states of periodic and quasiperiodic chains by buckling
Mukherjee, Amrita; Nandy, Atanu; Chakrabarti, Arunava
2017-07-01
The spectrum of spinless, non-interacting electrons on a linear chain that is buckled in a non-uniform, quasiperiodic manner is investigated within a tight binding formalism. We have addressed two specific cases, viz., a perfectly periodic chain wrinkled in a quasiperiodic Fibonacci pattern, and a quasiperiodic Fibonacci chain, where the buckling also takes place in a Fibonacci pattern. The buckling brings distant neighbors in the parent chain to close proximity, which is simulated by a tunnel hopping amplitude. It is seen that, in the perfectly ordered case, increasing the strength of the tunnel hopping (that is, bending the segments more) absolutely continuous density of states is retained towards the edges of the band, while the central portion becomes fragmented and host subbands of narrowing widths containing extended, current carrying states, and multiple isolated bound states formed as a result of the bending. A switching ;on; and ;off; of the electronic transmission can thus be engineered by buckling. On the other hand, in the second example of a quasiperiodic Fibonacci chain, imparting a quasiperiodic buckling is found to generate continuous subband(s) destroying the usual multifractality of the energy spectrum. We present exact results based on a real space renormalization group analysis, that is corroborated by explicit calculation of the two terminal electronic transport.
The Carnegie-Irvine Galaxy Survey. V. Statistical Study of Bars and Buckled Bars
Energy Technology Data Exchange (ETDEWEB)
Li, Zhao-Yu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Science, 80 Nandan Road, Shanghai 200030 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Barth, Aaron J., E-mail: lizy@shao.ac.cn [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA, 92697-4575 (United States)
2017-08-10
Simulations have shown that bars are subject to a vertical buckling instability that transforms thin bars into boxy or peanut-shaped structures, but the physical conditions necessary for buckling to occur are not fully understood. We use the large sample of local disk galaxies in the Carnegie-Irvine Galaxy Survey to examine the incidence of bars and buckled bars across the Hubble sequence. Depending on the disk inclination angle ( i ), a buckled bar reveals itself as either a boxy/peanut-shaped bulge (at high i ) or as a barlens structure (at low i ). We visually identify bars, boxy/peanut-shaped bulges, and barlenses, and examine the dependence of bar and buckled bar fractions on host galaxy properties, including Hubble type, stellar mass, color, and gas mass fraction. We find that the barred and unbarred disks show similar distributions in these physical parameters. The bar fraction is higher (70%–80%) in late-type disks with low stellar mass ( M {sub *} < 10{sup 10.5} M {sub ⊙}) and high gas mass ratio. In contrast, the buckled bar fraction increases to 80% toward massive and early-type disks ( M {sub *} > 10{sup 10.5} M {sub ⊙}), and decreases with higher gas mass ratio. These results suggest that bars are more difficult to grow in massive disks that are dynamically hotter than low-mass disks. However, once a bar forms, it can easily buckle in the massive disks, where a deeper potential can sustain the vertical resonant orbits. We also find a probable buckling bar candidate (ESO 506−G004) that could provide further clues to understand the timescale of the buckling process.
The Carnegie-Irvine Galaxy Survey. V. Statistical Study of Bars and Buckled Bars
Li, Zhao-Yu; Ho, Luis C.; Barth, Aaron J.
2017-08-01
Simulations have shown that bars are subject to a vertical buckling instability that transforms thin bars into boxy or peanut-shaped structures, but the physical conditions necessary for buckling to occur are not fully understood. We use the large sample of local disk galaxies in the Carnegie-Irvine Galaxy Survey to examine the incidence of bars and buckled bars across the Hubble sequence. Depending on the disk inclination angle (I), a buckled bar reveals itself as either a boxy/peanut-shaped bulge (at high I) or as a barlens structure (at low I). We visually identify bars, boxy/peanut-shaped bulges, and barlenses, and examine the dependence of bar and buckled bar fractions on host galaxy properties, including Hubble type, stellar mass, color, and gas mass fraction. We find that the barred and unbarred disks show similar distributions in these physical parameters. The bar fraction is higher (70%-80%) in late-type disks with low stellar mass (M * 1010.5 M ⊙), and decreases with higher gas mass ratio. These results suggest that bars are more difficult to grow in massive disks that are dynamically hotter than low-mass disks. However, once a bar forms, it can easily buckle in the massive disks, where a deeper potential can sustain the vertical resonant orbits. We also find a probable buckling bar candidate (ESO 506-G004) that could provide further clues to understand the timescale of the buckling process.
Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials
Ma, Teng
In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously
The elastic buckling of super-graphene and super-square carbon nanotube networks
International Nuclear Information System (INIS)
Li Ying; Qiu Xinming; Yin Yajun; Yang Fan; Fan Qinshan
2010-01-01
The super-graphene (SG) and super-square (SS) carbon nanotube network are built by the straight single-walled carbon nanotubes and corresponding junctions. The elastic buckling behaviors of these carbon nanotube networks under different boundary conditions are explored through the molecular structural mechanics method. The following results are obtained: (a) The critical buckling forces of the SG and SS networks decrease as the side lengths or aspect ratios of the networks increase. The continuum plate theory could give good predictions to the buckling of the SS network but not the SG network with non-uniform buckling modes. (b) The carbon nanotube networks are more stable structures than the graphene structures with less carbon atoms.
Nonlinear mode interaction in equal-leg angle struts susceptible to cellular buckling.
Bai, L; Wang, F; Wadee, M A; Yang, J
2017-11-01
A variational model that describes the interactive buckling of a thin-walled equal-leg angle strut under pure axial compression is presented. A formulation combining the Rayleigh-Ritz method and continuous displacement functions is used to derive a system of differential and integral equilibrium equations for the structural component. Solving the equations using numerical continuation reveals progressive cellular buckling (or snaking) arising from the nonlinear interaction between the weak-axis flexural buckling mode and the strong-axis flexural-torsional buckling mode for the first time-the resulting behaviour being highly unstable. Physical experiments conducted on 10 cold-formed steel specimens are presented and the results show good agreement with the variational model.
An impact test system design and its applications to dynamic buckling of a spacer grid assembly
Energy Technology Data Exchange (ETDEWEB)
Liu, Sheng, E-mail: liusheng_05@126.com; Fan, Chenguang; Yang, Yiren
2016-11-15
This study is aimed at investigating the dynamic buckling load, dynamic stiffness, damping and buckling characteristics of the spacer grid assembly (SGA). A pendulum impact test system is designed to experiment the buckling of SGAs. Three criterions are discussed and compared to determine the buckling loads of SGAs: B-R criterion, energy criterion and extreme value criterion. Two approaches are applied to calculate the dynamic stiffness of SGAs: One method is natural period method based on the hypothesis of harmonic motion of the pendulum whose period is approximated because of the passivation and tailing of the impact force time history; and the other is energy method based on the conservation of mechanical energy. The equivalent viscous damping is defined as the resultant cause of dissipation and is obtained by the energy principle. The impact force time history loses its approximate symmetry after buckling occurs. The impact force and displacement reach their maxima almost at the same time at pre-buckling states but not post-buckling states. Vertical straps in SGA are found to be transversely shared by horizontal straps at the buckling position. The buckling of SGA results from the lack of strength of complete structure; and the strength of material has no effects on the buckling.
Benchmark study of shear buckling of a cylindrical vessel. Part 2
International Nuclear Information System (INIS)
Combescure, A.; Bastien, R.; Carnoy, E.G.; Dostal, M.; Austin, N.M.; Peano, A.; Angeloni, P.
1988-01-01
In Liquid Metal Fast Breeder Reactors (LMFBR) potential shear buckling failures of the primary vessel, induced through seismic excitations, have to be considered. The primary vessel material, typically 316 stainless steel, has a low yield strength at the normal operating temperatures of around 400 0 C to 500 0 C. There characteristics tend to make the structure relatively flexible and subject to potential elasto-plastic shear buckling failure. The use of finite element techniques in buckling analyses is currently becoming more accepted. There are at present many finite element codes available which have the capacibility to solve buckling problems. The objective of the study reported herein was to follow on from the previous code validation exercise and investigate the ability of finite element codes to predict buckling behaviour in another test cylinder [a/h = 83, a/L = 1] where non-linear effects would be more significant and plastic shear buckling could be a failure mode. As before four organisations took part in the code validation exercise. NNC [UK] and ISMES [Italy] used the commercially available general purpose FE code ABAQUS. CEA [France] used INCA and BILBO which are members of the commercially available CASTEM suite of FE program. Novatome [France] used their in-house FE code NOVNL. The joint effort was co-ordinated by NNC with the assistance of the Commission of the European Communities Working on Codes and Standards AG2
Cox, B. S.; Groh, R. M. J.; Avitabile, D.; Pirrera, A.
2018-07-01
The buckling and post-buckling behaviour of slender structures is increasingly being harnessed for smart functionalities. Equally, the post-buckling regime of many traditional engineering structures is not being used for design and may therefore harbour latent load-bearing capacity for further structural efficiency. Both applications can benefit from a robust means of modifying and controlling the post-buckling behaviour for a specific purpose. To this end, we introduce a structural design paradigm termed modal nudging, which can be used to tailor the post-buckling response of slender engineering structures without any significant increase in mass. Modal nudging uses deformation modes of stable post-buckled equilibria to perturb the undeformed baseline geometry of the structure imperceptibly, thereby favouring the seeded post-buckling response over potential alternatives. The benefits of this technique are enhanced control over the post-buckling behaviour, such as modal differentiation for smart structures that use snap-buckling for shape adaptation, or alternatively, increased load-carrying capacity, increased compliance or a shift from imperfection sensitivity to imperfection insensitivity. Although these concepts are, in theory, of general applicability, we concentrate here on planar frame structures analysed using the nonlinear finite element method and numerical continuation procedures. Using these computational techniques, we show that planar frame structures may exhibit isolated regions of stable equilibria in otherwise unstable post-buckling regimes, or indeed stable equilibria entirely disconnected from the natural structural response. In both cases, the load-carrying capacity of these isolated stable equilibria is greater than the natural structural response of the frames. Using the concept of modal nudging it is possible to "nudge" the frames onto these equilibrium paths of greater load-carrying capacity. Due to the scale invariance of modal nudging
Structural performance of a multipurpose canister shell for HLNW under normal handling conditions
International Nuclear Information System (INIS)
Ladkany, S.G.; Rajagopalan, R.
1994-01-01
A Multipurpose Canister (MPC) is analyzed for critical stresses that occur during normal handling conditions and accidental scenarios. Linear and Non-linear Finite Element Analysis is performed and the stresses at various critical locations in the MPC and its weldments are studied extensively. Progressive failure analysis of the MPC's groove and fillet welds, is presented. The structural response of the MPC to dynamic lifting loads, to loads resulting from an accidental slippage of a crane cable carrying the MPC, and from the impact between two canisters, is evaluated. Nonlinear structural analysis is used in the evaluation of the local buckling and the ultimate failure phenomena in the shell when the steel is in the strain hardening state during impact. Results make a case for increasing the thickness of the shell and all the welds
Thermal buckling behavior of defective CNTs under pre-load: A molecular dynamics study.
Mehralian, Fahimeh; Tadi Beni, Yaghoub; Kiani, Yaser
2017-05-01
Current study is concentrated on the extraordinary properties of defective carbon nanotubes (CNTs). The role of vacancy defects in thermal buckling response of precompressed CNTs is explored via molecular dynamics (MD) simulations. Defective CNTs are initially compressed at a certain ratio of their critical buckling strain and then undergo a uniform temperature rise. Comprehensive study is implemented on both armchair and zigzag CNTs with different vacancy defects including monovacancy, symmetric bivacancy and asymmetric bivacancy. The results reveal that defects have a pronounced impact on the buckling behavior of CNTs; interestingly, defective CNTs under compressive pre-load show higher resistance to thermal buckling than pristine ones. In the following, the buckling response of defective CNTs is shown to be dependent on the vacancy defects, location of defects and chirality. Copyright © 2017 Elsevier Inc. All rights reserved.
Vibrations of post-buckled rods: The singular inextensible limit
Neukirch, Sé bastien; Frelat, Joë l; Goriely, Alain; Maurini, Corrado
2012-01-01
The small-amplitude in-plane vibrations of an elastic rod clamped at both extremities are studied. The rod is modeled as an extensible, shearable, planar Kirchhoff elastic rod under large displacements and rotations, and the vibration frequencies are computed both analytically and numerically as a function of the loading. Of particular interest is the variation of mode frequencies as the load is increased through the buckling threshold. While for some modes there are no qualitative changes in the mode frequencies, other frequencies experience rapid variations after the buckling threshold, the thinner the rod, the more abrupt the variations. Eventually, a mismatch for half of the frequencies at buckling arises between the zero thickness limit of the extensible model and the inextensible model. © 2011 Elsevier Ltd. All rights reserved.
Fabrication and buckling dynamics of nanoneedle AFM probes
Energy Technology Data Exchange (ETDEWEB)
Beard, J D; Gordeev, S N, E-mail: jdb28@bath.ac.uk [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)
2011-04-29
A new method for the fabrication of high-aspect-ratio probes by electron beam induced deposition is described. This technique allows the fabrication of cylindrical 'nanoneedle' structures on the atomic force microscope (AFM) probe tip which can be used for accurate imaging of surfaces with high steep features. Scanning electron microscope (SEM) imaging showed that needles with diameters in the range of 18-100 nm could be obtained by this technique. The needles were shown to undergo buckling deformation under large tip-sample forces. The deformation was observed to recover elastically under vertical deformations of up to {approx} 60% of the needle length, preventing damage to the needle. A technique of stabilizing the needle against buckling by coating it with additional electron beam deposited carbon was also investigated; it was shown that coated needles of 75 nm or greater total diameter did not buckle even under tip-sample forces of {approx} 1.5 {mu}N.
Comparative thermal buckling analysis of functionally graded plate
Directory of Open Access Journals (Sweden)
Čukanović Dragan V.
2017-01-01
Full Text Available A thermal buckling analysis of functionally graded thick rectangular plates accord¬ing to von Karman non-linear theory is presented. The material properties of the functionally graded plate, except for the Poisson’s ratio, were assumed to be graded in the thickness direction, according to a power-law distribution, in terms of the volume fractions of the metal and ceramic constituents. Formulations of equilibrium and stability equations are derived using the high order shear deformation theory based on different types of shape functions. Analytical method for determination of the critical buckling temperature for uniform increase of temperature, linear and non-linear change of temperature across thickness of a plate is developed. Numeri¬cal results were obtained in МATLAB software using combinations of symbolic and numeric values. The paper presents comparative results of critical buckling tempera¬ture for different types of shape functions. The accuracy of the formulation presented is verified by comparing to results available from the literature.
Selective buckling via states of self-stress in topological metamaterials.
Paulose, Jayson; Meeussen, Anne S; Vitelli, Vincenzo
2015-06-23
States of self-stress--tensions and compressions of structural elements that result in zero net forces--play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices.
A review of analysis methods about thermal buckling
International Nuclear Information System (INIS)
Moulin, D.; Combescure, A.; Acker, D.
1987-01-01
This paper highlights the main items emerging from a large bibliographical survey carried out on strain-induced buckling analysis methods applicable in the building of fast neutron reactor structures. The work is centred on the practical analysis methods used in construction codes to account for the strain-buckling of thin and slender structures. Methods proposed in the literature concerning past and present studies are rapidly described. Experimental, theoretical and numerical methods are considered. Methods applicable to design and their degree of validation are indicated
Bifurcations in the optimal elastic foundation for a buckling column
International Nuclear Information System (INIS)
Rayneau-Kirkhope, Daniel; Farr, Robert; Ding, K.; Mao, Yong
2010-01-01
We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show that with only weak lateral support, the optimum distribution is a delta-function at the centre of the beam. When more support is allowed, we find numerically that the optimal distribution undergoes a series of bifurcations. We obtain analytical expressions for the buckling load around the first bifurcation point and corresponding expansions for the optimal position of support. Our theoretical predictions, including the critical exponent of the bifurcation, are confirmed by computer simulations.
Bifurcations in the optimal elastic foundation for a buckling column
Energy Technology Data Exchange (ETDEWEB)
Rayneau-Kirkhope, Daniel, E-mail: ppxdr@nottingham.ac.u [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Farr, Robert [Unilever R and D, Olivier van Noortlaan 120, AT3133, Vlaardingen (Netherlands); London Institute for Mathematical Sciences, 22 South Audley Street, Mayfair, London (United Kingdom); Ding, K. [Department of Physics, Fudan University, Shanghai, 200433 (China); Mao, Yong [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)
2010-12-01
We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show that with only weak lateral support, the optimum distribution is a delta-function at the centre of the beam. When more support is allowed, we find numerically that the optimal distribution undergoes a series of bifurcations. We obtain analytical expressions for the buckling load around the first bifurcation point and corresponding expansions for the optimal position of support. Our theoretical predictions, including the critical exponent of the bifurcation, are confirmed by computer simulations.
International Nuclear Information System (INIS)
Hsieh, B.J.
1977-01-01
The instability of axisymmetric shells has been used in engineering fields as a safety device such as the rupture discs used in the LMFBR (Liquid Metal Fast Breeder Reactor) design to relieve the excessive pressure caused by the water and sodium reaction when there is a leak in the piping system. Hence, the analysis of the instability of shells under time varying loading is becoming more and more important. However, notorious discrepancy has been observed between various analytical predications and experimental results for the buckling of shells. Various theories have been proposed to explain these discrepancies. Most of these theories are concerned with two aspects: initial imperfections and asymmetric responses. Both theories do narrow the gap between theoretical and experimental results; however, the remaining discrepancy is still not small. Other possible causes of this discrepancy have to be studied- among them, the boundary conditions. It has been pointed out that the slip at the boundary may have noticeable effect on the transient behavior of a plate. In this paper, the effect of various boundary conditions on the dynamic instability of axisymmetric shells is studied using the numerical discretization technique--convective finite element method
Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour
2018-01-01
Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.
Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan
2015-08-01
The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c
Energy Technology Data Exchange (ETDEWEB)
Cunha, Divino J.S.; Benjamin, Adilson C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas
2005-07-01
Three analytical methods frequently used for analyzing upheaval buckling are presented and compared in this work: the Hobbs' method which is applied to straight pipelines, the Pedersen-Jensen's method and the JIP-Shell's method, both applied to pipelines containing initial imperfections. The basic equations of the three methods are outlined and its differences are appointed. Also it is studied the sensitivity of the response of the last two methods to the cover of soil and to the amplitude of the initial imperfection. (author)
Design of cryogenic tanks for space vehicles shell structures analytical modeling
Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.
1991-01-01
The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.
Timoshenko beam model for buckling of piezoelectric nanowires with surface effects
2012-01-01
This paper investigates the buckling behavior of piezoelectric nanowires under distributed transverse loading, within the framework of the Timoshenko beam theory, and in the presence of surface effects. Analytical relations are given for the critical force of axial buckling of nanowires by accounting for the effects of surface elasticity, residual surface tension, and transverse shear deformation. Through an example, it is shown that the critical electric potential of buckling depends on both the surface stresses and piezoelectricity. This study may be helpful in the characterization of the mechanical properties of nanowires and in the calibration of the nanowire-based force sensors. PMID:22453063
Effect of microscale gaseous thermal conduction on the thermal behavior of a buckled microbridge
International Nuclear Information System (INIS)
Wang Jiaqi; Tang Zhenan; Li Jinfeng; Zhang Fengtian
2008-01-01
A microbridge is a basic micro-electro-mechanical systems (MEMS) device and has great potential for application in microsensors and microactuators. The thermal behavior of a microbridge is important for designing a microbridge-based thermal microsensor or microactuator. To study the thermal behavior of a microbridge consisting of Si 3 N 4 and polysilicon with a 2 µm suspended gap between the substrate and the microbridge while the microbridge is heated by an electrical current fed through the polysilicon, a microbridge model is developed to correlate theoretically the input current and the temperature distribution under the buckling conditions, especially considering the effects of the microscale gaseous thermal conduction due to the microbridge buckling. The calculated results show that the buckling of the microbridge changes the microscale gaseous thermal conduction, and thus greatly affects the thermal behavior of the microbridge. We also evaluate the effects of initial buckling on the temperature distribution of the microbridge. The experimental results show that buckling should be taken into account if the buckling is large. Therefore, the variation in gaseous thermal conduction and the suspended gap height caused by the buckling should be considered in the design of such thermomechanical microsensors and microactuators, which requires more accurate thermal behavior
Axial buckling scrutiny of doubly orthogonal slender nanotubes via nonlocal continuum theory
Energy Technology Data Exchange (ETDEWEB)
Kiani, Keivan [K.N. Toosi University of Technolog, Tehran (Iran, Islamic Republic of)
2015-10-15
Using nonlocal Euler-Bernoulli beam theory, buckling behavior of elastically embedded Doubly orthogonal single-walled carbon nanotubes (DOSWCNTs) is studied. The nonlocal governing equations are obtained. In fact, these are coupled fourth-order integroordinary differential equations which are very difficult to be solved explicitly. As an alternative solution, Galerkin approach in conjunction with assumed mode method is employed, and the axial compressive buckling load of the nanosystem is evaluated. For DOSWCNTs with simply supported tubes, the influences of the slenderness ratio, aspect ratio, intertube free space, small-scale parameter, and properties of the surrounding elastic matrix on the axial buckling load of the nanosystem are addressed. The proposed model could be considered as a pivotal step towards better understanding the buckling behavior of more complex nanosystems such as doubly orthogonal membranes or even jungles of carbon nanotubes.
On modelling of lateral buckling failure in flexible pipe tensile armour layers
DEFF Research Database (Denmark)
Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.
2012-01-01
In the present paper, a mathematical model which is capable of representing the physics of lateral buckling failure in the tensile armour layers of flexible pipes is introduced. Flexible pipes are unbounded composite steel–polymer structures, which are known to be prone to lateral wire buckling...... when exposed to repeated bending cycles and longitudinal compression, which mainly occurs during pipe laying in ultra-deep waters. On the basis of multiple single wire analyses, the mechanical behaviour of both layers of tensile armour wires can be determined. Since failure in one layer destabilises...... the torsional equilibrium which is usually maintained between the layers, lateral wire buckling is often associated with a severe pipe twist. This behaviour is discussed and modelled. Results are compared to a pipe model, in which failure is assumed not to cause twist. The buckling modes of the tensile armour...
Evolution of normal stress and surface roughness in buckled thin films
Palasantzas, G; De Hosson, JTM
2003-01-01
In this work we investigate buckling of compressed elastic thin films, which are bonded onto a viscous layer of finite thickness. It is found that the normal stress exerted by the viscous layer on the elastic film evolves with time showing a minimum at early buckling stages, while it increases at
Buckling Analysis of Rectangular Plates with Variable Thickness Resting on Elastic Foundation
International Nuclear Information System (INIS)
Viswanathan, K K; Aziz, Z A; Navaneethakrishnan, P V
2015-01-01
Buckling of rectangular plates of variable thickness resting in elastic foundation is analysed using a quintic spline approximation technique. The thickness of the plate varies in the direction of one edge and the variations are assumed to be linear, exponential and sinusoidal. The plate is subjected to in plane load of two opposite edges. The buckling load and the mode shapes of buckling are computed from the eigenvalue problem that arises. Detailed parametric studies are made with different boundary conditions and the results are presented through the diagram and discussed
FLEXURAL, TORSIONAL AND DISTORTIONAL BUCKLING OF ...
African Journals Online (AJOL)
ABSTRACT. Instability is an important branch of structural mechanics which examines alternate ... equations in V and V representing flexural buckling about the two axis of symmetry; a fully. 4 ..... of Thin-Walled Space Systems, First. Edition ...
Directory of Open Access Journals (Sweden)
Rubens Camargo Siqueira
2007-03-01
Full Text Available PURPOSE: To compare the surgical results of vitrectomy with and without scleral buckling for rhegmatogenous retinal detachment (RD. METHODS: Fifty-one patients with rhegmatogenous retinal detachment with proliferative vitreoretinopathy (PVR at different stages were submitted to pars plana vitrectomy as the primary surgery, 23 patients (45.09% with scleral buckle (group I and 28 (54.90% without scleral buckle (group II. Visual acuity, anterior segment complications, intraocular pressure, strabismus and retina reattachment rate were evaluated in both groups. RESULTS: The anatomical success and postoperative complications were similar in both groups. Retinal reattachment was achieved in 20 of 23 eyes (87% of group I and in 24 of 28 eyes (85.7% of group II after the initial surgery (p=1.000. Elevated intraocular pressure was noted in 2 eyes (8.7% of group I and 1 eye (3.6% of group II (p=0.583. Corneal abnormalities were seen in 3 eyes (13% of group I and 2 eyes (7.19% of the group II (p=0.647. Visual acuity improved from a preoperative median of 20/200 to a median of 20/100 in group 1 and from 20/400 to 20/100 in group 2; the difference between the two groups was statistically significant (pOBJETIVOS: Comparar os resultados cirúrgicos da vitrectomia com e sem "buckle" escleral para descolamento da retina regmatogênico (DR. MÉTODOS: Cinqüenta e um pacientes com descolamento da retina regmatogênico com proliferação vitreorretiniana (PVR em diferentes estádios foram submetidos a vitrectomia pars plana como cirurgia primária; 23 pacientes (45,09% com buckle escleral (grupo 1 e 28 pacientes (54,90% sem "buckle" escleral (grupo 2. Acuidade visual, complicações do segmento anterior, pressão intra-ocular, estrabismo e razão do redescolamento da retina foram avaliados em ambos os grupos. RESULTADOS: O sucesso anatômico e complicações pós-operatórias foram semelhantes em ambos os grupos. A reaplicação da retina foi obtida em 20 dos 23
RNCR3 knockdown inhibits diabetes mellitus-induced retinal reactive gliosis
International Nuclear Information System (INIS)
Liu, Chang; Li, Chao-peng; Wang, Jia-Jian; Shan, Kun; Liu, Xin; Yan, Biao
2016-01-01
Retinal reactive gliosis is an important pathological feature of diabetic retinopathy. Identifying the underlying mechanisms causing reactive gliosis will be important for developing new therapeutic strategies for treating diabetic retinopathy. Herein, we show that long noncoding RNA-RNCR3 knockdown significantly inhibits retinal reactive gliosis. RNCR3 knockdown leads to a marked reduction in the release of several cytokines. RNCR3 knockdown alleviates diabetes mellitus-induced retinal neurodegeneration, as shown by less apoptotic retinal cells and ameliorative visual function. RNCR3 knockdown could also decrease Müller glial cell viability and proliferation, and reduce the expression of glial reactivity-related genes including GFAP and vimentin in vitro. Collectively, this study shows that RNCR3 knockdown may be a promising strategy for the prevention of diabetes mellitus-induced retinal neurodegeneration. - Highlights: • RNCR3 knockdown inhibits retinal reactive gliosis. • RNCR3 knockdown causes a significant change in cytokine profile. • RNCR3 knockdown alleviates diabetes mellitus-induced retinal neurodegeneration. • RNCR3 knockdown affects Müller glial cell function in vitro.
International Nuclear Information System (INIS)
Syaputra, Marhamni; Wella, Sasfan Arman; Wungu, Triati Dewi Kencana; Purqon, Acep; Suprijadi
2015-01-01
We study the hydrogenation structures possessed by silicene i.e. planar (PL), low buckled (LB) and high buckled (HB). On those structures we found the hydrogenation process occurs with some particular notes. Hydrogen stable position on the silicene surface is determined by its initial configuration. We only considered the fully hydrogenated case with the formula unit (SiH) n for all of these structures. Physical and electronic structure shift after the process are compared with hydrogenated graphene. Moreover, we observed a chemical process in the presence of hydrogen on the PL structure by nudged elastic band (NEB) which illustrates how hydrogen has a significant impact to the force barrier of the PL that changing it from its original structure
Buckling analysis of SMA bonded sandwich structure – using FEM
Katariya, Pankaj V.; Das, Arijit; Panda, Subrata K.
2018-03-01
Thermal buckling strength of smart sandwich composite structure (bonded with shape memory alloy; SMA) examined numerically via a higher-order finite element model in association with marching technique. The excess geometrical distortion of the structure under the elevated environment modeled through Green’s strain function whereas the material nonlinearity counted with the help of marching method. The system responses are computed numerically by solving the generalized eigenvalue equations via a customized MATLAB code. The comprehensive behaviour of the current finite element solutions (minimum buckling load parameter) is established by solving the adequate number of numerical examples including the given input parameter. The current numerical model is extended further to check the influence of various structural parameter of the sandwich panel on the buckling temperature including the SMA effect and reported in details.
Ko, William L.; Jackson, Raymond H.
1991-01-01
Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.
Buckling induced by cyclic straining: Analysis of simple models
International Nuclear Information System (INIS)
Devos, J.; Gontier, C.; Hoffmann, A.
1983-01-01
Progressive buckling of a structure may occur under imposed loads below the critical value in cases where progressive distortion due to cyclic straining is possible. This interaction between ratchetting and buckling is usually not taken into account in design rules, such as the ASME rules. This paper presents the complete analysis of two simple cases and gives rules established on this basis. The first model is a modified version of SHANLEY's two bars; it is submitted to a constant axial compressive force F and a variable thermal stress Q. It simulates a compressed clamped-clamped beam subjected to a variable through-thickness thermal gradient. The second model is a refined version of the first taking into account strain-hardening of the deformable sections. One finds that progressive buckling is possible only if the applied force F is greater than SHANLEY's critical load and tangent moduli of the moment-curvature law, respectively. (orig./GL)
Micro-buckling of periodically layered composites in regions of stress concentration
DEFF Research Database (Denmark)
Poulios, Konstantinos; Niordson, Christian Frithiof
2016-01-01
-buckling related failure in regions of stress concentrations. A series of parametric studies show the effect of non-uniform stress distributions due to bending loads and the presence of geometrical features such as notches and holes on the initiation of micro-buckling. The contribution of the bending stiffness...... of the reinforcing layers on the resistance against micro-buckling introduces a dependence on the layer thickness, resulting in size-scale dependent strength limits. Therefore, both the shape and dimensions of the considered geometrical features and the layering thickness of the micro-structure are varied as part...... of the parametric studies. Moreover, the impact of imperfections in the composite micro-structure on the strength of the considered specimens is investigated....
Uncertain Buckling Load and Reliability of Columns with Uncertain Properties
DEFF Research Database (Denmark)
Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.
Continuous and finite element methods are utilized to determine the buckling load of columns with material and geometrical uncertainties considering deterministic, stochastic and interval models for the bending rigidity of columns. When the bending rigidity field is assumed to be deterministic, t....... for structural design, the lower bound is of crucial interest. The buckling load of fixed-free, simple-supported, pinned-fixed, fixed-fixed columns and a sample frame are calculated....
An epibulbar chocolate cyst: a rare complication of silicone-based scleral buckle.
Venkatesh, Pradeep; Gogia, Varun; Gupta, Shikha; Nayak, Bhagabat
2015-08-03
A patient with a history of vitreoretinal surgery presented with nasal dystopia, diplopia and epibulbar bluish black mass simulating a chocolate cyst in the right eye. After a non-conclusive ocular examination, he underwent CT of the orbit along with volume rendition and three-dimensional reconstruction, which demonstrated intact globe with laterally displaced band-buckle assembly along with peri-scleral buckle element (SBE) soft tissue proliferation. Imaging-assisted exploration of the lesion was performed and retained scleral buckle element (SBE) was removed in toto; thus relieving the patient long-standing dystopia. 2015 BMJ Publishing Group Ltd.
Rudd, Michelle T.; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.
2018-01-01
The NASA Engineering Safety Center (NESC) Shell Buckling Knockdown Factor Project (SBKF) was established in 2007 by the NESC with the primary objective to develop analysis-based buckling design factors and guidelines for metallic and composite launch-vehicle structures.1 A secondary objective of the project is to advance technologies that have the potential to increase the structural efficiency of launch-vehicles. The SBKF Project has determined that weld-land stiffness discontinuities can significantly reduce the buckling load of a cylinder. In addition, the welding process can introduce localized geometric imperfections that can further exacerbate the inherent buckling imperfection sensitivity of the cylinder. Therefore, single-piece barrel fabrication technologies can improve structural efficiency by eliminating these weld-land issues. As part of this effort, SBKF partnered with the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center (LaRC), the Mechanical and Fabrication Branch at NASA Marshall Space Flight Center (MSFC), and ATI Forged Products to design and fabricate an 8-ft-diameter orthogrid-stiffened seamless metallic cylinder. The cylinder was subjected to seven subcritical load sequences (load levels that are not intended to induce test article buckling or material failure) and one load sequence to failure. The purpose of this test effort was to demonstrate the potential benefits of building cylindrical structures with no weld lands using the flow-formed manufacturing process. This seamless barrel is the ninth 8-ft-diameter metallic barrel and the first single-piece metallic structure to be tested under this program.
Investigation of scleral buckling by CO2 laser
International Nuclear Information System (INIS)
Maswadi, S.
2001-05-01
This thesis investigates the effect of using the infrared wavelength CO 2 laser (10.6μm) as a localised heat source for inducing scleral buckling on eyes. Retinal detachment disease is a major cause of blindness and the scleral buckling is an important technique used in treatment. A radio-frequency excited 10.6λm laser source is used to heat collagen in the sclera above its shrinkage temperature so as to produce a localised indentation and deformation in the human eye (in vitro). Basic measurements of the onset shrinkage temperatures of porcine and human sclera are taken. Optical properties of sclera tissue at 10.6μm are also determined to provide information about the interaction of the CO 2 laser with the sclera. It is found that CO 2 laser radiation is highly absorbed by the scleral water. Optical diffraction technique is investigated to quantify in-plane deformation in the sclera tissue as result of heating by producing grating on porcine and human sclera using the ArF laser (193nm). Photothermal deflection technique is also used to investigate scleral ablation by using the TEA and Ultrapulse CO 2 laser. This technique provides a useful guide to the regime where ablation rather than heat shrinkage of collagen in the sclera will dominate using the Ultrapulse CO 2 laser. A quantitative assessment of buckling using the technique of projection moire interferometry is described which allows a non-contact measurement to be made of the out-of-plane displacement by laser radiation. In-plane surface strain (shrinkage) has also been demonstrated using in-situ optical microscopy of the laser treated eye. The moire method is suitable to obtain information on buckling in real time and to obtain a three-dimensional view of the eye surface as laser treatment proceeds. A theoretical heat flow model is described for predicting the temperature profile produced in the sclera using the Ultrapulse CO 2 laser. For appropriate exposure parameters the CO 2 laser is found to be an
Finite element predictions of active buckling control of stiffened panels
Thompson, Danniella M.; Griffin, O. H., Jr.
1993-04-01
Materials systems and structures that can respond 'intelligently' to their environment are currently being proposed and investigated. A series of finite element analyses was performed to investigate the potential for active buckling control of two different stiffened panels by embedded shape memory alloy (SMA) rods. Changes in the predicted buckling load increased with the magnitude of the actuation level for a given structural concept. Increasing the number of actuators for a given concept yielded greater predicted increases in buckling load. Considerable control authority was generated with a small number of actuators, with greater authority demonstrated for those structural concepts where the activated SMA rods could develop greater forces and moments on the structure. Relatively simple and inexpensive analyses were performed with standard finite elements to determine such information, indicating the viability of these types of models for design purposes.
Buckling analysis for structural sections and stiffened plates reinforced with laminated composites.
Viswanathan, A. V.; Soong, T.-C.; Miller, R. E., Jr.
1972-01-01
A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked flat plate and beam elements. Plates are idealized as multilayered orthotropic elements; structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections and stiffened plates is investigated. Buckling loads are found as the lowest of all possible general and local failure modes and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections and stiffened plates including boron-reinforced structures are discussed. In general, correlations are reasonably good.
Experimental tests on buckling of torispherical heads comparison with plastic bifurcation analysis
International Nuclear Information System (INIS)
Roche, R.L.; Autrusson, B.
1984-06-01
Sixteen torispherical heads have been tested under internal pressure. All these heads were made by cold spinning from mild steel plates. Deflections on the axis and in the knuckle region have been recorded. As an practical result of these experiments, buckling pressure is given for each tested head. It is also indicated the maximum pressure reached during the tests, this pressure is very higher than the buckling pressure. It is also seen that buckling pressure is little sensitive to initial geometric imperfections. These experimental buckling pressure are compared with computation results obtained by plastic bifurcation analysis. Five different models of bifurcation matrix have been considered. If tangent matrix is unconservative, the use of tangent modulus (in lieu of YOUNG's modulus) is overconservative. Finally a mixing of tangent normal modulus and secant shearing modulus seems to be a good enough model (not to far from experimental results, and with not to large standard deviation)
International Nuclear Information System (INIS)
Jiang, W.; Batra, R.C.
2009-01-01
We use molecular statics simulations with the embedded atom method potential to delineate yielding (material instability) and buckling (structural instability) in gold nanowires deformed axially in compression. It is found that both local (stacking faults) and global instabilities occur when the gold nanowire yields but only global instabilities occur when the nanowire buckles. Furthermore strong surface effects reorient the lattice structure which significantly increases Young's modulus in the axial direction and cause a nanowire of relatively small slenderness ratio (e.g., 14) to buckle. Upon complete unloading of the nanowires, the average axial stress and the total potential energy revert to their values in the reference configuration for the nanowires that buckled but not for the one that yielded.
Alternative Shape of Suction Caisson to Reduce Risk of Buckling under high Pressure
DEFF Research Database (Denmark)
Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2013-01-01
Using large suction caissons for offshore wind turbines is an upcoming technology also referred to as bucket foundations. During operation the bucket foundation is loaded by a large overturning moment from the wind turbine and the wave loads. However, during installation the bucket is loaded...... cylindrical monopod foundation made of steel. In this paper, an alternative design/shape of the suction caisson, having a smaller risk of buckling under high pressure is presented. The risk of structural buckling is addressed using numerical methods to determine the buckling pressures of the re...
On the buckling of hexagonal boron nitride nanoribbons via structural mechanics
Giannopoulos, Georgios I.
2018-03-01
Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.
Tran, Phat; Arnett, Avery; Jarvis, Courtney; Mosley, Thomas; Tran, Khien; Hanes, Rob; Webster, Dan; Mitchell, Kelly; Dominguez, Leo; Hamood, Abdul; Reid, Ted W
2017-09-01
Biofilm formation is a problem for solid and sponge-type scleral buckles. This can lead to complications that require removal of the buckle, and result in vision loss due to related ocular morbidity, primarily infection, or recurrent retinal detachment. We investigate the ability of a covalent organo-selenium coating to inhibit biofilm formation on a scleral buckle. Sponge and solid Labtican brand scleral buckles were coated with organo-selenium coupled to a silyation reagent. Staphylococcus aureus biofilm formation was monitored by a standard colony-forming unit assay and the confocal laser scanning microscopy, while Pseudomonas aeruginosa biofilm formation was examined by scanning electron microscopy. Stability studies were done, by soaking in phosphate buffer saline (PBS) at room temperature for 2 months. Toxicity against human corneal epithelial cell was examined by growing the cells in the presence of organo-selenium-coated scleral buckles. The organo-selenium coating inhibited biofilm formation by gram-negative and gram-positive bacteria. The buckle coatings also were shown to be fully active after soaking in PBS for 2 months. The organo-selenium coatings had no effect on the viability of human corneal epithelial cells. Organo-selenium can be used to covalently coat a scleral buckle, which is stable and inhibits biofilm formation for gram-negative and gram-positive bacteria. The organo-selenium buckle coating was stable and nontoxic to cell culture. This technology provides a means to inhibit bacterial attachment to devices attached to the eye, without damage to ocular cells.
Gong, Yinchun; Ai, Zhijiu; Sun, Xu; Fu, Biwei
2016-01-01
Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations.
Shear buckling of cylindrical vessels benchmark exercise
International Nuclear Information System (INIS)
Dostal, M; Austin, N.; Combescure, A.; Peano, A.; Angeloni, P.
1987-01-01
In Liquid Metal Fast Breeder Reactors (LMFBR) potential shear buckling failures of the primary vessel, induced through seismic excitations, have to be considered. The problem is particularly severe in pool type reactors due to their large size, radius of approximately 10 m, coupled with small wall thicknesses of 50 mm and less. The object of this paper is to provide a comparison of three different computer codes capable of performing buckling analyses and to demonstrate on practical problems the level of accuracy that may be expected in design analyses. Three computer codes were examined ABAQUS, CASTEM (INCA/BILBO) and NOVNL and the computer results were compared directly with experimental data and other commonly used empirical formula. The joint effort was co-ordinated through the CEC Working Group on Codes and Standards AG2. (orig./GL)
Research on the Numerical Simulation of Sleeper in the Pipeline Global Buckling Controlling Practice
Directory of Open Access Journals (Sweden)
Liu Wen-Bin
2017-01-01
Full Text Available This paper analyzed the lateral buckling of pipelines located in Western Africa with ABAQUS software. The application of sleepers in practice is explored to guide the pipeline buckling controlling design.
Segal, N A; Nevitt, M C; Welborn, R D; Nguyen, U-S D T; Niu, J; Lewis, C E; Felson, D T; Frey-Law, L
2015-07-01
Hamstring coactivation during quadriceps activation is necessary to counteract the quadriceps pull on the tibia, but coactivation can be elevated with symptomatic knee osteoarthritis (OA). To guide rehabilitation to attenuate risk for mobility limitations and falls, this study evaluated whether higher antagonistic open kinetic chain hamstring coactivation is associated with knee joint buckling (sudden loss of support) and shifting (a sensation that the knee might give way). At baseline, median hamstring coactivation was assessed during maximal isokinetic knee extensor strength testing and at baseline and 24-month follow-up, knee buckling and shifting was self-reported. Associations between tertiles of co-activation and knee (1) buckling, (2) shifting and (3) either buckling or shifting were assessed using logistic regression, adjusted for age, sex, knee OA and pain. 1826 participants (1089 women) were included. Mean ± SD age was 61.7 ± 7.7 years, BMI was 30.3 ± 5.5 kg/m(2) and 38.2% of knees had OA. There were no consistent statistically significant associations between hamstring coactivation and ipsilateral prevalent or incident buckling or the combination of buckling and shifting. The odds ratios for incident shifting in the highest in comparison with the lowest tertile of coactivation had similar magnitudes in the combined and medial hamstrings, but only reached statistical significance for lateral hamstring coactivation, OR(95%CI) 1.53 (0.99, 2.36). Hamstring coactivation during an open kinetic chain quadriceps exercise was not consistently associated with prevalent or incident self-reported knee buckling or shifting in older adults with or at risk for knee OA. Copyright © 2015. Published by Elsevier Ltd.
Misuse of booster cushions - an observation study of children's performance during buckling up.
Osvalder, Anna-Lisa; Bohman, Katarina
2008-10-01
Booster cushions are effective tools to protect children from injuries in car crashes, but there remains a large amount of misuse. The aim of this study was to assess potential misuse of booster cushions in an observational laboratory study, and to identify whether booster cushion design, age or clothing had any effect. 130 Swedish children from the ages of 4-12 years participated. Each child buckled up on an integrated and on an aftermarket booster cushion in the rear seat. The older children also buckled up with seat belt only. Interviews, observations and body measurements were performed. Time to buckle up and amount of belt slack were registered. Photographs were taken to document misuse. Results showed that 77% failed to perform correct belt routing on the aftermarket cushion, independent of age, although they were familiar with this system. The misuse rate for the integrated cushion was only 4%. No misuse was found for seat belt only. Few children tightened the belt. The belt slack increased when wearing winter jackets. This indicates the importance of adding pretensioners to the rear seat. Sled tests with HIII&TNO 6y dummies were also performed for the most frequent misuse situations found. The main conclusion is that an integrated booster cushion has many advantages compared to an aftermarket cushion regarding both safety and comfort. It is easy and quick to handle, has few possibilities for misuse, has an intuitive design, the buckling up sequence is equal to buckling up with an ordinary seat belt, and younger children can buckle up correctly.
Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates
Vlček, Marián
2015-07-01
A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.
Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates
Vlček, Mariá n; Luká č, František; Vlach, Martin; Prochá zka, Ivan; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid; Gemma, Ryota; Čí žek, Jakub
2015-01-01
A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.
Elastic buckling strength of corroded steel plates
Indian Academy of Sciences (India)
structural safety assessment of corroded structures, residual strength should be ... Rahbar-Ranji (2001) has proposed a spectrum for random simulation of ... The main aim of the present work is to investigate the buckling strength of simply ...
Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory
International Nuclear Information System (INIS)
Wang, C M; Zhang, Y Y; Ramesh, Sai Sudha; Kitipornchai, S
2006-01-01
This paper is concerned with the elastic buckling analysis of micro- and nano-rods/tubes based on Eringen's nonlocal elasticity theory and the Timoshenko beam theory. In the former theory, the small scale effect is taken into consideration while the effect of transverse shear deformation is accounted for in the latter theory. The governing equations and the boundary conditions are derived using the principle of virtual work. Explicit expressions for the critical buckling loads are derived for axially loaded rods/tubes with various end conditions. These expressions account for a better representation of the buckling behaviour of micro- and nano-rods/tubes where small scale effect and transverse shear deformation effect are significant. By comparing it with the classical beam theories, the sensitivity of the small scale effect on the buckling loads may be observed
Effect of corrosion on the buckling capacity of tubular members
Øyasæter, F. H.; Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.
2017-12-01
Offshore installations are subjected to harsh marine environment and often have damages from corrosion. Several experimental and numerical studies were performed in the past to estimate buckling capacity of corroded tubular members. However, these studies were either based on limited experimental tests or numerical analyses of few cases resulting in semi-empirical relations. Also, there are no guidelines and recommendations in the currently available design standards. To fulfil this research gap, a new formula is proposed to estimate the residual strength of tubular members considering corrosion and initial geometrical imperfections. The proposed formula is verified with results from finite element analyses performed on several members and for varying corrosion patch parameters. The members are selected to represent the most relevant Eurocode buckling curve for tubular members. It is concluded that corrosion reduces the buckling capacity significantly and the proposed formula can be easily applied by practicing engineers without performing detailed numerical analyses.
Post-Buckling Analysis of Curved Honeycomb Sandwich Panels Containing Interfacial Disbonds
Pineda, Evan J.; Bednarcyk, Brett A.; Krivanek, Thomas K.
2016-01-01
A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance plan for the next-generation Space Launch System heavy lift launch vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method incorporating geometric nonlinearity. In a predetermined circular region, facesheet and core nodes were detached to simulate a disbond, between the outer mold line facesheet and honeycomb core, induced via low-speed impact. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements and obtain realistic stresses in the core. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. Significant changes in the slope of the edge load-deflection response were used to determine the onset of global buckling and corresponding buckling load. Finally, several studies were conducted to determine the sensitivity of the numerical predictions to refinement in the finite element mesh.
DEFF Research Database (Denmark)
Sönmez, Ümit; Tutum, Cem Celal
2008-01-01
In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....
Investigation of scleral buckling by CO{sub 2} laser
Energy Technology Data Exchange (ETDEWEB)
Maswadi, S
2001-05-01
This thesis investigates the effect of using the infrared wavelength CO{sub 2} laser (10.6{mu}m) as a localised heat source for inducing scleral buckling on eyes. Retinal detachment disease is a major cause of blindness and the scleral buckling is an important technique used in treatment. A radio-frequency excited 10.6{lambda}m laser source is used to heat collagen in the sclera above its shrinkage temperature so as to produce a localised indentation and deformation in the human eye (in vitro). Basic measurements of the onset shrinkage temperatures of porcine and human sclera are taken. Optical properties of sclera tissue at 10.6{mu}m are also determined to provide information about the interaction of the CO{sub 2} laser with the sclera. It is found that CO{sub 2} laser radiation is highly absorbed by the scleral water. Optical diffraction technique is investigated to quantify in-plane deformation in the sclera tissue as result of heating by producing grating on porcine and human sclera using the ArF laser (193nm). Photothermal deflection technique is also used to investigate scleral ablation by using the TEA and Ultrapulse CO{sub 2} laser. This technique provides a useful guide to the regime where ablation rather than heat shrinkage of collagen in the sclera will dominate using the Ultrapulse CO{sub 2} laser. A quantitative assessment of buckling using the technique of projection moire interferometry is described which allows a non-contact measurement to be made of the out-of-plane displacement by laser radiation. In-plane surface strain (shrinkage) has also been demonstrated using in-situ optical microscopy of the laser treated eye. The moire method is suitable to obtain information on buckling in real time and to obtain a three-dimensional view of the eye surface as laser treatment proceeds. A theoretical heat flow model is described for predicting the temperature profile produced in the sclera using the Ultrapulse CO{sub 2} laser. For appropriate exposure
Experimental tests on buckling of ellipsoidal vessel heads subjected to internal pressure
International Nuclear Information System (INIS)
Roche, R.L.; Alix, M.
1980-05-01
Tests were performed on 17 ellipsoidal vessel heads of three different materials and different geometries. The results include the following: 1) Accurate definition of the geometry and particularly a direct measurement of the thickness along the meridian. 2) The properties of the material of each head, obtained from test specimens cut from the head itself after the test. 3) The recording of deflection/pressure curves with indication of the pressure at which buckling occurred. These results can be used for validation and qualification of methods for calculating the buckling load when plasticity occurs before buckling. It was possible to develop an empirical equation representing the experimental results obtained with satisfactory accuracy. This equation may be useful in pressure vessel design
International Nuclear Information System (INIS)
Jagla, E A
2004-01-01
I study the buckling transition under compression of a two-dimensional, hexagonal, regular elastic honeycomb. Under isotropic compression, the system buckles to a configuration consisting of a unit cell containing four of the original hexagons. This buckling pattern preserves the sixfold rotational symmetry of the original lattice but is chiral, and can be described as a combination of three different elemental distortions in directions rotated by 2π/3 from each other. Non-isotropic compression may induce patterns consisting of a single elemental distortion or a superposition of two of them. The numerical results compare very well with the outcome of a Landau theory of second-order phase transitions
Determining the asymptotic buckling for the reference RB reactor lattice
International Nuclear Information System (INIS)
Martinc, R.; Sotic, O.
1969-01-01
Material buckling was measured for reference lattice of the heavy water reflected system with 2% enriched uranium fuel. Experiments were done for cores with lattice pitch values: 8, 8√2, i 16 cm. Each of these cores had heavy water reflector, as well as active reflector - heavy water lattice with natural uranium fuel. The core was reflected by natural uranium lattice in order to approach asymptotic regime in the central zone. Buckling values obtained with the natural uranium lattice as reflector are, as a rule, lower then in case of heavy water reflector [sr
On the buckling behavior of piezoelectric nanobeams: An exact solution
International Nuclear Information System (INIS)
Jandaghian, Ali Akbar; Rahmaini, Omid
2015-01-01
In this paper, thermoelectric-mechanical buckling behavior of the piezoelectric nanobeams is investigated based on the nonlocal theory and Euler-Bernoulli beam theory. The electric potential is assumed linear through the thickness of the nanobeam and the governing equations are derived by Hamilton's principle. The governing equations are solved analytically for different boundary conditions. The effects of the nonlocal parameter, temperature change, and external electric voltage on the critical buckling load of the piezoelectric nanobeams are discussed in detail. This study should be useful for the design of piezoelectric nanodevices.
NASTRAN buckling study of a linear induction motor reaction rail
Williams, J. G.
1973-01-01
NASTRAN was used to study problems associated with the installation of a linear induction motor reaction rail test track. Specific problems studied include determination of the critical axial compressive buckling stress and establishment of the lateral stiffness of the reaction rail under combined loads. NASTRAN results were compared with experimentally obtained values and satisfactory agreement was obtained. The reaction rail was found to buckle at an axial compressive stress of 11,400 pounds per square inch. The results of this investigation were used to select procedures for installation of the reaction rail.
International Nuclear Information System (INIS)
Sahmani, S.; Ansari, R.
2011-01-01
Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis
Energy Technology Data Exchange (ETDEWEB)
Sahmani, S.; Ansari, R. [University of Guilan, Rasht (Iran, Islamic Republic of)
2011-09-15
Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis.
Method for Predicting Thermal Buckling in Rails
2018-01-01
A method is proposed herein for predicting the onset of thermal buckling in rails in such a way as to provide a means of avoiding this type of potentially devastating failure. The method consists of the development of a thermomechanical model of rail...
Dynamic Pulse Buckling--Theory and Experiment
1983-02-01
34Buckling of Bars Subject to Axial Shock," Studii si Cercetari de Mecanica Applicata (Roumania), 7, 1, pp. 173-178, January 1956. 26. A.F. Schmitt, "A...Procopovici, "Transverse Deformation of an Elastic Bar Subjected to an Axial Impulsive Force," Studii si Ceretari de Mecanica Applicata. 8, 3, pp. 839
International Nuclear Information System (INIS)
Yas, M.H.; Samadi, N.
2012-01-01
This study deals with free vibrations and buckling analysis of nanocomposite Timoshenko beams reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation. The SWCNTs are assumed to be aligned and straight with a uniform layout. Four different carbon nanotubes (CNTs) distributions including uniform and three types of functionally graded distributions of CNTs through the thickness are considered. The rule of mixture is used to describe the effective material properties of the nanocomposite beams. The governing equations are derived through using Hamilton's principle and then solved by using the generalized differential quadrature method (GDQM). Natural frequencies and critical buckling load are obtained for nanocomposite beams with different boundary conditions. Effects of several parameters, such as nanotube volume fraction, foundation stiffness parameters, slenderness ratios, CNTs distribution and boundary conditions on both natural frequency and critical buckling load are investigated. The results indicate that the above-mentioned parameters play a very important role on the free vibrations and buckling characteristics of the beam. Highlights: ► Beams with FG-X distribution have highest fundamental frequency. ► Beams with FG-X distribution have highest critical buckling load. ► Using elastic foundation, lead to increase the natural frequency. ► Using elastic foundation, lead to increase the critical buckling load. ► Increasing CNT volume fraction, lead to increase the natural frequency.
Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar
2017-08-01
Thanks to their efficiency enhancement systems based on post-buckled structural elements have been extensively used in many applications such as actuation, remote sensing and energy harvesting. The post-buckling snap-through behavior of bilaterally constrained beams has been exploited to create sensing or energy harvesting mechanisms for quasi-static applications. The conversion mechanism has been used to transform low-rate and low-frequency excitations into high-rate motions. Electric energy has been generated from such high-rate motions using piezoelectric transducers. However, lack of control over the post-buckling behavior severely limits the mechanism’s efficiency. This study aims to maximize the levels of harvestable power by controlling the location of snap-throughs along the beam at different buckling transitions. Since the snap-through location cannot be controlled by tuning the geometric properties of a uniform beam, non-uniform cross-sections are examined. An energy-based theoretical model is herein developed to predict the post-buckling response of non-prismatic beams. The total potential energy is minimized under constraints that represent the physical confinement of the beam between the lateral boundaries. The experimentally validated results show that changing the shape and geometric dimensions of non-uniform beams allows for the accurate controlling of the snap-through location at different buckling transitions. A 78.59% improvement in harvested energy levels has been achieved by optimization of beam shape.
Institute of Scientific and Technical Information of China (English)
邓志军; 陈冰冰; 郑浣琪; 魏协宇; 高增梁
2015-01-01
The simulation result of cylindrical shells under external pressure is influenced greatly by different initial geometric deviation. Two forms of initial geometric deviations i.e., the first-order buckling mode of shell and the Fourier series representation, are briefly introduced. A simplified method of Fourier series is developed according to circumferential wavel(2-8), initial phase angleφ12-φ18 and 5 groups initial geometric deviations data. According to the basic dimension, maximum initial geometric deviation, elastic modulus and yield strength of cylindrical shells in the existing reference, simplified Fourier series and first-order buckling mode method are applied to describe the initial geometric deviations of cylindrical shells in the double nonlinear buckling simulation, bilinear material model is adopted to the constitutive relation of materials. The results are discussed and the values regarding the buckling pressure obtained by the simulation are compared with those from experiments reported in reference. The results show that the values of buckling pressure obtained by first-order buckling mode method are generally smaller than the experimental values, and the results obtained by the simplified Fourier series method are in good agreement with the experimental values in the reference. This illustrates that the initial geometric deviations of cylindrical shells can be better expressed by the simplified Fourier series.%在圆筒外压模拟计算中，初始几何偏差施加方式的不同对模拟计算结果影响较大。就“一致缺陷模态法”和傅里叶级数两种初始几何偏差的描述方法进行简述。根据5组初始几何偏差实测数据，取周向波数l=2～8和初始相位角φ12～φ18，提出一种描述卷焊圆筒初始几何偏差的傅里叶级数简化方法。根据文献提供的42组圆筒基本尺寸、最大初始几何偏差值、材料的弹性模量和屈服强度，
Belt Buckles-Increasing Awareness of Nickel Exposure in Children: A Case Report.
Goldenberg, Alina; Admani, Shehla; Pelletier, Janice L; Jacob, Sharon E
2015-09-01
Children, especially those with atopic dermatitis, are at risk for nickel sensitization and subsequent dermatitis from metal-containing objects, namely belt buckles. We describe allergic contact dermatitis in 12 children with peri-umbilical nickel dermatitis (with and without generalized involvement) caused by dimethylglyoxime-positive belt buckles. The patients' symptoms resolved with avoidance of the nickel-containing products. Copyright © 2015 by the American Academy of Pediatrics.
Beni, Yaghoub Tadi; Zeverdejani, M Karimi; Mehralian, Fahimeh
2017-10-01
Protein microtubules (MTs) are one of the important intercellular components and have a vital role in the stability and strength of the cells. Due to applied external loads, protein microtubules may be involved buckling phenomenon. Due to impact of protein microtubules in cell reactions, it is important to determine their critical buckling load. Considering nature of protein microtubules, various parameters are effective on microtubules buckling. The small size of microtubules and also lack of uniformity of MTs properties in different directions caused the necessity of accuracy in the analysis of these bio-structure. In fact, microtubules must be considered as a size dependent cylinder, which behave as an orthotropic material. Hence, in the present work using first-order shear deformation model (FSDT), the buckling equations of anisotropic MTs are derived based on new modified couple stress theory (NMCST). After solving the stability equations, the influences of various parameters are measured on the MTs critical buckling load. Copyright © 2017 Elsevier Inc. All rights reserved.
Lateral-Torsional Buckling Instability Caused by Individuals Walking on Wood Composite I-Joists
Villasenor Aguilar, Jose Maria
Recent research has shown that a significant number of the falls from elevation occur when laborers are working on unfinished structures. Workers walking on wood I-joists on roofs and floors are prone to fall hazards. Wood I-joists have been replacing dimension lumber for many floor systems and a substantial number of roof systems in light-frame construction. Wood I-joists are designed to resist axial stresses on the flanges and shear stresses on the web while minimizing material used. However, wood I-joists have poor resistance to applied lateral and torsional loads and are susceptible to lateral-torsional buckling instability. Workers walking on unbraced or partially braced wood I-joists can induce axial and lateral forces as well as twist. Experimental testing demonstrated that workers cause lateral-torsional buckling instability in wood I-joists. However, no research was found related to the lateral-torsional buckling instability induced by individuals walking on the wood I-joists. Furthermore, no research was found considering the effects of the supported end conditions and partial bracing in the lateral-torsional buckling instability of wood I-joists. The goal of this research was to derive mathematical models to predict the dynamic lateral-torsional buckling instability of wood composite I-joists loaded by individuals walking considering different supported end conditions and bracing system configurations. The dynamic lateral-torsional buckling instability was analyzed by linearly combining the static lateral-torsional buckling instability with the lateral bending motion of the wood Ijoists. Mathematical models were derived to calculate the static critical loads for the simply supported end condition and four wood I-joist hanger supported end conditions. Additionally, mathematical models were derived to calculate the dynamic maximum lateral displacements and positions of the individual walking on the wood Ijoists for the same five different supported end
Adhesion-governed buckling of thin-film electronics on soft tissues
Directory of Open Access Journals (Sweden)
Bo Wang
2016-01-01
Full Text Available Stretchable/flexible electronics has attracted great interest and attention due to its potentially broad applications in bio-compatible systems. One class of these ultra-thin electronic systems has found promising and important utilities in bio-integrated monitoring and therapeutic devices. These devices can conform to the surfaces of soft bio-tissues such as the epidermis, the epicardium, and the brain to provide portable healthcare functionalities. Upon contractions of the soft tissues, the electronics undergoes compression and buckles into various modes, depending on the stiffness of the tissue and the strength of the interfacial adhesion. These buckling modes result in different kinds of interfacial delamination and shapes of the deformed electronics, which are very important to the proper functioning of the bio-electronic devices. In this paper, detailed buckling mechanics of these thin-film electronics on elastomeric substrates is studied. The analytical results, validated by experiments, provide a very convenient tool for predicting peak strain in the electronics and the intactness of the interface under various conditions.
Institute of Scientific and Technical Information of China (English)
林翔
2007-01-01
圆柱壳屈曲一般对壳壁上微小几何缺陷的型式和幅值均十分敏感.为了能将缺陷的不同分量和圆柱壳的结构特征联系起来以及研究缺陷各分量对壳屈曲强度的影响,缺陷通常采用傅立叶级数分解.然而,大多数先前的研究选取不适当的傅立叶级数得到不正确的结果.本文首先考察傅立叶级数的数学描述基础,进而讨论不同傅立叶级数在描述不同型式几何缺陷的表现,从而得出如何选取适当的傅立叶级数用来描述圆柱壳几何缺陷的结论.采用这些适当的傅立叶级数,能更好地了解圆柱壳几何缺陷的特征分量以及这些分量对壳体屈曲强度的影响.%Buckling behavior of cylindrical shells is often highly sensitive to both the form and amplitude of minor geometric imperfections in the shell walls. In order to connect different components of the imperfections with structural features and their effect on shell buckling strength, the imperfections are generally decomposed using Fourier series. Most of previous studies suffer from choosing improper Fourier series, leading to some incorrect results. This paper first examined the mathematical basis of a Fourier series representation and then discussed the performance of various forms of the series in representing different forms of geometric imperfections, Conclusions were then drawn on selection of an appropriate Fourier series to represent the imperfections so that to obtain a better understanding of the characteristic components of the geometric imperfections in cylindrical shells and their effect on shell buckling strength.
Experimental tests on buckling of ellipsoidal vessel heads under internal pressure
International Nuclear Information System (INIS)
Alix, Michel; Roche, Roland.
1979-01-01
Seventeen heads made out of metal sheets -by cold working- were tested. Three different metals were used - carbon steel, austenitic steel, and aluminium alloy. Nominal dimensions were: diameter D 500 mm height H 50 and 100 mm thickness to diameter ratio t/D in the range 0.001-0.005. The heads had a good axisymmetric shape, but that the thickness was varying along the ellipse. Material characteristic of each head was given by a tensile test (strain-stress curve). The obtained results are mainly the pressure deflexion recordings, strain measurements and visual observations of the geometrical changes. For thin heads, buckling is a very fast event and the first folding occurs sudently, with a strong perturbation on the pressure-deflexion curve. For the thickest heads, circular waves are slowly forming. In all of these tests, yielding occured before buckling and it was possible to increase the pressure beyond the first buckling pressure without failure. The experimental results agree very well (+-5% except one head) with the empirical formula Psub(c)=70000.(sigma y+sigma u/2)(t/D)sup(5/3)((D/H) 2 -8)sup(-2/3). The following notations being used: Psub(c): critical buckling pressure; sigma y: yield strength; sigma u: ultimate stress (same unit); t: knuckle thickness; D: mean diameter; H: height (same unit) [fr
Measurement of material buckling of subcritical assembly CAPITU
International Nuclear Information System (INIS)
Pombo, J.B.S.M.
1976-11-01
Material buckling and cadmium ratio measurements for 5 lattices of the subcritical assembly CAPITU with UO 2 as fuel (French fuel elements) and D 2 O as moderator are reported. Flux shape method from foil activation data has been used. Some developed accessories, experimental procedures and the counting system used are also described. Flux distributions were analysed by least squares fitting method and by a moments method. Final results for material buckling were confronted with theoretical values and with values obtained by pulsed neutron techniques. A summary of the programs used for preliminary processing of counting data and for least squares fitting are included. Although the measurements involved some problems which were not definitively solved, results seem to be reasonably reliable and the methodology well implemented. (Author) [pt
Outpatient- and inpatient-based buckling surgery: a comparative study
Directory of Open Access Journals (Sweden)
Lee JC
2014-04-01
Full Text Available Jin Cheol Lee,* Yu Cheol Kim*Department of Ophthalmology, Keimyung University School of Medicine, Dongsan Medical Center, Daegu, Korea *Both authors contributed equally to this workPurpose: To evaluate the clinical outcomes of ambulatory buckling surgery, comparing outpatient- with inpatient-based surgery.Methods: The authors performed a retrospective study of 80 consecutive cases of rhegmato genous retinal detachment from January 2009 to December 2011 treated by scleral buckling surgery. Two groups of patients were defined according to inpatient (group 1 or outpatient (group 2 surgery, and a comparison of several parameters between these two groups was performed.Results: Of the 80 subjects in this study, the average age of group 1 (50 patients was 49.7 years, and that of group 2 (30 patients was 47.5 years. There were no statistically significant differences in the average logarithm of the minimum angle of resolution-visual acuity, the condition of the lens, or the presence of retinal lattice degeneration prior to the surgery between the groups. There were no statistically significant differences in the patterns of tear or retinal detachment or in surgical procedure between the groups. Comparing the best-corrected visual acuity after 6 months with that prior to the surgery, the changes in group 1 and group 2 were 0.26 and 0.31, respectively. The functional success rates of group 1 and group 2 after 6 months were 90% and 93%, respectively, and the anatomical success rates of group 1 and group 2 after 6 months were 94% and 96%, respectively, but these were also statistically insignificant.Conclusion: Hospitalization is not essential for buckling surgery in uncomplicated rhegmatogenous retinal detachment surgery.Keywords: ambulatory, scleral buckling, rhegmatogenous retinal detachment
International Nuclear Information System (INIS)
Brar, Gurinder Singh; Hari, Yogeshwar; Williams, Dennis K.
2013-01-01
This paper presents the comparison of a reliability technique that employs a Fourier series representation of random axisymmetric and asymmetric imperfections in a cylindrical pressure vessel subjected to an axial end load and external pressure, with evaluations prescribed by the ASME Boiler and Pressure Vessel Code, Section VIII, Division 2 Rules. The ultimate goal of the reliability technique described herein is to predict the critical buckling load associated with the subject cylindrical pressure vessel. Initial geometric imperfections are shown to have a significant effect on the calculated load carrying capacity of the vessel. Fourier decomposition was employed to interpret imperfections as structural features that can be easily related to various other types of defined imperfections. The initial functional description of the imperfections consists of an axisymmetric portion and a deviant portion, which are availed in the form of a double Fourier series. Fifty simulated shells generated by the Monte Carlo technique are employed in the final prediction of the critical buckling load. The representation of initial geometrical imperfections in the cylindrical pressure vessel requires the determination of respective Fourier coefficients. Multi-mode analyses are expanded to evaluate a large number of potential buckling modes for both predefined geometries in combination with asymmetric imperfections as a function of position within the given cylindrical shell. The probability of the ultimate buckling stress exceeding a predefined threshold stress is also calculated. The method and results described herein are in stark contrast to the “knockdown factor” approach as applied to compressive stress evaluations currently utilized in industry. Further effort is needed to improve on the current design rules regarding column buckling of large diameter pressure vessels subjected to an axial end load and external pressure designed in accordance with ASME Boiler and
Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams
Ebrahimi, Farzad; Reza Barati, Mohammad
2016-09-01
In this work, a size-dependent curved beam model is developed to take into account the effects of nonlocal stresses on the buckling behavior of curved magneto-electro-elastic FG nanobeams for the first time. The governing differential equations are derived based on the principle of virtual work and Euler-Bernoulli beam theory. The power-law function is employed to describe the spatially graded magneto-electro-elastic properties. By extending the radius of the curved nanobeam to infinity, the results of straight nonlocal FG beams can be rendered. The effects of magnetic potential, electric voltage, opening angle, nonlocal parameter, power-law index and slenderness ratio on buckling loads of curved MEE-FG nanobeams are studied.
Effect of flurbiprofen sodium on pupillary dilatation during scleral buckling surgery
Directory of Open Access Journals (Sweden)
Roysarkar T
1994-01-01
Full Text Available Maintenance of pupillary dilatation is necessary for success of scleral buckling procedures. The efficacy of 0.03% flurbiprofen in preventing intraoperative miosis was evaluated by a prospective randomized, double-masked controlled trial of 60 patients. Thirty patients received 0.03% flurbiprofen 6 times at 15 minute intervals 90 minutes preoperatively in addition to the routine dilation regimen. The treated group had a mean pupillary decrease of 1.88 mm and the control group had a decrease of 1.57 mm (p > 0.05. Flurbiprofen did not affect the pupillary size at any step of the surgery. Factors such as age of the patient, lens status, number of cryo applications, duration of surgery, and the size and extent of buckle were assessed. The use of flurbiprofen did not affect the mean pupillary change for any of these groups. Preoperative use of flurbiprofen does not significantly decrease intraoperative miosis during scleral buckling procedures
Yokoyama, Toshiyuki; Kanbayashi, Koki; Yamaguchi, Tamaki
2015-01-01
To assess the treatment of pediatric patients with rhegmatogenous retinal detachment (RRD) by scleral buckling with chandelier illumination. Three eyes were treated in three patients, healthy boys aged 7 years, 12 years, and 11 years, with RRD, macular involvement, and small retinal holes, of which two were preoperatively undetectable. Conventional scleral buckling with cryoretinopexy was performed under the contact lens for vitreous surgery or noncontact wide-angle viewing system using 27-gauge twin chandelier illumination. The only known predisposing factor for retinal detachment was myopia stronger than 3 D with lattice retinal degeneration in two of the three patients. Retinal reattachment was achieved in all cases without intra- or postoperative complications. However, visual recovery was limited in one of the three patients. Scleral buckling with chandelier illumination is effective for pediatric RRD, especially if the retinal hole is difficult to detect preoperatively. However, visual recovery was sometimes limited because of macular involvement due to late diagnosis, which is one of the characteristic features of pediatric RRD.
BUCKL: a program for rapid calculation of x-ray deposition
International Nuclear Information System (INIS)
Cole, R.K. Jr.
1970-07-01
A computer program is described which has the fast execution time of exponential codes but also evaluates the effects of fluorescence and scattering. The program makes use of diffusion calculations with a buckling correction included to approximate the effects of finite transverse geometry. Theory and derivations necessary for the BUCKL code are presented, and the code results are compared with those of earlier codes for a variety of problems. Inputs and outputs of the program are described, and a FORTRAN listing is provided. Shortcomings of the program are discussed and suggestions are provided for possible future improvement. (U.S.)
An energy harvesting solution based on the post-buckling response of non-prismatic slender beams
Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Alavi, Amir H.; Lajnef, Nizar
2017-04-01
Systems based on post-buckled structural elements have been extensively used in many applications such as actuation, remote sensing and energy harvesting thanks to their efficiency enhancement. The post-buckling snap- through behavior of bilaterally constrained beams has been used to create an efficient energy harvesting mechanism under quasi-static excitations. The conversion mechanism has been used to transform low-rate and low-frequency excitations into high-rate motions. Electric energy can be generated from such high-rate motions using piezoelectric transducers. However, lack of control over the post-buckling behavior severely limits the mechanism's efficiency. This study aims to maximize the levels of the harvestable power by controlling the location of the snapping point along the beam at different buckling transitions. Since the snap-through location cannot be controlled by tuning the geometry properties of a uniform cross-section beam, non-uniform cross sections are examined. An energy-based theoretical model is herein developed to predict the post-buckling response of non-uniform cross-section beams. The total potential energy is minimized under constraints that represent the physical confinement of the beam between the lateral boundaries. Experimentally validated results show that changing the shape and geometry dimensions of non- uniform cross-section beams allows for the accurate control of the snap-through location at different buckling transitions. A 78.59% increase in harvested energy levels is achieved by optimizing the beam's shape.
Energy Technology Data Exchange (ETDEWEB)
Liu, J.C. [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Zhang, Y.Q., E-mail: cyqzhang@zju.edu.cn [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Fan, L.F. [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100084 (China)
2017-04-11
The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium. - Highlights: • Vibration of double-viscoelastic-FGM-nanoplate system under in-plane edge loads is investigated. • Biaxial buckling of the system with simply supported boundary conditions is analyzed. • Explicit expression for the vibrational frequency and buckling load is obtained. • Impacts of viscoelastic Pasternak medium on vibrational frequency and buckling load are discussed. • Influences of structural damping, small size effect and loading ratio are also considered.
International Nuclear Information System (INIS)
Kokubo, K.; Nakagawa, M.; Kawamoto, Y.; Murakami, T.; Matuura, S.; Hagiwara, Y.
1991-01-01
Shaking table tests for small-scale models and pseudo-dynamic buckling tests for moderate-scale models are conducted in order to investigate nonlinear pre- and post-buckling characteristics of fast breeder reactor vessels under the seismic lateral load. Two types of ground acceleration waves are used in the experiments. Nonlinear one-degree-of-freedom numerical simulations are also conducted using the hysteresis rules obtained by the tests. Good agreements are obtained between the experiments and calculations. The design method for vessels based on the estimation of nonlinear buckling behaviors is considered. (author)
Directory of Open Access Journals (Sweden)
Yokoyama T
2015-01-01
Full Text Available Toshiyuki Yokoyama, Koki Kanbayashi, Tamaki YamaguchiDepartment of Ophthalmology, Juntendo University Nerima Hospital, Tokyo, JapanPurpose: To assess the treatment of pediatric patients with rhegmatogenous retinal detachment (RRD by scleral buckling with chandelier illumination.Methods: Three eyes were treated in three patients, healthy boys aged 7 years, 12 years, and 11 years, with RRD, macular involvement, and small retinal holes, of which two were preoperatively undetectable. Conventional scleral buckling with cryoretinopexy was performed under the contact lens for vitreous surgery or noncontact wide-angle viewing system using 27-gauge twin chandelier illumination.Results: The only known predisposing factor for retinal detachment was myopia stronger than 3 D with lattice retinal degeneration in two of the three patients. Retinal reattachment was achieved in all cases without intra- or postoperative complications. However, visual recovery was limited in one of the three patients.Conclusion: Scleral buckling with chandelier illumination is effective for pediatric RRD, especially if the retinal hole is difficult to detect preoperatively. However, visual recovery was sometimes limited because of macular involvement due to late diagnosis, which is one of the characteristic features of pediatric RRD.Keywords: pediatric rhegmatogenous retinal detachment, chandelier illumination, scleral buckling
Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics
International Nuclear Information System (INIS)
Wu, Meng-Yin; Chang, Tzu-Hsuan; Ma, Zhenqiang; Zhao, Juan; Xu, Feng; Jacobberger, Robert M.; Arnold, Michael S.
2015-01-01
Deformable field-effect transistors (FETs) are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins. We previously demonstrated stretchable FETs based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes as the channel, buckled metal films as electrodes, and unbuckled flexible ion gel films as the dielectric. The FETs were stretchable up to 50% without appreciable degradation in performance before failure of the ion gel film. Here, we show that by buckling the ion gel, the integrity and performance of the nanotube FETs are extended to nearly 90% elongation, limited by the stretchability of the elastomer substrate. The FETs maintain an on/off ratio of >10 4 and a field-effect mobility of 5 cm 2 V −1 s −1 under elongation and demonstrate invariant performance over 1000 stretching cycles
Pneumatic retinopexy versus scleral buckle for repairing simple rhegmatogenous retinal detachments.
Hatef, Elham; Sena, Dayse F; Fallano, Katherine A; Crews, Jonathan; Do, Diana V
2015-05-07
Rhegmatogenous retinal detachment (RRD) is a full-thickness break in the sensory retina, caused by vitreous traction on the retina. While pneumatic retinopexy, scleral buckle, and vitrectomy are the accepted surgical interventions for eyes with RRD, their relative effectiveness has remained controversial. The objectives of this review were to assess the effectiveness and safety of pneumatic retinopexy versus scleral buckle or pneumatic retinopexy versus a combination treatment of scleral buckle and vitrectomy for people with RRD. The secondary objectives were to summarize any data on economic measures and quality of life. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 12), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to January 2015), EMBASE (January 1980 to January 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to January 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 13 January 2015. We included all randomized or quasi-randomized controlled trials comparing the effectiveness of pneumatic retinopexy versus scleral buckle (with or without vitrectomy) for eyes with RRD. After screening for eligibility, two review authors independently extracted study characteristics, methods, and outcomes. We followed systematic review standards as set forth by The Cochrane Collaboration. We included two randomized controlled trials (218 eyes of 216 participants) comparing the effectiveness of pneumatic retinopexy versus scleral buckle for eyes with RRD. We identified no studies
Experimental and modelling buckling of wood-based columns under repeated loading
Directory of Open Access Journals (Sweden)
Nafa Z.
2010-06-01
Full Text Available Collapse of timber constructions can appear under the effect of load that exceeds the resistance of a carrying element or under the effect of a geometrical instability like buckling. In addition, loading can be constant or varying for example loads due to wind or earthquakes. The aim of this paper is to study the behaviour and the lifetime of columns in wood or based-wood material such as glulam (GL or laminated veneer lumber (LVL under repeated loading leading to buckling.
Lateral-torsional buckling resistance of cellular beams
Sonck, Delphine; Belis, Jan
The evenly spaced circular web openings in I-section cellular beams have an advantageous effect on the material use if these beams are loaded in strong-axis bending. However, not all aspects of the behaviour of such beams have been studied adequately, such as the lateral–torsional buckling failure.
Buckling determination in reflected systems, program FLUXFIT
Energy Technology Data Exchange (ETDEWEB)
Sotic, O [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)
1971-07-01
An improvement in accuracy of determining radial and axial buckling from foil activation distributions measured in reflected cylindrical systems is given. resultant activities are fitted to radial and axial spatial functions derived from homogeneous diffusion theory. A Fortran program FLUXFIT based on the derived method is included. (author)
Buckling Analysis of Single and Multi Delamination In Composite Beam Using Finite Element Method
Simanjorang, Hans Charles; Syamsudin, Hendri; Giri Suada, Muhammad
2018-04-01
Delamination is one type of imperfection in structure which found usually in the composite structure. Delamination may exist due to some factors namely in-service condition where the foreign objects hit the composite structure and creates inner defect and poor manufacturing that causes the initial imperfections. Composite structure is susceptible to the compressive loading. Compressive loading leads the instability phenomenon in the composite structure called buckling. The existence of delamination inside of the structure will cause reduction in buckling strength. This paper will explain the effect of delamination location to the buckling strength. The analysis will use the one-dimensional modelling approach using two- dimensional finite element method.
Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams
Ebrahimi, Farzad; Reza Barati, Mohammad
2016-07-01
In this article, buckling behavior of nonlocal magneto-electro-elastic functionally graded (MEE-FG) beams is investigated based on a higher-order beam model. Material properties of smart nanobeam are supposed to change continuously throughout the thickness based on the power-law model. Eringen's nonlocal elasticity theory is adopted to capture the small size effects. Nonlocal governing equations of MEE-FG nanobeam are obtained employing Hamilton's principle and they are solved using the Navier solution. Numerical results are presented to indicate the effects of magnetic potential, electric voltage, nonlocal parameter and material composition on buckling behavior of MEE-FG nanobeams. Therefore, the present study makes the first attempt in analyzing the buckling responses of higher-order shear deformable (HOSD) MEE-FG nanobeams.
Thermoelastic buckling of plates in a cylindrical geometry against an elastic back support
International Nuclear Information System (INIS)
Simmons, L.D.; Wierman, R.W.
1980-01-01
A plate which is fixed at its edges to a strong edge support structure will develop large compressive stresses when heated from ambient temperature more rapidly than the support structure. Determining the response of the plate to this situation requires stability analysis to ascertain whether the plate might buckle, or whether the constrained thermal expansion will lead to compressive stresses exceeding the yield point because it did not buckle. A special case is considered here, both analytically and experimentally, in which the plate is curved slightly into a cylindrical shape and the convex face of the plate is against a supporting surface. This case is more complex because the buckling mode will be a harmonic rather than the fundamental mode which is usually encountered
Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array
Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen
2015-07-01
In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the
Huang, Shicheng; Tan, Likun; Hu, Nan; Grover, Hannah; Chu, Kevin; Chen, Zi
This reserach introduces a new numerical approach of calculating the post-buckling configuration of a thin rod embedded in elastic media. The theoretical base is the governing ODEs describing the balance of forces and moments, the length conservation, and the physics of bending and twisting by Laudau and Lifschitz. The numerical methods applied in the calculation are continuation method and Newton's method of iteration in combination with spectrum method. To the authors' knowledge, it is the first trial of directly applying the L-L theory to numerically studying the phenomenon of rod buckling in elastic medium. This method accounts for nonlinearity of geometry, thus is capable of calculating large deformation. The stability of this method is another advantage achieved by expressing the governing equations in a set of first-order derivative form. The wave length, amplitude, and decay effect all agree with the experiment without any further assumptions. This program can be applied to different occasions with varying stiffness of the elastic medai and rigidity of the rod.
International Nuclear Information System (INIS)
Mori, N.; Kobayashi, K.
1996-01-01
A two-dimensional neutron diffusion equation is solved for regular polygonal regions by the finite Fourier transformation, and geometrical bucklings are calculated for regular 3-10 polygonal regions. In the case of the regular triangular region, it is found that a simple and rigorous analytic solution is obtained for the geometrical buckling and the distribution of the neutron current along the outer boundary. (author)
Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores.
McMullen, Angus; de Haan, Hendrick W; Tang, Jay X; Stein, Derek
2018-02-16
Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.
Surface buckling of black phosphorus: Determination, origin, and influence on electronic structure
Dai, Zhongwei; Jin, Wencan; Yu, Jie-Xiang; Grady, Maxwell; Sadowski, Jerzy T.; Kim, Young Duck; Hone, James; Dadap, Jerry I.; Zang, Jiadong; Osgood, Richard M.; Pohl, Karsten
2017-12-01
The surface structure of black phosphorus materials is determined using surface-sensitive dynamical microspot low energy electron diffraction (μ LEED ) analysis using a high spatial resolution low energy electron microscopy (LEEM) system. Samples of (i) crystalline cleaved black phosphorus (BP) at 300 K and (ii) exfoliated few-layer phosphorene (FLP) of about 10 nm thickness which were annealed at 573 K in vacuum were studied. In both samples, a significant surface buckling of 0.22 Å and 0.30 Å, respectively, is measured, which is one order of magnitude larger than previously reported. As direct evidence for large buckling, we observe a set of (for the flat surface forbidden) diffraction spots. Using first-principles calculations, we find that the presence of surface vacancies is responsible for the surface buckling in both BP and FLP, and is related to the intrinsic hole doping of phosphoresce materials previously reported.
Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics
Energy Technology Data Exchange (ETDEWEB)
Wu, Meng-Yin; Chang, Tzu-Hsuan; Ma, Zhenqiang [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhao, Juan [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Xu, Feng; Jacobberger, Robert M.; Arnold, Michael S., E-mail: michael.arnold@wisc.edu [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2015-08-03
Deformable field-effect transistors (FETs) are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins. We previously demonstrated stretchable FETs based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes as the channel, buckled metal films as electrodes, and unbuckled flexible ion gel films as the dielectric. The FETs were stretchable up to 50% without appreciable degradation in performance before failure of the ion gel film. Here, we show that by buckling the ion gel, the integrity and performance of the nanotube FETs are extended to nearly 90% elongation, limited by the stretchability of the elastomer substrate. The FETs maintain an on/off ratio of >10{sup 4} and a field-effect mobility of 5 cm{sup 2} V{sup −1} s{sup −1} under elongation and demonstrate invariant performance over 1000 stretching cycles.
Determination of buckling in the IPEN/MB-01 Reactor in cylindrical configuration
Energy Technology Data Exchange (ETDEWEB)
Purgato, Rafael Turrini; Bitelli, Ulysses d' Utra; Aredes, Vitor Ottoni; Silva, Alexandre F. Povoa da; Santos, Diogo Feliciano dos; Mura, Luis Felipe L.; Jerez, Rogerio, E-mail: rtpurgato@ipen.br, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2013-07-01
One of the key parameters in reactor physics is the buckling of a reactor core. It is related to important parameters such as reaction rates, nuclear power operation, fuel burning, among others. In a critical reactor, the buckling depends on the geometric and material characteristics of the reactor core. This paper presents the results of experimental buckling in the reactor IPEN/MB-01 nuclear reactor in its cylindrical configuration with 28 fuel rods along its diameter. The IPEN/MB-01 is a zero power reactor designed to operate at a maximum power of 100 watts, it is a versatile nuclear facility which allows the simulation of all the characteristics of a large nuclear power reactor and ideal for this type of measurement. We conducted a mapping of neutron flux inside the reactor and thereby determined the total buckling of the cylindrical configuration. The reactor was operated for an hour. Then, the activation of the fuel rods was measured by gamma spectrometry on a rod scanner HPGe detector. We analyzed the gamma photons of the {sup 239}Np (276,6 keV) for neutron capture and the {sup 143}Ce (293,3 keV) for fission on both {sup 238}U and {sup 235}U, respectively. We analyzed the axial and radial directions. Other measurements were performed using wires and gold foils in the radial and axial directions of the reactor core. The results showed that the cylindrical configuration compared to standard rectangular configuration of the IPEN/MB-01 reactor has a higher neutron economy, since in this configuration there is less leakage of neutrons. The Buckling Total obtained from the three methods was 95.84 ± 2.67 m{sup -2}. (author)
Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio
Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong
2016-01-01
In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson’s ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928
Post-Buckling and Ultimate Strength Analysis of Stiffened Composite Panel Base on Progressive Damage
Zhang, Guofan; Sun, Xiasheng; Sun, Zhonglei
Stiffened composite panel is the typical thin wall structure applied in aerospace industry, and its main failure mode is buckling subjected to compressive loading. In this paper, the development of an analysis approach using Finite Element Method on post-buckling behavior of stiffened composite structures under compression was presented. Then, the numerical results of stiffened panel are obtained by FE simulations. A thorough comparison were accomplished by comparing the load carrying capacity and key position strains of the specimen with test. The comparison indicates that the FEM results which adopted developed methodology could meet the demand of engineering application in predicting the post-buckling behavior of intact stiffened structures in aircraft design stage.
Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard
2015-10-23
Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.
Buckling analysis of rectangular composite plates with rectangular ...
Indian Academy of Sciences (India)
In aeronautical, marine and automobile industries the use of composite laminates .... load of fibre-reinforced plastic square panels using finite element method. .... lar cutout i.e d/b = 0.1 and β =0, the reduction in buckling load by increasing c/b ...
A piezoelectric energy harvester for broadband rotational excitation using buckled beam
Xie, Zhengqiu; Kitio Kwuimy, C. A.; Wang, Zhiguo; Huang, Wenbin
2018-01-01
This paper proposes a rotational energy harvester using a piezoelectric bistable buckled beam to harvest low-speed rotational energy. The proposed harvester consists of a piezoelectric buckled beam with a center magnet, and a rotary magnet pair with opposite magnetic poles mounted on a revolving host. The magnetic plucking is used to harvest the angular kinetic energy of the host. The nonlinear snap-through mechanism is utilized to improve the vibration displacement and output voltage of the piezoelectric layer over a wide rotation frequency range. Theoretical simulation and experimental results show that the proposed energy harvester can yield a stable average output power ranging between 6.91-48.01 μW over a rotation frequency range of 1-14 Hz across a resistance load of 110 kΩ. Furthermore, dual attraction magnets were employed to overcome the suppression phenomenon at higher frequencies, which yields a broadband and flat frequency response over 6-14 Hz with the output power reaching 42.19-65.44 μW, demonstrating the great potential of the bistable buckled beam for wideband rotation motion energy harvesting.
A piezoelectric energy harvester for broadband rotational excitation using buckled beam
Directory of Open Access Journals (Sweden)
Zhengqiu Xie
2018-01-01
Full Text Available This paper proposes a rotational energy harvester using a piezoelectric bistable buckled beam to harvest low-speed rotational energy. The proposed harvester consists of a piezoelectric buckled beam with a center magnet, and a rotary magnet pair with opposite magnetic poles mounted on a revolving host. The magnetic plucking is used to harvest the angular kinetic energy of the host. The nonlinear snap-through mechanism is utilized to improve the vibration displacement and output voltage of the piezoelectric layer over a wide rotation frequency range. Theoretical simulation and experimental results show that the proposed energy harvester can yield a stable average output power ranging between 6.91-48.01 μW over a rotation frequency range of 1-14 Hz across a resistance load of 110 kΩ. Furthermore, dual attraction magnets were employed to overcome the suppression phenomenon at higher frequencies, which yields a broadband and flat frequency response over 6-14 Hz with the output power reaching 42.19-65.44 μW, demonstrating the great potential of the bistable buckled beam for wideband rotation motion energy harvesting.
DEFF Research Database (Denmark)
Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik
2015-01-01
Robust design of laminated composite structures is considered in this work. Because laminated composite structures are often thin walled, buckling failure can occur prior to material failure, making it desirable to maximize the buckling load. However, as a structure always contains imperfections...... and “worst” shape imperfection optimizations to design robust composite structures. The approach is demonstrated on an U-profile where the imperfection sensitivity is monitored, and based on the example it can be concluded that robust designs can be obtained....
Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.
2018-01-01
One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.
International Nuclear Information System (INIS)
Meller, E.; Bushnell, D.
1982-12-01
Static buckling analyses of the steel containment vessel of the Washington Public Power Supply Systems' (WPPSS) plant No. 2 were conducted with use of several computer programs developed at the Lockheed Missiles and Space Company (LMSC). These analyses were conducted as part of Task 1, Evaluation of Two Steel Containment Designs. The report is divided into two main sections. The first gives results from analyses of the containment as if it were axisymmetric (computerized models with use of BOSOR4, BOSOR5, and PANDA), and the second gives results from a STAGSC-1 model in which the largest penetration is included. Good agreement is obtained from analyses with BOSOR5 and STAGSC-1 for a case in which both of these computer programs were applied to the same configuration and loading. It is important to include nonlinear material behavior (plasticity) in the computerized models for collapse. Predictions of collapse from STAGSC-1 indicate that the largest penetration of the WPPSS-2 containment vessel is reinforced such that there is no decrease in load carrying capability below that indicated from models in which this penetration is neglected
Energy Technology Data Exchange (ETDEWEB)
Fukuchi, N.; Okada, K. [Kyushu University, Fukuoka (Japan); Fujii, M. [Namura Shipbuilding Co. Ltd., Osaka (Japan); Shiraki, M. [Toyota Motor Corp., Aichi (Japan)
1998-09-04
The deformation mechanisms of submerged shell-like lattice structures with membrane are in principle of a non-conservative nature since the follower type hydrostatic pressure. In the region of large deformations, especially in the case of geometrically deep shell-like lattice structures, the system could be much more accurately defined in a mono-clinically convected coordinate description than the conventional spatial description. Also, a complete analysis of a non-conservative system requires a criterion since the system can have multiple ranges of stability and instability involving buckling and snapping. This paper presents the development of the governing equations for the finite deformations of shell-like lattices defined in a mono-clincally convected coordinate description and applies the same to different cases of lattice deformations. The validity of the formulations is verified for finite deformation. The examples of some geometrically special shell-like lattice structures are presented as well to show the feasibility of the present formulation. 5 refs., 11 figs.
Vortex-induced buckling of a viscous drop impacting a pool
Li, Erqiang
2017-07-20
We study the intricate buckling patterns which can form when a viscous drop impacts a much lower viscosity miscible pool. The drop enters the pool by its impact inertia, flattens, and sinks by its own weight while stretching into a hemispheric bowl. Upward motion along the outer bottom surface of this bowl produces a vortical boundary layer which separates along its top and rolls up into a vortex ring. The vorticity is therefore produced in a fundamentally different way than for a drop impacting a pool of the same liquid. The vortex ring subsequently advects into the bowl, thereby stretching the drop liquid into ever thinner sheets, reaching the micron level. The rotating motion around the vortex pulls in folds to form multiple windings of double-walled toroidal viscous sheets. The axisymmetric velocity field thereby stretches the drop liquid into progressively finer sheets, which are susceptible to both axial and azimuthal compression-induced buckling. The azimuthal buckling of the sheets tends to occur on the inner side of the vortex ring, while their folds can be stretched and straightened on the outside edge. We characterize the total stretching from high-speed video imaging and use particle image velocimetry to track the formation and evolution of the vortex ring. The total interfacial area between the drop and the pool liquid can grow over 40-fold during the first 50 ms after impact. Increasing pool viscosity shows entrapment of a large bubble on top of the drop, while lowering the drop viscosity produces intricate buckled shapes, appearing at the earliest stage and being promoted by the crater motions. We also present an image collage of the most intriguing and convoluted structures observed. Finally, a simple point-vortex model reproduces some features from the experiments and shows variable stretching along the wrapping sheets.
Creep buckling: an experiment, an 'exact' solution and some simple thoughts
International Nuclear Information System (INIS)
Heller, P.; Anderson, R.G.
1986-01-01
The paper presents attempts to analyse and understand a carefully conducted creep buckling experiment. The analysis was conducted using the ABAQUS Finite Element Code coupled to a number of plausible creep laws. The results show good agreement between ABAQUS runs and experimental deflections but it is difficult to reproduce the early loads. A simple model of buckling analysis for n-power creep laws is derived as an aid to understanding the development of the deflections for non-linear creep laws. In particular, the model suggests why deflections develop so rapidly and how the creep deflection development relates to the elastic behaviour. (author)
International Nuclear Information System (INIS)
Ito, Tomohiro; Morita, Hideyuki; Sugiyama, Akihisa; Kawamoto, Yoji; Sirai, Eiji; Ogo, Hideyasu
2004-01-01
When a thin walled cylindrical liquid storage tank is exposed to a very large seismic base excitation, buckling phenomena may be caused such as bending buckling where diamond buckling pattern or elephant foot bulge pattern will be found at the bottom portion, and shear buckling at the middle portion of the tank. In this study, dynamic buckling tests were performed using scale models of thin cylindrical liquid storage tanks for the nuclear power plants. The input seismic acceleration was increased until the elephant foot bulge occurred and the vibrational behavior before and after buckling was investigated. And the effects of static and dynamic liquid pressure on the bending buckling patterns and the buckling critical force was investigated by fundamental tests using small tank models. (author)
Okajima, Kenji; Imai, Junichi; Tanaka, Tadatsugu; Iida, Toshiaki
Damage to piles in the liquefied ground is frequently reported. Buckling by the excess vertical load could be one of the causes of the pile damage, as well as the lateral flow of the ground and the lateral load at the pile head. The buckling mechanism is described as a complicated interaction between the pile deformation by the vertical load and the earth pressure change cased by the pile deformation. In this study, series of static buckling model tests of a pile were carried out in dried sand ground with various thickness of the layer. Finite element analysis was applied to the test results to verify the effectiveness of the elasto-plastic finite element analysis combining the implicit-explicit mixed type dynamic relaxation method with the return mapping method to the pile buckling problems. The test results and the analysis indicated the possibility that the buckling load of a pile decreases greatly where the thickness of the layer increases.
Non linear fe analysis on the static buckling behavior of the spacer grid structures
International Nuclear Information System (INIS)
Song, K.N.; Yoon, K.H.
2001-01-01
In this study considered is the static buckling behavior of spacer grids in the fuel assembly, which are required to have a sufficient strength against an accident like earthquake. Special attention is given to the finite element modeling of the spot-welding and the constraints between the spacer strips assembled together: it is found that a proper treatment of the constraints is critical for accurate assessment of the buckling behavior including strain localization at the point of spot welding. The buckling strength of the 17 x 17 spacer grid, which is difficult to analyze due to a large number of degrees of freedom, is estimated from analysis for the smaller models 3 x 3, 5 x 5, 7 x 7, and 9 x 9 spacer grids. (authors)
Nonlinear effects of high temperature on buckling of structural elements
International Nuclear Information System (INIS)
Iyengar, N.G.R.
1975-01-01
Structural elements used in nuclear reactors are subjected to high temperatures. Since with increase in temperature there is a gradual fall in the elastic modulus and the stress-strain relationship is nonlinear at these operating load levels, a realistic estimate of the buckling load should include this nonlinearity. In this paper the buckling loads for uniform columns with circular and rectangular cross-sections and different boundary conditions under high temperature environment are estimated. The stress-strain relationship for the material has been assumed to follow inverse Ramberg-Osgood law. In view of the fact that no closed form solutions are possible, approximate methods like perturbation and Galerkin techniques are used. Further, the solution for general value for 'm' is quite involved. Results have been obtained with values for 'm' as 3 and 5. Studies reveal that the influence of material nonlinearity on the buckling load is of the softening type, and it increases with increase in the value of 'm'. The nonlinear effects are more for clamped boundaries than for simply supported boundaries. For the first mode analysis both the methods are powerful. It is, however, felt that for higher modes the Galerkin method might be better in view of its simplicity. This investigation may be considered as a step towards a more general solution
International Nuclear Information System (INIS)
Jung, Yousung; Shao, Yihan; Gordon, Mark S.; Doren, Douglas J.; Head-Gordon, Martin
2003-01-01
We report a spin-unrestricted density functional theory (DFT) solution at the symmetric dimer structure for cluster models of Si(100). With this solution, it is shown that the symmetric structure is a minimum on the DFT potential energy surface, although higher in energy than the buckled structure. In restricted DFT calculations the symmetric structure is a saddle point connecting the two buckled minima. To further assess the effects of electron correlation on the relative energies of symmetric versus buckled dimers on Si(100), multireference second order perturbation theory (MRMP2) calculations are performed on these DFT optimized minima. The symmetric structure is predicted to be lower in energy than the buckled structure via MRMP2, while the reverse order is found by DFT. The implications for recent experimental interpretations are discussed
Directory of Open Access Journals (Sweden)
A. Farajpour
Full Text Available Carbon nanotubes are a new class of microtubule-stabilizing agents since they interact with protein microtubules in living cells, interfering with cell division and inducing apoptosis. In the present work, a modified beam model is developed to investigate the effect of carbon nanotubes on the buckling of microtubule bundles in living cell. A realistic interaction model is employed using recent experimental data on the carbon nanotube-stabilized microtubules. Small scale and surface effects are taken into account applying the nonlocal strain gradient theory and surface elasticity theory. Pasternak model is used to describe the normal and shearing effects of enclosing filament matrix on the buckling behavior of the system. An exact solution is obtained for the buckling growth rates of the mixed bundle in viscoelastic surrounding cytoplasm. The present results are compared with those reported in the open literature for single microtubules and an excellent agreement is found. Finally, the effects of different parameters such as the size, chirality, position and surface energy of carbon nanotubes on the buckling growth rates of microtubule bundles are studied. It is found that the buckling growth rate may increase or decrease by adding carbon nanotubes, depending on the diameter and chirality of carbon nanotubes. Keywords: Microtubules, Carbon nanotubes, Buckling, Size effects
Energy Technology Data Exchange (ETDEWEB)
Yang, Dian; Whitesides, George M.
2017-12-26
A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predetermined direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.
Effect of load eccentricity on the buckling of thin-walled laminated C-columns
Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert
2018-01-01
The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.
Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.
1974-01-01
General-purpose program is intended for thermal stress and instability analyses of structures such as axially-stiffened curved panels. Two types of instability analyses can be effected by program: (1) thermal buckling with temperature variation as specified and (2) buckling due to in-plane biaxial loading.
Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.
1971-01-01
A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.
Buckling Pneumatic Linear Actuators Inspired by Muscle
Yang, Dian; Verma, Mohit Singh; So, Ju-Hee; Mosadegh, Bobak; Keplinger, Christoph; Lee, Benjamin; Khashai, Fatemeh; Lossner, Elton Garret; Suo, Zhigang; Whitesides, George McClelland
2016-01-01
The mechanical features of biological muscles are difficult to reproduce completely in synthetic systems. A new class of soft pneumatic structures (vacuum-actuated muscle-inspired pneumatic structures) is described that combines actuation by negative pressure (vacuum), with cooperative buckling of beams fabricated in a slab of elastomer, to achieve motion and demonstrate many features that are similar to that of mammalian muscle.
Toubia, Elias Anis
Sandwich construction is one of the most functional forms of composite structures developed by the composite industry. Due to the increasing demand of web-reinforced core for composite sandwich construction, a research study is needed to investigate the web plate instability under shear, compression, and combined loading. If the web, which is an integral part of the three dimensional web core sandwich structure, happens to be slender with respect to one or two of its spatial dimensions, then buckling phenomena become an issue in that it must be quantified as part of a comprehensive strength model for a fiber reinforced core. In order to understand the thresholds of thickness, web weight, foam type, and whether buckling will occur before material yielding, a thorough investigation needs to be conducted, and buckling design equations need to be developed. Often in conducting a parametric study, a special purpose analysis is preferred over a general purpose analysis code, such as a finite element code, due to the cost and effort usually involved in generating a large number of results. A suitable methodology based on an energy method is presented to solve the stability of symmetrical and specially orthotropic laminated plates on an elastic foundation. Design buckling equations were developed for the web modeled as a laminated plate resting on elastic foundations. The proposed equations allow for parametric studies without limitation regarding foam stiffness, geometric dimensions, or mechanical properties. General behavioral trends of orthotropic and symmetrical anisotropic plates show pronounced contribution of the elastic foundation and fiber orientations on the buckling resistance of the plate. The effects of flexural anisotropy on the buckling behavior of long rectangular plates when subjected to pure shear loading are well represented in the model. The reliability of the buckling equations as a design tool is confirmed by comparison with experimental results
An investigation of CO2 laser scleral buckling using moiré interferometry.
Maswadi, Saher M; Dyer, Peter E; Verma, Dinesh; Jalabi, Wadah; Dave, Dinesh
2002-01-01
To demonstrate suitability of moiré interferometry to assess and quantify laser-induced shrinkage of scleral collagen for buckling procedures. Scleral buckling of human cadaver eyes was investigated using a Coherent Ultrapulse CO2 laser. Projection moiré interferometry was employed to determine the out-of plane displacement produced by laser exposure, and in-situ optical microscopy of reference markers on the eye was used to measure in-plane shrinkage. Measurements based on moiré interferometry allow a three dimensional view of shape changes in the eye surface as laser treatment proceeds. Out-of-plane displacement reaches up to 1.5 mm with a single laser spot exposure. In-plane shrinkage reached a maximum of around 30%, which is similar to that reported by Sasoh et al (Ophthalmic Surg Lasers. 1998;29:410) for a Tm:YAG laser. The moiré technique is found to be suitable for quantifying the effects of CO2 laser scleral shrinkage and buckling. This can be further developed to provide a standardized method for experimental investigations of other laser sources for scleral shrinkage.
Buckling of Nonprismatic Column on Varying Elastic Foundation with Arbitrary Boundary Conditions
Directory of Open Access Journals (Sweden)
Ahmad A. Ghadban
2017-01-01
Full Text Available Buckling of nonprismatic single columns with arbitrary boundary conditions resting on a nonuniform elastic foundation may be considered as the most generalized treatment of the subject. The buckling differential equation for such columns is extremely difficult to solve analytically. Thus, the authors propose a numerical approach by discretizing the column into a finite number of segments. Each segment has constants E (modulus of elasticity, I (moment of inertia, and β (subgrade stiffness. Next, an exact analytical solution is derived for each prismatic segment resting on uniform elastic foundation. These segments are then assembled in a matrix from which the critical buckling load is obtained. The derived formulation accounts for different end boundary conditions. Validation is performed by benchmarking the present results against analytical solutions found in the literature, showing excellent agreement. After validation, more examples are solved to illustrate the power and flexibility of the proposed method. Overall, the proposed method provides reasonable results, and the examples solved demonstrate the versatility of the developed approach and some of its many possible applications.
Condenser tube buckling within tube-tubesheet joints
International Nuclear Information System (INIS)
Willertz, L.E.; Kalnins, A.; Updike, D.P.
1991-01-01
The problem of the appearance of protrusions, or bumps, in the interior of roller-expanded tubes within a tubesheet is addressed. Such bumps have been observed in condensers of power plants. A brief history of the reported occurrences of the bumps is given. The hypothesis is advanced that the mechanics of the formation of the bumps is similar to a buckling problem that has 'bifurcation at infinity'. Following this hypothesis, a two-dimensional physical model is developed, and the application of this model to study a three-dimensional bump is proposed. It is proposed in this paper that an initial deviation from the circular shape of the tube required to produce a bump. It is shown that without such a deviation the tubes cannot buckle. An experiment with short tube segments has been performed that verifies some of the features of the observed condenser tube bumps. Exactly what force produced the initial deviation for the observed bumps is still unknown. Available evidence implicates the hydro-laser jet that is used in the cleaning of tubes and tubesheets. A scenario of how a bump could have been produced by the hydro-laser jet is proposed. (author)
International Nuclear Information System (INIS)
Liang, Xu; Hu, Shuling; Shen, Shengping
2015-01-01
The symmetry breaking of inversion in solid crystals will induce electric polarization in all solid crystals, which is well known as flexoelectricity. At the nanometer scale, due to the large ratio of surface to volume, piezoelectric structures always exhibit distinct mechanical and electrical behaviors compared with their bulk counterparts. In the current work, the effects of surface and flexoelectricity on the buckling and vibration of piezoelectric nanowires is investigated based on a continuum framework and the Euler–Bernoulli beam hypothesis. Analytical solutions of the electric field in the piezoelectric nanobeam subjected to electrical and mechanical loads are obtained with the surface, flexoelectric and nonlocal electric effects. Numeric simulations demonstrate that the Young’s modulus and bending rigidity of PZT and BaTiO 3 (BT) nanowires are enhanced by flexoelectricity. In addition, the critical buckling voltage is calculated with consideration of the effects of surface and flexoelectricity, and it is found that the effects of surface piezoelectricity, flexoelectricity and residual surface stress play significant roles in determining the critical buckling voltage. Results obtained for the first resonance frequency also indicate that the effects of surface and flexoelectricity are more significant at a narrow range of beam thickness. The first resonance frequency of PZT and BT nanowires is also influenced by the residual surface stress and external applied voltage. The current work is expected to provide a fundamental study on the buckling and vibration behaviors of piezoelectric nanobeams, and it might also be helpful in devising piezoelectric nanowire-based nanoelectronics. (paper)
Çelik, Kayhan; Kurt, Erol; Uzun, Yunus
2017-07-01
In the present study, experimental and theoretical explorations on the buckling features of a wind energy harvester have been performed. The harvester consists of a piezoelectric layer, which has a certain stiffness and voltage conversion rate. A blade rotates on a shaft carrying a magnet and sweeps the tip of the layer causing a serial buckling effect resulting in energy generation. Since the modeling of the buckling under a magnetic strength includes nonlinear terms over displacements, one requires a detailed study on the characteristics of buckling phenomena. It has been proven that the piezoelectric beam having the magnet at its tip can produce regular and chaotic dynamics for different frequencies (i.e. the rotation speed). In addition, there exist a number of quasi-periodic regions on the parameter space. The overall result indicates that the large area of complicated dynamics requires a detailed study in order to stabilize the position and velocity of the layer tip, thereby a much stabilized energy conversion from mechanical to electrical can be obtained. The present survey on the dynamics of the harvester is a new study and is considered as a two-parameter diagram [i.e. the wind speed (frequency) and magnetic strength]. Mainly, single-, double-, triple- and quadruple-type phase space portraits have been observed and the ripples on the maximal and minimal values of the beam velocity have been observed for certain rotation speeds. These results can be used in order to stabilize the harvester in terms of the reduction of total harmonic distortion in the generated waveform.
Buckling instabilities of subducted lithosphere beneath the transition zone
Ribe, N.M.; Stutzmann, E.; Ren, Y.; Hilst, R.D. van der
2007-01-01
A sheet of viscous fluid poured onto a surface buckles periodically to generate a pile of regular folds. Recent tomographic images beneath subduction zones, together with quantitative fluid mechanical scaling laws, suggest that a similar instability can occur when slabs of subducted oceanic
Endoilluminator-assisted scleral buckling: Our results
Directory of Open Access Journals (Sweden)
Varun Gogia
2014-01-01
Full Text Available Aims: The aim was to evaluate the long-term surgical outcomes of endoillumination assisted scleral buckling (EASB in primary rhegmatogenous retinal detachment (RRD. Methods: Twenty-five eyes of 25 patients with primary RRD and proliferative vitreoretinopathy ≤C2 where any preoperative break could not be localised, were included. All patients underwent 25 gauge endoilluminator assisted rhegma localisation. Successful break determination was followed by cryopexy and standard scleral buckling under surgical microscope. Anatomical and functional outcomes were evaluated at the end of 2 years. Results: At least one intraoperative break could be localized in 23 of 25 (92% eyes. Median age of these patients was 46 years (range: 17-72. Thirteen eyes (56.52% were phakic, 8 (34.78% were pseudophakic and 2 (8.6% were aphakic. Anatomical success (attachment of retina was achieved in 22 (95.63% of 23 eyes with EASB. All eyes remained attached at the end of 2 years. Significant improvement in mean visual acuity (VA was achieved at the end of follow-up (1.09 ± 0.46 log of the minimum angle of resolution [logMAR] compared with preoperative VA (1.77 ± 0.28 logMAR (P < 0.001. Conclusion: EASB can be considered an effective alternative to vitreoretinal surgery in simple retinal detachment cases with the added advantage of enhanced microscopic magnification and wide field illumination.
Energy Technology Data Exchange (ETDEWEB)
Golmakani, M. E.; Far, M. N. Sadraee; Moravej, M. [Dept. of Mechanical Engineering, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of)
2016-12-15
Using new approach proposed by Dynamic relaxation (DR) method, buckling analysis of moderately thick Functionally graded (FG) cylindrical panels subjected to axial compression is investigated for various boundary conditions. The mechanical properties of FG panel are assumed to vary continuously along the thickness direction by the simple rule of mixture and Mori-Tanaka model. The incremental form of nonlinear formulations are derived based on First-order shear deformation theory (FSDT) and large deflection von Karman equations. The DR method combined with the finite difference discretization technique is employed to solve the incremental form of equilibrium equations. The critical mechanical buckling load is determined based on compressive load-displacement curve by adding the incremental displacements in each load step to the displacements obtained from the previous ones. A detailed parametric study is carried out to investigate the influences of the boundary conditions, rule of mixture, grading index, radius-to-thickness ratio, length-to-radius ratio and panel angle on the mechanical buckling load. The results reveal that with increase of grading index the effect of radius-to-thickness ratio on the buckling load decreases. It is also observed that effect of distribution rules on the buckling load is dependent to the type of boundary conditions.
Ultimate limit states of steel containment vessel under earthquake loadings
International Nuclear Information System (INIS)
Akiyama, Hiroshi; Yuhara, Tetsuo; Shimizu, Seiichi; Hayashi, Kazutoshi; Takahashi, Tadao.
1986-01-01
The limit state induced by buckling of cylindrical steel structures under earthquake loadings was investigated from the standpoint of energy concept. A number of the buckling test of cylindrical steel shell structures has been made, which showed that they have a stable load-displacement relation and adequate deformation capacities beyond the buckling. The authors are proposing that the energy input imparted by strong earthquakes to buckled structures and the deformation capacity in post-buckling are suitable indices for seismic resistance of the cylindrical steel shell structures because the buckling does not cause the structure immediately to collapse in the case of such repeated loading as earthquake motions. The purpose of this study is to investigate the energy input to buckled cylindrical steel structures with an increase in the intensity of earthquake motions. A series of nonlinear dynamic analyses were performed under various types of earthquake records by using a hysteresis loop, including buckling, which was derived from the buckling tests. The limit state could be defined as the state in which the deformation of and the energy input into buckled structures increase divergently when the intensity of the earthquake excitation exceeds a certain value. The results obtained in this paper are intended to be adopted to the limit state in the post-buckling region to evaluate the margin of safety against the buckling resistance of cylindrical steel structures under strong earthquake loadings. (author)
Buckling of Single-Crystal Silicon Nanolines under Indentation
Directory of Open Access Journals (Sweden)
Min K. Kang
2008-01-01
Full Text Available Atomic force microscope-(AFM- based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and nearly atomically flat sidewalls, and the cross section is almost perfectly rectangular with uniform width and height along the longitudinal direction. The measured load-displacement curves from the indentation tests show an instability with large displacement bursts at a critical load ranging from 480 μN to 700 μN. This phenomenon is attributed to a transition of the buckling mode of the SiNLs under indentation. Using a set of finite element models with postbuckling analyses, we analyze the indentation-induced buckling modes and investigate the effects of tip location, contact friction, and substrate deformation on the critical load of mode transition. The results demonstrate a unique approach for the study of nanomaterials and patterned nanostructures via a combination of experiments and modeling.
International Nuclear Information System (INIS)
Mori, H; Waters, T; Saotome, N; Nagamine, T; Sato, Y
2016-01-01
Passive vibration isolators are desired to have both high static stiffness to support large static load and low local stiffness to reduce the displacement transmissibility at frequencies greater than resonance. Utilization of a vertical buckled beam as a spring component is one way to realize such a stiffness characteristic since it exhibits a smaller ratio of local stiffness to static stiffness than that of a linear spring. This paper investigates the behaviour of a vibration isolator using inclined beams as well as vertical ones and examines the effect of beam inclination for the purpose of improving the isolation performance. The experimental system investigated has an isolated mass which is supported by a combination of two types of beams: buckled beams and constraining beams. The buckled beams can be inclined from the vertical by attachment devices, and the constraining beams are employed to prevent off-axis motion of the isolated mass. The results demonstrate that the inclination of the buckled beams reduces the resonance frequency and improves the displacement transmissibility at frequencies greater than resonance. (paper)
Tuning and switching of band gap of the periodically undulated beam by the snap through buckling
Directory of Open Access Journals (Sweden)
Y. Li
2017-05-01
Full Text Available We propose highly tuning and switching band gaps of phononic crystals through the snap through buckling by investigating wave propagation in a designed tractable undulated beam with single material and periodically arched shape. A series of numerical analyses are conducted to offer a thorough understanding of the evolution of the band gaps as a function of the vertical applied load. We find out that the interesting snap through buckling induced by the vertical load can alter the width of the band gap of the undulated beam dramatically, even switch them on and off. Our researches show an effective strategy to tune the band gaps of phononic crystals through the snap through buckling behavior.
Jegley, Dawn C.
1987-01-01
Buckling loads of thick-walled orthotropic and anisotropic simply supported circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of buckling loads predicted by the conventional first-order transverse-shear deformation theory and the higher-order theory show that the additional allowance for transverse shear deformation has a negligible effect on the predicted buckling loads of medium-thick metallic isotropic cylinders. However, the higher-order theory predicts buckling loads which are significantly lower than those predicted by the first-order transverse-shear deformation theory for certain short, thick-walled cylinders which have low through-the-thickness shear moduli. A parametric study of the effects of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 45 degree plies are most sensitive to transverse-shear deformation effects. Interaction curves for buckling loads of cylinders subjected to axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are as sensitive to transverse-shear deformation effects as buckling loads due to axial compressive loadings. The effects of anisotropy are important over a much wider range of cylinder geometries than the effects of transverse shear deformation.
Using Euler buckling springs for vibration isolation
Winterflood, J; Blair, D G
2002-01-01
Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance.
Using Euler buckling springs for vibration isolation
International Nuclear Information System (INIS)
Winterflood, J; Barber, T; Blair, D G
2002-01-01
Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance
Ebraert, Evert; Van Erps, Jürgen; Beri, Stefano; Watté, Jan; Thienpont, Hugo
2014-05-01
Fibre-to-the-home (FTTH) networks provide an ideal means to reach the goal the European Union has set to provide 50 % of the households with a broadband connection faster than 100 Mb/s. Deployment of FTTH networks, which is still costly today, could be significantly boosted by novel ferrule-less connectors which don't require highly skilled personnel and allow installation in the field. We propose a ferrule-less connector in which two single-mode fibres (SMFs) are aligned and maintain physical contact by ensuring that at least one fibre is in a buckled state. To this end, we design a cavity in which a fibre can buckle in a controlled way. Using finite element analysis simulations to investigate the shape of the formed buckle for various buckling cavity lengths, we show that it can be accurately approximated by a cosine function. In addition, the optical performance of a buckled SMF is investigated by bending loss calculations and simulations. We show a good agreement between the analytical and the simulated bending loss results for a G.652 fibre at a wavelength of 1550 nm. Buckling cavity lengths smaller than 20 mm should be avoided to keep the optical bending loss due to buckling below 0.1 dB. In this case the cavity height should at least be 2 mm to avoid mechanical confinement of the fibre.
Initial post dynamic buckling of a quadratic-cubic column ...
African Journals Online (AJOL)
In this investigation, we determine the dynamic buckling load of an imperfect finite column resting on a mixed quadratic-cubic nonlinear elastic foundation trapped by an explicitly time dependent sinusoidally slowly varying dynamic load .The resultant coefficients are dynamically slowly varying and the formulation contains ...
Studies of the Buckling of Composite Plates in Compression
DEFF Research Database (Denmark)
Hayman, B.; Berggreen, Christian; Lundsgaard-Larsen, Christian
2011-01-01
As part of the Network of Excellence on Marine Structures (MARSTRUCT), a series of studies has been carried out into the buckling of glass-fibre-reinforced polymer plates with in-plane compression loading. The studies have included fabrication and testing of square, laminated panels with various...
Studies of the buckling of composite plates in compression
DEFF Research Database (Denmark)
Hayman, B.; Berggreen, Christian; Lundsgaard-Larsen, Christian
2009-01-01
As part of the MARSTRUCT Network of Excellence on Marine Structures, a series of studies has been carried out into the buckling of glass fibre reinforced polymer plates with in-plane compression loading. The studies have included fabrication and testing of square, laminated panels with various...
Huang, Yonghui; Yang, Zhicheng; Liu, Airong; Fu, Jiyang
2018-05-28
The buckling behavior of functionally graded graphene platelet-reinforced composite (FG-GPLRC) shallow arches with elastic rotational constraints under uniform radial load is investigated in this paper. The nonlinear equilibrium equation of the FG-GPLRC shallow arch with elastic rotational constraints under uniform radial load is established using the Halpin-Tsai micromechanics model and the principle of virtual work, from which the critical buckling load of FG-GPLRC shallow arches with elastic rotational constraints can be obtained. This paper gives special attention to the effect of the GPL distribution pattern, weight fraction, geometric parameters, and the constraint stiffness on the buckling load. The numerical results show that all of the FG-GPLRC shallow arches with elastic rotational constraints have a higher buckling load-carrying capacity compared to the pure epoxy arch, and arches of the distribution pattern X have the highest buckling load among four distribution patterns. When the GPL weight fraction is constant, the thinner and larger GPL can provide the better reinforcing effect to the FG-GPLRC shallow arch. However, when the value of the aspect ratio is greater than 4, the flakiness ratio is greater than 103, and the effect of GPL's dimensions on the buckling load of the FG-GPLRC shallow arch is less significant. In addition, the buckling model of FG-GPLRC shallow arch with elastic rotational constraints is changed as the GPL distribution patterns or the constraint stiffness changes. It is expected that the method and the results that are presented in this paper will be useful as a reference for the stability design of this type of arch in the future.
Buckling transition and boundary layer in non-Euclidean plates.
Efrati, Efi; Sharon, Eran; Kupferman, Raz
2009-07-01
Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value of the plate thickness. Depending on the reference metric, the buckling transition may be either continuous or discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we show that the limit is a configuration that minimizes the bending content, among all configurations with zero stretching content (isometric immersions of the midsurface). For small but finite plate thickness, we show the formation of a boundary layer, whose size scales with the square root of the plate thickness and whose shape is determined by a balance between stretching and bending energies.
Mikulas, Martin M., Jr.; Nemeth, Michael P.; Oremont, Leonard; Jegley, Dawn C.
2011-01-01
Buckling loads for long isotropic and laminated cylinders are calculated based on Euler, Fluegge and Donnell's equations. Results from these methods are presented using simple parameters useful for fundamental design work. Buckling loads for two types of simply supported boundary conditions are calculated using finite element methods for comparison to select cases of the closed form solution. Results indicate that relying on Donnell theory can result in an over-prediction of buckling loads by as much as 40% in isotropic materials.
Distortional Buckling Analysis of Steel-Concrete Composite Girders in Negative Moment Area
Directory of Open Access Journals (Sweden)
Zhou Wangbao
2014-01-01
Full Text Available Distortional buckling is one of the most important buckling modes of the steel-concrete composite girder under negative moment. In this study, the equivalent lateral and torsional restraints of the bottom flange of a steel-concrete composite girder under negative moments due to variable axial forces are thoroughly investigated. The results show that there is a coupling effect between the applied forces and the lateral and torsional restraint of the bottom flange. Based on the calculation formula of lateral and torsional restraints, the critical buckling stress of I-steel-concrete composite girders and steel-concrete composite box girders under variable axial force is obtained. The critical bending moment of the steel-concrete composite girders can be further calculated. Compared to the traditional calculation methods of elastic foundation beam, the paper introduces an improved method, which considers coupling effect of the external loads and the foundation spring constraints of the bottom flange. Fifteen examples of the steel-concrete composite girders in different conditions are calculated. The calculation results show a good match between the hand calculation and the ANSYS finite element method, which validated that the analytic calculation method proposed in this paper is practical.
Bending energy of buckled edge dislocations
Kupferman, Raz
2017-12-01
The study of elastic membranes carrying topological defects has a longstanding history, going back at least to the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching modulus. In this paper we study membranes with a single edge dislocation. We prove that the minimum bending energy associated with strain-free configurations diverges logarithmically with the size of the system.
Modeling shape selection of buckled dielectric elastomers
Langham, Jacob; Bense, Hadrien; Barkley, Dwight
2018-02-01
A dielectric elastomer whose edges are held fixed will buckle, given a sufficiently applied voltage, resulting in a nontrivial out-of-plane deformation. We study this situation numerically using a nonlinear elastic model which decouples two of the principal electrostatic stresses acting on an elastomer: normal pressure due to the mutual attraction of oppositely charged electrodes and tangential shear ("fringing") due to repulsion of like charges at the electrode edges. These enter via physically simplified boundary conditions that are applied in a fixed reference domain using a nondimensional approach. The method is valid for small to moderate strains and is straightforward to implement in a generic nonlinear elasticity code. We validate the model by directly comparing the simulated equilibrium shapes with the experiment. For circular electrodes which buckle axisymetrically, the shape of the deflection profile is captured. Annular electrodes of different widths produce azimuthal ripples with wavelengths that match our simulations. In this case, it is essential to compute multiple equilibria because the first model solution obtained by the nonlinear solver (Newton's method) is often not the energetically favored state. We address this using a numerical technique known as "deflation." Finally, we observe the large number of different solutions that may be obtained for the case of a long rectangular strip.
Buckling of thin-walled beams under concentrated transverse loading
Menken, C.M.; Erp, van G.M.; Krupta, V.; Drdacky, M.
1991-01-01
The transversely loaded thin-walled beam under a non-uniform bending moment forms an example of the detrimental influence that a local effect may have on the overall behaviour. The local effect is the plate buckling in the region of maximum bending moment. The overall behaviour is the
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
Aoki, Michio; Juang, Jia-Yang
2018-02-01
Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.
Energy Technology Data Exchange (ETDEWEB)
Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Ouji, A. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Islamic Azad University, Larestan Branch, Larestan (Iran, Islamic Republic of)
2008-11-15
The buckling analysis of annular thick plates with lateral supports such as two-parameter elastic foundations or ring supports is investigated using an elasticity based hybrid numerical method. For this purpose, firstly, the displacement components are perturbed around the pre-buckling state, which is located using the elasticity theory. Then, by decomposing the plate into a set of sub-domain in the form of co-axial annular plates, the buckling equations are discretized through the radial direction using global interpolation functions in conjunction with the principle of virtual work. The resulting differential equations are solved using the differential quadrature method. The method has the capability of modeling the arbitrary boundary conditions either at the inner and outer edges of thin-to-thick plates and with different types of lateral restraints. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its accuracy and versatility for thin-to-thick plates.
Post-Buckled Precompressed (PBP) piezoelectric actuators for UAV flight control
Vos, R.; Barrett, R.; Krakers, L.; Van Tooren, M.
2006-01-01
This paper presents the use of a new class of flight control actuators employing Post-Buckled Precompressed (PBP) piezoelectric elements in morphing wing Uninhabited Aerial Vehicles (UAVs). The new actuator relieson axial compression to amplify deflections and control forces simultaneously. Two
Stretchable transistors with buckled carbon nanotube films as conducting channels
Arnold, Michael S; Xu, Feng
2015-03-24
Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.
A study of the effects of penetration framing on steel containment buckling capacity
International Nuclear Information System (INIS)
Baker, W.E.; Butler, T.A.
1987-05-01
Polycarbonate cylinders modeling steel containment structures were tested to study the effects of different framing designs around large penetrations on the static buckling capacity of containments. Two of the four models had equipment hatch penetrations and two had personnel airlock penetrations. Both types of models were tested with axial and shear loads as framing was incrementally added. Results indicate that, for the models constructed of polycarbonate, buckling is influenced minimally with added framing. Numerical results support the experimental results. Extrapolation of the results to containment constructed under field conditions with prototypic steel materials is discussed and further testing is recommended
Directory of Open Access Journals (Sweden)
Spela Stunf
2011-01-01
Full Text Available Pre-existing scleral pathology is an important risk factor for globe rupture during scleral buckling procedures. We report here, the surgical management of an unexpected scleral pathology found at the scleral buckling procedure in a retinal detachment patient. A 77-year-old white female with retinal detachment underwent a scleral buckling procedure. The surgery was converted into a scleral graft procedure, as extreme scleral thinning was found intraoperatively. An alcohol-preserved donor sclera graft was used. The second surgery for definitive retinal alignment was performed two weeks later. The presented case of an unexpected scleral pathology in a retinal detachment patient was managed with a combination of scleral grafting and pars plana vitrectomy, without any major complications. The anatomical outcome was excellent and the scleral rupture was prevented; the visual outcome was satisfactory. A conversion of the scleral buckling procedure into a scleral graft procedure has proved to be safe and effective for unexpected scleral pathology.
Knockdown of p53 suppresses Nanog expression in embryonic stem cells
Energy Technology Data Exchange (ETDEWEB)
Abdelalim, Essam Mohamed, E-mail: emohamed@qf.org.qa [Qatar Biomedical Research Institute, Qatar Foundation, Doha 5825 (Qatar); Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia (Egypt); Tooyama, Ikuo [Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan)
2014-01-10
Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21 and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.
Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model
Bose, Santanu; Mandal, Nibir; Acharyya, S. K.; Ghosh, Subhajit; Saha, Puspendu
2014-09-01
The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3-F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.
How tall can gelatin towers be? An introduction to elasticity and buckling
Taberlet, Nicolas; Ferrand, Jérémy; Camus, Élise; Lachaud, Léa; Plihon, Nicolas
2017-12-01
The stability of elastic towers is studied through simple hands-on experiments. Using gelatin-based stackable bricks, one can investigate the maximum height a simple structure can reach before collapsing. We show through experiments and by using the classical linear elastic theory that the main limitation to the height of such towers is the buckling of the elastic structures under their own weight. Moreover, the design and architecture of the towers can be optimized to greatly improve their resistance to self-buckling. To this aim, the maximum height of hollow and tapered towers is investigated. The experimental and theoretical developments presented in this paper can help students grasp the fundamental concepts in elasticity and mechanical stability.
Schaeffner, Maximilian; Platz, Roland
2018-06-01
For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, an approach for gain-scheduled {{\\mathscr{H}}}∞ buckling control of a slender beam-column with circular cross-section subject to time-varying axial loads is investigated experimentally. Piezo-elastic supports with integrated piezoelectric stack actuators at the beam-column ends allow an active stabilization in arbitrary lateral directions. The axial loads on the beam-column influence its lateral dynamic behavior and, eventually, cause the beam-column to buckle. A reduced modal model of the beam-column subject to axial loads including the dynamics of the electrical components is set up and calibrated with experimental data. Particularly, the linear parameter-varying open-loop plant is used to design a model-based gain-scheduled {{\\mathscr{H}}}∞ buckling control that is implemented in an experimental test setup. The beam-column is loaded by ramp- and step-shaped time-varying axial compressive loads that result in a lateral deformation of the beam-column due to imperfections, such as predeformation, eccentric loading or clamping moments. The lateral deformations and the maximum bearable loads of the beam-column are analyzed and compared for the beam-column with and without gain-scheduled {{\\mathscr{H}}}∞ buckling control or, respectively, active and passive configuration. With the proposed gain-scheduled {{\\mathscr{H}}}∞ buckling control it is possible to increase the maximum bearable load of the active beam-column by 19% for ramp-shaped axial loads and to significantly reduce the beam-column deformations for step-shaped axial loads compared to the passive structure.
Upgrading the seismic capacity of existing RC buildings using buckling restrained braces
Directory of Open Access Journals (Sweden)
Hamdy Abou-Elfath
2017-06-01
Full Text Available Many existing RC buildings do not meet the lateral strength requirements of current seismic codes and are vulnerable to significant damage or collapse in the event of future earthquakes. In the past few decades, buckling-restrained braces have become increasingly popular as a lateral force resisting system because of their capability of improving the strength, the stiffness and the energy absorbing capacity of structures. This study evaluates the seismic upgrading of a 6-story RC-building using single diagonal buckling restrained braces. Seismic evaluation in this study has been carried out by static pushover analysis and time history earthquake analysis. Ten ground motions with different PGA levels are used in the analysis. The mean plus one standard deviation values of the roof-drift ratio, the maximum story drift ratio, the brace ductility factors and the member strain responses are used as the basis for the seismic performance evaluations. The results obtained in this study indicate that strengthening of RC buildings with buckling restrained braces is an efficient technique as it significantly increases the PGA capacity of the RC buildings. The results also indicate the increase in the PGA capacity of the RC building with the increase in the amount of the braces.
Energy Technology Data Exchange (ETDEWEB)
Purgato, Rafael Turrini
2014-07-01
One of the key parameters in reactor physics is the Buckling of a reactor core. It is related to important parameters such as reaction rates, nuclear power operation, fuel burning, among others. In a critical reactor, the Buckling depends on the geometric and material characteristics of the reactor core. This work presents the results of experimental Buckling in the reactor IPEN/MB-01 nuclear reactor in its cylindrical configuration with 28 fuel rods along its diameter. The IPEN/MB-01 is a zero power reactor designed to operate at a maximum power of 100 watts, it is a versatile nuclear facility which allows the simulation of all the characteristics of a large nuclear power reactor and ideal for this type of measurement. We conducted a mapping of neutron flux inside the reactor and thereby determined the total Buckling of the cylindrical configuration. The reactor was operated for one hour. Then, the activity of the fuel rods was measured by gamma spectrometry on a rod scanner HPGe detector. We analyzed the gamma photons of the {sup 239}Np (276,6 keV) for neutron capture (n,γ) and the {sup 143}Ce (293,3 keV) for fission (n,f) on both {sup 238}U and {sup 235}U, respectively. We analyzed the axial and radial directions. Other measurements were performed using wires and gold foils in the radial and axial directions of the reactor core. The Buckling Total obtained from the three methods by weighted mean is 96,55 ± 7,47 m{sup -2}. The goal is to obtain experimental values of a set of experimental data to allow one direct comparison with values calculated by the codes used in reactor physics CITATION and MCNP. (author)
Energy Technology Data Exchange (ETDEWEB)
Raisic, N M; Popovic, D D; Takac, S M; Djordjevic, M M [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)
1960-03-15
The buckling in the bare heavy water natural uranium critical assembly was determined by measuring the thermal neutron flux distribution. The obtained value for the critical buckling at the temperature of 20 deg C is: B{sup 2} = (8.516 {+-} 0.02) m{sup -2}. The above error is a statistical one, obtained from several series of measurements. The possible systematic error was estimated as 0.1 m{sup -2}. (author)
International Nuclear Information System (INIS)
Raisic, N.M.; Popovic, D.D.; Takac, S.M.; Djordjevic, M.M.
1960-01-01
The buckling in the bare heavy water natural uranium critical assembly was determined by measuring the thermal neutron flux distribution. The obtained value for the critical buckling at the temperature of 20 deg C is: B 2 = (8.516 ± 0.02) m -2 . The above error is a statistical one, obtained from several series of measurements. The possible systematic error was estimated as 0.1 m -2 . (author)
Scleral buckling for retinal detachment in Ibadan, Sub-Saharan Africa: anatomical and visual outcome
Directory of Open Access Journals (Sweden)
Oluleye TS
2013-05-01
Full Text Available TS Oluleye, OA Ibrahim, BA OlusanyaRetina and Vitreous Unit, Department of Ophthalmology, University College Hospital, Ibadan, NigeriaBackground: Scleral buckle surgery is not a commonly performed surgical procedure in Sub-Saharan Africa due to a paucity of trained vitreo retinal surgeons. The aim of the study was to review sclera buckle procedures with a view to evaluating the anatomical and visual outcomes.Methods: Case records of patients that had scleral buckle surgery at the Retina Unit of the University College Hospital, Ibadan, Nigeria, between 2007 and 2010 were reviewed. Information retrieved included patients' demographics, duration of symptoms, and presenting vision. Other information included site of retinal break, extent of retinal detachment, involvement of the fellow eye, and macular involvement. Postoperative retina reattachment and postoperative visual acuity were also recorded. Proportions and percentages were used to analyze data.Results: Forty five eyes of 42 patients were studied with a male to female ratio of 1.6:1. The mean age was 47.7 years (±17.6 years. The median duration before presentation was 3 months (range: 5 days – 156 months. Subtotal retinal detachment was found in 35 eyes (77.8% while total retinal detachment occurred in ten eyes (22.2%. Thirty four eyes (75.6% had "macular off" detachments. At 6 weeks, there was an improvement in visual acuity in 23 eyes (51.1%, while visual acuity remained the same in nine eyes (20% and was worse in 13 eyes (28.9%. Anatomical attachment was seen in 43 eyes (95.6% on the operation table, in 40 eyes (90.9% at first day postoperatively and in 32 eyes (86.5% at 6 weeks after surgery.Conclusion: Outcome of sclera buckle surgery for rhegmatogenous retinal detachment may be improved in developing countries of Sub Sahara Africa if adequate awareness is created to educate the populace on early presentation.Keywords: retinal detachment, scleral buckle surgery, anatomical and visual
Nemeth, Michael P.
1990-01-01
Results are presented for unidirectional (0, 10)(sub s) and (90,10)(sub s) plates, ((0/90)(sub 5)(sub s)) plates, and for aluminum plates. Results are also presented for ((+/- theta)(sub 6)(sub s)) angle-ply plates for values of theta = 30, 45, and 60 degrees. The results indicate that the change in axial stiffness of a plate at buckling is strongly dependent upon cutout size and plate orthotropy. The presence of a cutout gives rise to an internal load distribution that changes, sometimes dramatically, as a function of cutout size coupled with the plate orthotropy. In the buckled state, the role of orthotropy becomes more significant since bending in addition to membrane orthotropy is present. Most of the plates with cutouts exhibited less postbuckling stiffness than the corresponding plate without a cutout, and the postbuckling stiffness decreased with increasing cutout size. However, some of the highly orthotropic plates with cutouts exhibited more postbuckling stiffness than the corresponding plate without a cutout. These results suggest the possibility of tailoring the cutout size and the stacking sequence of a composite plate to optimize postbuckling stiffness. It was found that plates with large radius cutouts do exhibit some postbuckling strength. The results also indicate that a cutout can influence modal interaction in a plate. Specifically, results are presented that show a plate with a relatively small cutout buckling at a higher load than the corresponding plate without a cutout, due to modal interaction. Other results are presented that indicate the presence of nonlinear prebuckling deformations, due to material nonlinearity, in the angle-ply plates with theta = 45 and 60 degrees. The nonlinear prebuckling deformations are more pronounced in the plates with theta = 45 degrees and become even more pronounced as the cutout size increases. Results are also presented that show how load-path eccentricity due to improper machining of the test specimens
Film stresses and electrode buckling in organic solar cells
Brand, Vitali
2012-08-01
We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial stress of ∼-36 MPa was measured in PEDOT:PSS while a tensile stress of ∼6 MPa was measured in the BHJ layer. We then analyze the effect of electrode deposition rate on the film stresses in the Al electrode. Compressive stresses of ∼-100 to -145 MPa in the Al electrode lead to a buckling instability resulting in undulating electrode surface topography. The BHJ layer was found to have the lowest cohesion (∼1.5-1.8 J/m 2) among the layers of the solar cell and dependent on the Al electrode deposition rate. The cohesive failure path in the BHJ layer exhibited the same periodicity and orientation of the Al electrode buckling topography. We discuss the implications of the film stresses on damage processes during device fabrication and operation. © 2012 Elsevier B.V. All rights reserved.
Research on Buckling State of Prestressed Fiber-Strengthened Steel Pipes
Wang, Ruheng; Lan, Kunchang
2018-01-01
The main restorative methods of damaged oil and gas pipelines include welding reinforcement, fixture reinforcement and fiber material reinforcement. Owing to the severe corrosion problems of pipes in practical use, the research on renovation and consolidation techniques of damaged pipes gains extensive attention by experts and scholars both at home and abroad. The analysis of mechanical behaviors of reinforced pressure pipelines and further studies focusing on “the critical buckling” and intensity of pressure pipeline failure are conducted in this paper, providing theoretical basis to restressed fiber-strengthened steel pipes. Deformation coordination equations and buckling control equations of steel pipes under the effect of prestress is deduced by using Rayleigh Ritz method, which is an approximation method based on potential energy stationary value theory and minimum potential energy principle. According to the deformation of prestressed steel pipes, the deflection differential equation of prestressed steel pipes is established, and the critical value of buckling under prestress is obtained.
International Nuclear Information System (INIS)
Moon, F.C.
1977-05-01
The main results center around experimental buckling results obtained in a 16 coil superconducting torus. This device is a 1 / 75 th model of an early Argonne National Lab experimental power reactor design. The coils in the experimental torus were designed to buckle below the normal transition current level. Up to 130 KA-turns were placed in the torus during these tests. The test results are described
DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION
LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.
2012-01-01
Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte
Impact of Holes on the Buckling of RHS Steel Column
Directory of Open Access Journals (Sweden)
Najla'a H. AL-Shareef
2018-03-01
Full Text Available This study presented an experimental and theoretical study on the effect of hole on the behavior of rectangular hollow steel columns subjected to axial compression load. Specimens were tested to investigated the ultimate capacity and the load- axial displacement behavior of steel columns. In this paper finite element analysis is done by using general purpose ANSYS 12.0 to investigate the behavior of rectangular hollow steel column with hole. In the experimental work, rectangular hollow steel columns with rounded corners were used in the constriction of the specimens which have dimensions of cross section (50*80mm and height of (250 and 500mm with thickness of (1.25,4 and 6mm with hole ((α*80*80mm when α is equal to (0.2,0.4,0.6 and 0.8. Twenty four columns under compression load were tested in order to investigate the effect of hole on the ultimate load of rectangular hollow steel column. The experimental results indicated that the typical failure mode for all the tested hollow specimen was the local buckling. The tested results indicated that the increasing of hole dimension leads to reduction in ultimate loads of tested column to 75%. The results show the reducing of load by 94.7% due to decreasing the thickness of column while the hole size is constant (0.2*80*80. The buckling load decreases by 84.62% when hole position changes from Lo=0.25L to 0.75L. Holes can be made in the middle of column with dimension up to 0.4 of column's length. The AISC (2005 presents the values closest to the experimental results for the nominal yielding compressive strength. The effect for increasing of slendeness ratio and thickness to area ratio(t/A leading to decreacing the critical stresses and the failure of column with large size of hole and (t/A ratio less than 0.74% was due to lacal buckling while the global buckling failure was abserve for column with small size of hole and (t/A ratio above than 0.74%. The compersion between the experimental
Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion
Energy Technology Data Exchange (ETDEWEB)
Li, Jie [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Yang, Xi-fei [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Ren, Xiao-hu [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Meng, Xiao-jing [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Huang, Hai-yan [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zhao, Qiong-hui [Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen (China); Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Liu, Jian-jun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zou, Fei, E-mail: zoufei616@163.com [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China)
2014-10-10
Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.
Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion
International Nuclear Information System (INIS)
Li, Jie; Yang, Xi-fei; Ren, Xiao-hu; Meng, Xiao-jing; Huang, Hai-yan; Zhao, Qiong-hui; Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li; Liu, Jian-jun; Zou, Fei
2014-01-01
Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer
On the dynamic buckling of a weakly damped nonlinear elastic ...
African Journals Online (AJOL)
In this paper we determine the dynamic buckling load of a strictly nonlinear but weakly damped elastic oscillatory model structure subjected to small perturbations The loading history is explicitly time dependent and varies slowly with time over a natural period of oscillation of the structure. A multiple timing regular ...
Yue, Qing-Yang; Yang, Yang; Cheng, Zhen-Jia; Guo, Cheng-Shan
2018-06-01
In this work, the light extraction efficiency enhancement of GaN-based thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with high-refractive-index (TiO2) buckling nanostructures was studied using the three-dimensional finite difference time domain method. Compared with 2-D photonic crystals, the buckling structures have the advantages of a random directionality and a broad distribution in periodicity, which can effectively extract the guided light propagating in all azimuthal directions over a wide spectrum. Numerical studies revealed that the light extraction efficiency of buckling-structured LEDs reaches 1.1 times that of triangular lattice photonic crystals. The effects of the buckling structure feature sizes and the thickness of the N-GaN layer on the light extraction efficiency for TFFC LEDs were also investigated systematically. With optimized structural parameters, a significant light extraction enhancement of about 2.6 times was achieved for TiO2 buckling-structured TFFC LEDs compared with planar LEDs.
Advanced control techniques for post-buckled precompressed (PBP) flight control actuators
Groen, M.; Van Schravendijk, M.; Barrett, R.; Vos, R.
2009-01-01
The dynamic response of a new class of flight control actuators that rely on post-buckled recompressed (PBP) piezoelectric elements is investigated. While past research has proven that PBP actuators are capable of generating deflections three times higher than conventional bimorph actuators, this
The fluid mechanics of scleral buckling surgery for the repair of retinal detachment.
Foster, William Joseph; Dowla, Nadia; Joshi, Saurabh Y; Nikolaou, Michael
2010-01-01
Scleral buckling is a common surgical technique used to treat retinal detachments that involves suturing a radial or circumferential silicone element on the sclera. Although this procedure has been performed since the 1960s, and there is a reasonable experimental model of retinal detachment, there is still debate as to how this surgery facilitates the re-attachment of the retina. Finite element calculations using the COMSOL Multiphysics system are utilized to explain the influence of the scleral buckle on the flow of sub-retinal fluid in a physical model of retinal detachment. We found that, by coupling fluid mechanics with structural mechanics, laminar fluid flow and the Bernoulli effect are necessary for a physically consistent explanation of retinal reattachment. Improved fluid outflow and retinal reattachment are found with low fluid viscosity and rapid eye movements. A simulation of saccadic eye movements was more effective in removing sub-retinal fluid than slower, reading speed, eye movements in removing subretinal fluid. The results of our simulations allow us to explain the physical principles behind scleral buckling surgery and provide insight that can be utilized clinically. In particular, we find that rapid eye movements facilitate more rapid retinal reattachment. This is contradictory to the conventional wisdom of attempting to minimize eye movements.
Knockdown of Pnpla6 protein results in motor neuron defects in zebrafish
Directory of Open Access Journals (Sweden)
Yang Song
2013-03-01
Mutations in patatin-like phospholipase domain containing 6 (PNPLA6, also known as neuropathy target esterase (NTE or SPG39, cause hereditary spastic paraplegia (HSP. Although studies on animal models, including mice and Drosophila, have extended our understanding of PNPLA6, its roles in neural development and in HSP are not clearly understood. Here, we describe the generation of a vertebrate model of PNPLA6 insufficiency using morpholino oligonucleotide knockdown in zebrafish (Danio rerio. Pnpla6 knockdown resulted in developmental abnormalities and motor neuron defects, including axon truncation and branching. The phenotypes in pnpla6 knockdown morphants were rescued by the introduction of wild-type, but not mutant, human PNPLA6 mRNA. Our results also revealed the involvement of BMP signaling in pnpla6 knockdown phenotypes. Taken together, these results demonstrate an important role of PNPLA6 in motor neuron development and implicate overexpression of BMP signaling as a possible mechanism underlying the developmental defects in pnpla6 morphants.
Utilization of the perturbation method for determination of the buckling heterogenous reactors
International Nuclear Information System (INIS)
Gheorghe, R.
1975-01-01
Evaluation of material buckling for heterogenous nulcear reactors is a key-problem for reactor people. In this direction several methods have been elaborated: bi-group method, heterogenous method and perturbation methods. Out of them, mostly employed is the perturbation method which is also presented in this paper and is applied in some parameter calculations of a new cell type for which fuel is positioned in the marginal area and the moderator is in the centre. It is based on the technique of progressive substitution. Advantages of the method: buckling comes out clearly, high level defects due to differences between O perturbated fluxes and the unperturbated flux Osub(o) can be corrected by an iterative procedure; using a modified bi-group theory, one can clearly describe effects of other parameters
The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects
International Nuclear Information System (INIS)
Yan, Z; Jiang, L Y
2011-01-01
In this work, the influence of surface effects, including residual surface stress, surface elasticity and surface piezoelectricity, on the vibrational and buckling behaviors of piezoelectric nanobeams is investigated by using the Euler-Bernoulli beam theory. The surface effects are incorporated by applying the surface piezoelectricity model and the generalized Young-Laplace equations. The results demonstrate that surface effects play a significant role in predicting these behaviors. It is found that the influence of the residual surface stress and the surface piezoelectricity on the resonant frequencies and the critical electric potential for buckling is more prominent than the surface elasticity. The nanobeam boundary conditions are also found to influence the surface effects on these parameters. This study also shows that the resonant frequencies can be tuned by adjusting the applied electrical load. The present study is envisaged to provide useful insights for the design and applications of piezoelectric-beam-based nanodevices.
2011-03-03
... of Army Corporal Frank W. Buckles, the Last Surviving American Veteran of World War I By the... Corporal Frank W. Buckles, the last surviving American veteran of World War I, and in remembrance of the generation of American veterans of World War I, I hereby order, by the authority vested in me by the...
Directory of Open Access Journals (Sweden)
Zihao Yang
Full Text Available A microstructure-dependent model for the free vibration and buckling analysis of an orthotropic functionally graded micro-plate was proposed on the basis of a re-modified couple stress theory. The macro- and microscopic anisotropy were simultaneously taken into account by introducing two material length scale parameters. The material attributes were assumed to vary continuously through the thickness direction by a power law. The governing equations and corresponding boundary conditions were derived through Hamilton’s principle. The Navier method was used to calculate the natural frequencies and buckling loads of a simply supported micro-plate. The numerical results indicated that the present model predicts higher natural frequencies and critical buckling loads than the classical model, particular when the geometric size of the micro-plates is comparable to the material length scale parameters, i.e., the scale effect is well represented. The scale effect becomes more noticeable as the material length scale parameters increase, the anisotropy weaken or the power law index increases, and vice versa. Keywords: Free vibration, Buckling, Functionally graded materials, Modified couple stress theory, Scale effect
Residual stress mapping by micro X-ray diffraction: Application to the study of thin film buckling
Energy Technology Data Exchange (ETDEWEB)
Goudeau, P.; Villain, P.; Tamura, N.; Celestre, R.S.; Padmore, H.A.
2002-11-06
Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of spontaneous detachment of the film from its substrate and in the case of compressive stresses, thin film buckling. Although these effects are undesirable for future applications, one may take benefit of it for thin film mechanical properties investigation. Since the 80's, a lot of theoretical works have been done to develop mechanical models with the aim to get a better understanding of driven mechanisms giving rise to this phenomenon and thus to propose solutions to avoid such problems. Nevertheless, only a few experimental works have been done on this subject to support these theoretical results and nothing concerning local stress/strain measurement mainly because of the small dimension of the buckling (few tenth mm). This paper deals with the application of micro beam x-ray diffraction available on synchrotron radiation sources for stress/ strain mapping analysis of gold thin film buckling.
Directory of Open Access Journals (Sweden)
Mahdi Izadi
2015-06-01
Full Text Available Vulnerable buildings and their rehabilitation are important problems for earthquake regions. In recent decades the goal of building rehabilitation and strengthening has gained different rehabilitation systems. However, most of these strengthening techniques disturb the occupants, who must vacate the building during renovation. Several retrofitting techniques such as addition masonry infill wall, application of buckling restrained braces and local modification of components has been studied in order to improve the overall seismic performance of such buildings. In response to many of the practical issues and economic considerations, engineers use often convergent unbuckling steel bracing frames as the lateral load resisting system during an earthquake.This kind of bracings increases the hardness and strength of concrete structures.The aim of the present study is the evaluation and comparison of seismic performance and retrofitting of an existing 7-storeys concrete structure with buckling restrained bracings and shear walls by nonlinear static procedure (NSP and accordance with cod-361. The results show that the buckling restrained bracing, decreased drift to acceptable levels and Structure behaves on the life safety of performance level.
Longitudinal Weld Land Buckling in Compression-Loaded Orthogrid Cylinders
Thornburgh, Robert P.; Hilburger, Mark W.
2010-01-01
Large stiffened cylinders used in launch vehicles (LV), such as the Space Shuttle External Tank, are manufactured by welding multiple curved panel sections into complete cylinders. The effects of the axial weld lands between the panel sections on the buckling load were studied, along with the interaction between the acreage stiffener arrangement and the weld land geometry. This document contains the results of the studies.
NIF Double Shell outer/inner shell collision experiments
Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.
2017-10-01
Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.
Buckling analysis for anisotropic laminated plates under combined inplane loads
Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.
1974-01-01
The buckling analysis presented considers rectangular flat or curved general laminates subjected to combined inplane normal and shear loads. Linear theory is used in the analysis. All prebuckling deformations and any initial imperfections are ignored. The analysis method can be readily extended to longitudinally stiffened structures subjected to combined inplane normal and shear loads.
Knockdown of ZFR suppresses cell proliferation and invasion of human pancreatic cancer
Directory of Open Access Journals (Sweden)
Xiaolan Zhao
Full Text Available BACKGROUND: Zinc finger RNA binding protein (ZFR is involved in the regulation of growth and cancer development. However, little is known about ZFR function in pancreatic cancer. METHODS: Herein, to investigate whether ZFR is involved in tumor growth, Oncomine microarray data was firstly used to evaluate ZFR gene expression in human pancreatic tumors. Then short hairpin RNA (shRNA targeting ZFR was designed and delivered into PANC-1 pancreatic cancer cells to knock down ZFR expression. Cell viability, cell proliferation and cell cycle analysis after ZFR knockdown were determined by MTT, colony forming and FACS, respectively. In addition, cell migration and invasion were assessed using the Transwell system. RESULTS: The expression of ZFR was significantly higher in pancreatic tumors than normal pancreas tissues by Oncomine database analysis. Knockdown of ZFR by shRNA-expressing lentivirus significantly decreased the viability and invasion ability of pancreatic cancer cells. Moreover, FACS analysis showed that knockdown of ZFR in PANC-1 cells caused a significant cell cycle arrest at G0/G1 phase. Furthermore, knockdown of ZFR decreased the levels of CDK2, CDK4, CyclinA and CyclinD1 and enhanced the expression of p27, which has evidenced by qRT-PCR and Western blot analysis. CONCLUSIONS: Knockdown of ZFR might provide a novel alternative to targeted therapy of pancreatic cancer and deserves further investigation.
Energy Technology Data Exchange (ETDEWEB)
Murayama, Y.; Suda, K.; Ichinomiya, T.; Shinbo, H. [Kajima Corp., Tokyo (Japan)
1994-10-31
For RC (reinforced concrete) columns such as towers of long-span cable-stayed bridges or high-rise piers, there is desired development of an analytical method including a method of arranging reinforcing bars for increasing their ductility against strong earthquake motion. For this, it is necessary to investigate their characteristics after their being rendered to maximum load and their final states, and hence there must be newly investigated the properties of a plastic hinge formed on the bottom of the column, particularly determination of the buckling point of reinforcing bars and a hysteresis model after the buckling. In this study, there is developed a direct method of measuring the stress of reinforcing bars embedded in a model specimen which is conventionally difficult to be measured, and there is investigated the stress-strain hysteresis of the bars before and after the buckling thereof. The principle of the method of measuring the stress is such that only a local minimum portion of objective reinforcing bars is rendered to rf quenching, and a distortion gauge is sticked to the center of the quenching. This is based upon a fact that that portion keeps a linear relationship between the stress and the strain even if a host material is yielded. On the basis of an experimental result, a mechanism of buckling of these bars is clarified and a buckling model of the reinforcing bars at the plastic hinge. 6 refs., 15 figs., 2 tabs.
Ribosomal protein gene knockdown causes developmental defects in zebrafish.
Directory of Open Access Journals (Sweden)
Tamayo Uechi
Full Text Available The ribosomal proteins (RPs form the majority of cellular proteins and are mandatory for cellular growth. RP genes have been linked, either directly or indirectly, to various diseases in humans. Mutations in RP genes are also associated with tissue-specific phenotypes, suggesting a possible role in organ development during early embryogenesis. However, it is not yet known how mutations in a particular RP gene result in specific cellular changes, or how RP genes might contribute to human diseases. The development of animal models with defects in RP genes will be essential for studying these questions. In this study, we knocked down 21 RP genes in zebrafish by using morpholino antisense oligos to inhibit their translation. Of these 21, knockdown of 19 RPs resulted in the development of morphants with obvious deformities. Although mutations in RP genes, like other housekeeping genes, would be expected to result in nonspecific developmental defects with widespread phenotypes, we found that knockdown of some RP genes resulted in phenotypes specific to each gene, with varying degrees of abnormality in the brain, body trunk, eyes, and ears at about 25 hours post fertilization. We focused further on the organogenesis of the brain. Each knocked-down gene that affected the morphogenesis of the brain produced a different pattern of abnormality. Among the 7 RP genes whose knockdown produced severe brain phenotypes, 3 human orthologs are located within chromosomal regions that have been linked to brain-associated diseases, suggesting a possible involvement of RP genes in brain or neurological diseases. The RP gene knockdown system developed in this study could be a powerful tool for studying the roles of ribosomes in human diseases.
Finite element analysis of BWR fuel channel buckling during a seismic event
International Nuclear Information System (INIS)
Kinoshita, Mika; Iwamoto, Yuji; Ledford, Kevin; Cantonwine, Paul
2014-01-01
This paper documents the predicted response of three BWR fuel channel designs in bending using a typical moment profile for GNF fuel designs. The bending performance of the fuel channel is predicted using ANSYS, a finite element modeling tool. Specifically, linear and non-linear buckling analyses were performed to determine the onset of elastic buckling, which causes a wavy structure on the compression face in bending that might also increase channel – control blade friction, and to determine to onset of channel collapse, which causes permanent deformation and would inhibit control rod insertion. The three channel designs considered in this paper are the 0.080 inch uniform channel, the 0.100 inch uniform channel and the 0.120 inch uniform channel at the beginning of fuel life (BOL) and at the end of fuel life (EOL). (author)
a model for the determination of the critical buckling load of self
African Journals Online (AJOL)
HP
Considering the widespread use of this type of structure and the critical role it ... proposed by the model for the critical buckling load of self- supporting lattice tower, whose equivalent solid beam- ... stiffness, both material and geometric, [5, 6].
Random fields of initial out of straightness leading to column buckling
DEFF Research Database (Denmark)
Kala, Zdeněk; Valeš, Jan; Jönsson, Jeppe
2017-01-01
The elastic load-carrying capacity and buckling trajectory of steel columns under compression with open and hollow cross-sections, whose axis is curved by spatial random fields, are studied in the article. As a result of the spatial curvature of the axis the cross-sections are subjected to compre...
Asymptotic solution on the dynamic buckling of a column stressed by ...
African Journals Online (AJOL)
This paper analysis the dynamic stability of a dynamically oscillatory system with slowly varying time dependent parameters. It utilizes the concept of multiple times scaling in an asymptotic evaluation of the dynamic buckling load of the imperfect elastic structure under investigation. Unlike most similar investigations to date ...
Scleral buckling for retinal detachment in patients with retinoblastoma
International Nuclear Information System (INIS)
Buzney, S.M.; Pruett, R.C.; Regan, C.D.; Walton, D.S.; Smith, T.R.
1984-01-01
Three children (two girls and one boy) with bilateral retinoblastoma each developed a presumed rhegmatogenous retinal detachment in one eye. All three eyes had previously received radiation and cryotherapy. In each case the retinal detachment responded promptly to conventional surgical methods via scleral buckling in the area of treated retinoblastoma and presumed retinal break. All three eyes have retained useful vision for follow-up periods of 3.5 to 12 years
Scleral buckling for retinal detachment in patients with retinoblastoma
Energy Technology Data Exchange (ETDEWEB)
Buzney, S.M.; Pruett, R.C.; Regan, C.D.; Walton, D.S.; Smith, T.R.
1984-10-15
Three children (two girls and one boy) with bilateral retinoblastoma each developed a presumed rhegmatogenous retinal detachment in one eye. All three eyes had previously received radiation and cryotherapy. In each case the retinal detachment responded promptly to conventional surgical methods via scleral buckling in the area of treated retinoblastoma and presumed retinal break. All three eyes have retained useful vision for follow-up periods of 3.5 to 12 years.
STAVREV, A.
2013-03-01
The uncertainty of geometric imperfections in a series of nominally equal I-beams leads to a variability of corresponding buckling loads. Its analysis requires a stochastic imperfection model, which can be derived either by the simple variation of the critical eigenmode with a scalar random variable, or with the help of the more advanced theory of random fields. The present paper first provides a concise review of the two different modeling approaches, covering theoretical background, assumptions and calibration, and illustrates their integration into commercial finite element software to conduct stochastic buckling analyses with the Monte-Carlo method. The stochastic buckling behavior of an example beam is then simulated with both stochastic models, calibrated from corresponding imperfection measurements. The simulation results show that for different load cases, the response statistics of the buckling load obtained with the eigenmode-based and the random field-based models agree very well. A comparison of our simulation results with corresponding Eurocode 3 limit loads indicates that the design standard is very conservative for compression dominated load cases. © 2013 World Scientific Publishing Company.
International Nuclear Information System (INIS)
Li, C.; Ru, C.Q.; Mioduchowski, A.
2006-01-01
Inspired by recent interest in torsion of the central pair microtubules in eukaryotic flagella, a novel thin-walled elastic beam model is suggested to study critical condition under which uniform bending of a flagellum will cause lateral/torsional buckling of the central pair. The model is directed to the central pair itself and the role of all surrounding cross-linkings inside the flagellum is modeled as an equivalent surrounding elastic medium. The model predicts that bending-driven torsion of the central pair does occur when the radius of curvature of the bent flagellum reduces to a moderate critical value typically of tens of microns. In particular, this critical value is almost independent of the flagellum length, and more sensitive to the parameters defining the surrounding elastic medium than the shear modulus of microtubules. The predicted wavelengths of the torsional buckling mode are insensitive to the flagellum length and comparable to some known related experimental data. These results indicate that torsion of the central pair microtubules in flagella is inevitable as a result of bending-driven lateral buckling. This offers an entirely new insight into the ongoing research on the mechanism of the central pair torsion
Perilaku Nonlinier Buckling pada Struktur Cangkang Bola
Directory of Open Access Journals (Sweden)
Sumirin Sumirin
2015-10-01
Full Text Available This paper presents the results of a numerical study using the finite element method in geometrical nonlinear on camped shallow spherical shells under uniform pressure. The shell structure was modelled by finite axisymmetric thin shell elements and quadrilateral elements. The geometrical nonlininear problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with arch length methods. The results of finite element analysis compared with the experimental results of previous reseacher.
Directory of Open Access Journals (Sweden)
Kukhar Volodymir
2018-01-01
Full Text Available This paper presents the results of experimental studies of load characteristic changes during the upsetting of high billets with the upsetting ratio (height to diameter ratio from 3.0 to 6.0, which is followed by buckling. Such pass is an effective way of preforming the workpiece for production of forgings with a bended axis or dual forming, and belongs to impression-free (dieless operation of bulk forming. Based on the experimental data analysis, an engineering method for calculation of workpiece pre-forming load as a maximum buckling force has been developed. The analysis of the obtained data confirmed the possibility of performing of this pre-forming operation on the main forging equipment, since the load of shaping by buckling does not exceed the load of the dieforging.
Kukhar, Volodymir; Artiukh, Victor; Prysiazhnyi, Andrii; Pustovgar, Andrey
2018-03-01
This paper presents the results of experimental studies of load characteristic changes during the upsetting of high billets with the upsetting ratio (height to diameter ratio) from 3.0 to 6.0, which is followed by buckling. Such pass is an effective way of preforming the workpiece for production of forgings with a bended axis or dual forming, and belongs to impression-free (dieless) operation of bulk forming. Based on the experimental data analysis, an engineering method for calculation of workpiece pre-forming load as a maximum buckling force has been developed. The analysis of the obtained data confirmed the possibility of performing of this pre-forming operation on the main forging equipment, since the load of shaping by buckling does not exceed the load of the dieforging.
Jamalpoor, A.; Ahmadi-Savadkoohi, A.; Hosseini-Hashemi, Sh
2016-10-01
This paper deals with the theoretical analysis of free vibration and biaxial buckling of magneto-electro-elastic (MEE) microplate resting on Kelvin-Voigt visco-Pasternak foundation and subjected to initial external electric and magnetic potentials, using modified strain gradient theory (MSGT). Kirchhoff plate model and Hamilton’s principle are employed to extract the governing equations of motion. Governing equations were analytically solved to obtain clear closed-form expression for complex natural frequencies and buckling loads using Navier’s approach. Numerical results are presented to reveal variations of natural frequency and buckling load ratio of MEE microplate against different amounts of the length scale parameter, initial external electric and magnetic potentials, aspect ratio, damping and transverse and shear stiffness parameters of the visco-Pasternak foundation, length to thickness ratio, microplate thickness and higher modes. Numerical results of this study illustrate that by increasing thickness-to-material length scale parameter ratio, both natural frequency and buckling load ratio predicted by MSGT and modified couple stress theory are reduced because the non-dimensional length scale parameter tends to decrease the stiffness of structures and make them more flexible. In addition, results show that initial external electric and initial external magnetic potentials have no considerable influence on the buckling load ratio and frequency of MEE microplate as the microplate thickness increases.
Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.
Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin
2016-07-01
Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2015-01-01
Full Text Available Liquid hydrogen and oxygen are used as the oxidizer and fuel for liquid rocket engines. Liquefied natural gas, which is based on methane, is seen as a promising motor fuel for internal combustion engines. One of the technical problems arising from the use of said cryogenic liquid is to provide containers for storage, transport and use in the propulsion system. In the design and operation of such vessels it is necessary to have reliable information about their temperature condition, on which depend the loss of cryogenic fluids due to evaporation and the stress-strain state of the structural elements of the containers.Uneven temperature distribution along the generatrix of the cylindrical thin-walled shell of rocket cryogenic tanks, in a localized zone of cryogenic liquid level leads to a curvature of the shell and reduce the permissible axle load in a hazard shell buckling in the preparation for the start of the missile in flight with an increasing acceleration. Moving the level of the cryogenic liquid during filling or emptying the tank at a certain combination of parameters results in an increase of the local temperature distribution nonuniformity.Along with experimental study of the shell temperature state of the cryogenic container, methods of mathematical modeling allow to have information needed for designing and testing the construction of cryogenic tanks. In this study a mathematical model is built taking into account features of heat transfer in a cryogenic container, including the boiling cryogenic liquid in the inner surface of the container. This mathematical model describes the temperature state of the thin-walled shell of cylindrical cryogenic tank during filling and emptying. The work also presents a quantitative analysis of this model in case of fixed liquid level, its movement at a constant speed, and harmonic oscillations relative to a middle position. The quantitative analysis of this model has allowed to find the limit options
Li, Mingyang; Zu, Mei; Yu, Jinshan; Cheng, Haifeng; Li, Qingwen
2017-03-01
A stretchable fiber supercapacitor (SC) based on buckled MnO 2 /oxidized carbon nanotube (CNT) fiber electrode is fabricated by a simple prestraining-then-buckling method. The prepared stretchable fiber SC has a specific volumetric capacitance up to 409.4 F cm -3 , which is 33 times that of the pristine CNT fiber based SC, and shows the outstanding stability and repeatability in performance as a stretchable SC. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Buckling behavior analysis of spacer grid by lateral impact load
International Nuclear Information System (INIS)
Yoon, Kyung Ho; Kang, Heung Seok; Kim, Hyung Kyu; Song, Kee Nam
2000-05-01
The spacer grid is one of the main structural components in the fuel assembly, Which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing it. In this report, free fall type shock tests on the several kinds of the specimens of the spacer grids were also carried out in order to compare the results among the candidate grids. A free fall carriage on the specimen accomplishes the test. In addition to this, a finite element method for predicting the critical impact strength of the spacer grids is described. FE method on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic impact analysis using ABAQUS/explicit code. The simulated results results also similarly predicted the local buckling phenomena and were found to give good correspondence with the shock test results
Buckling of an Elastic Ridge: Competition between Wrinkles and Creases
Lestringant, C.; Maurini, C.; Lazarus, A.; Audoly, B.
2017-04-01
We investigate the elastic buckling of a triangular prism made of a soft elastomer. A face of the prism is bonded to a stiff slab that imposes an average axial compression. We observe two possible buckling modes which are localized along the free ridge. For ridge angles ϕ below a critical value ϕ⋆≈9 0 ° , experiments reveal an extended sinusoidal mode, while for ϕ above ϕ⋆, we observe a series of creases progressively invading the lateral faces starting from the ridge. A numerical linear stability analysis is set up using the finite-element method and correctly predicts the sinusoidal mode for ϕ ≤ϕ⋆, as well as the associated critical strain ɛc(ϕ ). The experimental transition at ϕ⋆ is found to occur when this critical strain ɛc(ϕ ) attains the value ɛc(ϕ⋆)=0.44 corresponding to the threshold of the subcritical surface creasing instability. Previous analyses have focused on elastic crease patterns appearing on planar surfaces, where the role of scale invariance has been emphasized; our analysis of the elastic ridge provides a different perspective, and reveals that scale invariance is not a sufficient condition for localization.
Directory of Open Access Journals (Sweden)
Quan He
2014-01-01
Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.
International Nuclear Information System (INIS)
Purgato, Rafael Turrini
2014-01-01
One of the key parameters in reactor physics is the Buckling of a reactor core. It is related to important parameters such as reaction rates, nuclear power operation, fuel burning, among others. In a critical reactor, the Buckling depends on the geometric and material characteristics of the reactor core. This work presents the results of experimental Buckling in the reactor IPEN/MB-01 nuclear reactor in its cylindrical configuration with 28 fuel rods along its diameter. The IPEN/MB-01 is a zero power reactor designed to operate at a maximum power of 100 watts, it is a versatile nuclear facility which allows the simulation of all the characteristics of a large nuclear power reactor and ideal for this type of measurement. We conducted a mapping of neutron flux inside the reactor and thereby determined the total Buckling of the cylindrical configuration. The reactor was operated for one hour. Then, the activity of the fuel rods was measured by gamma spectrometry on a rod scanner HPGe detector. We analyzed the gamma photons of the 239 Np (276,6 keV) for neutron capture (n,γ) and the 143 Ce (293,3 keV) for fission (n,f) on both 238 U and 235 U, respectively. We analyzed the axial and radial directions. Other measurements were performed using wires and gold foils in the radial and axial directions of the reactor core. The Buckling Total obtained from the three methods by weighted mean is 96,55 ± 7,47 m -2 . The goal is to obtain experimental values of a set of experimental data to allow one direct comparison with values calculated by the codes used in reactor physics CITATION and MCNP. (author)
Initial postbuckling analysis of elastoplastic thin-shear structures
Carnoy, E. G.; Panosyan, G.
1984-01-01
The design of thin shell structures with respect to elastoplastic buckling requires an extended analysis of the influence of initial imperfections. For conservative design, the most critical defect should be assumed with the maximum allowable magnitude. This defect is closely related to the initial postbuckling behavior. An algorithm is given for the quasi-static analysis of the postbuckling behavior of structures that exhibit multiple buckling points. the algorithm based upon an energy criterion allows the computation of the critical perturbation which will be employed for the definition of the critical defect. For computational efficiency, the algorithm uses the reduced basis technique with automatic update of the modal basis. The method is applied to the axisymmetric buckling of cylindrical shells under axial compression, and conclusions are given for future research.
International Nuclear Information System (INIS)
De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.
1995-03-01
In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles
Directory of Open Access Journals (Sweden)
Maryam Alsadat Rad
2016-12-01
Full Text Available This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young’s modulus, Poisson’s ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m−1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N−1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young’s modulus of the cells are determined to be 10.8867 ± 0.0094 N·m−1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young’s modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.
Rad, Maryam Alsadat; Tijjani, Auwal Shehu; Ahmad, Mohd Ridzuan; Auwal, Shehu Muhammad
2016-12-23
This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m -1 , 123.4700 GPa, 0.3000 and 0.0693 V·m·N -1 , respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m -1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.
Energy Technology Data Exchange (ETDEWEB)
Singhatanadgid, Pairod; Jommalai, Panupan [Chulalongkorn University, Bangkok (Thailand)
2016-05-15
The extended Kantorovich method using multi-term displacement functions is applied to the buckling problem of laminated plates with various boundary conditions. The out-of-plane displacement of the buckled plate is written as a series of products of functions of parameter x and functions of parameter y. With known functions in parameter x or parameter y, a set of governing equations and a set of boundary conditions are obtained after applying the variational principle to the total potential energy of the system. The higher order differential equations are then transformed into a set of first-order differential equations and solved for the buckling load and mode. Since the governing equations are first-order differential equations, solutions can be obtained analytically with the out-of-plane displacement written in the form of an exponential function. The solutions from the proposed technique are verified with solutions from the literature and FEM solutions. The bucking loads correspond very well to other available solutions in most of the comparisons. The buckling modes also compare very well with the finite element solutions. The proposed solution technique transforms higher-order differential equations to first-order differential equations, and they are analytically solved for out-of-plane displacement in the form of an exponential function. Therefore, the proposed solution technique yields a solution which can be considered as an analytical solution.
Buckled graphene: A model study based on density functional theory
Khan, Yasser
2010-09-01
We make use of ab initio calculations within density functional theory to investigate the influence of buckling on the electronic structure of single layer graphene. Our systematic study addresses a wide range of bond length and bond angle variations in order to obtain insights into the energy scale associated with the formation of ripples in a graphene sheet. © 2010 Elsevier B.V. All rights reserved.
Buckled graphene: A model study based on density functional theory
Khan, Yasser; Mukaddam, Mohsin Ahmed; Schwingenschlö gl, Udo
2010-01-01
We make use of ab initio calculations within density functional theory to investigate the influence of buckling on the electronic structure of single layer graphene. Our systematic study addresses a wide range of bond length and bond angle variations in order to obtain insights into the energy scale associated with the formation of ripples in a graphene sheet. © 2010 Elsevier B.V. All rights reserved.
Size-dependent vibrations of post-buckled functionally graded Mindlin rectangular microplates
Directory of Open Access Journals (Sweden)
R. Ansari
Full Text Available In this paper, the free vibration behavior of post-buckled functionally graded (FG Mindlin rectangular microplates are described based on the modified couple stress theory (MCST. This theory enables the consideration of the size-effect through introducing material length scale parameters. The FG microplates made of a mixture of metal and ceramic are considered whose volume fraction of components is expressed by a power law function. By means of Hamilton's principle, the nonlinear governing equations and associated boundary conditions are derived for FG micro-plates in the postbuckling domain. The governing equations and boundary conditions are then discretized by using the generalized differential quadrature (GDQ method before solving numerically by the pseudo-arclength continuation technique. In the solution procedure, the postbuckling problem of microplates is investigated first. Afterwards, the free vibration of microplates around the buckled configuration is discussed. The effects of dimensionless length scale parameter, material gradient index and aspect ratio on the on the postbuckling path and frequency of FG microplates subject to arbitrary edge supports are thoroughly discussed.
Energy Technology Data Exchange (ETDEWEB)
MACKEY TC; DEIBLER JE; RINKER MW; JOHNSON KI; ABATT FG; KARRI NK; PILLI SP; STOOPS KL
2009-01-15
This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs). The bases of the analytical work presented herein are two ANSYS{reg_sign} finite element models that were developed to represent a bounding-case tank. The TaLA model includes the effects of temperature on material properties, creep, concrete cracking, and various waste and annulus pressure-loading conditions. The seismic model considers the interaction of the tanks with the surrounding soil including a range of soil properties, and the effects of the waste contents during a seismic event. The structural evaluations completed with the representative tank models do not reveal any structural deficiencies with the integrity of the DSTs. The analyses represent 60 years of use, which extends well beyond the current date. In addition, the temperature loads imposed on the model are significantly more severe than any service to date or proposed for the future. Bounding material properties were also selected to provide the most severe combinations. While the focus of the analyses was a bounding-case tank, it was necessary during various evaluations to conduct tank-specific analyses. The primary tank buckling evaluation was carried out on a tank-specific basis because of the sensitivity to waste height, specific gravity, tank wall thickness, and primary tank vapor space vacuum limit. For this analysis, the occurrence of maximum tank vacuum was classified as a service level C, emergency load condition. The only area of potential concern in the analysis was with the buckling evaluation of the AP tank, which showed the current limit on demand of l2-inch water gauge vacuum to exceed the allowable of 10.4 inches. This determination was based on analysis at the
Enhanced toxic cloud knockdown spray system for decontamination applications
Betty, Rita G [Rio Rancho, NM; Tucker, Mark D [Albuquerque, NM; Brockmann, John E [Albuquerque, NM; Lucero, Daniel A [Albuquerque, NM; Levin, Bruce L [Tijeras, NM; Leonard, Jonathan [Albuquerque, NM
2011-09-06
Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.
Numerical Analysis Of Buckling Of Von Mises Planar Truss
Directory of Open Access Journals (Sweden)
Kalina Martin
2015-12-01
Full Text Available A computational algorithm of a discrete model of von Mises planar steel truss is presented. The structure deformation is evaluated by seeking the minimal potential energy. The critical force invented by mathematical solution was compared with solution by computer algorithm. Symmetric and asymmetric effects of initial shape of geometric imperfection of axis of struts are used in model. The shapes of buckling of von Mises planar truss of selected vertical displacement of top joint are shown.
Rao, Ch. K.; Rao, L. B.
2018-01-01
The problem of the post-buckling response of a simply supported thin-walled beam subjected to an axial compressive load and supported by the Winkler-Pasternak foundation is studied in this paper. The strains are assumed to be small and elastic. The shear deformations and the in-plane cross-sectional deformations are assumed to be negligible. The post-buckling paths of the simply supported beam are determined for different values of the Winkler and Pasternak stiffness parameters. Bifurcation points are found.
Shevyrin, A. A.; Pogosov, A. G.; Budantsev, M. V.; Bakarov, A. K.; Toropov, A. I.; Ishutkin, S. V.; Shesterikov, E. V.; Kozhukhov, A. S.; Kosolobov, S. S.; Gavrilova, T. A.
2012-12-01
Mechanical stresses are investigated in suspended nanowires made on the basis of GaAs/AlGaAs heterostructures. Though there are no intentionally introduced stressor layers in the heterostructure, the nanowires are subject to Euler buckling instability. In the wide nanowires, the out-of-plane buckling is observed at length significantly smaller (3 times) than the theoretically estimated critical value, while in the narrow nanowires, the experimentally measured critical length of the in-plane buckling coincides with the theoretical estimation. The possible reasons for the obtained discrepancy are considered. The observed peculiarities should be taken into account in the fabrication of nanomechanical and nanoelectromechanical systems.
Kinks and antikinks of buckled graphene: A testing ground for the φ4 field model
Yamaletdinov, R. D.; Slipko, V. A.; Pershin, Y. V.
2017-09-01
Kinks and antikinks of the classical φ4 field model are topological solutions connecting its two distinct ground states. Here we establish an analogy between the excitations of a long graphene nanoribbon buckled in the transverse direction and φ4 model results. Using molecular dynamics simulations, we investigated the dynamics of a buckled graphene nanoribbon with a single kink and with a kink-antikink pair. Several features of the φ4 model have been observed including the kink-antikink capture at low energies, kink-antikink reflection at high energies, and a bounce resonance. Our results pave the way towards the experimental observation of a rich variety of φ4 model predictions based on graphene.
Viswanathan, A. V.; Tamekuni, M.
1973-01-01
An exact linear analysis method is presented for predicting buckling of structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Element edges normal to the longitudinal axes are assumed to be simply supported. Arbitrary boundary conditions may be specified on any external longitudinal edge of plate-strip elements. The structure or selected elements may be loaded in any desired combination of inplane transverse compression or tension side load and axial compression load. The analysis simultaneously considers all possible modes of instability and is applicable for the buckling of laminated composite structures. Numerical results correlate well with the results of previous analysis methods.
Heritable and lineage-specific gene knockdown in zebrafish embryo.
Directory of Open Access Journals (Sweden)
Mei Dong
Full Text Available BACKGROUND: Reduced expression of developmentally important genes and tumor suppressors due to haploinsufficiency or epigenetic suppression has been shown to contribute to the pathogenesis of various malignancies. However, methodology that allows spatio-temporally knockdown of gene expression in various model organisms such as zebrafish has not been well established, which largely limits the potential of zebrafish as a vertebrate model of human malignant disorders. PRINCIPAL FINDING: Here, we report that multiple copies of small hairpin RNA (shRNA are expressed from a single transcript that mimics the natural microRNA-30e precursor (mir-shRNA. The mir-shRNA, when microinjected into zebrafish embryos, induced an efficient knockdown of two developmentally essential genes chordin and alpha-catenin in a dose-controllable fashion. Furthermore, we designed a novel cassette vector to simultaneously express an intronic mir-shRNA and a chimeric red fluorescent protein driven by lineage-specific promoter, which efficiently reduced the expression of a chromosomally integrated reporter gene and an endogenously expressed gata-1 gene in the developing erythroid progenitors and hemangioblasts, respectively. SIGNIFICANCE: This methodology provides an invaluable tool to knockdown developmental important genes in a tissue-specific manner or to establish animal models, in which the gene dosage is critically important in the pathogenesis of human disorders. The strategy should be also applicable to other model organisms.
Importance-truncated shell model for multi-shell valence spaces
Energy Technology Data Exchange (ETDEWEB)
Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)
2016-07-01
The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.
Calculation of the geometric buckling for reactors of various shapes
Energy Technology Data Exchange (ETDEWEB)
Sjoestrand, N E
1958-05-15
A systematic investigation is made of the eleven coordinate systems in which the reactor equation {nabla}{sup 2}{phi} + B{sup 2}{phi} = 0 is separable. The fundamental solution and geometric buckling are given for those cases where the separated equations lead to known functions. It is especially shown that reactors of prolate and oblate spheroidal shape can be calculated in detail, and the results are given in extensive tables.
DEFF Research Database (Denmark)
Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik
2015-01-01
Robust buckling optimal design of laminated composite structures is conducted in this work. Optimal designs are obtained by considering geometric imperfections in the optimization procedure. Discrete Material Optimization is applied to obtain optimal laminate designs. The optimal geometric...... imperfection is represented by the “worst” shape imperfection. The two optimization problems are combined through the recurrence optimization. Hereby the imperfection sensitivity of the considered structures can be studied. The recurrence optimization is demonstrated through a U-profile and a cylindrical panel...... example. The imperfection sensitivity of the optimized structure decreases during the recurrence optimization for both examples, hence robust buckling optimal structures are designed....
MicroShell Minimalist Shell for Xilinx Microprocessors
Werne, Thomas A.
2011-01-01
MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is
Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates
Yuan, Hongyi; Karim, Alamgir; University of Akron Team
2011-03-01
Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu
Directory of Open Access Journals (Sweden)
Najeeb ur Rahman
Full Text Available A one-dimensional finite element model for buckling analysis of hybrid piezoelectric beams under electromechanical load is presented in this work. The coupled zigzag theory is used for making the model. The inplane displacement is approximated as a combination of a global third order variation across the thickness with an additional layer wise linear variation. The longitudinal electric field is also taken into account. The deflection field is approximated to account for the transverse normal strain induced by electric fields. Two nodded elements with four mechanical and a variable number of electric degrees of freedom at each node are considered. To meet the convergence requirements for weak integral formulation, cubic Hermite interpolation function is used for deflection and electric potential at the sub-layers and linear interpolation function is used for axial displacement and shear rotation. The expressions for the variationally consistent stiffness matrix and load vector are derived and evaluated in closed form using exact integration. The present 1D-FE formulation of zigzag theory is validated by comparing the results with the analytical solution for simply-supported beam and 2D-FE results obtained using ABAQUS. The finite element model is free of shear locking. The critical buckling parameters are obtained for clamped-free and clamped-clamped hybrid beams. The obtained results are compared with the 2D-FE results to establish the accuracy of the zigzag theory for above boundary conditions. The effect of lamination angle on critical buckling load is also studied.
So, Hongyun; Pisano, Albert P.
2013-01-01
© 2013, Springer-Verlag Berlin Heidelberg. This paper reports on a novel thermal actuator with sub-micron metallic structures and a buckling arm to operate with low voltages and to generate very large deflections, respectively. A lumped
Buckling and stretching of thin viscous sheets
O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich
2016-11-01
Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.
Optical properties of core-shell and multi-shell nanorods
Mokkath, Junais Habeeb; Shehata, Nader
2018-05-01
We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.
Bohman, Katarina; Jorlöv, Sofia; Zhou, Shengqi; Zhao, Cloud; Sui, Bo; Ding, Chengkai
2016-10-02
Traffic crashes are one of the leading causes of fatalities among Chinese children. Booster cushion usage in China is low, and there are no studies showing how a population with limited experience handles booster cushions during buckling up. The purpose of this study was to evaluate the handling of and explore the attitudes toward booster cushions among children, parents, and grandparents in Shanghai. An observational study including a convenience sample of 254 children aged 4-12 years was conducted in 2 passenger cars at a shopping center in Shanghai. Parents, grandparents, or the children themselves buckled up the child on 2 types of booster cushions, a 2-stage integrated booster cushion (IBC) and an aftermarket booster cushion (BC). The test participants were observed during buckling up, first without and then with instructions. The test leaders conducted structured interviews. Ninety-eight percent of the uninstructed participants failed to buckle up without identified misuse on the aftermarket booster cushion and 31% of those uninstructed on the integrated booster cushion. The majority of misuse was severe, including placing the belt behind the arm and the lap belt routing above the guiding loops. Instruction reduced misuse to 58% (BC) and 12% (IBC), respectively, and, in particular, severe misuse. Some misuse was related to limited knowledge of how to buckle up on the booster cushion, and some misuse was intentional in order to reduce discomfort. The participants, both children and adults, reported that they preferred the IBC due to good comfort and convenience. Safety was reported as the main reason for adults using booster cushions in general, whereas children reported comfort as the most important motivation. Education is needed to ensure frequent and correct use of booster cushions in China and to raise safety awareness among children and adults. Furthermore, it is important that the booster cushions offer intuitively correct usage to a population with
Flexural torsional buckling of uniformly compressed beam-like structures
Ferretti, M.
2018-02-01
A Timoshenko beam model embedded in a 3D space is introduced for buckling analysis of multi-store buildings, made by rigid floors connected by elastic columns. The beam model is developed via a direct approach, and the constitutive law, accounting for prestress forces, is deduced via a suitable homogenization procedure. The bifurcation analysis for the case of uniformly compressed buildings is then addressed, and numerical results concerning the Timoshenko model are compared with 3D finite element analyses. Finally, some conclusions and perspectives are drawn.
Buckling of thin viscous sheets with inhomogenous viscosity under extensional flows
Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.
2016-11-01
We investigate the dynamics, shape and stability of a thin viscous sheet subjected to an extensional flow under an imposed non-uniform temperature field. Using finite element simulations, we first solve for the stretching flow to determine the pre-buckling sheet thickness and in-plane flow velocities. Next, we use this solution as the base state and solve the linearized partial differential equation governing the out-of-plane deformation of the mid-surface as a function of two dimensionless operating parameters: the normalized stretching ratio α and a dimensionless width of the heating zone β. We show the sheet can become unstable via a buckling instability driven by the development of localized compressive stresses, and determine the global shape and growth rates of the most unstable mode. The growth rate is shown to exhibit a transition from stationary to oscillatory modes in region upstream of the heating zone. Finally, we investigate the effect of surface tension and present an operating diagram that indicates regions of the parameter space that minimizes or entirely suppresses the instability while achieving desired outlet sheet thickness. Therefore, our work is directly relevant to various industrial processes including the glass redraw & float-glass method.
Gavva, L. M.; Endogur, A. I.
2018-02-01
The mathematical model relations for stress-strain state and for buckling investigation of structurally-anisotropic panels made of composite materials are presented. The mathematical model of stiffening rib being torsioned under one-side contact with the skin is refined. One takes into account the influence of panel production technology: residual thermal stresses and reinforcing fibers preliminary tension. The resolved eight order equation and natural boundary conditions are obtained with variation Lagrange procedure. Exact analytical solutions for edge problems are considered. Computer program package is developed using operating MATLAB environment. The influence of the structure parameters on the level of stresses, displacements, of critical buckling forces for bending and for torsion modes has analyzed.
Directory of Open Access Journals (Sweden)
Guo Ruijiang
1995-01-01
Full Text Available A finite element based sensitivity analysis procedure is developed for buckling and postbuckling of composite plates. This procedure is based on the direct differentiation approach combined with the reference volume concept. Linear elastic material model and nonlinear geometric relations are used. The sensitivity analysis technique results in a set of linear algebraic equations which are easy to solve. The procedure developed provides the sensitivity derivatives directly from the current load and responses by solving the set of linear equations. Numerical results are presented and are compared with those obtained using finite difference technique. The results show good agreement except at points near critical buckling load where discontinuities occur. The procedure is very efficient computationally.
EXACT SOLUTION FOR TEMPERATURE-DEPENDENT BUCKLING ANALYSIS OF FG-CNT-REINFORCED MINDLIN PLATES
Directory of Open Access Journals (Sweden)
Seyed Mohammad Mousavi
2016-03-01
Full Text Available This research deals with the buckling analysis of nanocomposite polymeric temperature-dependent plates reinforced by single-walled carbon nanotubes (SWCNTs. For the carbon-nanotube reinforced composite (CNTRC plate, uniform distribution (UD and three types of functionally graded (FG distribution patterns of SWCNT reinforcements are assumed. The material properties of FG-CNTRC plate are graded in the thickness direction and estimated based on the rule of mixture. The CNTRC is located in a elastic medium which is simulated with temperature-dependent Pasternak medium. Based on orthotropic Mindlin plate theory, the governing equations are derived using Hamilton’s principle and solved by Navier method. The influences of the volume fractions of carbon nanotubes, elastic medium, temperature and distribution type of CNTs are considered on the buckling of the plate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the stiffness of plates.
Nonlinear buckling analyses of a small-radius carbon nanotube
International Nuclear Information System (INIS)
Liu, Ning; Li, Min; Jia, Jiao; Wang, Yong-Gang
2014-01-01
Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained
Nonlinear buckling analyses of a small-radius carbon nanotube
Energy Technology Data Exchange (ETDEWEB)
Liu, Ning, E-mail: liuxiao@ase.buaa.edu.cn; Li, Min; Jia, Jiao [School of Aeronautic Science and Engineering, Beihang University, Beijing 100091 (China); Wang, Yong-Gang [Department of Applied Mechanics, China Agricultural University, Beijing 100083 (China)
2014-04-21
Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained.
Compressive buckling of a rectangular nanoplate
Bochkarev, A. O.
2018-05-01
This paper considers the constitutive relations of the nanoplate theory with surface stresses taken into account according to the original or complete Gurtin-Murdoch (GM) model and according to the simplified strain-consistent GM model (which does not include any non-strain terms in the surface stress-strain relation). It is shown that the potential energy of a deformed nanoplate according to both GM models preserves the classical structure using the redefined elastic moduli (effective tangential and flexural elastic properties, which contain the characteristics of bulk phase and a surface). This allows to apply the known solutions and methods from macroplates to nanoplates. As example, it is shown that the critical load of the compressive buckling of a nanoplate according to the complete and strain-consistent GM models has the difference between two solutions no more than 1.5%.
Modelling of the stiffness evolution of truss core structures damaged by plastic buckling
Czech Academy of Sciences Publication Activity Database
Šiška, Filip; Stratil, Luděk; Dlouhý, Ivo; Barnett, M.R.
2015-01-01
Roč. 100, AUG (2015), s. 1-11 ISSN 0168-874X R&D Projects: GA MŠk EE2.3.20.0197 Institutional support: RVO:68081723 Keywords : beam theory * plastic buckling * finite element * beam-columns * truss-coredlaminates Subject RIV: JI - Composite Materials Impact factor: 2.175, year: 2015
Brain gene expression changes elicited by peripheral vitellogenin knockdown in the honey bee.
Wheeler, M M; Ament, S A; Rodriguez-Zas, S L; Robinson, G E
2013-10-01
Vitellogenin (Vg) is best known as a yolk protein precursor. Vg also functions to regulate behavioural maturation in adult honey bee workers, but the underlying molecular mechanisms by which it exerts this novel effect are largely unknown. We used abdominal vitellogenin (vg) knockdown with RNA interference (RNAi) and brain transcriptomic profiling to gain insights into how Vg influences honey bee behavioural maturation. We found that vg knockdown caused extensive gene expression changes in the bee brain, with much of this transcriptional response involving changes in central biological functions such as energy metabolism. vg knockdown targeted many of the same genes that show natural, maturation-related differences, but the direction of change for the genes in these two contrasts was not correlated. By contrast, vg knockdown targeted many of the same genes that are regulated by juvenile hormone (JH) and there was a significant correlation for the direction of change for the genes in these two contrasts. These results indicate that the tight coregulatory relationship that exists between JH and Vg in the regulation of honey bee behavioural maturation is manifest at the genomic level and suggest that these two physiological factors act through common pathways to regulate brain gene expression and behaviour. © 2013 Royal Entomological Society.
TET1 knockdown inhibits the odontogenic differentiation potential of human dental pulp cells.
Rao, Li-Jia; Yi, Bai-Cheng; Li, Qi-Meng; Xu, Qiong
2016-06-30
Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells and generate reparative dentin in response to exogenous stimuli or injury. Ten-eleven translocation 1 (TET1) is a novel DNA methyldioxygenase that plays an important role in the promotion of DNA demethylation and transcriptional regulation in several cell lines. However, the role of TET1 in the biological functions of hDPCs is unknown. To investigate the effect of TET1 on the proliferation and odontogenic differentiation potential of hDPCs, a recombinant shRNA lentiviral vector was used to knock down TET1 expression in hDPCs. Following TET1 knockdown, TET1 was significantly downregulated at both the mRNA and protein levels. Proliferation of the hDPCs was suppressed in the TET1 knockdown groups. Alkaline phosphatase activity, the formation of mineralized nodules, and the expression levels of DSPP and DMP1 were all reduced in the TET1-knockdown hDPCs undergoing odontogenic differentiation. Based on these results, we concluded that TET1 knockdown can prevent the proliferation and odontogenic differentiation of hDPCs, which suggests that TET1 may play an important role in dental pulp repair and regeneration.
In Vivo Testing of MicroRNA-Mediated Gene Knockdown in Zebrafish
Directory of Open Access Journals (Sweden)
Ivone Un San Leong
2012-01-01
Full Text Available The zebrafish (Danio rerio has become an attractive model for human disease modeling as there are a large number of orthologous genes that encode similar proteins to those found in humans. The number of tools available to manipulate the zebrafish genome is limited and many currently used techniques are only effective during early development (such as morpholino-based antisense technology or it is phenotypically driven and does not offer targeted gene knockdown (such as chemical mutagenesis. The use of RNA interference has been met with controversy as off-target effects can make interpreting phenotypic outcomes difficult; however, this has been resolved by creating zebrafish lines that contain stably integrated miRNA constructs that target the desired gene of interest. In this study, we show that a commercially available miRNA vector system with a mouse-derived miRNA backbone is functional in zebrafish and is effective in causing eGFP knockdown in a transient in vivo eGFP sensor assay system. We chose to apply this system to the knockdown of transcripts that are implicated in the human cardiac disorder, Long QT syndrome.
International Nuclear Information System (INIS)
Hoffmann, Alain; Jeanpierre, Francoise; Axisa, Francois; Chevalier, Gerard; Lepareux, Michel.
1977-01-01
The TEDEL code is intended for elastic and plastic computation of three-dimensional pipes and frames with possible junction to shells. The structures are described with using assemblies of beam elements, or piping elements such as, curved pipes, 90 0 elbows, tees, any elements, the stiffness properties of which are given to TEDEL. TEDEL allows the dynamic computation of the structures: search of eigenfrequencies and eigenmodes of vibration, time response to any time-dependent canvassing. This response can be obtained either from recombining a number of eigenmodes, or from a direct numerical integration of the dynamics equation. In these last two cases TEDEL accounts for some possible damping. A TEDEL option allows critical buckling loads to be computed (Euler). The structures can offer any shapes comprising any number of materials. The data are readout without any format, and distributed in optional commands with a precise physical meaning: GEOMETRY, MATERIALS, LOAD, COMPUTATION, END. A dynamical memory control allows the size of the routine to be adapted to the problem to be treated. For pipings, an option is intended for an automatic checking of the stress level with regard to the limiting values of the ASME. Geometrical data, node positions, element numbering are given by COCO which also delivers perspective drawings for the structure to be studied. The results on magnetic tapes can be treated by the subroutines ESPACE-VISU-TEMPS [fr
Crown sealing and buckling instability during water entry of spheres
Marston, J. O.
2016-04-05
We present new observations from an experimental investigation of the classical problem of the crown splash and sealing phenomena observed during the impact of spheres onto quiescent liquid pools. In the experiments, a 6 m tall vacuum chamber was used to provide the required ambient conditions from atmospheric pressure down to of an atmosphere, whilst high-speed videography was exploited to focus primarily on the above-surface crown formation and ensuing dynamics, paying particular attention to the moments just prior to the surface seal. In doing so, we have observed a buckling-type azimuthal instability of the crown. This instability is characterised by vertical striations along the crown, between which thin films form that are more susceptible to the air flow and thus are drawn into the closing cavity, where they atomize to form a fine spray within the cavity. To elucidate to the primary mechanisms and forces at play, we varied the sphere diameter, liquid properties and ambient pressure. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates that the buckling instability appears in all crown sealing events, but is intensified by the presence of a pinned contact line. © 2016 Cambridge University Press.
Yokoyama, Toshiyuki; Kanbayashi, Koki; Yamaguchi, Tamaki
2015-01-01
Toshiyuki Yokoyama, Koki Kanbayashi, Tamaki YamaguchiDepartment of Ophthalmology, Juntendo University Nerima Hospital, Tokyo, JapanPurpose: To assess the treatment of pediatric patients with rhegmatogenous retinal detachment (RRD) by scleral buckling with chandelier illumination.Methods: Three eyes were treated in three patients, healthy boys aged 7 years, 12 years, and 11 years, with RRD, macular involvement, and small retinal holes, of which two were preoperativel...
Directory of Open Access Journals (Sweden)
Bin Xu1
2017-05-01
Full Text Available Objective: To study the effect of transcription factor Runx2 knockdown on colon cancer transplantation tumor growth in vitro. Methods: Colon cancer cell lines HT29 were cultured and transfected with negative control (NC - shRNA plasmids and Runx2-shRNA plasmids respectively, the colon cancer cells transfected with shRNA were subcutaneously injected into C57 nude mice, and they were included in NC group and Runx2 knockdown group respectively. 1 week, 2 weeks and 3 weeks after model establishment, serum was collected to determine the contents of tumor markers, and tumor lesions were collected to determine proliferation and apoptosis gene expression. Results: CCSA-2, CEA and CA19-9 levels in serum as well as Rac1, Wnt3a, PLD2 and FAM96B protein expression in transplantation tumor lesions of Runx2 knockdown group were significantly lower than those of NC group while MS4A12, ASPP2 and Fas protein expression in transplantation tumor lesions of Runx2 knockdown group were significantly higher than those of NC group. Conclusion: Transcription factor Runx2 knockdown could inhibit the colon cancer transplantation tumor growth in vitro.
Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro
The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.
Directory of Open Access Journals (Sweden)
Alexandre Achille Grandinetti
2013-04-01
Full Text Available PURPOSE: To evaluate the changes in corneal topography after 20-gauge pars plana vitrectomy associated with scleral buckling for the repair of rhegmatogenous retinal detachment. METHODS: Twenty-five eyes of 25 patients with rhegmatogenous retinal detachment were included in this study. 20-gauge pars plana vitrectomy associated with scleral buckling was performed in all patients. The corneal topography of each was measured before surgery and one week, one month, and three months after surgery by computer-assisted videokeratoscopy. RESULTS: A statistically significant central corneal steepening (average, 0,9 D , p<0,001 was noted one week after surgery. The total corneal astigmatism had a significant increase in the first postoperative month (p=0,007. All these topographic changes persisted for the first month but returned to preoperative values three months after the surgery. CONCLUSION: Pars plana vitrectomy with scleral buckling was found to induce transient changes in corneal topography.
Core-shell microspheres with porous nanostructured shells for liquid chromatography.
Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei
2018-01-01
The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hi shells, supershells, shell-like objects, and ''worms''
International Nuclear Information System (INIS)
Heiles, C.
1984-01-01
We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo
Energy Technology Data Exchange (ETDEWEB)
Toi, Y.; Isobe, D. (The University of Tokyo, Tokyo (Japan). Institute of Industrial Science)
1993-09-01
This paper describes the following matters on application of an adaptively shifted integration technique to a buckling collapse analysis of framed structures: This method is a method in a finite element analysis using three-dimensional girder elements to arrange value integration points at optimal locations in a linear analysis if the elements are in an elastic transform condition on the whole. The method then moves the value integration points so that plastic hinge will occur in these locations immediately after part of the elements has yielded. The method was applied to analyzing an elastic buckling problem in several loading patterns for either a both-end supported or a one-end fixed beam member. A result was obtained that a number of elements required for one member is four at minimum. In a buckling analysis of framed structures, a satisfactory result was obtained by using an automatic element segmenting algorithm, which begins the analysis with one element one member, and immediately after a member is determined with a possibility of generation of buckling, splits that member only into four elements. 6 refs., 5 figs.
Structural stability analysis considerations in fusion reactor plasma chamber design
International Nuclear Information System (INIS)
Delaney, M.J.; Cramer, B.A.
1978-01-01
This paper presents an approach to analyzing a toroidal plasma chamber for the prevention of both static and dynamic buckling. Results of stability analyses performed for the doublet shaped plasma chamber of the General Atomic 3.8 meter radius TNS ignition test reactor are presented. Load conditions are the static external atmospheric pressure load and the dynamic plasma disruption pulse load. Methods for analysis of plasma chamber structures are presented for both types of load. Analysis for static buckling is based on idealizing the plasma chamber into standard structural shapes and applying classical cylinder and circular torus buckling equations. Results are verified using the Buckling of Shells of Revolution (BOSOR4) finite difference computer code. Analysis for the dynamic loading is based on a pulse buckling analysis method for circular cylinders
Simplified design and evaluation of liquid storage tanks relative to earthquake loading
Energy Technology Data Exchange (ETDEWEB)
Poole, A.B.
1994-06-01
A summary of earthquake-induced damage in liquid storage tanks is provided. The general analysis steps for dynamic response of fluid-filled tanks subject to horizontal ground excitation are discussed. This work will provide major attention to the understanding of observed tank-failure modes. These modes are quite diverse in nature, but many of the commonly appearing patterns are believed to be shell buckling. A generalized and simple-to-apply shell loading will be developed using Fluegge shell theory. The input to this simplified analysis will be horizontal ground acceleration and tank shell form parameters. A dimensionless parameter will be developed and used in predictions of buckling resulting from earthquake-imposed loads. This prediction method will be applied to various tank designs that have failed during major earthquakes and during shaker table tests. Tanks that have not failed will also be reviewed. A simplified approach will be discussed for early design and evaluation of tank shell parameters and materials to provide a high confidence of low probability of failure during earthquakes.
Neukirch, Sébastien
2014-02-01
In-plane vibrations of an elastic rod clamped at both extremities are studied. The rod is modeled as an extensible planar Kirchhoff elastic rod under large displacements and rotations. Equilibrium configurations and vibrations around these configurations are computed analytically in the incipient post-buckling regime. Of particular interest is the variation of the first mode frequency as the load is increased through the buckling threshold. The loading type is found to have a crucial importance as the first mode frequency is shown to behave singularly in the zero thickness limit in the case of prescribed axial displacement, whereas a regular behavior is found in the case of prescribed axial load. © 2013 Elsevier Ltd.
Short Hairpin RNA (shRNA): Design, Delivery, and Assessment of Gene Knockdown
Moore, Chris B.; Guthrie, Elizabeth H.; Huang, Max Tze-Han; Taxman, Debra J.
2013-01-01
Shortly after the cellular mechanism of RNA interference (RNAi) was first described, scientists began using this powerful technique to study gene function. This included designing better methods for the successful delivery of small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) into mammalian cells. While the simplest method for RNAi is the cytosolic delivery of siRNA oligonucleotides, this technique is limited to cells capable of transfection and is primarily utilized during transient in vitro studies. The introduction of shRNA into mammalian cells through infection with viral vectors allows for stable integration of shRNA and long-term knockdown of the targeted gene; however, several challenges exist with the implementation of this technology. Here we describe some well-tested protocols which should increase the chances of successful design, delivery, and assessment of gene knockdown by shRNA. We provide suggestions for designing shRNA targets and controls, a protocol for sequencing through the secondary structure of the shRNA hairpin structure, and protocols for packaging and delivery of shRNA lentiviral particles. Using real-time PCR and functional assays we demonstrate the successful knockdown of ASC, an inflammatory adaptor molecule. These studies demonstrate the practicality of including two shRNAs with different efficacies of knockdown to provide an additional level of control and to verify dose dependency of functional effects. Along with the methods described here, as new techniques and algorithms are designed in the future, shRNA is likely to include further promising application and continue to be a critical component of gene discovery. PMID:20387148
Robust simulation of buckled structures using reduced order modeling
International Nuclear Information System (INIS)
Wiebe, R.; Perez, R.A.; Spottswood, S.M.
2016-01-01
Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties. (paper)
Robust simulation of buckled structures using reduced order modeling
Wiebe, R.; Perez, R. A.; Spottswood, S. M.
2016-09-01
Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties.
Directory of Open Access Journals (Sweden)
Svetlana RADAVIČIENĖ
2012-12-01
Full Text Available In production of garments, embroidery carries out a variety of functions, one of which is the aesthetic appearance of the product improvement. The resulting defects, are seen as a negative indicator of the product quality. The discrepancy of the embroidered element to the digital design in size is a defect, which is influenced by the embroidery threads, embroidery materials properties and process parameters. The fabric sorrounded by the embroidery threads between adjancent needle penetrations inside of the embroidered element is compressed, buckling. The aim of this paper is to investigate the influence of the properties of embroidery threads on buckling of fabric inside of the embroidered element. For investigations specimens were prepared using different fibre composition, density and linear structure of the embroidery threads. Specimens were cut and photo-captured at the beginning, middle and end of the embroidered element. It was found, that different properties of the embroidery threads affecting on the different behavior of fabric inside of the embroidered element. The results of the investigations showed that the fabric inside of the embroidered element formed larger waves of buckling using the maximum elongation of the feedback exhibiting embroidery thread.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3100
Poerschke, Robyn L.; Moos, Philip J.
2010-01-01
Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction. PMID:20920480
Qi, Yi; Kim, Jihoon; Nguyen, Thanh D; Lisko, Bozhena; Purohit, Prashant K; McAlpine, Michael C
2011-03-09
The development of a method for integrating highly efficient energy conversion materials onto soft, biocompatible substrates could yield breakthroughs in implantable or wearable energy harvesting systems. Of particular interest are devices which can conform to irregular, curved surfaces, and operate in vital environments that may involve both flexing and stretching modes. Previous studies have shown significant advances in the integration of highly efficient piezoelectric nanocrystals on flexible and bendable substrates. Yet, such inorganic nanomaterials are mechanically incompatible with the extreme elasticity of elastomeric substrates. Here, we present a novel strategy for overcoming these limitations, by generating wavy piezoelectric ribbons on silicone rubber. Our results show that the amplitudes in the waves accommodate order-of-magnitude increases in maximum tensile strain without fracture. Further, local probing of the buckled ribbons reveals an enhancement in the piezoelectric effect of up to 70%, thus representing the highest reported piezoelectric response on a stretchable medium. These results allow for the integration of energy conversion devices which operate in stretching mode via reversible deformations in the wavy/buckled ribbons.
Geometric buckling measurements using the pulsed neutron source method
Energy Technology Data Exchange (ETDEWEB)
Sjoestrand, N G; Mednis, J; Nilsson, T
1959-03-15
The geometric buckling of cylindrical reactors with one or both ends rounded has been determined by pulsed source measurements with small polyethylene geometries. The results were in general accord with theoretical calculations. The diffusion parameters of polyethylene were also determined. The diffusion length was 2.12 {+-} 0.03 cm, and for the capture cross section of hydrogen a value of 0.337 {+-} 0.005 barns was found. The effect of control rods was studied using thin cadmium rods in water. Good agreement was found for axial, central rods, whereas the theoretical predictions for the effect of diagonal rods were too high.
Geometric buckling measurements using the pulsed neutron source method
International Nuclear Information System (INIS)
Sjoestrand, N.G.; Mednis, J.; Nilsson, T.
1959-03-01
The geometric buckling of cylindrical reactors with one or both ends rounded has been determined by pulsed source measurements with small polyethylene geometries. The results were in general accord with theoretical calculations. The diffusion parameters of polyethylene were also determined. The diffusion length was 2.12 ± 0.03 cm, and for the capture cross section of hydrogen a value of 0.337 ± 0.005 barns was found. The effect of control rods was studied using thin cadmium rods in water. Good agreement was found for axial, central rods, whereas the theoretical predictions for the effect of diagonal rods were too high
MADD knock-down enhances doxorubicin and TRAIL induced apoptosis in breast cancer cells.
Directory of Open Access Journals (Sweden)
Andrea Turner
Full Text Available The Map kinase Activating Death Domain containing protein (MADD isoform of the IG20 gene is over-expressed in different types of cancer tissues and cell lines and it functions as a negative regulator of apoptosis. Therefore, we speculated that MADD might be over-expressed in human breast cancer tissues and that MADD knock-down might synergize with chemotherapeutic or TRAIL-induced apoptosis of breast cancer cells. Analyses of breast tissue microarrays revealed over-expression of MADD in ductal and invasive carcinomas relative to benign tissues. MADD knockdown resulted in enhanced spontaneous apoptosis in human breast cancer cell lines. Moreover, MADD knockdown followed by treatment with TRAIL or doxorubicin resulted in increased cell death compared to either treatment alone. Enhanced cell death was found to be secondary to increased caspase-8 activation. These data indicate that strategies to decrease MADD expression or function in breast cancer may be utilized to increase tumor cell sensitivity to TRAIL and doxorubicin induced apoptosis.
DEFF Research Database (Denmark)
Lindgaard, Esben; Lund, Erik
2012-01-01
This paper presents a novel FEM-based approach for fiber angle optimal design of laminated composite structures exhibiting complicated nonlinear buckling behavior, thus enabling design of lighter and more cost-effective structures. The approach accounts for the geometrically nonlinear behavior of...
DEFF Research Database (Denmark)
Gustafsson, Julie Ry; Katsioudi, Georgia; Issazadeh-Navikas, Shohreh
2016-01-01
be effectively grown in Neurobasal™ media. NEW METHOD: We tested the efficiency of siRNA from the Accell range from Dharmacon™ when delivered in Neurobasal™ media in contrast to the recommended Accell Delivery media provided by the manufacturer. RESULTS: We observed a more specific knockdown of target...... in Neurobasal™ media, than in Accell Delivery media when using cerebellar granule neurons. Transfection efficiency and cell viability was comparable between the two media. COMPARISON WITH EXISTING METHODS: Delivery of siRNA in Neurobasal™ media facilitates increased specificity of the knockdown compared...... to delivery in Accell Delivery media. The off-target effect observed in Accell Delivery media was not a secondary biological response to downregulation of target, but rather a mixture of specific and non-specific off-target effects. CONCLUSIONS: Specific knockdown of target can be achieved in primary...
Free vibration analysis of delaminated composite shells using different shell theories
International Nuclear Information System (INIS)
Nanda, Namita; Sahu, S.K.
2012-01-01
Free vibration response of laminated composite shells with delamination is presented using the finite element method based on first order shear deformation theory. The shell theory used is the extension of dynamic, shear deformable theory according to the Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. An eight-noded C 0 continuity, isoparametric quadrilateral element with five degrees of freedom per node is used in the formulation. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. The natural frequencies of the delaminated cylindrical (CYL), spherical (SPH) and hyperbolic paraboloid (HYP) shells are determined by using the above mentioned shell theories, namely Sanders', Love's, and Donnell's. The validity of the present approach is established by comparing the authors' results with those available in the literature. Additional studies on free vibration response of CYL, SPH and HYP shells are conducted to assess the effects of delamination size and number of layers considering all three shell theories. It is shown that shell theories according to Sanders and Love always predict practically identical frequencies. Donnell's theory gives reliable results only for shallow shells. Moreover, the natural frequency is found to be very sensitive to delamination size and number of layers in the shell.
Genetic and chemical knockdown: a complementary strategy for evaluating an anti-infective target
Directory of Open Access Journals (Sweden)
Ramachandran V
2013-02-01
Full Text Available Vasanthi Ramachandran,1,* Ragini Singh,2,* Xiaoyu Yang,1 Ragadeepthi Tunduguru,1 Subrat Mohapatra,2 Swati Khandelwal,2 Sanjana Patel,2 Santanu Datta21AstraZeneca India R&D, Bangalore, India; 2Cellworks India, Bangalore, India *These authors contributed equally to this workAbstract: The equity of a drug target is principally evaluated by its genetic vulnerability with tools ranging from antisense- and microRNA-driven knockdowns to induced expression of the target protein. In order to upgrade the process of antibacterial target identification and discern its most effective type of inhibition, an in silico toolbox that evaluates its genetic and chemical vulnerability leading either to stasis or cidal outcome was constructed and validated. By precise simulation and careful experimentation using enolpyruvyl shikimate-3-phosphate synthase and its specific inhibitor glyphosate, it was shown that genetic knockdown is distinct from chemical knockdown. It was also observed that depending on the particular mechanism of inhibition, viz competitive, uncompetitive, and noncompetitive, the antimicrobial potency of an inhibitor could be orders of magnitude different. Susceptibility of Escherichia coli to glyphosate and the lack of it in Mycobacterium tuberculosis could be predicted by the in silico platform. Finally, as predicted and simulated in the in silico platform, the translation of growth inhibition to a cidal effect was able to be demonstrated experimentally by altering the carbon source from sorbitol to glucose.Keywords: knockdown, inhibition, in silico, vulnerability
International Nuclear Information System (INIS)
Persson, R.; Andersson, A.J.W.; Wikdahl, C.E.
1966-11-01
Buckling determinations by means of flux mapping were performed in TZ up to 250 deg C on two lattices of Aagesta fuel assemblies in D 2 O and on D 2 O alone. Most of the flux measurements were made with fission counters in pressure thimbles. The perturbations caused by the thimbles were studied experimentally in various ways and compared with two group diffusion-theory calculations. In one of the lattices the effectiveness of a control rod (AglnCd) was also investigated. The results of the diffusion length experiments indicated some systematic error of the order of 0.15 - 0.10/m 2 in the bucklings measured, though the temperature dependence should be well established. The bucklings of the two lattices studied (square pitches 24 and 27 cm) were found to be less sensitive to temperature than theoretical calculations predict, the temperature coefficient being more than 10 per cent smaller. The buckling changes from 20 to 250 deg C were about -2.4 and -1.8/m 2 , respectively, for the two lattices. During part of the experimental period we had, for some unexplained reason, about 30 per cent excess absorption in the heavy water
Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.
Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae
2010-01-01
Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.
On the core-mass-shell-luminosity relation for shell-burning stars
International Nuclear Information System (INIS)
Jeffery, C.S.; Saint Andrews Univ.
1988-01-01
Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)
Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis
International Nuclear Information System (INIS)
Hubbard, Kyle; Catalano, Jennifer; Puri, Raj K; Gnatt, Averell
2008-01-01
A common element among cancer cells is the presence of improperly controlled transcription. In these cells, the degree of specific activation of some genes is abnormal, and altering the aberrant transcription may therefore directly target cancer. TFIIS is a transcription elongation factor, which directly binds the transcription motor, RNA Polymerase II and allows it to read through various transcription arrest sites. We report on RNA interference of TFIIS, a transcription elongation factor, and its affect on proliferation of cancer cells in culture. RNA interference was performed by transfecting siRNA to specifically knock down TFIIS expression in MCF7, MCF10A, PL45 and A549 cells. Levels of TFIIS expression were determined by the Quantigene method, and relative protein levels of TFIIS, c-myc and p53 were determined by C-ELISA. Induction of apoptosis was determined by an enzymatic Caspase 3/7 assay, as well as a non-enzymatic assay detecting cytoplasmic mono- and oligonucleosomes. A gene array analysis was conducted for effects of TFIIS siRNA on MCF7 and MCF10A cell lines. Knockdown of TFIIS reduced cancer cell proliferation in breast, lung and pancreatic cancer cell lines. More specifically, TFIIS knockdown in the MCF7 breast cancer cell line induced cancer cell death and increased c-myc and p53 expression whereas TFIIS knockdown in the non-cancerous breast cell line MCF10A was less affected. Differential effects of TFIIS knockdown in MCF7 and MCF10A cells included the estrogenic, c-myc and p53 pathways, as observed by C-ELISA and gene array, and were likely involved in MCF7 cell-death. Although transcription is a fundamental process, targeting select core transcription factors may provide for a new and potent avenue for cancer therapeutics. In the present study, knockdown of TFIIS inhibited cancer cell proliferation, suggesting that TFIIS could be studied as a potential cancer target within the transcription machinery
77 FR 41881 - Safety Advisory 2012-03; Buckling-Prone Conditions in Continuous Welded Rail Track
2012-07-16
... awareness of the potential consequences of an unexpected track buckle, particularly considering the... track is located on or near railroad bridges. It also recommends that track owners and railroads review.... CWR can produce peculiar maintenance issues for the railroad industry due to the constant temperature...
Out-of-plane buckling of roller bent wide flange arches - imperfections and finite element modeling
Spoorenberg, R.C.; Snijder, H.H.; Hoenderkamp, J.C.D.; Beg, D.; Chan, S.L.; Shu, G.P.
2012-01-01
Steel arches are used more and more in contemporary architecture, combining structural efficiency with architectural merits. If lateral supports are absent, these arches are prone to out-of-plane buckling. Arches are often made by cold bending wide flange beams at ambient temperature. This
Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.
Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia
2017-11-01
Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Williams, Kristine G; Smith, Gillian; Luhmann, Scott J; Mao, Jingnan; Gunn, Joseph D; Luhmann, Janet D
2013-05-01
Buckle fractures are inherently stable and at low risk for displacement. These advantages allow for treatment options that may create confusion for the practitioner. Accepted immobilization methods include circumferential cast, plaster or prefabricated splint, and soft bandaging. Despite mounting evidence for splinting, the questions of pain, preference, satisfaction, and convenience offer a challenge to changing practice. The purposes of this study were (1) to compare cast versus splint for distal radial buckle fractures in terms of parental and patient satisfaction, convenience, and preference and (2) to compare pain reported for cast versus splint. We conducted a prospective randomized trial of a convenience sample of patients 2 through 17 years with a radiologically confirmed distal radial buckle fracture. Subjects were randomly assigned to short-arm cast or prefabricated wrist splint. We assessed satisfaction, convenience, preference, and pain in the emergency department and at days 1, 3, 7, and 21 after immobilization. Ninety-four patients were enrolled. Compared with the cast group, those in the splint group reported higher levels of satisfaction, preference, and convenience on 10-point visual analog scale. Although pain scores were higher for those in the splint group, the difference was not statistically significant. With the exception of pain reported in the emergency department being higher for the splinted group, all other measures, including convenience, satisfaction, and preference, showed a clear trend favoring splints at almost every time period in the study. This study provides additional evidence that splinting is preferable to casting for the treatment of distal radial buckle fractures.
Energy Technology Data Exchange (ETDEWEB)
Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)
2016-06-15
The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.
Ansari, R.; Gholami, R.
2016-09-01
Considering the small scale effect together with the influences of transverse shear deformation, rotary inertia and the magneto-electro-thermo-mechanical coupling, the linear free vibration of magneto-electro-thermo-elastic (METE) rectangular nanoplates with various edge supports in pre- and post-buckled states is investigated herein. It is assumed that the METE nanoplate is subjected to the external in-plane compressive loads in combination with magnetic, electric and thermal loads. The Mindlin plate theory, von Kármán hypothesis and the nonlocal theory are utilized to develop a size-dependent geometrically nonlinear plate model for describing the size-dependent linear and nonlinear mechanical characteristics of moderately thick METE rectangular nanoplates. The nonlinear governing equations and the corresponding boundary conditions are derived using Hamilton’s principle which are then discretized via the generalized differential quadrature method. The pseudo-arc length continuation approach is used to obtain the equilibrium postbuckling path of METE nanoplates. By the obtained postbuckling response, and taking a time-dependent small disturbance around the buckled configuration, and inserting them into the nonlinear governing equations, an eigenvalue problem is achieved from which the frequencies of pre- and post-buckled METE nanoplates can be calculated. The effects of nonlocal parameter, electric, magnetic and thermal loadings, length-to-thickness ratio and different boundary conditions on the free vibration response of METE rectangular nanoplates in the pre- and post-buckled states are highlighted.
Stability of twisted rods, helices and buckling solutions in three dimensions
Majumdar, Apala; Raisch, Alexander
2014-01-01
© 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.
Stability of twisted rods, helices and buckling solutions in three dimensions
Majumdar, Apala
2014-11-03
© 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.
Vivo-morpholinos induced transient knockdown of physical activity related proteins.
Directory of Open Access Journals (Sweden)
David P Ferguson
Full Text Available Physical activity is associated with disease prevention and overall wellbeing. Additionally there has been evidence that physical activity level is a result of genetic influence. However, there has not been a reliable method to silence candidate genes in vivo to determine causal mechanisms of physical activity regulation. Vivo-morpholinos are a potential method to transiently silence specific genes. Thus, the aim of this study was to validate the use of Vivo-morpholinos in a mouse model for voluntary physical activity with several sub-objectives. We observed that Vivo-morpholinos achieved between 60-97% knockdown of Drd1-, Vmat2-, and Glut4-protein in skeletal muscle, the delivery moiety of Vivo-morpholinos (scramble did not influence physical activity and that a cocktail of multiple Vivo-morpholinos can be given in a single treatment to achieve protein knockdown of two different targeted proteins in skeletal muscle simultaneously. Knocking down Drd1, Vmat2, or Glut4 protein in skeletal muscle did not affect physical activity. Vivo-morpholinos injected intravenously alone did not significantly knockdown Vmat2-protein expression in the brain (p = 0.28. However, the use of a bradykinin analog to increase blood-brain-barrier permeability in conjunction with the Vivo-morpholinos significantly (p = 0.0001 decreased Vmat2-protein in the brain with a corresponding later over-expression of Vmat2 coincident with a significant (p = 0.0016 increase in physical activity. We conclude that Vivo-morpholinos can be a valuable tool in determining causal gene-phenotype relationships in whole animal models.
Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy
Directory of Open Access Journals (Sweden)
Pham Phuc V
2011-12-01
Full Text Available Abstract Background Breast cancer stem cells (BCSCs are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs. Methods We isolated a breast cancer cell population (CD44+CD24- cells from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44+CD24- phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs. Results Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs. Conclusions Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.