WorldWideScience

Sample records for shelf image sequence

  1. Glacial morphology and depositional sequences of the Antarctic Continental Shelf

    ten Brink, Uri S.; Schneider, Christopher

    1995-01-01

    Proposes a simple model for the unusual depositional sequences and morphology of the Antarctic continental shelf. It considers the regional stratal geometry and the reversed morphology to be principally the results of time-integrated effects of glacial erosion and sedimentation related to the location of the ice grounding line. The model offers several guidelines for stratigraphic interpretation of the Antarctic shelf and a Northern Hemisphere shelf, both of which were subject to many glacial advances and retreats. -Authors

  2. Region segmentation along image sequence

    Monchal, L.; Aubry, P.

    1995-01-01

    A method to extract regions in sequence of images is proposed. Regions are not matched from one image to the following one. The result of a region segmentation is used as an initialization to segment the following and image to track the region along the sequence. The image sequence is exploited as a spatio-temporal event. (authors). 12 refs., 8 figs

  3. Image sequence analysis

    1981-01-01

    The processing of image sequences has a broad spectrum of important applica­ tions including target tracking, robot navigation, bandwidth compression of TV conferencing video signals, studying the motion of biological cells using microcinematography, cloud tracking, and highway traffic monitoring. Image sequence processing involves a large amount of data. However, because of the progress in computer, LSI, and VLSI technologies, we have now reached a stage when many useful processing tasks can be done in a reasonable amount of time. As a result, research and development activities in image sequence analysis have recently been growing at a rapid pace. An IEEE Computer Society Workshop on Computer Analysis of Time-Varying Imagery was held in Philadelphia, April 5-6, 1979. A related special issue of the IEEE Transactions on Pattern Anal­ ysis and Machine Intelligence was published in November 1980. The IEEE Com­ puter magazine has also published a special issue on the subject in 1981. The purpose of this book ...

  4. Image registration method for medical image sequences

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  5. Incipiently drowned platform deposit in cyclic Ordovician shelf sequence: Lower Ordovician Chepultepec Formation, Virginia

    Bova, J.A.; Read, J.F.

    1983-03-01

    The Chepultepec interval, 145 to 260 m (476 to 853 ft) thick, in Virginia contains the Lower Member up to 150 m (492 ft) thick, and the Upper Member, up to 85 m (279 ft) thick, of peritidal cyclic limestone and dolomite, and a Middle Member, up to 110 m (360 ft) thick, of subtidal limestone and bioherms, passing northwestward into cyclic facies. Calculated long term subsidence rates were 4 to 5 cm/1000 yr (mature passive margin rates), shelf gradients were 6 cm/km, and average duration of cycles was 140,00 years. Peritidal cyclic sequences are upward shallowing sequences of pellet-skeletal limestone, thrombolites, rippled calcisiltites and intraclast grainstone, and laminite caps. They formed by rapid transgression with apparent submergence increments averaging approximately 2 m (6.5 ft) in Lower Member and 3.5 m (11.4 ft), Upper Member. Deposition during Middle Member time was dominated by skeletal limestone-mudstone, calcisiltite with storm generated fining-upward sequences, and burrow-mixed units that were formed near fair-weather wave base, along with thrombolite bioherms. Locally, there are upward shallowing sequences, of basal wackestone/mudstone to calcisiltite to bioherm complexes (locally with erosional scalloped tops). Following each submergence, carbonate sedimentation was able to build to sea level prior to renewed submergence. Large submergence events caused tidal flats to be shifted far to the west, and they were unable to prograde out onto the open shelf because of insufficient time before subsidence was renewed, and because the open shelf setting inhibited tidal flat deposition. The Middle Member represents an incipiently drowned sequence that developed by repeated submergence events.

  6. Triassic Sequence Geological Development of the Arctic with focus on Svalbard and the Barents Shelf

    Moerk, Atle

    1998-12-31

    Triassic rocks are of great interest for exploration in Arctic areas as they have proved to include both good hydrocarbon source rocks and potential hydrogen reservoir rocks. In this thesis, the stratigraphy and sedimentology of the Arctic Triassic successions are studied within a sequence stratigraphical framework. Inter-regional comparisons throughout the Arctic are based on comparisons of transgressive-regressive sequences. Improved dating of the studied sequences, and the recognition and correlation of sequence boundaries of second and third order, facilitate interpretation of facies distribution and the geological development both within and between the studied areas. Main emphasis is given to the Triassic succession of Svalbard and the Barents Shelf, which through this study is integrated within a circum-Arctic sequence stratigraphical framework. Good correspondence of the Triassic sequence boundaries between the different Arctic areas indicate that they are mainly controlled by eustacy, while decreasing correspondence of the sequence boundaries in the Jurassic and Cretaceous periods indicate that local and large scale tectonism becomes progressively more dominant in the circum-Arctic Realm through the Mesozoic Era. These hypotheses are further discussed. 701 refs., 110 figs., 12 tabs.

  7. Seismic analysis of clinoform depositional sequences and shelf-margin trajectories in Lower Cretaceous (Albian) strata, Alaska North Slope

    Houseknecht, D.W.; Bird, K.J.; Schenk, C.J.

    2009-01-01

    Lower Cretaceous strata beneath the Alaska North Slope include clinoform depositional sequences that filled the western Colville foreland basin and overstepped the Beaufort rift shoulder. Analysis of Albian clinoform sequences with two-dimensional (2D) seismic data resulted in the recognition of seismic facies inferred to represent lowstand, transgressive and highstand systems tracts. These are stacked to produce shelf-margin trajectories that appear in low-resolution seismic data to alternate between aggradational and progradational. Higher-resolution seismic data reveal shelf-margin trajectories that are more complex, particularly in net-aggradational areas, where three patterns commonly are observed: (1) a negative (downward) step across the sequence boundary followed by mostly aggradation in the lowstand systems tract (LST), (2) a positive (upward) step across the sequence boundary followed by mostly progradation in the LST and (3) an upward backstep across a mass-failure d??collement. These different shelf-margin trajectories are interpreted as (1) fall of relative sea level below the shelf edge, (2) fall of relative sea level to above the shelf edge and (3) mass-failure removal of shelf-margin sediment. Lowstand shelf margins mapped using these criteria are oriented north-south in the foreland basin, indicating longitudinal filling from west to east. The shelf margins turn westward in the north, where the clinoform depositional system overstepped the rift shoulder, and turn eastward in the south, suggesting progradation of depositional systems from the ancestral Brooks Range into the foredeep. Lowstand shelf-margin orientations are consistently perpendicular to clinoform-foreset-dip directions. Although the Albian clinoform sequences of the Alaska North Slope are generally similar in stratal geometry to clinoform sequences elsewhere, they are significantly thicker. Clinoform-sequence thickness ranges from 600-1000 m in the north to 1700-2000 m in the south

  8. Upper Ordovician-Lower Silurian shelf sequences of the Eastern Great Basin: Barn Hills and Lakeside Mountains, Utah

    Harris, M.T. (Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Geosciences); Sheehan, P.M. (Milwaukee Public Museum, WI (United States). Dept of Geology)

    1993-04-01

    Detailed stratigraphic sections through Upper Ordovician-Lower Silurian shelf strata of the Eastern Great Basin were measured in two Utah localities, Barn Hills (Confusion Range) and Lakeside Mountains. Six major subfacies occur in these strata: mud-cracked and crinkly laminated subfacies, Laminated mudstone subfacies, cross-bedded grainstone subfacies, cross-laminated packstone subfacies, grainy bioturbated subfacies, muddy bioturbated subfacies, and thalassinoides burrowed subfacies. These occur in 1--10 m thick cycles in three facies: muddy cyclic laminite facies (tidal flats), cross-bedded facies (subtidal shoals), and bioturbated facies (moderate to low-energy shelf). The vertical facies succession, stacking patterns of meter-scale cycles, and exposure surfaces define correlatable sequences. The authors recognize four Upper Ordovician sequences (Mayvillian to Richmondian). An uppermost Ordovician (Hirnantian) sequence is missing in these sections but occurs basinward. Lower Silurian sequences are of early Llandoverian (A), middle Llandoverian (B), early late Llandoverian (C1--C3), late late Llandoverian (C4--C5), latest Llandoverian (C6) to early Wenlock age. In general, Upper Ordovician and latest Llandoverian-Wenlockian facies are muddier than intervening Llandoverian facies. The shift to muddier shelf facies in latest Llandoverian probably corresponds to the development of a rimmed shelf. The sequence framework improves correlation of these strata by combining sedimentologic patterns with the biostratigraphic data. For example, in the Lakesides, the Ordovician-Silurian boundary is shifted 37 m downward from recent suggestions. In addition, the sequence approach highlights intervals for which additional biostratigraphic information is needed.

  9. Chronology of Eocene-Miocene sequences on the New Jersey shallow shelf: implications for regional, interregional, and global correlations

    Browning, James V.; Miller, Kenneth G.; Sugarman, Peter J.; Barron, John; McCarthy, Francine M.G.; Kulhanek, Denise K.; Katz, Miriam E.; Feigenson, Mark D.

    2013-01-01

    Integrated Ocean Drilling Program Expedition 313 continuously cored and logged latest Eocene to early-middle Miocene sequences at three sites (M27, M28, and M29) on the inner-middle continental shelf offshore New Jersey, providing an opportunity to evaluate the ages, global correlations, and significance of sequence boundaries. We provide a chronology for these sequences using integrated strontium isotopic stratigraphy and biostratigraphy (primarily calcareous nannoplankton, diatoms, and dinocysts [dinoflagellate cysts]). Despite challenges posed by shallow-water sediments, age resolution is typically ±0.5 m.y. and in many sequences is as good as ±0.25 m.y. Three Oligocene sequences were sampled at Site M27 on sequence bottomsets. Fifteen early to early-middle Miocene sequences were dated at Sites M27, M28, and M29 across clinothems in topsets, foresets (where the sequences are thickest), and bottomsets. A few sequences have coarse (∼1 m.y.) or little age constraint due to barren zones; we constrain the age estimates of these less well dated sequences by applying the principle of superposition, i.e., sediments above sequence boundaries in any site are younger than the sediments below the sequence boundaries at other sites. Our age control provides constraints on the timing of deposition in the clinothem; sequences on the topsets are generally the youngest in the clinothem, whereas the bottomsets generally are the oldest. The greatest amount of time is represented on foresets, although we have no evidence for a correlative conformity. Our chronology provides a baseline for regional and interregional correlations and sea-level reconstructions: (1) we correlate a major increase in sedimentation rate precisely with the timing of the middle Miocene climate changes associated with the development of a permanent East Antarctic Ice Sheet; and (2) the timing of sequence boundaries matches the deep-sea oxygen isotopic record, implicating glacioeustasy as a major driver

  10. NOAA TIFF Image - SouthWest Shelf, St. Croix, USVI - Benthic Habitat Characterization - NOAA Ship Nancy Foster - M-1907-NF-14 (2014), UTM 20N NAD83

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 1 meter resolution bathymetry of the reef shelf and the steep slopes of the Southwest Shelf (H12640) of St. Croix, US Virgin Islands. The...

  11. Image correlation method for DNA sequence alignment.

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  12. Testing sequence stratigraphic models by drilling Miocene foresets on the New Jersey shallow shelf

    Miller, Kenneth G.; Mountain, Gregory S.; Browning, James V.

    2013-01-01

    continental shelf (Integrated Ocean Drilling Program Expedition 313, Sites M27-M29). We recognize stratal surfaces and systems tracts by integrating seismic stratigraphy, litho-facies successions, gamma logs, and foraminiferal paleodepth trends. Our interpretations of systems tracts, particularly......) and coarsening- and shallowing-upward highstand systems tracts (HST). Drilling through the foresets yields thin (

  13. Digital image sequence processing, compression, and analysis

    Reed, Todd R

    2004-01-01

    IntroductionTodd R. ReedCONTENT-BASED IMAGE SEQUENCE REPRESENTATIONPedro M. Q. Aguiar, Radu S. Jasinschi, José M. F. Moura, andCharnchai PluempitiwiriyawejTHE COMPUTATION OF MOTIONChristoph Stiller, Sören Kammel, Jan Horn, and Thao DangMOTION ANALYSIS AND DISPLACEMENT ESTIMATION IN THE FREQUENCY DOMAINLuca Lucchese and Guido Maria CortelazzoQUALITY OF SERVICE ASSESSMENT IN NEW GENERATION WIRELESS VIDEO COMMUNICATIONSGaetano GiuntaERROR CONCEALMENT IN DIGITAL VIDEOFrancesco G.B. De NataleIMAGE SEQUENCE RESTORATION: A WIDER PERSPECTIVEAnil KokaramVIDEO SUMMARIZATIONCuneyt M. Taskiran and Edward

  14. Permian storm current-produced offshore bars from an ancient shelf sequence : Northwestern Karoo basin, republic of South Africa

    Smith, A. M.; Zawada, P. K.

    The Ecca-Beaufort transition zone from the Karoo Basin comprises upward-coarsening sequences which are interpreted as prograding, storm-produced offshore bars. Eight facies are recognised: (A) dark-grey shale, (B) thinly interbedded siltstone and mudstone, (C) thinly interbedded siltstone and very fine-grained sandstone, (D) blue-grey coarse-grained siltstone, (E) low-angle truncated and flat-laminated sandstone, (F) wave-rippled sandstone, (G) planar cross-bedded sandstone, (H) intraformational clay-pellet conglomerate. Four sub-environments are recognised, these being: (1) the bar crest which comprises proximal tempestites, (2) the bar slope consisting of soft-sediment deformed siltstone, (3) the bar fringe/ margin which is composed of storm layers and offshore siltstones and (4) the interbar/offshore environment comprising siltstone and distal storm layers. These bars formed in response to wave and storm processes and migrated across a muddy shelf environment. The orientation of bars was probably coast-parallel to subparallel with respect to the inferred north-northwest-south-southeast coastline. These proposed, storm-produced bars acted as major depo-centres within the shelf setting of the study area. As shelf sediments are recorded from almost the entire northwestern Karoo Basin it is anticipated that bar formation was an important sedimentary factor in the deposition of the sediments now referred to as the Ecca-Beaufort transition zone.

  15. Realise : reconstruction of reality from image sequences

    Leymarie, F.; de la Fortelle, A.; Koenderink, Jan J.; Kappers, A. M L; Stavridi, M.; van Ginneken, B.; Muller, S.; Krake, S.; Faugeras, O.; Robert, L.; Gauclin, C.; Laveau, S.; Zeller, C.; Anon,

    1996-01-01

    REALISE has for principal goals to extract from sequences of images, acquired with a moving camera, information necessary for determining the 3D (CAD-like) structure of a real-life scene together with information about the radiometric signatures of surfaces bounding the extracted 3D objects (e.g.

  16. Statistical processing of large image sequences.

    Khellah, F; Fieguth, P; Murray, M J; Allen, M

    2005-01-01

    The dynamic estimation of large-scale stochastic image sequences, as frequently encountered in remote sensing, is important in a variety of scientific applications. However, the size of such images makes conventional dynamic estimation methods, for example, the Kalman and related filters, impractical. In this paper, we present an approach that emulates the Kalman filter, but with considerably reduced computational and storage requirements. Our approach is illustrated in the context of a 512 x 512 image sequence of ocean surface temperature. The static estimation step, the primary contribution here, uses a mixture of stationary models to accurately mimic the effect of a nonstationary prior, simplifying both computational complexity and modeling. Our approach provides an efficient, stable, positive-definite model which is consistent with the given correlation structure. Thus, the methods of this paper may find application in modeling and single-frame estimation.

  17. Particle detection and classification using commercial off the shelf CMOS image sensors

    Pérez, Martín [Instituto Balseiro, Av. Bustillo 9500, Bariloche, 8400 (Argentina); Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, Av. Bustillo 9500, Bariloche 8400 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 Bariloche (Argentina); Lipovetzky, Jose, E-mail: lipo@cab.cnea.gov.ar [Instituto Balseiro, Av. Bustillo 9500, Bariloche, 8400 (Argentina); Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, Av. Bustillo 9500, Bariloche 8400 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 Bariloche (Argentina); Sofo Haro, Miguel; Sidelnik, Iván; Blostein, Juan Jerónimo; Alcalde Bessia, Fabricio; Berisso, Mariano Gómez [Instituto Balseiro, Av. Bustillo 9500, Bariloche, 8400 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2016-08-11

    In this paper we analyse the response of two different Commercial Off The shelf CMOS image sensors as particle detectors. Sensors were irradiated using X-ray photons, gamma photons, beta particles and alpha particles from diverse sources. The amount of charge produced by different particles, and the size of the spot registered on the sensor are compared, and analysed by an algorithm to classify them. For a known incident energy spectrum, the employed sensors provide a dose resolution lower than microGray, showing their potentials in radioprotection, area monitoring, or medical applications.

  18. An Imaging And Graphics Workstation For Image Sequence Analysis

    Mostafavi, Hassan

    1990-01-01

    This paper describes an application-specific engineering workstation designed and developed to analyze imagery sequences from a variety of sources. The system combines the software and hardware environment of the modern graphic-oriented workstations with the digital image acquisition, processing and display techniques. The objective is to achieve automation and high throughput for many data reduction tasks involving metric studies of image sequences. The applications of such an automated data reduction tool include analysis of the trajectory and attitude of aircraft, missile, stores and other flying objects in various flight regimes including launch and separation as well as regular flight maneuvers. The workstation can also be used in an on-line or off-line mode to study three-dimensional motion of aircraft models in simulated flight conditions such as wind tunnels. The system's key features are: 1) Acquisition and storage of image sequences by digitizing real-time video or frames from a film strip; 2) computer-controlled movie loop playback, slow motion and freeze frame display combined with digital image sharpening, noise reduction, contrast enhancement and interactive image magnification; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored image sequence; 4) automatic and manual field-of-view and spatial calibration; 5) image sequence data base generation and management, including the measurement data products; 6) off-line analysis software for trajectory plotting and statistical analysis; 7) model-based estimation and tracking of object attitude angles; and 8) interface to a variety of video players and film transport sub-systems.

  19. Characteristics, stratigraphic architecture, and time framework of multi-order mixed siliciclastic and carbonate depositional sequences, outcropping Cisco Group (Late Pennsylvanian and Early Permian), Eastern Shelf, north-central Texas, USA

    Yang, Wan; Kominz, Michelle A.

    2003-01-01

    The Cisco Group on the Eastern Shelf of the Midland Basin is composed of fluvial, deltaic, shelf, shelf-margin, and slope-to-basin carbonate and siliciclastic rocks. Sedimentologic and stratigraphic analyses of 181 meter-to-decimeter-scale depositional sequences exposed in the up-dip shelf indicated that the siliciclastic and carbonate parasequences in the transgressive systems tracts (TST) are thin and upward deepening, whereas those in highstand systems tracts (HST) are thick and upward shallowing. The sequences can be subdivided into five types on the basis of principal lithofacies, and exhibit variable magnitude of facies shift corresponding to variable extents of marine transgression and regression on the shelf. The sequence stacking patterns and their regional persistence suggest a three-level sequence hierarchy controlled by eustasy, whereas local and regional changes in lithology, thickness, and sequence type, magnitude, and absence were controlled by interplay of eustasy, differential shelf subsidence, depositional topography, and pattern of siliciclastic supply. The outcropping Cisco Group is highly incomplete with an estimated 6-11% stratigraphic completeness. The average duration of deposition of the major (third-order) sequences is estimated as 67-102 ka on the up-dip shelf and increases down dip, while the average duration of the major sequence boundaries (SB) is estimated as 831-1066 ka and decreases down dip. The nondepositional and erosional hiatus on the up-dip shelf was represented by lowstand deltaic systems in the basin and slope.

  20. Late Proterozoic glacially controlled shelf sequences in western Mali (west Africa)

    Deynoux, M.; Prousti, J. N.; Simon, B.

    The Late Proterozoic deposits of the Bakoye Group (500 m) in western Mali constitute a remarkable example of a glacially influenced sedimentary record on an epicratonic platform. They are composed of alternating marine and continental formations which represent accumulation in a basin located in the vicinity of upland areas covered by ice sheets. One of these formations (the Ba4 Formation), which is the focus of this study, is composed of three major units. The basal Unit 1 is made up of carbonaceous coarse to fine grained sandstones which are organized in fining upward sequences and which comprise lenticular diamictite intercalations. This Unit is considered to represent the fore slope gravity flows of a subaqueous ice-cootact fan fed by meltwater streams (≪glacioturbidites≫). Unit 2 is made up of coarse to fine grained sandstones in a highly variable association of facies. This Unit is characterized by the abundance of wave ripples associated with convolute beddings. planar or wavy beddings and tabular or hummocky crossbeddings in a general shallowing upward trend. It also comprises evidence of gravity processes including debris flows and large slumped sandstone bodies. Unit 2 represents the progressive filling of the Ba4 basin and reflects the combined effect of glacially induced eustatism and isostacy during a phase of glacial retreat. The basal part of Unit 3 is made up of a succession (a few meters thick) of conglomerates, diamictites, sandstones, siltstones or carbonates lying on an erosional unconformity marked by periglacial frost wedges. The upper part of Unit 3 is thicker (100-150 m) and onlaps on these basal facies with a succession of sandstone bars exhibiting swaley and hummocky crossbeddings, large cut and fill structures, and planar laminations. Unit 3 is strongly transgressive, the lower shoreface and backshore deposits include algal mats and are onlapped by sand ridges emplaced in a high energy upper to middle shoreface environment. Overall

  1. Eigenimage filtering of nuclear medicine image sequences

    Windham, J.P.; Froelich, J.W.; Abd-Allah, M.

    1985-01-01

    In many nuclear medicine imaging sequences the localization of radioactivity in organs other than the target organ interferes with imaging of the desired anatomical structure or physiological process. A filtering technique has been developed which suppresses the interfering process while enhancing the desired process. This technique requires the identification of temporal sequential signatures for both the interfering and desired processes. These signatures are placed in the form of signature vectors. Signature matrices, M/sub D/ and M/sub U/, are formed by taking the outer product expansion of the temporal signature vectors for the desired and interfering processes respectively. By using the transformation from the simultaneous diagonalization of these two signature matrices a weighting vector is obtained. The technique is shown to maximize the projection of the desired process while minimizing the interfering process based upon an extension of Rayleigh's Principle. The technique is demonstrated for first pass renal and cardiac flow studies. This filter offers a potential for simplifying and extending the accuracy of diagnostic nuclear medicine procedures

  2. Pulse sequences for contrast-enhanced magnetic resonance imaging

    Graves, Martin J.

    2007-01-01

    The theory and application of magnetic resonance imaging (MRI) pulse sequences following the administration of an exogenous contrast agent are discussed. Pulse sequences are categorised according to the contrast agent mechanism: changes in proton density, relaxivity, magnetic susceptibility and resonant frequency shift. Applications in morphological imaging, magnetic resonance angiography, dynamic imaging and cell labelling are described. The importance of optimising the pulse sequence for each application is emphasised

  3. A New Images Hiding Scheme Based on Chaotic Sequences

    LIU Nian-sheng; GUO Dong-hui; WU Bo-xi; Parr G

    2005-01-01

    We propose a data hidding technique in a still image. This technique is based on chaotic sequence in the transform domain of covert image. We use different chaotic random sequences multiplied by multiple sensitive images, respectively, to spread the spectrum of sensitive images. Multiple sensitive images are hidden in a covert image as a form of noise. The results of theoretical analysis and computer simulation show the new hiding technique have better properties with high security, imperceptibility and capacity for hidden information in comparison with the conventional scheme such as LSB (Least Significance Bit).

  4. NOAA TIFF Image- 0.5 meter Backscatter Mosaic of Mid Shelf Reef (St. Thomas), US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 0.5 meter resolution backscatter mosaic of the Mid Shelf Reef south of St. Thomas, US Virgin IslandsNOAA's NOS/NCCOS/CCMA Biogeography Team,...

  5. NOAA TIFF Image - 1 m Backscatter Mosaic of the St. John Shelf, U.S. Virgin Islands, Project NF-10-03, 2010, UTM 20 WGS84

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 1 meter resolution backscatter mosaic of the St. John Shelf, US Virgin Islands. NOAA's NOS/NCCOS/CCMA Biogeography Team, in collaboration...

  6. NOAA TIFF Image - SouthWest Shelf, St. Croix, USVI - Benthic Habitat Characterization - NOAA Ship Nancy Foster - M-1907-NF-14 (2014), UTM 20N NAD83 (NCEI Accession 0128255)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 1 meter resolution bathymetry of the reef shelf and the steep slopes of the Southwest Shelf (H12640) of St. Croix, US Virgin Islands. The...

  7. Safety Assessment of Advanced Imaging Sequences I: Measurements

    Jensen, Jørgen Arendt; Rasmussen, Morten Fischer; Pihl, Michael Johannes

    2016-01-01

    intensity measurement program. The approach can measure and store data for a full imaging sequence in 3.8 to 8.2 s per spatial position. Based on Ispta, MI, and probe surface temperature, the method gives the ability to determine whether a sequence is within US FDA limits, or alternatively indicate how......A method for rapid measurement of intensities (Ispta), mechanical index (MI), and probe surface temperature for any ultrasound scanning sequence is presented. It uses the scanner’s sampling capability to give an accurate measurement of the whole imaging sequence for all emissions to yield the true...... measurement system (Onda Corporation, Sunnyvale, CA, USA). Four different sequences have been measured: a fixed focus emission, a duplex sequence containing B-mode and flow emissions, a vector flow sequence with B-mode and flow emissions in 17 directions, and finally a synthetic aperture (SA) duplex flow...

  8. Spatio-temporal alignment of pedobarographic image sequences.

    Oliveira, Francisco P M; Sousa, Andreia; Santos, Rubim; Tavares, João Manuel R S

    2011-07-01

    This article presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine, or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. In addition, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (P alignment of pedobarographic image data, since previous methods can only be applied on static images.

  9. Motion Detection in Ultrasound Image-Sequences Using Tensor Voting

    Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka

    2008-05-01

    Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.

  10. Fat suppression in MR imaging with binomial pulse sequences

    Baudovin, C.J.; Bryant, D.J.; Bydder, G.M.; Young, I.R.

    1989-01-01

    This paper reports on a study to develop pulse sequences allowing suppression of fat signal on MR images without eliminating signal from other tissues with short T1. They have developed such a technique involving selective excitation of protons in water, based on a binomial pulse sequence. Imaging is performed at 0.15 T. Careful shimming is performed to maximize separation of fat and water peaks. A spin-echo 1,500/80 sequence is used, employing 90 degrees pulse with transit frequency optimized for water with null excitation of 20 H offset, followed by a section-selective 180 degrees pulse. With use of the binomial sequence for imagining, reduction in fat signal is seen on images of the pelvis and legs of volunteers. Patient studies show dramatic improvement in visualization of prostatic carcinoma compared with standard sequences

  11. Image encryption using random sequence generated from generalized information domain

    Zhang Xia-Yan; Wu Jie-Hua; Zhang Guo-Ji; Li Xuan; Ren Ya-Zhou

    2016-01-01

    A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security. (paper)

  12. Image ranking in video sequences using pairwise image comparisons and temporal smoothing

    Burke, Michael

    2016-12-01

    Full Text Available The ability to predict the importance of an image is highly desirable in computer vision. This work introduces an image ranking scheme suitable for use in video or image sequences. Pairwise image comparisons are used to determine image ‘interest...

  13. New diffusion imaging method with a single acquisition sequence

    Melki, Ph.S.; Bittoun, J.; Lefevre, J.E.

    1987-01-01

    The apparent diffusion coefficient (ADC) is related to the molecular diffusion coefficient and to physiologic information: microcirculation in the capillary network, incoherent slow flow, and restricted diffusion. The authors present a new MR imaging sequence that yields computed ADC images in only one acquisition of 9-minutes with a 1.5-T imager (GE Signa). Compared to the previous method, this sequence is at least two times faster and thus can be used as a routine examination to supplement T1-, T2-, and density-weighted images. The method was assessed by measurement of the molecular diffusion in liquids, and the first clinical images obtained in neurologic diseases demonstrate its efficiency for clinical investigation. The possibility of separately imaging diffusion and perfusion is supported by an algorithm

  14. Image sequence analysis workstation for multipoint motion analysis

    Mostafavi, Hassan

    1990-08-01

    This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.

  15. Extracting flat-field images from scene-based image sequences using phase correlation

    Caron, James N., E-mail: Caron@RSImd.com [Research Support Instruments, 4325-B Forbes Boulevard, Lanham, Maryland 20706 (United States); Montes, Marcos J. [Naval Research Laboratory, Code 7231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); Obermark, Jerome L. [Naval Research Laboratory, Code 8231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States)

    2016-06-15

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method uses sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.

  16. MISTICA: Minimum Spanning Tree-Based Coarse Image Alignment for Microscopy Image Sequences.

    Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T

    2016-11-01

    Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to reorder the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by the way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries.

  17. Post-contrast T1-weighted sequences in pediatric abdominal imaging: comparative analysis of three different sequences and imaging approach

    Roque, Andreia; Ramalho, Miguel; AlObaidy, Mamdoh; Heredia, Vasco; Burke, Lauren M.; De Campos, Rafael O.P.; Semelka, Richard C. [University of North Carolina at Chapel Hill, Department of Radiology, Chapel Hill, NC (United States)

    2014-10-15

    Post-contrast T1-weighted imaging is an essential component of a comprehensive pediatric abdominopelvic MR examination. However, consistent good image quality is challenging, as respiratory motion in sedated children can substantially degrade the image quality. To compare the image quality of three different post-contrast T1-weighted imaging techniques - standard three-dimensional gradient-echo (3-D-GRE), magnetization-prepared gradient-recall echo (MP-GRE) and 3-D-GRE with radial data sampling (radial 3-D-GRE) - acquired in pediatric patients younger than 5 years of age. Sixty consecutive exams performed in 51 patients (23 females, 28 males; mean age 2.5 ± 1.4 years) constituted the final study population. Thirty-nine scans were performed at 3 T and 21 scans were performed at 1.5 T. Two different reviewers independently and blindly qualitatively evaluated all sequences to determine image quality and extent of artifacts. MP-GRE and radial 3-D-GRE sequences had the least respiratory motion (P < 0.0001). Standard 3-D-GRE sequences displayed the lowest average score ratings in hepatic and pancreatic edge definition, hepatic vessel clarity and overall image quality. Radial 3-D-GRE sequences showed the highest scores ratings in overall image quality. Our preliminary results support the preference of fat-suppressed radial 3-D-GRE as the best post-contrast T1-weighted imaging approach for patients under the age of 5 years, when dynamic imaging is not essential. (orig.)

  18. Geometrical primitives reconstruction from image sequence in an interactive context

    Monchal, L.; Aubry, P.

    1995-01-01

    We propose a method to recover 3D geometrical shape from image sequence, in a context of man machine co-operation. The human operator has to point out the edges of an object in the first image and choose a corresponding geometrical model. The algorithm tracks each relevant 2D segments describing surface discontinuities or limbs, in the images. Then, knowing motion of the camera between images, the positioning and the size of the virtual object are deduced by minimising a function. The function describes how well the virtual objects is linked to the extracted segments of the sequence, its geometrical model and pieces of information given by the operator. (author). 13 refs., 7 figs., 8 tabs

  19. MR imaging pulse sequence rationale: SD-, T1-, and T2-weighted images

    Sax, S.; Weathers, S.W.; Schneiders, N.J.; Horowitz, B.L.; Mawad, M.E.; Sandlin, M.E.; Blackwell, R.; Bryan, R.N.

    1986-01-01

    Over 500 patients have been examined with a pulse sequence designed to provide spin-density (SD)-weighted images (TR=3 sec, TE=35 msec), T1-weighted images (TR=0.3 sec, TE=35msec), and T2-weighted images (TR=3 sec, TE=105 msec) from which calculated ''synthesized'' images and SD, T1, and T2 calculated images could be obtained. Each image contributes unique information. SD-weighted images optimally display anatomy and often best highlight pathology. T1-weighted images are critical in assessing cerebral hemorrhages. T2-weighted images best display most lesions, but yield incomplete information in 35% of cases. All three types of ''weighted'' images are necessary to optimally display anatomy and fully characterize a lesion. Computerized calculations and simulations suggest that no other combination of pulse sequences yields equal information for a given examination time

  20. Research on hyperspectral dynamic scene and image sequence simulation

    Sun, Dandan; Liu, Fang; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei

    2016-10-01

    This paper presents a simulation method of hyperspectral dynamic scene and image sequence for hyperspectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyperspectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyperspectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyperspectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyperspectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyperspectral images are consistent with the theoretical analysis results.

  1. Simulation and Efficient Measurements of Intensities for Complex Imaging Sequences

    Jensen, Jørgen Arendt; Rasmussen, Morten Fischer; Stuart, Matthias Bo

    2014-01-01

    on the sequence to simulate both intensity and mechanical index (MI) according to FDA rules. A 3 MHz BK Medical 8820e convex array transducer is used with the SARUS scanner. An Onda HFL-0400 hydrophone and the Onda AIMS III system measures the pressure field for three imaging schemes: a fixed focus, single...

  2. Ichnology applied to sequence stratigraphic analysis of Siluro-Devonian mud-dominated shelf deposits, Paraná Basin, Brazil

    Sedorko, Daniel; Netto, Renata G.; Savrda, Charles E.

    2018-04-01

    Previous studies of the Paraná Supersequence (Furnas and Ponta Grossa formations) of the Paraná Basin in southern Brazil have yielded disparate sequence stratigraphic interpretations. An integrated sedimentological, paleontological, and ichnological model was created to establish a refined sequence stratigraphic framework for this succession, focusing on the Ponta Grossa Formation. Twenty-nine ichnotaxa are recognized in the Ponta Grossa Formation, recurring assemblages of which define five trace fossil suites that represent various expressions of the Skolithos, Glossifungites and Cruziana ichnofacies. Physical sedimentologic characteristics and associated softground ichnofacies provide the basis for recognizing seven facies that reflect a passive relationship to bathymetric gradients from shallow marine (shoreface) to offshore deposition. The vertical distribution of facies provides the basis for dividing the Ponta Grossa Formation into three major (3rd-order) depositional sequences- Siluro-Devonian and Devonian I and II-each containing a record of three to seven higher-order relative sea-level cycles. Major sequence boundaries, commonly coinciding with hiatuses recognized from previously published biostratigraphic data, are locally marked by firmground Glossifungites Ichnofacies associated with submarine erosion. Maximum transgressive horizons are prominently marked by unbioturbated or weakly bioturbated black shales. By integrating observations of the Ponta Grossa Formation with those recently made on the underlying marginal- to shallow-marine Furnas Formation, the entire Paraná Supersequence can be divided into four disconformity-bound sequences: a Lower Silurian (Llandovery-Wenlock) sequence, corresponding to lower and middle units of the Furnas; a Siluro-Devonian sequence (?Pridoli-Early Emsian), and Devonian sequences I (Late Emsian-Late Eifelian) and II (Late Eifelian-Early Givetian). Stratigraphic positions of sequence boundaries generally coincide with

  3. Optical flow estimation on image sequences with differently exposed frames

    Bengtsson, Tomas; McKelvey, Tomas; Lindström, Konstantin

    2015-09-01

    Optical flow (OF) methods are used to estimate dense motion information between consecutive frames in image sequences. In addition to the specific OF estimation method itself, the quality of the input image sequence is of crucial importance to the quality of the resulting flow estimates. For instance, lack of texture in image frames caused by saturation of the camera sensor during exposure can significantly deteriorate the performance. An approach to avoid this negative effect is to use different camera settings when capturing the individual frames. We provide a framework for OF estimation on such sequences that contain differently exposed frames. Information from multiple frames are combined into a total cost functional such that the lack of an active data term for saturated image areas is avoided. Experimental results demonstrate that using alternate camera settings to capture the full dynamic range of an underlying scene can clearly improve the quality of flow estimates. When saturation of image data is significant, the proposed methods show superior performance in terms of lower endpoint errors of the flow vectors compared to a set of baseline methods. Furthermore, we provide some qualitative examples of how and when our method should be used.

  4. Studying a free fall experiment using short sequences of images

    Vera, Francisco; Romanque, Cristian

    2008-01-01

    We discuss a new alternative for obtaining position and time coordinates from a video of a free fall experiment. In our approach, after converting the video to a short sequence of images, the images are analyzed using a web page application developed by the author. The main advantage of the setup explained in this work, is that it is simple to use, no software license fees are necessary, and can be scaled-up to be used by a big number of students in introductory physics courses. The steps involved in the full analysis of a falling object are: we grab a short digital video of the experiment and convert it to a sequence of images, then, using a web page that includes all the necessary javascript, the student can easily click on the object of interest to obtain the (x,y,t) coordinates, finally, the student analyze motion using a spreadsheet.

  5. Extended -Regular Sequence for Automated Analysis of Microarray Images

    Jin Hee-Jeong

    2006-01-01

    Full Text Available Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indispensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome manual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First, we propose the extended -regular sequence to index blocks and spots, which enables a novel automatic gridding procedure. Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial tools.

  6. Seabed images from Southern Ocean shelf regions off the northern Antarctic Peninsula and in the southeastern Weddell Sea

    Piepenburg, Dieter; Buschmann, Alexander; Driemel, Amelie; Grobe, Hannes; Gutt, Julian; Schumacher, Stefanie; Segelken-Voigt, Alexandra; Sieger, Rainer

    2017-07-01

    Recent advances in underwater imaging technology allow for the gathering of invaluable scientific information on seafloor ecosystems, such as direct in situ views of seabed habitats and quantitative data on the composition, diversity, abundance, and distribution of epibenthic fauna. The imaging approach has been extensively used within the research project DynAMo (Dynamics of Antarctic Marine Shelf Ecosystems) at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven (AWI), which aimed to comparatively assess the pace and quality of the dynamics of Southern Ocean benthos. Within this framework, epibenthic spatial distribution patterns have been comparatively investigated in two regions in the Atlantic sector of the Southern Ocean: the shelf areas off the northern tip of the Antarctic Peninsula, representing a region with above-average warming of surface waters and sea-ice reduction, and the shelves of the eastern Weddell Sea as an example of a stable high-Antarctic marine environment that is not (yet) affected by climate change. The AWI Ocean Floor Observation System (OFOS) was used to collect seabed imagery during two cruises of the German research vessel Polarstern, ANT-XXIX/3 (PS81) to the Antarctic Peninsula from January to March 2013 and ANT-XXXI/2 (PS96) to the Weddell Sea from December 2015 to February 2016. Here, we report on the image and data collections gathered during these cruises. During PS81, OFOS was successfully deployed at a total of 31 stations at water depths between 29 and 784 m. At most stations, series of 500 to 530 pictures ( > 15 000 in total, each depicting a seabed area of approximately 3.45 m2 or 2.3 × 1.5 m) were taken along transects approximately 3.7 km in length. During PS96, OFOS was used at a total of 13 stations at water depths between 200 and 754 m, yielding series of 110 to 293 photos (2670 in total) along transects 0.9 to 2.6 km in length. All seabed images taken during the two cruises

  7. Image sequence analysis in nuclear medicine: (1) Parametric imaging using statistical modelling

    Liehn, J.C.; Hannequin, P.; Valeyre, J.

    1989-01-01

    This is a review of parametric imaging methods on Nuclear Medicine. A Parametric Image is an image in which each pixel value is a function of the value of the same pixel of an image sequence. The Local Model Method is the fitting of each pixel time activity curve by a model which parameter values form the Parametric Images. The Global Model Method is the modelling of the changes between two images. It is applied to image comparison. For both methods, the different models, the identification criterion, the optimization methods and the statistical properties of the images are discussed. The analysis of one or more Parametric Images is performed using 1D or 2D histograms. The statistically significant Parametric Images, (Images of significant Variances, Amplitudes and Differences) are also proposed [fr

  8. Minimum TE gradient-recalled phosphorus imaging sequence on a whole-body imager

    Listerud, J.; Lenkinski, R.E.; Axel, L.

    1989-01-01

    To define the lower limits of spatial resolution in gradient-recalled echo phosphorus studies at 1.5 T, the authors have implemented a phosphorus gradient-recalled imaging sequence on the Signa imager. All gradient ramps for the section-selective rephasing lobe, the phase-encoding pulse, and the dephasing pulse of the frequency-encoding gradient are slowed at the maximal rate. Consequently, with a field of view of 24 cm, an in-plane resolution of 3 cm, an echo appropriately offset, an RF bandwidth of 1.2 KHz, and a section thickness of 5 cm, the echo time may be reduced to 1.35 msec. The reconstruction algorithm has been modified to support oversampled data of low spatial resolution appropriate for phosphorus imaging. The sequence will acquire H-1 images and supports the automatic and manual prescan features of the commercial instrument. To facilitate setup in the phosphorus imaging mode the sequence supports the product spectroscopic mode with a DRESS (depth recalled surface coil spectroscopy) sequence and a section profile sequence for appropriate shimming, receiver characteristics, and averaging requirements. The suitability for adaptation of this sequence to three-dimensional chemical shift imaging is discussed

  9. OBJECT-SPACE MULTI-IMAGE MATCHING OF MOBILE-MAPPING-SYSTEM IMAGE SEQUENCES

    Y. C. Chen

    2012-07-01

    Full Text Available This paper proposes an object-space multi-image matching procedure of terrestrial MMS (Mobile Mapping System image sequences to determine the coordinates of an object point automatically and reliably. This image matching procedure can be applied to find conjugate points of MMS image sequences efficiently. Conventional area-based image matching methods are not reliable to deliver accurate matching results for this application due to image scale variations, viewing angle variations, and object occlusions. In order to deal with these three matching problems, an object space multi-image matching is proposed. A modified NCC (Normalized Cross Correlation coefficient is proposed to measure the similarity of image patches. A modified multi-window matching procedure will also be introduced to solve the problem of object occlusion. A coarse-to-fine procedure with a combination of object-space multi-image matching and multi-window matching is adopted. The proposed procedure has been implemented for the purpose of matching terrestrial MMS image sequences. The ratio of correct matches of this experiment was about 80 %. By providing an approximate conjugate point in an overlapping image manually, most of the incorrect matches could be fixed properly and the ratio of correct matches was improved up to 98 %.

  10. Evaluation of Ice sheet evolution and coastline changes from 1960s in Amery Ice Shelf using multi-source remote sensing images

    Qiao, G.; Ye, W.; Scaioni, M.; Liu, S.; Feng, T.; Liu, Y.; Tong, X.; Li, R.

    2013-12-01

    Global change is one of the major challenges that all the nations are commonly facing, and the Antarctica ice sheet changes have been playing a critical role in the global change research field during the past years. Long time-series of ice sheet observations in Antarctica would contribute to the quantitative evaluation and precise prediction of the effects on global change induced by the ice sheet, of which the remote sensing technology would make critical contributions. As the biggest ice shelf and one of the dominant drainage systems in East Antarctic, the Amery Ice Shelf has been making significant contributions to the mass balance of the Antarctic. Study of Amery Ice shelf changes would advance the understanding of Antarctic ice shelf evolution as well as the overall mass balance. At the same time, as one of the important indicators of Antarctica ice sheet characteristics, coastlines that can be detected from remote sensing imagery can help reveal the nature of the changes of ice sheet evolution. Most of the scientific research on Antarctica with satellite remote sensing dated from 1970s after LANDSAT satellite was brought into operation. It was the declassification of the cold war satellite reconnaissance photographs in 1995, known as Declassified Intelligence Satellite Photograph (DISP) that provided a direct overall view of the Antarctica ice-sheet's configuration in 1960s, greatly extending the time span of Antarctica surface observations. This paper will present the evaluation of ice-sheet evolution and coastline changes in Amery Ice Shelf from 1960s, by using multi-source remote sensing images including the DISP images and the modern optical satellite images. The DISP images scanned from negatives were first interior-oriented with the associated parameters, and then bundle block adjustment technology was employed based on the tie points and control points, to derive the mosaic image of the research region. Experimental results of coastlines generated

  11. Compression and Processing of Space Image Sequences of Northern Lights and Sprites

    Forchhammer, Søren Otto; Martins, Bo; Jensen, Ole Riis

    1999-01-01

    Compression of image sequences of auroral activity as northern lights and thunderstorms with sprites is investigated.......Compression of image sequences of auroral activity as northern lights and thunderstorms with sprites is investigated....

  12. Placental fetal stem segmentation in a sequence of histology images

    Athavale, Prashant; Vese, Luminita A.

    2012-02-01

    Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal important information on how certain diseases progress. One important property is the structure of the placental fetal stems. Analysis of the fetal stems in a placenta could be useful in the study and diagnosis of some diseases like autism. To study the fetal stem structure effectively, we need to automatically and accurately track fetal stems through a sequence of digitized hematoxylin and eosin (H&E) stained histology slides. There are many problems in successfully achieving this goal. A few of the problems are: large size of images, misalignment of the consecutive H&E slides, unpredictable inaccuracies of manual tracing, very complicated texture patterns of various tissue types without clear characteristics, just to name a few. In this paper we propose a novel algorithm to achieve automatic tracing of the fetal stem in a sequence of H&E images, based on an inaccurate manual segmentation of a fetal stem in one of the images. This algorithm combines global affine registration, local non-affine registration and a novel 'dynamic' version of the active contours model without edges. We first use global affine image registration of all the images based on displacement, scaling and rotation. This gives us approximate location of the corresponding fetal stem in the image that needs to be traced. We then use the affine registration algorithm "locally" near this location. At this point, we use a fast non-affine registration based on L2-similarity measure and diffusion regularization to get a better location of the fetal stem. Finally, we have to take into account inaccuracies in the initial tracing. This is achieved through a novel dynamic version of the active contours model without edges where the coefficients of the fitting terms are computed iteratively to ensure that we obtain a unique stem in the segmentation. The segmentation thus obtained can then be used as an

  13. Human genome sequencing with direct x-ray holographic imaging

    Rhodes, C.K.

    1993-01-01

    Direct holographic imaging of biological materials is widely applicable to the study of the structure, properties and action of genetic material. This particular application involves the sequencing of the human genome where prospective genomic imaging technology is composed of three subtechnologies, name an x-ray holographic camera, suitable chemistry and enzymology for the preparation of tagged DNA samples, and the illuminator in the form of an x-ray laser. We report appropriate x-ray camera, embodied by the instrument developed by MCR, is available and that suitable chemical and enzymatic procedures exist for the preparation of the necessary tagged DNA strands. Concerning the future development of the x-ray illuminator. We find that a practical small scale x-ray light source is indeed feasible. This outcome requires the use of unconventional physical processes in order to achieve the necessary power-compression in the amplifying medium. The understanding of these new physical mechanisms is developing rapidly. Importantly, although the x-ray source does not currently exist, the understanding of these new physical mechanisms is developing rapidly and the research has established the basic scaling laws that will determine the properties of the x-ray illuminator. When this x-ray source becomes available, an extremely rapid and cost effective instrument for 3-D imaging of biological materials can be applied to a wide range of biological structural assays, including the base-pair sequencing of the human genome and many questions regarding its higher levels of organization

  14. Superresolution restoration of an image sequence: adaptive filtering approach.

    Elad, M; Feuer, A

    1999-01-01

    This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented.

  15. NOAA TIFF Image- 0.5 meter Backscatter Mosaic of Mid Shelf Reef (St. Thomas), US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83 (NCEI Accession 0131860)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 0.5 meter resolution backscatter mosaic of the Mid Shelf Reef south of St. Thomas, US Virgin IslandsNOAA's NOS/NCCOS/CCMA Biogeography Team,...

  16. NOAA TIFF Image - 1 m Backscatter Mosaic of the St. John Shelf, U.S. Virgin Islands, Project NF-10-03, 2010, UTM 20 WGS84 (NCEI Accession 0131854)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 1 meter resolution backscatter mosaic of the St. John Shelf, US Virgin Islands. NOAA's NOS/NCCOS/CCMA Biogeography Team, in collaboration...

  17. Safety Assessment of Advanced Imaging Sequences II: Simulations

    Jensen, Jørgen Arendt

    2016-01-01

    .6%, when using the impulse response of the probe estimated from an independent measurement. The accuracy is increased to between -22% to 24.5% for MI and between -33.2% to 27.0% for Ispta.3, when using the pressure response measured at a single point to scale the simulation. The spatial distribution of MI...... Mechanical Index (MI) and Ispta.3 as required by FDA. The method is performed on four different imaging schemes and compared to measurements conducted using the SARUS experimental scanner. The sequences include focused emissions with an F-number of 2 with 64 elements that generate highly non-linear fields....... The simulation time is between 0.67 ms to 2.8 ms per emission and imaging point, making it possible to simulate even complex emission sequences in less than 1 s for a single spatial position. The linear simulations yield a relative accuracy on MI between -12.1% to 52.3% and for Ispta.3 between -38.6% to 62...

  18. Supervised detection of exoplanets in high-contrast imaging sequences

    Gomez Gonzalez, C. A.; Absil, O.; Van Droogenbroeck, M.

    2018-06-01

    Context. Post-processing algorithms play a key role in pushing the detection limits of high-contrast imaging (HCI) instruments. State-of-the-art image processing approaches for HCI enable the production of science-ready images relying on unsupervised learning techniques, such as low-rank approximations, for generating a model point spread function (PSF) and subtracting the residual starlight and speckle noise. Aims: In order to maximize the detection rate of HCI instruments and survey campaigns, advanced algorithms with higher sensitivities to faint companions are needed, especially for the speckle-dominated innermost region of the images. Methods: We propose a reformulation of the exoplanet detection task (for ADI sequences) that builds on well-established machine learning techniques to take HCI post-processing from an unsupervised to a supervised learning context. In this new framework, we present algorithmic solutions using two different discriminative models: SODIRF (random forests) and SODINN (neural networks). We test these algorithms on real ADI datasets from VLT/NACO and VLT/SPHERE HCI instruments. We then assess their performances by injecting fake companions and using receiver operating characteristic analysis. This is done in comparison with state-of-the-art ADI algorithms, such as ADI principal component analysis (ADI-PCA). Results: This study shows the improved sensitivity versus specificity trade-off of the proposed supervised detection approach. At the diffraction limit, SODINN improves the true positive rate by a factor ranging from 2 to 10 (depending on the dataset and angular separation) with respect to ADI-PCA when working at the same false-positive level. Conclusions: The proposed supervised detection framework outperforms state-of-the-art techniques in the task of discriminating planet signal from speckles. In addition, it offers the possibility of re-processing existing HCI databases to maximize their scientific return and potentially improve

  19. Holistic and component plant phenotyping using temporal image sequence.

    Das Choudhury, Sruti; Bashyam, Srinidhi; Qiu, Yumou; Samal, Ashok; Awada, Tala

    2018-01-01

    Image-based plant phenotyping facilitates the extraction of traits noninvasively by analyzing large number of plants in a relatively short period of time. It has the potential to compute advanced phenotypes by considering the whole plant as a single object (holistic phenotypes) or as individual components, i.e., leaves and the stem (component phenotypes), to investigate the biophysical characteristics of the plants. The emergence timing, total number of leaves present at any point of time and the growth of individual leaves during vegetative stage life cycle of the maize plants are significant phenotypic expressions that best contribute to assess the plant vigor. However, image-based automated solution to this novel problem is yet to be explored. A set of new holistic and component phenotypes are introduced in this paper. To compute the component phenotypes, it is essential to detect the individual leaves and the stem. Thus, the paper introduces a novel method to reliably detect the leaves and the stem of the maize plants by analyzing 2-dimensional visible light image sequences captured from the side using a graph based approach. The total number of leaves are counted and the length of each leaf is measured for all images in the sequence to monitor leaf growth. To evaluate the performance of the proposed algorithm, we introduce University of Nebraska-Lincoln Component Plant Phenotyping Dataset (UNL-CPPD) and provide ground truth to facilitate new algorithm development and uniform comparison. The temporal variation of the component phenotypes regulated by genotypes and environment (i.e., greenhouse) are experimentally demonstrated for the maize plants on UNL-CPPD. Statistical models are applied to analyze the greenhouse environment impact and demonstrate the genetic regulation of the temporal variation of the holistic phenotypes on the public dataset called Panicoid Phenomap-1. The central contribution of the paper is a novel computer vision based algorithm for

  20. Particle tracking from image sequences of complex plasma crystals

    Hadziavdic, Vedad; Melandsoe, Frank; Hanssen, Alfred

    2006-01-01

    In order to gather information about the physics of the complex plasma crystals from the experimental data, particles have to be tracked through a sequence of images. An application of the Kalman filter for that purpose is presented, using a one-dimensional approximation of the particle dynamics as a model for the filter. It is shown that Kalman filter is capable of tracking dust particles even with high levels of measurement noise. An inherent part of the Kalman filter, the innovation process, can be used to estimate values of the physical system parameters from the experimental data. The method is shown to be able to estimate the characteristic oscillation frequency from noisy data

  1. Fast T1-weighted imaging using GRASE sequence for the female pelvis

    Dohke, Masako; Watanabe, Yuji; Kumashiro, Masayuki; Amoh, Yoshiki; Ishimori, Takayoshi; Oda, Kazushige; Okumura, Akira; Koike, Shinji; Dodo, Yoshihiro

    1998-01-01

    GRASE sequence, a combination of TSE and gradient echo, has been developed as a fast T 2 -weighted imaging technique. We have modified the GRASE sequence to be used for fast T 1 -weighted imaging of the female pelvis. In this article, we compared image quality and incidence of artifacts between T 1 -weighted GRASE images and conventional T 1 -weighted SE images. In a phantom study, signal-to-noise ratio was inferior in the GRASE images relative to corresponding on SE images. Susceptibility and chemical shift artifacts seen in GRASE images were seen with almost equal incidence in SE and TSE images. In a clinical study, we compared GRASE images with SE images in six patients with endometrial cysts and four patients with dermoid cysts. The overall image quality obtained with GRASE sequence was satisfactory in all patients and was almost identical with that obtained with SE sequence. GRASE images demonstrated endometrial cysts and dermoid cysts as clearly as did SE images. T 1 -weighted GRASE imaging, however, has a relatively long TE (35 ms) for T 1 -weighted images, which makes the signal intensity of urine and uterine endometrium with long T 2 values higher than in SE images. In conclusion, GRASE sequence can be used for fast T 1 -weighted imaging of the female pelvis because of short imaging time. (author)

  2. Abdominal MR imaging using a HASTE sequence : image comparison on the different echo times

    Park, Kwang Bo; Lee, Moon Gyu; Lim, Tae Hwan; Jeong, Yoong Ki; Ha, Hyun Kwon; Kim, Pyo Nyun; Auh, Yong Ho

    1999-01-01

    To determine the optimal parameters of abdominal HASTE imaging by means of a comparison of intermediate and long TE (echo time). We evaluated 30 consecutive patients who had undergone liver MR during a three-month period. Twelve patients were diagnosed as normal, four as having liver cirrhosis, and 14 were found to be suffering form hepatic hemangioma. On the basis of measured signal intensity of the liver, spleen, pancreas and gallbladder, and of fat, muscle, hemangioma, and background, we calculated the ratios of signal to noise (S/N), signal difference to noise (SD/N), and signal intensity (SI). Image quality was compared using these three ratios, and using two HASTE sequences with TEs of 90 msec and 134 msec, images were qualitatively evaluated. S/N ratio of the liver was higher when TE was 90 msec(p<.05), though S/N, SD/N and SI rations of the spleen, gallbladder, and pancreas-and of hemangiom-were higher when TE was 134 msec (p<.05). However, in muscle, all these three ratios were higher at a TE of 90 msec. SD/N ratio and SI of fat were higher at a TE of 134 msec. Overall image quality was better at a TE of 134 msec than at one of 90msec. A HASTE sequence with a TE of 134msec showed greater tissue contrast and stronger T2-weighted images than one with a TE of 90msec

  3. Real-time SPARSE-SENSE cardiac cine MR imaging: optimization of image reconstruction and sequence validation.

    Goebel, Juliane; Nensa, Felix; Bomas, Bettina; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-12-01

    Improved real-time cardiac magnetic resonance (CMR) sequences have currently been introduced, but so far only limited practical experience exists. This study aimed at image reconstruction optimization and clinical validation of a new highly accelerated real-time cine SPARSE-SENSE sequence. Left ventricular (LV) short-axis stacks of a real-time free-breathing SPARSE-SENSE sequence with high spatiotemporal resolution and of a standard segmented cine SSFP sequence were acquired at 1.5 T in 11 volunteers and 15 patients. To determine the optimal iterations, all volunteers' SPARSE-SENSE images were reconstructed using 10-200 iterations, and contrast ratios, image entropies, and reconstruction times were assessed. Subsequently, the patients' SPARSE-SENSE images were reconstructed with the clinically optimal iterations. LV volumetric values were evaluated and compared between both sequences. Sufficient image quality and acceptable reconstruction times were achieved when using 80 iterations. Bland-Altman plots and Passing-Bablok regression showed good agreement for all volumetric parameters. 80 iterations are recommended for iterative SPARSE-SENSE image reconstruction in clinical routine. Real-time cine SPARSE-SENSE yielded comparable volumetric results as the current standard SSFP sequence. Due to its intrinsic low image acquisition times, real-time cine SPARSE-SENSE imaging with iterative image reconstruction seems to be an attractive alternative for LV function analysis. • A highly accelerated real-time CMR sequence using SPARSE-SENSE was evaluated. • SPARSE-SENSE allows free breathing in real-time cardiac cine imaging. • For clinically optimal SPARSE-SENSE image reconstruction, 80 iterations are recommended. • Real-time SPARSE-SENSE imaging yielded comparable volumetric results as the reference SSFP sequence. • The fast SPARSE-SENSE sequence is an attractive alternative to standard SSFP sequences.

  4. Algorithms for detection of objects in image sequences captured from an airborne imaging system

    Kasturi, Rangachar; Camps, Octavia; Tang, Yuan-Liang; Devadiga, Sadashiva; Gandhi, Tarak

    1995-01-01

    This research was initiated as a part of the effort at the NASA Ames Research Center to design a computer vision based system that can enhance the safety of navigation by aiding the pilots in detecting various obstacles on the runway during critical section of the flight such as a landing maneuver. The primary goal is the development of algorithms for detection of moving objects from a sequence of images obtained from an on-board video camera. Image regions corresponding to the independently moving objects are segmented from the background by applying constraint filtering on the optical flow computed from the initial few frames of the sequence. These detected regions are tracked over subsequent frames using a model based tracking algorithm. Position and velocity of the moving objects in the world coordinate is estimated using an extended Kalman filter. The algorithms are tested using the NASA line image sequence with six static trucks and a simulated moving truck and experimental results are described. Various limitations of the currently implemented version of the above algorithm are identified and possible solutions to build a practical working system are investigated.

  5. A Stochastic Approach for Blurred Image Restoration and Optical Flow Computation on Field Image Sequence

    高文; 陈熙霖

    1997-01-01

    The blur in target images caused by camera vibration due to robot motion or hand shaking and by object(s) moving in the background scene is different to deal with in the computer vision system.In this paper,the authors study the relation model between motion and blur in the case of object motion existing in video image sequence,and work on a practical computation algorithm for both motion analysis and blut image restoration.Combining the general optical flow and stochastic process,the paper presents and approach by which the motion velocity can be calculated from blurred images.On the other hand,the blurred image can also be restored using the obtained motion information.For solving a problem with small motion limitation on the general optical flow computation,a multiresolution optical flow algoritm based on MAP estimation is proposed. For restoring the blurred image ,an iteration algorithm and the obtained motion velocity are used.The experiment shows that the proposed approach for both motion velocity computation and blurred image restoration works well.

  6. Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging.

    Gilbert, Guillaume; Savard, Geneviève; Bard, Céline; Beaudoin, Gilles

    2012-06-01

    The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. An Algorithm for Pedestrian Detection in Multispectral Image Sequences

    Kniaz, V. V.; Fedorenko, V. V.

    2017-05-01

    The growing interest for self-driving cars provides a demand for scene understanding and obstacle detection algorithms. One of the most challenging problems in this field is the problem of pedestrian detection. Main difficulties arise from a diverse appearances of pedestrians. Poor visibility conditions such as fog and low light conditions also significantly decrease the quality of pedestrian detection. This paper presents a new optical flow based algorithm BipedDetet that provides robust pedestrian detection on a single-borad computer. The algorithm is based on the idea of simplified Kalman filtering suitable for realization on modern single-board computers. To detect a pedestrian a synthetic optical flow of the scene without pedestrians is generated using slanted-plane model. The estimate of a real optical flow is generated using a multispectral image sequence. The difference of the synthetic optical flow and the real optical flow provides the optical flow induced by pedestrians. The final detection of pedestrians is done by the segmentation of the difference of optical flows. To evaluate the BipedDetect algorithm a multispectral dataset was collected using a mobile robot.

  8. A framework for creating realistic synthetic fluorescence microscopy image sequences

    Mabaso, M

    2016-02-01

    Full Text Available Fluorescence microscopy imaging is an important tool in modern biological research, allowing insights into the processes of biological systems. Automated image analysis algorithms help in extracting information from these images. Validation...

  9. Stratigraphic response across a structurally dynamic shelf: The latest guadalupian composite sequence at Walnut Canyon, New Mexico, U.S.A

    Rush, J.; Kerans, C.

    2010-01-01

    The uppermost Yates and Tansill formations (Late Permian), as exposed along Walnut Canyon in Carlsbad Caverns National Park, New Mexico, USA, provide a unique opportunity to document the depositional architecture of a progradational, oversteepened, and mechanically failure-prone carbonate platform. Detailed facies mapping permitted critical assessment of depositional processes operating along this structurally dynamic platform margin. At the shelf crest, thick (12 m), vertically stacked fenestral-pisolite-tepee complexes indicate a stable shoreline. Early lithification of sediments and extensive cementation fostered rapid vertical accretion and allowed the shelf crest to easily adjust to base-level oscillations by stepping landward, stepping seaward, or aggrading. This production imbalance-in combination with syndepositional brittle failure and down-to-the-basin tilting(architecture, fracture properties, and a highly refined fusulinid biostratigraphic framework. Where fractures tip out, down-to-the-basin rotation is often observed with concurrent seaward thickening of overlying beds, indicating that such fractures functioned as a syndepositional hinge. A facies disjunction and horizontally juxtaposed fusulinid zonation were documented across an 80?? seaward-dipping dilational fracture filled with polymict breccia. An overlying damage zone consisting of spar-cemented fractures nested within silt-filled fractures illustrates periodic reactivation. Field relationships indicate that the dilational fracture approximates a paleoescarpment that resulted from catastrophic failure of the Capitan platform margin. Younger strata onlapped the paleoescarpment and gradually filled the reentrant. This mechanically compromised paleoescarpment was subsequently reactivated during the latest Guadalupian lowstand and was subaerially filled by siliciclastics and polymict breccia derived from the platform top. Results from Walnut Canyon indicate that shelf crest aggradation dominantly

  10. Fast high-resolution MR imaging using the snapshot-FLASH MR sequence

    Matthaei, D.; Haase, A.; Henrich, D.; Duhmke, E.

    1990-01-01

    Snapshot, fast low-angle short (FLASH) MR imaging using an accelerated FLASH-MR sequence provides MR images with measuring times far below 1 second. The short TE of this sequence prevents susceptibility artifacts in gradient-echo imaging. In this paper variations of the sequence are shown that provide high resolution images with T1-weighted IR, T2-weighted SE, and chemical shift (CHESS) contrast sequences. METHODS AND MATERIALS: A whole-body 2-T system (Bruker-Medizintechnik) were used in combination with a 60-cm gradient system (providing gradient strength of 5 mT/m) to study healthy volunteers. The measuring time for a 256 x 256 image matrix was 800 msec. This sequence has been used in combination with T1-weighted IR, T2-weighted SE, and CHESS variations

  11. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics.

    Hernández Vera, Rodrigo; Schwan, Emil; Fatsis-Kavalopoulos, Nikos; Kreuger, Johan

    2016-01-01

    Time-lapse imaging is a powerful tool for studying cellular dynamics and cell behavior over long periods of time to acquire detailed functional information. However, commercially available time-lapse imaging systems are expensive and this has limited a broader implementation of this technique in low-resource environments. Further, the availability of time-lapse imaging systems often present workflow bottlenecks in well-funded institutions. To address these limitations we have designed a modular and affordable time-lapse imaging and incubation system (ATLIS). The ATLIS enables the transformation of simple inverted microscopes into live cell imaging systems using custom-designed 3D-printed parts, a smartphone, and off-the-shelf electronic components. We demonstrate that the ATLIS provides stable environmental conditions to support normal cell behavior during live imaging experiments in both traditional and evaporation-sensitive microfluidic cell culture systems. Thus, the system presented here has the potential to increase the accessibility of time-lapse microscopy of living cells for the wider research community.

  12. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics

    Schwan, Emil; Fatsis-Kavalopoulos, Nikos; Kreuger, Johan

    2016-01-01

    Time-lapse imaging is a powerful tool for studying cellular dynamics and cell behavior over long periods of time to acquire detailed functional information. However, commercially available time-lapse imaging systems are expensive and this has limited a broader implementation of this technique in low-resource environments. Further, the availability of time-lapse imaging systems often present workflow bottlenecks in well-funded institutions. To address these limitations we have designed a modular and affordable time-lapse imaging and incubation system (ATLIS). The ATLIS enables the transformation of simple inverted microscopes into live cell imaging systems using custom-designed 3D-printed parts, a smartphone, and off-the-shelf electronic components. We demonstrate that the ATLIS provides stable environmental conditions to support normal cell behavior during live imaging experiments in both traditional and evaporation-sensitive microfluidic cell culture systems. Thus, the system presented here has the potential to increase the accessibility of time-lapse microscopy of living cells for the wider research community. PMID:28002463

  13. New Jersey shallow shelf

    Expedition 313 Scientists; Bjerrum, Christian J.

    2009-01-01

    to key horizons in wells drilled into the adjacent coastal plain suggest the clinoform structures investigated during Expedition 313 were deposited during times of oscillations in global sea level; however, this needs to be determined with much greater certainty. The age, lithofacies, and core-log......Integrated Ocean Drilling Program (IODP) Expedition 313 to the New Jersey Shallow Shelf off the east coast of the United States is the third IODP expedition to use a mission-specific platform. It was conducted by the European Consortium for Ocean Research Drilling (ECORD) Science Operator (ESO......) between 30 April and 17 July 2009, with additional support from the International Continental Scientific Drilling Program (ICDP). There were three objectives: (1) date late Paleogene–Neogene depositional sequences and compare ages of unconformable surfaces that divide these sequences with times of sea...

  14. Seismic imaging of small horizontal scale structures of the shallow thermocline on the western Brittany continental shelf (North-East Atlantic)

    Piete, H.; Marié, L.; Marsset, B.; Gutscher, M.

    2012-12-01

    The recent development of the seismic oceanography technique has made possible the imaging of a variety of deep oceanographic structures (Holbrook et al., 2003); however, until now this method has remained ill suited for the study of shallow (environment) and 2- spectral contents offering high vertical resolutions (relevant to the mapping of small vertical wavelength structures). In this study we defined and tested a new experimental seismic acquisition system capable of imaging the ~10 m thick seasonal thermocline on the western Brittany continental shelf. To accomplish this task, we pursued two complementary approaches: 1. Analysis of legacy seismic data (multi-channel seismic reflection profiles acquired on the East-Corsican margin, Bahamas Plateau and Gulf of Cadiz in various oceanographic environments) featuring reflectors at depths between 25 and 150 m, in order to identify and quantify the influence of acquisition parameters (seismic trace length, offsets, emission level and frequency content). 2. Incorporation of new oceanographic data acquired during the FROMVAR cruise (July 28th to August 10th 2010) on the western Brittany shelf in thermally stratified waters for use in the simulation of the seismic acquisition, in order to further define the optimal parameters for the system. Finally a 3D seismic system has emerged and was tested during the ASPEX scientific cruise led from June 17th to 19th 2012 across the western Brittany shelf. The device featured: i- four seismic streamers, each consisting of 6 traces at a spacing of 1.80 m; ii- a 1000 J SIG Sparker producing a 400 Hz signal with a 220 dB re 1μPa @1m level of emission, towed at a 8 m distance of the first seismic trace. This survey provided high lateral resolution images of the seasonal thermocline located at a 30 m depth with vertical displacements induced by internal waves. References Holbrook, W.S., Paramo, P., Pearse, S. and Schmitt, R.W., 2003. Thermohaline Fine Structure in an Oceanographic

  15. Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.

    Oliveira, Francisco P M; Tavares, João Manuel R S

    2013-03-01

    This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.

  16. Real-time UAV trajectory generation using feature points matching between video image sequences

    Byun, Younggi; Song, Jeongheon; Han, Dongyeob

    2017-09-01

    Unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance mission. In this paper, we present a systematic approach for the generation of UAV trajectory using a video image matching system based on SURF (Speeded up Robust Feature) and Preemptive RANSAC (Random Sample Consensus). Video image matching to find matching points is one of the most important steps for the accurate generation of UAV trajectory (sequence of poses in 3D space). We used the SURF algorithm to find the matching points between video image sequences, and removed mismatching by using the Preemptive RANSAC which divides all matching points to outliers and inliers. The inliers are only used to determine the epipolar geometry for estimating the relative pose (rotation and translation) between image sequences. Experimental results from simulated video image sequences showed that our approach has a good potential to be applied to the automatic geo-localization of the UAVs system

  17. MR imaging of the temporomandibular joint. Part 2. Effect of flip angle on MR imaging with FLASH sequence

    Sakamoto, Maya; Sasano, Takashi; Higano, Shuichi; Takahashi, Shoki; Kurihara, Noriko

    1998-01-01

    In our previous study on MR imaging of the temporomandibular joint (TMJ), fast low angle shot (FLASH) showed the highest image contrast between disc and surrounding TMJ tissues compared with those of 4 other sequences (i,e., fast imaging with steady precession (FISP), conventional T1-weighted spin echo (SE) and fast spin echo (FSE, TR/TE/ETL: 1100/12/3, 3000/15/7)). Furthermore, FLASH also received a high score on visual evaluation including the position and contour of the disc, and the border between the disc and surrounding tissues. Therefore, we concluded that FLASH was the most suitable sequence for evaluating the TMJ disc. However, the image contrast and signal intensity on MR imaging with gradient echo pulse sequence are affected by flip angle. Consequently, in this report, to find the most suitable flip angle for MR scanning of the TMJ using a FLASH sequence (TR/TE: 450/11), ten TMJs of 5 volunteers were experimentally imaged with various flip angles from 10 degrees to 70 degrees at an interval of 10 degrees between 10 to 70. The image contrast and contrast-to-noise ratio (CNR) between the disc and surrounding tissues were compared. In addition, signal-to-noise ratio (SNR) of phantoms was also calculated using the same imaging parameters. Visual evaluation including position and contour of the disc, and the border between the disc and surrounding tissues, was also performed by 4 radiologists. As the flip angle increased, imaging contrast decreased while SNR increased. Images with flip angles between 30 and 60 degrees demonstrated high CNR. On visual evaluation, images using flip angles between 30 and 50 degrees received high scores. In conclusion, FLASH sequence with a flip angle between 30 and 50 degrees was considered most suitable for evaluating the TMJ disc based on the results of visual assessment and analysis of three major components of image diagnostic quality: image contrast, CNR and SNR. (author)

  18. MR imaging of articular cartilage in the ankle: comparison of available imaging sequences and methods of measurement in cadavers

    Tan, T.C.F. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States)]|[Department of Radiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan (Taiwan, Province of China); Wilcox, D.M. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States); Frank, L. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States); Shih, C. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States)]|[Department of Radiology, Veterans General Hospital-Taipei (Taiwan, Province of China); Trudell, D.J. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States); Sartoris, D.J. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States); Resnick, D. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States)

    1996-11-01

    Objective. To assess hyaline cartilage of cadaveric ankles using different magnetic resonance (MR) imaging techniques and various methods of measurement. Design and patients. Cartilage thicknesses of the talus and tibia were measured in ten cadaveric ankles by naked eye and by digitized image analysis from MR images of fat-suppressed T1-weighted gradient recalled (FS-SPGR), sequences and pulsed transfer saturation sequences with (FS-STS) and without fat-suppression (STS); these measurements were compared with those derived from direct inspection of cadaveric sections. The accuracy and precision errors were evaluated statistically for each imaging technique as well as measuring method. Contrast-to-noise ratios of cartilage versus joint fluid and marrow were compared for each of the imaging sequences. Results. Statistically, measurements from FS-SPGR images were associated with the smallest estimation error. Precision error of measurements derived from digitized image analysis was found to be smaller than that derived from naked eye measurements. Cartilage thickness measurements in images from STS and FS-STS sequences revealed larger errors in both accuracy and precision. Interobserver variance was larger in naked eye assessment of the cartilage. Contrast-to-noise ratio of cartilage versus joint fluid and marrow was higher with FS-SPGR than with FS-STS or STS sequences. Conclusion. Of the sequences and measurement techniques studied, the FS-SPGR sequence combined with the use of digitized image analysis provides the most accurate method for the assessment of ankle hyaline cartilage. (orig.). With 3 figs., 2 tabs.

  19. MR imaging of articular cartilage in the ankle: comparison of available imaging sequences and methods of measurement in cadavers

    Tan, T.C.F.; Wilcox, D.M.; Frank, L.; Shih, C.; Trudell, D.J.; Sartoris, D.J.; Resnick, D.

    1996-01-01

    Objective. To assess hyaline cartilage of cadaveric ankles using different magnetic resonance (MR) imaging techniques and various methods of measurement. Design and patients. Cartilage thicknesses of the talus and tibia were measured in ten cadaveric ankles by naked eye and by digitized image analysis from MR images of fat-suppressed T1-weighted gradient recalled (FS-SPGR), sequences and pulsed transfer saturation sequences with (FS-STS) and without fat-suppression (STS); these measurements were compared with those derived from direct inspection of cadaveric sections. The accuracy and precision errors were evaluated statistically for each imaging technique as well as measuring method. Contrast-to-noise ratios of cartilage versus joint fluid and marrow were compared for each of the imaging sequences. Results. Statistically, measurements from FS-SPGR images were associated with the smallest estimation error. Precision error of measurements derived from digitized image analysis was found to be smaller than that derived from naked eye measurements. Cartilage thickness measurements in images from STS and FS-STS sequences revealed larger errors in both accuracy and precision. Interobserver variance was larger in naked eye assessment of the cartilage. Contrast-to-noise ratio of cartilage versus joint fluid and marrow was higher with FS-SPGR than with FS-STS or STS sequences. Conclusion. Of the sequences and measurement techniques studied, the FS-SPGR sequence combined with the use of digitized image analysis provides the most accurate method for the assessment of ankle hyaline cartilage. (orig.). With 3 figs., 2 tabs

  20. On-board processing of video image sequences

    Andersen, Jakob Dahl; Chanrion, Olivier Arnaud; Forchhammer, Søren

    2008-01-01

    and evaluated. On-board there are six video cameras each capturing images of 1024times1024 pixels of 12 bpp at a frame rate of 15 fps, thus totalling 1080 Mbits/s. In comparison the average downlink data rate for these images is projected to be 50 kbit/s. This calls for efficient on-board processing to select...

  1. Clinical evaluation of FMPSPGR sequence of the brain MR imaging

    Takahashi, Mitsuyuki; Hasegawa, Makoto; Mori, Naohiko; Yamanoguchi, Minoru; Matsubara, Tadashi

    1998-01-01

    In order to apply the FMPSPGR (fast multi planar spoiled GRASS) method to diagnose brain diseases, authors obtained the optimal condition for imaging by the phantom experiments and examined the clinical usefulness. Six kinds of the phantom, which were 4 of diluted Gd solution with different concentrations, olive oil and physiological saline solution were used. From the phantom experiments, TR/TE/FR=300/3.3/90 degrees was the optimal condition. The evaluation of the clinical images was performed on the same section by the ST method and the FMPSPGR method. Fifteen patients (9 men and 6 women, aged from 17 to 80 years) suspected of brain diseases were examined, including 8 of cerebral infarction, 1 of pontine infarction, 1 of brain contusion, 1 of intracerebral bleeding and 4 of brain tumors. Four cases of brain tumor were evaluated on the contrast imaging and the others were on the plain imaging. In the plain imaging, the FMPSPGR method was better than the SE method on the low signal region in the T1 weighted imaging. Furthermore, in the contrast imaging, it could give more clear images of the lesion in anterior cranial pit by suppressing artifacts of blood flow. The present results indicate that the FMPSPGR method is useful to diagnose brain diseases. (K.H.)

  2. Image registration based on virtual frame sequence analysis

    Chen, H.; Ng, W.S. [Nanyang Technological University, Computer Integrated Medical Intervention Laboratory, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Shi, D. (Nanyang Technological University, School of Computer Engineering, Singapore, Singpore); Wee, S.B. [Tan Tock Seng Hospital, Department of General Surgery, Singapore (Singapore)

    2007-08-15

    This paper is to propose a new framework for medical image registration with large nonrigid deformations, which still remains one of the biggest challenges for image fusion and further analysis in many medical applications. Registration problem is formulated as to recover a deformation process with the known initial state and final state. To deal with large nonlinear deformations, virtual frames are proposed to be inserted to model the deformation process. A time parameter is introduced and the deformation between consecutive frames is described with a linear affine transformation. Experiments are conducted with simple geometric deformation as well as complex deformations presented in MRI and ultrasound images. All the deformations are characterized with nonlinearity. The positive results demonstrated the effectiveness of this algorithm. The framework proposed in this paper is feasible to register medical images with large nonlinear deformations and is especially useful for sequential images. (orig.)

  3. MR imaging of the orbit and eye using inversion recovery sequences

    Smith, F.W.; Parekh, S.; Forrester, J.; Redpath, T.W.

    1986-01-01

    Most centers performing MR imaging use spin-echo sequences to produce images; however, there are many advantages to using short TI inversion-recovery sequences for examination of the orbits. By selecting a TI similar to the relaxation time of any structure, the signal from this can be suppressed, thereby enhancing the signal from other structures. Using a sequence of TR = 1,000 msec and TI of less than 200 msec, the signal from fat is suppressed, improving image quality adjacent to the surface coil and providing better contrast between orbital structures and fat. The use of this short TI sequence for the examination of the eye in patients with opaque lenses is an accurate method of diagnosis since the sequence enhances the signal from both long T1 and T2 lesions. Eighty-five patients with orbital or ocular pathology have been studied, and the results demonstrate the usefulness of this technique for diagnosis

  4. CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition

    Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe

    2013-01-01

    Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764

  5. Principal Component Analysis and Morphostructural Characterization of a Portion of The Eastern Continental Shelf of Ceará, Brazil, Using Landsat 5-Tm Images

    Cynthia Romariz Duarte

    2016-09-01

    Full Text Available This study used Landsat 5 Thematic Mapper (5-TM images in the morphostructural characterization of the shallow continental shelf of the eastern coast of Ceará (CE, in the Jaguaribe river mouth. The dam built near the river mouth to transpose the water towards Fortaleza, CE, ensures good water transparency since little of the river-carried sediment reaches the sea. The used image was captured on date and time to ensure low tide. Data using Secchi disc indicated good water transparency in the turbidity zone and seaside, coastal and marine areas. Bathymetry studies and underwater photos confirm the existence of many of the features described in this study. Digital image processing techniques have been applied in the study: colored compositions (RGB 124, 90° directional filter (band 1, and a colored composition employing the filtered band 1 and band 2 and 4. The filtered image of band 1 allowed recognizing different features when interpreted in detail scale. The principal component analysis (PCA was used here, calculating eigenvalues and eigenvectors. When applied to bands 1 to 5 and 7, PCA generated good results in PC2, whose correlation with the blue band was 0.85 (explained cumulative variance of more than 96%. Applied to the visible bands, PCA produced very similar results in PC1, and the correlation between the blue band and PC1 was 0.86 (explained cumulative variance of 94%. These results show that band 1 is the main contributor in studies of submerged morphological features. Each process resulted in a new image, from which it was possible to produce the map of the area representing morphostructural characteristics. The use of digitally processed satellite images in the visible region greatly improves the characterization and mapping of submerged features in places with shallow and good transparency waters.

  6. A comparative analysis of double inversion recovery TFE and TSE sequences on carotid artery wall imaging

    Chen Jun; Di Yujin; Bu Chunqing; Zhang Yanfeng; Li Shuhua

    2012-01-01

    Objective: To analyze the characteristics of double inversion recovery (DIR) turbo field echo (TFE) and turbo spin echo (TSE) sequences and explore the value of double inversion recovery TFE sequence on carotid artery wall imaging. Patients and methods: 56 patients (32 males and 24 females, aged 31–76 years with a mean age of 53 years) were performed with DIR TFE and DIR TSE T1 weighted imaging (T1WI) sequences on carotid artery bifurcations. Image quality acquired by different techniques were evaluated and scored by two physicians. Whether there is significant difference is determined by SPSS 11.0 software. Paired-samples t test was used for statistics. Results: There was no significant difference in the image quality scores between two sequences (t = 0.880, P = 0.383 > 0.05). Conclusions: DIR TFE sequence has short scanning time and high spatial resolution. DIR TFE sequence can be used as the preferred sequence for screening carotid atherosclerotic plaque compared with DIR TSE sequence.

  7. Elimination of motion and pulsation artifacts using BLADE sequences in shoulder MR imaging

    Lavdas, E.; Zaloni, E.; Vlychou, M.; Vassiou, K.; Fezoulidis, I.; Tsagkalis, A.; Dailiana, Z.

    2015-01-01

    To evaluate the ability of proton-density with fat-suppression BLADE (proprietary name for periodically rotated overlapping parallel lines with enhanced reconstruction in MR systems from Siemens Healthcare, PDFS BLADE) and turbo inversion recovery magnitude-BLADE (TIRM BLADE) sequences to reduce motion and pulsation artifacts in shoulder magnetic resonance examinations. Forty-one consecutive patients who had been routinely scanned for shoulder examination participated in the study. The following pairs of sequences with and without BLADE were compared: (a) Oblique coronal proton-density sequence with fat saturation of 25 patients and (b) oblique sagittal T2 TIRM-weighed sequence of 20 patients. Qualitative analysis was performed by two experienced radiologists. Image motion and pulsation artifacts were also evaluated. In oblique coronal PDFS BLADE sequences, motion artifacts have been significantly eliminated, even in five cases of non-diagnostic value with conventional imaging. Similarly, in oblique sagittal T2 TIRM BLADE sequences, image quality has been improved, even in six cases of non-diagnostic value with conventional imaging. Furthermore, flow artifacts have been improved in more than 80% of all the cases. The use of BLADE sequences is recommended in shoulder imaging, especially in uncooperative patients because it effectively eliminates motion and pulsation artifacts. (orig.)

  8. Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue

    Chih-Feng Chao

    2015-01-01

    Full Text Available Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.

  9. Research on Image Encryption Based on DNA Sequence and Chaos Theory

    Tian Zhang, Tian; Yan, Shan Jun; Gu, Cheng Yan; Ren, Ran; Liao, Kai Xin

    2018-04-01

    Nowadays encryption is a common technique to protect image data from unauthorized access. In recent years, many scientists have proposed various encryption algorithms based on DNA sequence to provide a new idea for the design of image encryption algorithm. Therefore, a new method of image encryption based on DNA computing technology is proposed in this paper, whose original image is encrypted by DNA coding and 1-D logistic chaotic mapping. First, the algorithm uses two modules as the encryption key. The first module uses the real DNA sequence, and the second module is made by one-dimensional logistic chaos mapping. Secondly, the algorithm uses DNA complementary rules to encode original image, and uses the key and DNA computing technology to compute each pixel value of the original image, so as to realize the encryption of the whole image. Simulation results show that the algorithm has good encryption effect and security.

  10. Outdoor Illumination Estimation in Image Sequences for Augmented Reality

    Madsen, Claus B.; Lal, Brajesh Behari

    2011-01-01

    the detected shadows is used to estimate the radiance of the sun. The technique does not require special purpose objects in the scene, nor does it require High Dynamic Range imagery. Results are demonstrated by rendering augmented objects into real images with shading and shadows which are consistent...

  11. Retrieval of Sentence Sequences for an Image Stream via Coherence Recurrent Convolutional Networks.

    Park, Cesc Chunseong; Kim, Youngjin; Kim, Gunhee

    2018-04-01

    We propose an approach for retrieving a sequence of natural sentences for an image stream. Since general users often take a series of pictures on their experiences, much online visual information exists in the form of image streams, for which it would better take into consideration of the whole image stream to produce natural language descriptions. While almost all previous studies have dealt with the relation between a single image and a single natural sentence, our work extends both input and output dimension to a sequence of images and a sequence of sentences. For retrieving a coherent flow of multiple sentences for a photo stream, we propose a multimodal neural architecture called coherence recurrent convolutional network (CRCN), which consists of convolutional neural networks, bidirectional long short-term memory (LSTM) networks, and an entity-based local coherence model. Our approach directly learns from vast user-generated resource of blog posts as text-image parallel training data. We collect more than 22 K unique blog posts with 170 K associated images for the travel topics of NYC, Disneyland , Australia, and Hawaii. We demonstrate that our approach outperforms other state-of-the-art image captioning methods for text sequence generation, using both quantitative measures and user studies via Amazon Mechanical Turk.

  12. In vivo quantitative NMR imaging of fruit tissues during growth using Spoiled Gradient Echo sequence

    Kenouche, S.; Perrier, M.; Bertin, N.

    2014-01-01

    of this study was to design a robust and accurate quantitative measurement method based on NMR imaging combined with contrast agent (CA) for mapping and quantifying water transport in growing cherry tomato fruits. A multiple flip-angle Spoiled Gradient Echo (SGE) imaging sequence was used to evaluate...

  13. Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence

    Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.

    1995-01-01

    We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)

  14. The role of the STIR sequence in magnetic resonance imaging examination of bone tumours

    Golfieri, R.; Baddeley, H.; Pringle, J.S.; Souhami, R.

    1990-01-01

    Sixty patients with primary bone tumours were evaluated with magnetic resonance imaging (MRI) at 0.5 T with both conventional spin-echo (SE) and short inversion time inversion recovery (STIR) sequences. The STIR sequence with T 1 of 120-130 ms in all cases suppressed the high signal from fatty bone marrow, giving a clear depiction of tumour extent, in both its intramedullary and soft-tissue components, and is superior to conventional SE images. The high sensitivity (100% of our cases) of this technique is counterbalanced by its lack of specificity: on STIR sequences both tumour and peritumorous oedema give an increase of signal intensity, limiting assessment of tumour extent. Peritumoral oedema, only present in this series in malignant neoplasms, may however be differentiated on the basis of the configuration of the abnormal areas, and by comparing STIR images with short repetition time/echo time sequence results. (author)

  15. Optimal pulse-sequence parameters for MR imaging of the immature brain

    Nowell, M.A.; Hackney, D.B.; Zimmerman, R.A.; Bilaniuk, L.T.; Grossman, R.I.; Goldberg, H.I.

    1986-01-01

    Appropriate spin-echo pulse sequence parameters generate MR images with very high gray matter/white matter contrast in neonates and young infants. Low-contrast images appear to result from utilization of ''adult-type'' parameters to investigate tissues that have relaxation characteristics quite different than those of adult brain. In these young patients long spin-echo sequences with repetition times of 3,000-3,500 msec and multiple echoes with the longest echo time set at 120-160 msec are employed to yield high-contrast ''T2-weighted'' images

  16. Optimal context quantization in lossless compression of image data sequences

    Forchhammer, Søren; Wu, X.; Andersen, Jakob Dahl

    2004-01-01

    In image compression context-based entropy coding is commonly used. A critical issue to the performance of context-based image coding is how to resolve the conflict of a desire for large templates to model high-order statistic dependency of the pixels and the problem of context dilution due...... to insufficient sample statistics of a given input image. We consider the problem of finding the optimal quantizer Q that quantizes the K-dimensional causal context C/sub t/=(X/sub t-t1/,X/sub t-t2/,...,X/sub t-tK/) of a source symbol X/sub t/ into one of a set of conditioning states. The optimality of context...... quantization is defined to be the minimum static or minimum adaptive code length of given a data set. For a binary source alphabet an optimal context quantizer can be computed exactly by a fast dynamic programming algorithm. Faster approximation solutions are also proposed. In case of m-ary source alphabet...

  17. Estimation of physiological parameters using knowledge-based factor analysis of dynamic nuclear medicine image sequences

    Yap, J.T.; Chen, C.T.; Cooper, M.

    1995-01-01

    The authors have previously developed a knowledge-based method of factor analysis to analyze dynamic nuclear medicine image sequences. In this paper, the authors analyze dynamic PET cerebral glucose metabolism and neuroreceptor binding studies. These methods have shown the ability to reduce the dimensionality of the data, enhance the image quality of the sequence, and generate meaningful functional images and their corresponding physiological time functions. The new information produced by the factor analysis has now been used to improve the estimation of various physiological parameters. A principal component analysis (PCA) is first performed to identify statistically significant temporal variations and remove the uncorrelated variations (noise) due to Poisson counting statistics. The statistically significant principal components are then used to reconstruct a noise-reduced image sequence as well as provide an initial solution for the factor analysis. Prior knowledge such as the compartmental models or the requirement of positivity and simple structure can be used to constrain the analysis. These constraints are used to rotate the factors to the most physically and physiologically realistic solution. The final result is a small number of time functions (factors) representing the underlying physiological processes and their associated weighting images representing the spatial localization of these functions. Estimation of physiological parameters can then be performed using the noise-reduced image sequence generated from the statistically significant PCs and/or the final factor images and time functions. These results are compared to the parameter estimation using standard methods and the original raw image sequences. Graphical analysis was performed at the pixel level to generate comparable parametric images of the slope and intercept (influx constant and distribution volume)

  18. Comparison of 3 T and 7 T MRI clinical sequences for ankle imaging

    Juras, Vladimir, E-mail: vladimir.juras@meduniwien.ac.at [Medical University of Vienna, Department of Radiology, Vienna General Hospital, Waeringer Guertel 18-20, A-1090 Vienna (Austria); Slovak Academy of Sciences, Institute of Measurement Science, Dubravska cesta 9, 84104 Bratislava (Slovakia); Welsch, Goetz, E-mail: welsch@bwh.harvard.edu [Medical University of Vienna, Department of Radiology, Vienna General Hospital, Waeringer Guertel 18-20, A-1090 Vienna (Austria); Baer, Peter, E-mail: baerpeter@siemens.com [Siemens Healthcare, Richard-Strauss-Strasse 76, D81679 Munich (Germany); Kronnerwetter, Claudia, E-mail: claudia.kronnerwetter@meduniwien.ac.at [Medical University of Vienna, Department of Radiology, Vienna General Hospital, Waeringer Guertel 18-20, A-1090 Vienna (Austria); Fujita, Hiroyuki, E-mail: hiroyuki.fujita@qualedyn.com [Quality Electrodynamics, LCC, 777 Beta Dr, Cleveland, OH 44143-2336 (United States); Trattnig, Siegfried, E-mail: siegfried.trattnig@meduniwien.ac.at [Medical University of Vienna, Department of Radiology, Vienna General Hospital, Waeringer Guertel 18-20, A-1090 Vienna (Austria)

    2012-08-15

    The purpose of this study was to compare 3 T and 7 T signal-to-noise and contrast-to noise ratios of clinical sequences for imaging of the ankles with optimized sequences and dedicated coils. Ten healthy volunteers were examined consecutively on both systems with three clinical sequences: (1) 3D gradient-echo, T{sub 1}-weighted; (2) 2D fast spin-echo, PD-weighted; and (3) 2D spin-echo, T{sub 1}-weighted. SNR was calculated for six regions: cartilage; bone; muscle; synovial fluid; Achilles tendon; and Kager's fat-pad. CNR was obtained for cartilage/bone, cartilage/fluid, cartilage/muscle, and muscle/fat-pad, and compared by a one-way ANOVA test for repeated measures. Mean SNR significantly increased at 7 T compared to 3 T for 3D GRE, and 2D TSE was 60.9% and 86.7%, respectively. In contrast, an average SNR decrease of almost 25% was observed in the 2D SE sequence. A CNR increase was observed in 2D TSE images, and in most 3D GRE images. There was a substantial benefit from ultra high-field MR imaging of ankles with routine clinical sequences at 7 T compared to 3 T. Higher SNR and CNR at ultra-high field MR scanners may be useful in clinical practice for ankle imaging. However, carefully optimized protocols and dedicated extremity coils are necessary to obtain optimal results.

  19. MRI investigation of normal fetal lung maturation using signal intensities on different imaging sequences

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Prayer, Daniela; Brugger, Peter C.; Csapo, Bence; Mittermayer, Christoph

    2007-01-01

    To purpose of this paper is to study the relation between normal lung maturation signal and changes in intensity ratios (SIR) and to determine which magnetic resonance imaging sequence provides the strongest correlation of normal lung SIs with gestational age. 126 normal singleton pregnancies (20-37 weeks) were examined with a 1.5 Tesla unit. Mean SIs for lungs, liver, and gastric fluid were assessed on six different sequences, and SIRs of lung/liver (LLSIR) and lung/gastric fluid (LGSIR) were correlated with gestational age for each sequence. To evaluate the feasibility of SIRs in the prediction of the state of the lung maturity, accuracy of the predicted SIRs (D*) was measured by calculating relative residuals (D*-D)/D for each sequence. LLSIRs showed significant changes in every sequence (p<0.05), while LGSIRs only on two sequences. Significant differences were shown for the mean of absolute residuals for both LLSIRs (p<0.001) and for LGSIRs (p=0.003). Relative residuals of LLSIRs were significantly smaller on T1-weighted sequence, whereas they were significantly higher for LGSIRs on FLAIR sequence. Fetal liver seems to be adequate reference for the investigation of lung maturation. T1-weighted sequence was the most accurate for the measurement of the lung SIs; thus, we propose to determine LLSIR on T1-weighted sequence when evaluating lung development. (orig.)

  20. MRI investigation of normal fetal lung maturation using signal intensities on different imaging sequences

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center of Anatomy and Cell Biology, Vienna (Austria); Csapo, Bence [Medical University of Vienna, Department of Obstetrics and Gyneocology, Vienna (Austria); Mittermayer, Christoph [Medical University of Vienna, Department of Pediatrics, Vienna (Austria)

    2007-03-15

    To purpose of this paper is to study the relation between normal lung maturation signal and changes in intensity ratios (SIR) and to determine which magnetic resonance imaging sequence provides the strongest correlation of normal lung SIs with gestational age. 126 normal singleton pregnancies (20-37 weeks) were examined with a 1.5 Tesla unit. Mean SIs for lungs, liver, and gastric fluid were assessed on six different sequences, and SIRs of lung/liver (LLSIR) and lung/gastric fluid (LGSIR) were correlated with gestational age for each sequence. To evaluate the feasibility of SIRs in the prediction of the state of the lung maturity, accuracy of the predicted SIRs (D*) was measured by calculating relative residuals (D*-D)/D for each sequence. LLSIRs showed significant changes in every sequence (p<0.05), while LGSIRs only on two sequences. Significant differences were shown for the mean of absolute residuals for both LLSIRs (p<0.001) and for LGSIRs (p=0.003). Relative residuals of LLSIRs were significantly smaller on T1-weighted sequence, whereas they were significantly higher for LGSIRs on FLAIR sequence. Fetal liver seems to be adequate reference for the investigation of lung maturation. T1-weighted sequence was the most accurate for the measurement of the lung SIs; thus, we propose to determine LLSIR on T1-weighted sequence when evaluating lung development. (orig.)

  1. Use of the Discrete Cosine Transform for the restoration of an image sequence

    Acheroy, M.P.J.

    1985-01-01

    The Discrete Cosine Transform (DCT) is recognized as an important tool for image compression techniques. Its use in image restoration is, however, not well known. It is the aim of this paper to provide a restoration method for a sequence of images using the DCT as well for the deblurring as for the noise reduction. It is shown that the DCT can play an interesting role in the deconvolution problem for linear imaging systems with finite, invariant and symmetric impulse response. It is further shown that the noise reduction can be performed onto an image sequence using a time adaptive Kalman filter in the domain of the Karhunen-Loeve transform which is approximated by the DCT

  2. Meteor localization via statistical analysis of spatially temporal fluctuations in image sequences

    Kukal, Jaromír.; Klimt, Martin; Šihlík, Jan; Fliegel, Karel

    2015-09-01

    Meteor detection is one of the most important procedures in astronomical imaging. Meteor path in Earth's atmosphere is traditionally reconstructed from double station video observation system generating 2D image sequences. However, the atmospheric turbulence and other factors cause spatially-temporal fluctuations of image background, which makes the localization of meteor path more difficult. Our approach is based on nonlinear preprocessing of image intensity using Box-Cox and logarithmic transform as its particular case. The transformed image sequences are then differentiated along discrete coordinates to obtain statistical description of sky background fluctuations, which can be modeled by multivariate normal distribution. After verification and hypothesis testing, we use the statistical model for outlier detection. Meanwhile the isolated outlier points are ignored, the compact cluster of outliers indicates the presence of meteoroids after ignition.

  3. Fat-saturated diffusion-weighted imaging with three-dimensional MP-RAGE sequence

    Numano, Tomokazu; Homma, Kazuhiro; Takahashi, Nobuyuki; Hirose, Takeshi

    2005-01-01

    Image misrepresentation due to chemical shifts can create image artifacts on MR images. Distinguishing the organization and affected area can be difficult due to the chemical shift artifacts. Chemical shift selective (CHESS) is a method of decreasing chemical shift artifacts. In this study we have developed a new sequence for fat-saturated three-dimensional diffusion weighted MR imaging. This imaging was done during in vivo studies using an animal experiment MR imaging system at 2.0 T. In this sequence a preparation phase with a ''CHESS-90 deg RF-Motion Proving Gradient (MPG-180 deg RF-MPG-90 deg RF pulse train) was used to sensitize the magnetization to fat-saturated diffusion. Centric k-space acquisition order is necessary to minimize saturation effects from tissues with short relaxation times. From experimental results obtained with a phantom, the effect of the diffusion weighting and the effect of the fat-saturation were confirmed. From rat experimental results, fat-saturated diffusion weighted image data (0.55 x 0.55 x 0.55 mm 3 : voxel size) were obtained. This sequence was useful for in vivo imaging. (author)

  4. Shadow Areas Robust Matching Among Image Sequence in Planetary Landing

    Ruoyan, Wei; Xiaogang, Ruan; Naigong, Yu; Xiaoqing, Zhu; Jia, Lin

    2017-01-01

    In this paper, an approach for robust matching shadow areas in autonomous visual navigation and planetary landing is proposed. The approach begins with detecting shadow areas, which are extracted by Maximally Stable Extremal Regions (MSER). Then, an affine normalization algorithm is applied to normalize the areas. Thirdly, a descriptor called Multiple Angles-SIFT (MA-SIFT) that coming from SIFT is proposed, the descriptor can extract more features of an area. Finally, for eliminating the influence of outliers, a method of improved RANSAC based on Skinner Operation Condition is proposed to extract inliers. At last, series of experiments are conducted to test the performance of the approach this paper proposed, the results show that the approach can maintain the matching accuracy at a high level even the differences among the images are obvious with no attitude measurements supplied.

  5. Differential evolution optimization combined with chaotic sequences for image contrast enhancement

    Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br; Sauer, Joao Guilherme [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: joao.sauer@gmail.com; Rudek, Marcelo [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: marcelo.rudek@pucpr.br

    2009-10-15

    Evolutionary Algorithms (EAs) are stochastic and robust meta-heuristics of evolutionary computation field useful to solve optimization problems in image processing applications. Recently, as special mechanism to avoid being trapped in local minimum, the ergodicity property of chaotic sequences has been used in various designs of EAs. Three differential evolution approaches based on chaotic sequences using logistic equation for image enhancement process are proposed in this paper. Differential evolution is a simple yet powerful evolutionary optimization algorithm that has been successfully used in solving continuous problems. The proposed chaotic differential evolution schemes have fast convergence rate but also maintain the diversity of the population so as to escape from local optima. In this paper, the image contrast enhancement is approached as a constrained nonlinear optimization problem. The objective of the proposed chaotic differential evolution schemes is to maximize the fitness criterion in order to enhance the contrast and detail in the image by adapting the parameters using a contrast enhancement technique. The proposed chaotic differential evolution schemes are compared with classical differential evolution to two testing images. Simulation results on three images show that the application of chaotic sequences instead of random sequences is a possible strategy to improve the performance of classical differential evolution optimization algorithm.

  6. Development of a shelf margin delta due to uplift of Munkagrunnur Ridge at the margin of Faroe-Shetland Basin: a seismic sequence stratigraphic study

    Òlavsdóttir, Jana; Boldreel, Lars Ole; Andersen, Moretn S

    2010-01-01

    During the last decade several 3D digital reflection seismic datasets have been acquired in the Faroese sector of the Faroe-Shetland Basin which allow detailed seismic interpretation and mapping of parts of the area. This study presents mapping and seismic sequence stratigraphic interpretation of...

  7. A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations

    Zhang Li-Min; Sun Ke-Hui; Liu Wen-Hao; He Shao-Bo

    2017-01-01

    In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks. (paper)

  8. Small-target leak detection for a closed vessel via infrared image sequences

    Zhao, Ling; Yang, Hongjiu

    2017-03-01

    This paper focus on a leak diagnosis and localization method based on infrared image sequences. Some problems on high probability of false warning and negative affect for marginal information are solved by leak detection. An experimental model is established for leak diagnosis and localization on infrared image sequences. The differential background prediction is presented to eliminate the negative affect of marginal information on test vessel based on a kernel regression method. A pipeline filter based on layering voting is designed to reduce probability of leak point false warning. A synthesize leak diagnosis and localization algorithm is proposed based on infrared image sequences. The effectiveness and potential are shown for developed techniques through experimental results.

  9. Parry-Romberg syndrome: findings in advanced magnetic resonance imaging sequences - case report

    Paula, Rafael Alfenas de; Ribeiro, Bruno Niemeyer de Freitas, E-mail: alfenas85@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Hospital Universitario Clementino Fraga Filho; Bahia, Paulo Roberto Valle [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de radiologia; Ribeiro, Renato Niemeyer de Freitas [Hospital de Clinica de Jacarepagua, Rio de Janeiro, RJ (Brazil); Carvalho, Lais Balbi de [Universidade Presidente Antonio Carlos (Unipac), Juiz de Fora, MG (Brazil)

    2014-05-15

    Parry-Romberg syndrome is a rare disease characterized by progressive hemifacial atrophy associated with other systemic changes, including neurological symptoms. Currently, there are few studies exploring the utilization of advanced magnetic resonance sequences in the investigation of this disease. The authors report the case of a 45-year-old patient and describe the findings at structural magnetic resonance imaging and at advanced sequences, correlating them with pathophysiological data. (author)

  10. Artificial Intelligence In Processing A Sequence Of Time-Varying Images

    Siler, W.; Tucker, D.; Buckley, J.; Hess, R. G.; Powell, V. G.

    1985-04-01

    A computer system is described for unsupervised analysis of five sets of ultrasound images of the heart. Each set consists of 24 frames taken at 33 millisecond intervals. The images are acquired in real time with computer control of the ultrasound apparatus. After acquisition the images are segmented by a sequence of image-processing programs; features are extracted and stored in a version of the Carnegie- Mellon Blackboard. Region classification is accomplished by a fuzzy logic expert system FLOPS based on OPS5. Preliminary results are given.

  11. MR of normal pancreas : comparison of five pulse sequences and enhancing patterns on dynamic imaging

    Jang, Hyun Jung; Kim, Tae Kyoung; Hong, Sung Hwan; Han, Joon Koo; Choi, Byung Ihn

    1997-01-01

    To compare T1-weighted FLASH and turbo spin echo (SE) T2-weighted sequences with conventional T1- and T2-weighted sequences in imaging normal pancreas and to describe the enhancing patterns on dynamic MR imging. Forty-four patients with presumed hepatic hemangiomas were studied at 1.0T or 1.5T by using conventional SE sequences (T1-weighted, T2-weighted, and heavily T2-weighted), turbo-SE T2-weighted sequences, and breath-hold T1-weighted FLASH sequences acquired before, immediately on, and at 1, 2, 3, and 5 or 10 minutes after injection of a bolus of gadopentetate dimeglumine. No patients had either a history or its clinical features of pancreatic disease. Images were quantitatively analyzed for signal-difference-to noise ratios (SD/Ns) between the pancreas and peripancreatic fat. Percentage enhancement of the pancreas was measured on each dynamic MR image. Conspicuity of the pancreatic border was qualitatively evaluated according to a consensus, reached by three radiologists. Turbo-SE T2-weighted images had a significantly higher SD/N ratio (p<0.001) and better conspicuity of the pancreatic border (p<0.001) than SE T2- and heavily T2-weighted images;T1-weighted SE images had a significantly higher SD/N ratio than T1-weighted FLASH images (p<0.001), but there was no significant difference between tham in qualitative analysis (p=0.346). Percentage enhancement immediately on and at 1, 2, 3, 5, and 10 minutes after administration of contrast material was 39.9%, 44.5%, 42.9%, 40.8%, 36.3%, 29.9%, respectively, with peak enhancement at 1 minute. In MR imaging of normal pancreas, turbo-SE T2-weighted imaging is superior to SE T2- and heavily T2- weighted imaging, and SE T1-weighted imaging is superior to T1-weighted FLASH imaging. On serial gadolinium-enhanced FLASH imaging, normal pancreas shows peak enhancement at 1 minute

  12. Victoria Land, Ross Sea, and Ross Ice Shelf, Antarctica

    2002-01-01

    On December 19, 2001, MODIS acquired data that produced this image of Antarctica's Victoria Land, Ross Ice Shelf, and the Ross Sea. The coastline that runs up and down along the left side of the image denotes where Victoria Land (left) meets the Ross Ice Shelf (right). The Ross Ice Shelf is the world's largest floating body of ice, approximately the same size as France. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  13. Denoising time-resolved microscopy image sequences with singular value thresholding

    Furnival, Tom, E-mail: tjof2@cam.ac.uk; Leary, Rowan K., E-mail: rkl26@cam.ac.uk; Midgley, Paul A., E-mail: pam33@cam.ac.uk

    2017-07-15

    Time-resolved imaging in microscopy is important for the direct observation of a range of dynamic processes in both the physical and life sciences. However, the image sequences are often corrupted by noise, either as a result of high frame rates or a need to limit the radiation dose received by the sample. Here we exploit both spatial and temporal correlations using low-rank matrix recovery methods to denoise microscopy image sequences. We also make use of an unbiased risk estimator to address the issue of how much thresholding to apply in a robust and automated manner. The performance of the technique is demonstrated using simulated image sequences, as well as experimental scanning transmission electron microscopy data, where surface adatom motion and nanoparticle structural dynamics are recovered at rates of up to 32 frames per second. - Highlights: • Correlations in space and time are harnessed to denoise microscopy image sequences. • A robust estimator provides automated selection of the denoising parameter. • Motion tracking and automated noise estimation provides a versatile algorithm. • Application to time-resolved STEM enables study of atomic and nanoparticle dynamics.

  14. Inter frame motion estimation and its application to image sequence compression: an introduction

    Cremy, C.

    1996-01-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of interframe estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author) 17 refs

  15. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances.

    O'Donnell, David H

    2012-02-01

    OBJECTIVE: This article reviews the optimal cardiac MRI sequences for and the spectrum of imaging appearances of cardiac tumors. CONCLUSION: Recent technologic advances in cardiac MRI have resulted in the rapid acquisition of images of the heart with high spatial and temporal resolution and excellent myocardial tissue characterization. Cardiac MRI provides optimal assessment of the location, functional characteristics, and soft-tissue features of cardiac tumors, allowing accurate differentiation of benign and malignant lesions.

  16. Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera

    Yufu Qu

    2018-01-01

    Full Text Available In order to reconstruct three-dimensional (3D structures from an image sequence captured by unmanned aerial vehicles’ camera (UAVs and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth–map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable.

  17. Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera.

    Qu, Yufu; Huang, Jianyu; Zhang, Xuan

    2018-01-14

    In order to reconstruct three-dimensional (3D) structures from an image sequence captured by unmanned aerial vehicles' camera (UAVs) and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth-map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable.

  18. Limited-sequence magnetic resonance imaging in the evaluation of the ultrasonographically indeterminate pelvic mass

    Chang, S.D. [Univ. of British Columbia, Vancouver Hospital and Helath Services Centre, Dept. of Radiology, Vancouver, British Columbia (Canada)]. E-mail: schang@vanhosp.bc.ca; Cooperberg, P.L.; Wong, A.D. [Univ. of British Columbia, St. Paul' s Hospital, Dept. of Radiology, Vancouver, British Columbia (Canada); Llewellyn, P.A. [Lion' s Gate Hospital, Dept. of Radiology, North Vancouver, British Columbia (Canada); Bilbey, J.H. [Royal Inland Hospital, Dept. of Radiology, Kamloops, British Columbia (Canada)

    2004-04-01

    To evaluate the usefulness of limited-sequence magnetic resonance imaging (MRI) in the elucidation of ultrasonographically indeterminate pelvic masses. This study focused only on pelvic masses in which the origin of the mass (uterine v. extrauterine) could not be determined by ultrasonography (US). The origin of a pelvic mass has clinical implications. A mass arising from the uterus is most likely to be a leiomyoma, which is a benign lesion, whereas an extrauterine mass will have a higher likelihood of malignancy and usually requires surgery. Eighty-one female patients whose pelvic mass was of indeterminate origin on US also underwent limited-sequence MRI of the pelvis. Most of the MRI examinations were performed on the same day as the US. Limited-sequence MRI sequences included a quick gradient-echoT{sub 1}-weighted localizer and a fast spin-echoT{sub 2}-weighted sequence. Final diagnoses were established by surgical pathology or by clinical and imaging follow-up. Limited-sequence MRI was helpful in 79 of the 81 cases (98%). Fifty-two of the 81 masses (64%) were leiomyomas. One was a leiomyosarcoma. The extrauterine masses (26/81 [32%]) were identified as 14 ovarian malignancies, 4 endometriomas, 3 dermoids, an ovarian fibroma, an infarcted fibrothecoma, an infarcted hemorrhagic cyst, a sigmoid diverticular abscess and a gastrointestinal stromal tumour of the ileum. In the other 2 cases (2/81 [2%]), the origin of the pelvic mass remained indeterminate. Both of these indeterminate masses showed low signal onT{sub 2}-weighted images and were interpreted as probable leiomyomas. They were not surgically removed but were followed clinically and had a stable course. Limited-sequence MRI is a quick and efficient way to further evaluate ultrasonographically indeterminate pelvic masses. Limited-sequence MRI of the pelvis can suffice, in these cases, without requiring a full MRI examination. (author)

  19. Limited-sequence magnetic resonance imaging in the evaluation of the ultrasonographically indeterminate pelvic mass

    Chang, S.D.; Cooperberg, P.L.; Wong, A.D.; Llewellyn, P.A.; Bilbey, J.H.

    2004-01-01

    To evaluate the usefulness of limited-sequence magnetic resonance imaging (MRI) in the elucidation of ultrasonographically indeterminate pelvic masses. This study focused only on pelvic masses in which the origin of the mass (uterine v. extrauterine) could not be determined by ultrasonography (US). The origin of a pelvic mass has clinical implications. A mass arising from the uterus is most likely to be a leiomyoma, which is a benign lesion, whereas an extrauterine mass will have a higher likelihood of malignancy and usually requires surgery. Eighty-one female patients whose pelvic mass was of indeterminate origin on US also underwent limited-sequence MRI of the pelvis. Most of the MRI examinations were performed on the same day as the US. Limited-sequence MRI sequences included a quick gradient-echoT 1 -weighted localizer and a fast spin-echoT 2 -weighted sequence. Final diagnoses were established by surgical pathology or by clinical and imaging follow-up. Limited-sequence MRI was helpful in 79 of the 81 cases (98%). Fifty-two of the 81 masses (64%) were leiomyomas. One was a leiomyosarcoma. The extrauterine masses (26/81 [32%]) were identified as 14 ovarian malignancies, 4 endometriomas, 3 dermoids, an ovarian fibroma, an infarcted fibrothecoma, an infarcted hemorrhagic cyst, a sigmoid diverticular abscess and a gastrointestinal stromal tumour of the ileum. In the other 2 cases (2/81 [2%]), the origin of the pelvic mass remained indeterminate. Both of these indeterminate masses showed low signal onT 2 -weighted images and were interpreted as probable leiomyomas. They were not surgically removed but were followed clinically and had a stable course. Limited-sequence MRI is a quick and efficient way to further evaluate ultrasonographically indeterminate pelvic masses. Limited-sequence MRI of the pelvis can suffice, in these cases, without requiring a full MRI examination. (author)

  20. Retrospective comparison of three-dimensional imaging sequences in the visualization of posterior fossa cranial nerves.

    Ors, Suna; Inci, Ercan; Turkay, Rustu; Kokurcan, Atilla; Hocaoglu, Elif

    2017-12-01

    To compare efficancy of three-dimentional SPACE (sampling perfection with application-optimized contrasts using different flip-angle evolutions) and CISS (constructive interference in steady state) sequences in the imaging of the cisternal segments of cranial nerves V-XII. Temporal MRI scans from 50 patients (F:M ratio, 27:23; mean age, 44.5±15.9 years) admitted to our hospital with vertigo, tinnitus, and hearing loss were retrospectively analyzed. All patients had both CISS and SPACE sequences. Quantitative analysis of SPACE and CISS sequences was performed by measuring the ventricle-to-parenchyma contrast-to-noise ratio (CNR). Qualitative analysis of differences in visualization capability, image quality, and severity of artifacts was also conducted. A score ranging 'no artefact' to 'severe artefacts and unreadable' was used for the assessment of artifacts and from 'not visualized' to 'completely visualized' for the assesment of image quality, respectively. The distribution of variables was controlled by the Kolmogorov-Smirnov test. Samples t-test and McNemar's test were used to determine statistical significance. Rates of visualization of posterior fossa cranial nerves in cases of complete visualization were as follows: nerve V (100% for both sequences), nerve VI (94% in SPACE, 86% in CISS sequences), nerves VII-VIII (100% for both sequences), IX-XI nerve complex (96%, 88%); nerve XII (58%, 46%) (p<0.05). SPACE sequences showed fewer artifacts than CISS sequences (p<0.002). Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Prostate cancer in magnetic resonance imaging: diagnostic utilites of spectroscopic sequences

    Caivano, Rocchina; Cirillo, Patrizia; Lotumolo, Antonella; Fortunato, Giovanna; Zandolino, Alexis; Cammarota, Aldo; Balestra, Antonio; Macarini, Luca; Vita, Giulia

    2012-01-01

    The aim of our work is to determine the efficacy of a combined study 3 Tesla Magnetic Resonance Imaging (3T MRI), with phased-array coil, for the detection of prostate cancer using magnetic resonance spectroscopy (MRS) and diffusion-weighted images (DWI) in identifying doubt nodules. In this study, we prospectively studied 46 patients who consecutively underwent digital-rectal exploration for high doses of prostate specific antigen (PSA), as well as a MRI examination and a subsequent rectal biopsy. The study of magnetic resonance imaging was performed with a Philips Achieva 3T scanner and phased-array coil. The images were obtained with turbo spin-echo sequences T2-weighted images, T1-weighted before and after the administration of contrast medium, DWI sequences and 3D spectroscopic sequences. The ultrasound-guided prostate biopsy was performed approximately 15 days after the MRI. The data obtained from MR images and spectroscopy were correlated with histological data. MRI revealed sensitivity and specificity of 88% and 61% respectively and positive predictive value (PPV) of 73%, negative predicted value (NPV) of 81% and accuracy of 76%. In identifying the location of prostate cancer, the sensitivity of 3T MRS was 92%, with a specificity of 89%, PPV of 87%, NPV of 88% and accuracy of 87%; DWI showed a sensitivity of 88%, specificity of 61%, PPV of 73%, NPV of 81% and accuracy of 76%. The 3T MR study with phased-array coil and the use of DWI and spectroscopic sequences, in addition to T2-weighted sequences, revealed to be accurate in the diagnosis of prostate cancer and in the identification of nodules to be biopsied. It may be indicated as a resolute way before biopsy in patients with elevated PSA value and can be proposed in the staging and follow-up.

  2. NOAA TIFF Image - 1m Multibeam Bathymetry, US Virgin Islands - St. John Shelf - Project NF-10-03 - (2010), UTM 20N NAD83 (NCEI Accession 0131854)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 1x1 meter cell size representing the bathymetry of St. John Shelf, a selected portion of seafloor south of St. John, USVI,...

  3. NOAA TIFF Image - 1m Multibeam Bathymetry, US Virgin Islands - St. John Shelf - Project NF-10-03 - (2010), UTM 20N NAD83

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 1x1 meter cell size representing the bathymetry of St. John Shelf, a selected portion of seafloor south of St. John, USVI,...

  4. The Myanmar continental shelf

    Ramaswamy, V.; Rao, P.S.

    reveal a minimum of 18 m thick strata of modern muds (Fig. 2g). At the outer boundary of the Gulf of Myanmar Continental Shelf 8 Martaban (15oN Latitude), brown muds overlie coarse sands indicating that modern deltaic sediments... on the Myeik Bank (Rodolfo, 1969a). Modern sediments on the Ayeyarwady shelf General composition, Texture and Grain-size: The distribution and sediment texture on the Ayeyarwady shelf shows fine-grained sediments comprising silty-clay and clayey...

  5. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.

    Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert

    2011-04-01

    To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms. © 2011 IEEE

  6. No Reference Prediction of Quality Metrics for H.264 Compressed Infrared Image Sequences for UAV Applications

    Hossain, Kabir; Mantel, Claire; Forchhammer, Søren

    2018-01-01

    The framework for this research work is the acquisition of Infrared (IR) images from Unmanned Aerial Vehicles (UAV). In this paper we consider the No-Reference (NR) prediction of Full Reference Quality Metrics for Infrared (IR) video sequences which are compressed and thus distorted by an H.264...

  7. A generative Bezier curve model for surf-zone tracking in coastal image sequences

    Burke, Michael G

    2017-09-01

    Full Text Available This work introduces a generative Bezier curve model suitable for surf-zone curve tracking in coastal image sequences. The model combines an adaptive curve parametrised by control points governed by local random walks with a global sinusoidal motion...

  8. Diffusion tensor imaging. Theory, sequence optimization and application in Alzheimer's disease

    Stieltjes, B.; Schlueter, M.; Hahn, H.K.; Wilhelm, T.; Essig, M.

    2003-01-01

    Diffusion tensor imaging (DTI) offers an in vivo view into the microarchitecture of the brain. Furthermore it allows a three-dimensional reconstruction of fiber tracts. We will discuss the principles of DTI and possibilities for sequence optimization. Finally we will give an overview of DTI and its application in Alzheimer's disease. (orig.) [de

  9. PETRA, MSVAT-SPACE and SEMAC sequences for metal artefact reduction in dental MR imaging

    Hilgenfeld, Tim; Heil, Alexander; Bendszus, Martin; Prager, Marcel; Heiland, Sabine; Schwindling, Franz Sebastian; Rammelsberg, Peter; Nittka, Mathias; Grodzki, David

    2017-01-01

    Dental MRI is often impaired by artefacts due to metallic dental materials. Several sequences were developed to reduce susceptibility artefacts. Here, we evaluated a set of sequences for artefact reduction for dental MRI for the first time. Artefact volume, signal-to-noise ratio (SNR) and image quality were assessed on a 3-T MRI for pointwise encoding time reduction with radial acquisition (PETRA), multiple-slab acquisition with view angle tilting gradient, based on a sampling perfection with application-optimised contrasts using different flip angle evolution (SPACE) sequence (MSVAT-SPACE), slice-encoding for metal-artefact correction (SEMAC) and compared to a standard SPACE and a standard turbo-spin-echo (TSE) sequence. Field-of-view and acquisition times were chosen to enable in vivo application. Two implant-supported prostheses were tested (porcelain fused to metal non-precious alloy and monolithic zirconia). Smallest artefact was measured for TSE sequences with no difference between the standard TSE and the SEMAC. MSVAT-SPACE reduced artefacts about 56% compared to the standard SPACE. Effect of the PETRA was dependent on sample used. Image quality and SNR were comparable for all sequences except PETRA, which yielded poor results. There is no benefit in terms of artefact reduction for SEMAC compared to standard TSE. Usage of MSVAT-SPACE is advantageous since artefacts are reduced and higher resolution is achieved. (orig.)

  10. PETRA, MSVAT-SPACE and SEMAC sequences for metal artefact reduction in dental MR imaging

    Hilgenfeld, Tim; Heil, Alexander; Bendszus, Martin [Heidelberg University Hospital, Department of Neuroradiology, Heidelberg (Germany); Prager, Marcel; Heiland, Sabine [Heidelberg University Hospital, Department of Neuroradiology, Heidelberg (Germany); Heidelberg University Hospital, Section of Experimental Radiology, Heidelberg (Germany); Schwindling, Franz Sebastian; Rammelsberg, Peter [Heidelberg University Hospital, Department of Prosthodontics, Heidelberg (Germany); Nittka, Mathias; Grodzki, David [Siemens Healthcare GmbH, Erlangen (Germany)

    2017-12-15

    Dental MRI is often impaired by artefacts due to metallic dental materials. Several sequences were developed to reduce susceptibility artefacts. Here, we evaluated a set of sequences for artefact reduction for dental MRI for the first time. Artefact volume, signal-to-noise ratio (SNR) and image quality were assessed on a 3-T MRI for pointwise encoding time reduction with radial acquisition (PETRA), multiple-slab acquisition with view angle tilting gradient, based on a sampling perfection with application-optimised contrasts using different flip angle evolution (SPACE) sequence (MSVAT-SPACE), slice-encoding for metal-artefact correction (SEMAC) and compared to a standard SPACE and a standard turbo-spin-echo (TSE) sequence. Field-of-view and acquisition times were chosen to enable in vivo application. Two implant-supported prostheses were tested (porcelain fused to metal non-precious alloy and monolithic zirconia). Smallest artefact was measured for TSE sequences with no difference between the standard TSE and the SEMAC. MSVAT-SPACE reduced artefacts about 56% compared to the standard SPACE. Effect of the PETRA was dependent on sample used. Image quality and SNR were comparable for all sequences except PETRA, which yielded poor results. There is no benefit in terms of artefact reduction for SEMAC compared to standard TSE. Usage of MSVAT-SPACE is advantageous since artefacts are reduced and higher resolution is achieved. (orig.)

  11. Optimal pulse sequence for ferumoxides-enhanced MR imaging used in the detection of hepatocellular carcinoma: a comparative study using seven pulse sequences

    Kim, Seung Hoon; Choi, Dongil; Lim, Jae Hoon; Lee, Won Jae; Jang, Hyun Jung; Lim, Kyo Keun; Lee, Soon Jin; Cho, Jae Min; Kim, Seung Kwon; Kim, Gab Chul

    2002-01-01

    To identify the optimal pulse sequence for ferumoxides-enhanced magnetic resonance (MR) imaging in the detection of hepatocelluar carcinomas (HCCs). Sixteen patients with 25 HCCs underwent MR imaging following intravenous infusion of ferumoxides. All MR studies were performed on a 1.5-T MR system, using a phased-array coil. Ferumoxides (Feridex IV) at a dose of 15 μmol/Kg was slowly infused intravenously, and axial images of seven sequences were obtained 30 minutes after the end of infusion. The MR protocol included fast spin-echo (FSE) with two echo times (TR3333-8571/TE18 and 90-117), singleshot FSE (SSFSE) with two echo times (TR∞/TE39 and 98), T2-weighted gradient-recalled acquisition in the steady state (GRASS) (TR216/TE20), T2-weighted fast multiplanar GRASS (FMPGR) (TR130/TE8.4-9.5), and T2-weighted fast multiplanar spoiled GRASS (FMPSPGR) (TR130/TE8.4-9.5). Contrast-to-noise ratios (CNRs) of HCCs determined during the imaging sequences formed the basis of quantitative analysis, and images were qualitatively assessed in terms of lesion conspicuity and image artifacts. The diagnostic accuracy of all sequences was assessed using receiver operating characteristic (ROC) analysis. Quantitative analysis revealed that the CNRs of T2-weighted FMPGR and T2-weighted FMPSPGR were significantly higher than those of the other sequences, while qualitative analysis showed that image artifacts were prominent at T2-weighted GRASS imaging. Lesion conspicuity was statistically significantly less clear at SSFSE imaging. In term of lesion detection, T-weighted FMPGR, T2- weighted FMPSPGR, and proton density FSE imaging were statistically superior to the others. T2-weighted FMPGR, T2- weighted FMPSPGR, and proton density FSE appear to be the optimal pulse sequences for ferumoxidesenhanced MR imaging in the detection of HCCs

  12. Surface coil imaging of the spine using fast sequences: Improvement of intensity profile and contrast behavior

    Requardt, H.; Deimling, M.; Weber, H.

    1986-01-01

    Sagittal and axial images obtained using a surface coil suffer from the extreme intensity profile caused by physical properties of the coil and the anatomic entity of subcutaneous fat. The authors present a measuring device that reduces these disadvantages by means of Helmholtz-type coils, and sequences that reduce the fat signal by dephasing its signal part. The extremely short repetition time (<30 msec) allows acquisition times shorter than 10 sec. Breath-holding for this short period to avoid movement artifacts is possible. Images are presented that illustrate the enhanced contrast of spinal tissue and surrounding structures. Comparisons are made with spin-echo and CHESS images

  13. Water imaging (hydrography) in the fetus: the value of a heavily T2-weighted sequence

    Kline-Fath, Beth M.; Calvo-Garcia, Maria A.; O' Hara, Sara M.; Racadio, Judy M. [University of Cincinnati Medical Center, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2007-02-15

    Since the development of fast imaging sequences, MR has proved to be a helpful tool in the evaluation of fetal pathology. Because of the high water content of fetal tissues and pathology, hydrography imaging (MR fetography) can provide additional diagnostic information. To demonstrate the benefit of MR fetography in fetal imaging. From 2004 to 2005, 126 fetal MR examinations were performed for evaluation of an abnormality depicted on an antenatal sonogram. Single-shot fast spin-echo MR imaging and MR fetography were performed through the area of fetal pathology. The two studies were retrospectively compared. The primary diagnosis was not changed with the addition of MR fetography. New findings, particularly in the kidneys and spine, were identified in 9% of the patients. When fetal pathology was of high water content (80% patients), the MR fetography imaging increased diagnostic confidence. In 11% of the patients, those with cardiovascular or low water pathology, the MR fetography was not beneficial. The mainstay of fetal imaging is currently the HASTE and SSFSE sequences. However, MR fetography is an excellent adjunct that highlights fetal pathology by reinforcing the diagnosis, identifying additional findings, and providing high-contrast high-resolution images that are helpful when counseling clinicians and patients. (orig.)

  14. Common crus aplasia: diagnosis by 3D volume rendering imaging using 3DFT-CISS sequence

    Kim, H.J.; Song, J.W.; Chon, K.-M.; Goh, E.-K.

    2004-01-01

    AIM: The purpose of this study was to evaluate the findings of three-dimensional (3D) volume rendering (VR) imaging in common crus aplasia (CCA) of the inner ear. MATERIALS AND METHODS: Using 3D VR imaging of temporal bone constructive interference in steady state (CISS) magnetic resonance (MR) images, we retrospectively reviewed seven inner ears of six children who were candidates for cochlear implants and who had been diagnosed with CCA. As controls, we used the same method to examine 402 inner ears of 201 patients who had no clinical symptoms or signs of sensorineural hearing loss. Temporal bone MR imaging (MRI) was performed with a 1.5 T MR machine using a CISS sequence, and VR of the inner ear was performed on a work station. Morphological image analysis was performed on rotation views of 3D VR images. RESULTS: In all seven cases, CCA was diagnosed by the absence of the common crus. The remaining superior semicircular canal (SCC) was normal in five and hypoplastic in two inner ears, while the posterior SCC was normal in all seven. One patient showed bilateral symmetrical CCA. Complicated combined anomalies were seen in the cochlea, vestibule and lateral SCC. CONCLUSION: 3D VR imaging findings with MR CISS sequence can directly diagnose CCA. This technique may be useful in delineating detailed anomalies of SCCs

  15. Extracting a Good Quality Frontal Face Image from a Low-Resolution Video Sequence

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2011-01-01

    Feeding low-resolution and low-quality images, from inexpensive surveillance cameras, to systems like, e.g., face recognition, produces erroneous and unstable results. Therefore, there is a need for a mechanism to bridge the gap between on one hand low-resolution and low-quality images......, we use a learning-based super-resolution algorithm applied to the result of the reconstruction-based part to improve the quality by another factor of two. This results in an improvement factor of four for the entire system. The proposed system has been tested on 122 low-resolution sequences from two...... different databases. The experimental results show that the proposed system can indeed produce a high-resolution and good quality frontal face image from low-resolution video sequences....

  16. Magnetic resonance imaging of anterior cruciate ligament of the knee: a comparison of four sequences

    Casillas, C.; Marti-Bonmati, L.; Molla, E.; Ferrer, P.; Dosda, R.

    1999-01-01

    To compare the diagnostic efficacy of the four magnetic resonance imaging (MRI) sequences that compose the standard protocol for the study of the knee in our center when employed in the examination of anterior cruciate ligament (ACL). A prospective study was carried out based on MRI findings in the knees of 326 consecutive patients. Sagittal [proton density (PD w eighted turbo-spin-echo and T2*-weighted gradient echo], coronal (PD-weighted turbo-spin-echo with fat suppression) and transverse (T2*-weighted gradient echo with magnetization transfer) images were evaluated. Each sequence was analyzed independently by two radiologists, while another two assessed all the sequences together with the clinical findings. Four categories were established: normal ACL, partially torn, completely torn and synovialized. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) with respect to the definitive diagnosis were calculated for each sequence. The statistical analysis of the findings for each category was done using the chi-squared test and the Kappa test was employed to assess the degree of agreement. According to the final diagnosis, 263 ACL were normal, 29 were partially torn, 33 were completely torn and there was 1 case of synovialization associated with a completely torn ACL. The relationship between the analysis of the ACL according to each sequence and the definitive diagnosis was very significant (p<0.001) and the agreement was excellent. All the sequences presented similar levels of diagnostic precision. The coronal sequence had least number of diagnostic errors (2.1%). The combinations of imaging techniques that resulted in the lowest error rate with respect to the definitive diagnosis were coronal PD-weighted turbo-spin-echo with fat suppression and sagittal PD-weighted turbo-spin-echo. Coronal images are highly precise in the evaluation of ACL. Sagittal sequences are the most valid for diagnosis of torn ACL. Transverse

  17. Thermostable Shelf Life Study

    Perchonok, M. H.; Antonini, D. K.

    2008-01-01

    The objective of this project is to determine the shelf life end-point of various food items by means of actual measurement or mathematical projection. The primary goal of the Advanced Food Technology Project in these long duration exploratory missions is to provide the crew with a palatable, nutritious and safe food system while minimizing volume, mass, and waste. The Mars missions could be as long as 2.5 years with the potential of the food being positioned prior to the crew arrival. Therefore, it is anticipated that foods that are used during the Mars missions will require a 5 year shelf life. Shelf life criteria are safety, nutrition, and acceptability. Any of these criteria can be the limiting factor in determining the food's shelf life. Due to the heat sterilization process used for the thermostabilized food items, safety will be preserved as long as the integrity of the package is maintained. Nutrition and acceptability will change over time. Since the food can be the sole source of nutrition to the crew, a significant loss in nutrition may determine when the shelf life endpoint has occurred. Shelf life can be defined when the food item is no longer acceptable. Acceptability can be defined in terms of appearance, flavor, texture, or aroma. Results from shelf life studies of the thermostabilized food items suggest that the shelf life of the foods range from 0 months to 8 years, depending on formulation.

  18. Thermostabilized Shelf Life Study

    Perchonok, Michele H.; Catauro, Patricia M.

    2009-01-01

    The objective of this project is to determine the shelf life end-point of various food items by means of actual measurement or mathematical projection. The primary goal of the Advanced Food Technology Project in these long duration exploratory missions is to provide the crew with a palatable, nutritious and safe food system while minimizing volume, mass, and waste. The Mars missions could be as long as 2.5 years with the potential of the food being positioned prior to the crew arrival. Therefore, it is anticipated that foods that are used during the Mars missions will require a 5 year shelf life. Shelf life criteria are safety, nutrition, and acceptability. Any of these criteria can be the limiting factor in determining the food's shelf life. Due to the heat sterilization process used for the thermostabilized food items, safety will be preserved as long as the integrity of the package is maintained. Nutrition and acceptability will change over time. Since the food can be the sole source of nutrition to the crew, a significant loss in nutrition may determine when the shelf life endpoint has occurred. Shelf life can be defined when the food item is no longer acceptable. Acceptability can be defined in terms of appearance, flavor, texture, or aroma. Results from shelf life studies of the thermostabilized food items suggest that the shelf life of the foods range from 0 months to 8 years, depending on formulation.

  19. Moving target detection based on temporal-spatial information fusion for infrared image sequences

    Toing, Wu-qin; Xiong, Jin-yu; Zeng, An-jun; Wu, Xiao-ping; Xu, Hao-peng

    2009-07-01

    Moving target detection and localization is one of the most fundamental tasks in visual surveillance. In this paper, through analyzing the advantages and disadvantages of the traditional approaches about moving target detection, a novel approach based on temporal-spatial information fusion is proposed for moving target detection. The proposed method combines the spatial feature in single frame and the temporal properties within multiple frames of an image sequence of moving target. First, the method uses the spatial image segmentation for target separation from background and uses the local temporal variance for extracting targets and wiping off the trail artifact. Second, the logical "and" operator is used to fuse the temporal and spatial information. In the end, to the fusion image sequence, the morphological filtering and blob analysis are used to acquire exact moving target. The algorithm not only requires minimal computation and memory but also quickly adapts to the change of background and environment. Comparing with other methods, such as the KDE, the Mixture of K Gaussians, etc., the simulation results show the proposed method has better validity and higher adaptive for moving target detection, especially in infrared image sequences with complex illumination change, noise change, and so on.

  20. RECOGNITION OF DRAINAGE TUNNELS DURING GLACIER LAKE OUTBURST EVENTS FROM TERRESTRIAL IMAGE SEQUENCES

    E. Schwalbe

    2016-06-01

    Full Text Available In recent years, many glaciers all over the world have been distinctly retreating and thinning. One of the consequences of this is the increase of so called glacier lake outburst flood events (GLOFs. The mechanisms ruling such GLOF events are still not yet fully understood by glaciologists. Thus, there is a demand for data and measurements that can help to understand and model the phenomena. Thereby, a main issue is to obtain information about the location and formation of subglacial channels through which some lakes, dammed by a glacier, start to drain. The paper will show how photogrammetric image sequence analysis can be used to collect such data. For the purpose of detecting a subglacial tunnel, a camera has been installed in a pilot study to observe the area of the Colonia Glacier (Northern Patagonian Ice Field where it dams the Lake Cachet II. To verify the hypothesis, that the course of the subglacial tunnel is indicated by irregular surface motion patterns during its collapse, the camera acquired image sequences of the glacier surface during several GLOF events. Applying tracking techniques to these image sequences, surface feature motion trajectories could be obtained for a dense raster of glacier points. Since only a single camera has been used for image sequence acquisition, depth information is required to scale the trajectories. Thus, for scaling and georeferencing of the measurements a GPS-supported photogrammetric network has been measured. The obtained motion fields of the Colonia Glacier deliver information about the glacier’s behaviour before during and after a GLOF event. If the daily vertical glacier motion of the glacier is integrated over a period of several days and projected into a satellite image, the location and shape of the drainage channel underneath the glacier becomes visible. The high temporal resolution of the motion fields may also allows for an analysis of the tunnels dynamic in comparison to the changing

  1. Magnetic nanoparticle imaging by random and maximum length sequences of inhomogeneous activation fields.

    Baumgarten, Daniel; Eichardt, Roland; Crevecoeur, Guillaume; Supriyanto, Eko; Haueisen, Jens

    2013-01-01

    Biomedical applications of magnetic nanoparticles require a precise knowledge of their biodistribution. From multi-channel magnetorelaxometry measurements, this distribution can be determined by means of inverse methods. It was recently shown that the combination of sequential inhomogeneous excitation fields in these measurements is favorable regarding the reconstruction accuracy when compared to homogeneous activation . In this paper, approaches for the determination of activation sequences for these measurements are investigated. Therefor, consecutive activation of single coils, random activation patterns and families of m-sequences are examined in computer simulations involving a sample measurement setup and compared with respect to the relative condition number of the system matrix. We obtain that the values of this condition number decrease with larger number of measurement samples for all approaches. Random sequences and m-sequences reveal similar results with a significant reduction of the required number of samples. We conclude that the application of pseudo-random sequences for sequential activation in the magnetorelaxometry imaging of magnetic nanoparticles considerably reduces the number of required sequences while preserving the relevant measurement information.

  2. Correction of projective distortion in long-image-sequence mosaics without prior information

    Yang, Chenhui; Mao, Hongwei; Abousleman, Glen; Si, Jennie

    2010-04-01

    Image mosaicking is the process of piecing together multiple video frames or still images from a moving camera to form a wide-area or panoramic view of the scene being imaged. Mosaics have widespread applications in many areas such as security surveillance, remote sensing, geographical exploration, agricultural field surveillance, virtual reality, digital video, and medical image analysis, among others. When mosaicking a large number of still images or video frames, the quality of the resulting mosaic is compromised by projective distortion. That is, during the mosaicking process, the image frames that are transformed and pasted to the mosaic become significantly scaled down and appear out of proportion with respect to the mosaic. As more frames continue to be transformed, important target information in the frames can be lost since the transformed frames become too small, which eventually leads to the inability to continue further. Some projective distortion correction techniques make use of prior information such as GPS information embedded within the image, or camera internal and external parameters. Alternatively, this paper proposes a new algorithm to reduce the projective distortion without using any prior information whatsoever. Based on the analysis of the projective distortion, we approximate the projective matrix that describes the transformation between image frames using an affine model. Using singular value decomposition, we can deduce the affine model scaling factor that is usually very close to 1. By resetting the image scale of the affine model to 1, the transformed image size remains unchanged. Even though the proposed correction introduces some error in the image matching, this error is typically acceptable and more importantly, the final mosaic preserves the original image size after transformation. We demonstrate the effectiveness of this new correction algorithm on two real-world unmanned air vehicle (UAV) sequences. The proposed method is

  3. Effects of imaging gradients in sequences with varying longitudinal storage time-Case of diffusion exchange imaging.

    Lasič, Samo; Lundell, Henrik; Topgaard, Daniel; Dyrby, Tim B

    2018-04-01

    To illustrate the potential bias caused by imaging gradients in correlation MRI sequences using longitudinal magnetization storage (LS) and examine the case of filter exchange imaging (FEXI) yielding maps of the apparent exchange rate (AXR). The effects of imaging gradients in FEXI were observed on yeast cells. To analyze the AXR bias, signal evolution was calculated by applying matrix exponential operators. A sharp threshold for the slice thickness was identified, below which the AXR is increasingly underestimated. The bias can be understood in terms of an extended low-pass diffusion filtering during the LS interval, which is more pronounced at lower exchange rates. For a total exchange rate constant larger than 1 s -1 , the AXR bias is expected to be negligible when slices thicker than 2.5 mm are used. In correlation experiments like FEXI, relying on LS with variable duration, imaging gradients may cause disrupting effects that cannot be easily mitigated and should be carefully considered for unbiased results. In typical clinical applications of FEXI, the imaging gradients are expected to cause a negligible AXR bias. However, the AXR bias may be significant in preclinical settings or whenever thin imaging slices are used. Magn Reson Med 79:2228-2235, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Automatic registration of panoramic image sequence and mobile laser scanning data using semantic features

    Li, Jianping; Yang, Bisheng; Chen, Chi; Huang, Ronggang; Dong, Zhen; Xiao, Wen

    2018-02-01

    Inaccurate exterior orientation parameters (EoPs) between sensors obtained by pre-calibration leads to failure of registration between panoramic image sequence and mobile laser scanning data. To address this challenge, this paper proposes an automatic registration method based on semantic features extracted from panoramic images and point clouds. Firstly, accurate rotation parameters between the panoramic camera and the laser scanner are estimated using GPS and IMU aided structure from motion (SfM). The initial EoPs of panoramic images are obtained at the same time. Secondly, vehicles in panoramic images are extracted by the Faster-RCNN as candidate primitives to be matched with potential corresponding primitives in point clouds according to the initial EoPs. Finally, translation between the panoramic camera and the laser scanner is refined by maximizing the overlapping area of corresponding primitive pairs based on the Particle Swarm Optimization (PSO), resulting in a finer registration between panoramic image sequences and point clouds. Two challenging urban scenes were experimented to assess the proposed method, and the final registration errors of these two scenes were both less than three pixels, which demonstrates a high level of automation, robustness and accuracy.

  5. Object-Oriented Query Language For Events Detection From Images Sequences

    Ganea, Ion Eugen

    2015-09-01

    In this paper is presented a method to represent the events extracted from images sequences and the query language used for events detection. Using an object oriented model the spatial and temporal relationships between salient objects and also between events are stored and queried. This works aims to unify the storing and querying phases for video events processing. The object oriented language syntax used for events processing allow the instantiation of the indexes classes in order to improve the accuracy of the query results. The experiments were performed on images sequences provided from sport domain and it shows the reliability and the robustness of the proposed language. To extend the language will be added a specific syntax for constructing the templates for abnormal events and for detection of the incidents as the final goal of the research.

  6. Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes

    Atalar, Ergin; McVeigh, Elliot R.

    2007-01-01

    With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900

  7. [Study on method of tracking the active cells in image sequences based on EKF-PF].

    Tang, Chunming; Liu, Ying

    2013-02-01

    In cell image sequences, due to the nonlinear and nonGaussian motion characteristics of active cells, the accurate prediction and tracking is still an unsolved problem. We applied extended Kalman particle filter (EKF-PF) here in our study, attempting to solve the problem. Firstly we confirmed the existence and positions of the active cells. Then we established a motion model and improved it via adding motion angle estimation. Next we predicted motion parameters, such as displacement, velocity, accelerated velocity and motion angle, in region centers of the cells being tracked. Finally we obtained the motion traces of active cells. There were fourteen active cells in three image sequences which have been tracked. The errors were less than 2.5 pixels when the prediction values were compared with actual values. It showed that the presented algorithm may basically reach the solution of accurate predition and tracking of the active cells.

  8. Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences.

    Wait, Eric; Winter, Mark; Bjornsson, Chris; Kokovay, Erzsebet; Wang, Yue; Goderie, Susan; Temple, Sally; Cohen, Andrew R

    2014-10-03

    Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that environmental factors play in determining cell fate. We present an application that integrates visualization and quantitative analysis of 5-D (x,y,z,t,channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image

  9. The value of MR imaging of PDFASAT sequence in the diagnosis of extremities occult fractures

    Lu Lingquan; Xu Mingshen; Wu Qianzhi; Mao Chunnan; Wang Shuzi; Zhou Xingfan; Wang Liping

    2004-01-01

    Objective: To investigate the value of MR imaging of proton density weighted-fat saturated (PDFASAT) sequence in detecting the occult fracture of extremities. Methods: Thirty-one patients with acute trauma were studied using radiography and MR imaging within 45 days. MR sequences included FSE T 1 WI, T 2 WI, and PDFASAT. 21 occult fractures occurred in the knee joint, 6 in the hip joint, 1 in the elbow joint, 2 in the shoulder, and 1 in the ankle. Results: All 31 cases had normal radiographic results. 10 cases with proximal fibula, 4 with proximal tibia and 7 with femur condyle occult fractures were found in 21 knee joint acute trauma cases. 2 cases with intertrochanteric, 2 with femoral neck and 2 with cotyle occult fractures were found in 6 hip joint trauma cases. 2 proximal humerus occult fractures were found in 2 shoulder cases. 1 distal humerus and 1 distal fibula occult fracture was found in elbow and ankle cases. MR imaging demonstrated irregular linear low signal in the subcortical region on both T 1 WI and T 2 WI, and high signal changes around low signal were seen on T 2 WI in some cases. The high signal in PDFASAT sequence was more remarkable and wider than that on both T 1 WI and T 2 WI. Conclusion: MR imaging could determine the diagnosis of acute and chronic occult fractures. MRI should be the next choice when plain films fail to reveal suspected fractures in setting of suggestive symptoms and positive physical examination. PDFASAT would be the best effective sequence among the T 1 WI, T 2 WI, and PDFASAT. (author)

  10. Fast triple-spin-echo Dixon (FTSED) sequence for water and fat imaging

    Kořínek, Radim; Bartušek, Karel; Starčuk jr., Zenon

    2017-01-01

    Roč. 37, APR (2017), s. 164-170 ISSN 0730-725X R&D Projects: GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : fast triple-spin-echo Dixon * sequence * MRI * fat fraction * water-fat * ultra-high field * 9.4 T * FTSED Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.225, year: 2016

  11. On the Farey sequence and its augmentation for applications to image analysis

    Pratihar Sanjoy

    2017-09-01

    Full Text Available We introduce a novel concept of the augmented Farey table (AFT. Its purpose is to store the ranks of fractions of a Farey sequence in an efficient manner so as to return the rank of any query fraction in constant time. As a result, computations on the digital plane can be crafted down to simple integer operations; for example, the tasks like determining the extent of collinearity of integer points or of parallelism of straight lines—often required to solve many image-analytic problems—can be made fast and efficient through an appropriate AFT-based tool. We derive certain interesting characterizations of an AFT for its efficient generation. We also show how, for a fraction not present in a Farey sequence, the rank of the nearest fraction in that sequence can efficiently be obtained by the regula falsi method from the AFT concerned. To assert its merit, we show its use in two applications—one in polygonal approximation of digital curves and the other in skew correction of engineering drawings in document images. Experimental results indicate the potential of the AFT in such image-analytic applications.

  12. Applicability of the 3D-VIBE sequence to whole brain imaging

    Makabe, Takeshi; Nakamura, Manami; Moriyama, Ryo

    2009-01-01

    The volumetric interpolated breath-hold examination (VIBE) method has been developed imaging also holds its breath in an abdomen, and to do three-dimensional T1WI in possible time in gradient echo sequence, and applied to dynamic study mainly and planning for time reduction using an interpolation and partial fourier. We considered the condition for imaging to do whole brain as high resolution image using VIBE. Even if base matrix was maintained when an interpolation and partial fourier were used too much excessively by Phantom experiment, the resolution of multiplanar reconstruction (MPR) image fell. There was a limit of the interpolation therefore to maintain the resolution as voxel. Signal-to-noise ratio (SNR) fell by flip angle (FA) increase by the applicability to the head, and peak existed in about 15 deg in contrast-to-noise ratio (CNR) of white matter and gray matter. Therefore by it's clinical and optimizing the imaging condition of VIBE, whole brain, it was imaging possible in about 3 minutes as high resolution image. (author)

  13. Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia.

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2011-08-01

    Imaging cardiac excitation within ventricular myocardium is important in the treatment of cardiac arrhythmias and might help improve our understanding of arrhythmia mechanisms. This study sought to rigorously assess the imaging performance of a 3-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of 3D intracardiac mapping from up to 216 intramural sites during paced rhythm and norepinephrine (NE)-induced ventricular tachycardia (VT) in the rabbit heart. Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in 13 healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous NE. Computed tomography images were obtained to construct geometry models. The noninvasively imaged activation sequence correlated well with invasively measured counterpart, with a correlation coefficient of 0.72 ± 0.04, and a relative error of 0.30 ± 0.02 averaged over 520 paced beats as well as 73 NE-induced PVCs and VT beats. All PVCs and VT beats initiated in the subendocardium by a nonreentrant mechanism. The averaged distance from the imaged site of initial activation to the pacing site or site of arrhythmias determined from intracardiac mapping was ∼5 mm. For dual-site pacing, the double origins were identified when they were located at contralateral sides of ventricles or at the lateral wall and the apex. 3DCEI can noninvasively delineate important features of focal or multifocal ventricular excitation. It offers the potential to aid in localizing the origins and imaging activation sequences of ventricular arrhythmias, and to provide noninvasive assessment of the underlying arrhythmia mechanisms. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  14. NOAA TIFF Image - 8m Multibeam Bathymetry, US Virgin Islands - St. John Shelf - Project NF-10-03 - (2010), UTM 20N NAD83 (NCEI Accession 0131854)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 8x8 meter cell size representing the bathymetry of a sharply sloping swath of the St. John Shelf, a selected portion of seafloor...

  15. NOAA TIFF Image - 8m Multibeam Bathymetry, US Virgin Islands - St. John Shelf - Project NF-10-03 - (2010), UTM 20N NAD83

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 8x8 meter cell size representing the bathymetry of a sharply sloping swath of the St. John Shelf, a selected portion of seafloor...

  16. Characterization of platelet adhesion under flow using microscopic image sequence analysis.

    Machin, M; Santomaso, A; Cozzi, M R; Battiston, M; Mazzuccato, M; De Marco, L; Canu, P

    2005-07-01

    A method for quantitative analysis of platelet deposition under flow is discussed here. The model system is based upon perfusion of blood platelets over an adhesive substrate immobilized on a glass coverslip acting as the lower surface of a rectangular flow chamber. The perfusion apparatus is mounted onto an inverted microscope equipped with epifluorescent illumination and intensified CCD video camera. Characterization is based on information obtained from a specific image analysis method applied to continuous sequences of microscopical images. Platelet recognition across the sequence of images is based on a time-dependent, bidimensional, gaussian-like pdf. Once a platelet is located,the variation of its position and shape as a function of time (i.e., the platelet history) can be determined. Analyzing the history we can establish if the platelet is moving on the surface, the frequency of this movement and the distance traveled before its resumes the velocity of a non-interacting cell. Therefore, we can determine how long the adhesion would last which is correlated to the resistance of the platelet-substrate bond. This algorithm enables the dynamic quantification of trajectories, as well as residence times, arrest and release frequencies for a high numbers of platelets at the same time. Statistically significant conclusions on platelet-surface interactions can then be obtained. An image analysis tool of this kind can dramatically help the investigation and characterization of the thrombogenic properties of artificial surfaces such as those used in artificial organs and biomedical devices.

  17. Selection of optimal pulse sequences for conventional and dynamic MR imaging with Gd-DTPA; A fundamental study

    Maeda, Miho; Kita, Keisuke; Maeda, Masayuki (Wakayama Medical Coll. (Japan)) (and others)

    1989-11-01

    Gadolinium-DTPA (Gd-DTPA) enhances contrast between tissues in magnetic resonance (MR) imaging. The enhancement of tissues depends partly upon the pulse sequences, and the optimal pulse sequence is also influenced by the tissue cncentration of Gd-DTPA. We prepared phantoms of 25% albumin solutions with various concentrations of Gd-DTPA, and imaged them using various pulse sequences with 1.5-T MR system. We also performed MR imaging of 16 patients with tumors (10 brain tumors and 6 hepatic tumors) before and after intravenous administration of Gd-DTPA (0.1 mmol/kg); 6 patients with hepatic tumors underwent dynamic MR imaging during suspended respiration. We made a theoretical equation to calculate the concentration of Gd-DTPA and estimated its tissue concentration in tumors at 0{approx}0.2 mmol/kg. Within these tissue concentrations, the enhancement-to-noise (E/N) ratio was larger in FISP (flip angle of 90deg, TR pf 300 msec, minimal TE) and SE (TR of 400 msec, minimal TE) sequences than in other sequences observed. These sequences may be preferable for conventional enhanced-MRI. Among the pulse sequences with TR of less than 100 msec, FISP (flip angle of 90deg, TR of less than 100 msec, minimal TE) had the largest E/N ratio; which may be useful for dynamic MRI during suspended respiration. The importance of selecting the optimal pulse sequences according to the imaging modality used will be discussed. (author).

  18. A new feedback image encryption scheme based on perturbation with dynamical compound chaotic sequence cipher generator

    Tong, Xiaojun; Cui, Minggen; Wang, Zhu

    2009-07-01

    The design of the new compound two-dimensional chaotic function is presented by exploiting two one-dimensional chaotic functions which switch randomly, and the design is used as a chaotic sequence generator which is proved by Devaney's definition proof of chaos. The properties of compound chaotic functions are also proved rigorously. In order to improve the robustness against difference cryptanalysis and produce avalanche effect, a new feedback image encryption scheme is proposed using the new compound chaos by selecting one of the two one-dimensional chaotic functions randomly and a new image pixels method of permutation and substitution is designed in detail by array row and column random controlling based on the compound chaos. The results from entropy analysis, difference analysis, statistical analysis, sequence randomness analysis, cipher sensitivity analysis depending on key and plaintext have proven that the compound chaotic sequence cipher can resist cryptanalytic, statistical and brute-force attacks, and especially it accelerates encryption speed, and achieves higher level of security. By the dynamical compound chaos and perturbation technology, the paper solves the problem of computer low precision of one-dimensional chaotic function.

  19. Time integration and statistical regulation applied to mobile objects detection in a sequence of images

    Letang, Jean-Michel

    1993-01-01

    This PhD thesis deals with the detection of moving objects in monocular image sequences. The first section presents the inherent problems of motion analysis in real applications. We propose a method robust to perturbations frequently encountered during acquisition of outdoor scenes. It appears three main directions for investigations, all of them pointing out the importance of the temporal axis, which is a specific dimension for motion analysis. In the first part, the image sequence is considered as a set of temporal signals. The temporal multi-scale decomposition enables the characterization of various dynamical behaviors of the objects being in the scene at a given instant. A second module integrates motion information. This elementary trajectography of moving objects provides a temporal prediction map, giving a confidence level of motion presence. Interactions between both sets of data are expressed within a statistical regularization. Markov random field models supply a formal framework to convey a priori knowledge of the primitives to be evaluated. A calibration method with qualitative boxes is presented to estimate model parameters. Our approach requires only simple computations and leads to a rather fast algorithm, that we evaluate in the last section over various typical sequences. (author) [fr

  20. Evaluation of chirp reversal power modulation sequence for contrast agent imaging

    Novell, A; Sennoga, CA; Escoffre, JM; Chaline, J; Bouakaz, A

    2014-01-01

    Over the last decade, significant research effort has been focused on the use of chirp for contrast agent imaging because chirps are known to significantly increase imaging contrast-to-noise ratio (CNR). New imaging schemes, such as chirp reversal (CR), have been developed to improve contrast detection by increasing non-linear microbubble responses. In this study we evaluated the contrast enhancement efficiency of various chirped imaging sequences in combination with well-established imaging schemes such as power modulation (PM) and pulse inversion (PI). The imaging schemes tested were implemented on a fully programmable open scanner and evaluated by ultrasonically scanning (excitation frequency of 2.5 MHz; amplitude of 350 kPa) a tissue-mimicking flow phantom comprising a 4 mm diameter tube through which aqueous dispersions (dilution fraction of 1/2000) of the commercial ultrasound contrast agent, SonoVue ® were continuously circulated. The recovery of non-linear microbubble responses after chirp compression requires the development and the optimization of a specific filter. A compression filter was therefore designed and used to compress and extract several non-linear components from the received microbubble responses. The results showed that using chirps increased the image CNR by approximately 10 dB, as compared to conventional Gaussian apodized sine burst excitation but degraded the axial resolution by a factor of 1.4, at −3 dB. We demonstrated that the highest CNR and contrast-to-noise ratio (CTR) were achievable when CR was combined with PM as compared to other imaging schemes such as PI. (paper)

  1. Managing complex processing of medical image sequences by program supervision techniques

    Crubezy, Monica; Aubry, Florent; Moisan, Sabine; Chameroy, Virginie; Thonnat, Monique; Di Paola, Robert

    1997-05-01

    Our objective is to offer clinicians wider access to evolving medical image processing (MIP) techniques, crucial to improve assessment and quantification of physiological processes, but difficult to handle for non-specialists in MIP. Based on artificial intelligence techniques, our approach consists in the development of a knowledge-based program supervision system, automating the management of MIP libraries. It comprises a library of programs, a knowledge base capturing the expertise about programs and data and a supervision engine. It selects, organizes and executes the appropriate MIP programs given a goal to achieve and a data set, with dynamic feedback based on the results obtained. It also advises users in the development of new procedures chaining MIP programs.. We have experimented the approach for an application of factor analysis of medical image sequences as a means of predicting the response of osteosarcoma to chemotherapy, with both MRI and NM dynamic image sequences. As a result our program supervision system frees clinical end-users from performing tasks outside their competence, permitting them to concentrate on clinical issues. Therefore our approach enables a better exploitation of possibilities offered by MIP and higher quality results, both in terms of robustness and reliability.

  2. Artifact free T2{sup *}-weighted imaging at high spatial resolution using segmented EPI sequences

    Heiler, Patrick Michael; Schad, Lothar Rudi [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Schmitter, Sebastian [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiology

    2010-07-01

    The aim of this work was the development of novel measurement techniques that acquire high resolution T2{sup *}-weighted datasets in measurement times as short as possible without suffering from noticeable blurring and ghosting artifacts. Therefore, two new measurement techniques were developed that acquire a smoother k-space than generic multi shot echo planar imaging sequences. One is based on the principle of echo train shifting, the other on the reversed gradient method. Simulations and phantom measurements demonstrate that echo train shifting works properly and reduces artifacts in multi shot echo planar imaging. For maximum SNR-efficiency this technique was further improved by adding a second contrast. Both contrasts can be acquired within a prolongation in measurement time by a factor of 1.5, leading to an SNR increase by approximately {radical}2. Furthermore it is demonstrated that the reversed gradient method remarkably reduces artifacts caused by a discontinuous k-space weighting. Assuming sequence parameters as feasible for fMRI experiments, artifact free T2{sup *}-weighted images with a matrix size of 256 x 256 leading to an in-plane resolution in the submillimeter range can be obtained in about 2 s per slice. (orig.)

  3. Diagnostic value of the fast-FLAIR sequence in MR imaging of intracranial tumors

    Husstedt, H.W.; Sickert, M.; Koestler, H.; Haubitz, B.; Becker, H.

    2000-01-01

    The aim of this study was to quantify imaging characteristics of fast fluid-attenuated inversion recovery (FLAIR) sequence in brain tumors compared with T1-postcontrast- and T2-sequences. Fast-FLAIR-, T2 fast spin echo (FSE)-, and T1 SE postcontrast images of 74 patients with intracranial neoplasms were analyzed. Four neuroradiologists rated signal intensity and inhomogeneity of the tumor, rendering of cystic parts, demarcation of the tumor vs brain, of the tumor vs edema and of brain vs edema, as well as the presence of motion and of other artifacts. Data analysis was performed for histologically proven astrocytomas, glioblastomas, and meningiomas, for tumors with poor contrast enhancement, and for all patients pooled. Only for tumors with poor contrast enhancement (n = 12) did fast FLAIR provide additional information about the lesion. In these cases, signal intensity, demarcation of the tumor vs brain, and differentiation of the tumor vs edema were best using fast FLAIR. In all cases, rendering of the tumor's inner structure was poor. For all other tumor types, fast FLAIR did not give clinically relevant information, the only exception being a better demarcation of the edema from brain tissue. Artifacts rarely interfered with evaluation of fast-FLAIR images. Thus, fast FLAIR cannot replace T2-weighted series. It provides additional information only in tumors with poor contrast enhancement. It is helpful for defining the exact extent of the edema of any tumor but gives little information about their inner structure. (orig.)

  4. Diagnostic value of the fast-FLAIR sequence in MR imaging of intracranial tumors.

    Husstedt, H W; Sickert, M; Köstler, H; Haubitz, B; Becker, H

    2000-01-01

    The aim of this study was to quantify imaging characteristics of fast fluid-attenuated inversion recovery (FLAIR) sequence in brain tumors compared with T1-postcontrast- and T2-sequences. Fast-FLAIR-, T2 fast spin echo (FSE)-, and T1 SE postcontrast images of 74 patients with intracranial neoplasms were analyzed. Four neuroradiologists rated signal intensity and inhomogeneity of the tumor, rendering of cystic parts, demarcation of the tumor vs brain, of the tumor vs edema and of brain vs edema, as well as the presence of motion and of other artifacts. Data analysis was performed for histologically proven astrocytomas, glioblastomas, and meningiomas, for tumors with poor contrast enhancement, and for all patients pooled. Only for tumors with poor contrast enhancement (n = 12) did fast FLAIR provide additional information about the lesion. In these cases, signal intensity, demarcation of the tumor vs brain, and differentiation of the tumor vs edema were best using fast FLAIR. In all cases, rendering of the tumor's inner structure was poor. For all other tumor types, fast FLAIR did not give clinically relevant information, the only exception being a better demarcation of the edema from brain tissue. Artifacts rarely interfered with evaluation of fast-FLAIR images. Thus, fast FLAIR cannot replace T2-weighted series. It provides additional information only in tumors with poor contrast enhancement. It is helpful for defining the exact extent of the edema of any tumor but gives little information about their inner structure.

  5. Artifact free T2*-weighted imaging at high spatial resolution using segmented EPI sequences

    Heiler, Patrick Michael; Schad, Lothar Rudi; Schmitter, Sebastian

    2010-01-01

    The aim of this work was the development of novel measurement techniques that acquire high resolution T2 * -weighted datasets in measurement times as short as possible without suffering from noticeable blurring and ghosting artifacts. Therefore, two new measurement techniques were developed that acquire a smoother k-space than generic multi shot echo planar imaging sequences. One is based on the principle of echo train shifting, the other on the reversed gradient method. Simulations and phantom measurements demonstrate that echo train shifting works properly and reduces artifacts in multi shot echo planar imaging. For maximum SNR-efficiency this technique was further improved by adding a second contrast. Both contrasts can be acquired within a prolongation in measurement time by a factor of 1.5, leading to an SNR increase by approximately √2. Furthermore it is demonstrated that the reversed gradient method remarkably reduces artifacts caused by a discontinuous k-space weighting. Assuming sequence parameters as feasible for fMRI experiments, artifact free T2 * -weighted images with a matrix size of 256 x 256 leading to an in-plane resolution in the submillimeter range can be obtained in about 2 s per slice. (orig.)

  6. Diuretic-enhanced gadolinium excretory MR urography: comparison of conventional gradient-echo sequences and echo-planar imaging

    Nolte-Ernsting, C.C.A.; Tacke, J.; Adam, G.B.; Haage, P.; Guenther, R.W. [Univ. of Technology, Aachen (Germany). Dept. of Diagnostic Radiology; Jung, P.; Jakse, G. [Univ. of Technology, Aachen (Germany). Dept. of Urology

    2001-01-01

    The aim of this study was to investigate the utility of different gadolinium-enhanced T1-weighted gradient-echo techniques in excretory MR urography. In 74 urologic patients, excretory MR urography was performed using various T1-weighted gradient-echo (GRE) sequences after injection of gadolinium-DTPA and low-dose furosemide. The examinations included conventional GRE sequences and echo-planar imaging (GRE EPI), both obtained with 3D data sets and 2D projection images. Breath-hold acquisition was used primarily. In 20 of 74 examinations, we compared breath-hold imaging with respiratory gating. Breath-hold imaging was significantly superior to respiratory gating for the visualization of pelvicaliceal systems, but not for the ureters. Complete MR urograms were obtained within 14-20 s using 3D GRE EPI sequences and in 20-30 s with conventional 3D GRE sequences. Ghost artefacts caused by ureteral peristalsis often occurred with conventional 3D GRE imaging and were almost completely suppressed in EPI sequences (p < 0.0001). Susceptibility effects were more pronounced on GRE EPI MR urograms and calculi measured 0.8-21.7% greater in diameter compared with conventional GRE sequences. Increased spatial resolution degraded the image quality only in GRE-EPI urograms. (orig.)

  7. Color Image Encryption Using Three-Dimensional Sine ICMIC Modulation Map and DNA Sequence Operations

    Liu, Wenhao; Sun, Kehui; He, Yi; Yu, Mengyao

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a three-dimensional hyperchaotic Sine ICMIC modulation map (3D-SIMM) is proposed based on a close-loop modulation coupling (CMC) method. Based on this map, a novel color image encryption algorithm is designed by employing a hybrid model of multidirectional circular permutation and deoxyribonucleic acid (DNA) masking. In this scheme, the pixel positions of image are scrambled by multidirectional circular permutation, and the pixel values are substituted by DNA sequence operations. The simulation results and security analysis show that the algorithm has good encryption effect and strong key sensitivity, and can resist brute-force, statistical, differential, known-plaintext and chosen-plaintext attacks.

  8. Imaging cardiac activation sequence during ventricular tachycardia in a canine model of nonischemic heart failure.

    Han, Chengzong; Pogwizd, Steven M; Yu, Long; Zhou, Zhaoye; Killingsworth, Cheryl R; He, Bin

    2015-01-15

    Noninvasive cardiac activation imaging of ventricular tachycardia (VT) is important in the clinical diagnosis and treatment of arrhythmias in heart failure (HF) patients. This study investigated the ability of the three-dimensional cardiac electrical imaging (3DCEI) technique for characterizing the activation patterns of spontaneously occurring and norepinephrine (NE)-induced VTs in a newly developed arrhythmogenic canine model of nonischemic HF. HF was induced by aortic insufficiency followed by aortic constriction in three canines. Up to 128 body-surface ECGs were measured simultaneously with bipolar recordings from up to 232 intramural sites in a closed-chest condition. Data analysis was performed on the spontaneously occurring VTs (n=4) and the NE-induced nonsustained VTs (n=8) in HF canines. Both spontaneously occurring and NE-induced nonsustained VTs initiated by a focal mechanism primarily from the subendocardium, but occasionally from the subepicardium of left ventricle. Most focal initiation sites were located at apex, right ventricular outflow tract, and left lateral wall. The NE-induced VTs were longer, more rapid, and had more focal sites than the spontaneously occurring VTs. Good correlation was obtained between imaged activation sequence and direct measurements (averaged correlation coefficient of ∼0.70 over 135 VT beats). The reconstructed initiation sites were ∼10 mm from measured initiation sites, suggesting good localization in such a large animal model with cardiac size similar to a human. Both spontaneously occurring and NE-induced nonsustained VTs had focal initiation in this canine model of nonischemic HF. 3DCEI is feasible to image the activation sequence and help define arrhythmia mechanism of nonischemic HF-associated VTs. Copyright © 2015 the American Physiological Society.

  9. Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng

    2013-01-01

    To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123

  10. Comparison of single-shot fast spin-echo sequence and T2-weighted fast spin-echo sequence in MR imaging of the brain

    Cha, Sung Ho; Seo, Jeong Jin; Jeong, Gwang Woo; Kim, Jae Kyu; Kim, Yun Hyeon; Jeong, Yong Yeon; Kang, Heoung Keun; Oh, Hee Yeon; Yoon, Jong Hoon

    1998-01-01

    The purpose of this study was to evaluate the usefulness of the single-shot fast spinecho (SS-FSE) sequence in comparison with the T2-weighted fast spin-echo (T2-FSE) sequence in brain MR imaging. In 41 patients aged 15-75 years with intracranial lesion, both SS-FSE and T2-FES images were obtained using a 1.5-T MR system. Lesions included cerebral ischemia or infarcts (n=3D23), tumors (n=3D10), hemorrhages (n=3D3), inflammatory diseases (n=3D2), arachnoid cysts(n=3D2), and vascular disease (n=3D1), and the MR images were retrospectively evaluated. To calculate contrast-to-noise ratio (CNR), percentage contrast, and signal-to-noise ratio (SNR)-and thus make a quantitative comparison-the mean signal intensities of lesions, normal brain tissue, and noise out-side the patient were measured. For qualitative comparison, the visibility, margin, and extent of the lesions were rated using a five-grade system, and the degree of MR artifacts was also evaluated. Wilcoxon's signed ranks test was used for statistical analysis. The mean CNR of lesions was significantly higher on SS-FSE (31.3) than on T2-FSE images (27.5) (p=3D0.0131). Mean percentage contrast was also higher on SS-FSE (159.0) than on T2-FSE images (108.5) (p=3D0.0222), but mean SNR was higher on T2-FSE (80.3) than on SS-FSE images (53.5) (p=3D0.0000). No significant differences in lesion visibility were observed between the two imaging sequences, though margin and extent of the lesion were worse on SS-FSE images. For MR artifacts, no significant differences were demonstrated. For the evaluation of most intracranial lesions, MR imaging using the SS-FSE sequence appears to be slightly inferior to the T2-FSE sequence, but may be useful where patients are ill or uncooperative, or where children require sedation.=20

  11. SPIO-enhanced MR imaging for HCC detection in cirrhotic patient : comparison of various techniques for optimal sequence selection

    Kim, In Hwan; Lee, Jeong Min; Kwak, Hyo Sung; Kim, Chong Soo; Yu, Hee Chul; Kim, Tae Kon; Lee Soo Tiek

    2000-01-01

    To compare the efficacy of breathhold and non-breathhold sequences in the detection of hepatocellular carcinoma (HCC) in cirrhotic patients using superparamagnetic iron oxide (SPIO)-enhanced MR imaging, and to determine the optimal sequence combination. By means of unenhanced and iron-oxide-enhanced MRI, 29 patients with 49 nodular HCCs were evaluated for the presence of HCC nodules. Twenty-one were male and eight were female, and their ages ranged from 38 to 71 (mean, 56) years. Eight different MR sequences were used, including four non-breath-hold sequences and four breath-hold, and images were obtained before and after the administration of SPIO particles. Non-breath-hold sequences included T2-, proton density-weighted SE, and TSE imaging, while breath-hold sequences comprised T1-weighted fast low-angle shot (T1w FLASH), half-Fourier acquisition single shot turbo spine echo (HASTE), T2-weighted fast imaging with steady-state free precession (T2 * wFISP) and T2-weighted breath-hold TSE (T2wBHTSE). Image analysis involved both quantitative and qualitative analysis. The quantitative parameters calculated were signal-to noise (S/N) ratios for livers and tumors, contrast to noise (C/N) ratios for tumors seen on precontrast and postcontrast images, and percentage of signal intensity loss (PSIL) after SPIO injection. Images were analysed qualitatively in terms of image artifacts and lesion conspicuity, and prior to calculating sensitivity, the number of lesions detected using various pulse sequences were counted. SPIO had a marked effect on liver S/N ratio but a minimal effect on tumor S/N ratio. PSIL was best in T2 * wFISP images, while T2wSE images showed the second-best results (p less than 0.05). Tumor-to-liver C/N values were also highest with T2 * wFISP, while T2wTSE and HASTE images were next. Qualitative study showed that non-breath hold images and FISP were better than breath hold images in terms of lesion conspicuity. The latter, however, were much better

  12. On the Usage of GPUs for Efficient Motion Estimation in Medical Image Sequences

    Jeyarajan Thiyagalingam

    2011-01-01

    Full Text Available Images are ubiquitous in biomedical applications from basic research to clinical practice. With the rapid increase in resolution, dimensionality of the images and the need for real-time performance in many applications, computational requirements demand proper exploitation of multicore architectures. Towards this, GPU-specific implementations of image analysis algorithms are particularly promising. In this paper, we investigate the mapping of an enhanced motion estimation algorithm to novel GPU-specific architectures, the resulting challenges and benefits therein. Using a database of three-dimensional image sequences, we show that the mapping leads to substantial performance gains, up to a factor of 60, and can provide near-real-time experience. We also show how architectural peculiarities of these devices can be best exploited in the benefit of algorithms, most specifically for addressing the challenges related to their access patterns and different memory configurations. Finally, we evaluate the performance of the algorithm on three different GPU architectures and perform a comprehensive analysis of the results.

  13. Exploring the effects of gravity on tongue motion using ultrasound image sequences

    Stone, Maureen; Crouse, Ulla; Sutton, Marty

    2002-05-01

    Our goal in the research was to explore the effect that gravity had on the vocal-tract system by using ultrasound data collected in the upright and supine positions. All potential subjects were given an ultrasound pretest to determine whether they could repeat a series of 3-4 words precise enough to allow an accurate series of images to be collected. Out of these potential subjects, approximately 5-7 subjects were eventually used in the research. The method of collecting ultrasound data required the immobilization of the patient by restraining their neck in a custom fitted neck restraint. The neck restraint held an ultrasound transducer positioned at a critical angle underneath the patients' lower jawbone, which served to reduce errors and increase image resolution. To accurately analyze the series of images collected from ultrasound imaging, the surfaces of the tongue were digitized and tongue motion was time-aligned across the upright and supine sequences. Comparisons between the upright and supine data were then made by using L2 norms to determine averages and differences regarding the behavior between the two positions. Curves and locations of the maximum and minimum differences will be discussed.

  14. Glacigenic landforms and sediments of the Western Irish Shelf

    McCarron, Stephen; Monteys, Xavier; Toms, Lee

    2013-04-01

    Vibrocoring of possible glacigenic landforms identified from high resolution bathymetric coverage of the Irish Shelf by the Irish National Seabed Survey (INSS) has provided several clusters of short (<3m) cores that, due to a regional post-glacial erosional event, comprise last glacial age stratigraphies. In addition, new shallow seismic data and sedimentological information from across the Western Irish Shelf provide new insights into aspects of the nature, timing and pattern of shelf occupation by grounded lobate extensions of the last Irish Ice Sheet. Restricted chronological control of deglacial sequences in several cores indicates that northern parts of the western mid-shelf (south of a prominent outer Donegal Bay ridge) were ice free by ~24 ka B.P., and that ice had also probably retreated from outer shelf positions (as far west as the Porcupine Bank) at or before this time.

  15. A Low-Complexity Algorithm for Static Background Estimation from Cluttered Image Sequences in Surveillance Contexts

    Reddy Vikas

    2011-01-01

    Full Text Available Abstract For the purposes of foreground estimation, the true background model is unavailable in many practical circumstances and needs to be estimated from cluttered image sequences. We propose a sequential technique for static background estimation in such conditions, with low computational and memory requirements. Image sequences are analysed on a block-by-block basis. For each block location a representative set is maintained which contains distinct blocks obtained along its temporal line. The background estimation is carried out in a Markov Random Field framework, where the optimal labelling solution is computed using iterated conditional modes. The clique potentials are computed based on the combined frequency response of the candidate block and its neighbourhood. It is assumed that the most appropriate block results in the smoothest response, indirectly enforcing the spatial continuity of structures within a scene. Experiments on real-life surveillance videos demonstrate that the proposed method obtains considerably better background estimates (both qualitatively and quantitatively than median filtering and the recently proposed "intervals of stable intensity" method. Further experiments on the Wallflower dataset suggest that the combination of the proposed method with a foreground segmentation algorithm results in improved foreground segmentation.

  16. Coseismic deformation pattern of the Emilia 2012 seismic sequence imaged by Radarsat-1 interferometry

    Christian Bignami

    2012-10-01

    Full Text Available On May 20 and 29, 2012, two earthquakes of magnitudes 5.9 and 5.8 (Mw, respectively, and their aftershock sequences hit the central Po Plain (Italy, about 40 km north of Bologna. More than 2,000 sizable aftershocks were recorded by the Isti-tuto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology National Seismic Network (http://iside.rm.ingv.it/. The sequence was generated by pure compressional faulting over blind thrusts of the western Ferrara Arc, and it involved a 50-km-long stretch of this buried outer front of the northern Apennines. The focal mechanisms of the larger shocks agree with available structural data and with present-day tectonic stress indicators, which show locally a maximum horizontal stress oriented ca. N-S; i.e. oriented perpendicular to the main structural trends. Most of the sequence occurred between 1 km and 12 km in depth, above the local basal detachment of the outer thrust fronts of the northern Apennines. We measured the surface displacement patterns associated with the mainshocks and some of the larger aftershocks (some of which had Mw >5.0 by applying the Interferometric Synthetic Aperture Radar (InSAR technique to a pair of C-Band Radarsat-1 images. We then used the coseismic motions detected over the epicentral region as input information, to obtain the best-fit model fault for the two largest shocks. […

  17. A probabilistic cell model in background corrected image sequences for single cell analysis

    Fieguth Paul

    2010-10-01

    Full Text Available Abstract Background Methods of manual cell localization and outlining are so onerous that automated tracking methods would seem mandatory for handling huge image sequences, nevertheless manual tracking is, astonishingly, still widely practiced in areas such as cell biology which are outside the influence of most image processing research. The goal of our research is to address this gap by developing automated methods of cell tracking, localization, and segmentation. Since even an optimal frame-to-frame association method cannot compensate and recover from poor detection, it is clear that the quality of cell tracking depends on the quality of cell detection within each frame. Methods Cell detection performs poorly where the background is not uniform and includes temporal illumination variations, spatial non-uniformities, and stationary objects such as well boundaries (which confine the cells under study. To improve cell detection, the signal to noise ratio of the input image can be increased via accurate background estimation. In this paper we investigate background estimation, for the purpose of cell detection. We propose a cell model and a method for background estimation, driven by the proposed cell model, such that well structure can be identified, and explicitly rejected, when estimating the background. Results The resulting background-removed images have fewer artifacts and allow cells to be localized and detected more reliably. The experimental results generated by applying the proposed method to different Hematopoietic Stem Cell (HSC image sequences are quite promising. Conclusion The understanding of cell behavior relies on precise information about the temporal dynamics and spatial distribution of cells. Such information may play a key role in disease research and regenerative medicine, so automated methods for observation and measurement of cells from microscopic images are in high demand. The proposed method in this paper is capable

  18. Diffusion-weighted imaging of the rat pelvis using 3D water-excitation MP-RAGE MR sequence

    Numano, Tomokazu; Homma, Kazuhiro; Hyodo, Koji; Nitta, Naotaka; Iwasaki, Nobuaki

    2008-01-01

    We developed a novel technique for fat-saturated, 3-dimensional (3D) diffusion-weighted (DW) magnetic resonance (MR) imaging sequencing based upon the 3D magnetization-prepared, rapid gradient-echo (3D-MP-RAGE) method. We saturated fat using 2 techniques, chemical shift selective (CHESS; FatSat)-3D-DWI sequence versus water excitation (WE)-3D-DWI method, then compared the 2 sequences in terms of degree of fat suppression. In preparing the FatSat-3D-DWI sequence, we used a ''CHESS-90deg radiofrequency (RF)-motion probing gradient (MPG)-180deg RFMPG-90deg RF'' pulse-train, to sensitize the magnetization to fat-saturated diffusion. In contrast, in the WE-3D-DWI sequence, we selected a RAGE-excitation pulse with a binominal-pulse 1-1 or 1-2-1 for water-excited (fat-saturated) diffusion imaging. Experimental results in a phantom confirmed the effects of diffusion weighting and of fat saturation. Fat saturation was much better in the WE-3D-DWI sequence than the CHESS-3D-DWI sequence. From results from animal (rat pelvis) experiments using WE-3D-DWI, we obtained fat-saturated DWI. This sequence was useful for in vivo imaging. (author)

  19. Generalized min-max bound-based MRI pulse sequence design framework for wide-range T1 relaxometry: A case study on the tissue specific imaging sequence.

    Yang Liu

    Full Text Available This paper proposes a new design strategy for optimizing MRI pulse sequences for T1 relaxometry. The design strategy optimizes the pulse sequence parameters to minimize the maximum variance of unbiased T1 estimates over a range of T1 values using the Cramér-Rao bound. In contrast to prior sequences optimized for a single nominal T1 value, the optimized sequence using our bound-based strategy achieves improved precision and accuracy for a broad range of T1 estimates within a clinically feasible scan time. The optimization combines the downhill simplex method with a simulated annealing process. To show the effectiveness of the proposed strategy, we optimize the tissue specific imaging (TSI sequence. Preliminary Monte Carlo simulations demonstrate that the optimized TSI sequence yields improved precision and accuracy over the popular driven-equilibrium single-pulse observation of T1 (DESPOT1 approach for normal brain tissues (estimated T1 700-2000 ms at 3.0T. The relative mean estimation error (MSE for T1 estimation is less than 1.7% using the optimized TSI sequence, as opposed to less than 7.0% using DESPOT1 for normal brain tissues. The optimized TSI sequence achieves good stability by keeping the MSE under 7.0% over larger T1 values corresponding to different lesion tissues and the cerebrospinal fluid (up to 5000 ms. The T1 estimation accuracy using the new pulse sequence also shows improvement, which is more pronounced in low SNR scenarios.

  20. Research on the Compression Algorithm of the Infrared Thermal Image Sequence Based on Differential Evolution and Double Exponential Decay Model

    Zhang, Jin-Yu; Meng, Xiang-Bing; Xu, Wei; Zhang, Wei; Zhang, Yong

    2014-01-01

    This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method. PMID:24696649

  1. Research on the Compression Algorithm of the Infrared Thermal Image Sequence Based on Differential Evolution and Double Exponential Decay Model

    Jin-Yu Zhang

    2014-01-01

    Full Text Available This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method.

  2. Outer Continental Shelf Lands Act

    National Oceanic and Atmospheric Administration, Department of Commerce — This data represents geographic terms used within the Outer Continental Shelf Lands Act (OCSLA or Act). The Act defines the United States outer continental shelf...

  3. Detection of hepatic VX2 carcinomas with ferucarbotran-enhanced magnetic resonance imaging in rabbits: Comparison of nine pulse sequences

    Kim, Seong Hyun; Choi, Dongil; Lim, Hyo K.; Kim, Min Ju; Jang, Kyung Mi; Kim, Seung Hoon; Lee, Won Jae; Lee, Jongmee; Jeon, Yong Hwan; Lim, Jae Hoon

    2006-01-01

    Objective: To compare the diagnostic performance of a variety of magnetic resonance imaging (MRI) sequences, in order to identify the most effective ferucarbotran-enhanced sequence for the detection of multiple small hepatic VX2 carcinomas in rabbits. Methods: Fifteen rabbits with experimentally induced 135 VX2 carcinomas in the liver underwent ferucarbotran-enhanced MRI using the following nine pulse sequences: a fat-suppressed fast spin-echo (FSE) sequence with two echo times (TE) (proton density- and T2-weighted images), four different T2*-weighted fast multiplanar GRASS (gradient-recalled acquisition in the steady state) (FMPGR) with the combination of three TEs (9, 12, 15 ms, respectively) and two flip angles (20 deg., 80 deg., respectively), T2*-weighted fast multiplanar spoiled GRASS (FMPSPGR), T1-weighted FMPSPGR, and dynamic T1-weighted FMPSPGR. All images were reviewed by three radiologists with quantitative and qualitative analysis. Results: Tumor-to-liver contrast-to-noise ratio of the proton density-weighted FSE sequence was significantly higher than those of the others (p o ) images were superior to those of the others and for the detection of very small hepatic tumors of less than 5 mm, the sensitivities of these sequences were less than 30%. Conclusion: Ferucarbotran-enhanced T2- and proton density-weighted FSE and T2*-weighed FMPGR (TE/flip angle, 12/20 o ) images were found to be the most effective pulse sequences for the detection of multiple small hepatic VX2 carcinomas but these sequences were limited in the detection of very small hepatic tumors of less than 5 mm in size

  4. [Contrastive analysis of artifacts produced by metal dental crowns in 3.0 T magnetic resonance imaging with six sequences].

    Lan, Gao; Yunmin, Lian; Pu, Wang; Haili, Huai

    2016-06-01

    This study aimed to observe and evaluate six 3.0 T sequences of metallic artifacts produced by metal dental crowns. Dental crowns fabricated with four different materials (Co-Gr, Ni-Gr, Ti alloy and pure Ti) were evaluated. A mature crossbreed dog was used as the experimental animal, and crowns were fabricated for its upper right second premolar. Each crown was examined through head MRI (3.0 T) with six sequences, namely, T₁ weighted-imaging of spin echo (T₁W/SE), T₂ weighted-imaging of inversion recovery (T₂W/IR), T₂ star gradient echo (T₂*/GRE), T2 weighted-imaging of fast spin echo (T₂W/FSE), T₁ weighted-imaging of fluid attenuate inversion recovery (T₂W/FLAIR), and T₂ weighted-imaging of propeller (T₂W/PROP). The largest area and layers of artifacts were assessed and compared. The artifact in the T₂*/GRE sequence was significantly wider than those in the other sequences (P 0.05). T₂*/GRE exhibit the strongest influence on the artifact, whereas the five other sequences contribute equally to artifact generation.

  5. SU-E-J-216: A Sequence Independent Approach for Quantification of MR Image Deformations From Brachytherapy Applicators

    Wieringen, N van; Heerden, L van; Gurney-Champion, O; Kesteren, Z van; Houweling, A; Pieters, B; Bel, A [Academic Medical Center, Amsterdam (Netherlands)

    2015-06-15

    Purpose: MRI is increasingly used as a single imaging modality for brachytherapy treatment planning. The presence of a brachytherapy applicator may cause distortions in the images, especially at higher field strengths. Our aim is to develop a procedure to quantify these distortions theoretically for any MR-sequence and to verify the estimated deformations for clinical sequences. Methods: Image distortions due to perturbation of the B0-field are proportional to the ratio of the induced frequency shift and the read-out bandwidth of the applied sequence. By reconstructing a frequency-shift map from the phase data from a multi-echo sequence, distortions can be calculated for any MR-sequence. Verification of this method for estimating distortions was performed by acquiring images with opposing read-out directions and consequently opposing distortions. The applicator shift can be determined by rigidly matching these images. Clinically, T2W-TSE-images are used for this purpose. For pre-clinical tests, EPI-sequences with narrow read-out bandwidth (19.5–47.5Hz), consequently large distortions, were added to the set of clinical MRsequences. To quantify deformations of the Utrecht Interstitial CT/MR applicator (Elekta Brachytherapy) on a Philips Ingenia 3T MRI, pre-clinical tests were performed in a phantom with the applicator in water, followed by clinical validation. Results: Deformations observed in the narrow bandwidth EPI-images were well predicted using the frequency-shift, the latter giving an overestimation up to 30%/up to 1 voxel. For clinically applied MR-sequences distortions were well below the voxel size. In patient setup distortions determined from the frequency-shift map were at sub-voxel level (<0.7mm). Using T2W-images larger distortions were found (1–2mm). This discrepancy was caused by patient movement between/during acquisition of the T2W-images with opposing read-out directions. Conclusion: Phantom experiments demonstrated the feasibility of a

  6. Evaluation of Magnetic Resonance Imaging-Compatible Needles and Interactive Sequences for Musculoskeletal Interventions Using an Open High-Field Magnetic Resonance Imaging Scanner

    Wonneberger, Uta; Schnackenburg, Bernhard; Streitparth, Florian; Walter, Thula; Rump, Jens; Teichgraeber, Ulf K. M.

    2010-01-01

    In this article, we study in vitro evaluation of needle artefacts and image quality for musculoskeletal laser-interventions in an open high-field magnetic resonance imaging (MRI) scanner at 1.0T with vertical field orientation. Five commercially available MRI-compatible puncture needles were assessed based on artefact characteristics in a CuSO4 phantom (0.1%) and in human cadaveric lumbar spines. First, six different interventional sequences were evaluated with varying needle orientation to the main magnetic field B0 (0 o to 90 o ) in a sequence test. Artefact width, needle-tip error, and contrast-to-noise ratio (CNR) were calculated. Second, a gradient-echo sequence used for thermometric monitoring was assessed and in varying echo times, artefact width, tip error, and signal-to-noise ratio (SNR) were measured. Artefact width and needle-tip error correlated with needle material, instrument orientation to B0, and sequence type. Fast spin-echo sequences produced the smallest needle artefacts for all needles, except for the carbon fibre needle (width o to B0. Overall, the proton density-weighted spin-echo sequences had the best CNR (CNR Muscle/Needle >16.8). Concerning the thermometric gradient echo sequence, artefacts remained <5 mm, and the SNR reached its maximum at an echo time of 15 ms. If needle materials and sequences are accordingly combined, guidance and monitoring of musculoskeletal laser interventions may be feasible in a vertical magnetic field at 1.0T.

  7. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  8. Robust Small Target Co-Detection from Airborne Infrared Image Sequences.

    Gao, Jingli; Wen, Chenglin; Liu, Meiqin

    2017-09-29

    In this paper, a novel infrared target co-detection model combining the self-correlation features of backgrounds and the commonality features of targets in the spatio-temporal domain is proposed to detect small targets in a sequence of infrared images with complex backgrounds. Firstly, a dense target extraction model based on nonlinear weights is proposed, which can better suppress background of images and enhance small targets than weights of singular values. Secondly, a sparse target extraction model based on entry-wise weighted robust principal component analysis is proposed. The entry-wise weight adaptively incorporates structural prior in terms of local weighted entropy, thus, it can extract real targets accurately and suppress background clutters efficiently. Finally, the commonality of targets in the spatio-temporal domain are used to construct target refinement model for false alarms suppression and target confirmation. Since real targets could appear in both of the dense and sparse reconstruction maps of a single frame, and form trajectories after tracklet association of consecutive frames, the location correlation of the dense and sparse reconstruction maps for a single frame and tracklet association of the location correlation maps for successive frames have strong ability to discriminate between small targets and background clutters. Experimental results demonstrate that the proposed small target co-detection method can not only suppress background clutters effectively, but also detect targets accurately even if with target-like interference.

  9. Distribution and origin of sediments on the northern Sunda Shelf, South China Sea

    Wu, Shi-Guo; Wong, H. K.; Luo, You-Lang; Liang, Zhi-Rong

    1999-03-01

    Seventy-seven surface sediment samples and core samples from the outer Sunda Shelf were analyzed and a number of seismic profiles of the shelf were interpreted. The bottom sediments could be divided into six types: terrigenous sand, biogenic sand, silt-sand, clay-silt-sand, clayey silt and coral reef detritus. Our seismic data showed a thick, prograding Pleistocene deltaic sequence near the shelf-break and a thin Holocene sedimentary layer on the outer shelf. Eleven thermoluminescence (TL) ages were determined. The oldest relict sediments were derived from Late Pleistocene deposits. Based on sediment types, ages, and origins, five sedimentary areas were identified: area of modern Mekong sediments; insular shelf area receiving modern sediments from small Borneo rivers; shelf area near the Natuna-Anambas islands in the southeastern Gulf of Thailand Basin off the Malay Peninsula; area of relict sediments on the outer shelf north of the Natuna Islands, and typical coral reefs and detritus sediments.

  10. The Optimization of Magnetic Resonance Imaging Pulse Sequences in Order to Better Detection of Multiple Sclerosis Plaques.

    Farshidfar, Z; Faeghi, F; Haghighatkhah, H R; Abdolmohammadi, J

    2017-09-01

    Magnetic resonance imaging (MRI) is the most sensitive technique to detect multiple sclerosis (MS) plaques in central nervous system. In some cases, the patients who were suspected to MS, Whereas MRI images are normal, but whether patients don't have MS plaques or MRI images are not enough optimized enough in order to show MS plaques? The aim of the current study is evaluating the efficiency of different MRI sequences in order to better detection of MS plaques. In this cross-sectional study which was performed at Shohada-E Tajrish in Tehran - Iran hospital between October, 2011 to April, 2012, included 20 patients who suspected to MS disease were selected by the method of random sampling and underwent routine brain Pulse sequences (Axial T2w, Axial T1w, Coronal T2w, Sagittal T1w, Axial FLAIR) by Siemens, Avanto, 1.5 Tesla system. If any lesion which is suspected to the MS disease was observed, additional sequences such as: Sagittal FLAIR Fat Sat, Sagittal PDw-fat Sat, Sagittal PDw-water sat was also performed. This study was performed in about 52 lesions and the results in more than 19 lesions showed that, for the Subcortical and Infratentorial areas, PDWw sequence with fat suppression is the best choice, And in nearly 33 plaques located in Periventricular area, FLAIR Fat Sat was the most effective sequence than both PDw fat and water suppression pulse sequences. Although large plaques may visible in all images, but important problem in patients with suspected MS is screening the tiny MS plaques. This study showed that for revealing the MS plaques located in the Subcortical and Infratentorial areas, PDw-fat sat is the most effective sequence, and for MS plaques in the periventricular area, FLAIR fat Sat is the best choice.

  11. Scan time reduction in {sup 23}Na-Magnetic Resonance Imaging using the chemical shift imaging sequence. Evaluation of an iterative reconstruction method

    Weingaertner, Sebastian; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Wetterling, Friedrich [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Dublin Univ. (Ireland) Trinity Inst. of Neuroscience; Fatar, Marc [Heidelberg Univ., Mannheim (Germany). Dept. of Neurology; Neumaier-Probst, Eva [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2015-07-01

    To evaluate potential scan time reduction in {sup 23}Na-Magnetic Resonance Imaging with the chemical shift imaging sequence (CSI) using undersampled data of high-quality datasets, reconstructed with an iterative constrained reconstruction, compared to reduced resolution or reduced signal-to-noise ratio. CSI {sup 23}Na-images were retrospectively undersampled and reconstructed with a constrained reconstruction scheme. The results were compared to conventional methods of scan time reduction. The constrained reconstruction scheme used a phase constraint and a finite object support, which was extracted from a spatially registered {sup 1}H-image acquired with a double-tuned coil. The methods were evaluated using numerical simulations, phantom images and in-vivo images of a healthy volunteer and a patient who suffered from cerebral ischemic stroke. The constrained reconstruction scheme showed improved image quality compared to a decreased number of averages, images with decreased resolution or circular undersampling with weighted averaging for any undersampling factor. Brain images of a stroke patient, which were reconstructed from three-fold undersampled k-space data, resulted in only minor differences from the original image (normalized root means square error < 12%) and an almost identical delineation of the stroke region (mismatch < 6%). The acquisition of undersampled {sup 23}Na-CSI images enables up to three-fold scan time reduction with improved image quality compared to conventional methods of scan time saving.

  12. SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska Imaging Dementia Study.

    Shams, S; Martola, J; Cavallin, L; Granberg, T; Shams, M; Aspelin, P; Wahlund, L O; Kristoffersen-Wiberg, M

    2015-06-01

    Cerebral microbleeds are thought to have potentially important clinical implications in dementia and stroke. However, the use of both T2* and SWI MR imaging sequences for microbleed detection has complicated the cross-comparison of study results. We aimed to determine the impact of microbleed sequences on microbleed detection and associated clinical parameters. Patients from our memory clinic (n = 246; 53% female; mean age, 62) prospectively underwent 3T MR imaging, with conventional thick-section T2*, thick-section SWI, and conventional thin-section SWI. Microbleeds were assessed separately on thick-section SWI, thin-section SWI, and T2* by 3 raters, with varying neuroradiologic experience. Clinical and radiologic parameters from the dementia investigation were analyzed in association with the number of microbleeds in negative binomial regression analyses. Prevalence and number of microbleeds were higher on thick-/thin-section SWI (20/21%) compared with T2*(17%). There was no difference in microbleed prevalence/number between thick- and thin-section SWI. Interrater agreement was excellent for all raters and sequences. Univariate comparisons of clinical parameters between patients with and without microbleeds yielded no difference across sequences. In the regression analysis, only minor differences in clinical associations with the number of microbleeds were noted across sequences. Due to the increased detection of microbleeds, we recommend SWI as the sequence of choice in microbleed detection. Microbleeds and their association with clinical parameters are robust to the effects of varying MR imaging sequences, suggesting that comparison of results across studies is possible, despite differing microbleed sequences. © 2015 by American Journal of Neuroradiology.

  13. Magnetic resonance imaging (MRI) of articular cartilage of the knee using ultrashort echo time (uTE) sequences with spiral acquisition

    Goto, Hajimu; Fujii, Masahiko; Iwama, Yuki; Aoyama, Nobukazu; Ohno, Yoshiharu; Sugimura, Kazuro

    2012-01-01

    The objective of this study was to evaluate the sensitivity of ultrashort echo time (uTE) sequence for visualisation of calcified deep layers of articular cartilage. MRI with a uTE sequence was performed on five healthy volunteers. Signals from the calcified deep layers of the articular knee cartilage were evaluated on uTE subtraction images and computed tomography images. The calcified deep layers of the articular cartilage changed from having a low to a high signal when imaged with a uTE sequence. The reported uTE sequence was effective in imaging the deep layers of the knee cartilage.

  14. An objective method to optimize the MR sequence set for plaque classification in carotid vessel wall images using automated image segmentation.

    Ronald van 't Klooster

    Full Text Available A typical MR imaging protocol to study the status of atherosclerosis in the carotid artery consists of the application of multiple MR sequences. Since scanner time is limited, a balance has to be reached between the duration of the applied MR protocol and the quantity and quality of the resulting images which are needed to assess the disease. In this study an objective method to optimize the MR sequence set for classification of soft plaque in vessel wall images of the carotid artery using automated image segmentation was developed. The automated method employs statistical pattern recognition techniques and was developed based on an extensive set of MR contrast weightings and corresponding manual segmentations of the vessel wall and soft plaque components, which were validated by histological sections. Evaluation of the results from nine contrast weightings showed the tradeoff between scan duration and automated image segmentation performance. For our dataset the best segmentation performance was achieved by selecting five contrast weightings. Similar performance was achieved with a set of three contrast weightings, which resulted in a reduction of scan time by more than 60%. The presented approach can help others to optimize MR imaging protocols by investigating the tradeoff between scan duration and automated image segmentation performance possibly leading to shorter scanning times and better image interpretation. This approach can potentially also be applied to other research fields focusing on different diseases and anatomical regions.

  15. MR imaging at 0.5 Tesla with FLAIR sequence in the diagnosis of acute subarachnoid hemorrhage

    Kopsa, W.; Leitner, H.; Tscholakoff, D.; Perneczky, G.

    1998-01-01

    Purpose: Evaluation of MR imaging in patients with acute subarachnoid hemorrhage (SAH) at 0.5 Tesla using the FLAIR (Fluid Attenuated Inversion Recovery) sequenze. Additionally, the value of MR angiographie (MRA) in the diagnosis of intracranial aneurysms was assessed. Materials and Methods: 19 patients with suspected acute SAH were included in this study. MR imaging was performed using an axial FLAIR sequence and axial T 1 , T 2 and PD weighted sequences. In 16 patients an additional MRA (3D-TOF) was performed. 10 patients without SAH were examined as a control group. At the end of the study the 29 MR examinations were randomised and the images were read by two experienced radiologists; subsequently a consensus interpretation was made. Results: In 16 patients an acute SAH was verified with the FLAIR sequence, in 13 cases the origin of hemorrhage was found during surgery. In the consensus interpretation of the MR images all cases were diagnosed properly. 12 of the 16 MRA studies were of diagnostic quality, but only 6 cases were interpreted correctly. Conclusion: The FLAIR sequence at 0.5 Tesla proved effective in the diagnosis of acute SAH. MRA at 0.5 Tesla failed in the detection of intracranial aneurysms. (orig.) [de

  16. The estimation of geometry and motion of a surface from image sequences by means of linearisation of a paramatric model

    Korsten, Maarten J.; Houkes, Z.

    1990-01-01

    A method is given to estimate the geometry and motion of a moving body surface from image sequences. To this aim a parametric model of the surface is used, in order to reformulate the problem to one of parameter estimation. After linearization of the model standard linear estimation methods can be

  17. MR imaging of articular cartilage in the knee. Evaluation of cadaver knee by 3D FLASH sequence with fat saturation

    Sato, Katsuhiko; Hachiya, Junichi; Matsumura, Joji [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1999-06-01

    MR imaging of the articular cartilage of the 24 cadever knees was performed using 3D FLASH sequence with fat saturation. Good correlation was noted between MR findings and either macroscopic or microscopic appearances of the hyaline cartilage. Low signal intensity area without significant thinning of the cartilage was considered to represent the degenerative changes due to relatively early process of osteoarthritis. (author)

  18. Imaging of cranial nerves with three-dimensional high resolution diffusion-weighted MR sequence based on SSFP technique

    Zhang Zhongwei; Chen Yingming; Meng Quanfei

    2008-01-01

    Objective: To depict the normal anatomy of cranial nerves in detail and define the exact relationships between cranial nerves and adjacent structures with three-dimensional high resolution diffusion-weighted MR sequence based on SSFP technique (3D DW-SSFP). Methods: 3D DW- SSFP sequence was performed and axial images were obtained in 12 healthy volunteers Post-processing techniques were used to generate images of cranial nerves, and the images acquired were compared with anatomical sections and diagrams of textbook. Results: In all subjects, 3D DW-SSFP sequence could produce homogeneous images and high contrast between the cranial nerves and other solid structures. The intracranial portions of all cranial nerves except olfactory nerve were identified; the extracranial portions of nerve Ⅱ-Ⅻ were identified in all subjects bilaterally. Conclusion: The 3D DW-SSFP sequence can characterize the normal MR appearance of cranial nerves and its branches and the ability to define the nerves may provide greater sensitivity and specificity in detecting abnormalities of craniofacial structure. (authors)

  19. Batch-processing of imaging or liquid-chromatography mass spectrometry datasets and De Novo sequencing of polyketide siderophores

    Novák, Jiří; Sokolová, Lucie; Lemr, Karel; Pluháček, Tomáš; Palyzová, Andrea; Havlíček, Vladimír

    2017-01-01

    Roč. 1865, č. 7 (2017), s. 768-775 ISSN 1570-9639 R&D Projects: GA ČR(CZ) GA16-20229S; GA MŠk(CZ) LO1509 Institutional support: RVO:61388971 Keywords : Mass spectrometry imaging * De novo sequencing * Siderophores Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.773, year: 2016

  20. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjörg, E-mail: hansjoerg.graf@med.uni-tuebingen.de, E-mail: drGraf@t-online.de [Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany); Clasen, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany)

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase

  1. A FAST SEGMENTATION ALGORITHM FOR C-V MODEL BASED ON EXPONENTIAL IMAGE SEQUENCE GENERATION

    J. Hu

    2017-09-01

    Full Text Available For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1 the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2 the initial value of SDF (Signal Distance Function and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3 the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.

  2. a Fast Segmentation Algorithm for C-V Model Based on Exponential Image Sequence Generation

    Hu, J.; Lu, L.; Xu, J.; Zhang, J.

    2017-09-01

    For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1) the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2) the initial value of SDF (Signal Distance Function) and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3) the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.

  3. INTEGRATED GEOREFERENCING OF STEREO IMAGE SEQUENCES CAPTURED WITH A STEREOVISION MOBILE MAPPING SYSTEM – APPROACHES AND PRACTICAL RESULTS

    H. Eugster

    2012-07-01

    Full Text Available Stereovision based mobile mapping systems enable the efficient capturing of directly georeferenced stereo pairs. With today's camera and onboard storage technologies imagery can be captured at high data rates resulting in dense stereo sequences. These georeferenced stereo sequences provide a highly detailed and accurate digital representation of the roadside environment which builds the foundation for a wide range of 3d mapping applications and image-based geo web-services. Georeferenced stereo images are ideally suited for the 3d mapping of street furniture and visible infrastructure objects, pavement inspection, asset management tasks or image based change detection. As in most mobile mapping systems, the georeferencing of the mapping sensors and observations – in our case of the imaging sensors – normally relies on direct georeferencing based on INS/GNSS navigation sensors. However, in urban canyons the achievable direct georeferencing accuracy of the dynamically captured stereo image sequences is often insufficient or at least degraded. Furthermore, many of the mentioned application scenarios require homogeneous georeferencing accuracy within a local reference frame over the entire mapping perimeter. To achieve these demands georeferencing approaches are presented and cost efficient workflows are discussed which allows validating and updating the INS/GNSS based trajectory with independently estimated positions in cases of prolonged GNSS signal outages in order to increase the georeferencing accuracy up to the project requirements.

  4. Comparison of modern 3D and 2D MR imaging sequences of the wrist at 3 Tesla

    Rehnitz, C.; Klaan, B.; Amarteifio, E.; Kauczor, H.U.; Weber, M.A.; Stillfried, F. von; Burkholder, I.

    2016-01-01

    To compare the image quality of modern 3 D and 2 D sequences for dedicated wrist imaging at 3 Tesla (T) MRI. At 3 T MRI, 18 patients (mean age: 36.2 years) with wrist pain and 16 healthy volunteers (mean age: 26.4 years) were examined using 2 D proton density-weighted fat-saturated (PDfs), isotropic 3 D TrueFISP, 3 D MEDIC, and 3 D PDfs SPACE sequences. Image quality was rated on a five-point scale (0 - 4) including overall image quality (OIQ), visibility of important structures (cartilage, ligaments, TFCC) and degree of artifacts. Signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) of cartilage/bone/muscle/fluid as well as the mean overall SNR/CNR were calculated using region-of-interest analysis. ANOVA, paired t-, and Wilcoxon-signed-rank tests were applied. The image quality of all tested sequences was superior to 3 D PDfs SPACE (p < 0.01). 3 D TrueFISP had the highest combined cartilage score (mean: 3.4) and performed better in cartilage comparisons against 3 D PDfs SPACE in both groups and 2 D PDfs in volunteers (p < 0.05). 3 D MEDIC performed better in 7 of 8 comparisons (p < 0.05) regarding ligaments and TFCC. 2 D PDfs provided constantly high scores. The mean overall SNR/CNR for 2 D PDfs, 3 D PDfs SPACE, 3 D TrueFISP, and 3 D MEDIC were 68/65, 32/27, 45/47, and 57/45, respectively. 2 D PDfs performed best in most SNR/CNR comparisons (p < 0.05) and 3 D MEDIC performed best within the 3 D sequences (p < 0.05). Except 3 D PDfs SPACE, all tested 3 D and 2 D sequences provided high image quality. 3 D TrueFISP was best for cartilage imaging, 3 D MEDIC for ligaments and TFCC and 2 D PDfs for general wrist imaging.

  5. Basic evaluation of the new pulse sequence for simultaneous acquisition of T1- and T2-weighted images

    Kurose, Atsunari; Takahashi, Tohru; Ohishi, Tae; Ishikawa, Akihiro

    2006-01-01

    A novel pulse sequence that enables simultaneous acquisition of T1-weighted (T1W) and T2-weighted (T2W) images is presented. In this new technique, the inversion recovery (IR) pulse of conventional fast inversion recovery (Fast IR) is replaced with a pulse train that consists of a fast spin echo (FSE) and 180(y)+90(x) for driven inversion (DI). By using a shorter T1 and independent k-space ordering, the first part of the sequence provides T2W images and the second part provides T1W images, thereby enabling simultaneous acquisition in a single scan time comparable to that of Fast IR. Signal simulation also was conducted, and this was compared with conventional scanning techniques using normal volunteers. In the human studies, both T1W and T2W images showed the same image quality as conventional images, suggesting the potential for this technique to replace the combination of Fast IR and T2W FSE for scan-time reduction. (author)

  6. Protocol optimization of sacroiliac joint MR Imaging at 3 Tesla: Impact of coil design and motion resistant sequences on image quality.

    Gondim Teixeira, P A; Bravetti, M; Hossu, G; Lecocq, S; Petit, D; Loeuille, D; Blum, A

    2017-12-01

    To evaluate the impact of coil design and motion-resistant sequences on the quality of sacroiliac magnetic resonance imaging (MRI) examination in patients with spondyloarthropathy. One hundred and twenty-one patients with suspected sacroiliitis and referred for MRI of the sacroiliac joints were retrospectively evaluated with MRI at 3-Tesla. There were 78 women and 43 men with a mean age of 36.7±11.5 (SD) years (range: 15.8-78.4 years). Conventional and motion-resistant fat-saturated fast-spin echo T2-weighted sequences were performed with two different coils. Image quality was subjectively evaluated by two independent readers (R1 and R2) using a four-point scale. Confidence in the identification of bone marrow edema pattern (BMEP) was also evaluated subjectively using a three-point scale. Phased array body coil yielded improved image quality compared to surface coil (14.1 to 30.4% for R1 and 14.6 to 25.7% for R2; Pcoil with motion-resistant T2-weighted sequence (kappa 0.990). The smallest number of indeterminate BMEP zones was seen on MRI set acquired with the phased-array body coil and motion-resistant T2-weighted sequence. Phased array body coil and motion-resistant T2-weighted sequences perform better than surface coil and conventional T2-weighted sequences for the evaluation of sacroiliac joints, increasing confidence in the identification of BMEP. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  7. Method for automatic localization of MR-visible markers using morphological image processing and conventional pulse sequences: feasibility for image-guided procedures.

    Busse, Harald; Trampel, Robert; Gründer, Wilfried; Moche, Michael; Kahn, Thomas

    2007-10-01

    To evaluate the feasibility and accuracy of an automated method to determine the 3D position of MR-visible markers. Inductively coupled RF coils were imaged in a whole-body 1.5T scanner using the body coil and two conventional gradient echo sequences (FLASH and TrueFISP) and large imaging volumes up to (300 mm(3)). To minimize background signals, a flip angle of approximately 1 degrees was used. Morphological 2D image processing in orthogonal scan planes was used to determine the 3D positions of a configuration of three fiducial markers (FMC). The accuracies of the marker positions and of the orientation of the plane defined by the FMC were evaluated at various distances r(M) from the isocenter. Fiducial marker detection with conventional equipment (pulse sequences, imaging coils) was very reliable and highly reproducible over a wide range of experimental conditions. For r(M) image processing is feasible, simple, and very accurate. In combination with safe wireless markers, the method is found to be useful for image-guided procedures. (c) 2007 Wiley-Liss, Inc.

  8. Evaluation of pneumonia in children: comparison of MRI with fast imaging sequences at 1.5T with chest radiographs

    Yikilmaz, Ali; Koc, Ali; Coskun, Abdulhakim (Dept. of Radiology, Erciyes Medical School, Kayseri (Turkey)); Ozturk, Mustafa K (Dept. of Pediatric Infectious Diseases, Erciyes Medical School, Kayseri (Turkey)); Mulkern, Robert V; Lee, Edward Y (Dept. of Radiology and Dept. of Medicine, Pulmonary Div., Children' s Hospital Boston and Harvard Medical School, Boston (United States)), email: Edward.lee@childrens.harvard.edu

    2011-10-15

    Background Although there has been a study aimed at magnetic resonance imaging (MRI) evaluation of pneumonia in children at a low magnetic field (0.2T), there is no study which assessed the efficacy of MRI, particularly with fast imaging sequences at 1.5T, for evaluating pneumonia in children. Purpose To investigate the efficacy of chest MRI with fast imaging sequences at 1.5T for evaluating pneumonia in children by comparing MRI findings with those of chest radiographs. Material and Methods This was an Institutional Review Board-approved, HIPPA-compliant prospective study of 40 consecutive pediatric patients (24 boys, 16 girls; mean age 7.3 years +- 6.6 years) with pneumonia, who underwent PA and lateral chest radiographs followed by MRI within 24 h. All MRI studies were obtained in axial and coronal planes with two different fast imaging sequences: T1-weighted FFE (Fast Field Echo) (TR/TE: 83/4.6) and T2-weighted B-FFE M2D (Balanced Fast Field Echo Multiple 2D Dimensional) (TR/TE: 3.2/1.6). Two experienced pediatric radiologists reviewed each chest radiograph and MRI for the presence of consolidation, necrosis/abscess, bronchiectasis, and pleural effusion. Chest radiograph and MRI findings were compared with Kappa statistics. Results All consolidation, lung necrosis/abscess, bronchiectasis, and pleural effusion detected with chest radiographs were also detected with MRI. There was statistically substantial agreement between chest radiographs and MRI in detecting consolidation (k = 0.78) and bronchiectasis (k = 0.72) in children with pneumonia. The agreement between chest radiographs and MRI was moderate for detecting necrosis/abscess (k = 0.49) and fair for detecting pleural effusion (k = 0.30). Conclusion MRI with fast imaging sequences is comparable to chest radiographs for evaluating underlying pulmonary consolidation, bronchiectasis, necrosis/abscess, and pleural effusion often associated with pneumonia in children

  9. Variability in prostate and seminal vesicle delineations defined on magnetic resonance images, a multi-observer, -center and -sequence study

    Nyholm, Tufve; Jonsson, Joakim; Söderström, Karin

    2013-01-01

    and approximately equal for the prostate and seminal vesicles. Large differences in variability were observed for individual patients, and also for individual imaging sequences used at the different centers. There was however no indication of decreased variability with higher field strength. CONCLUSION: The overall......BACKGROUND: The use of magnetic resonance (MR) imaging as a part of preparation for radiotherapy is increasing. For delineation of the prostate several publications have shown decreased delineation variability using MR compared to computed tomography (CT). The purpose of the present work....... Two physicians from each center delineated the prostate and the seminal vesicles on each of the 25 image sets. The variability between the delineations was analyzed with respect to overall, intra- and inter-physician variability, and dependence between variability and origin of the MR images, i...

  10. Pulseq-Graphical Programming Interface: Open source visual environment for prototyping pulse sequences and integrated magnetic resonance imaging algorithm development.

    Ravi, Keerthi Sravan; Potdar, Sneha; Poojar, Pavan; Reddy, Ashok Kumar; Kroboth, Stefan; Nielsen, Jon-Fredrik; Zaitsev, Maxim; Venkatesan, Ramesh; Geethanath, Sairam

    2018-03-11

    To provide a single open-source platform for comprehensive MR algorithm development inclusive of simulations, pulse sequence design and deployment, reconstruction, and image analysis. We integrated the "Pulseq" platform for vendor-independent pulse programming with Graphical Programming Interface (GPI), a scientific development environment based on Python. Our integrated platform, Pulseq-GPI, permits sequences to be defined visually and exported to the Pulseq file format for execution on an MR scanner. For comparison, Pulseq files using either MATLAB only ("MATLAB-Pulseq") or Python only ("Python-Pulseq") were generated. We demonstrated three fundamental sequences on a 1.5 T scanner. Execution times of the three variants of implementation were compared on two operating systems. In vitro phantom images indicate equivalence with the vendor supplied implementations and MATLAB-Pulseq. The examples demonstrated in this work illustrate the unifying capability of Pulseq-GPI. The execution times of all the three implementations were fast (a few seconds). The software is capable of user-interface based development and/or command line programming. The tool demonstrated here, Pulseq-GPI, integrates the open-source simulation, reconstruction and analysis capabilities of GPI Lab with the pulse sequence design and deployment features of Pulseq. Current and future work includes providing an ISMRMRD interface and incorporating Specific Absorption Ratio and Peripheral Nerve Stimulation computations. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Thickness of patellofemoral articular cartilage as measured on MR imaging: sequence comparison of accuracy, reproducibility, and interobserver variation

    Van Leersum, M.D. [Dept. of Radiology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States); Schweitzer, M.E. [Dept. of Radiology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States); Gannon, F. [Dept. of Pathology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States); Vinitski, S. [Dept. of Radiology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States); Finkel, G. [Dept. of Pathology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States); Mitchell, D.G. [Dept. of Radiology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States)

    1995-08-01

    This study was undertaken to assess the accuracy, precision, and reliability of magnetic resonance (MR) measurements of articular cartilage. Fifteen cadaveric patellas were imaged in the axial plane at 1.5 T. Gradient echo and fat-suppressed FSE, T2-weighted, proton density, and T1-weighted sequences were performed. We measured each 5-mm section separately at three standardized positions, giving a total of 900 measurements. These findings were correlated with independently performed measurements of the corresponding anatomic sections. A hundred random measurements were also evaluated for reproducibility and interobserver variation. Although all sequences were highly accurate, the T1-weighted images were the most accurate, with a mean difference of 0.25 mm and a correlation coefficient of 0.85. All sequences were also highly reproducible with little inter-observer variation. In an attempt to improve the accuracy of the MR measurements further, we retrospectively evaluated all measurements with discrepancies greater than 1 mm from the specimen. All these differences were attributable to focal defects causing exaggeration of the thickness on MR imaging. (orig.)

  12. Thickness of patellofemoral articular cartilage as measured on MR imaging: sequence comparison of accuracy, reproducibility, and interobserver variation

    Van Leersum, M.D.; Schweitzer, M.E.; Gannon, F.; Vinitski, S.; Finkel, G.; Mitchell, D.G.

    1995-01-01

    This study was undertaken to assess the accuracy, precision, and reliability of magnetic resonance (MR) measurements of articular cartilage. Fifteen cadaveric patellas were imaged in the axial plane at 1.5 T. Gradient echo and fat-suppressed FSE, T2-weighted, proton density, and T1-weighted sequences were performed. We measured each 5-mm section separately at three standardized positions, giving a total of 900 measurements. These findings were correlated with independently performed measurements of the corresponding anatomic sections. A hundred random measurements were also evaluated for reproducibility and interobserver variation. Although all sequences were highly accurate, the T1-weighted images were the most accurate, with a mean difference of 0.25 mm and a correlation coefficient of 0.85. All sequences were also highly reproducible with little inter-observer variation. In an attempt to improve the accuracy of the MR measurements further, we retrospectively evaluated all measurements with discrepancies greater than 1 mm from the specimen. All these differences were attributable to focal defects causing exaggeration of the thickness on MR imaging. (orig.)

  13. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  14. Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring

    Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.

    2017-12-01

    Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.

  15. Generation of synthetic image sequences for the verification of matching and tracking algorithms for deformation analysis

    Bethmann, F.; Jepping, C.; Luhmann, T.

    2013-04-01

    This paper reports on a method for the generation of synthetic image data for almost arbitrary static or dynamic 3D scenarios. Image data generation is based on pre-defined 3D objects, object textures, camera orientation data and their imaging properties. The procedure does not focus on the creation of photo-realistic images under consideration of complex imaging and reflection models as they are used by common computer graphics programs. In contrast, the method is designed with main emphasis on geometrically correct synthetic images without radiometric impact. The calculation process includes photogrammetric distortion models, hence cameras with arbitrary geometric imaging characteristics can be applied. Consequently, image sets can be created that are consistent to mathematical photogrammetric models to be used as sup-pixel accurate data for the assessment of high-precision photogrammetric processing methods. In the first instance the paper describes the process of image simulation under consideration of colour value interpolation, MTF/PSF and so on. Subsequently the geometric quality of the synthetic images is evaluated with ellipse operators. Finally, simulated image sets are used to investigate matching and tracking algorithms as they have been developed at IAPG for deformation measurement in car safety testing.

  16. PET Imaging Stability Measurements During Simultaneous Pulsing of Aggressive MR Sequences on the SIGNA PET/MR System.

    Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H

    2018-01-01

    The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count

  17. Paleocene Wilcox cross-shelf channel-belt history and shelf-margin growth: Key to Gulf of Mexico sediment delivery

    Zhang, Jinyu; Steel, Ronald; Ambrose, William

    2017-12-01

    Shelf margins prograde and aggrade by the incremental addition of deltaic sediments supplied from river channel belts and by stored shoreline sediment. This paper documents the shelf-edge trajectory and coeval channel belts for a segment of Paleocene Lower Wilcox Group in the northern Gulf of Mexico based on 400 wireline logs and 300 m of whole cores. By quantitatively analyzing these data and comparing them with global databases, we demonstrate how varying sediment supply impacted the Wilcox shelf-margin growth and deep-water sediment dispersal under greenhouse eustatic conditions. The coastal plain to marine topset and uppermost continental slope succession of the Lower Wilcox shelf-margin sediment prism is divided into eighteen high-frequency ( 300 ky duration) stratigraphic sequences, and further grouped into 5 sequence sets (labeled as A-E from bottom to top). Sequence Set A is dominantly muddy slope deposits. The shelf edge of Sequence Sets B and C prograded rapidly (> 10 km/Ma) and aggraded modestly ( 80 m/Ma) characterizes Sequence Sets D and E, which is associated with smaller (9-10 m thick on average) and isolated channel belts. This stratigraphic trend is likely due to an upward decreasing sediment supply indicated by the shelf-edge progradation rate and channel size, as well as an upward increasing shelf accommodation indicated by the shelf-edge aggradation rate. The rapid shelf-edge progradation and large rivers in Sequence Sets B and C confirm earlier suggestions that it was the early phase of Lower Wilcox dispersal that brought the largest deep-water sediment volumes into the Gulf of Mexico. Key factors in this Lower Wilcox stratigraphic trend are likely to have been a very high initial sediment flux to the Gulf because of the high initial release of sediment from Laramide catchments to the north and northwest, possibly aided by modest eustatic sea-level fall on the Texas shelf, which is suggested by the early, flat shelf-edge trajectory, high

  18. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence.

    Kirchgesner, Thomas; Perlepe, Vasiliki; Michoux, Nicolas; Larbi, Ahmed; Vande Berg, Bruno

    2017-04-01

    To compare the effectiveness of fat suppression and the signal-to-noise ratio (SNR) of the Dixon method with those of the CHESS (Chemical Shift-Selective) technique and STIR (Short Tau Inversion Recovery) sequence in hands of normal subjects at 2D MR imaging. 14 healthy volunteers (mean age of 29.4 years) consented to have both hands prospectively imaged with SE T1 Dixon, T1 CHESS, T2 Dixon, T2 CHESS and STIR sequences in a 1.5T MR scanner. Three radiologists scored the effectiveness of fat suppression in bone marrow (EFS BM ) and soft tissues (EFS ST ) in 20 joints per subject. One radiologist measured the SNR in 10 bones per subject. Statistical analysis used two-way ANOVA with random effects, paired t-test and observed agreement to assess differences in effectiveness of fat suppression, differences in SNR and inter-observer agreement. EFS BM was statistically significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for T2 CHESS (pCHESS and for T2 Dixon than for STIR (pCHESS (pCHESS technique at 2D T1-weighted MR imaging of the hands. At T2-weighted MR imaging, fat suppression is more effective with the Dixon method while SNR is higher with the CHESS technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Automatic internal crack detection from a sequence of infrared images with a triple-threshold Canny edge detector

    Wang, Gaochao; Tse, Peter W.; Yuan, Maodan

    2018-02-01

    Visual inspection and assessment of the condition of metal structures are essential for safety. Pulse thermography produces visible infrared images, which have been widely applied to detect and characterize defects in structures and materials. When active thermography, a non-destructive testing tool, is applied, the necessity of considerable manual checking can be avoided. However, detecting an internal crack with active thermography remains difficult, since it is usually invisible in the collected sequence of infrared images, which makes the automatic detection of internal cracks even harder. In addition, the detection of an internal crack can be hindered by a complicated inspection environment. With the purpose of putting forward a robust and automatic visual inspection method, a computer vision-based thresholding method is proposed. In this paper, the image signals are a sequence of infrared images collected from the experimental setup with a thermal camera and two flash lamps as stimulus. The contrast of pixels in each frame is enhanced by the Canny operator and then reconstructed by a triple-threshold system. Two features, mean value in the time domain and maximal amplitude in the frequency domain, are extracted from the reconstructed signal to help distinguish the crack pixels from others. Finally, a binary image indicating the location of the internal crack is generated by a K-means clustering method. The proposed procedure has been applied to an iron pipe, which contains two internal cracks and surface abrasion. Some improvements have been made for the computer vision-based automatic crack detection methods. In the future, the proposed method can be applied to realize the automatic detection of internal cracks from many infrared images for the industry.

  20. Effectiveness of the STIR turbo spin–echo sequence MR imaging in evaluation of lymphadenopathy in esophageal cancer

    Alper, Fatih; Turkyilmaz, Atila; Kurtcan, Serpil; Aydin, Yener; Onbas, Omer; Acemoglu, Hamit; Eroglu, Atilla

    2011-01-01

    Purpose: We have investigated the utility of the STIR TSE sequence in the differentiation of benign from malignant mediastinal lymph nodes in patients with esophageal cancer. Patients and methods: This study included 35 consecutive patients who were diagnosed as esophageal cancer and were undergone surgery. STIR TSE sequences were obtained as the ECG trigger. The signal intensity of the benign and malign lymph nodes, normal esophagus, and pathologic esophagus can be calculated on STIR sequence. Results: Pathologically, the number of total lymph nodes in 35 operated cases was 482. Approximately 152 lymph nodes were detected with MR imaging. Of these, 28 were thought to be malignant, and 124 were thought to be benign, although 32 were malignant and 120 were benign according pathological results. The ratio of benign lymph node intensity value to normal esophagus intensity value was 0.73 ± 0.3. The ratio of malignant lymph node intensity value to normal esophagus intensity value ratio was 2.03 ± 0.4. According to these results, the sensitivity of MR was 81.3%, the specificity was 98.3%. Conclusion: We think that if motionless images can be obtained with MRI, we may be able to differentiate benign lymph nodes from malignant ones.

  1. An Improved Image Encryption Algorithm Based on Cyclic Rotations and Multiple Chaotic Sequences: Application to Satellite Images

    MADANI Mohammed

    2017-10-01

    Full Text Available In this paper, a new satellite image encryption algorithm based on the combination of multiple chaotic systems and a random cyclic rotation technique is proposed. Our contribution consists in implementing three different chaotic maps (logistic, sine, and standard combined to improve the security of satellite images. Besides enhancing the encryption, the proposed algorithm also focuses on advanced efficiency of the ciphered images. Compared with classical encryption schemes based on multiple chaotic maps and the Rubik's cube rotation, our approach has not only the same merits of chaos systems like high sensitivity to initial values, unpredictability, and pseudo-randomness, but also other advantages like a higher number of permutations, better performances in Peak Signal to Noise Ratio (PSNR and a Maximum Deviation (MD.

  2. Effects of imaging gradients in sequences with varying longitudinal storage time-Case of diffusion exchange imaging

    Lasic, Samo; Lundell, Henrik; Topgaard, Daniel

    2017-01-01

    low-pass diffusion filtering during the LS interval, which is more pronounced at lower exchange rates. For a total exchange rate constant larger than 1 s-1, the AXR bias is expected to be negligible when slices thicker than 2.5mm are used. Conclusion: In correlation experiments like FEXI, relying...... on LS with variable duration, imaging gradients may cause disrupting effects that cannot be easily mitigated and should be carefully considered for unbiased results. In typical clinical applications of FEXI, the imaging gradients are expected to cause a negligible AXR bias. However, the AXR bias may...

  3. Usefulness of low-field FlAIR sequence in MR imaging of intracranial tumors

    Sokolowska, D.; Sasiadek, M.; Zimny, A.

    2004-01-01

    Plain MR study is often insufficient for visualization of all important details of intracranial tumors, hence there are attempts to use supplementary MR techniques. One of them is FLAIR (fluid attenuated inversion recovery) sequence which previously was available only in high-field MR units, but recently has been introduced also in less expensive low-field units. FLAIR is already widely used in the diagnostics of ischemic and demyelinating lesions, while there are few papers concerning its application in intracranial tumors, none of them regarding low-field MR units.The aim of our study was detailed evaluation of low-field FLAIR in the diagnostics of intracranial tumors. The material consisted of 76 patients with intracranial tumors, who were examined with low-field open MR unit (0.23 Tesla). In all patients, standard T2-weighted and T1-weighted (before and after contrast enhancement) sequences, as well as FLAIR sequence, were performed. The following symptoms were compared in the aforementioned sequences: tumor-edema, edema-brain and tumor-brain borders, visualization of tumour structure, vessels in the tumor area and precise tumor localization. A superiority of FLAIR in assessment of all symptoms has been confirmed, at least in part of the patient group. It concerned particularly the evaluation of brain-edema and edema-brain borders which were better visible with FLAIR than with all other sequences in 29 and 30 patients, respectively. In the assessment of the remaining symptoms (tumor-brain border, tumor structure, visualization of vessels, tumor localization) FLAIR was superior to other sequences in smaller number of patients (13,11,11 and 12, respectively). Totally, in 48 out of 76 patients (63.2%) FLAIR allowed better assessment of at least one of the analyzed symptoms. Low-field MR FLAIR enriches diagnostic information in majority of patients with intracranial tumors, therefore it should be included routinely in the diagnostic algorithm in this group of

  4. Sedimentation on the Valencia Continental Shelf: Preliminary results

    Maldonado, Andres; Swift, Donald J. P.; Young, Robert A.; Han, Gregory; Nittrouer, Charles A.; DeMaster, David J.; Rey, Jorge; Palomo, Carlos; Acosta, Juan; Ballester, A.; Castellvi, J.

    1983-10-01

    Preliminary analysis of data collected during the course of a cooperative Spanish-United States investigation of the Valencia Shelf (western Mediterranean) reveals a storm-dominated, mud-accumulating sedimentary regime. Calcareous mud is accumulating seaward of a narrow band of shoreface sand and gravel. On the outer shelf the mud is enriched by a pelagic calcareous component. Preliminary 210Pb data from vertical profiles of box cores yield nominal accumulation rates from 2.6 mm y -1 near the Ebro Delta to 1.3 mm y -1 on the southern portion of the Valencia Shelf. Storm-current winnowing has resulted in the development of a biogenic lag sand over the mid-shelf mud in the northern part of the study area. Piston cores reveal a basal Holocene sand and gravel facies similar to that presently seen on the inner shelf. Upward-fining sequences on the central and outer shelf are inferred to result from the landward shift of lithotopes during the course of the Holocene transgression. These sequences are locally repeated, perhaps as the consequence of brief, local interludes of coastal progradation. Application of a diagnostic circulation model suggests that intense, downwelling coastal flows occur during winter northeastern storms. Storm activity has induced erosional shoreface retreat during the course of the Holocene transgression and has generated by this means the basal coarse facies observed in the piston cores. In the central part of the study area seaward of the Albufera Lagoon, the mud blanket thins to a layer several centimeters thick which is draped over a thickened (10 m) basal sand. The basal sand is molded into northwest trending ridges. The data are not sufficient to determine whether these are overstepped barriers, or submarine sand ridges formed by storm flows during the shoreface retreat process.

  5. Performance of Correspondence Algorithms in Vision-Based Driver Assistance Using an Online Image Sequence Database

    Klette, Reinhard; Krüger, Norbert; Vaudrey, Tobi

    2011-01-01

    the classification of recorded video data into situations defined by a cooccurrence of some events in recorded traffic scenes. About 100-400 stereo frames (or 4-16 s of recording) are considered a basic sequence, which will be identified with one particular situation. Future testing is expected to be on data...

  6. Short term reproducibility of a high contrast 3-D isotropic optic nerve imaging sequence in healthy controls

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2016-03-01

    The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short- term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.

  7. Hepatic adenomatosis: rapid sequence MR imaging following gadolinium enhancement: a case report

    Brummett, D.; Burton, E.M.; Sabio, H.

    1999-01-01

    Hepatic adenomas are primary liver tumors usually associated with underlying metabolic disease or with anabolic steroid or oral contraceptive use. Hepatic adenomatosis (HA) is defined as the presence of more than four adenomas. Only 13 cases of HA have been reported in patients without glycogen storage disease or steroid use. We report a case of HA imaged by postcontrast T1-weighted images obtained during a breath-holding series. The lesions were most conspicuous 3-4 min after contrast administration; 4 of the 5 tumors were not identified on T2-weighted images. Unlike previous reports of HA in which the lesions remained hyperintense during sequential postcontrast imaging, the smaller lesions in this case demonstrated contrast washout, thereby distinguishing them from hemangiomata. (orig.)

  8. Pulse sequence optimization for superparamagnetic iron oxide-enhaced MR imaging in the detection of hepatic VX2 tumors in rabbits

    Jang, Hyun Jung; Han, Joon Koo; Lee, Kyoung Ho; Kim, Se Hyung; Choi, Byung Ihn; Kim, Tae Kyoung

    2003-01-01

    The purpose of this experimental study was to determine the optimal pulse sequences for SPIO-enhanced MR imaging in the evaluation of multiple hepatic tumors. Twelve rabbits with multiple VX2 liver tumors underwent SPOI-enhanced MRI using the following nine pulse sequences: TSE T2-weighted imaging (T2W1), TSE proton density-weighted imaging(PDWI), and GRE T2*-weighted imaging (T2*W1) with seven different echo times (TE). Liver-lesion contrast-to-noise ratios (CNRs) were calculated, and images were also assessed qualitatively by two radiologists, who reached a consensus as to lesion conspicuity and imaging artifacts using a four-level scale. By means of pathologic correlation, the sensitivity and positive predictive value of each sequence was calculated. TSE T2W1 and long-TE (35 msec) FLASH T2*W1 showed the highest liver-lesion CNR. The best lesion conspicuity was seen at TSE T2W1 and medium-TE (12 msec) GRE T2*W1. Short TE GRE T2*W1 showed the least imaging artifacts. The four sequences which demonstrated the best sensitivity were medium-TE (12 msec), GRE T2*W1 (FLASH, 84%; FISP, 82%), TSE W2T1 (79%), and TSE PDWI (76%). All nine sequences showed overall high positive predictive value (86-97%), with no statistically significant difference (p>0.05). In terms of image quality and the detection of sensitivity, TSE T2W1 and medium TE (12 msec) GRE T2*W1 were the top two pulse sequences among the various sequences used for no SPIO-enhanced MRI. They are thus considered to be optimal sequences for evaluating multiple malignant hepatic tumors

  9. SEGMENTATION OF ENVIRONMENTAL TIME LAPSE IMAGE SEQUENCES FOR THE DETERMINATION OF SHORE LINES CAPTURED BY HAND-HELD SMARTPHONE CAMERAS

    M. Kröhnert

    2017-09-01

    Full Text Available The relevance of globally environmental issues gains importance since the last years with still rising trends. Especially disastrous floods may cause in serious damage within very short times. Although conventional gauging stations provide reliable information about prevailing water levels, they are highly cost-intensive and thus just sparsely installed. Smartphones with inbuilt cameras, powerful processing units and low-cost positioning systems seem to be very suitable wide-spread measurement devices that could be used for geo-crowdsourcing purposes. Thus, we aim for the development of a versatile mobile water level measurement system to establish a densified hydrological network of water levels with high spatial and temporal resolution. This paper addresses a key issue of the entire system: the detection of running water shore lines in smartphone images. Flowing water never appears equally in close-range images even if the extrinsics remain unchanged. Its non-rigid behavior impedes the use of good practices for image segmentation as a prerequisite for water line detection. Consequently, we use a hand-held time lapse image sequence instead of a single image that provides the time component to determine a spatio-temporal texture image. Using a region growing concept, the texture is analyzed for immutable shore and dynamic water areas. Finally, the prevalent shore line is examined by the resultant shapes. For method validation, various study areas are observed from several distances covering urban and rural flowing waters with different characteristics. Future work provides a transformation of the water line into object space by image-to-geometry intersection.

  10. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R. [Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Salmanpour, Aryan; Rahnamayan, Shahryar [Department of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Rodrigues, George [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario N6C 2R6, Canada and Department of Epidemiology/Biostatistics, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2013-12-15

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., the first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.

  11. High-accuracy and robust face recognition system based on optical parallel correlator using a temporal image sequence

    Watanabe, Eriko; Ishikawa, Mami; Ohta, Maiko; Kodate, Kashiko

    2005-09-01

    Face recognition is used in a wide range of security systems, such as monitoring credit card use, searching for individuals with street cameras via Internet and maintaining immigration control. There are still many technical subjects under study. For instance, the number of images that can be stored is limited under the current system, and the rate of recognition must be improved to account for photo shots taken at different angles under various conditions. We implemented a fully automatic Fast Face Recognition Optical Correlator (FARCO) system by using a 1000 frame/s optical parallel correlator designed and assembled by us. Operational speed for the 1: N (i.e. matching a pair of images among N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 seconds, including the pre/post processing. From trial 1: N identification experiments using FARCO, we acquired low error rates of 2.6% False Reject Rate and 1.3% False Accept Rate. By making the most of the high-speed data-processing capability of this system, much more robustness can be achieved for various recognition conditions when large-category data are registered for a single person. We propose a face recognition algorithm for the FARCO while employing a temporal image sequence of moving images. Applying this algorithm to a natural posture, a two times higher recognition rate scored compared with our conventional system. The system has high potential for future use in a variety of purposes such as search for criminal suspects by use of street and airport video cameras, registration of babies at hospitals or handling of an immeasurable number of images in a database.

  12. Segmentation of Environmental Time Lapse Image Sequences for the Determination of Shore Lines Captured by Hand-Held Smartphone Cameras

    Kröhnert, M.; Meichsner, R.

    2017-09-01

    The relevance of globally environmental issues gains importance since the last years with still rising trends. Especially disastrous floods may cause in serious damage within very short times. Although conventional gauging stations provide reliable information about prevailing water levels, they are highly cost-intensive and thus just sparsely installed. Smartphones with inbuilt cameras, powerful processing units and low-cost positioning systems seem to be very suitable wide-spread measurement devices that could be used for geo-crowdsourcing purposes. Thus, we aim for the development of a versatile mobile water level measurement system to establish a densified hydrological network of water levels with high spatial and temporal resolution. This paper addresses a key issue of the entire system: the detection of running water shore lines in smartphone images. Flowing water never appears equally in close-range images even if the extrinsics remain unchanged. Its non-rigid behavior impedes the use of good practices for image segmentation as a prerequisite for water line detection. Consequently, we use a hand-held time lapse image sequence instead of a single image that provides the time component to determine a spatio-temporal texture image. Using a region growing concept, the texture is analyzed for immutable shore and dynamic water areas. Finally, the prevalent shore line is examined by the resultant shapes. For method validation, various study areas are observed from several distances covering urban and rural flowing waters with different characteristics. Future work provides a transformation of the water line into object space by image-to-geometry intersection.

  13. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    Khalvati, Farzad; Tizhoosh, Hamid R.; Salmanpour, Aryan; Rahnamayan, Shahryar; Rodrigues, George

    2013-01-01

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., the first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability

  14. Detection of Subarachnoid Hemorrhage at Acute and Subacute/Chronic Stages: Comparison of Four Magnetic Resonance Imaging Pulse Sequences and Computed Tomography

    Mei-Kang Yuan

    2005-03-01

    Conclusion: FLAIR and GE T2* MRI pulse sequences, and CT scans, are all statistically significant indicators of acute SAH. GE T2*-weighted images are statistically significant indicators of subacute-to-chronic SAH, whereas other MRI pulse sequences, and CT scans, are not.

  15. DIfferential Subsampling with Cartesian Ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging.

    Saranathan, Manojkumar; Rettmann, Dan W; Hargreaves, Brian A; Clarke, Sharon E; Vasanawala, Shreyas S

    2012-06-01

    To develop and evaluate a multiphasic contrast-enhanced MRI method called DIfferential Sub-sampling with Cartesian Ordering (DISCO) for abdominal imaging. A three-dimensional, variable density pseudo-random k-space segmentation scheme was developed and combined with a Dixon-based fat-water separation algorithm to generate high temporal resolution images with robust fat suppression and without compromise in spatial resolution or coverage. With institutional review board approval and informed consent, 11 consecutive patients referred for abdominal MRI at 3 Tesla (T) were imaged with both DISCO and a routine clinical three-dimensional SPGR-Dixon (LAVA FLEX) sequence. All images were graded by two radiologists using quality of fat suppression, severity of artifacts, and overall image quality as scoring criteria. For assessment of arterial phase capture efficiency, the number of temporal phases with angiographic phase and hepatic arterial phase was recorded. There were no significant differences in quality of fat suppression, artifact severity or overall image quality between DISCO and LAVA FLEX images (P > 0.05, Wilcoxon signed rank test). The angiographic and arterial phases were captured in all 11 patients scanned using the DISCO acquisition (mean number of phases were two and three, respectively). DISCO effectively captures the fast dynamics of abdominal pathology such as hyperenhancing hepatic lesions with a high spatio-temporal resolution. Typically, 1.1 × 1.5 × 3 mm spatial resolution over 60 slices was achieved with a temporal resolution of 4-5 s. Copyright © 2012 Wiley Periodicals, Inc.

  16. Breast MRI at very short TE (minTE). Image analysis of minTE sequences on non-fat-saturated, subtracted T1-weighted images

    Wenkel, Evelyn; Janka, Rolf; Kaemmerer, Nadine; Uder, Michael; Hammon, Matthias; Brand, Michael; Hartmann, Arndt

    2017-01-01

    The aim was to evaluate a minimum echo time (minTE) protocol for breast magnetic resonance imaging (MRI) in patients with breast lesions compared to a standard TE (nTE) time protocol. Breasts of 144 women were examined with a 1.5 Tesla MRI scanner. Additionally to the standard gradient-echo sequence with nTE (4.8 ms), a variant with minimum TE (1.2 ms) was used in an interleaved fashion which leads to a better temporal resolution and should reduce the scan time by approximately 50%. Lesion sizes were measured and the signal-to-noise ratio (SNR) as well as the contrast-to-noise ratio (CNR) were calculated. Subjective confidence was evaluated using a 3-point scale before looking at the nTE sequences (1 = very sure that I can identify a lesion and classify it, 2 = quite sure that I can identify a lesion and classify it, 3 = definitely want to see nTE for final assessment) and the subjective image quality of all examinations was evaluated using a four-grade scale (1 = sharp, 2 = slight blur, 3 = moderate blur and 4 = severe blur/not evaluable) for lesion and skin sharpness. Lesion morphology and contrast enhancement were also evaluated. With minTE sequences, no lesion was rated with ''definitely want to see nTE sequences for final assessment''. The difference of the longitudinal and transverse diameter did not differ significantly (p>0.05). With minTE, lesions and skin were rated to be significantly more blurry (p<0.01 for lesions and p<0.05 for skin). There was no difference between both sequences with respect to SNR, CNR, lesion morphology, contrast enhancement and detection of multifocal disease. Dynamic breast MRI with a minTE protocol is feasible without a major loss of information (SNR, CNR, lesion morphology, contrast enhancement and lesion sizes) and the temporal resolution can be increased by a factor of 2 using minTE sequences.

  17. Breast MRI at very short TE (minTE). Image analysis of minTE sequences on non-fat-saturated, subtracted T1-weighted images

    Wenkel, Evelyn; Janka, Rolf; Kaemmerer, Nadine; Uder, Michael; Hammon, Matthias; Brand, Michael [Univ. Hospital Erlangen (Germany). Dept. of Radiology; Geppert, Christian [Siemens Healthcare GmbH, Erlangen (Germany); Hartmann, Arndt [Univ. Hospital Erlangen (Germany). Dept. of Pathology

    2017-02-15

    The aim was to evaluate a minimum echo time (minTE) protocol for breast magnetic resonance imaging (MRI) in patients with breast lesions compared to a standard TE (nTE) time protocol. Breasts of 144 women were examined with a 1.5 Tesla MRI scanner. Additionally to the standard gradient-echo sequence with nTE (4.8 ms), a variant with minimum TE (1.2 ms) was used in an interleaved fashion which leads to a better temporal resolution and should reduce the scan time by approximately 50%. Lesion sizes were measured and the signal-to-noise ratio (SNR) as well as the contrast-to-noise ratio (CNR) were calculated. Subjective confidence was evaluated using a 3-point scale before looking at the nTE sequences (1 = very sure that I can identify a lesion and classify it, 2 = quite sure that I can identify a lesion and classify it, 3 = definitely want to see nTE for final assessment) and the subjective image quality of all examinations was evaluated using a four-grade scale (1 = sharp, 2 = slight blur, 3 = moderate blur and 4 = severe blur/not evaluable) for lesion and skin sharpness. Lesion morphology and contrast enhancement were also evaluated. With minTE sequences, no lesion was rated with ''definitely want to see nTE sequences for final assessment''. The difference of the longitudinal and transverse diameter did not differ significantly (p>0.05). With minTE, lesions and skin were rated to be significantly more blurry (p<0.01 for lesions and p<0.05 for skin). There was no difference between both sequences with respect to SNR, CNR, lesion morphology, contrast enhancement and detection of multifocal disease. Dynamic breast MRI with a minTE protocol is feasible without a major loss of information (SNR, CNR, lesion morphology, contrast enhancement and lesion sizes) and the temporal resolution can be increased by a factor of 2 using minTE sequences.

  18. Identification Of Barley Grain Mycoflora By Next Generation Sequencing And Videometer Multispectral Imaging

    Jørgensen, Johannes Ravn; Carstensen, Jens Michael; Søren, Knudsen

    ) in the reflectance mode (5 Mpix per band, pixel size app. 45 μm x 45 μm). Spectral information over the surface of seeds may be combined with information about size, shape, and texture of the seeds. This information links detection of fungal infection with other seed characteristics known from general seed testing...... species in the genus produce mycotoxins responsible for serious quality deterioration. In malting barley, Fusarium also has a negative effect by causing gushing in beer. A number of barley seeds (app. 200) assumed to be infected by fungal from different origins and years of cultivation were tested by NGS...... sequencing the ITS (Internal Transcribed Spacer) region from total DNA. Approximately 2-4000 sequences were obtained from each seed and these were subsequently identified to species level in order to give an exact identification of fungal genera on each seed. The main fungal genera identified were Fusarium...

  19. Magnetic resonance imaging of metal artifact reduction sequences in the assessment of metal-on-metal hip prostheses

    Aboelmagd SM

    2014-05-01

    Full Text Available Sharief M Aboelmagd, Paul N Malcolm, Andoni P Toms Department of Radiology, Norfolk and Norwich University Hospital National Health Service Trust, Norwich, UK Abstract: Recent developments in metal artifact reduction techniques in magnetic resonance (MR have, in large part, been stimulated by the advent of soft tissue complications associated with modern metal-on-metal total hip replacements. Metallic orthopedic implants can result in severe degradation of MR images because ferromagnetic susceptibility causes signal loss, signal pile-up, geometric distortion, and failure of fat suppression. There are several approaches to controlling these susceptibility artifacts. Standard fast spin echo sequences can be adapted by modifying echo times, matrix, receiver bandwidth, slice thickness, and echo trains to minimize frequency encoding misregistration. Short tau inversion recovery and 2-point Dixon techniques are both more resistant to susceptibility artifacts than spectral fat suppression. A number of dedicated metal artifact reduction sequences are now available commercially. The common approach of these multispectral techniques is to generate three dimensional datasets from which the final images are reconstructed. Frequency encoding misregistration is controlled using a variety of techniques, including specific resonant frequency acquisition, view-angle tilting, and phase encoding. Metal artifact reduction MR imaging has been the key to understanding the prevalence, severity, and prognosis of adverse reactions to metal debris in metal-on-metal hip replacements. Conventional radiographs are typically normal or demonstrate minimal change and are unable to demonstrate the often extensive soft tissue abnormalities, which include necrosis, soft tissue masses and fluid collections, myositis, muscle atrophy, tendon avulsions, and osteonecrosis. These MR findings correlate poorly with clinical and serological measures of disease, and therefore MR imaging is

  20. Automatic classification of minimally invasive instruments based on endoscopic image sequences

    Speidel, Stefanie; Benzko, Julia; Krappe, Sebastian; Sudra, Gunther; Azad, Pedram; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2009-02-01

    Minimally invasive surgery is nowadays a frequently applied technique and can be regarded as a major breakthrough in surgery. The surgeon has to adopt special operation-techniques and deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To analyze the current situation for context-aware assistance, we need intraoperatively gained sensor data and a model of the intervention. A situation consists of information about the performed activity, the used instruments, the surgical objects, the anatomical structures and defines the state of an intervention for a given moment in time. The endoscopic images provide a rich source of information which can be used for an image-based analysis. Different visual cues are observed in order to perform an image-based analysis with the objective to gain as much information as possible about the current situation. An important visual cue is the automatic recognition of the instruments which appear in the scene. In this paper we present the classification of minimally invasive instruments using the endoscopic images. The instruments are not modified by markers. The system segments the instruments in the current image and recognizes the instrument type based on three-dimensional instrument models.

  1. Fully automated motion correction in first-pass myocardial perfusion MR image sequences.

    Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2008-11-01

    This paper presents a novel method for registration of cardiac perfusion magnetic resonance imaging (MRI). The presented method is capable of automatically registering perfusion data, using independent component analysis (ICA) to extract physiologically relevant features together with their time-intensity behavior. A time-varying reference image mimicking intensity changes in the data of interest is computed based on the results of that ICA. This reference image is used in a two-pass registration framework. Qualitative and quantitative validation of the method is carried out using 46 clinical quality, short-axis, perfusion MR datasets comprising 100 images each. Despite varying image quality and motion patterns in the evaluation set, validation of the method showed a reduction of the average right ventricle (LV) motion from 1.26+/-0.87 to 0.64+/-0.46 pixels. Time-intensity curves are also improved after registration with an average error reduced from 2.65+/-7.89% to 0.87+/-3.88% between registered data and manual gold standard. Comparison of clinically relevant parameters computed using registered data and the manual gold standard show a good agreement. Additional tests with a simulated free-breathing protocol showed robustness against considerable deviations from a standard breathing protocol. We conclude that this fully automatic ICA-based method shows an accuracy, a robustness and a computation speed adequate for use in a clinical environment.

  2. Clinical evaluation of fat suppressed fast-SPGR sequence of the breast MR imaging

    Takahashi, Mitsuyuki; Hasegawa, Makoto; Matsubara, Tadashi [Yokohama Sakae Kyosai Hospital (Japan)

    1998-05-01

    MR-mammography by fat suppressed Fast-SPGR was evaluated for diagnosis and determination of invasion of tumor. Dynamic MRIs were performed in 12 phases, such as, before infusion of contrast media, right after and one to ten minutes after infusion with interval of one minute. In 15 patients (breast cancer, fibroadenoma, lymphocytic lobulitits and cystic intraductal papilloma), underwent MRI, the images were compared with pathological findings. Ten cases were confirmed as malignancy among 11 cases of breast cancer (sensitivity 91%). Eleven cases were confirmed as breast cancer among 12 cases diagnosed as breast cancer by MRI (specificity 92%). In 12 of all 15 cases, benignity or malignancy was checked correctly (accuracy 80%). Invasion of breast cancer was defined as the deep color dyeing area which was neighbored with the tumor in early stage of cystography. Eight of 11 cases were diagnosed precisely with fat suppression image, and nine were by subtraction image. Diagnosis was possible only by subtraction image in a case of scirrhous carcinoma accompanied with intradutal invasion. The area of invasion was not defined correctly in the case accompanied by mastopathy. It is difficult to evaluate benignity or malignancy of mammary gland tumor only by dynamic MRI, it is necessary to diagnose the shape and deep color image of tumor generally. (K.H.)

  3. Spatio-temporal Hotelling observer for signal detection from image sequences.

    Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J

    2009-06-22

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection.

  4. Three-dimensional gradient echo versus spin echo sequence in contrast-enhanced imaging of the pituitary gland at 3 T

    Kakite, Suguru, E-mail: sugkaki@med.tottori-u.ac.jp [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Fujii, Shinya [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kurosaki, Masamichi [Department of Neurosurgery, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kanasaki, Yoshiko; Matsusue, Eiji; Kaminou, Toshio; Ogawa, Toshihide [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan)

    2011-07-15

    Introduction: To clarify whether a three-dimensional-gradient echo (3D-GRE) or spin echo (SE) sequence is more useful for evaluating sellar lesions on contrast-enhanced T1-weighted MR imaging at 3.0 Tesla (T). Methods: We retrospectively assessed contrast-enhanced T1-weighted images using 3D-GRE and SE sequences at 3.0 T obtained from 33 consecutive patients with clinically suspected sellar lesions. Two experienced neuroradiologists evaluated the images qualitatively in terms of the following criteria: boundary edge of the cavernous sinus and pituitary gland, border of sellar lesions, delineation of the optic nerve and cranial nerves within the cavernous sinus, susceptibility and flow artifacts, and overall image quality. Results: At 3.0 T, 3D-GRE provided significantly better images than the SE sequence in terms of the border of sellar lesions, delineation of cranial nerves, and overall image quality; there was no significant difference regarding the boundary edge of the cavernous sinus and pituitary gland. In addition, the 3D-GRE sequence showed fewer pulsation artifacts but more susceptibility artifacts. Conclusion: Our results indicate that 3D-GRE is the more suitable sequence for evaluating sellar lesions on contrast-enhanced T1-weighted imaging at 3.0 T.

  5. A flexible new method for 3D measurement based on multi-view image sequences

    Cui, Haihua; Zhao, Zhimin; Cheng, Xiaosheng; Guo, Changye; Jia, Huayu

    2016-11-01

    Three-dimensional measurement is the base part for reverse engineering. The paper developed a new flexible and fast optical measurement method based on multi-view geometry theory. At first, feature points are detected and matched with improved SIFT algorithm. The Hellinger Kernel is used to estimate the histogram distance instead of traditional Euclidean distance, which is immunity to the weak texture image; then a new filter three-principle for filtering the calculation of essential matrix is designed, the essential matrix is calculated using the improved a Contrario Ransac filter method. One view point cloud is constructed accurately with two view images; after this, the overlapped features are used to eliminate the accumulated errors caused by added view images, which improved the camera's position precision. At last, the method is verified with the application of dental restoration CAD/CAM, experiment results show that the proposed method is fast, accurate and flexible for tooth 3D measurement.

  6. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  7. Diagnosing lung nodules on oncologic MR/PET imaging: Comparison of fast T1-weighted sequences and influence of image acquisition in inspiration and expiration breath-hold

    Schwenzer, Nina F.; Seith, Ferdinand; Gatidis, Sergios; Brendle, Cornelia; Schmidt, Holger; Pfannenberg, Christina A; LaFougère, Christian; Nikolaou, Konstantin; Schraml, Christina [University Hospital of Tuebingen, Tuebingen (Germany)

    2016-09-15

    First, to investigate the diagnostic performance of fast T1-weighted sequences for lung nodule evaluation in oncologic magnetic resonance (MR)/positron emission tomography (PET). Second, to evaluate the influence of image acquisition in inspiration and expiration breath-hold on diagnostic performance. The study was approved by the local Institutional Review Board. PET/CT and MR/PET of 44 cancer patients were evaluated by 2 readers. PET/CT included lung computed tomography (CT) scans in inspiration and expiration (CTin, CTex). MR/PET included Dixon sequence for attenuation correction and fast T1-weighted volumetric interpolated breath-hold examination (VIBE) sequences (volume interpolated breath-hold examination acquired in inspiration [VIBEin], volume interpolated breath-hold examination acquired in expiration [VIBEex]). Diagnostic performance was analyzed for lesion-, lobe-, and size-dependence. Diagnostic confidence was evaluated (4-point Likert-scale; 1 = high). Jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Seventy-six pulmonary lesions were evaluated. Lesion-based detection rates were: CTex, 77.6%; VIBEin, 53.3%; VIBEex, 51.3%; and Dixon, 22.4%. Lobe-based detection rates were: CTex, 89.6%; VIBEin, 58.3%; VIBEex, 60.4%; and Dixon, 31.3%. In contrast to CT, inspiration versus expiration did not alter diagnostic performance in VIBE sequences. Diagnostic confidence was best for VIBEin and CTex and decreased in VIBEex and Dixon (1.2 ± 0.6; 1.2 ± 0.7; 1.5 ± 0.9; 1.7 ± 1.1, respectively). The JAFROC figure-of-merit of Dixon was significantly lower. All patients with malignant lesions were identified by CTex, VIBEin, and VIBEex, while 3 patients were false-negative in Dixon. Fast T1-weighted VIBE sequences allow for identification of patients with malignant pulmonary lesions. The Dixon sequence is not recommended for lung nodule evaluation in oncologic MR/PET patients. In contrast to CT, inspiration versus

  8. Diagnosing Lung Nodules on Oncologic MR/PET Imaging: Comparison of Fast T1-Weighted Sequences and Influence of Image Acquisition in Inspiration and Expiration Breath-Hold

    Schwenzer, Nina F.; Seith, Ferdinand; Gatidis, Sergios [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Brendle, Cornelia [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Department of Diagnostic and Interventional Neuroradiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Schmidt, Holger; Pfannenberg, Christina A. [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Fougère, Christian la [Department of Nuclear Medicine, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Nikolaou, Konstantin; Schraml, Christina [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany)

    2016-11-01

    First, to investigate the diagnostic performance of fast T1-weighted sequences for lung nodule evaluation in oncologic magnetic resonance (MR)/positron emission tomography (PET). Second, to evaluate the influence of image acquisition in inspiration and expiration breath-hold on diagnostic performance. The study was approved by the local Institutional Review Board. PET/CT and MR/PET of 44 cancer patients were evaluated by 2 readers. PET/CT included lung computed tomography (CT) scans in inspiration and expiration (CTin, CTex). MR/PET included Dixon sequence for attenuation correction and fast T1-weighted volumetric interpolated breath-hold examination (VIBE) sequences (volume interpolated breath-hold examination acquired in inspiration [VIBEin], volume interpolated breath-hold examination acquired in expiration [VIBEex]). Diagnostic performance was analyzed for lesion-, lobe-, and size-dependence. Diagnostic confidence was evaluated (4-point Likert-scale; 1 = high). Jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Seventy-six pulmonary lesions were evaluated. Lesion-based detection rates were: CTex, 77.6%; VIBEin, 53.3%; VIBEex, 51.3%; and Dixon, 22.4%. Lobe-based detection rates were: CTex, 89.6%; VIBEin, 58.3%; VIBEex, 60.4%; and Dixon, 31.3%. In contrast to CT, inspiration versus expiration did not alter diagnostic performance in VIBE sequences. Diagnostic confidence was best for VIBEin and CTex and decreased in VIBEex and Dixon (1.2 ± 0.6; 1.2 ± 0.7; 1.5 ± 0.9; 1.7 ± 1.1, respectively). The JAFROC figure-of-merit of Dixon was significantly lower. All patients with malignant lesions were identified by CTex, VIBEin, and VIBEex, while 3 patients were false-negative in Dixon. Fast T1-weighted VIBE sequences allow for identification of patients with malignant pulmonary lesions. The Dixon sequence is not recommended for lung nodule evaluation in oncologic MR/PET patients. In contrast to CT, inspiration versus

  9. Whole-body magnetic resonance imaging for staging and follow-up of pediatric patients with Hodgkin's lymphoma: comparison of different sequences

    Nava, Daniel; Oliveira, Heverton Cesar de

    2011-01-01

    Objective: to compare the performance of the T1, T2, STIR and DWIBS (diffusion-weighted whole-body imaging with background body signal suppression) sequences in the staging and follow-up of pediatric patients with Hodgkin's lymphoma in lymph node chains, parenchymal organs and bone marrow, and to evaluate interobserver agreement. Materials and methods: the authors studied 12 patients with confirmed diagnosis of Hodgkin's lymphoma. The patients were referred for whole body magnetic resonance imaging with T1-weighted, T2-weighted, STIR and DWIBS sequences. Results: the number of lymph node sites characterized as affected by the disease on T1- and T2-weighted sequences showed similar results (8 sites for both sequences), but lower than DWIBS and STIR sequences (11 and 12 sites, respectively). The bone marrow involvement by lymphoma showed the same values for the T1-, T2-weighted and DWIBS sequences (17 lesions), higher than the value found on STIR (13 lesions). A high rate of interobserver agreement was observed as the four sequences were analyzed. Conclusion: STIR and DWIBS sequences detected the highest number of lymph node sites characterized as affected by the disease. Similar results were demonstrated by all the sequences in the evaluation of parenchymal organs and bone marrow. A high interobserver agreement was observed as the four sequences were analyzed. (author)

  10. Camera pose refinement by matching uncertain 3D building models with thermal infrared image sequences for high quality texture extraction

    Iwaszczuk, Dorota; Stilla, Uwe

    2017-10-01

    Thermal infrared (TIR) images are often used to picture damaged and weak spots in the insulation of the building hull, which is widely used in thermal inspections of buildings. Such inspection in large-scale areas can be carried out by combining TIR imagery and 3D building models. This combination can be achieved via texture mapping. Automation of texture mapping avoids time consuming imaging and manually analyzing each face independently. It also provides a spatial reference for façade structures extracted in the thermal textures. In order to capture all faces, including the roofs, façades, and façades in the inner courtyard, an oblique looking camera mounted on a flying platform is used. Direct geo-referencing is usually not sufficient for precise texture extraction. In addition, 3D building models have also uncertain geometry. In this paper, therefore, methodology for co-registration of uncertain 3D building models with airborne oblique view images is presented. For this purpose, a line-based model-to-image matching is developed, in which the uncertainties of the 3D building model, as well as of the image features are considered. Matched linear features are used for the refinement of the exterior orientation parameters of the camera in order to ensure optimal co-registration. Moreover, this study investigates whether line tracking through the image sequence supports the matching. The accuracy of the extraction and the quality of the textures are assessed. For this purpose, appropriate quality measures are developed. The tests showed good results on co-registration, particularly in cases where tracking between the neighboring frames had been applied.

  11. Sound Propagation from the Continental Slope to the Continental Shelf: Remote Sensing Component

    Kelly, Kathryn

    2000-01-01

    ... along the East Coast of North America. The AVHRR images were used to show the location and orientation of the shelf I/slope front and the altimeter was used to study the fluctuations of the geostrophic currents...

  12. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences

    Fluegge, Tabea; Eisenbeiss, Anne-Kathrin; Schmelzeisen, Rainer; Nelson, Katja [University Medical Center Freiburg, Department of Oral and Maxillofacial Surgery, Freiburg (Germany); Hoevener, Jan-Bernd; Ludwig, Ute; Hennig, Juergen [University Medical Center Freiburg, Medical Physics, Department of Radiology, Freiburg (Germany); Spittau, Bjoern [Albert Ludwig University of Freiburg, Institute of Anatomy and Cell Biology, Freiburg (Germany)

    2016-12-15

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 x 250 x 500 μm{sup 3}, FOV of 64 x 64 x 28 mm{sup 3} and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm{sup 3} and FOV of 34 cm{sup 3} in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm{sup 3} and FOV of 36.5 cm{sup 3}. Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (c{sub v}). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. (orig.)

  13. Measurement of traffic parameters in image sequence using spatio-temporal information

    Lee, Daeho; Park, Youngtae

    2008-01-01

    This paper proposes a novel method for measurement of traffic parameters, such as the number of passed vehicles, velocity and occupancy rate, by video image analysis. The method is based on a region classification followed by spatio-temporal image analysis. Local detection region images in traffic lanes are classified into one of four categories: the road, the vehicle, the reflection and the shadow, by using statistical and structural features. Misclassification at a frame is corrected by using temporally correlated features of vehicles in the spatio-temporal image. This capability of error correction results in the accurate estimation of traffic parameters even in high traffic congestion. Also headlight detection is employed for nighttime operation. Experimental results show that the accuracy is more than 94% in our test database of diverse operating conditions such as daytime, shadowy daytime, highway, urban way, rural way, rainy day, snowy day, dusk and nighttime. The average processing time is 30 ms per frame when four traffic lanes are processed, and real-time operation could be realized while ensuring robust detection performance even for high-speed vehicles up to 150 km h −1

  14. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences

    Fluegge, Tabea; Eisenbeiss, Anne-Kathrin; Schmelzeisen, Rainer; Nelson, Katja; Hoevener, Jan-Bernd; Ludwig, Ute; Hennig, Juergen; Spittau, Bjoern

    2016-01-01

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 x 250 x 500 μm 3 , FOV of 64 x 64 x 28 mm 3 and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm 3 and FOV of 34 cm 3 in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm 3 and FOV of 36.5 cm 3 . Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (c v ). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. (orig.)

  15. Semiautomatic segmentation of aortic valve from sequenced ultrasound image using a novel shape-constraint GCV model

    Guo, Yiting; Dong, Bin; Wang, Bing; Xie, Hongzhi; Zhang, Shuyang; Gu, Lixu

    2014-01-01

    Purpose: Effective and accurate segmentation of the aortic valve (AV) from sequenced ultrasound (US) images remains a technical challenge because of intrinsic factors of ultrasound images that impact the quality and the continuous changes of shape and position of segmented objects. In this paper, a novel shape-constraint gradient Chan-Vese (GCV) model is proposed for segmenting the AV from time serial echocardiography. Methods: The GCV model is derived by incorporating the energy of the gradient vector flow into a CV model framework, where the gradient vector energy term is introduced by calculating the deviation angle between the inward normal force of the evolution contour and the gradient vector force. The flow force enlarges the capture range and enhances the blurred boundaries of objects. This is achieved by adding a circle-like contour (constructed using the AV structure region as a constraint shape) as an energy item to the GCV model through the shape comparison function. This shape-constrained energy can enhance the image constraint force by effectively connecting separate gaps of the object edge as well as driving the evolution contour to quickly approach the ideal object. Because of the slight movement of the AV in adjacent frames, the initial constraint shape is defined by users, with the other constraint shapes being derived from the segmentation results of adjacent sequence frames after morphological filtering. The AV is segmented from the US images by minimizing the proposed energy function. Results: To evaluate the performance of the proposed method, five assessment parameters were used to compare it with manual delineations performed by radiologists (gold standards). Three hundred and fifteen images acquired from nine groups were analyzed in the experiment. The area-metric overlap error rate was 6.89% ± 2.88%, the relative area difference rate 3.94% ± 2.63%, the average symmetric contour distance 1.08 ± 0.43 mm, the root mean square symmetric

  16. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence

    Kirchgesner, Thomas; Perlepe, Vasiliki; Michoux, Nicolas; Larbi, Ahmed; Vande Berg, Bruno

    2017-01-01

    Highlights: • Dixon yields effective fat suppression at 2D MRI of the hands. • CHESS fat suppression is less effective especially in the coronal plane. • SNR is higher with Dixon than with CHESS at T1-weighted MR imaging. • SNR is higher with CHESS than with Dixon and STIR at T2-weighted MR imaging. - Abstract: Objective: To compare the effectiveness of fat suppression and the signal-to-noise ratio (SNR) of the Dixon method with those of the CHESS (Chemical Shift-Selective) technique and STIR (Short Tau Inversion Recovery) sequence in hands of normal subjects at 2D MR imaging. Material and methods: 14 healthy volunteers (mean age of 29.4 years) consented to have both hands prospectively imaged with SE T1 Dixon, T1 CHESS, T2 Dixon, T2 CHESS and STIR sequences in a 1.5T MR scanner. Three radiologists scored the effectiveness of fat suppression in bone marrow (EFS BM ) and soft tissues (EFS ST ) in 20 joints per subject. One radiologist measured the SNR in 10 bones per subject. Statistical analysis used two-way ANOVA with random effects, paired t-test and observed agreement to assess differences in effectiveness of fat suppression, differences in SNR and inter-observer agreement. Results: EFS BM was statistically significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for T2 CHESS (p < 0.0001). EFS BM was significantly higher for T2 Dixon than for STIR in the coronal plane (p = 0.0020). The SNR was significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for STIR (p < 0.0001). The SNR was significantly lower for T2 Dixon than for T2 CHESS (p < 0.0001). Conclusion: The Dixon method yields more effective fat suppression and higher SNR than the CHESS technique at 2D T1-weighted MR imaging of the hands. At T2-weighted MR imaging, fat suppression is more effective with the Dixon method while SNR is higher with the CHESS technique.

  17. Semiautomatic segmentation of aortic valve from sequenced ultrasound image using a novel shape-constraint GCV model

    Guo, Yiting [Multi-disciplinary Research Center, Hebei University, Baoding 071000 (China); Dong, Bin [Hebei University Affiliated Hospital, Hebei Baoding 071000 (China); Wang, Bing [College of Mathematics and Computer Science, Hebei University, Baoding 071000 (China); Xie, Hongzhi, E-mail: xiehongzhi@medmail.com.cn, E-mail: gulixu@sjtu.edu.cn; Zhang, Shuyang [Department of Cardiovascular, Peking Union Medical College Hospital, Beijing 100005 (China); Gu, Lixu, E-mail: xiehongzhi@medmail.com.cn, E-mail: gulixu@sjtu.edu.cn [Multi-disciplinary Research Center, Hebei University, Baoding 071000, China and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2014-07-15

    Purpose: Effective and accurate segmentation of the aortic valve (AV) from sequenced ultrasound (US) images remains a technical challenge because of intrinsic factors of ultrasound images that impact the quality and the continuous changes of shape and position of segmented objects. In this paper, a novel shape-constraint gradient Chan-Vese (GCV) model is proposed for segmenting the AV from time serial echocardiography. Methods: The GCV model is derived by incorporating the energy of the gradient vector flow into a CV model framework, where the gradient vector energy term is introduced by calculating the deviation angle between the inward normal force of the evolution contour and the gradient vector force. The flow force enlarges the capture range and enhances the blurred boundaries of objects. This is achieved by adding a circle-like contour (constructed using the AV structure region as a constraint shape) as an energy item to the GCV model through the shape comparison function. This shape-constrained energy can enhance the image constraint force by effectively connecting separate gaps of the object edge as well as driving the evolution contour to quickly approach the ideal object. Because of the slight movement of the AV in adjacent frames, the initial constraint shape is defined by users, with the other constraint shapes being derived from the segmentation results of adjacent sequence frames after morphological filtering. The AV is segmented from the US images by minimizing the proposed energy function. Results: To evaluate the performance of the proposed method, five assessment parameters were used to compare it with manual delineations performed by radiologists (gold standards). Three hundred and fifteen images acquired from nine groups were analyzed in the experiment. The area-metric overlap error rate was 6.89% ± 2.88%, the relative area difference rate 3.94% ± 2.63%, the average symmetric contour distance 1.08 ± 0.43 mm, the root mean square symmetric

  18. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence

    Kirchgesner, Thomas, E-mail: Thomas.Kirchgesner@uclouvain.be; Perlepe, Vasiliki, E-mail: Vasiliki.Perlepe@uclouvain.be; Michoux, Nicolas, E-mail: Nicolas.Michoux@uclouvain.be; Larbi, Ahmed, E-mail: Ahmed.Larbi@chu-nimes.fr; Vande Berg, Bruno, E-mail: Bruno.VandeBerg@uclouvain.be

    2017-04-15

    Highlights: • Dixon yields effective fat suppression at 2D MRI of the hands. • CHESS fat suppression is less effective especially in the coronal plane. • SNR is higher with Dixon than with CHESS at T1-weighted MR imaging. • SNR is higher with CHESS than with Dixon and STIR at T2-weighted MR imaging. - Abstract: Objective: To compare the effectiveness of fat suppression and the signal-to-noise ratio (SNR) of the Dixon method with those of the CHESS (Chemical Shift-Selective) technique and STIR (Short Tau Inversion Recovery) sequence in hands of normal subjects at 2D MR imaging. Material and methods: 14 healthy volunteers (mean age of 29.4 years) consented to have both hands prospectively imaged with SE T1 Dixon, T1 CHESS, T2 Dixon, T2 CHESS and STIR sequences in a 1.5T MR scanner. Three radiologists scored the effectiveness of fat suppression in bone marrow (EFS{sup BM}) and soft tissues (EFS{sup ST}) in 20 joints per subject. One radiologist measured the SNR in 10 bones per subject. Statistical analysis used two-way ANOVA with random effects, paired t-test and observed agreement to assess differences in effectiveness of fat suppression, differences in SNR and inter-observer agreement. Results: EFS{sup BM} was statistically significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for T2 CHESS (p < 0.0001). EFS{sup BM} was significantly higher for T2 Dixon than for STIR in the coronal plane (p = 0.0020). The SNR was significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for STIR (p < 0.0001). The SNR was significantly lower for T2 Dixon than for T2 CHESS (p < 0.0001). Conclusion: The Dixon method yields more effective fat suppression and higher SNR than the CHESS technique at 2D T1-weighted MR imaging of the hands. At T2-weighted MR imaging, fat suppression is more effective with the Dixon method while SNR is higher with the CHESS technique.

  19. Transgressive systems tract development and incised-valley fills within a quaternary estuary-shelf system: Virginia inner shelf, USA

    Foyle, A.M.; Oertel, G.F.

    1997-01-01

    High-frequency Quaternary glacioeustasy resulted in the incision of six moderate- to high-relief fluvial erosion surfaces beneath the Virginia inner shelf and coastal zone along the updip edges of the Atlantic continental margin. Fluvial valleys up to 5 km wide, with up to 37 m of relief and thalweg depths of up to 72 m below modern mean sea level, cut through underlying Pleistocene and Mio-Pliocene strata in response to drops in baselevel on the order of 100 m. Fluvially incised valleys were significantly modified during subsequent marine transgressions as fluvial drainage basins evolved into estuarine embayments (ancestral generations of the Chesapeake Bay). Complex incised-valley fill successions are bounded by, or contain, up to four stacked erosional surfaces (basal fluvial erosion surface, bay ravinement, tidal ravinement, and ebb-flood channel-base diastem) in vertical succession. These surfaces, combined with the transgressive oceanic ravinement that generally caps incised-valley fills, control the lateral and vertical development of intervening seismic facies (depositional systems). Transgressive stratigraphy characterizes the Quaternary section beneath the Virginia inner shelf where six depositional sequences (Sequences I-VI) are identified. Depositional sequences consist primarily of estuarine depositional systems (subjacent to the transgressive oceanic ravinement) and shoreface-shelf depositional systems; highstand systems tract coastal systems are thinly developed. The Quaternary section can be broadly subdivided into two parts. The upper part contains sequences consisting predominantly of inner shelf facies, whereas sequences in the lower part of the section consist predominantly of estuarine facies. Three styles of sequence preservation are identified. Style 1, represented by Sequences VI and V, is characterized by large estuarine systems (ancestral generations of the Chesapeake Bay) that are up to 40 m thick, have hemicylindrical wedge geometries

  20. Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.

    Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2010-11-01

    Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.

  1. Fat-Suppressed T2 Sequences for Routine 3.0-Tesla Lumbar Spine Magnetic Resonance Imaging: A Preliminary Report

    McKinney, A. M.; Gadani, S.; Palmer, C. S.; Vidarsson, L. (Dept. of Radiology, Hennepin County and Univ. of Minnesota Medical Centers, Minneapolis, MN (United States))

    2008-09-15

    Background: Clear depiction of the ligamentum flavum on routine lumbar magnetic resonance imaging (MRI) is essential in accurately describing the extent of degenerative disease. In routine, noncontrast evaluations, focal fatty deposition or hemangiomas can be difficult to distinguish from malignant foci on fast spin-echo (FSE) T2-weighted images. Purpose: To describe the use of T2 fast field echo (T2FFE) in combination with spectral presaturation inversion recovery (SPIR) fat suppression for noncontrast, routine lumbar spine outpatient MR imaging at 3.0 Tesla (3T). Material and Methods: An axial gradient echo (GE) T2FFE sequence was combined with SPIR fat suppression (T2FFE-SPIR), via a 3T Philips Intera (Philips Medical Systems, Best, The Netherlands) scanner, and added to the routine, noncontrast lumbar MRI examinations, which included sagittal FSE T1-weighted (T1WI), T2-weighted (T2WI), short-tau inversion recovery (STIR), and axial FSE T2WI. The sequence was performed in over 500 patients over a 1-year period, without intravenous contrast, and with slice thickness and planes of section identical to the axial FSE T1WI and T2WI images. The sequence typically lasted about 4.5-6 min. Results: The use of T2FFE-SPIR enabled visualization of the ligamentum flavum in degenerative disease, and the exclusion of focal fatty lesions on FSE T2WI. Other benefits included: the identification of malignant foci, the uncommon detection of hemorrhage, and the elimination of spurious flow voids. Several brief examples are provided to demonstrate the utility of this technique. Conclusion: The addition of T2FFE-SPIR to routine, noncontrast protocols in outpatients could provide further confidence in the visualization of the ligamentum flavum in degenerative disease, and can exclude malignancy in T2-bright areas of focal fatty marrow. Larger studies would be helpful to evaluate the accuracy of this technique versus FSE techniques in depicting degenerative, malignant, or inflammatory

  2. Fat-Suppressed T2* Sequences for Routine 3.0-Tesla Lumbar Spine Magnetic Resonance Imaging: A Preliminary Report

    McKinney, A. M.; Gadani, S.; Palmer, C. S.; Vidarsson, L.

    2008-01-01

    Background: Clear depiction of the ligamentum flavum on routine lumbar magnetic resonance imaging (MRI) is essential in accurately describing the extent of degenerative disease. In routine, noncontrast evaluations, focal fatty deposition or hemangiomas can be difficult to distinguish from malignant foci on fast spin-echo (FSE) T2-weighted images. Purpose: To describe the use of T2* fast field echo (T2FFE) in combination with spectral presaturation inversion recovery (SPIR) fat suppression for noncontrast, routine lumbar spine outpatient MR imaging at 3.0 Tesla (3T). Material and Methods: An axial gradient echo (GE) T2FFE sequence was combined with SPIR fat suppression (T2FFE-SPIR), via a 3T Philips Intera (Philips Medical Systems, Best, The Netherlands) scanner, and added to the routine, noncontrast lumbar MRI examinations, which included sagittal FSE T1-weighted (T1WI), T2-weighted (T2WI), short-tau inversion recovery (STIR), and axial FSE T2WI. The sequence was performed in over 500 patients over a 1-year period, without intravenous contrast, and with slice thickness and planes of section identical to the axial FSE T1WI and T2WI images. The sequence typically lasted about 4.5-6 min. Results: The use of T2FFE-SPIR enabled visualization of the ligamentum flavum in degenerative disease, and the exclusion of focal fatty lesions on FSE T2WI. Other benefits included: the identification of malignant foci, the uncommon detection of hemorrhage, and the elimination of spurious flow voids. Several brief examples are provided to demonstrate the utility of this technique. Conclusion: The addition of T2FFE-SPIR to routine, noncontrast protocols in outpatients could provide further confidence in the visualization of the ligamentum flavum in degenerative disease, and can exclude malignancy in T2-bright areas of focal fatty marrow. Larger studies would be helpful to evaluate the accuracy of this technique versus FSE techniques in depicting degenerative, malignant, or inflammatory

  3. Prognostic value of gradient echo T2* sequences for brain MR imaging in preterm infants

    Bruine, Francisca T. de; Berg-Huysmans, Annette A. van den; Buchem, Mark A. van; Grond, Jeroen van der; Steggerda, Sylke J.; Leijser, Lara M.; Rijken, Monique; Wezel-Meijler, Gerda van

    2014-01-01

    Gradient echo T2*-W sequences are more sensitive than T2-W spin-echo sequences for detecting hemorrhages in the brain. The aim of this study is to correlate presence of hemosiderin deposits in the brain of very preterm infants (gestational age 6 non-hemorrhagic punctate white matter lesions (PWML), cysts and/or ventricular dilatation. Six infants with post-hemorrhagic ventricular dilatation detected by US in the neonatal period were excluded. Infants were seen for follow-up at 2 years. Univariate and regression analysis assessed the relation between presence and location of hemosiderin, white matter injury and neurodevelopmental outcome. In 38/95 (40%) of the infants, hemosiderin was detected. Twenty percent (19/95) of the infants were lost to follow-up. There was a correlation between hemosiderin in the ventricular wall with >6 PWML (P < 0.001) and cysts (P < 0.001) at term-equivalent age, and with a lower psychomotor development index (PDI) (P=0.02) at 2 years. After correcting for known confounders (gestational age, gender, intrauterine growth retardation and white matter injury), the correlation with PDI was no longer significant. The clinical importance of detecting small hemosiderin deposits is limited as there is no independent association with neurodevelopmental outcome. (orig.)

  4. Micro-motion Recognition of Spatial Cone Target Based on ISAR Image Sequences

    Changyong Shu

    2016-04-01

    Full Text Available The accurate micro-motions recognition of spatial cone target is the foundation of the characteristic parameter acquisition. For this reason, a micro-motion recognition method based on the distinguishing characteristics extracted from the Inverse Synthetic Aperture Radar (ISAR sequences is proposed in this paper. The projection trajectory formula of cone node strong scattering source and cone bottom slip-type strong scattering sources, which are located on the spatial cone target, are deduced under three micro-motion types including nutation, precession, and spinning, and the correctness is verified by the electromagnetic simulation. By comparison, differences are found among the projection of the scattering sources with different micro-motions, the coordinate information of the scattering sources in the Inverse Synthetic Aperture Radar sequences is extracted by the CLEAN algorithm, and the spinning is recognized by setting the threshold value of Doppler. The double observation points Interacting Multiple Model Kalman Filter is used to separate the scattering sources projection of the nutation target or precession target, and the cross point number of each scattering source’s projection track is used to classify the nutation or precession. Finally, the electromagnetic simulation data are used to verify the effectiveness of the micro-motion recognition method.

  5. Non-parametric Bayesian models of response function in dynamic image sequences

    Tichý, Ondřej; Šmídl, Václav

    2016-01-01

    Roč. 151, č. 1 (2016), s. 90-100 ISSN 1077-3142 R&D Projects: GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : Response function * Blind source separation * Dynamic medical imaging * Probabilistic models * Bayesian methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.498, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/tichy-0456983.pdf

  6. Bayesian Blind Separation and Deconvolution of Dynamic Image Sequences Using Sparsity Priors

    Tichý, Ondřej; Šmídl, Václav

    2015-01-01

    Roč. 34, č. 1 (2015), s. 258-266 ISSN 0278-0062 R&D Projects: GA ČR GA13-29225S Keywords : Functional imaging * Blind source separation * Computer-aided detection and diagnosis * Probabilistic and statistical methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.756, year: 2015 http://library.utia.cas.cz/separaty/2014/AS/tichy-0431090.pdf

  7. Water masses of Visakhapatnam shelf

    RamaRaju, V.S.; Sarma, V.V.; Rao, B.P.; Rao, V.S.

    The T-S relationships of shelf waters off Visakhapatnam in the Bay of Bengal are studied for the different seasons with the data collected during February 1979 to January 1981. The T-S relationships indicate distinct characteristics of the water...

  8. MR diffusion weighted imaging of gastric cancer: b-value determination and comparison with routine sequences

    Zhao Xiaopeng; Tang Lei; Sun Yingshi; Li Jie; Cao Kun

    2007-01-01

    Objective: To choose the optimal b-values for the DWI of gastric cancer (GC), and investigate the value of DWI in the diagnosis of GCs. Methods: MRI examinations (T 1 WI, T 2 WI, and DWI) were performed on 31 patients with gastric cancer. Three diffusion-weighted sequences were designed with different b values, including 300 s/mm 2 (low), 600 s/mm 2 (intermediate), and 1000 s/mm 2 (high). Free water grade was used to evaluate the suppression of content in gastric lumen. Background contrast grade was used to evaluate the discriminating ability of different sequences between GC and nearby tissues. The ADCs of GCs, nearby gastric wall region, and free water in gastric lumen were measured. SNR Ca , CNR Ca-GW and SIR CaGW of high b-value DWI and routine MRI sequences were evaluated and compared. Results: The signal intensity of free water in gastric lumen decreased as b-value increased, and the SIR were 8.11± 0.77 (b=300 s/mm 2 ), 2.70±0.35 (b=600 s/mm 2 ), and 1.13±0.22 (b=1000 s/mm 2 ) (F55.368, P 2 =16.692, P 2 =9.923, P -3 mm 2 /s, (1.43±0.41) x 10 -3 mm 2 /s, and (1.18±0.25) x 10 -3 mm 2 /s; (F=12.066, P 1 WI (CNR: 12.46 vs. 2.35, Z=-3.746, P 2 WI (CNR: 12.46 vs. 3.92, Z=-3.518, P 2 ) is reasonable for DWI of GCs, which can reflect diffusion condition of water molecules more accurately, suppress signal of content in gastric lumen, and possess higher contrast. DWI can be a supplementary method of routine MRI examination for better demonstration of gastric cancers. (authors)

  9. MCTP system model based on linear programming optimization of apertures obtained from sequencing patient image data maps

    Ureba, A. [Dpto. Fisiología Médica y Biofísica. Facultad de Medicina, Universidad de Sevilla, E-41009 Sevilla (Spain); Salguero, F. J. [Nederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis, 1066 CX Ámsterdam, The Nederlands (Netherlands); Barbeiro, A. R.; Jimenez-Ortega, E.; Baeza, J. A.; Leal, A., E-mail: alplaza@us.es [Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, E-41009 Sevilla (Spain); Miras, H. [Servicio de Radiofísica, Hospital Universitario Virgen Macarena, E-41009 Sevilla (Spain); Linares, R.; Perucha, M. [Servicio de Radiofísica, Hospital Infanta Luisa, E-41010 Sevilla (Spain)

    2014-08-15

    Purpose: The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. Methods: The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called “biophysical” map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Results: Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast

  10. MCTP system model based on linear programming optimization of apertures obtained from sequencing patient image data maps

    Ureba, A.; Salguero, F. J.; Barbeiro, A. R.; Jimenez-Ortega, E.; Baeza, J. A.; Leal, A.; Miras, H.; Linares, R.; Perucha, M.

    2014-01-01

    Purpose: The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. Methods: The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called “biophysical” map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Results: Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast

  11. MCTP system model based on linear programming optimization of apertures obtained from sequencing patient image data maps.

    Ureba, A; Salguero, F J; Barbeiro, A R; Jimenez-Ortega, E; Baeza, J A; Miras, H; Linares, R; Perucha, M; Leal, A

    2014-08-01

    The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called "biophysical" map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast irradiation case (Case II) solved

  12. Optimization of parameter values for complex pulse sequences by simulated annealing: application to 3D MP-RAGE imaging of the brain.

    Epstein, F H; Mugler, J P; Brookeman, J R

    1994-02-01

    A number of pulse sequence techniques, including magnetization-prepared gradient echo (MP-GRE), segmented GRE, and hybrid RARE, employ a relatively large number of variable pulse sequence parameters and acquire the image data during a transient signal evolution. These sequences have recently been proposed and/or used for clinical applications in the brain, spine, liver, and coronary arteries. Thus, the need for a method of deriving optimal pulse sequence parameter values for this class of sequences now exists. Due to the complexity of these sequences, conventional optimization approaches, such as applying differential calculus to signal difference equations, are inadequate. We have developed a general framework for adapting the simulated annealing algorithm to pulse sequence parameter value optimization, and applied this framework to the specific case of optimizing the white matter-gray matter signal difference for a T1-weighted variable flip angle 3D MP-RAGE sequence. Using our algorithm, the values of 35 sequence parameters, including the magnetization-preparation RF pulse flip angle and delay time, 32 flip angles in the variable flip angle gradient-echo acquisition sequence, and the magnetization recovery time, were derived. Optimized 3D MP-RAGE achieved up to a 130% increase in white matter-gray matter signal difference compared with optimized 3D RF-spoiled FLASH with the same total acquisition time. The simulated annealing approach was effective at deriving optimal parameter values for a specific 3D MP-RAGE imaging objective, and may be useful for other imaging objectives and sequences in this general class.

  13. Coordination: southeast continental shelf studies. Progress report

    Menzel, D.W.

    1981-02-01

    The objectives are to identify important physical, chemical and biological processes which affect the transfer of materials on the southeast continental shelf, determine important parameters which govern observed temporal and spatial varibility on the continental shelf, determine the extent and modes of coupling between events at the shelf break and nearshore, and determine physical, chemical and biological exchange rates on the inner shelf. Progress in meeting these research objectives is presented. (ACR)

  14. Real-time 3D reconstruction of road curvature in far look-ahead distance from analysis of image sequences

    Behringer, Reinhold

    1995-12-01

    A system for visual road recognition in far look-ahead distance, implemented in the autonomous road vehicle VaMP (a passenger car), is described. Visual cues of a road in a video image are the bright lane markings and the edges formed at the road borders. In a distance of more than 100 m, the most relevant road cue is the homogeneous road area, limited by the two border edges. These cues can be detected by the image processing module KRONOS applying edge detection techniques and areal 2D segmentation based on resolution triangles (analogous to a resolution pyramid). An estimation process performs an update of a state vector, which describes spatial road shape and vehicle orientation relative to the road. This state vector is estimated every 40 ms by exploiting knowledge about the vehicle movement (spatio-temporal model of vehicle dynamics) and the road design rules (clothoidal segments). Kalman filter techniques are applied to obtain an optimal estimate of the state vector by evaluating the measurements of the road border positions in the image sequence taken by a set of CCD cameras. The road consists of segments with piecewise constant curvature parameters. The borders between these segments can be detected by applying methods which have been developed for detection of discontinuities during time-discrete measurements. The road recognition system has been tested in autonomous rides with VaMP on public Autobahnen in real traffic at speeds up to 130 km/h.

  15. Prognostic value of gradient echo T2* sequences for brain MR imaging in preterm infants

    Bruine, Francisca T. de; Berg-Huysmans, Annette A. van den; Buchem, Mark A. van; Grond, Jeroen van der [Leiden University Medical Center, Department of Radiology, PO Box 9600, Leiden (Netherlands); Steggerda, Sylke J.; Leijser, Lara M.; Rijken, Monique [Leiden University Medical Center, Department of Pediatrics, subdivision of Neonatology, Leiden (Netherlands); Wezel-Meijler, Gerda van [Leiden University Medical Center, Department of Pediatrics, subdivision of Neonatology, Leiden (Netherlands); Isala Hospital, Department of Neonatology, Zwolle (Netherlands)

    2014-03-15

    Gradient echo T2*-W sequences are more sensitive than T2-W spin-echo sequences for detecting hemorrhages in the brain. The aim of this study is to correlate presence of hemosiderin deposits in the brain of very preterm infants (gestational age <32 weeks) detected by T2*-W gradient echo MRI to white matter injury and neurodevelopmental outcome at 2 years. In 101 preterm infants, presence and location of hemosiderin were assessed on T2*-W gradient echo MRI performed around term-equivalent age (range: 40-60 weeks). White matter injury was defined as the presence of >6 non-hemorrhagic punctate white matter lesions (PWML), cysts and/or ventricular dilatation. Six infants with post-hemorrhagic ventricular dilatation detected by US in the neonatal period were excluded. Infants were seen for follow-up at 2 years. Univariate and regression analysis assessed the relation between presence and location of hemosiderin, white matter injury and neurodevelopmental outcome. In 38/95 (40%) of the infants, hemosiderin was detected. Twenty percent (19/95) of the infants were lost to follow-up. There was a correlation between hemosiderin in the ventricular wall with >6 PWML (P < 0.001) and cysts (P < 0.001) at term-equivalent age, and with a lower psychomotor development index (PDI) (P=0.02) at 2 years. After correcting for known confounders (gestational age, gender, intrauterine growth retardation and white matter injury), the correlation with PDI was no longer significant. The clinical importance of detecting small hemosiderin deposits is limited as there is no independent association with neurodevelopmental outcome. (orig.)

  16. The 2012 Emilia seismic sequence (Northern Italy): Imaging the thrust fault system by accurate aftershock location

    Govoni, Aladino; Marchetti, Alessandro; De Gori, Pasquale; Di Bona, Massimo; Lucente, Francesco Pio; Improta, Luigi; Chiarabba, Claudio; Nardi, Anna; Margheriti, Lucia; Agostinetti, Nicola Piana; Di Giovambattista, Rita; Latorre, Diana; Anselmi, Mario; Ciaccio, Maria Grazia; Moretti, Milena; Castellano, Corrado; Piccinini, Davide

    2014-05-01

    Starting from late May 2012, the Emilia region (Northern Italy) was severely shaken by an intense seismic sequence, originated from a ML 5.9 earthquake on May 20th, at a hypocentral depth of 6.3 km, with thrust-type focal mechanism. In the following days, the seismic rate remained high, counting 50 ML ≥ 2.0 earthquakes a day, on average. Seismicity spreads along a 30 km east-west elongated area, in the Po river alluvial plain, in the nearby of the cities Ferrara and Modena. Nine days after the first shock, another destructive thrust-type earthquake (ML 5.8) hit the area to the west, causing further damage and fatalities. Aftershocks following this second destructive event extended along the same east-westerly trend for further 20 km to the west, thus illuminating an area of about 50 km in length, on the whole. After the first shock struck, on May 20th, a dense network of temporary seismic stations, in addition to the permanent ones, was deployed in the meizoseismal area, leading to a sensible improvement of the earthquake monitoring capability there. A combined dataset, including three-component seismic waveforms recorded by both permanent and temporary stations, has been analyzed in order to obtain an appropriate 1-D velocity model for earthquake location in the study area. Here we describe the main seismological characteristics of this seismic sequence and, relying on refined earthquakes location, we make inferences on the geometry of the thrust system responsible for the two strongest shocks.

  17. An image encryption scheme based on the MLNCML system using DNA sequences

    Zhang, Ying-Qian; Wang, Xing-Yuan; Liu, Jia; Chi, Ze-Lin

    2016-07-01

    We propose a new image scheme based on the spatiotemporal chaos of the Mixed Linear-Nonlinear Coupled Map Lattices (MLNCML). This spatiotemporal chaotic system has more cryptographic features in dynamics than the system of Coupled Map Lattices (CML). In the proposed scheme, we employ the strategy of DNA computing and one time pad encryption policy, which can enhance the sensitivity to the plaintext and resist differential attack, brute-force attack, statistical attack and plaintext attack. Simulation results and theoretical analysis indicate that the proposed scheme has superior high security.

  18. MR imaging of the knee: Improvement of signal and contrast efficiency of T1-weighted turbo spin echo sequences by applying a driven equilibrium (DRIVE) pulse

    Radlbauer, Rudolf, E-mail: rudolf.radlbauer@stpoelten.lknoe.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Lomoschitz, Friedrich, E-mail: friedrich.lomoschitz@stpoelten.lknoe.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Salomonowitz, Erich, E-mail: erich.salomonowitz@stpoelten.lknoe.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Eberhardt, Knut E., E-mail: info@mrt-kompetenzzentrum.d [MRT Competence Center Schloss Werneck, Balthasar-Neumann-Platz 2, 97440 Werneck (Germany); Stadlbauer, Andreas, E-mail: andi@nmr.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany)

    2010-08-15

    The purpose of this study was to assess the effect of a driven equilibrium (DRIVE) pulse incorporated in a standard T1-weighted turbo spin echo (TSE) sequence as used in our routine MRI protocol for examination of pathologies of the knee. Sixteen consecutive patients with knee disorders were examined using the routine MRI protocol, including T1-weighted TSE-sequences with and without a DRIVE pulse. Signal-to-noise ratios (SNRs) and contrast-to-noise ratio (CNR) of anatomical structures and pathologies were calculated and compared for both sequences. The differences in diagnostic value of the T1-weighted images with and without DRIVE pulse were assessed. SNR was significantly higher on images acquired with DRIVE pulse for fluid, effusion, cartilage and bone. Differences in the SNR of meniscus and muscle between the two sequences were not statistically significant. CNR was significantly increased between muscle and effusion, fluid and cartilage, fluid and meniscus, cartilage and meniscus, bone and cartilage on images acquired using the DRIVE pulse. Diagnostic value of the T1-weighted images was found to be improved for delineation of anatomic structures and for diagnosing a variety of pathologies when a DRIVE pulse is incorporated in the sequence. Incorporation of a DRIVE pulse into a standard T1-weighted TSE-sequence leads to significant increase of SNR and CNR of both, anatomical structures and pathologies, and consequently to an increase in diagnostic value within the same acquisition time.

  19. MR imaging of the knee: Improvement of signal and contrast efficiency of T1-weighted turbo spin echo sequences by applying a driven equilibrium (DRIVE) pulse

    Radlbauer, Rudolf; Lomoschitz, Friedrich; Salomonowitz, Erich; Eberhardt, Knut E.; Stadlbauer, Andreas

    2010-01-01

    The purpose of this study was to assess the effect of a driven equilibrium (DRIVE) pulse incorporated in a standard T1-weighted turbo spin echo (TSE) sequence as used in our routine MRI protocol for examination of pathologies of the knee. Sixteen consecutive patients with knee disorders were examined using the routine MRI protocol, including T1-weighted TSE-sequences with and without a DRIVE pulse. Signal-to-noise ratios (SNRs) and contrast-to-noise ratio (CNR) of anatomical structures and pathologies were calculated and compared for both sequences. The differences in diagnostic value of the T1-weighted images with and without DRIVE pulse were assessed. SNR was significantly higher on images acquired with DRIVE pulse for fluid, effusion, cartilage and bone. Differences in the SNR of meniscus and muscle between the two sequences were not statistically significant. CNR was significantly increased between muscle and effusion, fluid and cartilage, fluid and meniscus, cartilage and meniscus, bone and cartilage on images acquired using the DRIVE pulse. Diagnostic value of the T1-weighted images was found to be improved for delineation of anatomic structures and for diagnosing a variety of pathologies when a DRIVE pulse is incorporated in the sequence. Incorporation of a DRIVE pulse into a standard T1-weighted TSE-sequence leads to significant increase of SNR and CNR of both, anatomical structures and pathologies, and consequently to an increase in diagnostic value within the same acquisition time.

  20. Gadobenate dimeglumine-enhanced MR of VX2 carcinoma in rabbit liver: usefulness of the delayed phase imaging and optimal pulse sequence

    Cho, Seung Il; Lee, Jeong Min; Kim, Young Kon; Kim, Chong Soo

    2002-01-01

    To assess the diagnostic value of delayed imaging using gadobenate dimeglumine (MultiHance) and to determine the optimal pulse sequence for the detection of VX2 carcinoma lesions in the rabbit. Twelve VX2 carcinomas implanted in the livers of eleven New Zealand rabbits were studied. All patients underwent an MR protocal consisting of precontrast T2-and T1-weighted sequences, followed by repetition of the T1-weighted sequence at 0 to 30 (arterial phase). 31-60 (portal phase), and 40 minutes (delayed phase) after the intravenous administration of 0.1 mmol/kg of gadobenate dimeglumine. The signal-to-noise ratio (SNR) of the liver and VX2 tumor, and the lesion-to-liver contrast-to-noise ratio (CNR) of precontrast and postcontrast MR images were quantitatively analyzed, and two experienced radiologists evaluated image quality in terms of lesion conspicuity, artifact, mass delineation, and vascular anatomy. Liver SNR was significantly higher at delayed imaging than at precontrast, arterial, and portal imaging (p<0.05), while lesion SNR was significantly higher at delayed imaging than at precontrast imaging (p<0.05). Lesion CNR was higher at delayed imaging than at precontrast and portal phase imaging (p<0.05), but there was no difference between arterial and delayed imaging. The latter provided better mass delineation than precontrast, arterial and portal phase imaging (p<0.05). While in terms of lesion conspicuity and vascular anatomy, the delayed phase was better than the arterial phase (p<0.05) but similar to the precontrast and portal phase. During the delayed phase, the gradient-echo sequence showed better results than the spin-echo in terms of liver SNR, and lesion SNR and CNR (p<0.05). Because it provides better lesion conspicuity and mass delineation by improving liver SNR and lesion-to-liver CNR, the addition of the delayed phase to a dynamic MRI sequence after gadobenate dimeglumine adminstration facilitates lesion detection. For delayed-phase imaging, the

  1. Gadobenate dimeglumine-enhanced MR of VX2 carcinoma in rabbit liver: usefulness of the delayed phase imaging and optimal pulse sequence

    Cho, Seung Il; Lee, Jeong Min; Kim, Young Kon; Kim, Chong Soo [College of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2002-07-01

    To assess the diagnostic value of delayed imaging using gadobenate dimeglumine (MultiHance) and to determine the optimal pulse sequence for the detection of VX2 carcinoma lesions in the rabbit. Twelve VX2 carcinomas implanted in the livers of eleven New Zealand rabbits were studied. All patients underwent an MR protocal consisting of precontrast T2-and T1-weighted sequences, followed by repetition of the T1-weighted sequence at 0 to 30 (arterial phase). 31-60 (portal phase), and 40 minutes (delayed phase) after the intravenous administration of 0.1 mmol/kg of gadobenate dimeglumine. The signal-to-noise ratio (SNR) of the liver and VX2 tumor, and the lesion-to-liver contrast-to-noise ratio (CNR) of precontrast and postcontrast MR images were quantitatively analyzed, and two experienced radiologists evaluated image quality in terms of lesion conspicuity, artifact, mass delineation, and vascular anatomy. Liver SNR was significantly higher at delayed imaging than at precontrast, arterial, and portal imaging (p<0.05), while lesion SNR was significantly higher at delayed imaging than at precontrast imaging (p<0.05). Lesion CNR was higher at delayed imaging than at precontrast and portal phase imaging (p<0.05), but there was no difference between arterial and delayed imaging. The latter provided better mass delineation than precontrast, arterial and portal phase imaging (p<0.05). While in terms of lesion conspicuity and vascular anatomy, the delayed phase was better than the arterial phase (p<0.05) but similar to the precontrast and portal phase. During the delayed phase, the gradient-echo sequence showed better results than the spin-echo in terms of liver SNR, and lesion SNR and CNR (p<0.05). Because it provides better lesion conspicuity and mass delineation by improving liver SNR and lesion-to-liver CNR, the addition of the delayed phase to a dynamic MRI sequence after gadobenate dimeglumine adminstration facilitates lesion detection. For delayed-phase imaging, the

  2. Object analysis of bone marrow MR imaging using double echo STIR sequence in hematological diseases

    Mizuno, Hitomi [Saitama Medical School, Moroyama (Japan)

    1995-07-01

    The bone marrow of 84 patients with hematological disorders was investigated using short inversion time inversion recovery sequence (STIR) on an 1.5 Tesla superconducting MRI system. Double echo times of 20 and 100 msec were applied to research the signal characteristics of the lesion and carry out quantitative analysis of the receiver operating characteristic curve (ROC). The hematological diseases included 19 cases of myelodysplastic syndrome (MDS), 18 of multiple myeloma (MM), 18 of chronic myelocytic leukemia (CML), 9 of aplastic anemia (AA), 8 of acute myelocytic leukemia (AML), 3 of chronic lymphocytic leukemia (CLL), 3 of myelofibrosis, and 3 others. Using STIR with double echo times, bone marrow showed high signal intensity (SI) on short TE and low SI on long TE in MDS and CML; high SI on short and long TE in myelofibrosis and CLL; high SI on short TE and high to moderately high SI on long TE in MM; and low SI on short and long TE in AA. Quantitative analysis of 33 patients showed high sensitivity and specificity in AA (81% and 94%, respectively) and moderate sensitivity and high specificity in MM (61%, 88%). CML and MDS were similar with low sensitivities (40%, 41%) and high specificities (80%, 78%). Differential diagnosis between CML and MDS was difficult using STIR with the double echo time method. (author).

  3. Role of targeted magnetic resonance imaging sequences in the surgical management of anterior skull base pathology.

    Chawla, S; Bowman, J; Gandhi, M; Panizza, B

    2017-01-01

    The skull base is a highly complex anatomical region that provides passage for important nerves and vessels as they course into and out of the cranial cavity. Key to the management of pathology in this region is a thorough understanding of the anatomy, with its variations, and the relationship of various neurovascular structures to the pathology in question. Targeted high-resolution magnetic resonance imaging on high field strength magnets can enable the skull base surgeon to understand this intricate relationship and deal with the pathology from a position of relative advantage. With the help of case studies, this paper illustrates the application of specialised magnetic resonance techniques to study pathology of the orbital apex in particular. The fine anatomical detail provided gives surgeons the ability to design an endonasal endoscopic procedure appropriate to the anatomy of the pathology.

  4. Aeromonas salmonicida - Epidemiology, whole genome sequencing, detection and in vivo imaging

    Bartkova, Simona

    causes problems in sea reared rainbow trout (Oncorhynchus mykiss) production. Outbreaks occur repeatedly during stressful conditions such as elevated temperatures, in spite of commercial vaccines being applied. Besides seemingly lacking adequate protection, the vaccines also produce undesirable side...... of the concerns regarding A. salmonicida. First, we focused on investigation of the route of entry and initial dissemination of A. salmonicida in fish. This was done by tracing the bacterium using in vivo bioluminescence imaging. A Danish strain was transformed with a plasmid vector containing a green...... was subsequently turned to finding a sensitive method for detecting A. salmonicida in infected and possible carrier fish. For this, a previously developed quantitative real-time polymerase chain reaction (real-time PCR) targeting the aopP gene located on A. salmonicida plasmid pAsal1 was assessed. The real...

  5. An efficient sequence for fetal brain imaging at 3T with enhanced T1 contrast and motion robustness.

    Ferrazzi, Giulio; Price, Anthony N; Teixeira, Rui Pedro A G; Cordero-Grande, Lucilio; Hutter, Jana; Gomes, Ana; Padormo, Francesco; Hughes, Emer; Schneider, Torben; Rutherford, Mary; Kuklisova Murgasova, Maria; Hajnal, Joseph V

    2018-07-01

    Ultrafast single-shot T 2 -weighted images are common practice in fetal MR exams. However, there is limited experience with fetal T 1 -weighted acquisitions. This study aims at establishing a robust framework that allows fetal T 1 -weighted scans to be routinely acquired in utero at 3T. A 2D gradient echo sequence with an adiabatic inversion was optimized to be robust to fetal motion and maternal breathing optimizing grey/white matter contrast at the same time. This was combined with slice to volume registration and super resolution methods to produce volumetric reconstructions. The sequence was tested on 22 fetuses. Optimized grey/white matter contrast and robustness to fetal motion and maternal breathing were achieved. Signal from cerebrospinal fluid (CSF) and amniotic fluid was nulled and 0.75 mm isotropic anatomical reconstructions of the fetal brain were obtained using slice-to-volume registration and super resolution techniques. Total acquisition time for a single stack was 56 s, all acquired during free breathing. Enhanced sensitivity to normal anatomy and pathology with respect to established methods is demonstrated. A direct comparison with a 3D spoiled gradient echo sequence and a controlled motion experiment run on an adult volunteer are also shown. This paper describes a robust framework to perform T 1 -weighted acquisitions and reconstructions of the fetal brain in utero. Magn Reson Med 80:137-146, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic

  6. Three-Dimensional Constructive Interference in Steady State Sequences and Phase-Contrast Magnetic Resonance Imaging of Arrested Hydrocephalus.

    Elkafrawy, Fatma; Reda, Ihab; Elsirafy, Mohamed; Gawad, Mohamed Saied Abdel; Elnaggar, Alaa; Khalek Abdel Razek, Ahmed Abdel

    2017-02-01

    To evaluate the role of three-dimensional constructive interference in steady state (3D-CISS) sequences and phase-contrast magnetic resonance imaging (PC-MRI) in patients with arrested hydrocephalus. A prospective study of 20 patients with arrested hydrocephalus was carried out. All patients underwent PC-MRI and 3D-CISS for assessment of the aqueduct. Axial (through-plane), sagittal (in-plane) PC-MRI, and sagittal 3D-CISS were applied to assess the cerebral aqueduct and the spontaneous third ventriculostomy if present. Aqueductal patency was graded using 3D-CISS and PC-MRI. Quantitative analysis of flow through the aqueduct was performed using PC-MRI. The causes of obstruction were aqueductal obstruction in 75% (n = 15), third ventricular obstruction in 5% (n = 1), and fourth ventricular obstruction in 20% (n = 4). The cause of arrest of hydrocephalus was spontaneous third ventriculostomy in 65% (n = 13), endoscopic third ventriculostomy in 10% (n = 2), and ventriculoperitoneal shunt in 5% (n = 1), and no cause could be detected in 20% of patients (n = 4). There is a positive correlation (r = 0.80) and moderate agreement (κ = 0.509) of grading with PC-MRI and 3D-CISS sequences. The mean peak systolic velocity of cerebrospinal fluid was 1.86 ± 2.48 cm/second, the stroke volume was 6.43 ± 13.81 μL/cycle, and the mean flow was 0.21 ± 0.32 mL/minute. We concluded that 3D-CISS and PC-MRI are noninvasive sequences for diagnosis of the level and cause of arrested hydrocephalus. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A review of techniques for the identification and measurement of fish in underwater stereo-video image sequences

    Shortis, Mark R.; Ravanbakskh, Mehdi; Shaifat, Faisal; Harvey, Euan S.; Mian, Ajmal; Seager, James W.; Culverhouse, Philip F.; Cline, Danelle E.; Edgington, Duane R.

    2013-04-01

    Underwater stereo-video measurement systems are used widely for counting and measuring fish in aquaculture, fisheries and conservation management. To determine population counts, spatial or temporal frequencies, and age or weight distributions, snout to fork length measurements are captured from the video sequences, most commonly using a point and click process by a human operator. Current research aims to automate the measurement and counting task in order to improve the efficiency of the process and expand the use of stereo-video systems within marine science. A fully automated process will require the detection and identification of candidates for measurement, followed by the snout to fork length measurement, as well as the counting and tracking of fish. This paper presents a review of the techniques used for the detection, identification, measurement, counting and tracking of fish in underwater stereo-video image sequences, including consideration of the changing body shape. The review will analyse the most commonly used approaches, leading to an evaluation of the techniques most likely to be a general solution to the complete process of detection, identification, measurement, counting and tracking.

  8. Endmembers of Ice Shelf Melt

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  9. Assessment of Myocardial Fibrosis in Mice Using a T2*-Weighted 3D Radial Magnetic Resonance Imaging Sequence.

    Bastiaan J van Nierop

    Full Text Available Myocardial fibrosis is a common hallmark of many diseases of the heart. Late gadolinium enhanced MRI is a powerful tool to image replacement fibrosis after myocardial infarction (MI. Interstitial fibrosis can be assessed indirectly from an extracellular volume fraction measurement using contrast-enhanced T1 mapping. Detection of short T2* species resulting from fibrotic tissue may provide an attractive non-contrast-enhanced alternative to directly visualize the presence of both replacement and interstitial fibrosis.To goal of this paper was to explore the use of a T2*-weighted radial sequence for the visualization of fibrosis in mouse heart.C57BL/6 mice were studied with MI (n = 20, replacement fibrosis, transverse aortic constriction (TAC (n = 18, diffuse fibrosis, and as control (n = 10. 3D center-out radial T2*-weighted images with varying TE were acquired in vivo and ex vivo (TE = 21 μs-4 ms. Ex vivo T2*-weighted signal decay with TE was analyzed using a 3-component model. Subtraction of short- and long-TE images was used to highlight fibrotic tissue with short T2*. The presence of fibrosis was validated using histology and correlated to MRI findings.Detailed ex vivo T2*-weighted signal analysis revealed a fast (T2*fast, slow (T2*slow and lipid (T2*lipid pool. T2*fast remained essentially constant. Infarct T2*slow decreased significantly, while a moderate decrease was observed in remote tissue in post-MI hearts and in TAC hearts. T2*slow correlated with the presence of diffuse fibrosis in TAC hearts (r = 0.82, P = 0.01. Ex vivo and in vivo subtraction images depicted a positive contrast in the infarct co-localizing with the scar. Infarct volumes from histology and subtraction images linearly correlated (r = 0.94, P<0.001. Region-of-interest analysis in the in vivo post-MI and TAC hearts revealed significant T2* shortening due to fibrosis, in agreement with the ex vivo results. However, in vivo contrast on subtraction images was rather poor

  10. Dynamic MR imaging of the temporomandibular joint arthrosis using spoiled GRASS sequence

    Suenaga, Shigeaki; Hamamoto, Sadatoshi; Kawano, Kazunori (Kagoshima Univ. (Japan). Dental School) (and others)

    1994-07-01

    The purpose of this study was to quantitatively evaluate contrast enhancement effects of the posterior disk attachment in the temporomandibular joint arthrosis using dynamic MRI with bilateral surface coils. One hundred twenty-four temporomandibular joints in 96 symptomatic patients and 27 control subjects were examined with a spoiled GRASS pulse sequence (TR: 35 ms, TE: 8 ms, flip angle: 60deg). One sagittal scan was performed prior to injection, then 0.1 mmol/kg of Gd-DTPA was given as a rapid bolus injection, immediately after which scans were performed at 30 seconds intervals for a period of 5 minutes. Signal intensity (SI) was measured from the ROI of the posterior disk attachment region. The contrast enhancement effects may be calculated by SI ratio (SIR) = ( SI[sup post]-SI[sup pre])/SI[sup pre], where SI[sup post] and SI[sup pre] were the signal intensities after and before administration of contrast medium. The time intensity curve of SIR versus time after injection was obtained on each symptoms. Join pain group (85 joints) tended to show a rapid enhancement pattern, while control group (54 joints), joint sound or opening limitation group (39 joints), and asymptomatic group (68 joints) showed a relatively gradual enhancement pattern. The drop of SIR in four groups were hardly observed during examination. Mean peak SIR of control group, joint pain group, joint sound or opening limitation group, and asymptomatic group was 0.62[+-]0.24 (SD), 1.53[+-]0.69, 0.73[+-]0.38 and 0.78[+-]0.44 respectively. The mean SIR of pain group was significantly (P<0.001, t-test) higher than that of other groups. These results suggested that dynamic MRI of the temporomandibular joint may effectively depict the inflammatory changes of the posterior disk attachment. (author).

  11. Dynamic MR imaging of the temporomandibular joint arthrosis using spoiled GRASS sequence

    Suenaga, Shigeaki; Hamamoto, Sadatoshi; Kawano, Kazunori

    1994-01-01

    The purpose of this study was to quantitatively evaluate contrast enhancement effects of the posterior disk attachment in the temporomandibular joint arthrosis using dynamic MRI with bilateral surface coils. One hundred twenty-four temporomandibular joints in 96 symptomatic patients and 27 control subjects were examined with a spoiled GRASS pulse sequence (TR: 35 ms, TE: 8 ms, flip angle: 60deg). One sagittal scan was performed prior to injection, then 0.1 mmol/kg of Gd-DTPA was given as a rapid bolus injection, immediately after which scans were performed at 30 seconds intervals for a period of 5 minutes. Signal intensity (SI) was measured from the ROI of the posterior disk attachment region. The contrast enhancement effects may be calculated by SI ratio (SIR) = ( SI post -SI pre )/SI pre , where SI post and SI pre were the signal intensities after and before administration of contrast medium. The time intensity curve of SIR versus time after injection was obtained on each symptoms. Join pain group (85 joints) tended to show a rapid enhancement pattern, while control group (54 joints), joint sound or opening limitation group (39 joints), and asymptomatic group (68 joints) showed a relatively gradual enhancement pattern. The drop of SIR in four groups were hardly observed during examination. Mean peak SIR of control group, joint pain group, joint sound or opening limitation group, and asymptomatic group was 0.62±0.24 (SD), 1.53±0.69, 0.73±0.38 and 0.78±0.44 respectively. The mean SIR of pain group was significantly (P<0.001, t-test) higher than that of other groups. These results suggested that dynamic MRI of the temporomandibular joint may effectively depict the inflammatory changes of the posterior disk attachment. (author)

  12. Driven equilibrium (drive) MR imaging of the cranial nerves V-VIII: comparison with the T2-weighted 3D TSE sequence

    Ciftci, E. E-mail: eciftcis7@hotmail.com; Anik, Yonca; Arslan, Arzu; Akansel, Gur; Sarisoy, Tahsin; Demirci, Ali

    2004-09-01

    Purpose: The aim of this study is to evaluate the efficacy of the driven equilibrium radio frequency reset pulse (DRIVE) on image quality and nerve detection when used in adjunction with T2-weighted 3D turbo spin-echo (TSE) sequence. Materials and methods: Forty-five patients with cranial nerve symptoms referable to the cerebellopontine angle (CPA) were examined using a T2-weighted 3D TSE pulse sequence with and without DRIVE. MR imaging was performed on a 1.5-T MRI scanner. In addition to the axial resource images, reformatted oblique sagittal, oblique coronal and maximum intensity projection (MIP) images of the inner ear were evaluated. The nerve identification and image quality were graded for the cranial nerves V-VIII as well as inner ear structures. These structures were chosen because fluid-solid interfaces existed due to the CSF around (the cranial nerves V-VIII) or the endolymph within (the inner ear structures). Statistical analysis was performed using the Wilcoxon test. P<0.05 was considered significant. Results: The addition of the DRIVE pulse shortens the scan time by 25%. T2-weighted 3D TSE sequence with DRIVE performed slightly better than the T2-weighted 3D TSE sequence without DRIVE in identifying the individual nerves. The image quality was also slightly better with DRIVE. Conclusion: The addition of the DRIVE pulse to the T2-weighted 3D TSE sequence is preferable when imaging the cranial nerves surrounded by the CSF, or fluid-filled structures because of shorter scan time and better image quality due to reduced flow artifacts.

  13. Driven equilibrium (drive) MR imaging of the cranial nerves V-VIII: comparison with the T2-weighted 3D TSE sequence

    Ciftci, E.; Anik, Yonca; Arslan, Arzu; Akansel, Gur; Sarisoy, Tahsin; Demirci, Ali

    2004-01-01

    Purpose: The aim of this study is to evaluate the efficacy of the driven equilibrium radio frequency reset pulse (DRIVE) on image quality and nerve detection when used in adjunction with T2-weighted 3D turbo spin-echo (TSE) sequence. Materials and methods: Forty-five patients with cranial nerve symptoms referable to the cerebellopontine angle (CPA) were examined using a T2-weighted 3D TSE pulse sequence with and without DRIVE. MR imaging was performed on a 1.5-T MRI scanner. In addition to the axial resource images, reformatted oblique sagittal, oblique coronal and maximum intensity projection (MIP) images of the inner ear were evaluated. The nerve identification and image quality were graded for the cranial nerves V-VIII as well as inner ear structures. These structures were chosen because fluid-solid interfaces existed due to the CSF around (the cranial nerves V-VIII) or the endolymph within (the inner ear structures). Statistical analysis was performed using the Wilcoxon test. P<0.05 was considered significant. Results: The addition of the DRIVE pulse shortens the scan time by 25%. T2-weighted 3D TSE sequence with DRIVE performed slightly better than the T2-weighted 3D TSE sequence without DRIVE in identifying the individual nerves. The image quality was also slightly better with DRIVE. Conclusion: The addition of the DRIVE pulse to the T2-weighted 3D TSE sequence is preferable when imaging the cranial nerves surrounded by the CSF, or fluid-filled structures because of shorter scan time and better image quality due to reduced flow artifacts

  14. Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method

    Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige

    2018-06-01

    the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multiscale mechanisms of slow earthquakes generation.

  15. Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method

    Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige

    2018-02-01

    the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multi-scale mechanisms of slow earthquakes generation.

  16. In vivo tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences.

    Angel M Cuesta

    Full Text Available There is an urgent need to develop new and effective agents for cancer targeting. In this work, a multivalent antibody is characterized in vivo in living animals. The antibody, termed "trimerbody", comprises a single-chain antibody (scFv fragment connected to the N-terminal trimerization subdomain of collagen XVIII NC1 by a flexible linker. As indicated by computer graphic modeling, the trimerbody has a tripod-shaped structure with three highly flexible scFv heads radially outward oriented. Trimerbodies are trimeric in solution and exhibited multivalent binding, which provides them with at least a 100-fold increase in functional affinity than the monovalent scFv. Our results also demonstrate the feasibility of producing functional bispecific trimerbodies, which concurrently bind two different ligands. A trimerbody specific for the carcinoembryonic antigen (CEA, a classic tumor-associated antigen, showed efficient tumor targeting after systemic administration in mice bearing CEA-positive tumors. Importantly, a trimerbody that recognizes an angiogenesis-associated laminin epitope, showed excellent tumor localization in several cancer types, including fibrosarcomas and carcinomas. These results illustrate the potential of this new antibody format for imaging and therapeutic applications, and suggest that some laminin epitopes might be universal targets for cancer targeting.

  17. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Automatically Identifying Fusion Events between GLUT4 Storage Vesicles and the Plasma Membrane in TIRF Microscopy Image Sequences

    Jian Wu

    2015-01-01

    Full Text Available Quantitative analysis of the dynamic behavior about membrane-bound secretory vesicles has proven to be important in biological research. This paper proposes a novel approach to automatically identify the elusive fusion events between VAMP2-pHluorin labeled GLUT4 storage vesicles (GSVs and the plasma membrane. The differentiation is implemented to detect the initiation of fusion events by modified forward subtraction of consecutive frames in the TIRFM image sequence. Spatially connected pixels in difference images brighter than a specified adaptive threshold are grouped into a distinct fusion spot. The vesicles are located at the intensity-weighted centroid of their fusion spots. To reveal the true in vivo nature of a fusion event, 2D Gaussian fitting for the fusion spot is used to derive the intensity-weighted centroid and the spot size during the fusion process. The fusion event and its termination can be determined according to the change of spot size. The method is evaluated on real experiment data with ground truth annotated by expert cell biologists. The evaluation results show that it can achieve relatively high accuracy comparing favorably to the manual analysis, yet at a small fraction of time.

  19. Pulmonary parenchyma segmentation in thin CT image sequences with spectral clustering and geodesic active contour model based on similarity

    He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan

    2017-07-01

    While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.

  20. MR Imaging of the Internal Auditory Canal and Inner Ear at 3T: Comparison between 3D Driven Equilibrium and 3D Balanced Fast Field Echo Sequences

    Byun, Jun Soo; Kim, Hyung Jin; Yim, Yoo Jeong; Kim, Sung Tae; Jeon, Pyoung; Kim, Keon Ha [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Sam Soo; Jeon, Yong Hwan; Lee, Ji Won [Kangwon National University College of Medicine, Chuncheon (Korea, Republic of)

    2008-06-15

    To compare the use of 3D driven equilibrium (DRIVE) imaging with 3D balanced fast field echo (bFFE) imaging in the assessment of the anatomic structures of the internal auditory canal (IAC) and inner ear at 3 Tesla (T). Thirty ears of 15 subjects (7 men and 8 women; age range, 22 71 years; average age, 50 years) without evidence of ear problems were examined on a whole-body 3T MR scanner with both 3D DRIVE and 3D bFFE sequences by using an 8-channel sensitivity encoding (SENSE) head coil. Two neuroradiologists reviewed both MR images with particular attention to the visibility of the anatomic structures, including four branches of the cranial nerves within the IAC, anatomic structures of the cochlea, vestibule, and three semicircular canals. Although both techniques provided images of relatively good quality, the 3D DRIVE sequence was somewhat superior to the 3D bFFE sequence. The discrepancies were more prominent for the basal turn of the cochlea, vestibule, and all semicircular canals, and were thought to be attributed to the presence of greater magnetic susceptibility artifacts inherent to gradient-echo techniques such as bFFE. Because of higher image quality and less susceptibility artifacts, we highly recommend the employment of 3D DRIVE imaging as the MR imaging choice for the IAC and inner ear

  1. Contrast-enhanced Magnetic Resonance Imaging of Pelvic Bone Metastases at 3.0 T: Comparison Between 3-dimensional T1-weighted CAIPIRINHA-VIBE Sequence and 2-dimensional T1-weighted Turbo Spin-Echo Sequence.

    Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee

    2018-06-12

    This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.

  2. Low-field MR imaging of the spine. A comparative study of a traditional and a new, completely balanced gradient-echo sequence

    Drejer, J.; Thomsen, H.S.; Tanttu, J.

    1995-01-01

    49 patients underwent 53 examinations with both a traditional T1-weighted gradient-echo (PS) sequence and a new completely balanced steady-state 3-D (CBASS3D) sequence; 20 examinations included the cervical spine, 8 the thoracic spine and 25 the lumbar spine. All 106 examinations were reviewed twice regarding visibility of selected structures in the spinal region and diagnostic usefulness. The CBASS3D sequence delineated the medulla, nerve roots, CSF, the intervertebral discs and the posterior longitudinal ligament significantly better than the PS sequence. Disc hernia was also better visualised (p<0.01). There were significantly more artefacts on images obtained with the CBASS3D sequence, but they were usually outside the region of interest and occurred less frequently over time due to increased experience of the staff. Both reviewers found the diagnostic usefulness of CBASS3D to be superior compared to that of PS and excellent for diagnostic purposes. (orig./MG)

  3. Low-field MR imaging of the spine. A comparative study of a traditional and a new, completely balanced gradient-echo sequence

    Drejer, J. [Dept. of Diagnostic Radiology, Herlev Hospital, Univ. Copenhagen (Denmark); Thomsen, H.S. [Dept. of Diagnostic Radiology, Herlev Hospital, Univ. Copenhagen (Denmark); Tanttu, J. [Picker Nordstar, Helsinki (Finland)

    1995-09-01

    49 patients underwent 53 examinations with both a traditional T1-weighted gradient-echo (PS) sequence and a new completely balanced steady-state 3-D (CBASS3D) sequence; 20 examinations included the cervical spine, 8 the thoracic spine and 25 the lumbar spine. All 106 examinations were reviewed twice regarding visibility of selected structures in the spinal region and diagnostic usefulness. The CBASS3D sequence delineated the medulla, nerve roots, CSF, the intervertebral discs and the posterior longitudinal ligament significantly better than the PS sequence. Disc hernia was also better visualised (p<0.01). There were significantly more artefacts on images obtained with the CBASS3D sequence, but they were usually outside the region of interest and occurred less frequently over time due to increased experience of the staff. Both reviewers found the diagnostic usefulness of CBASS3D to be superior compared to that of PS and excellent for diagnostic purposes. (orig./MG).

  4. Study of temporal sequences of LANSAT images to detect the accumulation of stress prior of strong earthquakes in Chile.

    Arellano-Baeza, A. A.

    2016-12-01

    We studied the temporal evolution of the lineaments obtained from the LANSAT-8 associated to the accumulation of stress patterns related to the seismic activity. A lineament is generally defined as a straight or a somewhat curved feature in the landscape visible in a satellite image as an aligned sequence of pixels of a contrasting intensity compared to the background. The system of lineaments extracted from the satellite images is not identical to the geological lineaments; nevertheless, it generally reflects the structure of the faults and fractures in the Earth's crust. The satellite images were processed by the ADALGEO software developed by us. We selected two areas of study with different characteristics. The first area is located near to the Diego de Almagro town in the Copiapo region, Chile. This area did not show any strong seismic activity between 2010 and 2015. However, two strong earthquakes took place later on April 16, 2016 (Mw=5.3) and July 25, 2016 (Mw=6.1). The second area located near the Illapel town in Coquimbo region shows lack of strong earthquakes between 2010 and 2012 and strong seismic activity between 2012 and 2015, culminating by the September 16, 2015 earthquake (Mw=8.3). The distance between two areas is nearly 600 km. In case of the Diego de Almagro area, very few lineaments have been observed between 2010 and 2015, showing a significant increase during the 2016. In case of the Illapel region, the number of lineaments was always much higher, showing an explosive increase at the end of 2015. For both areas the lineaments changed its orientation before strong earthquakes.

  5. Examination of self-navigating MR-sequences for perfusion imaging of the kidneys; Untersuchung von selbstnavigierenden MR-Sequenzen fuer die Perfusionsbildgebung der Nieren

    Lietzmann, Florian; Zoellner, Frank G.; Schad, Lothar R. [Heidelberg Univ. Medizinische Fakultaet Mannheim (Germany). Computerunterstuetzte Klinische Medizin; Michaely, Henrik J. [Heidelberg Univ. Medizinische Fakultaet Mannheim (Germany). Inst. fuer Klinische Radiologie und Nuklearmedizin

    2010-07-01

    Due to the worldwide increasing number of cases of chronic kidney diseases renal imaging - as a non-invasive technique in magnetic resonance imaging - has become a very important tool for an early diagnosis of probable insufficiencies and malfunction. Especially, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides a technique to derive physiological parameters like renal blood flow or glomerular filtration rate. Similar to the entire field of abdominal imaging, the major problems are motion artifacts that primarily arise from the patient's respiration. The self-navigating BLADE-sequence with a post processing motion correction is an approach that does not require breath holding and is therefore also easily applicable to patients who are not able to undergo multiple breath hold examinations. In this work, a T1-weighted BLADE-sequence was optimized to demonstrate the feasibility of this technique to perfusion imaging. The number of phase-encoding lines of one BLADE has a direct impact on the reduction of motion artifacts. In comparison to standard DCE-MRI sequences, the developed BLADE-sequence with optimized number of phase encoding lines could significantly reduce motion artifacts. A quantitative analysis revealed that up to a 50% displacement of the kidneys could be corrected. Therefore, it was demonstrated that dynamic motion corrected measurements without the need of a breath hold-technique are feasible. (orig.)

  6. Subjective and objective image qualities: a comparison of sagittal T2 weighted spin-echo and turbo-spin-eco sequences in magnetic resonance imaging of the spine by use of a subjective ranking system

    Goerres, G. [Institut fuer diagnostische Radiologie, Departement Radiologie, Universitaetskliniken, Kantonsspital Basel (Switzerland); Mader, I. [Radiologische Gemeinschaftspraxis Dres. Siems, Grossmann, Bayreuth (Germany); Proske, M. [Klinikum Rosenheim (Germany). Inst. fuer Diagnostische Radiologie

    1998-12-31

    We evaluated the subjective image impression of two different magnetic resonance (MR) sequences by using a subjective ranking system. This ranking system was based on 20 criteria describing several tissue characteristics such as the signal intensity of normal anatomical structures and the changes of signal intensities and shape of lesions as well as artefacts. MR of the vertebral spine was performed in 48 female and 52 male patients (mean age 44.8 years) referred consecutively for investigation of a back problem. Ninety-six pathologies were found in 82 patients. Sagittal and axial T1 weighted spin-echo before and after administration of Gadolinium (Gd-DOTA), and sagittal T2 weighted spin-echo (T2wSE) and Turbo-spin-echo (TSE) sequences were performed by means of surface coils. Using the subjective ranking system the sagittal T2wSE and sagittal TSE were compared. Both sequences were suitable for identification of normal anatomy and pathologic changes and there was no trend for increased detection of disease by one imaging sequence over the other. We found that sagittal TSE sequences can replace sagittal T2wSE sequences in spinal MR and that artefacts at the cervical and lumbar spine are less frequent using TSE, thus confirming previous studies. In this study, our ranking system reveiled, that there are differences between the subjective judgement of image qualities and objective measurement of SNR. However, this approach may not be helpful to compare two different MR sequences as it is limited to the anatomical area investigated and is time consuming. The subjective image impression, i.e. the quality of images, may not always be represented by physical parameters such as a signal-to-noise ratio (SNR), radiologists should try to define influences of image quality also by subjective parameters. (orig.)

  7. Time-resolved echo-shared parallel MRA of the lung: observer preference study of image quality in comparison with non-echo-shared sequences

    Fink, C.; Puderbach, M.; Zaporozhan, J.; Plathow, C.; Kauczor, H.-U.; Ley, S.

    2005-01-01

    The aim of this study was to evaluate the image quality of time-resolved echo-shared parallel MRA of the lung. The pulmonary vasculature of nine patients (seven females, two males; median age: 44 years) with pulmonary disease was examined using a time-resolved MRA sequence combining echo sharing with parallel imaging (time-resolved echo-shared angiography technique, or TREAT). The sharpness of the vessel borders, conspicuousness of peripheral lung vessels, artifact level, and overall image quality of TREAT was assessed independently by four readers in a side-by-side comparison with non-echo-shared time-resolved parallel MRA data (pMRA) previously acquired in the same patients. Furthermore, the SNR of pulmonary arteries (PA) and veins (PV) achieved with both pulse sequences was compared. The mean voxel size of TREAT MRA was decreased by 24% compared with the non-echo-shared MRA. Regarding the sharpness of the vessel borders, conspicuousness of peripheral lung vessels, and overall image quality the TREAT sequence was rated superior in 75-76% of all cases. If the TREAT images were preferred over the pMRA images, the advantage was rated as major in 61-71% of all cases. The level of artifacts was not increased with the TREAT sequence. The mean interobserver agreement for all categories ranged between fair (artifact level) and good (overall image quality). The maximum SNR of TREAT did not differ from non-echo-shared parallel MRA (PA: TREAT: 273±45; pMRA: 280±71; PV: TREAT: 273±33; pMRA: 258±62). TREAT achieves a higher spatial resolution than non-echo-shared parallel MRA which is also perceived as an improved image quality. (orig.)

  8. Hybrid PET/MR imaging: an algorithm to reduce metal artifacts from dental implants in Dixon-based attenuation map generation using a multiacquisition variable-resonance image combination sequence.

    Burger, Irene A; Wurnig, Moritz C; Becker, Anton S; Kenkel, David; Delso, Gaspar; Veit-Haibach, Patrick; Boss, Andreas

    2015-01-01

    It was the aim of this study to implement an algorithm modifying Dixon-based MR imaging datasets for attenuation correction in hybrid PET/MR imaging with a multiacquisition variable resonance image combination (MAVRIC) sequence to reduce metal artifacts. After ethics approval, in 8 oncologic patients with dental implants data were acquired in a trimodality setup with PET/CT and MR imaging. The protocol included a whole-body 3-dimensional dual gradient-echo sequence (Dixon) used for MR imaging-based PET attenuation correction and a high-resolution MAVRIC sequence, applied in the oral area compromised by dental implants. An algorithm was implemented correcting the Dixon-based μ maps using the MAVRIC in areas of Dixon signal voids. The artifact size of the corrected μ maps was compared with the uncorrected MR imaging μ maps. The algorithm was robust in all patients. There was a significant reduction in mean artifact size of 70.5% between uncorrected and corrected μ maps from 697 ± 589 mm(2) to 202 ± 119 mm(2) (P = 0.016). The proposed algorithm could improve MR imaging-based attenuation correction in critical areas, when standard attenuation correction is hampered by metal artifacts, using a MAVRIC. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  9. MR imaging of cranial nerve lesions using six different high-resolution T1- and T2(*)-weighted 3D and 2D sequences

    Seitz, J.; Held, P.; Strotzer, M.; Voelk, M.; Nitz, W.R.; Dorenbeck, U.; Feuerbach, S. [Univ. Hospital of Regensburg (Germany). Dept. of Diagnostic Radiology; Stamato, S. [Univ. of California, San Diego, CA (United States). Dept. of Radiology

    2002-07-01

    Purpose: To find a suitable high-resolution MR protocol for the visualization of lesions of all 12 cranial nerves. Material and Methods: Thirty-eight pathologically changed cranial nerves (17 patients) were studied with MR imaging at 1.5T using 3D T2*-weighted CISS, T1-weighted 3D MP-RAGE (without and with i.v. contrast medium), T2-weighted 3D TSE, T2-weighted 2D TSE and T1-weighted fat saturation 2D TSE sequences. Visibility of the 38 lesions of the 12 cranial nerves in each sequence was evaluated by consensus of two radiologists using an evaluation scale from 1 (excellently visible) to 4 (not visible). Results: The 3D CISS sequence provided the best resolution of the cranial nerves and their lesions when surrounded by CSF. In nerves which were not surrounded by CSF, the 2D T1-weighted contrast-enhanced fat suppression technique was the best sequence. Conclusions: A combination of 3D CISS, the 2D T1-weighted fat suppressed sequence and a 3D contrast-enhanced MP-RAGE proved to be the most useful sequence to visualize all lesions of the cranial nerves. For the determination of enhancement, an additional 3D MP-RAGE sequence without contrast medium is required. This sequence is also very sensitive for the detection of hemorrhage.

  10. MR imaging of cranial nerve lesions using six different high-resolution T1- and T2(*)-weighted 3D and 2D sequences

    Seitz, J.; Held, P.; Strotzer, M.; Voelk, M.; Nitz, W.R.; Dorenbeck, U.; Feuerbach, S.; Stamato, S.

    2002-01-01

    Purpose: To find a suitable high-resolution MR protocol for the visualization of lesions of all 12 cranial nerves. Material and Methods: Thirty-eight pathologically changed cranial nerves (17 patients) were studied with MR imaging at 1.5T using 3D T2*-weighted CISS, T1-weighted 3D MP-RAGE (without and with i.v. contrast medium), T2-weighted 3D TSE, T2-weighted 2D TSE and T1-weighted fat saturation 2D TSE sequences. Visibility of the 38 lesions of the 12 cranial nerves in each sequence was evaluated by consensus of two radiologists using an evaluation scale from 1 (excellently visible) to 4 (not visible). Results: The 3D CISS sequence provided the best resolution of the cranial nerves and their lesions when surrounded by CSF. In nerves which were not surrounded by CSF, the 2D T1-weighted contrast-enhanced fat suppression technique was the best sequence. Conclusions: A combination of 3D CISS, the 2D T1-weighted fat suppressed sequence and a 3D contrast-enhanced MP-RAGE proved to be the most useful sequence to visualize all lesions of the cranial nerves. For the determination of enhancement, an additional 3D MP-RAGE sequence without contrast medium is required. This sequence is also very sensitive for the detection of hemorrhage

  11. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence

    Kreeftenberg, HG; Mooyaart, EL; Sluiter, WJ; Kreeftenberg, HG; Huizenga, Reint

    Background: The aim of the study was to quantify hepatic iron by MRI for practical use. Methods: In twenty-three patients with various degrees of iron overload, measurements were carried out with a 1.5 Tesla MR unit. A combination of pulse sequences (T1, T2 and gradient echo) enabled us to quantify

  12. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study.

    Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A

    2005-03-01

    To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.

  13. Chronicling ice shelf history in the sediments left behind

    Rosenheim, B. E.; Subt, C.; Shevenell, A.; Guitard, M.; Vadman, K. J.; DeCesare, M.; Wellner, J. S.; Bart, P. J.; Lee, J. I.; Domack, E. W.; Yoo, K. C.; Hayes, J. M.

    2017-12-01

    Collapsing and retreating ice shelves leave unmistakable sediment sequences on the Antarctic margin. These sequences tell unequivocal stories of collapse or retreat through a typical progression of sub-ice shelf diamicton (marking the past positions of grounding lines), sequentially overlain by a granulated facies from beneath the ice shelf, ice rafted debris from the calving line, and finally open marine sediment. The timelines to these stories, however, are troublesome. Difficulties in chronicling these stories recorded in sediment have betrayed their importance to our understanding of a warming world in many cases. The difficulties involve the concerted lack of preservation/production of calcium carbonate tests from the water column above and admixture of relict organic material from older sources of carbon. Here, we summarize our advances in the last decade of overcoming difficulties associated with the paucity of carbonate and creating chronologies of ice shelf retreat into the deglacial history of Antarctica by exploiting the range of thermochemical stability in organic matter (Ramped PyrOx) from these sediment sequences. We describe our success in comparing Ramped PyrOx 14C dates with foraminiferal dates, the relationship between sediment facies and radiocarbon age spectrum, and our ability to push limits of dating sediments deposited underneath ice shelves. With attention to the caveats of recent dating developments, we summarize expectations that geologist should have when coring the Antarctic margins to discern deglacial history. Perhaps most important among these expectations is the ability to design coring expeditions without regard to our ability to date calcium carbonate microfossils within the cores, in essence removing suspense of knowing whether cores taken from crucial paleo ice channels and other bathymetric features will ultimately yield a robust chronology for its sedimentary sequence.

  14. Statistical approach of measurement of signal to noise ratio in according to change pulse sequence on brain MRI meningioma and cyst images

    Lee, Eul Kyu; Choi, Kwan Woo; Jeong, Hoi Woun; Jang, Seo Goo; Kim, Ki Won; Son, Soon Yong; Min, Jung Whan; Son, Jin Hyun

    2016-01-01

    The purpose of this study was to needed basis of measure MRI CAD development for signal to noise ratio (SNR) by pulse sequence analysis from region of interest (ROI) in brain magnetic resonance imaging (MRI) contrast. We examined images of brain MRI contrast enhancement of 117 patients, from January 2005 to December 2015 in a University-affiliated hospital, Seoul, Korea. Diagnosed as one of two brain diseases such as meningioma and cysts SNR for each patient's image of brain MRI were calculated by using Image J. Differences of SNR among two brain diseases were tested by SPSS Statistics21 ANOVA test for there was statistical significance (p < 0.05). We have analysis socio-demographical variables, SNR according to sequence disease, 95% confidence according to SNR of sequence and difference in a mean of SNR. Meningioma results, with the quality of distributions in the order of T1CE, T2 and T1, FLAIR. Cysts results, with the quality of distributions in the order of T2 and T1, T1CE and FLAIR. SNR of MRI sequences of the brain would be useful to classify disease. Therefore, this study will contribute to evaluate brain diseases, and be a fundamental to enhancing the accuracy of CAD development

  15. Statistical approach of measurement of signal to noise ratio in according to change pulse sequence on brain MRI meningioma and cyst images

    Lee, Eul Kyu [Inje Paik University Hospital Jeo-dong, Seoul (Korea, Republic of); Choi, Kwan Woo [Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [The Baekseok Culture University, Cheonan (Korea, Republic of); Jang, Seo Goo [The Soonchunhyang University, Asan (Korea, Republic of); Kim, Ki Won [Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Son, Soon Yong [The Wonkwang Health Science University, Iksan (Korea, Republic of); Min, Jung Whan; Son, Jin Hyun [The Shingu University, Sungnam (Korea, Republic of)

    2016-09-15

    The purpose of this study was to needed basis of measure MRI CAD development for signal to noise ratio (SNR) by pulse sequence analysis from region of interest (ROI) in brain magnetic resonance imaging (MRI) contrast. We examined images of brain MRI contrast enhancement of 117 patients, from January 2005 to December 2015 in a University-affiliated hospital, Seoul, Korea. Diagnosed as one of two brain diseases such as meningioma and cysts SNR for each patient's image of brain MRI were calculated by using Image J. Differences of SNR among two brain diseases were tested by SPSS Statistics21 ANOVA test for there was statistical significance (p < 0.05). We have analysis socio-demographical variables, SNR according to sequence disease, 95% confidence according to SNR of sequence and difference in a mean of SNR. Meningioma results, with the quality of distributions in the order of T1CE, T2 and T1, FLAIR. Cysts results, with the quality of distributions in the order of T2 and T1, T1CE and FLAIR. SNR of MRI sequences of the brain would be useful to classify disease. Therefore, this study will contribute to evaluate brain diseases, and be a fundamental to enhancing the accuracy of CAD development.

  16. The weeding handbook a shelf-by-shelf guide

    Vnuk, Rebecca

    2015-01-01

    "No! We can't rid of that!" Vnuk, author of the popular "Weeding Tips" column on Booklist Online, is here to show you that yes, you can. A library is an ever-changing organism; when done the right way, weeding helps a library thrive by focusing its resources on those parts of the collection that are the most useful to its users. Her handbook takes the guesswork out of this delicate but necessary process, giving public and school library staff the knowledge and the confidence to effectively weed any collection, of any size. Going through the proverbial stacks shelf by shelf, Vnuk: Explains why weeding is important for a healthy library, demonstrating that a vibrant collection leads to robust circulation, which in turn affects library budgets Walks readers through a library's shelves by Dewey area, with recommended weeding criteria and call-outs in each area for the different considerations of large collections and smaller collections Features a chapter addressing reference, media, magazines and newspapers, e-b...

  17. On the shelf life of pharmaceutical products.

    Capen, Robert; Christopher, David; Forenzo, Patrick; Ireland, Charles; Liu, Oscar; Lyapustina, Svetlana; O'Neill, John; Patterson, Nate; Quinlan, Michelle; Sandell, Dennis; Schwenke, James; Stroup, Walter; Tougas, Terrence

    2012-09-01

    This article proposes new terminology that distinguishes between different concepts involved in the discussion of the shelf life of pharmaceutical products. Such comprehensive and common language is currently lacking from various guidelines, which confuses implementation and impedes comparisons of different methodologies. The five new terms that are necessary for a coherent discussion of shelf life are: true shelf life, estimated shelf life, supported shelf life, maximum shelf life, and labeled shelf life. These concepts are already in use, but not named as such. The article discusses various levels of "product" on which different stakeholders tend to focus (e.g., a single-dosage unit, a batch, a production process, etc.). The article also highlights a key missing element in the discussion of shelf life-a Quality Statement, which defines the quality standard for all key stakeholders. Arguments are presented that for regulatory and statistical reasons the true product shelf life should be defined in terms of a suitably small quantile (e.g., fifth) of the distribution of batch shelf lives. The choice of quantile translates to an upper bound on the probability that a randomly selected batch will be nonconforming when tested at the storage time defined by the labeled shelf life. For this strategy, a random-batch model is required. This approach, unlike a fixed-batch model, allows estimation of both within- and between-batch variability, and allows inferences to be made about the entire production process. This work was conducted by the Stability Shelf Life Working Group of the Product Quality Research Institute.

  18. Swell propagation across a wide continental shelf

    Hendrickson, Eric J.

    1996-01-01

    The effects of wave refraction and damping on swell propagation across a wide continental shelf were examined with data from a transect of bottom pressure recorders extending from the beach to the shelf break near Duck, North Carolina. The observations generally show weak variations in swell energy across the shelf during benign conditions, in qualitative agreement with predictions of a spectral refraction model. Although the predicted ray trajectories are quite sensitive to the irregular she...

  19. Whither the UK Continental Shelf?

    Kemp, A.G.

    1999-01-01

    The development of the oil and gas fields on the United Kingdom continental shelf has been carried out with remarkable success. However, low oil prices now threaten fresh investment and make it likely that both oil and gas output will start to fall in about 2001. The impact of a number of different price scenarios on further development is assessed. It is concluded that continuing technological improvements and the provision of adequate incentives by government should ensure a long productive future for the province. (UK)

  20. Improved imaging of cochlear nerve hypoplasia using a 3-Tesla variable flip-angle turbo spin-echo sequence and a 7-cm surface coil.

    Giesemann, Anja M; Raab, Peter; Lyutenski, Stefan; Dettmer, Sabine; Bültmann, Eva; Frömke, Cornelia; Lenarz, Thomas; Lanfermann, Heinrich; Goetz, Friedrich

    2014-03-01

    Magnetic resonance imaging of the temporal bone has an important role in decision making with regard to cochlea implantation, especially in children with cochlear nerve deficiency. The purpose of this study was to evaluate the usefulness of the combination of an advanced high-resolution T2-weighted sequence with a surface coil in a 3-Tesla magnetic resonance imaging scanner in cases of suspected cochlear nerve aplasia. Prospective study. Seven patients with cochlear nerve hypoplasia or aplasia were prospectively examined using a high-resolution three-dimensional variable flip-angle turbo spin-echo sequence using a surface coil, and the images were compared with the same sequence in standard resolution using a standard head coil. Three neuroradiologists evaluated the magnetic resonance images independently, rating the visibility of the nerves in diagnosing hypoplasia or aplasia. Eight ears in seven patients with hypoplasia or aplasia of the cochlear nerve were examined. The average age was 2.7 years (range, 9 months-5 years). Seven ears had accompanying malformations. The inter-rater reliability in diagnosing hypoplasia or aplasia was greater using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence (fixed-marginal kappa: 0.64) than with the same sequence in lower resolution (fixed-marginal kappa: 0.06). Examining cases of suspected cochlear nerve aplasia using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence in combination with a surface coil shows significant improvement over standard methods. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Shelf life of electronic/electrical devices

    Polanco, S.; Behera, A.K.

    1993-01-01

    This paper discusses inconsistencies which exist between various industry practices regarding the determination of shelf life for electrical and electronic components. New methodologies developed to evaluate the shelf life of electrical and electronic components are described and numerous tests performed at Commonwealth Edison Company's Central Receiving Inspection and Testing (CRIT) Facility are presented. Based upon testing and analysis using the Arrhenius methodology and typical materials used in the manufacturing of electrical and electronic components, shelf life of these devices was determined to be indefinite. Various recommendations to achieve an indefinite. Various recommendations to achieve an indefinite shelf life are presented to ultimately reduce inventory and operating costs at nuclear power plants

  2. The use of phase sequence image sets to reconstruct the total volume occupied by a mobile lung tumor

    Gagne, Isabelle M.; Robinson, Don M.; Halperin, Ross; Roa, Wilson

    2005-01-01

    The use of phase sequence image (PSI) sets to reveal the total volume occupied by a mobile target is presented. Isocontrast composite clinical target volumes (CCTVs) may be constructed from PSI sets in order to reveal the total volume occupied by a mobile target during the course of its travel. The ability of the CCTV technique to properly account for target motion is demonstrated by comparison to contours of the true total volume occupied (TVO) for a number of experimental phantom geometries. Finally, using real patient data, the clinical utility of the CCTV technique to properly account for internal tumor motion while minimizing the volume of healthy lung tissue irradiated is assessed by comparison to the standard approach of applying safety margins. Results of the phantom study reveal that CCTV cross sections constructed at the 20% isocontrast level yield good agreement with the total cross sections (TXO) of mobile targets. These CCTVs conform well to the TVOs of the moving targets examined whereby the addition of small uniform margins ensures complete circumscription of the TVO with the inclusion of minimal amounts of surrounding external volumes. The CCTV technique is seen to be clearly superior to the common practice of the addition of safety margins to individual CTV contours in order to account for internal target motion. Margins required with the CCTV technique are eight to ten times smaller than those required with individual CTVs

  3. Imaging the Crust in the Northern Sector of the 2009 L'Aquila Seismic Sequence through Oil Exploration Data Interpretation

    Grazia Ciaccio, Maria; Improta, Luigi; Patacca, Etta; Scandone, Paolo; Villani, Fabio

    2010-05-01

    The 2009 L'Aquila seismic sequence activated a complex, about 40 km long, NW-trending and SW-dipping normal fault system, consisting of three main faults arranged in right-lateral en-echelon geometry. While the northern sector of the epicentral area was extensively investigated by oil companies, only a few scattered, poor-quality commercial seismic profiles are available in the central and southern sector. In this study we interpret subsurface commercial data from the northern sector, which is the area where is located the source of the strong Mw5.4 aftershock occurred on the 9th April 2009. Our primary goals are: (1) to define a reliable framework of the upper crust structure, (2) to investigate how the intense aftershock activity, the bulk of which is clustered in the 5-10 km depth range, relates to the Quaternary extensional faults present in the area. The investigated area lies between the western termination of the W-E trending Gran Sasso thrust system to the south, the SW-NE trending Mt. Sibillini thrust front (Ancona-Anzio Line Auctt.) to the north and west, and by the NNW-SSE trending, SW-dipping Mt. Gorzano normal fault to the east. In this area only middle-upper Miocene deposits are exposed (Laga Flysch and underlying Cerrogna Marl), but commercial wells have revealed the presence of a Triassic-Miocene sedimentary succession identical to the well known Umbria-Marche stratigraphic sequence. We have analyzed several confidential seismic reflection profiles, mostly provided by ENI oil company. Seismic lines are tied to two public wells, 5766 m and 2541 m deep. Quality of the reflection imaging is highly variable. A few good quality stack sections contain interpretable signal down to 4.5-5.5 s TWT, corresponding to depths exceeding 10-12 km and thus allowing crustal imaging at seismogenic depths. Key-reflectors for the interpretation correspond to: (1) the top of the Miocene Cerrogna marls, (2) the top of the Upper Albian-Oligocene Scaglia Group, (3) the

  4. Cartilage volume quantification with multi echo data image combination sequence in swine knee at 3.0 T MRI

    Zhang Lirong; Wang Dongqing; Wei Chuanshe; Ma Cong; Wang Dehang

    2010-01-01

    Objective: To investigate the accuracy and reproducibility of multi echo data imagine combination (MEDIC) sequence with water excitation at 3.0 T in swine knee cartilage. Methods: Sagittal MEDIC sequences (0.6 mm slice thickness, isotropic) were acquired twice at 3.0 T MRI in 30 swine knees. The knee cartilage was then removed and the volume was directly measured with water substitution method. The cartilage volume was also determined with a validated open source image software OsiriX by two observers (A and B). The cartilage volumes obtained by two methods were compared. The reproducibility of MEDIC for quantitative measurement was accessed by the root-mean-square (RMS) of variation coefficient. Interobserver and intraobserver precision errors were compared using a paired students t-test. The accuracy of MEDIC for quantitative measurement was determined by the random pairwise differences, systematic pairwise differences and the Pearson, correlation coefficients. Time of semiautomatic and manual segmentation were recorded. Results: Time was saved about 75% by using semiautomatic segmentation methods [(4.0± 1.5) min] versus manual segmentation [(16.0±0.9) min]. Interobserver precision errors (RMS CV% for paired analysis) between A and B for cartilage volume measurement were (2.66±0.82) ml and(2.61± 0.81) ml, t=0.24, P=0.81 (patella); (2.40±0.69) ml and (2.49±0.85) ml, t=-0.45, P=0.65 (medial femoral condyle); (2.28±0.74) ml and(2.41±0.78) ml, t=-0.66, P=0.51 (lateral femoral condyle); (3.43±1.28) ml and (3.51±1.08) ml, t=-0.26, P=0.79 (femora trochlea) with sagittal MEDIC. Intraobserver precision errors (RMS CV% for paired analysis) of observer A for the first and second cartilage volume measurement were (2.64±0.62) ml and (2.67±0.60) ml, t=-0.19, P=0.85 (patella); (2.43±0.60) ml and (2.39±0.59) ml, t=0.26, P=0.80 (medial femoral condyle); (2.26±0.56) ml and (2.30±0.57) ml, t=-0.27, P=0.78 (lateral femoral condyle); (3.40± 1.20) ml and (3.47±1

  5. Imaging 2015 Mw 7.8 Gorkha Earthquake and Its Aftershock Sequence Combining Multiple Calibrated Global Seismic Arrays

    LI, B.; Ghosh, A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response

  6. TrueFisp versus HASTE sequences in 3T cine MRI: Evaluation of image quality during phonation in patients with velopharyngeal insufficiency

    Kulinna-Cosentini, Christiane; Czerny, Christian; Weber, Michael; Baumann, Arnulf; Sinko, Klaus

    2016-01-01

    To evaluate the image quality of two fast dynamic magnetic resonance imaging (MRI) sequences: True fast imaging with steady state precession (TrueFisp) was compared with half-Fourier acquired single turbo-spin-echo (HASTE) sequence for the characterization of velopharyngeal insufficiency (VPI) in repaired cleft palate patients. Twenty-two patients (10 female and 12 male; mean age, 17.7 ± 10.6 years; range, 9-31) with suspected VPI underwent 3-T MRI using TrueFisp and HASTE sequences. Imaging was performed in the sagittal plane at rest and during phonation of ''ee'' and ''k'' to assess the velum, tongue, posterior pharyngeal wall and a potential VP closure. The results were analysed independently by one radiologist and one orthodontist. HASTE performed better than TrueFisp for all evaluated items, except the tongue evaluation by the orthodontist during phonation of ''k'' and ''ee''. A statistically significant difference in favour of HASTE was observed in assessing the velum at rest and during phonation of ''k'' and ''ee'', and also in assessing VP closure in both raters (p < 0.05). TrueFisp imaging was twice as fast as HASTE (0.36 vs. 0.75 s/image). Dynamic HASTE images were of superior quality to those obtained with TrueFisp, although TrueFisp imaging was twice as fast. (orig.)

  7. Shelf life stability of lactobacilli encapsulated in raspberry powder: insights into non-dairy probiotics.

    Anekella, Kartheek; Orsat, Valérie

    2014-06-01

    Study the shelf-life quality changes in raspberry juice with encapsulated lactobacilli (Lactobacillus rhamnosus NRRL B-4495 and Lactobacillus acidophilus NRRL B-442) obtained by spray drying and understand the various factors involved. Raspberry powder was obtained from spray drying lactobacilli and raspberry juice with maltodextrin as an additive. Shelf life of the powder was analyzed over a period of 30 d. Acid and bile tolerance and antibiotic resistance was compared before and after spray drying. Water activity, survival, and scanning electron microscope images were also measured during the shelf life. A combination of processing conditions: inlet temperature (°C), maltodextrin to juice solids ratio and inlet feed rate (ml/min) during spray drying had a significant role on the survival of lactobacilli during shelf life. Refrigerated storage provided a higher shelf-life stability with regards to CFU/g (as high as 84% on day 0 and 98% retention by the end of 30 d) compared to room temperature storage. Probiotic properties during shelf life are affected by the processing conditions and encapsulated food matrix. Thus, understanding these aspects in vitro during shelf life gives us a brief insight into the future of non-dairy probiotics.

  8. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences

    Altahawi, Faysal F.; Blount, Kevin J.; Omar, Imran M. [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Morley, Nicholas P. [Marshfield Clinic, Department of Radiology, Marshfield, WI (United States); Raithel, Esther [Siemens Healthcare GmbH, Erlangen (Germany)

    2017-01-15

    To compare a faster, new, high-resolution accelerated 3D-fast-spin-echo (3D-FSE) acquisition sequence (CS-SPACE) to traditional 2D and high-resolution 3D sequences for knee 3-T magnetic resonance imaging (MRI). Twenty patients received knee MRIs that included routine 2D (T1, PD ± FS, T2-FS; 0.5 x 0.5 x 3 mm{sup 3}; ∝10 min), traditional 3D FSE (SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝7.5 min), and accelerated 3D-FSE prototype (CS-SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝5 min) acquisitions on a 3-T MRI system (Siemens MAGNETOM Skyra). Three musculoskeletal radiologists (MSKRs) prospectively and independently reviewed the studies with graded surveys comparing image and diagnostic quality. Tissue-specific signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were also compared. MSKR-perceived diagnostic quality of cartilage was significantly higher for CS-SPACE than for SPACE and 2D sequences (p < 0.001). Assessment of diagnostic quality of menisci and synovial fluid was higher for CS-SPACE than for SPACE (p < 0.001). CS-SPACE was not significantly different from SPACE but had lower assessments than 2D sequences for evaluation of bones, ligaments, muscles, and fat (p ≤ 0.004). 3D sequences had higher spatial resolution, but lower overall assessed contrast (p < 0.001). Overall image quality from CS-SPACE was assessed as higher than SPACE (p = 0.007), but lower than 2D sequences (p < 0.001). Compared to SPACE, CS-SPACE had higher fluid SNR and CNR against all other tissues (all p < 0.001). The CS-SPACE prototype allows for faster isotropic acquisitions of knee MRIs over currently used protocols. High fluid-to-cartilage CNR and higher spatial resolution over routine 2D sequences may present a valuable role for CS-SPACE in the evaluation of cartilage and menisci. (orig.)

  9. High-resolution T2-weighted MR imaging of the inner ear using a long echo-train-length 3D fast spin-echo sequence

    Naganawa, S.; Yamakawa, K.; Fukatsu, H.; Ishigaki, T.; Nakashima, T.; Sugimoto, H.; Aoki, I.; Miyazaki, M.; Takai, H.

    1996-01-01

    The purpose of this study was to assess the value of a long echo-train-length 3D fast spin-echo (3D-FSE) sequence in visualizing the inner ear structures. Ten normal ears and 50 patient ears were imaged on a 1.5T MR unit using a head coil. Axial high-resolution T2-weighted images of the inner ear and the internal auditory canal (IAC) were obtained in 15 min. In normal ears the reliability of the visualization for the inner ear structures was evaluated on original images and the targeted maximum intensity projection (MIP) images of the labyrinth. In ten normal ears, 3D surface display (3D) images were also created and compared with MIP images. On the original images the cochlear aqueduct, the vessels in the vicinity of the IAC, and more than three branches of the cranial nerves were visualized in the IAC in all the ears. The visibility of the endolympathic duct was 80%. On the MIP images the visibility of the three semicircular canals, anterior and posterior ampulla, and of more than two turns of the cochlea was 100%. The MIP images and 3D images were almost comparable. The visibility of the endolymphatic duct was 80% in normal ears and 0% in the affected ears of the patients with Meniere's disease (p<0.001). In one patient ear a small intracanalicular tumor was depicted clearly. In conclusion, the long echo train length T2-weighted 3D-FSE sequence enables the detailed visualization of the tiny structures of the inner ear and the IAC within a clinically acceptable scan time. Furthermore, obtaining a high contrast between the soft/bony tissue and the cerebrospinal/endolymph/perilymph fluid would be of significant value in the diagnosis of the pathologic conditions around the labyrinth and the IAC. (orig.)

  10. Readout-segmented echo-planar imaging improves the image quality of diffusion-weighted MR imaging in rectal cancer: Comparison with single-shot echo-planar diffusion-weighted sequences

    Xia, Chun-chao; Liu, Xi; Peng, Wan-lin; Li, Lei; Zhang, Jin-ge [Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Meng, Wen-jian; Deng, Xiang-bing [Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Zuo, Pan-li [Siemens Healthcare, MR Collaborations NE Asia, 100010, Beijing (China); Li, Zhen-lin, E-mail: lzlcd01@126.com [Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China)

    2016-10-15

    Purpose: To determine whether readout-segmented echo-planar imaging (rs-EPI) diffusion-weighted imaging (DWI) can improve the image quality in patients with rectal cancer compared with single-shot echo-planar imaging (ss-EPI) DWI using 3.0 T magnetic resonance (MR) imaging. Materials and methods: This study was approved by the Institutional Review Board, and informed consent was obtained from all patients. Seventy-one patients with rectal cancer were enrolled in this study. For all patients, both rs-EPI and ss-EPI DWI were performed using a 3T MR scanner. Two radiologists independently assessed the overall image quality, lesion conspicuity, geometric distortion and distinction of anatomical structures. The signal-to-noise ratio (SNR), lesion contrast, contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) were also measured. Comparisons of the quantitative and qualitative parameters between the two sequences were performed using the paired t-test and the Wilcoxon signed rank test. Results: The scores of overall image quality, lesion conspicuity, geometric distortion and distinction of anatomical structures of rs-EPI were all significantly higher than those of ss-EPI (all p < 0.05). The SNR and CNR were higher in rs-EPI than those in ss-EPI (all p < 0.05). There was no significant difference between ss-EPI and rs-EPI with regard to ROI size and mean ADCs of the tumour (p = 0.574 and p = 0.479, respectively), but the mean ADC of the normal tissue was higher in rs-EPI than in ss-EPI (1.73 ± 0.30 × 10{sup −3} mm{sup 2}/s vs. 1.60 ± 0.31 × 10{sup −3} mm{sup 2}/s, p = 0.001). Conclusions: DW imaging based on readout-segmented echo-planar imaging is a clinically useful technique to improve the image quality for the purpose of evaluating lesions in patients with rectal tumours.

  11. Comparison of a T1-weighted inversion-recovery-, gradient-echo- and spin-echo sequence for imaging of the brain at 3.0 Tesla

    Stehling, C.; Niederstadt, T.; Kraemer, S.; Kugel, H.; Schwindt, W.; Heindel, W.; Bachmann, R.

    2005-01-01

    Purpose: The increased T1 relaxation times at 3.0 Tesla lead to a reduced T1 contrast, requiring adaptation of imaging protocols for high magnetic fields. This prospective study assesses the performance of three techniques for T1-weighted imaging (T1w) at 3.0 T with regard to gray-white differentiation and contrast-to-noise-ratio (CNR). Materials and Methods: Thirty-one patients were examined at a 3.0 T system with axial T1 w inversion recovery (IR), spin-echo (SE) and gradient echo (GE) sequences and after contrast enhancement (CE) with CE-SE and CE-GE sequences. For qualitative analysis, the images were ranked with regard to artifacts, gray-white differentiation, image noise and overall diagnostic quality. For quantitative analysis, the CNR was calculated, and cortex and basal ganglia were compared with the white matter. Results: In the qualitative analysis, IR was judged superior to SE and GE for gray-white differentiation, image noise and overall diagnostic quality, but inferior to the GE sequence with regard to artifacts. CE-GE proved superior to CE-SE in all categories. In the quantitative analysis, CNR of the based ganglia was highest for IR, followed by GE and SE. For the CNR of the cortex, no significant difference was found between IR (16.9) and GE (15.4) but both were superior to the SE (9.4). The CNR of the cortex was significantly higher for CE-GE compared to CE-SE (12.7 vs. 7.6, p<0.001), but the CNR of the basal ganglia was not significantly different. Conclusion: For unenhanced T1w imaging at 3.0 T, the IR technique is, despite increased artifacts, the method of choice due to its superior gray-white differentiation and best overall image quality. For CE-studies, GE sequences are recommended. For cerebral imaging, SE sequences give unsatisfactory results at 3.0 T. (orig.)

  12. SU-E-I-51: Use of Blade Sequences in Cervical Spine MR Imaging for Eliminating Motion, Truncation and Flow Artifacts

    Mavroidis, P [University of Texas Health Science Center, UTHSCSA, San Antonio, TX (United States); Lavdas, E; Kostopoulos, S; Ninos, C; Strikou, A; Glotsos, D; Vlachopoulou, A; Oikonomou, G [Technological Education Institute of Athens, Athens, Athens (Greece); Economopoulos, N [General University Hospital ATTIKON, Athens, Athens (Greece); Roka, V [Health Center of Farkadona, Trikala (Greece); Sakkas, G [Center for Research and Technology of Thessaly, Trikala (Greece); Tsagkalis, A; Batsikas, G [IASO Thessalias Hospital, Larissa (Greece); Statkahis, S [Cancer Therapy and Research Center, San Antonio, TX (United States); Papanikolaou, N [University of Texas HSC SA, San Antonio, TX (United States)

    2014-06-01

    Purpose: To assess the efficacy of the BLADE technique to eliminate motion, truncation, flow and other artifacts in Cervical Spine MRI compared to the conventional technique. To study the ability of the examined sequences to reduce the indetention and wrap artifacts, which have been reported in BLADE sagittal sequences. Methods: Forty consecutive subjects, who had been routinely scanned for cervical spine examination using four different image acquisition techniques, were analyzed. More specifically, the following pairs of sequences were compared: a) T2 TSE SAG vs. T2 TSE SAG BLADE and b) T2 TIRM SAG vs. T2 TIRM SAG BLADE. A quantitative analysis was performed using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures. A qualitative analysis was also performed by two radiologists, who graded seven image characteristics on a 5-point scale (0:non-visualization; 1:poor; 2:average; 3:good; 4:excellent). The observers also evaluated the presence of image artifacts (motion, truncation, flow, indentation). Results: Based on the findings of the quantitative analysis, the ReCON values of the CSF (cerebrospinal fluid)/SC (spinal cord) between TIRM SAG and TIRM SAG BLADE were found to present statistical significant differences (p<0.001). Regarding motion and truncation artifacts, the T2 TSE SAG BLADE was superior compared to the T2 TSE SAG and the T2 TIRM SAG BLADE was superior compared to the T2 TIRM SAG. Regarding flow artifacts, T2 TIRM SAG BLADE eliminated more artifacts compared to the T2 TIRM SAG. Conclusion: The use of BLADE sequences in cervical spine MR examinations appears to be capable of potentially eliminating motion, pulsatile flow and trancation artifacts. Furthermore, BLADE sequences are proposed to be used in the standard examination protocols based on the fact that a significantly improved image quality could be achieved.

  13. SU-E-I-51: Use of Blade Sequences in Cervical Spine MR Imaging for Eliminating Motion, Truncation and Flow Artifacts

    Mavroidis, P; Lavdas, E; Kostopoulos, S; Ninos, C; Strikou, A; Glotsos, D; Vlachopoulou, A; Oikonomou, G; Economopoulos, N; Roka, V; Sakkas, G; Tsagkalis, A; Batsikas, G; Statkahis, S; Papanikolaou, N

    2014-01-01

    Purpose: To assess the efficacy of the BLADE technique to eliminate motion, truncation, flow and other artifacts in Cervical Spine MRI compared to the conventional technique. To study the ability of the examined sequences to reduce the indetention and wrap artifacts, which have been reported in BLADE sagittal sequences. Methods: Forty consecutive subjects, who had been routinely scanned for cervical spine examination using four different image acquisition techniques, were analyzed. More specifically, the following pairs of sequences were compared: a) T2 TSE SAG vs. T2 TSE SAG BLADE and b) T2 TIRM SAG vs. T2 TIRM SAG BLADE. A quantitative analysis was performed using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures. A qualitative analysis was also performed by two radiologists, who graded seven image characteristics on a 5-point scale (0:non-visualization; 1:poor; 2:average; 3:good; 4:excellent). The observers also evaluated the presence of image artifacts (motion, truncation, flow, indentation). Results: Based on the findings of the quantitative analysis, the ReCON values of the CSF (cerebrospinal fluid)/SC (spinal cord) between TIRM SAG and TIRM SAG BLADE were found to present statistical significant differences (p<0.001). Regarding motion and truncation artifacts, the T2 TSE SAG BLADE was superior compared to the T2 TSE SAG and the T2 TIRM SAG BLADE was superior compared to the T2 TIRM SAG. Regarding flow artifacts, T2 TIRM SAG BLADE eliminated more artifacts compared to the T2 TIRM SAG. Conclusion: The use of BLADE sequences in cervical spine MR examinations appears to be capable of potentially eliminating motion, pulsatile flow and trancation artifacts. Furthermore, BLADE sequences are proposed to be used in the standard examination protocols based on the fact that a significantly improved image quality could be achieved

  14. Diagnostic performance of the three-dimensional fast spin echo-Cube sequence in comparison with a conventional imaging protocol in evaluation of the lachrymal drainage system

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li; Liu, Rong; Xiong, Wei

    2015-01-01

    To compare the three-dimensional (3D)-fast spin-echo (FSE)-Cube with a conventional imaging protocol in evaluation of dacryostenosis. Thirty-three patients with epiphora underwent examinations using Cube magnetic resonance dacryocystography (MRD) and a conventional protocol, which included 3D fast-recovery fast spin-echo (FRFSE) MRD and two-dimensional (2D)-FSE sequences at 3.0 T. Using lachrymal endoscopic findings as the reference standard, we calculated the sensitivity and specificity of both protocols for detecting lachrymal drainage system (LDS) obstruction and their accuracies in depicting the level of obstruction. Comparable coronal and axial images were selected for bot sequences. Two neuroradiologists graded paired images for blurring, artefacts, anatomic details, and overall image quality. The two methods showed no significant difference in sensitivity (89.5 % vs. 94.7 %; p =0.674), specificity (64.3 %; p =1) or accuracy (86.8 %; p =1) in detecting or depicting LDS obstruction. Blurring and artefacts were significantly better on 2D-FSE images (p 0.05). In comparison with the conventional protocol, Cube MRD demonstrates satisfactory image quality and similar diagnostic capability for cases of possible LDS disease. (orig.)

  15. Magnetic Resonance Cholangiopancreatography: Image Quality, Ductal Morphology, and Value of Additional T2- and T1-weighted Sequences for the Assessment of Suspected Pancreatic Cancer

    Lopez Haenninen, E.; Ricke, H.; Amthauer, H.; Roettgen, R.; Boehmig, M.; Langrehr, J.; Pech, M.; Denecke, T.; Rosewicz, S.; Felix, R.

    2005-01-01

    Purpose: To assess image quality and duct morphology on magnetic resonance cholangiopancreatography (MRCP) and also the value of additional T2- and T1-weighted sequences for differentiation of benignity and malignancy in patients with suspected pancreatic tumors. Material and Methods: One-hundred-and-fourteen patients received MRCP and unenhanced and contrast material-enhanced MR imaging. MR results were analyzed independently by two blinded readers, and subsequently correlated with the results from surgery, biopsy, and follow-up. Assessment included the evaluation of image quality, duct visualization and morphology, and the differentiation of pancreatic lesion status (benign versus malignant).Results: Overall, 49 patients had benign final diagnoses, while 65 had a malignant diagnosis. Image quality of single-shot thick-slab MRCP was rated significantly better than the MIP images of multisection MRCP. With MRCP alone, the two readers' accuracy in the assessment of pancreatic lesion status was 72% (95% CI, 64% to 83%) and 69% (95% CI, 56% to 77%), respectively; with the addition of T2- and T1-weighted images the accuracy significantly improved to 89% (95% CI, 82% to 95%) and 84% (95% CI, 77% to 92%) for readers 1 and 2, respectively. Conclusion: Single-shot thick-slab MRCP and multisection MRCP provide complementary results; however, single-shot MRCP had superior image quality. Moreover, assessment of ductal morphology with MRCP alone facilitated the diagnosis of different pathologic conditions of the pancreatobiliary system in the majority of patients. However, with the addition of T2- and T1-weighted sequences the overall diagnostic accuracy was significantly improved and thus we consider that a comprehensive MR approach should comprise both MRCP techniques and parenchymal sequences

  16. Liver imaging at 3.0 T: Diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: Feasibility study

    I.C. van den Bos (Indra); S.M. Hussain (Shahid); G.P. Krestin (Gabriel); P.A. Wielopolski (Piotr)

    2008-01-01

    textabstractInstitutional Review Board approval and signed informed consent were obtained by all participants for an ongoing sequence optimization project at 3.0 T. The purpose of this study was to evaluate breath-hold diffusion-induced blackblood echo-planar imaging (BBEPI) as a potential

  17. Highstand shelf fans: The role of buoyancy reversal in the deposition of a new type of shelf sand body

    Steel, Elisabeth; Simms, Alexander R.; Warrick, Jonathan; Yokoyama, Yusuke

    2016-01-01

    Although sea-level highstands are typically associated with sediment-starved continental shelves, high sea level does not hinder major river floods. Turbidity currents generated by plunging of sediment-laden rivers at the fluvial-marine interface, known as hyperpycnal flows, allow for cross-shelf transport of suspended sand beyond the coastline. Hyperpycnal flows in southern California have deposited six subaqueous fans on the shelf of the northern Santa Barbara Channel in the Holocene. Using eight cores and nine grab samples, we describe the deposits, age, and stratigraphic architecture of two fans in the Santa Barbara Channel. Fan lobes have up to 3 m of relief and are composed of multiple hyperpycnite beds ∼5 cm to 40 cm thick. Deposit architecture and geometry suggest the hyperpycnal flows became positively buoyant and lifted off the seabed, resulting in well-sorted, structureless, elongate sand lobes. Contrary to conventional sequence stratigraphic models, the presence of these features on the continental shelf suggests that active-margin shelves may locally develop high-quality reservoir sand bodies during sea-level highstands, and that such shelves need not be solely the site of sediment bypass. These deposits may provide a Quaternary analogue to many well-sorted sand bodies in the rock record that are interpreted as turbidites but lack typical Bouma-type features.

  18. Encoding and recall of finger sequences in experienced pianists compared with musically naïve controls: a combined behavioral and functional imaging study.

    Pau, S; Jahn, G; Sakreida, K; Domin, M; Lotze, M

    2013-01-01

    Long-term intensive sensorimotor training alters functional representation of the motor and sensory system and might even result in structural changes. However, there is not much knowledge about how previous training impacts learning transfer and functional representation. We tested 14 amateur pianists and 15 musically naïve participants in a short-term finger sequence training procedure, differing considerably from piano playing and measured associated functional representation with functional magnetic resonance imaging. The conditions consisted of encoding a finger sequence indicated by hand symbols ("sequence encoding") and subsequently replaying the sequence from memory, both with and without auditory feedback ("sequence retrieval"). Piano players activated motor areas and the mirror neuron system more strongly than musically naïve participants during encoding. When retrieving the sequence, musically naïve participants showed higher activation in similar brain areas. Thus, retrieval activations of naïve participants were comparable to encoding activations of piano players, who during retrieval performed the sequences more accurately despite lower motor activations. Interestingly, both groups showed primary auditory activation even during sequence retrieval without auditory feedback, supporting previous reports about coactivation of the auditory cortex after learned association with motor performance. When playing with auditory feedback, only pianists lateralized to the left auditory cortex. During encoding activation in left primary somatosensory cortex in the height of the finger representations had a predictive value for increased motor performance later on (error rates). Contrarily, decreased performance was associated with increased visual cortex activation during encoding. Our study extends previous reports about training transfer of motor knowledge resulting in superior training effects in musicians. Performance increase went along with activity in

  19. The OMERACT psoriatic arthritis magnetic resonance imaging scoring system (PsAMRIS): definitions of key pathologies, suggested MRI sequences, and preliminary scoring system for PsA Hands

    Østergaard, Mikkel; McQueen, Fiona; Wiell, Charlotte

    2009-01-01

    This article describes a preliminary OMERACT psoriatic arthritis magnetic resonance image scoring system (PsAMRIS) for evaluation of inflammatory and destructive changes in PsA hands, which was developed by the international OMERACT MRI in inflammatory arthritis group. MRI definitions of important...... pathologies in peripheral PsA and suggestions concerning appropriate MRI sequences for use in PsA hands are also provided....

  20. Modelling estimation and analysis of dynamic processes from image sequences using temporal random closed sets and point processes with application to the cell exocytosis and endocytosis

    Díaz Fernández, Ester

    2010-01-01

    In this thesis, new models and methodologies are introduced for the analysis of dynamic processes characterized by image sequences with spatial temporal overlapping. The spatial temporal overlapping exists in many natural phenomena and should be addressed properly in several Science disciplines such as Microscopy, Material Sciences, Biology, Geostatistics or Communication Networks. This work is related to the Point Process and Random Closed Set theories, within Stochastic Ge...

  1. MR imaging of hyaline cartilage at 0.5 T: a quantitative and qualitative in vitro evaluation of three types of sequences

    Linden, E. van der; Kroon, H.M.; Doornbos, J.; Bloem, J.L.; Hermans, J.

    1998-01-01

    Objective. To identify an optimal pulse sequence for in vitro imaging of hyaline cartilage at 0.5 T. Materials and methods. Twelve holes of varying diameter and depth were drilled in cartilage of two pig knees. These were submerged in saline and scanned with a 0.5-T MR system. Sixteen T1-weighted gradient echo (GE), two T2-weighted GE, and 16 fast spin echo sequences were used, by varying repetition time (TR), echo time (TE), flip angle (FA), echo train length, profile order, and by use of fat saturation. Contrast-to-noise ratios (CNR) of cartilage versus saline solution and cartilage versus subchondral bone were measured. Cartilaginous lesions were evaluated separately by three independent observers. Interobserver variability and correlation between the quantitative and qualitative analyses were calculated. Results. The mean CNRs of two specimens of cartilage versus saline solution ranged from 6.3 (±2.1) to 27.7 (±2.5), and those of cartilage versus subchondral bone from 0.3 (±0.2) to 22.5 (±1.4). The highest CNR was obtained with a T1-weighted spoiled 3D-GE technique (TR 65 ms, TE 11.5 ms, FA 45 ). The number of lesions observed per sequence varied from 35 to 69. Observer agreement was fair to good. The T1-weighted spoiled GE sequences with a TR of 65 ms, TE of 11.5 ms and FA of 30 and 45 were significantly superior to the other 34 sequences in the qualitative analysis. Conclusion. T1-weighted spoiled 3D-GE sequences with a TR of 65 ms, a TE of 11.5 ms, and a FA of 30-45 were found to be optimal for in vitro imaging of cartilage at 0.5 T. (orig.)

  2. MR imaging of hyaline cartilage at 0.5 T: a quantitative and qualitative in vitro evaluation of three types of sequences

    Linden, E. van der; Kroon, H.M.; Doornbos, J.; Bloem, J.L. [Department of Radiology C2-S, Albinusdreef 2, Leiden University Medical Center, Postbus 9600, NL-2300 RC Leiden (Netherlands); Hermans, J. [Department of Medical Statistics, Leiden University Medical Center, Leiden (Netherlands)

    1998-06-01

    Objective. To identify an optimal pulse sequence for in vitro imaging of hyaline cartilage at 0.5 T. Materials and methods. Twelve holes of varying diameter and depth were drilled in cartilage of two pig knees. These were submerged in saline and scanned with a 0.5-T MR system. Sixteen T1-weighted gradient echo (GE), two T2-weighted GE, and 16 fast spin echo sequences were used, by varying repetition time (TR), echo time (TE), flip angle (FA), echo train length, profile order, and by use of fat saturation. Contrast-to-noise ratios (CNR) of cartilage versus saline solution and cartilage versus subchondral bone were measured. Cartilaginous lesions were evaluated separately by three independent observers. Interobserver variability and correlation between the quantitative and qualitative analyses were calculated. Results. The mean CNRs of two specimens of cartilage versus saline solution ranged from 6.3 ({+-}2.1) to 27.7 ({+-}2.5), and those of cartilage versus subchondral bone from 0.3 ({+-}0.2) to 22.5 ({+-}1.4). The highest CNR was obtained with a T1-weighted spoiled 3D-GE technique (TR 65 ms, TE 11.5 ms, FA 45 ). The number of lesions observed per sequence varied from 35 to 69. Observer agreement was fair to good. The T1-weighted spoiled GE sequences with a TR of 65 ms, TE of 11.5 ms and FA of 30 and 45 were significantly superior to the other 34 sequences in the qualitative analysis. Conclusion. T1-weighted spoiled 3D-GE sequences with a TR of 65 ms, a TE of 11.5 ms, and a FA of 30-45 were found to be optimal for in vitro imaging of cartilage at 0.5 T. (orig.) With 8 figs., 1 tab., 31 refs.

  3. Technical innovation in dynamic contrast-enhanced magnetic resonance imaging of musculoskeletal tumors: an MR angiographic sequence using a sparse k-space sampling strategy.

    Fayad, Laura M; Mugera, Charles; Soldatos, Theodoros; Flammang, Aaron; del Grande, Filippo

    2013-07-01

    We demonstrate the clinical use of an MR angiography sequence performed with sparse k-space sampling (MRA), as a method for dynamic contrast-enhanced (DCE)-MRI, and apply it to the assessment of sarcomas for treatment response. Three subjects with sarcomas (2 with osteosarcoma, 1 with high-grade soft tissue sarcomas) underwent MRI after neoadjuvant therapy/prior to surgery, with conventional MRI (T1-weighted, fluid-sensitive, static post-contrast T1-weighted sequences) and DCE-MRI (MRA, time resolution = 7-10 s, TR/TE 2.4/0.9 ms, FOV 40 cm(2)). Images were reviewed by two observers in consensus who recorded image quality (1 = diagnostic, no significant artifacts, 2 = diagnostic, 75 % with good response, >75 % with poor response). DCE-MRI findings were concordant with histological response (arterial enhancement with poor response, no arterial enhancement with good response). Unlike conventional DCE-MRI sequences, an MRA sequence with sparse k-space sampling is easily integrated into a routine musculoskeletal tumor MRI protocol, with high diagnostic quality. In this preliminary work, tumor enhancement characteristics by DCE-MRI were used to assess treatment response.

  4. Technical innovation in dynamic contrast-enhanced magnetic resonance imaging of musculoskeletal tumors: an MR angiographic sequence using a sparse k-space sampling strategy

    Fayad, Laura M.; Mugera, Charles; Grande, Filippo del; Soldatos, Theodoros; Flammang, Aaron

    2013-01-01

    We demonstrate the clinical use of an MR angiography sequence performed with sparse k-space sampling (MRA), as a method for dynamic contrast-enhanced (DCE)-MRI, and apply it to the assessment of sarcomas for treatment response. Three subjects with sarcomas (2 with osteosarcoma, 1 with high-grade soft tissue sarcomas) underwent MRI after neoadjuvant therapy/prior to surgery, with conventional MRI (T1-weighted, fluid-sensitive, static post-contrast T1-weighted sequences) and DCE-MRI (MRA, time resolution = 7-10 s, TR/TE 2.4/0.9 ms, FOV 40 cm 2 ). Images were reviewed by two observers in consensus who recorded image quality (1 = diagnostic, no significant artifacts, 2 = diagnostic, 75 % with good response, >75 % with poor response). DCE-MRI findings were concordant with histological response (arterial enhancement with poor response, no arterial enhancement with good response). Unlike conventional DCE-MRI sequences, an MRA sequence with sparse k-space sampling is easily integrated into a routine musculoskeletal tumor MRI protocol, with high diagnostic quality. In this preliminary work, tumor enhancement characteristics by DCE-MRI were used to assess treatment response. (orig.)

  5. Nonuniform multiview color texture mapping of image sequence and three-dimensional model for faded cultural relics with sift feature points

    Li, Na; Gong, Xingyu; Li, Hongan; Jia, Pengtao

    2018-01-01

    For faded relics, such as Terracotta Army, the 2D-3D registration between an optical camera and point cloud model is an important part for color texture reconstruction and further applications. This paper proposes a nonuniform multiview color texture mapping for the image sequence and the three-dimensional (3D) model of point cloud collected by Handyscan3D. We first introduce nonuniform multiview calibration, including the explanation of its algorithm principle and the analysis of its advantages. We then establish transformation equations based on sift feature points for the multiview image sequence. At the same time, the selection of nonuniform multiview sift feature points is introduced in detail. Finally, the solving process of the collinear equations based on multiview perspective projection is given with three steps and the flowchart. In the experiment, this method is applied to the color reconstruction of the kneeling figurine, Tangsancai lady, and general figurine. These results demonstrate that the proposed method provides an effective support for the color reconstruction of the faded cultural relics and be able to improve the accuracy of 2D-3D registration between the image sequence and the point cloud model.

  6. SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study

    Adamson, J; Chang, Z; Cai, J; Palta, M; Horton, J; Yin, F; Blitzblau, R [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized prone on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique.

  7. SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study

    Adamson, J; Chang, Z; Cai, J; Palta, M; Horton, J; Yin, F; Blitzblau, R

    2015-01-01

    Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized prone on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique

  8. Same day injections of Tc-99m methoxy isobutyl isonitrile (hexamibi) for myocardial tomographic imaging: Comparison between rest-stress and stress-rest injection sequences

    Taillefer, R.; Gagnon, A.; Laflamme, L.; Leveille, J.; Phaneuf, D.C.

    1989-01-01

    It has been shown that both rest and stress 99m Tc-hexamibi myocardial perfusion imaging can be performed on the same day using two different doses injected within few h (the first one at rest followed by a second at stress). In order to evaluate and compare 2 sequences (rest-stress and stress-rest) of 99m Tc-hexamibi injections performed the same day, 18 patients with either abnormal 201 Tl myocardial scan or abnormal coronary angiography were studied with 2 99m Tc-hexamibi injections protocols. The rest-stress study was performed as follows: 7 mCi 99m Tc-hexamibi was injected at rest. Single photon emission computed tomography (SPECT) was performed 60 min later. Immediately after the rest study, patients were injected at peak stress with 25 mCi 99m Tc-hexamibi. Tomographic imaging was repeated 1 h later. Patients were submitted to the stress-rest protocol within 3 days. Tomographic imaging was done 1 h after a 7 mCi injection at stress. This study was followed by an injection of 25 mCi 99m Tc-hexamibi at rest, a tomographic study was performed 60 min later. Myocardial sections were reconstructed in horizontal long, vertical long, and short axes. Data analysis also included polar map representation. A total of 324 segments were interpreted blind by 3 observers, there was an agreement in 283/324 (87.3%) segments between the 2 protocols. However, 24 segments (7.4%) judged ischemic on rest-stress were called scars on stress-rest. In three patients, myocardial segments were judged normal on the rest image of the rest-stress protocol while they were found abnormal (false positive images) on the stress-rest sequence. Stress images from both protocols were judged similar in 17 patients. In conclusion, when using a short time interval (less than 2 h) between two 99m Tc-hexamibi injections, it is preferable to do a rest-stress sequence since the rest image performed initially represents a true rest study, which is not necessarily the case with the stress-rest sequence

  9. The role of MR imaging with Half Fourier Acquired Single Shot Turbo Spin Echo sequence in the diagnosis of lung lesions in comparison with multislice CT

    Hekimoglu, B.; Gurgen, F.; Tatar, I.G.; Aydin, H.; Kizilgoz, V.; Keyik, B.

    2013-01-01

    Objective: To compare the diagnostic values of magnetic resonance imaging using Half Fourier Acquired Single Shot Turbo Spin Echo sequence and multidetector computed tomography in patients with pathologically examined pulmonary lesions. Methods: The retrospective, descriptive study was conducted at Radiology Department, Diskapi Research Hospital, Ankara, Turkey, and comprised records of patients with pathologically examined pulmonary lesions between May 2009 and March 2012. Patients were divided into three groups and examined by both multi dedector computed tomography and magnetic resonance imaging. During the imaging, patients were not administered any intravenous contrast medium. Electrocardiogram gating and breath holding were not performed in echo sequence. Pulmonary lesions were evaluated on the basis of their dimensions, numbers, differentiation from atelectasis and consolidation, invasion to the thoracic wall-mediastinal structures and presence of lymphadenopathies. Results: Sensitivity of all patients was 50% (p=0.214) and specificity of CT and MRI were 82.5% (p=0.134) for the detectability of submilimetric nodules . For differentiation of the mass from atelectasis and consolidation, the sensitivity of computed tomography was statistically more significant compared to magnetic resonance imaging (86.6%; p=0.035). For the invasion of the mass to the mediastinal structures and the thoracic wall, the sensitivity of magnetic resonance imaging was statistically more significant compared to tomography (86.6%; p=0.035). Conclusion: HASTE sequence can be used to determine the invasion of the pulmonary mass to the mediastinal structures and the thoracic wall since it is more sensitive than computed tomography. It can also be used to detect submilimetric nodules. It has equal sensitivity and specificity compared to computed tomography. But computed tomography is superior for the differentiation of the mass from atelectasis and consolidation. (author)

  10. B1 mapping for bias-correction in quantitative T1 imaging of the brain at 3T using standard pulse sequences.

    Boudreau, Mathieu; Tardif, Christine L; Stikov, Nikola; Sled, John G; Lee, Wayne; Pike, G Bruce

    2017-12-01

    B 1 mapping is important for many quantitative imaging protocols, particularly those that include whole-brain T 1 mapping using the variable flip angle (VFA) technique. However, B 1 mapping sequences are not typically available on many magnetic resonance imaging (MRI) scanners. The aim of this work was to demonstrate that B 1 mapping implemented using standard scanner product pulse sequences can produce B 1 (and VFA T 1 ) maps comparable in quality and acquisition time to advanced techniques. Six healthy subjects were scanned at 3.0T. An interleaved multislice spin-echo echo planar imaging double-angle (EPI-DA) B 1 mapping protocol, using a standard product pulse sequence, was compared to two alternative methods (actual flip angle imaging, AFI, and Bloch-Siegert shift, BS). Single-slice spin-echo DA B 1 maps were used as a reference for comparison (Ref. DA). VFA flip angles were scaled using each B 1 map prior to fitting T 1 ; the nominal flip angle case was also compared. The pooled-subject voxelwise correlation (ρ) for B 1 maps (BS/AFI/EPI-DA) relative to the reference B 1 scan (Ref. DA) were ρ = 0.92/0.95/0.98. VFA T 1 correlations using these maps were ρ = 0.86/0.88/0.96, much better than without B 1 correction (ρ = 0.53). The relative error for each B 1 map (BS/AFI/EPI-DA/Nominal) had 95 th percentiles of 5/4/3/13%. Our findings show that B 1 mapping implemented using product pulse sequences can provide excellent quality B 1 (and VFA T 1 ) maps, comparable to other custom techniques. This fast whole-brain measurement (∼2 min) can serve as an excellent alternative for researchers without access to advanced B 1 pulse sequences. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1673-1682. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Seismic stratigraphy and late Quaternary shelf history, south-central Monterey Bay, California

    Chin, J.L.; Clifton, H.E.; Mullins, H.T.

    1988-01-01

    The south-central Monterey Bay shelf is a high-energy, wave-dominated, tectonically active coastal region on the central California continental margin. A prominent feature of this shelf is a sediment lobe off the mouth of the Salinas River that has surface expression. High-resolution seismic-reflection profiles reveal that an angular unconformity (Quaternary?) underlies the entire shelf and separates undeformed strata above it from deformed strata below it. The Salinas River lobe is a convex bulge on the shelf covering an area of approximately 72 km2 in water depths from 10 to 90 m. It reaches a maximum thickness of 35 m about 2.5 km seaward of the river mouth and thins in all directions away from this point. Adjacent shelf areas are characterized by only a thin (2 to 5 m thick) and uniform veneer of sediment. Acoustic stratigraphy of the lobe is complex and is characterized by at least three unconformity-bounded depositional sequences. Acoustically, these sequences are relatively well bedded. Acoustic foresets occur within the intermediate sequence and dip seaward at 0.7?? to 2.0??. Comparison with sedimentary sequences in uplifted onshore Pleistocene marine-terrace deposits of the Monterey Bay area, which were presumably formed in a similar setting under similar processes, suggests that a general interpretation can be formulated for seismic stratigraphic patterns. Depositional sequences are interpreted to represent shallowing-upwards progradational sequences of marine to nonmarine coastal deposits formed during interglacial highstands and/or during early stages of falling sea level. Acoustic foresets within the intermediate sequence are evidence of seaward progradation. Acoustic unconformities that separate depositional sequences are interpreted as having formed largely by shoreface planation and may be the only record of the intervening transgressions. The internal stratigraphy of the Salinas River lobe thus suggests that at least several late Quaternary

  12. Influence of estuaries on shelf foraminiferal species

    Nigam, R.

    Dabhol-bhatkal stretch of the west coast of India is marked by a number of estuaries. Cavarotalia annectens is selected to monitor the influence of these estuaries on the inner shelf foraminiferal fauna. The percentage distribution of this species...

  13. Southwest Florida Shelf Ecosystems Analysis Study

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southwest Florida Shelf Ecosystems Analysis Study produced grain size analyses in the historic 073 format for 299 sea floor samples collected from October 25,...

  14. The shelf life of dyed polymethylmethacrylate dosimeters

    Bett, R.; Watts, M.F.; Plested, M.E.

    2002-01-01

    The long-term stability of the radiation response of Harwell Red 4034 and Amber 3042 Perspex Dosimeters has been monitored for more than 15 years, and the resulting data used in the justification of their shelf-life specifications

  15. Tidal Mixing at the Shelf Break

    Hogg, Nelson; Legg, Sonya

    2005-01-01

    The aim of this project was to study mixing forced by tidal flow over sudden changes in topographic slope such as near the shelf-break, using high-resolution nonhydrostatic numerical simulations employing the MIT gem...

  16. Radurisation of broilers for shelf life extension

    Bok, H.E.; Holzapfel, W.H.; Van der Linde, H.J.

    1982-01-01

    Radurization is discussed as a method for the shelf life extension of refrigerated chicken carcasses. One of the advantages is that radurization eliminates potential food pathogenic bacteria like Salmonella in the chicken carcasses. Materials and methods for the radurization of chicken are discussed. The objective of the investigation was to determine the influence of different irradiation doses and storage conditions on the microbiological shelf life and organoleptic quality of fresh broilers

  17. How ice shelf morphology controls basal melting

    Little, Christopher M.; Gnanadesikan, Anand; Oppenheimer, Michael

    2009-12-01

    The response of ice shelf basal melting to climate is a function of ocean temperature, circulation, and mixing in the open ocean and the coupling of this external forcing to the sub-ice shelf circulation. Because slope strongly influences the properties of buoyancy-driven flow near the ice shelf base, ice shelf morphology plays a critical role in linking external, subsurface heat sources to the ice. In this paper, the slope-driven dynamic control of local and area-integrated melting rates is examined under a wide range of ocean temperatures and ice shelf shapes, with an emphasis on smaller, steeper ice shelves. A 3-D numerical ocean model is used to simulate the circulation underneath five idealized ice shelves, forced with subsurface ocean temperatures ranging from -2.0°C to 1.5°C. In the sub-ice shelf mixed layer, three spatially distinct dynamic regimes are present. Entrainment of heat occurs predominately under deeper sections of the ice shelf; local and area-integrated melting rates are most sensitive to changes in slope in this "initiation" region. Some entrained heat is advected upslope and used to melt ice in the "maintenance" region; however, flow convergence in the "outflow" region limits heat loss in flatter portions of the ice shelf. Heat flux to the ice exhibits (1) a spatially nonuniform, superlinear dependence on slope and (2) a shape- and temperature-dependent, internally controlled efficiency. Because the efficiency of heat flux through the mixed layer decreases with increasing ocean temperature, numerical simulations diverge from a simple quadratic scaling law.

  18. Modified, Packaged Tortillas Have Long Shelf Life

    Bourland, Charles; Glaus-Late, Kimberly

    1995-01-01

    Tortillas made from modified recipe and sealed in low-pressure nitrogen in foil pouches in effort to increase their shelf life at room temperature. Preliminary tests show that shelf life of these tortillas at least five months; in contrast, commercial tortillas last only few days. Part of water in recipe replaced with glycerin. Particularly necessary to avoid Clostridium botulinum, which grows in anaerobic environments and produces deadly toxin that causes botulism.

  19. Comprehensive small animal imaging strategies on a clinical 3 T dedicated head MR-scanner; adapted methods and sequence protocols in CNS pathologies.

    Deepu R Pillai

    Full Text Available BACKGROUND: Small animal models of human diseases are an indispensable aspect of pre-clinical research. Being dynamic, most pathologies demand extensive longitudinal monitoring to understand disease mechanisms, drug efficacy and side effects. These considerations often demand the concomitant development of monitoring systems with sufficient temporal and spatial resolution. METHODOLOGY AND RESULTS: This study attempts to configure and optimize a clinical 3 Tesla magnetic resonance scanner to facilitate imaging of small animal central nervous system pathologies. The hardware of the scanner was complemented by a custom-built, 4-channel phased array coil system. Extensive modification of standard sequence protocols was carried out based on tissue relaxometric calculations. Proton density differences between the gray and white matter of the rodent spinal cord along with transverse relaxation due to magnetic susceptibility differences at the cortex and striatum of both rats and mice demonstrated statistically significant differences. The employed parallel imaging reconstruction algorithms had distinct properties dependent on the sequence type and in the presence of the contrast agent. The attempt to morphologically phenotype a normal healthy rat brain in multiple planes delineated a number of anatomical regions, and all the clinically relevant sequels following acute cerebral ischemia could be adequately characterized. Changes in blood-brain-barrier permeability following ischemia-reperfusion were also apparent at a later time. Typical characteristics of intra-cerebral haemorrhage at acute and chronic stages were also visualized up to one month. Two models of rodent spinal cord injury were adequately characterized and closely mimicked the results of histological studies. In the employed rodent animal handling system a mouse model of glioblastoma was also studied with unequivocal results. CONCLUSIONS: The implemented customizations including extensive

  20. Comprehensive Small Animal Imaging Strategies on a Clinical 3 T Dedicated Head MR-Scanner; Adapted Methods and Sequence Protocols in CNS Pathologies

    Pillai, Deepu R.; Heidemann, Robin M.; Lanz, Titus; Dittmar, Michael S.; Sandner, Beatrice; Beier, Christoph P.; Weidner, Norbert; Greenlee, Mark W.; Schuierer, Gerhard; Bogdahn, Ulrich; Schlachetzki, Felix

    2011-01-01

    Background Small animal models of human diseases are an indispensable aspect of pre-clinical research. Being dynamic, most pathologies demand extensive longitudinal monitoring to understand disease mechanisms, drug efficacy and side effects. These considerations often demand the concomitant development of monitoring systems with sufficient temporal and spatial resolution. Methodology and Results This study attempts to configure and optimize a clinical 3 Tesla magnetic resonance scanner to facilitate imaging of small animal central nervous system pathologies. The hardware of the scanner was complemented by a custom-built, 4-channel phased array coil system. Extensive modification of standard sequence protocols was carried out based on tissue relaxometric calculations. Proton density differences between the gray and white matter of the rodent spinal cord along with transverse relaxation due to magnetic susceptibility differences at the cortex and striatum of both rats and mice demonstrated statistically significant differences. The employed parallel imaging reconstruction algorithms had distinct properties dependent on the sequence type and in the presence of the contrast agent. The attempt to morphologically phenotype a normal healthy rat brain in multiple planes delineated a number of anatomical regions, and all the clinically relevant sequels following acute cerebral ischemia could be adequately characterized. Changes in blood-brain-barrier permeability following ischemia-reperfusion were also apparent at a later time. Typical characteristics of intra-cerebral haemorrhage at acute and chronic stages were also visualized up to one month. Two models of rodent spinal cord injury were adequately characterized and closely mimicked the results of histological studies. In the employed rodent animal handling system a mouse model of glioblastoma was also studied with unequivocal results. Conclusions The implemented customizations including extensive sequence protocol

  1. Evaluation of iron colloid-enhanced T{sub 2}-weighted fast MR imaging of hepatocellular carcinoma. Comparison of SE, TSE and TGSE sequences

    Sugihara, Shuji; Suto, Yuji; Kamba, Masayuki; Yoshida, Kotarou; Ohta, Yoshio [Tottori Univ., Yonago (Japan). Faculty of Medicine

    1996-06-01

    We have applied chondroitin sulfate iron colloid (CSIC) as a contrast agent for MRI in detecting hepatocellular carcinoma (HCC) on conventional spin-echo sequences (SE). In this report, we evaluated CSIC-enhanced T{sub 2}-weighted fast MR imaging of HCC. MR imaging were performed before and after i.v. administration of CSIC in 15 patients with 46 HCCs. T{sub 2}-weighted SE (1800/80/2, 210 x 256 matrix), T{sub 2}-weighted turbo spin-echo (TSE1800) (1800/90/5, echo train length=7, 252 x 256 matrix), TSE (3500/90/5, echo train length=7, 252 x 256 matrix) (TSE7), TSE (3500/99/5, echo train length=11, 242 x 256 matrix) (TSE11) and T{sub 2}-weighted turbo-gradient spine-echo (TGSE) (4500/108/4, echo train length=33, 252 x 256 matrix) images were compared quantitatively and qualitatively. In all sequences, liver signal-to-noise ratio (SNR) was significantly decreased and lesion-to-liver contrast-to-noise ratio (CNR) was significantly increased after CSIC administration. Although decreased ratio in liver and tumor SNR caused by CSIC was smaller on TSE sequences compared with SE and TGSE, increased ratio in lesion-to-liver CNR was largest on TSE7. Either before or after i.v. administration of CSIC, the number of detectable lesions was largest on TSE7. TSE with used longer TR, TE and decreased echo factor was useful method for CSIC-enhanced abdominal MR imaging. (author)

  2. Evaluating Current Practices in Shelf Life Estimation.

    Capen, Robert; Christopher, David; Forenzo, Patrick; Huynh-Ba, Kim; LeBlond, David; Liu, Oscar; O'Neill, John; Patterson, Nate; Quinlan, Michelle; Rajagopalan, Radhika; Schwenke, James; Stroup, Walter

    2018-02-01

    The current International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) methods for determining the supported shelf life of a drug product, described in ICH guidance documents Q1A and Q1E, are evaluated in this paper. To support this evaluation, an industry data set is used which is comprised of 26 individual stability batches of a common drug product where most batches are measured over a 24 month storage period. Using randomly sampled sets of 3 or 6 batches from the industry data set, the current ICH methods are assessed from three perspectives. First, the distributional properties of the supported shelf lives are summarized and compared to the distributional properties of the true shelf lives associated with the industry data set, assuming the industry data set represents a finite population of drug product batches for discussion purposes. Second, the results of the ICH "poolability" tests for model selection are summarized and the separate shelf life distributions from the possible alternative models are compared. Finally, the ICH methods are evaluated in terms of their ability to manage risk. Shelf life estimates that are too long result in an unacceptable percentage of nonconforming batches at expiry while those that are too short put the manufacturer at risk of possibly having to prematurely discard safe and efficacious drug product. Based on the analysis of the industry data set, the ICH-recommended approach did not produce supported shelf lives that effectively managed risk. Alternative approaches are required.

  3. Multi-Decadal Averages of Basal Melt for Ross Ice Shelf, Antarctica Using Airborne Observations

    Das, I.; Bell, R. E.; Tinto, K. J.; Frearson, N.; Kingslake, J.; Padman, L.; Siddoway, C. S.; Fricker, H. A.

    2017-12-01

    Changes in ice shelf mass balance are key to the long term stability of the Antarctic Ice Sheet. Although the most extensive ice shelf mass loss currently is occurring in the Amundsen Sea sector of West Antarctica, many other ice shelves experience changes in thickness on time scales from annual to ice age cycles. Here, we focus on the Ross Ice Shelf. An 18-year record (1994-2012) of satellite radar altimetry shows substantial variability in Ross Ice Shelf height on interannual time scales, complicating detection of potential long-term climate-change signals in the mass budget of this ice shelf. Variability of radar signal penetration into the ice-shelf surface snow and firn layers further complicates assessment of mass changes. We investigate Ross Ice Shelf mass balance using aerogeophysical data from the ROSETTA-Ice surveys using IcePod. We use two ice-penetrating radars; a 2 GHz unit that images fine-structure in the upper 400 m of the ice surface and a 360 MHz radar to identify the ice shelf base. We have identified internal layers that are continuous along flow from the grounding line to the ice shelf front. Based on layer continuity, we conclude that these layers must be the horizons between the continental ice of the outlet glaciers and snow accumulation once the ice is afloat. We use the Lagrangian change in thickness of these layers, after correcting for strain rates derived using modern day InSAR velocities, to estimate multidecadal averaged basal melt rates. This method provides a novel way to quantify basal melt, avoiding the confounding impacts of spatial and short-timescale variability in surface accumulation and firn densification processes. Our estimates show elevated basal melt rates (> -1m/yr) around Byrd and Mullock glaciers within 100 km from the ice shelf front. We also compare modern InSAR velocity derived strain rates with estimates from the comprehensive ground-based RIGGS observations during 1973-1978 to estimate the potential magnitude of

  4. Evaluation of an accelerated 3D SPACE sequence with compressed sensing and free-stop scan mode for imaging of the knee.

    Henninger, B; Raithel, E; Kranewitter, C; Steurer, M; Jaschke, W; Kremser, C

    2018-05-01

    To prospectively evaluate a prototypical 3D turbo-spin-echo proton-density-weighted sequence with compressed sensing and free-stop scan mode for preventing motion artefacts (3D-PD-CS-SPACE free-stop) for knee imaging in a clinical setting. 80 patients underwent 3T magnetic resonance imaging (MRI) of the knee with our 2D routine protocol and with 3D-PD-CS-SPACE free-stop. In case of a scan-stop caused by motion (images are calculated nevertheless) the sequence was repeated without free-stop mode. All scans were evaluated by 2 radiologists concerning image quality of the 3D-PD-CS-SPACE (with and without free-stop). Important knee structures were further assessed in a lesion based analysis and compared to our reference 2D-PD-fs sequences. Image quality of the 3D-PD-CS-SPACE free-stop was found optimal in 47/80, slightly compromised in 21/80, moderately in 10/80 and severely in 2/80. In 29/80, the free-stop scan mode stopped the 3D-PD-CS-SPACE due to subject motion with a slight increase of image quality at longer effective acquisition times. Compared to the 3D-PD-CS-SPACE with free-stop, the image quality of the acquired 3D-PD-CS-SPACE without free-stop was found equal in 6/29, slightly improved in 13/29, improved with equal contours in 8/29, and improved with sharper contours in 2/29. The lesion based analysis showed a high agreement between the results from the 3D-PD-CS-SPACE free-stop and our 2D-PD-fs routine protocol (overall agreement 96.25%-100%, Cohen's Kappa 0.883-1, p SPACE free-stop is a reliable alternative for standard 2D-PD-fs protocols with acceptable acquisition times. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Magnetic resonance imaging in cadaver dogs with metallic vertebral implants at 3 Tesla: evaluation of the WARP-turbo spin echo sequence.

    Griffin, John F; Archambault, Nicholas S; Mankin, Joseph M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Kerwin, Sharon C

    2013-11-15

    Laboratory investigation, ex vivo. Postoperative complications are common after spinal implantation procedures, and magnetic resonance imaging (MRI) would be the ideal modality to image these patients. Unfortunately, the implants cause artifacts that can render MRI nondiagnostic. The WARP-turbo spin echo (TSE) sequence has been developed to mitigate artifacts caused by metal. The objective of this investigation was to evaluate the performance of the WARP-TSE sequence in canine cadaver specimens after implantation with metallic vertebral implants. Magnetic field strength, implant type, and MRI acquisition technique all play a role in the severity of susceptibility artifacts. The WARP-TSE sequence uses increased bandwidth, view angle tilting, and SEMAC (slice-encoding metal artifact correction) to correct for susceptibility artifact. The WARP-TSE technique has outperformed conventional techniques in patients, after total hip arthroplasty. However, published reports of its application in subjects with vertebral column implants are lacking. Ex vivo anterior stabilization of the atlantoaxial joint was performed on 6 adult small breed (implantation with stainless steel implants. N/A.

  6. 41 CFR 101-27.205 - Shelf-life codes.

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Shelf-life codes. 101-27...-Management of Shelf-Life Materials § 101-27.205 Shelf-life codes. Shelf-life items shall be identified by use of a one-digit code to provide for uniform coding of shelf-life materials by all agencies. (a) The...

  7. Phenotypic and molecular characterization of a tomato (Solanum lycopersicum L.) F2 population segregation for improving shelf life.

    Yogendra, K N; Ramanjini Gowda, P H

    2013-02-27

    Breeding for better quality fruits is a major focus for tomatoes, which are continuously subjected to post-harvest losses. Several methods have been used to improve the fruit shelf life of tomatoes, including the use of ripening gene mutants of Solanum lycopersicum. We developed extended shelf-life tomato hybrids with better quality fruits using ripening mutants. Nine tomato crosses were developed using 3 fruit ripening gene mutants of S. lycopersicum [alcobaca (alc), non-ripening, and ripening inhibitor] and 3 agronomically superior Indian cultivars ('Sankranti', 'Vaibhav', and 'Pusaruby') with short shelf life. The hybrid progenies developed from alc x 'Vaibhav' had the highest extended shelf life (up to 40 days) compared with that of other varieties and hybrids. Further, the F(2) progenies of alc x 'Vaibhav' were evaluated for fruit quality traits and yield parameters. A wide range of genetic variability was observed in shelf life (5-106 days) and fruit firmness (0.55-10.65 lbs/cm(2)). The potential polymorphic simple sequence repeat markers underlying shelf life traits were identified in an F(2) mapping population. The marker association with fruit quality traits and yield was confirmed with single-marker analysis and composite interval mapping. The genetic parameters analyzed in the parents and F(1) and F(2) populations indicated that the cross between the cultivar 'Vaibhav' and ripening gene mutant alc yielded fruit with long shelf life and good quality.

  8. Geochemical record of Holocene to Recent sedimentation on the Western Indus continental shelf, Arabian Sea

    Limmer, David R.; BöNing, Philipp; Giosan, Liviu; Ponton, Camilo; KöHler, Cornelia M.; Cooper, Matthew J.; Tabrez, Ali R.; Clift, Peter D.

    2012-01-01

    We present a multiproxy geochemical analysis of two cores recovered from the Indus Shelf spanning the Early Holocene to Recent (<14 ka). Indus-23 is located close to the modern Indus River, while Indus-10 is positioned ˜100 km further west. The Holocene transgression at Indus-10 was over a surface that was strongly weathered during the last glacial sea level lowstand. Lower Holocene sediments at Indus-10 have higherɛNdvalues compared to those at the river mouth indicating some sediment supply from the Makran coast, either during the deposition or via reworking of older sediments outcropping on the shelf. Sediment transport from Makran occurred during transgressive intervals when sea level crossed the mid shelf. The sediment flux from non-Indus sources to Indus-10 peaked between 11 ka and 8 ka. A hiatus at Indus-23 from 8 ka until 1.3 ka indicates non-deposition or erosion of existing Indus Shelf sequences. HigherɛNdvalues seen on the shelf compared to the delta imply reworking of older delta sediments in building Holocene clinoforms. Chemical Index of Alteration (CIA), Mg/Al and Sr isotopes are all affected by erosion of detrital carbonate, which reduced through the Holocene. K/Al data suggest that silicate weathering peaked ca. 4-6 ka and was higher at Indus-10 compared to Indus-23. Fine-grained sediments that make up the shelf have geochemical signatures that are different from the coarser grained bulk sediments measured in the delta plain. The Indus Shelf data highlight the complexity of reconstructing records of continental erosion and provenance in marine settings.

  9. Quantitative T1 and T2* carotid atherosclerotic plaque imaging using a three-dimensional multi-echo phase-sensitive inversion recovery sequence: a feasibility study.

    Fujiwara, Yasuhiro; Maruyama, Hirotoshi; Toyomaru, Kanako; Nishizaka, Yuri; Fukamatsu, Masahiro

    2018-06-01

    Magnetic resonance imaging (MRI) is widely used to detect carotid atherosclerotic plaques. Although it is important to evaluate vulnerable carotid plaques containing lipids and intra-plaque hemorrhages (IPHs) using T 1 -weighted images, the image contrast changes depending on the imaging settings. Moreover, to distinguish between a thrombus and a hemorrhage, it is useful to evaluate the iron content of the plaque using both T 1 -weighted and T 2 *-weighted images. Therefore, a quantitative evaluation of carotid atherosclerotic plaques using T 1 and T 2 * values may be necessary for the accurate evaluation of plaque components. The purpose of this study was to determine whether the multi-echo phase-sensitive inversion recovery (mPSIR) sequence can improve T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of an IPH. T 1 and T 2 * values measured using mPSIR were compared to values from conventional methods in phantom and in vivo studies. In the phantom study, the T 1 and T 2 * values estimated using mPSIR were linearly correlated with those of conventional methods. In the in vivo study, mPSIR demonstrated higher T 1 contrast between the IPH phantom and sternocleidomastoid muscle than the conventional method. Moreover, the T 1 and T 2 * values of the blood vessel wall and sternocleidomastoid muscle estimated using mPSIR were correlated with values measured by conventional methods and with values reported previously. The mPSIR sequence improved T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of the neck region. Although further study is required to evaluate the clinical utility, mPSIR may improve carotid atherosclerotic plaque detection and provide detailed information about plaque components.

  10. ‘OMICS’-approach to regulate ripening and enhance fruit shelf-life in banana: an important fruit crop for food security

    Subhankar Mohanty

    2017-12-01

    In this study, proteins were phenol extracted from different fruit tissues (peel and pulp during different developmental (40, 60, 80 and 90-days after flowering and ripening stages (2, 4, 6, 8, 10 and 12-days after ripening of banana (cv.Grand naine, and resolved using global proteome approach. 2-D gel images were further submitted to powerful image analysis software (Image Master Platinum, Version.7.1 for qualitative and quantitative analysis. Several protein spots showed fold-change (increase and decrease in abundance, and some protein spots are unique to certain developmental and ripening stages, after image analysis.  Further, spots of interest were subjected to both MALDI-TOF/TOF-MS and LC-MS/MS (Q-TOF mass spectrophotometry for protein mass fingerprinting and peptide sequencing, after tryptic digestion of the excised protein spots. In parallel, experiments are in progress to subject the samples for transcriptome (RNAseq. analysis. Based on protein/gene sequence information corresponding genes will be isolated and cloned, and knowledge will be utilized for RNAi constructs preparation to define individual role of identified key proteins/genes in ripening and enhancing fruit shelf-life in banana.

  11. NOAA TIFF Image - 1 m Backscatter Mosaic of the Virgin Passage and the St. John Shelf, U.S. Virgin Islands, Project NF-10-03, 2010, UTM 20 WGS84

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 1 meter resolution backscatter mosaic of the Virgin Passage in the US Virgin Islands. NOAA's NOS/NCCOS/CCMA Biogeography Team, in...

  12. NOAA TIFF Image - 1 m Backscatter Mosaic of the Virgin Passage and the St. John Shelf, U.S. Virgin Islands, Project NF-10-03, 2010, UTM 20 WGS84 (NCEI Accession 0131854)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 1 meter resolution backscatter mosaic of the Virgin Passage in the US Virgin Islands. NOAA's NOS/NCCOS/CCMA Biogeography Team, in...

  13. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol.

    Kijowski, Richard; Blankenbaker, Donna G; Munoz Del Rio, Alejandro; Baer, Geoffrey S; Graf, Ben K

    2013-05-01

    To determine whether the addition of a T2 mapping sequence to a routine magnetic resonance (MR) imaging protocol could improve diagnostic performance in the detection of surgically confirmed cartilage lesions within the knee joint at 3.0 T. This prospective study was approved by the institutional review board, and the requirement to obtain informed consent was waived. The study group consisted of 150 patients (76 male and 74 female patients with an average age of 41.2 and 41.5 years, respectively) who underwent MR imaging and arthroscopy of the knee joint. MR imaging was performed at 3.0 T by using a routine protocol with the addition of a sagittal T2 mapping sequence. Images from all MR examinations were reviewed in consensus by two radiologists before surgery to determine the presence or absence of cartilage lesions on each articular surface, first by using the routine MR protocol alone and then by using the routine MR protocol with T2 maps. Each articular surface was then evaluated at arthroscopy. Generalized estimating equation models were used to compare the sensitivity and specificity of the routine MR imaging protocol with and without T2 maps in the detection of surgically confirmed cartilage lesions. The sensitivity and specificity in the detection of 351 cartilage lesions were 74.6% and 97.8%, respectively, for the routine MR protocol alone and 88.9% and 93.1% for the routine MR protocol with T2 maps. Differences in sensitivity and specificity were statistically significant (P T2 maps to the routine MR imaging protocol significantly improved the sensitivity in the detection of 24 areas of cartilage softening (from 4.2% to 62%, P T2 mapping sequence to a routine MR protocol at 3.0 T improved sensitivity in the detection of cartilage lesions within the knee joint from 74.6% to 88.9%, with only a small reduction in specificity. The greatest improvement in sensitivity with use of the T2 maps was in the identification of early cartilage degeneration. © RSNA

  14. Mean Lagrangian drift in continental shelf waves

    Drivdal, M.; Weber, J. E. H.

    2012-04-01

    The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.

  15. Interaction Between Shelf Layout and Marketing Effectiveness and Its Impact On Optimizing Shelf Arrangements

    J.E.M. van Nierop; D. Fok (Dennis); Ph.H.B.F. Franses (Philip Hans)

    2006-01-01

    textabstractAllocating the proper amount of shelf space to stock keeping units [SKUs] is an increasingly relevant and difficult topic for managers. Shelf space is a scarce resource and it has to be distributed across a larger and larger number of items. It is in particular important because the

  16. Interaction Between Shelf Layout and Marketing Effectiveness and Its Impact on Optimizing Shelf Arrangements

    van Nierop, Erjen; Fok, Dennis; Franses, Philip Hans

    2008-01-01

    In this paper, we propose and operationalize a new method for optimizing shelf arrangements. We show that there are important dependencies between the layout of the shelf and stock-keeping unit (SKU) sales and marketing effectiveness. The importance of these dependencies is further shown by the

  17. Towards radiological diagnosis of abdominal adhesions based on motion signatures derived from sequences of cine-MRI images.

    Fenner, John; Wright, Benjamin; Emberey, Jonathan; Spencer, Paul; Gillott, Richard; Summers, Angela; Hutchinson, Charles; Lawford, Pat; Brenchley, Paul; Bardhan, Karna Dev

    2014-06-01

    This paper reports novel development and preliminary application of an image registration technique for diagnosis of abdominal adhesions imaged with cine-MRI (cMRI). Adhesions can severely compromise the movement and physiological function of the abdominal contents, and their presence is difficult to detect. The image registration approach presented here is designed to expose anomalies in movement of the abdominal organs, providing a movement signature that is indicative of underlying structural abnormalities. Validation of the technique was performed using structurally based in vitro and in silico models, supported with Receiver Operating Characteristic (ROC) methods. For the more challenging cases presented to the small cohort of 4 observers, the AUC (area under curve) improved from a mean value of 0.67 ± 0.02 (without image registration assistance) to a value of 0.87 ± 0.02 when image registration support was included. Also, in these cases, a reduction in time to diagnosis was observed, decreasing by between 20% and 50%. These results provided sufficient confidence to apply the image registration diagnostic protocol to sample magnetic resonance imaging data from healthy volunteers as well as a patient suffering from encapsulating peritoneal sclerosis (an extreme form of adhesions) where immobilization of the gut by cocooning of the small bowel is observed. The results as a whole support the hypothesis that movement analysis using image registration offers a possible method for detecting underlying structural anomalies and encourages further investigation. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Shelf Life Prediction for Canned Gudeg using Accelerated Shelf Life Testing (ASLT) Based on Arrhenius Method

    Nurhayati, R.; Rahayu NH, E.; Susanto, A.; Khasanah, Y.

    2017-04-01

    Gudeg is traditional food from Yogyakarta. It is consist of jackfruit, chicken, egg and coconut milk. Gudeg generally have a short shelf life. Canning or commercial sterilization is one way to extend the shelf life of gudeg. This aims of this research is to predict the shelf life of Andrawinaloka canned gudeg with Accelerated Shelf Life Test methods, Arrhenius model. Canned gudeg stored at three different temperature, there are 37, 50 and 60°C for two months. Measuring the number of Thio Barbituric Acid (TBA), as a critical aspect, were tested every 7 days. Arrhenius model approach is done with the equation order 0 and order 1. The analysis showed that the equation of order 0 can be used as an approach to estimating the shelf life of canned gudeg. The storage of Andrawinaloka canned gudeg at 30°C is predicted untill 21 months and 24 months for 25°C.

  19. Quantitative assessment of hepatic function: modified look-locker inversion recovery (MOLLI) sequence for T1 mapping on Gd-EOB-DTPA-enhanced liver MR imaging

    Yoon, Jeong Hee [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Lee, Jeong Min; Han, Joon Koo; Choi, Byung Ihn [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Jongno-gu, Seoul (Korea, Republic of); Paek, Munyoung [Siemens Healthcare, Seoul (Korea, Republic of)

    2016-06-15

    To determine whether multislice T1 mapping of the liver using a modified look-locker inversion recovery (MOLLI) sequence on gadoxetic acid-enhanced magnetic resonance imaging (MRI) can be used as a quantitative tool to estimate liver function and predict the presence of oesophageal or gastric varices. Phantoms filled with gadoxetic acid were scanned three times using MOLLI sequence to test repeatability. Patients with chronic liver disease or liver cirrhosis who underwent gadoxetic acid-enhanced liver MRI including MOLLI sequence at 3 T were included (n = 343). Pre- and postcontrast T1 relaxation times of the liver (T1liver), changes between pre- and postcontrast T1liver (ΔT1liver), and adjusted postcontrast T1liver (postcontrast T1liver-T1spleen/T1spleen) were compared among Child-Pugh classes. In 62 patients who underwent endoscopy, all T1 parameters and spleen sizes were correlated with varices. Phantom study showed excellent repeatability of MOLLI sequence. As Child-Pugh scores increased, pre- and postcontrast T1liver were significantly prolonged (P < 0.001), and ΔT1liver and adjusted postcontrast T1liver decreased (P< 0.001). Adjusted postcontrast T1liver and spleen size were independently associated with varices (R{sup 2} = 0.29, P < 0.001). T1 mapping of the liver using MOLLI sequence on gadoxetic acid-enhanced MRI demonstrated potential in quantitatively estimating liver function, and adjusted postcontrast T1liver was significantly associated with varices. (orig.)

  20. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint

    Stahl, Robert [University of California, Musculoskeletal and Quantitative Imaging Group, Department of Radiology, San Francisco, CA (United States); University Hospitals - Campus Grosshadern, Ludwig Maximilians University of Munich, Department of Clinical Radiology, Munich (Germany); Krug, Roland; Zuo, Jin; Majumdar, Sharmila; Link, Thomas M. [University of California, Musculoskeletal and Quantitative Imaging Group, Department of Radiology, San Francisco, CA (United States); Kelley, Douglas A.C. [General Electrics Healthcare Technologies, San Francisco, CA (United States); Ma, C.B. [University of California, Department of Orthopedic Surgery, San Francisco, CA (United States)

    2009-08-15

    The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0 T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0 T MRI. Optimized MRI sequences for cartilage imaging at 3.0 T were tailored for 7.0 T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified. At 7.0 T, SNR was increased (p<0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p<0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p<0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p < 0.05) at 7.0 T due to limited performance of IM-w FSE. Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use. (orig.)

  1. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint

    Stahl, Robert; Krug, Roland; Zuo, Jin; Majumdar, Sharmila; Link, Thomas M.; Kelley, Douglas A.C.; Ma, C.B.

    2009-01-01

    The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0 T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0 T MRI. Optimized MRI sequences for cartilage imaging at 3.0 T were tailored for 7.0 T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified. At 7.0 T, SNR was increased (p<0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p<0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p<0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p < 0.05) at 7.0 T due to limited performance of IM-w FSE. Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use. (orig.)

  2. Automatic detection of the carotid artery boundary on cross-sectional MR image sequences using a circle model guided dynamic programming

    Brambs Hans

    2011-04-01

    Full Text Available Abstract Background Systematic aerobe training has positive effects on the compliance of dedicated arterial walls. The adaptations of the arterial structure and function are associated with the blood flow-induced changes of the wall shear stress which induced vascular remodelling via nitric oxide delivered from the endothelial cell. In order to assess functional changes of the common carotid artery over time in these processes, a precise measurement technique is necessary. Before this study, a reliable, precise, and quick method to perform this work is not present. Methods We propose a fully automated algorithm to analyze the cross-sectional area of the carotid artery in MR image sequences. It contains two phases: (1 position detection of the carotid artery, (2 accurate boundary identification of the carotid artery. In the first phase, we use intensity, area size and shape as features to discriminate the carotid artery from other tissues and vessels. In the second phase, the directional gradient, Hough transform, and circle model guided dynamic programming are used to identify the boundary accurately. Results We test the system stability using contrast degraded images (contrast resolutions range from 50% to 90%. The unsigned error ranges from 2.86% ± 2.24% to 3.03% ± 2.40%. The test of noise degraded images (SNRs range from 16 to 20 dB shows the unsigned error ranging from 2.63% ± 2.06% to 3.12% ± 2.11%. The test of raw images has an unsigned error 2.56% ± 2.10% compared to the manual tracings. Conclusions We have proposed an automated system which is able to detect carotid artery cross sectional boundary in MRI sequences during heart cycles. The accuracy reaches 2.56% ± 2.10% compared to the manual tracings. The system is stable, reliable and results are reproducible.

  3. Prenatal imaging of amniotic band sequence: utility and role of fetal MRI as an adjunct to prenatal US

    Neuman, Jeremy; Calvo-Garcia, Maria A.; Kline-Fath, Beth M.; Bitters, Constance; Merrow, Arnold C.; Guimaraes, Carolina V.A.; Lim, Foong-Yen

    2012-01-01

    Amniotic band sequence and its US manifestations have been well-described. There is little information, however, regarding the accuracy and utility of fetal MRI. To describe the MRI findings in amniotic band sequence and to compare the diagnostic accuracy of MRI and US. Prenatal MRI and US studies were retrospectively reviewed in 14 consecutive pregnancies with confirmed amniotic band sequence. Both studies were evaluated for amniotic band visualization, body part affected, type of deformity, umbilical cord involvement and vascular abnormality. Amniotic bands were confidently identified with MRI in 8 fetuses (57%), suggested with MRI in 3 fetuses (21%) and confidently seen by US in 13 fetuses (93%). Neither modality detected surgically proven bands on one fetus. Both techniques were equally able to define the body part affected and the type of deformity. At least one limb abnormality was visualized in all cases and truncal involvement was present in two cases. Cord involvement was identified in seven cases, with one case detected only by MRI. Fetal MRI is able to visualize amniotic bands and their secondary manifestations and could be complementary to prenatal US when fetal surgery is contemplated. (orig.)

  4. Optimal MR pulse sequences for hepatic hemangiomas : comparison of T2-weighted turbo-spin-echo, T2-weighted breath-hold turbo-spin-echo, and T1-weighted FLASH dynamic imaging

    Wang, Wen Chao; Choi, Byung Ihn; Han, Joon Koo; Kim, Tae Kyoung; Cho, Soon Gu

    1997-01-01

    To optimize MR imaging pulse sequences in the imaging of hepatic hemangioma and to evaluate on dynamic MR imaging the enhancing characteristics of the lesions. Twenty patients with 35 hemangiomas were studied by using Turbo-spin-echo (TSE) sequence (T2-weighted, T2- and heavily T2-weighted breath-hold) and T1-weighted FLASH imaging acquired before, immediately on, and 1, 3 and 5 minutes after injection of a bolus of Gd-DTPA (0.1mmol/kg). Phased-array multicoil was employed. Images were quantitatively analyzed for lesion-to-liver signal difference to noise ratios (SD/Ns), and lesion-to-liver signal ratios (H/Ls), and qualitatively analyzed for lesion conspicuity. The enhancing characteristics of the hemangiomas were described by measuring the change of signal intensity as a curve in T1-weighted FLASH dynamic imaging. For T2-weighted images, breath-hold T2-weighted TSE had a slightly higher SD/N than other pulse sequences, but there was no statistical difference in three fast pulse sequences (p=0.211). For lesion conspicuity, heavily T2-weighted breath-hold TSE images was superior to T2-weighted breath-hold or non-breath-hold TSE (H/L, 5.75, 3.81, 2.87, respectively, p<0.05). T2-weighted breath-hold TSE imaging was more effective than T2-weighted TSE imaging in removing lesion blurring or lack of sharpness, and there was a 12-fold decrease in acquisition time (20sec versus 245 sec). T1-weighted FLASH dynamic images of normal liver showed peak enhancement at less than 1 minute, and of hemangioma at more than 3 minutes;the degree of enhancement for hemangioma decreased after a 3 minute delay. T2-weighed breath-hold TSE imaging and Gd-DTPA enhanced FLASH dynamic imaging with 5 minutes delay are sufficient for imaging hepatic hemangiomas

  5. Three dimensional and high resolution magnetic resonance imaging of the inner ear. Normal ears and anomaly scanned with 3D-CISS sequence

    Edamatsu, Hideo; Uechi, Yoko; Honjyo, Shiro; Yamashita, Koichi; Tonami, Hisao.

    1997-01-01

    The MRI system used in this study was a new scanning sequence, 3D-CISS (Three dimensional-constructive interference in steady state) with 1.5 Tesla. Ten normal ears and one ear with Mondini type anomaly were scanned and reconstructed. In imagings of normal inner ears, the cochlea has three spiral layers; basal, middle and apical turns. Each turn was separated into three parts; the scala vestibuli, osseous spiral lamina and scala tympani. Three semicircular ducts, utricle and saccule were also reconstructed in one frame. In the inner ear of Mondini anomaly, 3D MRI showed cochlear aplasia, hypoplasia of semicircular ducts and widely dilated vestibule. The imaging was identical with findings of ''common cavity''. The anomaly was easily recognized in 3D MRI more than in 2D imagings. The detailed and cubic imagings of the Mondini anomaly in 3D MRI could not be observed with conventional 2D MRI. 3D MRI is not invasive method and can scan a target very quickly. (author)

  6. Magnetic resonance imaging of pelvic entheses - a systematic comparison between short tau inversion recovery (STIR) and T1-weighted, contrast-enhanced, fat-saturated sequences

    Klang, Eyal; Aharoni, Dvora; Rimon, Uri; Eshed, Iris; Hermann, Kay-Geert; Herman, Amir; Shazar, Nachshon

    2014-01-01

    To assess the contribution of contrast material in detecting and evaluating enthesitis of pelvic entheses by MRI. Sixty-seven hip or pelvic 1.5-T MRIs (30:37 male:female, mean age: 53 years) were retrospectively evaluated for the presence of hamstring and gluteus medius (GM) enthesitis by two readers (a resident and an experienced radiologist). Short tau inversion recovery (STIR) and T1-weighted pre- and post-contrast (T1+Gd) images were evaluated by each reader at two sessions. A consensus reading of two senior radiologists was regarded as the gold standard. Clinical data was retrieved from patients' referral form and medical files. Cohen's kappa was used for intra- and inter-observer agreement calculation. Diagnostic properties were calculated against the gold standard reading. A total of 228 entheses were evaluated. Gold standard analysis diagnosed 83 (36 %) enthesitis lesions. Intra-reader reliability for the experienced reader was significantly (p = 0.0001) higher in the T1+Gd images compared to the STIR images (hamstring: k = 0.84/0.45, GM: k = 0.84/0.47). Sensitivity and specificity increased from 0.74/0.8 to 0.87/0.9 in the STIR images and T1+Gd sequences. Intra-reader reliability for the inexperienced reader was lower (p > 0.05). Evidence showing that contrast material improves the reliability, sensitivity, and specificity of detecting enthesitis supports its use in this setting. (orig.)

  7. 3D double-echo steady-state sequence assessment of hip joint cartilage and labrum at 3 Tesla: comparative analysis of magnetic resonance imaging and intraoperative data

    Schleich, Christoph; Antoch, Gerald [University of Dusseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Duesseldorf (Germany); Hesper, Tobias; Rettegi, Fanni; Zilkens, Christoph; Krauspe, Ruediger; Bittersohl, Bernd [University of Dusseldorf, Department of Orthopedic Surgery, Medical Faculty, Duesseldorf (Germany); Hosalkar, Harish S. [Paradise Valley Hospital, Joint Preservation and Deformity Correction, San Diego, CA (United States); Tri-city Medical Center, Hip Preservation, San Diego, CA (United States)

    2017-10-15

    To assess the diagnostic accuracy of a high-resolution, three-dimensional (3D) double-echo steady-state (DESS) sequence with radial imaging at 3 Tesla (T) for evaluating cartilage and labral alterations in the hip. Magnetic resonance imaging (MRI) data obtained at 3 T, including radially reformatted DESS images and intraoperative data of 45 patients (mean age 42 ± 13.7 years) who underwent hip arthroscopy, were compared. The acetabular cartilage and labrum of the upper hemisphere of the acetabulum and the central femoral head cartilage were evaluated. Sensitivity, specificity, accuracy, and negative and positive predictive values were determined. Sensitivity, specificity and accuracy of the DESS technique were 96.7%, 75% and 93.7% for detecting cartilage lesions and 98%, 76.2% and 95.9% for detecting labral lesions. The positive and negative predictive values for detecting or ruling out cartilage lesions were 96% and 78.9%. For labral lesions, the positive and negative predictive values were 97.5% and 80%. A high-resolution, 3D DESS technique with radial imaging at 3 T demonstrated high accuracy for detecting hip cartilage and labral lesions with excellent interobserver agreement and moderate correlation between MRI and intraoperative assessment. (orig.)

  8. Magnetic resonance imaging of articular cartilage in the knee. Evaluation of 3D-fat-saturation FLASH sequence in normal volunteer and patient with osteoarthritis

    Sato, Katsuhiko

    1996-01-01

    MR imaging of normal and abnormal articular cartilage of the knee was performed using 3D-fat-saturation FLASH sequence (FSF). Contrast-to-noise ratios between the cartilage and fluid, and cartilage and bone marrow were evaluated respectively in 10 normal volunteers. The optimal imaging parameters were determined as flip angle of 40deg and TE of 10 ms. Good correlation was noted between MR images and macroscopic appearance of the hyaline cartilages in the cadaver knees. Comparison of MR and radiographic findings was made in 39 cases of osteoarthritis. MR was significantly more sensitive than radiography in detecting cartilage abnormalities. In patient with radiographically normal joint spaces, cartilage abnormality was detected by MRI in the medial compartment of 13 cases and the lateral compartment of 19 cases. Signal intensity of joint effusion was sufficiently suppressed and did not hamper evaluation of the cartilages. FSF method was considered as a valuable imaging technique in the evaluation of cartilage abnormalities of the knee. (author)

  9. Magnetic resonance imaging of articular cartilage in the knee. Evaluation of 3D-fat-saturation FLASH sequence in normal volunteer and patient with osteoarthritis

    Sato, Katsuhiko [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1996-07-01

    MR imaging of normal and abnormal articular cartilage of the knee was performed using 3D-fat-saturation FLASH sequence (FSF). Contrast-to-noise ratios between the cartilage and fluid, and cartilage and bone marrow were evaluated respectively in 10 normal volunteers. The optimal imaging parameters were determined as flip angle of 40deg and TE of 10 ms. Good correlation was noted between MR images and macroscopic appearance of the hyaline cartilages in the cadaver knees. Comparison of MR and radiographic findings was made in 39 cases of osteoarthritis. MR was significantly more sensitive than radiography in detecting cartilage abnormalities. In patient with radiographically normal joint spaces, cartilage abnormality was detected by MRI in the medial compartment of 13 cases and the lateral compartment of 19 cases. Signal intensity of joint effusion was sufficiently suppressed and did not hamper evaluation of the cartilages. FSF method was considered as a valuable imaging technique in the evaluation of cartilage abnormalities of the knee. (author)

  10. Contribution to the tracking and the 3D reconstruction of scenes composed of torus from image sequences a acquired by a moving camera

    Naudet, S.

    1997-01-01

    The three-dimensional perception of the environment is often necessary for a robot to correctly perform its tasks. One solution, based on the dynamic vision, consists in analysing time-varying monocular images to estimate the spatial geometry of the scene. This thesis deals with the reconstruction of torus by dynamic vision. Though this object class is restrictive, it enables to tackle the problem of reconstruction of bent pipes usually encountered in industrial environments. The proposed method is based on the evolution of apparent contours of objects in the sequence. Using the expression of torus limb boundaries, it is possible to recursively estimate the object three-dimensional parameters by minimising the error between the predicted projected contours and the image contours. This process, which is performed by a Kalman filter, does not need a precise knowledge of the camera displacement or any matching of the tow limbs belonging to the same object. To complete this work, temporal tracking of objects which deals with occlusion situations is proposed. The approach consists in modeling and interpreting the apparent motion of objects in the successive images. The motion interpretation, based on a simplified representation of the scene, allows to recover pertinent three-dimensional information which is used to manage occlusion situations. Experiments, on synthetic and real images, proves he validity of the tracking and the reconstruction processes. (author)

  11. Value of Perineural Edema/Inflammation Detected by Fat Saturation Sequences in Lumbar Magnetic Resonance Imaging of Patients with Unilateral Sciatica

    Sirvanci, M.; Duran, C. (Dept. of Radiology, Faculty of Medicine, Istanbul Bilim Univ., Istanbul (Turkey)); Kara, B.; Onat, L.; Ulusoy, O.L.; Mutlu, A. (Dept. of Radiology of Florence Nightingale Hospital, Istanbul (Turkey)); Ozturk, E. (Dept. of Radiology, GATA Haydarpasa Teaching Hospital, Istanbul (Turkey)); Karatoprak, O. (Dept. of Orthopeadic Surgery, Kadikoy Florence Nightingale Hospital, Istanbul (Turkey))

    2009-02-15

    Background: Routine lumbar spine magnetic resonance imaging (MRI) may not show any evidence of the cause of sciatica in some cases. The relationship between nerve root compression detected on lumbar MRI and sciatica is also sometimes uncertain. Purpose: To ascertain whether axial (and, when necessary, sagittal and coronal) short-tau inversion recovery or fat-saturated T2-weighted MRI findings can be used to study the level of sciatica in patients with a non-yielding routine MRI examination. Material and Methods: A total of 215 patients with unilateral sciatica underwent MRI. All patients were asked to complete pain drawing forms describing their pain dermatomal distributions. Perineural edema/inflammation corresponding to the pain location indicated by the pain drawings was sought on short-tau inversion recovery or fat-saturated T2-weighted images. Results: Routine MRI findings revealed that 110 of the 215 patients had nerve root compromise related to the patients' symptoms. Routine MRI could not ascertain the cause of these symptoms in the remaining 105 patients. In 31 (29.5%) of these 105 patients, short-tau inversion recovery or fat-saturated T2-weighted magnetic resonance images revealed perineural edema/inflammation surrounding the nerve roots related to the pain locations indicated in the pain drawings. Conclusion: Axial (and, when required, sagittal and coronal) short-tau inversion recovery or fat-saturated T2-weighted magnetic resonance images may be helpful for revealing additional findings in cases of unexplained sciatica in standard magnetic resonance imaging. However, the value of this imaging may be not great enough to justify routine use of these additional sequences to study the level of sciatica

  12. Value of Perineural Edema/Inflammation Detected by Fat Saturation Sequences in Lumbar Magnetic Resonance Imaging of Patients with Unilateral Sciatica

    Sirvanci, M.; Duran, C.; Kara, B.; Onat, L.; Ulusoy, O.L.; Mutlu, A.; Ozturk, E.; Karatoprak, O.

    2009-01-01

    Background: Routine lumbar spine magnetic resonance imaging (MRI) may not show any evidence of the cause of sciatica in some cases. The relationship between nerve root compression detected on lumbar MRI and sciatica is also sometimes uncertain. Purpose: To ascertain whether axial (and, when necessary, sagittal and coronal) short-tau inversion recovery or fat-saturated T2-weighted MRI findings can be used to study the level of sciatica in patients with a non-yielding routine MRI examination. Material and Methods: A total of 215 patients with unilateral sciatica underwent MRI. All patients were asked to complete pain drawing forms describing their pain dermatomal distributions. Perineural edema/inflammation corresponding to the pain location indicated by the pain drawings was sought on short-tau inversion recovery or fat-saturated T2-weighted images. Results: Routine MRI findings revealed that 110 of the 215 patients had nerve root compromise related to the patients' symptoms. Routine MRI could not ascertain the cause of these symptoms in the remaining 105 patients. In 31 (29.5%) of these 105 patients, short-tau inversion recovery or fat-saturated T2-weighted magnetic resonance images revealed perineural edema/inflammation surrounding the nerve roots related to the pain locations indicated in the pain drawings. Conclusion: Axial (and, when required, sagittal and coronal) short-tau inversion recovery or fat-saturated T2-weighted magnetic resonance images may be helpful for revealing additional findings in cases of unexplained sciatica in standard magnetic resonance imaging. However, the value of this imaging may be not great enough to justify routine use of these additional sequences to study the level of sciatica

  13. Delineation of the anatomical relationship of innominate artery and trachea by respiratory-gated MR imaging with true FISP sequence in patients with severe motor and intellectual disabilities

    Fujikawa, Yoshinao; Sato, Noriko; Sugai, Kenji; Endo, Yusaku; Matsufuji, Hiroki; Oomi, Tsuyoshi; Honzawa, Shiho; Sasaki, Masayuki

    2008-01-01

    Tracheoinnominate artery fistula is a well-known complication that arises on using a cannula. Therefore, routine examination of the anatomical relationship of the innominate artery and trachea should be carried out. We evaluated the usefulness of magnetic resonance imaging in 5 patients with severe motor and intellectual disabilities (SMID) using a combination of true-fast imaging of steady-state precession (true-FISP) sequences and two-dimensional prospective acquisition correction (2D-PACE). For all patients, the trachea and the innominate artery were identified without sedation and contrast media. In one patient, the innominate artery was observed to be pressing on the trachea. In three patients, the trachea and innominate artery were brought very close each other, and in the other patient the anatomical relationship of the trachea and surrounding structure was delineated before tracheotomy. The validity of true-FISP sequences combined with the respiratory-gated technique was confirmed useful for the patients who are difficult to lie quietly and to hold their breath voluntarily. (author)

  14. Contribution to the reconstruction of scenes made of cylindrical and polyhedral objects from sequences of images obtained by a moving camera

    Viala, Marc

    1992-01-01

    Environment perception is an important process which enables a robot to perform actions in an unknown scene. Although many sensors exist to 'give sight', the camera seems to play a leading part. This thesis deals with the reconstruction of scenes made of cylindrical and polyhedral objects from sequences of images provided by a moving camera. Two methods are presented. Both are based on the evolution of apparent contours of objects in a sequence. The first approach has been developed considering that camera motion is known. Despite the good results obtained by this method, the specific conditions it requires makes its use limited. In order to avoid an accurate evaluation of camera motion, we introduce another method allowing, at the same time, to estimate the object parameters and camera positions. In this approach, only is needed a 'poor' knowledge of camera displacements supplied by the control system of the robotic platform, in which the camera is embedded. An optimal integration of a priori information, as well as the dynamic feature of the state model to estimate, lead us to use the Kalman filter. Experiments conducted with synthetic and real images proved the reliability of these methods. Camera calibration set-up is also suggested to achieve the most accurate scene models resulting from reconstruction processes. (author) [fr

  15. Comparison between arthroscopy and 3 dimensional double echo steady state 3D-DESS sequences in magnetic resonance imaging of internal derangements of the knee

    Dongola, Nagwa A.; Gishen, Philip

    2004-01-01

    This study was performed with the aim of evaluating the usefulness of 3 dimensional double-echo steady state sequences in examining the internal derangements of the knee. Arthroscopy was used as a referral standard. The study was performed in the Radiology and Arthroscopy Departments of Kings College Hospital, London, United Kingdom, during a 6-month period from January 1997 to June 1997. All patients who had knee magnetic resonance imaging within 3 months of arthroscopy were retrospectively studied. Thirty-three patients fulfilled these criteria and were selected. Three dimensional double-echo steady state sequences produced sensitivity for detecting meniscal tears of 87.5% for medial menisci (MM) and 75% for lateral menisci (LM). Specificity was 76% for MM and 96% for LM; positive predictive value (PPV) was 46.1% for MM and 85.7% for LM and negative predictive value (NPV) of 95% for MM and 96% for LM. The sensitivity for the anterior cruciate ligament was 83.3%, specificity was 77.7%, PPV was 45.4% and NPV was 95.4%. Three dimensional double-echo steady state sequences are useful in evaluating internal derangement of the knee, especially in advanced cartilage lesions. (author)

  16. Comparison of T1rho imaging between spoiled gradient echo (SPGR) and balanced steady state free precession (b-FFE) sequence of knee cartilage at 3 T MRI

    Nozaki, Taiki; Kaneko, Yasuhito; Yu, Hon J. [Department of Radiological Sciences, University of California, Irvine, CA (United States); Kaneshiro, Kayleigh [School of Medicine, University of California, Irvine, CA (United States); Schwarzkopf, Ran [Department of Orthopaedic Surgery, University of California, Irvine, CA (United States); Yoshioka, Hiroshi, E-mail: hiroshi@uci.edu [Department of Radiological Sciences, University of California, Irvine, CA (United States)

    2015-07-15

    Highlights: • T1rho values on b-FFE tend to be higher than those on SPGR. • The reproducibility of T1rho cartilage segmentation is higher on SPGR than b-FFE. • There is angular variation of T1rho profiles. • Average T1rho values in the superficial layer are higher than in the deep layer. - Abstract: Purpose: To investigate the difference in T1rho profiles of the entire femoral cartilage between SPGR and b-FFE sequences at 3.0 T. Materials and methods: 20 healthy volunteers were enrolled in this study. T1rho images of each subject were acquired with two types of pulse sequences: SPGR and b-FFE. Femoral cartilage segmentation was performed by two independent raters slice-by-slice using Matlab. Inter- and intra-observer reproducibility between the two imaging protocols was calculated. The relative signal intensity (SI) of cartilage, subchondral bone marrow, joint effusion, and the relative signal contrast between structures of the knee were quantitatively measured. The difference in T1rho values between SPGR and b-FFE sequences was statistically analyzed using the Wilcoxon signed-rank test. Results: The average T1rho value of the entire femoral cartilage with b-FFE was significantly higher compared to SPGR (p < 0.05). The reproducibility of the segmented area and T1rho values was superior with SPGR compared to b-FFE. The inter-class correlation coefficient was 0.846 on SPGR and 0.824 on b-FFE. The intra-class correlation coefficient of T1rho values was 0.878 on SPGR and 0.836 on b-FFE. The two imaging techniques demonstrated different signal and contrast characteristics. The relative SI of fluid was significantly higher on SPGR, while the relative SI of subchondral bone was significantly higher on b-FFE (p < 0.001). There were also significant differences in the relative contrast between fluid–cartilage, fluid–subchondral bone, and cartilage–subchondral bone between the two sequences (all p < 0.001). Conclusion: We need to pay attention to differences in

  17. Seasonal and interannual cross-shelf transport over the Texas and Louisiana continental shelf

    Thyng, Kristen M.; Hetland, Robert D.

    2018-05-01

    Numerical drifters are tracked in a hydrodynamic simulation of circulation over the Texas-Louisiana shelf to analyze patterns in cross-shelf transport of materials. While the important forcing mechanisms in the region (wind, river, and deep eddies) and associated flow patterns are known, the resultant material transport is less well understood. The primary metric used in the calculations is the percent of drifters released within a region that cross the 100 m isobath. Results of the analysis indicate that, averaged over the eleven years of the simulation, there are two regions on the shelf - over the Texas shelf during winter, and over the Louisiana shelf in summer - with increased seasonal probability for offshore transport. Among the two other distinct regions, the big bend region in Texas has increased probability for onshore transport, and the Mississippi Delta region has an increase in offshore transport, for both seasons. Some of these regions of offshore transport have marked interannual variability. This interannual variability is correlated to interannual changes in forcing conditions. Winter transport off of the Texas shelf is correlated with winter mean wind direction, with more northerly winds enhancing offshore transport; summer transport off the Louisiana shelf is correlated with Mississippi River discharge.

  18. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  19. 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15-channel knee-coil

    Notohamiprodjo, Mike, E-mail: mike.notohamiprodjo@med.uni-muenchen.de [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States); Horng, Annie; Kuschel, Bernhard [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Paul, Dominik [Siemens Healthcare, Erlangen, Henkestr. 127, 91054 Erlangen (Germany); Li, Guobin [Siemens Mindit Magnetic Resonance Ltd., Shenzhen, Guang Dong (China); Raya, Jose G. [Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States); Reiser, Maximilian F. [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Glaser, Christian [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States)

    2012-11-15

    Objectives: To evaluate the clinical usefulness of an optimized 3D-Fast-Spin-Echo-sequence (3D-SPACE) in combination with a 15-channel knee-coil for 3D-imaging of the knee at 3 T. Methods: 15 volunteers and 50 consecutive patients were examined at 3 T with fat-saturated moderately T2-weighted 3D-SPACE (Voxel-size (VS): 0.6 mm Multiplication-Sign 0.5 mm Multiplication-Sign 0.5 mm/acquisition-time (AT) 10:44 min) using a 15-channel knee-coil. Flip angle optimization and radial k-space reordering were applied. Signal- and contrast-to-noise-ratios (SNR, CNR) were compared to non-optimized 3D-SPACE (8-channel knee-coil) and conventional 2D-FSE (VS: 0.4 mm Multiplication-Sign 0.4 mm Multiplication-Sign 3 mm/total AT: 12 min). Two radiologists independently rated depiction of internal knee structures and assessed detection and depiction of cartilage and meniscus abnormalities compared to conventional 2D-FSE-sequences. Sensitivity and specificity were calculated for a subgroup with arthroscopy as reference standard. Statistical analysis was performed with paired t-tests, confidence intervals and weighted-{kappa}-coefficients. Results: SNR and CNR particularly of fluid/cartilage of optimized 3D-SPACE were significantly higher (p < 0.05) than of the non-optimized 3D-sequence and conventional 2D-sequence. Blurring and image inhomogeneity were reduced in the optimized sequence. The thin slice-thickness was beneficial for depiction of problematical anatomical structures such as meniscal roots. 3D-SPACE showed significantly higher diagnostic confidence (p < 0.05) for diagnosis of cartilage lesions of the femoral trochlea. Overall sensitivity and specificity of 3D-SPACE and 2D-FSE for cartilage lesions was 82.3%/80.2% and 79.4%/84.2% and 100%/86.4% and 92.3%/81.8% for meniscus lesions. Conclusions: Optimized 3D-SPACE provides significantly higher signal and contrast compared to conventional 2D-FSE, particularly for fluid and cartilage, leading to improved diagnostic confidence

  20. Gadolinium-enhanced MR imaging of the wrist in rheumatoid arthritis: value of fat suppression pulse sequences

    Nakahara, N.; Uetani, M.; Hayashi, K.; Kawahara, Y.; Matsumoto, T.; Oda, J.

    1996-01-01

    Objective. To determine the usefulness of fat-suppressed gadolinium (Gd)-enhanced MR imaging of the wrist in patients with rheumatoid arthritis (RA). Design and patients. Fat-suppressed Gd-enhanced T1-weighted spin-echo (SE) images were obtained and compared with other standard techniques in 38 wrists of 27 patients (22-77 years) with RA. Scoring based on the degree of synovial enhancement of each joint was developed and the total scores (J-score) were correlated with radiographic stage, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and symptomatic change in the follow-up study. Results. Synovial proliferations showed marked enhancement in all the wrists. In addition, contrast enhancement in the bone marrow and tenosynovium was seen in 36 and eight wrists respectively. Fat-suppressed Gd-enhanced T1-weighted images demonstrated these abnormalities better than other techniques. The J-scores correlated well with values of CRP (P=0.0034), but not with radiographic stages and ESR. Conclusion. Fat-suppressed Gd-enhanced T1-weighted SE images can clearly demonstrate most of the essential lesions in RA including the proliferative synovium, bone erosion, bone marrow inflammatory change, and tenosynovitis. Scoring based on the extent of Gd-enhancement of synovium can be useful in the assessment of the inflammatory status. (orig.). With 8 figs

  1. Gadolinium-enhanced MR imaging of the wrist in rheumatoid arthritis: value of fat suppression pulse sequences

    Nakahara, N. [Department of Radiology, Nagasaki University School of Medicine, Sakamoto 1-7-1, Nagasaki 852 (Japan); Uetani, M. [Department of Radiology, Nagasaki University School of Medicine, Sakamoto 1-7-1, Nagasaki 852 (Japan); Hayashi, K. [Department of Radiology, Nagasaki University School of Medicine, Sakamoto 1-7-1, Nagasaki 852 (Japan); Kawahara, Y. [Department of Radiology, Nagasaki University School of Medicine, Sakamoto 1-7-1, Nagasaki 852 (Japan); Matsumoto, T. [Department of Orthopedics, Nagasaki University School of Medicine, Nagasaki (Japan); Oda, J. [Department of Orthopedics, Nagasaki University School of Medicine, Nagasaki (Japan)

    1996-10-01

    Objective. To determine the usefulness of fat-suppressed gadolinium (Gd)-enhanced MR imaging of the wrist in patients with rheumatoid arthritis (RA). Design and patients. Fat-suppressed Gd-enhanced T1-weighted spin-echo (SE) images were obtained and compared with other standard techniques in 38 wrists of 27 patients (22-77 years) with RA. Scoring based on the degree of synovial enhancement of each joint was developed and the total scores (J-score) were correlated with radiographic stage, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and symptomatic change in the follow-up study. Results. Synovial proliferations showed marked enhancement in all the wrists. In addition, contrast enhancement in the bone marrow and tenosynovium was seen in 36 and eight wrists respectively. Fat-suppressed Gd-enhanced T1-weighted images demonstrated these abnormalities better than other techniques. The J-scores correlated well with values of CRP (P=0.0034), but not with radiographic stages and ESR. Conclusion. Fat-suppressed Gd-enhanced T1-weighted SE images can clearly demonstrate most of the essential lesions in RA including the proliferative synovium, bone erosion, bone marrow inflammatory change, and tenosynovitis. Scoring based on the extent of Gd-enhancement of synovium can be useful in the assessment of the inflammatory status. (orig.). With 8 figs.

  2. An Matching Method for Vehicle-borne Panoramic Image Sequence Based on Adaptive Structure from Motion Feature

    ZHANG Zhengpeng

    2015-10-01

    Full Text Available Panoramic image matching method with the constraint condition of local structure from motion similarity feature is an important method, the process requires multivariable kernel density estimations for the structure from motion feature used nonparametric mean shift. Proper selection of the kernel bandwidth is a critical step for convergence speed and accuracy of matching method. Variable bandwidth with adaptive structure from motion feature for panoramic image matching method has been proposed in this work. First the bandwidth matrix is defined using the locally adaptive spatial structure of the sampling point in spatial domain and optical flow domain. The relaxation diffusion process of structure from motion similarity feature is described by distance weighting method of local optical flow feature vector. Then the expression form of adaptive multivariate kernel density function is given out, and discusses the solution of the mean shift vector, termination conditions, and the seed point selection method. The final fusions of multi-scale SIFT the features and structure features to establish a unified panoramic image matching framework. The sphere panoramic images from vehicle-borne mobile measurement system are chosen such that a comparison analysis between fixed bandwidth and adaptive bandwidth is carried out in detail. The results show that adaptive bandwidth is good for case with the inlier ratio changes and the object space scale changes. The proposed method can realize the adaptive similarity measure of structure from motion feature, improves the correct matching points and matching rate, experimental results have shown our method to be robust.

  3. Coastal-change and glaciological map of the Amery Ice Shelf area, Antarctica: 1961–2004

    Foley, Kevin M.; Ferrigno, Jane G.; Swithinbank, Charles; Williams, Richard S.; Orndorff, Audrey L.

    2013-01-01

    Reduction in the area and volume of Earth’s two polar ice sheets is intricately linked to changes in global climate and to the resulting rise in sea level. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council. On the basis of these recommendations, the U.S. Geological Survey used its archive of satellite images to document changes in the cryospheric coastline of Antarctica and analyze the glaciological features of the coastal regions. Amery Ice Shelf, lying between 67.5° and 75° East longitude and 68.5° and 73.2° South latitude, is the largest ice shelf in East Antarctica. The latest measurements of the area of the ice shelf range between 62,620 and 71,260 square kilometers. The ice shelf is fed primarily by Lambert, Mellor, and Fisher Glaciers; its thickness ranges from 3,000 meters in the center of the grounding line to less than 300 meters at the ice front. Lambert Glacier is considered to be the largest glacier in the world, and its drainage basin is more than 1 million square kilometers in area. It is possible to see some coastal change on the outlet glaciers along the coast, but most of the noticeable change occurs on the Amery Ice Shelf front.

  4. Magnetic resonance imaging of the normal pituitary gland using ultrashort TE (UTE) pulse sequences (REV 1.0)

    Portman, Olivia; Flemming, Stephen; Cox, Jeremy P.D.; Johnston, Desmond G.; Bydder, Graeme M.

    2008-01-01

    The purpose of this study was to examine the normal pituitary gland in male subjects with ultrashort echo time (TE) pulse sequences, describe its appearance and measure its signal intensity before and after contrast enhancement. Eleven male volunteers (mean age 57.1 years; range 36-81 years) were examined with a fat-suppressed ultrashort TE (= 0.08 ms) pulse sequence. The studies were repeated after the administration of intravenous gadodiamide. The MR scans were examined for gland morphology and signal intensity before and after enhancement. Endocrinological evaluation included baseline pituitary function tests and a glucagon stimulatory test to assess pituitary cortisol and growth hormone reserve. High signal intensity was observed in the anterior pituitary relative to the brain in nine of the 11 subjects. These regions involved the whole of the anterior pituitary in three subjects, were localised to one side in two examples and were seen inferiorly in three subjects. Signal intensities relative to the brain increased with age, with a peak around the sixth or seventh decade and decreasing thereafter. Overall, the pituitary function tests were considered to be within normal limits and did not correlate with pituitary gland signal intensity. The anterior pituitary shows increased signal intensity in normal subjects when examined with T 1 -weighted ultrashort TE pulse sequences. The cause of this increased intensity is unknown, but fibrosis and iron deposition are possible candidates. The variation in signal intensity with age followed the temporal pattern of iron content observed at post mortem. No relationship with endocrine status was observed. (orig.)

  5. Magnetic resonance imaging of the normal pituitary gland using ultrashort TE (UTE) pulse sequences (REV 1.0)

    Portman, Olivia; Flemming, Stephen; Cox, Jeremy P.D.; Johnston, Desmond G. [Imperial College Faculty of Medicine, St Mary' s Hospital, Endocrinology and Metabolic Medicine, London (United Kingdom); Bydder, Graeme M. [University of California, San Diego, Department of Radiology, San Diego, CA (United States)

    2008-03-15

    The purpose of this study was to examine the normal pituitary gland in male subjects with ultrashort echo time (TE) pulse sequences, describe its appearance and measure its signal intensity before and after contrast enhancement. Eleven male volunteers (mean age 57.1 years; range 36-81 years) were examined with a fat-suppressed ultrashort TE (= 0.08 ms) pulse sequence. The studies were repeated after the administration of intravenous gadodiamide. The MR scans were examined for gland morphology and signal intensity before and after enhancement. Endocrinological evaluation included baseline pituitary function tests and a glucagon stimulatory test to assess pituitary cortisol and growth hormone reserve. High signal intensity was observed in the anterior pituitary relative to the brain in nine of the 11 subjects. These regions involved the whole of the anterior pituitary in three subjects, were localised to one side in two examples and were seen inferiorly in three subjects. Signal intensities relative to the brain increased with age, with a peak around the sixth or seventh decade and decreasing thereafter. Overall, the pituitary function tests were considered to be within normal limits and did not correlate with pituitary gland signal intensity. The anterior pituitary shows increased signal intensity in normal subjects when examined with T{sub 1}-weighted ultrashort TE pulse sequences. The cause of this increased intensity is unknown, but fibrosis and iron deposition are possible candidates. The variation in signal intensity with age followed the temporal pattern of iron content observed at post mortem. No relationship with endocrine status was observed. (orig.)

  6. The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity

    Diehl, T.; Kraft, T.; Kissling, E.; Wiemer, S.

    2017-09-01

    In July 2013, a sequence of more than 340 earthquakes was induced by reservoir stimulations and well-control procedures following a gas kick at a deep geothermal drilling project close to the city of St. Gallen, Switzerland. The sequence culminated in an ML 3.5 earthquake, which was felt within 10-15 km from the epicenter. High-quality earthquake locations and 3-D reflection seismic data acquired in the St. Gallen project provide a unique data set, which allows high-resolution studies of earthquake triggering related to the injection of fluids into macroscopic fault zones. In this study, we present a high-precision earthquake catalog of the induced sequence. Absolute locations are constrained by a coupled hypocenter-velocity inversion, and subsequent double-difference relocations image the geometry of the ML 3.5 rupture and resolve the spatiotemporal evolution of seismicity. A joint interpretation of earthquake and seismic data shows that the majority of the seismicity occurred in the pre-Mesozoic basement, hundreds of meters below the borehole and the targeted Mesozoic sequence. We propose a hydraulic connectivity between the reactivated fault and the borehole, likely through faults mapped by seismic data. Despite the excellent quality of the seismic data, the association of seismicity with mapped faults remains ambiguous. In summary, our results document that the actual hydraulic properties of a fault system and hydraulic connections between its fault segments are complex and may not be predictable upfront. Incomplete knowledge of fault structures and stress heterogeneities within highly complex fault systems additionally challenge the degree of predictability of induced seismicity related to underground fluid injections.

  7. MR venography using the 3D-MEDIC (multi echo data imaging combination) sequence for lower extremities

    Kitagawa, Hisashi; Kishi, Takayuki; Saito, Ryo; Shohji, Tomokazu; Noguchi, Keiji; Sunohara, Nobuo

    2008-01-01

    It is possible to diagnose varicose vein from medical history and physical examinations including inspection and palpation. Non-contrast enhanced MRV (magnetic resonance venography) is becoming popular because it can be easily performed without being affected by the radiographer's skill. We thought that the use of MEDIC (multi echo data imaging combination) would enable us to delineate varicose veins within a short acquisition time and without need for synchronization or contrast enhancement. We used the SIEMENS MAGNETOM Avanto 1.5-Tesla unit to acquire images. Our subjects were five healthy volunteers and five patients with varicose vein. The signal strength of deep veins and muscles were measured. The SNR (signal-to-nose ratio) of deep veins and the CNR (contrast-to-noise ratio) between deep veins and muscles were also measured. Flip angle, fat suppression methods, MTC (magnetic transfer contrast) pulse, and combined echo. Using the optimum image acquisition protocol following our preliminary study with varicose vein patients, the ability of the 3D-MEDIC method to delineate varicose veins was compared with that of the electrocardiogram (ECG)-synchronized two-dimensional time of flight (2D-TOF) method. We found that the following settings would enable us to acquire images from a wide range=coronal, within short acquisition time and needless ECG-triggering. Flip angle=20 degrees, fat suppression method=water excitation, MTC pulse=ON, combined echo=2. 3D-MEDIC was better than the 2D-TOF method in delineating the varicose vein itself and the connection between the varicose vein and deep veins. It is expected that 3D-MEDIC may be useful in the clinical diagnosis of varicose veins. (author)

  8. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    Ruangwattanapaisarn, Nichanan [Mahidol University, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Bangkok (Thailand); Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Loening, Andreas M.; Saranathan, Manojkumar; Vasanawala, Shreyas S. [Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Litwiller, Daniel V. [GE Healthcare, Rochester, MN (United States)

    2015-06-15

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  9. Magnetic resonance imaging of multiple sclerosis brain lesions: A semeiologic study by multiple spin-echo sequences

    Caires, M.C.; Scheiber, C.; Rumbach, L.; Gounot, D.; Dumitresco, B.; Warter, J.M.; Collard, M.; Chambron, J.

    1986-01-01

    Nuclear magnetic resonance imaging (MRI) if the brain is now known as a very sensitive tool for clearly revealing lesions in white matter, and has thus become important in the study of multiple sclerosis (MS). Since 1981, others have shown the best of MRI: we can see 6 x more lesions than CT. MRI contrast bases mainly on the spatial heterogeneity of the relaxation time of different tissues. The sensitivity depends on the longer T1 and/or T2 of the pathological tissues compared to those of normal tissues. In our series, the authors use mainly T2 weighted MR images and they evaluate their interest for the diagnosis of MS. They study the frequency of the abnormalities and their semeiology in a small number of transversal sections imaged at the level of the lateral ventricles. The authors' aim is to describe the NMR-derived morphological signs of MS and to prospect its interest in the physiopathological studies of this disease

  10. Holocene sea levels of Visakhapatnam shelf, east coast of India

    Rao, K.M.; Rao, T.C.S.

    The Holocene sea level changes in the shelf areas off Visakhapatnam was studied from sediment distribution pattern and shallow seismic profiling. Morphological features on the shelf indicate a Late Pleistocene regression down to about -130 m below...

  11. Sonograph patterns of the central western continental shelf of India

    Rao, P.S.

    knolls. A transition zone with tonal variations is present between 40 and 60 m water depth. Ground-truth data sediment and rock distribution maps indicate depositional (inner shelf), nondepositional or erosional (outer shelf) environments and a...

  12. Food packaging and shelf life: a practical guide

    Robertson, Gordon L

    2010-01-01

    .... Food Packaging and Shelf Life: A Practical Guide provides package developers with the information they need to specify just the right amount of protective packaging to maintain food quality and maximize shelf life...

  13. Seabottom backscatter studies in the western continental shelf of India

    Chakraborty, B.; Pathak, D.

    The study is initiated to observe the interaction effects of the sound signal with three different sediment bottoms in the shelf area between Cochin and Mangalore in the western continental shelf of India. An echo signal acquisition system has been...

  14. 75 FR 1076 - Outer Continental Shelf Civil Penalties

    2010-01-08

    ... initiate civil penalty proceedings; however, violations that cause injury, death, or environmental damage... DEPARTMENT OF THE INTERIOR Minerals Management Service Outer Continental Shelf Civil Penalties... daily civil penalty assessment. SUMMARY: The Outer Continental Shelf Lands Act requires the MMS to...

  15. Magnetic surveys of the continental shelf off Visakhapatnam

    Rao, T.C.S.; Murthy, K.S.R.

    shelf. Quantitative estimates made for the anomalies over the inner shelf using the graphical method and by computing the analytical signal suggest the existence of a fault in the nearshore region and a possible zone of heavy mineral concentration off...

  16. Influence of estuaries on shelf sediment texture

    Nair, R.R.; Hashimi, N.H.

    on the coast. Offshore from regions where there are a large number of estuaries, the inner shelf sediments are fine grained (average mean size 5.02 phi, 0.03 mm), rich in organic matter ( 2%) and low in calcium carbonate ( 25%). In contrast, in regions...

  17. Cosmetics Safety Q&A: Shelf Life

    ... of cosmetics? The shelf life for eye-area cosmetics is more limited than for other products. Because of repeated microbial exposure during use by the consumer and the risk of eye infections, some industry experts recommend replacing mascara 3 months after purchase. ...

  18. Coordination: Southeast Continental Shelf studies. Progress report

    Menzel, D.W.

    1981-02-01

    An overview of the Oceanograhic Program of Skidaway Institute of Oceanograhy is presented. Included are the current five year plan for studies of the Southeast Continental Shelf, a summary of research accomplishments, proposed research for 1981-1982, current status of the Savannah Navigational Light Tower, and a list of publications. (ACR)

  19. Subsurface Permian reef complexes of southern Tunisia: Shelf carbonate setting and paleogeographic implications

    Zaafouri, Adel; Haddad, Sofiene; Mannaî-Tayech, Beya

    2017-05-01

    2-D seismic reflection sections, borehole data as well as published and unpublished data have been investigated to reconstruct the paleogeography of southern Tunisia during Middle to Late Permian times. Paleogeographical reconstruction based on the integration of petroleum well data and 2-D seismic facies interpretation shows three main depositional areas with very contrasting sedimentary pile. These are 1) a subsiding basin; 2) an outer shelf carbonate, and 3) an inner shelf carbonate. Based on typical electric responses of reef buildups to seismic wave, we shall urge that during Middle Permian times, the outer carbonate shelf was subject of reef barrier development. Lithology evidences from core samples show that reef framework correspond mainly to fossiliferous limestone and dolomite. The WNW-ESE recognized reef barrier led between latitudes 33° 10‧ 00″N and 33° 20‧ 00″N. The Tebaga of Medenine outcrop constitutes the northern-edge of this barrier. Westward it may be extended to Bir Soltane area whereas its extension eastward is still to be determined. Biogenic buildups took place preferentially over faulted Carboniferous and lower Paleozoic paleohighs resulting likely from the Hercynian orogeny. The subsiding basin is located north of Tebaga of Medenine outcrop where Upper Permian sedimentary sequence is made entirely of 4000 m deep marine green silty shale facies. These are ascribed to unorganized and chaotic reflectors. Inner carbonate shelf facies succession corresponds to a typical interbedding of shallow marine carbonate deposits, shale, dolomite, and anhydrite inducing parallel-layered of strong amplitude and good continuity reflectors. Also within the inner carbonate shelf patch reef or reef pinnacles have been identified based on their seismic signature particularly their low vertical development as compared to reef complexes. Southward, towards Sidi Toui area, the Upper Permian depositional sequence thins out and bears witness of land

  20. Diffusion-weighted Imaging Is a Sensitive and Specific Magnetic Resonance Sequence in the Diagnosis of Ankylosing Spondylitis.

    Bradbury, Linda A; Hollis, Kelly A; Gautier, Benoît; Shankaranarayana, Sateesh; Robinson, Philip C; Saad, Nivene; Lê Cao, Kim-Anh; Brown, Matthew A

    2018-06-01

    We tested the discriminatory capacity of diffusion-weighted magnetic resonance imaging (DWI) and its potential as an objective measure of treatment response to tumor necrosis factor inhibition in ankylosing spondylitis (AS). Three cohorts were studied prospectively: (1) 18 AS patients with Bath Ankylosing Spondylitis Disease Activity Index > 4, and erythrocyte sedimentation rate > 25 and/or C-reactive protein > 10 meeting the modified New York criteria for AS; (2) 20 cases of nonradiographic axial spondyloarthritis (nr-axSpA) as defined by the Assessment of Spondyloarthritis international Society (ASAS) criteria; and (3) 20 non-AS patients with chronic low back pain, aged between 18 and 45 years, who did not meet the imaging arm of the ASAS criteria for axSpA. Group 1 patients were studied prior to and following adalimumab treatment. Patients were assessed by DWI and conventional magnetic resonance imaging (MRI), and standard nonimaging measures. At baseline, in contrast to standard nonimaging measures, DWI apparent diffusion coefficient (ADC) values showed good discriminatory performance [area under the curve (AUC) > 80% for Group 1 or 2 compared with Group 3]. DWI ADC values were significantly lower posttreatment (0.45 ± 0.433 before, 0.154 ± 0.23 after, p = 0.0017), but had modest discriminating capacity comparing pre- and posttreatment measures (AUC = 68%). This performance was similar to the manual Spondyloarthritis Research Consortium of Canada (SPARCC) scoring system. DWI is informative for diagnosis of AS and nr-axSpA, and has moderate utility in assessment of disease activity or treatment response, with performance similar to that of the SPARCC MRI score.

  1. Shelf life prediction of canned fried-rice using accelerated shelf life testing (ASLT) arrhenius method

    Kurniadi, M.; Bintang, R.; Kusumaningrum, A.; Nursiwi, A.; Nurhikmat, A.; Susanto, A.; Angwar, M.; Triwiyono; Frediansyah, A.

    2017-12-01

    Research on shelf-life prediction of canned fried rice using Accelerated Shelf-life Test (ASLT) of Arrhenius model has been conducted. The aim of this research to predict shelf life of canned-fried rice products. Lethality value of 121°C for 15 and 20 minutes and Total Plate count methods are used to determine time and temperatures of sterilization process.Various storage temperatures of ASLT Arrhenius method were 35, 45 and 55°C during 35days. Rancidity is one of the derivation quality of canned fried rice. In this research, sample of canned fried rice is tested using rancidity value (TBA). TBA value was used as parameter which be measured once a week periodically. The use of can for fried rice without any chemical preservative is one of the advantage of the product, additionaly the use of physicalproperties such as temperature and pressure during its process can extend the shelf life and reduce the microbial contamination. The same research has never done before for fried rice as ready to eat meal. The result showed that the optimum conditions of sterilization process were 121°C,15 minutes with total plate count number of 9,3 × 101 CFU/ml. Lethality value of canned fried rice at 121°C,15 minutes was 3.63 minutes. The calculated Shelf-life of canned fried rice using Accelerated Shelf-life Test (ASLT) of Arrhenius method was 10.3 months.

  2. Gadolinium-enhanced MR imaging of normal renal transplants. An evaluation of a T1-weighted dynamic echo-planar sequence

    Dupas, B.; Blancho, G.; Havet, T.; Leaute, F.

    1999-01-01

    Purpose: To evaluate the potential usefulness of dynamic MR with echoplanar imaging (EPI) in assessing the renal function in patients with renal allografts. Material and methods: Using a T1-weighted sequence, EPI was performed after injection of a Gd-chelate in 17 patients with normally functioning renal allografts. Time-intensity curves were plotted from the signal intensity (SI) measurements of the cortex and the medulla. Results: The pattern of corticomedullar differentiation (CMD) observed after constrast enhancement was divided into four phases using the T1-EPI. After a rapid decrease in the SI of cortical structures, and a subsequent return to precontrast levels, a gradual fall in the SI of the medulla was observed. The average time between the two periods of signal loss was 60 s. Conclusion: This study illustrated the potential use of dynamic T1-EPI to demonstrate contrast-induced CMD in renal allografts. (orig.)

  3. Evaluation of short repetition time, partial flip angle, gradient recalled echo pulse sequences in cervical spine imaging

    Enzmann, D.; Rubin, J.B.

    1987-01-01

    A short repetition time (TR), partial flip angle, gradient recalled echo pulse sequence (GRASS) was prospectively studied to optimize it for the diagnosis of cervical disk and cord disease in 98 patients. Changes in signal-to-noise ratio (SNR) and contrast were measured as the following parameters were varied: flip angle (3 0 to 18 0 ), TR (22-60 msec), and echo time (TE) (12.5-25 msec). Flip angle was the single most important parameter. For disk disease, cerebrospinal fluid (CSF) SNR peaked at an 8 0 flip angle in the axial view but at a 4 0 flip angle in the sagittal view. In the sagittal view, disk-CSF contrast decreased progressively from a flip angle of 3 0 , while in the axial view it peaked at 10 0 . For cord lesions the findings were similar except that lesion-cord contrast could be increased by lengthening both TR and TE. No one combination of parameters proved greatly superior for either disk disease or cord disease. The selection of parameters required balancing of several factors that often had opposing effects

  4. Study of the voxel-based specific regional analysis system for Alzheimer's disease imaging sequence after magnetic resonance apparatus replacement

    Tsukagoshi, Yuki; Kanai, Yoshihiro; Yasui, Gou; Abe, Yuuji; Maemura, Keisuke; Nakazawa, Masaki; Yamaji, Yuugo; Mihara, Ban

    2012-01-01

    In our institute, an MR apparatus, MAGNETOM VISION (Siemens) was replaced by ECHELON Vega (HITACHI). Z-score data acquired by MPRAGE (VISION) was compared with those by radio frequency-spoiled steady-state acquisition with rewinded gradient echo (RSSG) and gradient echo inversion recovery (GEIR) (ECHELON). For this study, ten normal volunteers were recruited and their data ware obtained within two months using both apparatuses. In addition, the difference of the contrasts of the images of these apparatuses was compared. There was a significant difference between Z-scores of MPRAGE and RSSG while there was no difference between MPRAGE and GEIR. As for the contrast, data of MPRAGE were similar to those of GEIR. To compare Z-scores acquired with MAGNTOM VISION (Siemens), it seems appropriate to use GEIR in ECHELON Vega. (author)

  5. Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution

    Hodel, Jerome [Unite Analyse et Restauration du Mouvement, UMR-CNRS, 8005 LBM ParisTech Ensam, Paris (France); University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Hopital Henri Mondor, Creteil (France); Silvera, Jonathan [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Bekaert, Olivier; Decq, Philippe [Unite Analyse et Restauration du Mouvement, UMR-CNRS, 8005 LBM ParisTech Ensam, Paris (France); University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neurosurgery, Creteil (France); Rahmouni, Alain [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Radiology, Creteil (France); Bastuji-Garin, Sylvie [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Public Health, Creteil (France); Vignaud, Alexandre [Siemens Healthcare, Saint Denis (France); Petit, Eric; Durning, Bruno [Laboratoire Images Signaux et Systemes Intelligents, UPEC, Creteil (France)

    2011-02-15

    To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus. (orig.)

  6. Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution

    Hodel, Jerome; Silvera, Jonathan; Bekaert, Olivier; Decq, Philippe; Rahmouni, Alain; Bastuji-Garin, Sylvie; Vignaud, Alexandre; Petit, Eric; Durning, Bruno

    2011-01-01

    To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus. (orig.)

  7. Assessment of myocardial infarction in mice by Late Gadolinium Enhancement MR imaging using an inversion recovery pulse sequence at 9.4T

    Herlihy Amy H

    2008-01-01

    Full Text Available Abstract Purpose To demonstrate the feasibility of using an inversion recovery pulse sequence and to define the optimal inversion time (TI to assess myocardial infarction in mice by late gadolinium enhancement (LGE MRI at 9.4T, and to obtain the maximal contrast between the infarcted and the viable myocardium. Methods MRI was performed at 9.4T in mice, two days after induction of myocardial infarction (n = 4. For cardiovascular MR imaging, a segmented magnetization-prepared fast low angle shot (MP-FLASH sequence was used with varied TIs ranging from 40 to 420 ms following administration of gadolinium-DTPA at 0.6 mmol/kg. Contrast-to-noise (CNR and signal-to-noise ratio (SNR were measured and compared for each myocardial region of interest (ROI. Results The optimal TI, which corresponded to a minimum SNR in the normal myocardium, was 268 ms ± 27.3. The SNR in the viable myocardium was significantly different from that found in the infarcted myocardium (17.2 ± 2.4 vs 82.1 ± 10.8; p = 0.006 leading to a maximal relative SI (Signal Intensity between those two areas (344.9 ± 60.4. Conclusion Despite the rapid heart rate in mice, our study demonstrates that LGE MRI can be performed at 9.4T using a protocol similar to the one used for clinical MR diagnosis of myocardial infarction.

  8. [Magnetic resonance imaging of the prostate: usefulness of diffusion sequences in detecting postembolization ischemia in patients with benign prostatic hyperplasia].

    Serrano, E; Ocantos, J; Kohan, A; Kisilevsky, N; Napoli, N; García-Mónaco, R

    2016-01-01

    To analyze the usefulness of diffusion magnetic resonance (MR) sequences before and after prostatic artery embolization (PAE) in patients with benign prostatic hyperplasia (BPH). We analyzed MR studies done before (7-10 days) and after (30 days) PAE in 19 patients with BPH treated with PAE between June 2012 and December 2013. We used 1.5 Tesla scanners with body surface coils. In pre-PAE MR studies, we recorded mean b40 values and minimum (min) and maximum (max) apparent diffusion coefficient (ADC) values. In post-PAE MR studies, we recorded b40, b400, and b1000 values and min, mean, and max ADC values. We compared diffusion behavior/ADC before and after PAE and areas without ischemia. We correlated these with decreased prostatic volume (PV). We identified ischemia with contrast in 8 (42.1%) patients. No significant difference was found in mean b40 (p= 0.1650) or in the b40 ratio (p= 0.8868) between patients with ischemia and those without before PAE. Min b40, b40 ratio, and min ADC values differed significantly between ischemic areas and nonischemic areas within patients [p= 0.048 (b40min and ratio) and p= 0.002 (min ADC)]. No significant correlation was found between the percentage decrease in PV and mean b40 (p= 0.8490) or b40 ratio (p=0.8573). Post-PAE ischemia generates objective changes in diffusion and ADC values that enable ischemic sectors to be differentiated from nonischemic sectors. Future studies should analyze whether it is possible to subjectively differentiate between these areas through the visualization of nonischemic sectors and the feasibility of replacing them with contrast to detect ischemia. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  9. T2-weighted MR imaging of liver lesions: a prospective evaluation comparing turbo spin-echo, breath-hold turbo spin-echo and half-Fourier turbo spin-echo (HASTE) sequences

    Martin, J.; Villajos, M.; Oses, M. J.; Veintemillas, M.; Rue, M.; Puig, J.; Sentis, M.

    2000-01-01

    To compare turbo spin-echo (TSE), breath-hold TSE and half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences quantitatively and qualitatively in T2-weighted images of liver lesions. The authors evaluated prospectively 89 liver lesions in 73 patients using a 1.0-T magnetic resonance system to compare TSE, breath-hold TSE and HASTE sequences. The quantitative parameters were: lesion-to-liver contrast and lesion-to-liver contrast-to-noise ratio. The qualitative analysis was performed by two observers in consensus who examined four parameters: respiratory artifacts, lesion edge definition, intrahepatic vessel definition and image quality. Repeated measures analysis of variance was utilized to compare the quantitative variables and Friedman's nonparametric test for the qualitative parameters. In quantitative terms, the lesion-to-liver contrast was similar in TSE and breath-hold TSE sequences (2.45±1.44 versus 2.60±1.66), both of which were significantly better than the HASTE sequence (1.12±0.72; p<0.001). The lesion-to-liver contrast-to-noise ratio was significantly higher in the TSE sequence (62.60±46.40 versus 40.22±25.35 versus 50.90±32.10 for TSE, breath-hold TSE and HASTE sequences, respectively; p<0.001). In the qualitative comparisons, the HASTE sequence was significantly better than the TSE and breath-hold TSE sequences (p<0.001) in terms of artifacts and definition of lesion edge and intrahepatic vessels. Image quality was also significantly greater in the HASTE sequence (p<0.001). In quantitative terms, the TSE sequence is better than the breath-hold TSE and HASTE sequences, but there are no movement artifacts in the HASTE sequence, which is also significantly superior to TSE and breath-hold TSE sequences in qualitative terms and, thus, can be employed for T2-weighted images in liver studies. (Author) 17 refs

  10. GPR Imaging of Fault Related Folds in a Gold-Bearing Metasedimentary Sequence, Carolina Terrane, Southern Appalachian Mountains

    Diemer, J. A.; Bobyarchick, A. R.

    2015-12-01

    , laterally extensive reflectors are present inside the noise blanket. Also, convex-up planar reflectors greater than about 8 meters deep and tens of meters long suggest fold culminations much longer in wavelength than the shallow imaged folds. For these metasedimentary rocks GPR provides a valuable tool for imaging sub-surface structure.

  11. Microgreens: Production, shelf life, and bioactive components.

    Mir, Shabir Ahmad; Shah, Manzoor Ahmad; Mir, Mohammad Maqbool

    2017-08-13

    Microgreens are emerging specialty food products which are gaining popularity and increased attention nowadays. They are young and tender cotyledonary leafy greens that are found in a pleasing palette of colors, textures, and flavors. Microgreens are a new class of edible vegetables harvested when first leaves have fully expanded and before true leaves have emerged. They are gaining popularity as a new culinary ingredient. They are used to enhance salads or as edible garnishes to embellish a wide variety of other dishes. Common microgreens are grown mainly from mustard, cabbage, radish, buckwheat, lettuce, spinach, etc. The consumption of microgreens has nowadays increased due to higher concentrations of bioactive components such as vitamins, minerals, and antioxidants than mature greens, which are important for human health. However, they typically have a short shelf life due to rapid product deterioration. This review aimed to evaluate the postharvest quality, potential bioactive compounds, and shelf life of microgreens for proper management of this specialty produce.

  12. Relationships between Charpy impact shelf energies and upper shelf Ksub(IC) values for reactor pressure vessel steels

    Witt, F.J.

    1983-01-01

    Charpy shelf data and lower bound estimates of Ksub(IC) shelf data for the same steels and test temperatures are given. Included are some typical reactor pressure vessel steels as well as some less tough or degraded steels. The data were evaluated with shelf estimates of Ksub(IC) up to and exceeding 550 MPa√m. It is shown that the high shelf fracture toughness representative of tough reactor pressure vessel steels may be obtained from a knowledge of the Charpy shelf energies. The toughness transition may be obtained either by testing small fracture toughness specimens or by Charpy energy indexing. (U.K.)

  13. Turbo-Proton Echo Planar Spectroscopic Imaging (t-PEPSI) MR technique in the detection of diffuse axonal damage in brain injury. Comparison with Gradient-Recalled Echo (GRE) sequence.

    Giugni, E; Sabatini, U; Hagberg, G E; Formisano, R; Castriota-Scanderbeg, A

    2005-01-01

    Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury, and is frequently accompanied by tissue tear haemorrhage. The T2*-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of haemorrhage. This study was undertaken to determine whether turbo-PEPSI, an extremely fast multi-echo-planar-imaging sequence, can be used as an alternative to the GRE sequence for detection of DAI. Nineteen patients (mean age 24,5 year) with severe traumatic brain injury (TBI), occurred at least 3 months earlier, underwent a brain MRI study on a 1.5-Tesla scanner. A qualitative evaluation of the turbo-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and turbo-PEPSI images, and divided according to their anatomic location into lobar and/or deep brain. There was no significant difference between GRE and turbo-PEPSI sequences in the total number of DAI lesions detected (283 vs 225 lesions, respectively). The GRE sequence identified a greater number of hypointense lesions in the temporal lobe compared to the t-PEPSI sequence (72 vs 35, pPEPSI than for the GRE sequence (pPEPSI sequence can be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.

  14. Ross Ice Shelf, Antarctic Ice and Clouds

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  15. Fast T1 and T2 mapping methods: the zoomed U-FLARE sequence compared with EPI and snapshot-FLASH for abdominal imaging at 11.7 Tesla.

    Pastor, Géraldine; Jiménez-González, María; Plaza-García, Sandra; Beraza, Marta; Reese, Torsten

    2017-06-01

    A newly adapted zoomed ultrafast low-angle RARE (U-FLARE) sequence is described for abdominal imaging applications at 11.7 Tesla and compared with the standard echo-plannar imaging (EPI) and snapshot fast low angle shot (FLASH) methods. Ultrafast EPI and snapshot-FLASH protocols were evaluated to determine relaxation times in phantoms and in the mouse kidney in vivo. Owing to their apparent shortcomings, imaging artefacts, signal-to-noise ratio (SNR), and variability in the determination of relaxation times, these methods are compared with the newly implemented zoomed U-FLARE sequence. Snapshot-FLASH has a lower SNR when compared with the zoomed U-FLARE sequence and EPI. The variability in the measurement of relaxation times is higher in the Look-Locker sequences than in inversion recovery experiments. Respectively, the average T1 and T2 values at 11.7 Tesla are as follows: kidney cortex, 1810 and 29 ms; kidney medulla, 2100 and 25 ms; subcutaneous tumour, 2365 and 28 ms. This study demonstrates that the zoomed U-FLARE sequence yields single-shot single-slice images with good anatomical resolution and high SNR at 11.7 Tesla. Thus, it offers a viable alternative to standard protocols for mapping very fast parameters, such as T1 and T2, or dynamic processes in vivo at high field.

  16. Regional geochemical baselines for Portuguese shelf sediments

    Mil-Homens, M.; Stevens, R.L.; Cato, I.; Abrantes, F.

    2007-01-01

    Metal concentrations (Al, Cr, Cu, Ni, Pb and Zn) from the DGM-INETI archive data set have been examined for sediments collected during the 1970s from 267 sites on the Portuguese shelf. Due to the differences in the oceanographic and sedimentological settings between western and Algarve coasts, the archive data set is split in two segments. For both shelf segments, regional geochemical baselines (RGB) are defined using aluminium as a reference element. Seabed samples recovered in 2002 from four distinct areas of the Portuguese shelf are superimposed on these models to identify and compare possible metal enrichments relative to the natural distribution. Metal enrichments associated with anthropogenic influences are identified in three samples collected nearby the Tejo River and are characterised by the highest enrichment factors (EF; EF Pb Zn < 4). EF values close to 1 suggest a largely natural origin for metal distributions in sediments from the other areas included in the study. - Background metal concentrations and their natural variability must be established before assessing anthropogenic impacts

  17. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer

    Wetterling, Friedrich; Corteville, Dominique M.; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M.; Stark, Helmut; Schad, Lothar R.

    2012-07-01

    Sodium magnetic resonance imaging (23Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (23Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a 23Na resonator was constructed for whole body 23Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B1-field profile was simulated and measured on phantoms, and 3D whole body 23Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm3 and a 10 min acquisition time per scan. The measured SNR values in the 23Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, 23Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.

  18. Inter frame motion estimation and its application to image sequence compression: an introduction; Estimacion del movimiento Interframe y su aplicacion a la compresion de secuencias de imagenes: una introduccion

    Cremy, C

    1996-12-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of inter frame estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author)

  19. Inter frame motion estimation and its application to image sequence compression: an introduction; Estimacion del movimiento interframe y su aplicacion en la compresion de secuencias de imagenes: una introduccion

    Cremy, C

    1996-07-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of interframe estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author) 17 refs.

  20. Crevasse detection with GPR across the Ross Ice Shelf, Antarctica

    Delaney, A.; Arcone, S.

    2005-12-01

    We have used 400-MHz ground penetrating radar (GPR) to detect crevasses within a shear zone on the Ross Ice Shelf, Antarctica, to support traverse operations. The transducer was attached to a 6.5-m boom and pushed ahead of an enclosed tracked vehicle. Profile speeds of 4.8-11.3 km / hr allowed real-time crevasse image display and a quick, safe stop when required. Thirty-two crevasses were located with radar along the 4.8 km crossing. Generally, crevasse radar images were characterized by dipping reflections above the voids, high-amplitude reflections originating from ice layers at the base of the snow-bridges, and slanting, diffracting reflections from near-vertical crevasse walls. New cracks and narrow crevasses (back-filling with bulldozed snow, afforded an opportunity to ground-truth GPR interpretations by comparing void size and snow-bridge geometry with the radar images. While second and third season radar profiles collected along the identical flagged route confirmed stability of the filled crevasses, those profiles also identified several new cracks opened by ice extension. Our experiments demonstrate capability of high-frequency GPR in a cold-snow environment for both defining snow layers and locating voids.

  1. Contribution to the tracking and the 3D reconstruction of scenes composed of torus from image sequences a acquired by a moving camera; Contribution au suivi et a la reconstruction de scenes constituees d`objet toriques a partir de sequences d`images acquises par une camera mobile

    Naudet, S

    1997-01-31

    The three-dimensional perception of the environment is often necessary for a robot to correctly perform its tasks. One solution, based on the dynamic vision, consists in analysing time-varying monocular images to estimate the spatial geometry of the scene. This thesis deals with the reconstruction of torus by dynamic vision. Though this object class is restrictive, it enables to tackle the problem of reconstruction of bent pipes usually encountered in industrial environments. The proposed method is based on the evolution of apparent contours of objects in the sequence. Using the expression of torus limb boundaries, it is possible to recursively estimate the object three-dimensional parameters by minimising the error between the predicted projected contours and the image contours. This process, which is performed by a Kalman filter, does not need a precise knowledge of the camera displacement or any matching of the tow limbs belonging to the same object. To complete this work, temporal tracking of objects which deals with occlusion situations is proposed. The approach consists in modeling and interpreting the apparent motion of objects in the successive images. The motion interpretation, based on a simplified representation of the scene, allows to recover pertinent three-dimensional information which is used to manage occlusion situations. Experiments, on synthetic and real images, proves he validity of the tracking and the reconstruction processes. (author) 127 refs.

  2. Transformation of internal solitary waves at the "deep" and "shallow" shelf: satellite observations and laboratory experiment

    O. D. Shishkina

    2013-10-01

    Full Text Available An interaction of internal solitary waves with the shelf edge in the time periods related to the presence of a pronounced seasonal pycnocline in the Red Sea and in the Alboran Sea is analysed via satellite photos and SAR images. Laboratory data on transformation of a solitary wave of depression while passing along the transverse bottom step were obtained in a tank with a two-layer stratified fluid. The certain difference between two characteristic types of hydrophysical phenomena was revealed both in the field observations and in experiments. The hydrological conditions for these two processes were named the "deep" and the "shallow" shelf respectively. The first one provides the generation of the secondary periodic short internal waves – "runaway" edge waves – due to change in the polarity of a part of a soliton approaching the shelf normally. Another one causes a periodic shear flow in the upper quasi-homogeneous water layer with the period of incident solitary wave. The strength of the revealed mechanisms depends on the thickness of the water layer between the pycnocline and the shelf bottom as well as on the amplitude of the incident solitary wave.

  3. Oil, gas potential in shallow water: Peru`s continental shelf basins

    Zuniga-Rivero, F.; Keeling, J.A.; Hay-Roe, H. [BPZ and Associates Inc., Houston, TX (United States)

    1998-11-16

    This third article of a series highlights the three sedimentary basins that underlie the 16 million acres of continental shelf adjacent to a 650-mile stretch of Peruvian coastline. This area lies roughly between the ports of Chiclayo and Pisco. These basins offer a variety of reservoirs, traps, and source-rock potential in water depths of less than 1,000 ft. They are characterized by a thick sequence of Neogene strata, underlain by Paleogene, Mesozoic, and Upper Paleozoic sediments down to as much as 7 sec two-way time on modern seismic records. In some places the sedimentary section may reach an aggregate thickness in excess of 50,000 ft. From north to south these contiguous shelf basins are the Sechura-Salaverry, Huacho, and Pisco basins. All three basins are described.

  4. Statistics of Stacked Strata on Experimental Shelf Margins

    Fernandes, A. M.; Straub, K. M.

    2015-12-01

    Continental margin deposits provide the most complete record on Earth of paleo-landscapes, but these records are complex and difficult to interpret. To a seismic geomorphologist or stratigrapher, mapped surfaces often present a static diachronous record of these landscapes through time. We present data that capture the dynamics of experimental shelf-margin landscapes at high-temporal resolution and define internal hierarchies within stacked channelized and weakly channelized deposits from the shelf to the slope. Motivated by observations from acoustically-imaged continental margins offshore Brunei and in the Gulf of Mexico, we use physical experiments to quantify stratal patterns of sub-aqueous slope channels and lobes that are linked to delta-top channels. The data presented here are from an experiment that was run for 26 hours of experimental run time. Overhead photographs and topographic scans captured flow dynamics and surface aggradation/degradation every ten minutes. Currents rich in sediment built a delta that prograded to the shelf-edge. These currents were designed to plunge at the shoreline and travel as turbidity currents beyond the delta and onto the continental slope. Pseudo-subsidence was imposed by a slight base-level rise that generated accommodation space and promoted the construction of stratigraphy on the delta-top. Compensational stacking is a term that is frequently applied to deposits that tend to fill in topographic lows in channelized and weakly channelized systems. The compensation index, a metric used to quantify the strength of compensation, is used here to characterize deposits at different temporal scales on the experimental landscape. The compensation timescale is the characteristic time at which the accumulated deposits begins to match the shape of basin-wide subsidence rates (uniform for these experiments). We will use the compensation indices along strike transects across the delta, proximal slope and distal slope to evaluate the

  5. Chemotrophic Ecosystem Beneath the Larsen Ice Shelf, Antarctica

    Leventer, A.; Domack, E.; Ishman, S.; Sylva, S.; Willmott, V.; Huber, B.; Padman, L.

    2005-12-01

    The first living chemotrophic ecosystem in the Southern Ocean was discovered in a region of the seafloor previously occupied by the Larsen-B Ice Shelf. A towed video survey documents an ecosystem characterized by a bottom-draping white mat that appears similar to mats of Begiattoa, hydrogen sulfide oxidizing bacteria, and bivalves, 20-30 cm large, similar to vesicomyid clams commonly found at cold seeps. The carbon source is unknown; three potential sources are hypothesized. First, thermogenically-produced methane may occur as the marine shales of this region are similar to hydrocarbon-bearing rocks to the north in Patagonia. The site occurs in an 850 m deep glacially eroded trough located along the contact between Mesozoic-Tertiary crystalline basement and Cretaceous-Tertiary marine rocks; decreased overburden could have induced upward fluid flow. Also possible is the dissociation of methane hydrates, a process that might have occurred as a result of warming oceanic bottom waters. This possibility will be discussed in light of the distribution of early diagenetic ikaite in the region. Third, the possibility of a biogenic methane source will be discussed. A microstratigraphic model for the features observed at the vent sites will be presented; the system is comprised of mud mounds with central vents and surrounding mud flow channels. A series of still image mosaics record the dynamic behavior of the system, which appears to demonstrate episodic venting. These images show the spatial relationship between more and less active sites, as reflected in the superposition of several episodes of mud flow activity and the formation of mud channels. In addition, detailed microscale features of the bathymetry of the site will be presented, placing the community within the context of glacial geomorphologic features. The Larsen-B Ice Shelf persisted through the entire Holocene, limiting carbon influx from a photosynthetic source. Tidal modeling of both pre and post breakup

  6. Export of a Winter Shelf Phytoplankton Bloom at the Shelf Margin of Long Bay (South Atlantic Bight, USA)

    Nelson, J.; Seim, H.; Edwards, C. R.; Lockhart, S.; Moore, T.; Robertson, C. Y.; Amft, J.

    2016-02-01

    A winter 2012 field study off Long Bay (seaward of Myrtle Beach, South Carolina) investigated exchange processes along the shelf margin. Topics addressed included mechanisms of nutrient input (upper slope to outer shelf), phytoplankton blooms and community characteristics (mid-to-outer shelf), and possible export of shelf bloom material (transport to and across the shelf break to the upper slope). Observations utilized three moorings (mid-shelf, shelf break, upper slope), two gliders and ship operations (repeat cruises with profiling, water sampling and towed body surveys) along with satellite SST and ocean color imagery and near-by NOAA buoy records. Here we focus on the late January to early February period, when a mid-shelf bloom of Phaeocystis globosa (which forms large gelatinous colonies) was transported to the shelf break. The presence of Phaeocystis colonies resulted in strong spiking in chlorophyll (chl) fluorescence profiles. A partitioning approach was adapted to estimate chl in colonies (spikes) and small forms (baseline signal) and to account for an apparent difference in measured in vivo fluorescence per unit chl (lower in colonies). Up to 40-50% of chl in the bloom (surface to bottom on the mid-shelf) was estimated to be in the colonies. In late January, there a pronounced seaward slumping of relatively dense mid-shelf water along the bottom under warmer surface water derived from the inshore edge of a broad jet of Gulf Stream water flowing southwestward along the upper slope. We describe the evolution of this event and the conditions which set up this mechanism for episodic near-bed transport of fresh bloom material produced on the shelf to the upper slope off Long Bay. Down-slope transport may have been enhanced in this case by the high phytoplankton biomass in gelatinous colonies, which appeared to be settling in the water column on the shelf prior to the transport event.

  7. Digitizing pediatric chest radiographs: comparison of low-cost, commercial off-the-shelf technologies

    Ruess, L.; Shiels, K.C.; Cho, K.H.; O'Connor, S.C.; Uyehara, C.F.T.; Person, D.A.; Whitton, R.K.

    2001-01-01

    Objective: To compare low-cost, off-the-shelf technology for digitizing pediatric chest radiographs. Materials and methods: Forty pediatric chest radiographs (hard copy), each with a single abnormality, were digitized using a commercial film digitizer and two low-cost methods: a digital camera and a flatbed scanner. A stratified, randomized, block design was used where 20 readers evaluated 40 different images to determine the ability to accurately detect the abnormality. Readers then rated all 160 images (40 images x 4 methods) for conspicuity of the abnormality and overall image quality. Results: Abnormalities were correctly identified on 82.3 % of hard copy images, 82.9 % of flatbed scanner images, 74.3 % of film digitizer images, and 69.7 % of digital camera images (p flatbed scanner > film digitizer > digital camera images. Conclusion: A low-cost flatbed scanner yielded digital pediatric chest images which were significantly superior to digital camera images While flatbed scanner images were interpreted with the equivalent diagnostic accuracy of hard copy images, they were rated lower for image quality and lesion conspicuity. (orig.)

  8. Cyclonic entrainment of preconditioned shelf waters into a frontal eddy

    Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.

    2015-02-01

    The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.

  9. Shelf life prediction of apple brownies using accelerated method

    Pulungan, M. H.; Sukmana, A. D.; Dewi, I. A.

    2018-03-01

    The aim of this research was to determine shelf life of apple brownies. Shelf life was determined with Accelerated Shelf Life Testing method and Arrhenius equation. Experiment was conducted at 25, 35, and 45°C for 30 days. Every five days, the sample was analysed for free fatty acid (FFA), water activity (Aw), and organoleptic acceptance (flavour, aroma, and texture). The shelf life of the apple brownies based on FFA were 110, 54, and 28 days at temperature of 25, 35, and 45°C, respectively.

  10. Clay mineral distribution on tropical shelf: an example from the western shelf of India

    Hashimi, N.H.; Nair, R.R.

    Seventy-five sediment samples collected from the Kerala continental shelf and slope during the 17th and 71st Cruises of RV Gaveshani were analysed by X-ray diffraction for clay mineral content. The distribution of total clay ( 4 mu fraction...

  11. Recognition of depositional sequences and stacking patterns, Late Devonian (Frasnian) carbonate platforms, Alberta basin

    Anderson, J.H.; Reeckmann, S.A.; Sarg, J.F.; Greenlee, S.M.

    1987-05-01

    Six depositional sequences bounded by regional unconformities or their correlative equivalents (sequence boundaries) have been recognized in Late Devonian (Frasnian) carbonate platforms in the Alberta basin. These sequences consist of a predictable vertical succession of smaller scale shoaling-upward cycles (parasequences). Parasequences are arranged in retrogradational, aggradational, and progradational stacking patterns that can be modeled as a sediment response to relative changes in sea level. Sequence boundaries are recognized by onlap onto underlying shelf or shelf margin strata. This onlap includes shelf margin wedges and deep marine onlap. In outcrop sections shelf margin wedges exhibit an abrupt juxtaposition of shallow water facies over deeper water deposits with no gradational facies changes at the boundaries. High on the platform, subaerial exposure fabrics may be present. The shelf margin wedges are interpreted to have formed during lowstands in sea level and typically exhibit an aggradational stacking pattern. On the platform, two types of sequences are recognized. A type 1 cycle occurs where the sequence boundary is overlain by a flooding surface and subsequent parasequences exhibit retrogradational stacking. In a type 2 cycle the sequence boundary is overlain by an aggradational package of shallow water parasequences, followed by a retrogradational package. These two types of sequences can be modeled using a sinusoidal eustatic sea level curve superimposed on thermo-tectonic subsidence.

  12. Magnetic resonance imaging of anterior cruciate ligament of the knee: a comparison of four sequences; Valoracion del ligamento cruzado anterior de la rodilla con RM: comparacion de cuatro secuencias

    Casillas, C.; Marti-Bonmati, L.; Molla, E.; Ferrer, P.; Dosda, R. [Clinical Quiron-ATQ. Valencia (Spain)

    1999-07-01

    To compare the diagnostic efficacy of the four magnetic resonance imaging (MRI) sequences that compose the standard protocol for the study of the knee in our center when employed in the examination of anterior cruciate ligament (ACL). A prospective study was carried out based on MRI findings in the knees of 326 consecutive patients. Sagittal [proton density (PD{sub w}eighted turbo-spin-echo and T2*-weighted gradient echo], coronal (PD-weighted turbo-spin-echo with fat suppression) and transverse (T2*-weighted gradient echo with magnetization transfer) images were evaluated. Each sequence was analyzed independently by two radiologists, while another two assessed all the sequences together with the clinical findings. Four categories were established: normal ACL, partially torn, completely torn and synovialized. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) with respect to the definitive diagnosis were calculated for each sequence. The statistical analysis of the findings for each category was done using the chi-squared test and the Kappa test was employed to assess the degree of agreement. According to the final diagnosis, 263 ACL were normal, 29 were partially torn, 33 were completely torn and there was 1 case of synovialization associated with a completely torn ACL. The relationship between the analysis of the ACL according to each sequence and the definitive diagnosis was very significant (p<0.001) and the agreement was excellent. All the sequences presented similar levels of diagnostic precision. The coronal sequence had least number of diagnostic errors (2.1%). The combinations of imaging techniques that resulted in the lowest error rate with respect to the definitive diagnosis were coronal PD-weighted turbo-spin-echo with fat suppression and sagittal PD-weighted turbo-spin-echo. Coronal images are highly precise in the evaluation of ACL. Sagittal sequences are the most valid for diagnosis of torn ACL

  13. Seaweed culture and continental shelf protection

    Przhemenetskaya, V F

    1985-07-01

    The initial impression that the resources of the oceans were limitless has been replaced by a more rational appreciation that everything has its limits, including the seemingly infinite resources of marine plant life. In addition, experience in California, Australia, China, Japan and Korea has demonstrated that depletion of seaweed resources for commercial utilization has a deleterious effect on the biocenotic status of the continental shelf. In view of this, many countries, such as Japan, China, Korea, the Philippines and the USSR, have embarked on aquaculture programs, in which seaweeds are cultivated on marine plantations. Successful developments in this direction should go a long way to preserving the natural ecologic balance on the continental shelf, and yet provide mankind with the resources of the deep. Many difficulties remain to be resolved before aquaculture programs become fully cost effective, one of which deals with the susceptibility of a monoculture to a given predator or disease. To that end, such programs necessitate the creation of well balanced systems that would support a variety of marine plant and animal life without an adverse effect on the desired crop. 4 references, 6 figures.

  14. MILK CANDIES WITH INCREASED SHELF LIFE

    G. O. Magomedov

    2014-01-01

    Full Text Available Summary. Technology for producing milk candies on molasses with increased shelf-life, molded by "extrusion" with a vacuum syringe of continuous action used in the meat industry, into metallized film like "flow-pack" is considered. Rheological characteristics of candy mass: strength, toughness, organoleptic, physical and chemical quality are determined. While increasing the temperature of milk mass the colour, texture, mass fraction of reducing substances and solids change. It was found out that molasses based milk mass is easily molded at a moisture content of 10-11 % and temperature of 60 ºС. The advantages of the new method of forming products are: manufactured products have individual package, which increases the shelf life and improves the quality of products, extend the range of use, the technological equipment has a high productivity, it is compact and reliable. According to the consumer qualities the product surpasses all known analogs. Possibility of using a single-piece product while gathering dinners and breakfasts in public catering, establishments and transport. The technological process is simplified. Energy value of products on molasses in comparison with the control samples on sugar is calculated. It is 51 kcal less than in the control sample on sugar. Thus, the technology of functional milk candies with reduced sugar content is developed. The products will be useful for anyone who leads a healthy lifestyle.

  15. Dispersal of the Pearl River plume over continental shelf in summer

    Chen, Zhaoyun; Gong, Wenping; Cai, Huayang; Chen, Yunzhen; Zhang, Heng

    2017-07-01

    Satellite images of turbidity were used to study the climatological, monthly, and typical snapshot distributions of the Pearl River plume over the shelf in summer from 2003 to 2016. These images show that the plume spreads offshore over the eastern shelf and is trapped near the coast over the western shelf. Eastward extension of the plume retreats from June to August. Monthly spatial variations of the plume are characterized by eastward spreading, westward spreading, or both. Time series of monthly plume area was quantified by applying the K-mean clustering method to identify the turbid plume water. Decomposition of the 14-year monthly turbidity data by the empirical orthogonal function (EOF) analysis isolated the 1st mode in both the eastward and westward spreading pattern as the time series closely related to the Pearl River discharge, and the 2nd mode with out-of-phase turbidity anomalies over the eastern and western shelves that is associated with the prevailing wind direction. Eight typical plume types were detected from the satellite snapshots. They are characterized by coastal jet, eastward offshore spreading, westward spreading, bidirectional spreading, bulge, isolated patch, offshore branch, and offshore filaments, respectively. Their possible mechanisms are discussed.

  16. Optical-televiewer-based identification and characterization of material facies associated with an Antarctic ice-shelf rift

    Hubbard, B.; Tison, J.-L.; Pattyn, F.; Dierckx, M.; Boereboom, T.; Samyn, D.

    2012-01-01

    We have drilled 13 boreholes within and around a through-cutting rift on the (unofficially named) Roi Baudouin Ice Shelf, East Antarctica. Logging by optical televiewer (OPTV) combined with core inspection has resulted in the identification and characterization of several material facies. Outside the rift, OPTV-imaged annual layering indicates ~150 years of accumulation over the 66m length of one of the boreholes. Luminosity analysis of this image also reveals the presence of numerous dark me...

  17. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences

    Dowling, Jason A., E-mail: jason.dowling@csiro.au [CSIRO Australian e-Health Research Centre, Herston, Queensland (Australia); University of Newcastle, Callaghan, New South Wales (Australia); Sun, Jidi [University of Newcastle, Callaghan, New South Wales (Australia); Pichler, Peter [Calvary Mater Newcastle Hospital, Waratah, New South Wales (Australia); Rivest-Hénault, David; Ghose, Soumya [CSIRO Australian e-Health Research Centre, Herston, Queensland (Australia); Richardson, Haylea [Calvary Mater Newcastle Hospital, Waratah, New South Wales (Australia); Wratten, Chris; Martin, Jarad [University of Newcastle, Callaghan, New South Wales (Australia); Calvary Mater Newcastle Hospital, Waratah, New South Wales (Australia); Arm, Jameen [Calvary Mater Newcastle Hospital, Waratah, New South Wales (Australia); Best, Leah [Department of Radiology, Hunter New England Health, New Lambton, New South Wales (Australia); Chandra, Shekhar S. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland (Australia); Fripp, Jurgen [CSIRO Australian e-Health Research Centre, Herston, Queensland (Australia); Menk, Frederick W. [University of Newcastle, Callaghan, New South Wales (Australia); Greer, Peter B. [University of Newcastle, Callaghan, New South Wales (Australia); Calvary Mater Newcastle Hospital, Waratah, New South Wales (Australia)

    2015-12-01

    Purpose: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. Patients and Methods: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1w flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. Results: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). Conclusions: The MR-Sim setup and automatic s

  18. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences

    Dowling, Jason A.; Sun, Jidi; Pichler, Peter; Rivest-Hénault, David; Ghose, Soumya; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Chandra, Shekhar S.; Fripp, Jurgen; Menk, Frederick W.; Greer, Peter B.

    2015-01-01

    Purpose: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. Patients and Methods: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1w flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. Results: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). Conclusions: The MR-Sim setup and automatic s

  19. Retrievals of Karenia brevis Harmful Algal Blooms in the West Florida Shelf from observations by the JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Satellite processed using Neural Network Algorithms, and Evaluation of the Impact of Temporal Variabilities on Attainable Accuracies against in-situ Measurements

    El-Habashi, A.; Ahmed, S.; Lovko, V. J.

    2017-12-01

    Retrievals of of Karenia brevis Harmful Algal blooms (KB HABS) in the West Florida Shelf (WFS) obtained from remote sensing reflectance (Rrs) measurements by the JPSS VIIRS satellite and processed using recently developed neural network (NN) algorithms are examined and compared with other techniques. The NN approach is used because it does not require observations of Rrs at the 678 nm chlorophyll fluorescence channel. This channel, previously used on MODIS-A (the predecessor satellite) to satisfactorily detect KB HABs blooms using the normalized fluorescence height approach, is unavailable on VIIRS. Thus NN is trained on a synthetic data set of 20,000 IOPs based on a wide range of parameters from NOMAD, and requires as inputs the Rrs measurements only at 486, 551 and 671 and 488, 555 and 667 nm channels, available from VIIRS and MODIS-A respectively. These channels are less vulnerable to atmospheric correction inadequacies affecting observations at the shorter blue wavelengths which are used with other algorithms. The NN retrieves phytoplankton absorption at 443 nm, which, when combined with backscatter information at 551 nm, is sufficient for effective KB HABs retrievals. NN retrievals of KB HABs in the WFS are found to compare favorably with retrievals using other retrieval algorithms, including OCI/OC3, GIOP and QAA version 5. Accuracies of VIIRS retrievals were then compared against all the in-situ measurements available over the 2012-2016 period for which concurrent or near concurrent match ups could be obtained with VIIRS observations. Retrieval statistics showed that the NN technique achieved the best accuracies. They also highlight the impact of temporal variabilities on retrieval accuracies. These showed the importance of having a shorter overlap time window between in-situ measurement and satellite retrieval. Retrievals within a 15 minute overlap time window showed very significantly improved accuracies over those attained with a 100 minute window

  20. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  1. Methane-oxidizing seawater microbial communities from an Arctic shelf

    Uhlig, Christiane; Kirkpatrick, John B.; D'Hondt, Steven; Loose, Brice

    2018-06-01

    Marine microbial communities can consume dissolved methane before it can escape to the atmosphere and contribute to global warming. Seawater over the shallow Arctic shelf is characterized by excess methane compared to atmospheric equilibrium. This methane originates in sediment, permafrost, and hydrate. Particularly high concentrations are found beneath sea ice. We studied the structure and methane oxidation potential of the microbial communities from seawater collected close to Utqiagvik, Alaska, in April 2016. The in situ methane concentrations were 16.3 ± 7.2 nmol L-1, approximately 4.8 times oversaturated relative to atmospheric equilibrium. The group of methane-oxidizing bacteria (MOB) in the natural seawater and incubated seawater was > 97 % dominated by Methylococcales (γ-Proteobacteria). Incubations of seawater under a range of methane concentrations led to loss of diversity in the bacterial community. The abundance of MOB was low with maximal fractions of 2.5 % at 200 times elevated methane concentration, while sequence reads of non-MOB methylotrophs were 4 times more abundant than MOB in most incubations. The abundances of MOB as well as non-MOB methylotroph sequences correlated tightly with the rate constant (kox) for methane oxidation, indicating that non-MOB methylotrophs might be coupled to MOB and involved in community methane oxidation. In sea ice, where methane concentrations of 82 ± 35.8 nmol kg-1 were found, Methylobacterium (α-Proteobacteria) was the dominant MOB with a relative abundance of 80 %. Total MOB abundances were very low in sea ice, with maximal fractions found at the ice-snow interface (0.1 %), while non-MOB