WorldWideScience

Sample records for sheets storm water

  1. The storm time central plasma sheet

    R. Schödel

    2002-11-01

    Full Text Available The plasma sheet plays a key role during magnetic storms because it is the bottleneck through which large amounts of magnetic flux that have been eroded from the dayside magnetopause have to be returned to the dayside magnetosphere. Using about five years of Geotail data we studied the average properties of the near- and midtail central plasma sheet (CPS in the 10–30 RE range during magnetic storms. The earthward flux transport rate is greatly enhanced during the storm main phase, but shows a significant earthward decrease. Hence, since the magnetic flux cannot be circulated at a sufficient rate, this leads to an average dipolarization of the central plasma sheet. An increase of the specific entropy of the CPS ion population by a factor of about two during the storm main phase provides evidence for nonadiabatic heating processes. The direction of flux transport during the main phase is consistent with the possible formation of a near-Earth neutral line beyond ~20 RE.Key words. Magnetospheric physics (plasma convection; plasma sheet; storms and substorms

  2. 46 CFR 169.721 - Storm sails and halyards (exposed and partially protected waters only).

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm sails and halyards (exposed and partially... § 169.721 Storm sails and halyards (exposed and partially protected waters only). (a) Unless clearly unsuitable, each vessel must have one storm trysail of appropriate size. It must be sheeted independently of...

  3. New storm water regulations impact industry

    Gemar, C.

    1991-01-01

    In November 1990, new Environmental Protection Agency (EPA) regulations aimed at governing the discharge of storm water from industrial facilities became effective. Because some industrial runoff contains toxics and other pollutants, the EPA considers storm water a major source of water contamination. The new regulations will have a profound impact on the National Pollutant Discharge Elimination System (NPDES) permit requirements for industry. This paper summarizes the new storm water regulations, focusing on the requirements for industrial facilities. It also presents suggestions for compliance

  4. Storm Water General Permit 2 for Construction

    Iowa State University GIS Support and Research Facility — General permit #2 for storm water discharges associated with industrial activity for Construction Activities in Iowa for the National Pollutant Discharge Elimination...

  5. Storm Water BMP Tool Implementation Testing

    2017-12-01

    Under project 2015-ORIL 7, a screening tool was developed to assist Local communities with selecting post-construction storm water best management practices (BMPs) to comply with the Ohio Environmental Protection Agencys (Ohio EPA) statewide Const...

  6. Storm Water Management Model (SWMM)

    Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Regulations that require the retention and/or treatment of frequent, small storms that dominate runoff volumes and pollutant loads are becoming more common. The U.S. Environmental Protection Agency (E...

  7. Impact of the storm-time plasma sheet ion composition on the ring current energy density

    Mouikis, C.; Kistler, L. M.; Petrinec, S. M.; Fuselier, S. A.; Cohen, I.

    2017-12-01

    The adiabatic inward transport of the night-side near-earth ( 6 Re) hot plasma sheet is the dominant contributor to the ring current pressure during storm times. During storm times, the plasma sheet composition in the 6 - 12 Re tail region changes due to O+ entry from the lobes (from the cusp) and the direct feeding from the night side auroral region. In addition, at substorm onset the plasma sheet O+ ions can be preferentially accelerated. We use MMS and observations during two magnetic storms, 5/8/2016 and 7/16/2017, to monitor the composition changes and energization in the 6 - 12 Re plasma sheet region. For both storms the MMS apogee was in the tail. In addition, we use subsequent Van Allen Probe observations (with apogee in the dawn and dusk respectively) to test if the 6-12 Re plasma sheet, observed by MMS, is a sufficient source of the O+ in the ring current. For this we will compare the phase space density (PSD) of the plasma sheet source population and the PSD of the inner magnetosphere at constant magnetic moment values as used in Kistler et al., [2016].

  8. Validation of Storm Water Management Model Storm Control Measures Modules

    Simon, M. A.; Platz, M. C.

    2017-12-01

    EPA's Storm Water Management Model (SWMM) is a computational code heavily relied upon by industry for the simulation of wastewater and stormwater infrastructure performance. Many municipalities are relying on SWMM results to design multi-billion-dollar, multi-decade infrastructure upgrades. Since the 1970's, EPA and others have developed five major releases, the most recent ones containing storm control measures modules for green infrastructure. The main objective of this study was to quantify the accuracy with which SWMM v5.1.10 simulates the hydrologic activity of previously monitored low impact developments. Model performance was evaluated with a mathematical comparison of outflow hydrographs and total outflow volumes, using empirical data and a multi-event, multi-objective calibration method. The calibration methodology utilized PEST++ Version 3, a parameter estimation tool, which aided in the selection of unmeasured hydrologic parameters. From the validation study and sensitivity analysis, several model improvements were identified to advance SWMM LID Module performance for permeable pavements, infiltration units and green roofs, and these were performed and reported herein. Overall, it was determined that SWMM can successfully simulate low impact development controls given accurate model confirmation, parameter measurement, and model calibration.

  9. CALCULATION: PRECIPITATION CHARACTERISITICS FOR STORM WATER MANAGEMENT

    D. Ambos

    2000-01-01

    This Calculation is intended to satisfy engineering requirements for maximum 60-minute precipitation amounts for 50 and 100-year return periods at and near Yucca Mountain. This data requirement is documented in the ''Interface Control Document for Support Operations to Surface Facilities Operations Functional and Organizational Interfaces'' (CRWMS M and O 1998a). These developed data will supplement the information on 0.1 hour to 6-hour (in 0.1-hour increments) probable maximum precipitation (PMP) presented in the report, ''Precipitation Design Criteria for Storm Water Management'' (CRWMS M and O 1998b). The Reference Information Base (RIB) item, Precipitation ''Characteristics for Storm Water Management'' (M09902RIB00045 .OOO), was developed based on CRWMS M and O (1998b) and will be supplemented (via revision) with the information developed in this Calculation. The ''Development Plan for the Calculation: Precipitation Characteristics for Storm Water Management'' (CRWMS M and O 2000) was prepared in accordance with AP-2.l3Q, ''Technical Product Development Planning''. This calculation was developed in accordance with AP-3.12Q, Rev. O/ICN 2

  10. Modelling of flow and settling in storm water sedimentation tanks

    Kluck, J.

    1994-01-01

    In the near future in the Netherlands many reservoirs will have to be built to abate the pollution of the surface water by overflowing storm water from combined sewer systems [Kluck, 1992-a]. These reservoirs, called storm water sedimentation tanks, reduce the pollution in two ways. The most important is by simply storing a part of the sewage (waste water and storm water) and thus reducing the quantity of overflowing water. The second is by providing flow conditions in which particles can set...

  11. Storm water permitting for oil and gas facilities

    de Blanc, P.C.

    1991-01-01

    After several false starts, the US Environmental Protection Agency (EPA) published new federal storm water regulations in the November 16, 1990 Federal Register. These regulations identify facilities which must apply for a storm water permit and detail permit application requirements. The regulations appear at 40 CFR 122 Subpart B and became effective December 17, 1990. An outline of these regulations and their applicability to oil and gas facilities is presented. They are: facilities which require a storm water permit; types of storm water permits; permit application deadlines; permit application forms; facilities with existing storm water permits; storm water permit application data requirements; storm water sampling and analysis requirements; and EPA contacts for additional information

  12. Bioretention storm water control measures decrease the toxicity of copper roof runoff.

    LaBarre, William J; Ownby, David R; Rader, Kevin J; Lev, Steven M; Casey, Ryan E

    2017-06-01

    The present study evaluated the ability of 2 different bioretention storm water control measures (SCMs), planter boxes and swales, to decrease the toxicity of sheet copper (Cu) roofing runoff to Daphnia magna. The present study quantified changes in storm water chemistry as it passed through the bioretention systems and utilized the biotic ligand model (BLM) to assess whether the observed D. magna toxicity could be predicted by variations found in water chemistry. Laboratory toxicity tests were performed using select storm samples with D. magna cultured under low ionic strength conditions that were appropriate for the low ionic strength of the storm water samples being tested. The SCMs decreased toxicity of Cu roof runoff in both the BLM results and the storm water bioassays. Water exiting the SCMs was substantially higher than influent runoff in pH, ions, alkalinity, and dissolved organic carbon and substantially lower in total and dissolved Cu. Daphnids experienced complete mortality in untreated runoff from the Cu roof (the SCM influent); however, for planter and swale effluents, survival averaged 86% and 95%, respectively. The present study demonstrated that conventional bioretention practices, including planter boxes and swales, are capable of decreasing the risk of adverse effects from sheet Cu roof runoff to receiving systems, even before considering dilution of effluents in those receiving systems and associated further reductions in copper bioavailability. Environ Toxicol Chem 2017;36:1680-1688. © 2016 SETAC. © 2016 SETAC.

  13. Modelling of flow and settling in storm water sedimentation tanks

    Kluck, J.

    1994-01-01

    In the near future in the Netherlands many reservoirs will have to be built to abate the pollution of the surface water by overflowing storm water from combined sewer systems [Kluck, 1992-a]. These reservoirs, called storm water sedimentation tanks, reduce the pollution in two ways. The most

  14. Storms

    Kai, Keizo; Melrose, D.B.; Suzuki, S.

    1985-01-01

    At metre and decametre wavelengths long-lasting solar radio emission, consisting of thousands of short-lived spikes superimposed on a slowly varying continuum, is observed. This type of storm emission may continue for periods ranging from a few hours to several days; the long duration is one of the characteristics which distinguish storms from other types of solar radio emission. These events are called storms or noise storms by analogy with geomagnetic storms. (author)

  15. Storm water monitoring report for the 1995 reporting period

    Braun, D.R.; Brock, T.A.

    1995-10-01

    This report includes sampling results and other relevant information gathered in the past year by LITCO's Environmental Monitoring and Water Resources Unit. This report presents analytical data collected from storm water discharges as a part of the Environmental Monitoring Storm Water Monitoring Program for 1994--1995 for facilities located on the Idaho National Engineering Laboratory (INEL). The 1995 reporting period is October 1, 1994 through September 30, 1995. The storm water monitoring program tracks information about types and amounts of pollutants present. Data are required for the Environmental Protection Agency and are transmitted via Discharge Monitoring Reports. Additional information resulting from the program contributes to Best Management Practice to control pollution in runoff as well as Storm Water Pollution Prevention Plans

  16. Storm Water General Permit 3 for Rock and Asphalt

    Iowa State University GIS Support and Research Facility — General permit #3 for storm water discharges associated with industrial activity for Asphalt Plants, Concrete Batch Plants, Rock Crushing Plants and Construction...

  17. Storm Water General Permit 1 for Industrial Facilities

    Iowa State University GIS Support and Research Facility — General permit #1 for storm water discharges associated with industrial facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES) program.

  18. Storm water best management practices for local roadways.

    2015-09-01

    Local communities and the Ohio Department of Transportation (ODOT) are required by the Ohio : Environmental Protection Agencys (Ohio EPA) statewide Construction General Permit for Storm : Water Discharges OHC000004 (CGP) to select, design, constru...

  19. Storm Water Sampling Data 11-16-17.

    Holland, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    In the California Industrial General Permit (IGP) 2014-0057-DWQ for storm water monitoring, effective July 1, 2015, there are 21 contaminants that have been assigned NAL (Numeric Action Level) values, both annual and instantaneous.

  20. Coping with EPA's new petroleum industry storm water permits

    Veal, S.C.; Whitescarver, J.P.

    1994-01-01

    The United States Environmental Protection Agency has just released for public comment its so-called multi-sector industry specific storm water permit. This permit -- developed in response to the 730 group storm water permit applications submitted in 1992 to EPA -- proposes the establishment of specific runoff sampling and facility design requirements for at least two petroleum industry sectors. This proposed permit establishes specific conditions for the oil and gas extraction section (SIC group 13) and for lubricant manufacturers (SIC 2992). Permit conditions are also established for allied industrial sectors such as the chemical, transportation and asphalt materials industries. By most standards, the proposed permit is much tougher than EPA's baseline general permit for storm water discharges which was released in September of 1992. For example, under the proposal, most industries are required to perform periodic storm water sampling. EPA has also established storm water effluent and performance standards for several industrial categories. This paper will discuss the petroleum industry specific conditions of the new permit. The paper will also discuss the results of the industry-wide storm water sampling efforts undertaken by more than 300 oil patch facilities across the country. In particular, sampling results will be discussed in the context to the permit conditions proposed by EPA. The paper will also discuss strategies for dealing with the new permits

  1. Deep water sheet transfer using tracer techniques

    Archimbaud-Potherat, Michelle

    1970-01-01

    In order to identify the water from a phreatic water sheet in the Bassin d'Aquitaine, the following components were selected for analysis: fluorides, chlorides, bromides, iodides, uranium, thorium, sodium, potassium, calcium, magnesium, cerium and boron. The methods used are described. Sixty different kinds of water from the cretaceous, eocene, oligocene and miocene eras were chemically analyzed; particular chemical properties and coefficients of correlation between the elements, characteristic of different geological periods, were observed. A geochemical interpretation of the results obtained with boron is given. (author) [fr

  2. Gamma ampersand beta-gamma storm water monitor operability

    Tshiskiku, E.M.

    1993-01-01

    High Level Waste (HLW) facilities have nine storm water monitors that monitor storm water run off from different process areas for Cesium 137, a Gamma emitter. F - Area has three monitors: 907-2F, 907-3F and 907-4F while H - Area has six monitors: 907-2H, 907-3H, 907-4H, 907-5H, 907-6H and 907-7H (See attachments number-sign 1, number-sign 2 and number-sign 3 for location). In addition to monitoring for Cesium, 907-6H and 907-7H monitor for Strontium-90, a Beta emitter. Each monitor is associated with one of the following diversion gate encasements 907-1H, 241-15H, 241-51H, 907-1F or 241-23F. Normal flow of storm water from these diversion gate encasements is to the Four Mile Creek. When a storm water monitor detects radioactivity at a level exceeding the Four Mile Creek discharge limit, the monitor causes repositioning of the associated diversion gate to discharge to the H - Area retention basin 281-8H or the F - Area retention basin 281-8F. In response to recent OSR interpretation of storm water monitor calibration requirements, this report is provided to document operability and accuracy of radiation detection

  3. Design an effective storm water pollution prevention plan

    Vivona, M.A.

    1995-01-01

    A case history shows ''how'' to plan and organize a storm water pollution prevention program (SWPPP). Using easy-to-use worksheets and guidelines, hydrocarbon processing industry (HPI) operators can build upon existing best management practices (i.e., housekeeping procedures, visual inspections, spill prevention programs, etc.) to meet tighter restrictions set by National Pollutant Discharge Elimination system (NPDES) permits. Especially in high rainfall areas, storm water poses an intermittent, but large volume problem. The facility's site size is another factor that impacts the scope and cost for SWPPP. The five steps to implementing a SWPPP are: Planning and organization; Assessment; Best management practice (BMP) identification; Implementation; Evaluation and monitoring. Initially, HPI operators must identify all potential contamination sources and past spills and leak areas. Following the SWPP guidelines, operators can map out a cost-effective storm water program that meets all NPDES requirements

  4. DETENTION TANKS AS A MEANS OF URBAN STORM WATER ...

    sewers and detention tanks. That is, for sewers the peak value, t,, and for detention tanks the total, t-i, is used, which are computed as follows: • = Maxq. P. Maxr. (3) ..... infrastructure, like water supply, power supply, storm and wastewater management, etc. A change or new development in the mode of settlement of a certain ...

  5. Lake St. Clair: Storm Wave and Water Level Modeling

    2013-06-01

    R. A. Luettich, C. Dawson, V. J. Cardone , A. T. Cox, M. D. Powell, H. J. Westerink, and H. J. Roberts. 2010. A high resolution coupled riverine flow...Storm Wave and Water Level Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tyler J. Hesser

  6. Uncertainty Assessment in Urban Storm Water Drainage Modelling

    Thorndahl, Søren

    The object of this paper is to make an overall description of the author's PhD study, concerning uncertainties in numerical urban storm water drainage models. Initially an uncertainty localization and assessment of model inputs and parameters as well as uncertainties caused by different model...

  7. Storm water monitoring along loop 202 and Salt River.

    2010-10-01

    A comprehensive research program for the characterization of storm water runoff from an Arizona : highway was conducted from January through December 2007. The study area covered a portion of : the Loop 202 freeway west of Mesa Drive to a retention b...

  8. Storm Water Management Model (SWMM): Performance Review and Gap Analysis

    The Storm Water Management Model (SWMM) is a widely used tool for urban drainage design and planning. Hundreds of peer-reviewed articles and conference proceedings have been written describing applications of SWMM. This review focused on collecting information on model performanc...

  9. STORM WATER MANAGEMENT MODEL USER'S MANUAL VERSION 5.0

    The EPA Storm Water Management Model (SWMM) is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. SWMM was first developed in 1971 and has undergone several major upgrade...

  10. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing

    Schilperoort, R.; Hoppe, H.; Haan, C.; Langeveld, J.G.

    2012-01-01

    A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm

  11. 40 CFR 420.08 - Non-process wastewater and storm water.

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...

  12. Effects of storm-water runoff on water quality of the Edwards Aquifer near Austin, Texas

    Andrews, Freeman L.; Schertz, Terry L.; Slade, Raymond M.; Rawson, Jack

    1984-01-01

    Analyses of samples collected from Barton Springs at approximately weekly Intervals and from Barton Creek and five wells in the Austin area during selected storm-runoff periods generally show that recharge during storm runoff resulted in significant temporal and area! variations in the quality of ground water in the recharge zone of the Edwards aquifer. Recharge during storm runoff resulted in significant increases of bacterial densities in the ground water. Densities of fecal coliform bacteria in samples collected from Barton Springs, the major point of ground-water discharge, ranged from less than 1 colony per 100 milliliters during dry weather in November 1981 and January and August 1982 to 6,100 colonies per 100 milliliters during a storm in May 1982. Densities of fecal streptococcal bacteria ranged from 1 colony per 100 miniliters during dry weather in December 1981 to 11,000 colonies per 100 miniliters during a storm in May 1982.

  13. Army Storm Water Permit Implementation Handbook,

    1994-05-01

    reaches of tnbutanes to the Rio Grande in Taos and Rio Arriba counties unless included in other segments. . Eagle ^eek above the Alto Reservoir, Bonito...Va. 22092 Phone No. (703) 860-6336 Ala ., Conn., Del., D.C., Fla., Ga., Ind., Ky., Maine, Md., Mass., N.H., N.J., N.Y., N.C., S.C., Ohio, Pa...513Oi35 Steve Chang Supervisor - Engineering Section Hawaii Department of Health Clean Water Branch 500 Ala Moana Boulevard 5 Waterfront Plaza

  14. Storm water runoff concentration matrix for urban areas

    Göbel, P.; Dierkes, C.; Coldewey, W. G.

    2007-04-01

    The infrastructure (roads, sidewalk, commercial and residential structures) added during the land development and urbanisation process is designed to collect precipitation and convey it out of the watershed, typically in existing surface water channels, such as streams and rivers. The quality of surface water, seepage water and ground water is influenced by pollutants that collect on impervious surfaces and that are carried by urban storm water runoff. Heavy metals, e.g. lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), polycyclic aromatic hydrocarbons (PAH), mineral oil hydrocarbons (MOH) and readily soluble salts in runoff, contribute to the degradation of water. An intensive literature search on the distribution and concentration of the surface-dependent runoff water has been compiled. Concentration variations of several pollutants derived from different surfaces have been averaged. More than 300 references providing about 1300 data for different pollutants culminate in a representative concentration matrix consisting of medians and extreme values. This matrix can be applied to long-term valuations and numerical modelling of storm water treatment facilities.

  15. Prior storm experience moderates water surge perception and risk.

    Gregory D Webster

    Full Text Available BACKGROUND: How accurately do people perceive extreme water speeds and how does their perception affect perceived risk? Prior research has focused on the characteristics of moving water that can reduce human stability or balance. The current research presents the first experiment on people's perceptions of risk and moving water at different speeds and depths. METHODS: Using a randomized within-person 2 (water depth: 0.45, 0.90 m ×3 (water speed: 0.4, 0.8, 1.2 m/s experiment, we immersed 76 people in moving water and asked them to estimate water speed and the risk they felt. RESULTS: Multilevel modeling showed that people increasingly overestimated water speeds as actual water speeds increased or as water depth increased. Water speed perceptions mediated the direct positive relationship between actual water speeds and perceptions of risk; the faster the moving water, the greater the perceived risk. Participants' prior experience with rip currents and tropical cyclones moderated the strength of the actual-perceived water speed relationship; consequently, mediation was stronger for people who had experienced no rip currents or fewer storms. CONCLUSIONS: These findings provide a clearer understanding of water speed and risk perception, which may help communicate the risks associated with anticipated floods and tropical cyclones.

  16. Towards robust optimal design of storm water systems

    Marquez Calvo, Oscar; Solomatine, Dimitri

    2015-04-01

    In this study the focus is on the design of a storm water or a combined sewer system. Such a system should be capable to handle properly most of the storm to minimize the damages caused by flooding due to the lack of capacity of the system to cope with rain water at peak times. This problem is a multi-objective optimization problem: we have to take into account the minimization of the construction costs, the minimization of damage costs due to flooding, and possibly other criteria. One of the most important factors influencing the design of storm water systems is the expected amount of water to deal with. It is common that this infrastructure is developed with the capacity to cope with events that occur once in, say 10 or 20 years - so-called design rainfall events. However, rainfall is a random variable and such uncertainty typically is not taken explicitly into account in optimization. Rainfall design data is based on historical information of rainfalls, but many times this data is based on unreliable measures; or in not enough historical information; or as we know, the patterns of rainfall are changing regardless of historical information. There are also other sources of uncertainty influencing design, for example, leakages in the pipes and accumulation of sediments in pipes. In the context of storm water or combined sewer systems design or rehabilitation, robust optimization technique should be able to find the best design (or rehabilitation plan) within the available budget but taking into account uncertainty in those variables that were used to design the system. In this work we consider various approaches to robust optimization proposed by various authors (Gabrel, Murat, Thiele 2013; Beyer, Sendhoff 2007) and test a novel method ROPAR (Solomatine 2012) to analyze robustness. References Beyer, H.G., & Sendhoff, B. (2007). Robust optimization - A comprehensive survey. Comput. Methods Appl. Mech. Engrg., 3190-3218. Gabrel, V.; Murat, C., Thiele, A. (2014

  17. Evaluation of charred porous polymers as a method of storm water pollution prevention for shipyards

    Clark, G.E.

    1998-08-01

    Most shipyards have viable Best Management Practices (BMPs) in place to mitigate the transport of heavy metals to surface waters by storm water. Despite aggressive efforts to control storm water, shipyards have come under increased regulatory pressure to further reduce concentrations of heavy metals, such as copper and nickel, in storm water discharges. The tightening of regulatory requirements warrants research into additional BMPs. The objectives of this research project were to: (1) determine the feasibility of placing a replaceable cartridge of adsorbent material within a storm water collection system; and (2) evaluate two commercially available charred porous polymer adsorbents for the removal of heavy metals from storm water. The results indicated that there are commercially available storm water treatment components which could be adapted to house a cartridge of porous adsorbent material.

  18. A MODFLOW Infiltration Device Package for Simulating Storm Water Infiltration.

    Jeppesen, Jan; Christensen, Steen

    2015-01-01

    This article describes a MODFLOW Infiltration Device (INFD) Package that can simulate infiltration devices and their two-way interaction with groundwater. The INFD Package relies on a water balance including inflow of storm water, leakage-like seepage through the device faces, overflow, and change in storage. The water balance for the device can be simulated in multiple INFD time steps within a single MODFLOW time step, and infiltration from the device can be routed through the unsaturated zone to the groundwater table. A benchmark test shows that the INFD Package's analytical solution for stage computes exact results for transient behavior. To achieve similar accuracy by the numerical solution of the MODFLOW Surface-Water Routing (SWR1) Process requires many small time steps. Furthermore, the INFD Package includes an improved representation of flow through the INFD sides that results in lower infiltration rates than simulated by SWR1. The INFD Package is also demonstrated in a transient simulation of a hypothetical catchment where two devices interact differently with groundwater. This simulation demonstrates that device and groundwater interaction depends on the thickness of the unsaturated zone because a shallow groundwater table (a likely result from storm water infiltration itself) may occupy retention volume, whereas a thick unsaturated zone may cause a phase shift and a change of amplitude in groundwater table response to a change of infiltration. We thus find that the INFD Package accommodates the simulation of infiltration devices and groundwater in an integrated manner on small as well as large spatial and temporal scales. © 2014, National Ground Water Association.

  19. Storm water pollution prevention plan for the Oak Ridge Y-12 Plant

    1995-09-01

    The Environmental Protection Agency (EPA) published the final storm water regulation on November 16, 1990. The storm water regulation is included in the National Pollutant Discharge Elimination System (NPDES) regulations. An NPDES permit was issued for the Y-12 Plant on April 28, 1995, and was effective on July 1, 1995. The permit requires that a Storm Water Pollution Prevention Plan (SWP3) be developed by December 28, 1995, and be fully implemented by July 1, 1996; this plan has been developed to fulfill that requirement. The outfalls and monitoring points described in this plan contain storm water discharges associated with industrial activities as defined in the NPDES regulations. For storm water discharges associated with industrial activity, including storm water discharges associated with construction activity, that are not specifically monitored or limited in this permit, Y-12 Plant personnel will meet conditions of the General Storm Water Rule 1200-4-10. This document presents the programs and physical controls that are in place to achieve the following objectives: ensure compliance with Section 1200-4-10-.04(5) of the TDEC Water Quality Control Regulations and Part 4 of the Y-12 Plant NPDES Permit (TN0002968); provide operating personnel with guidance relevant to storm water pollution prevention and control requirements for their facility and/or project; and prevent or reduce pollutant discharge to the environment, in accordance with the Clean Water Act (CWA) and the Tennessee Water Quality Control Act

  20. Storm water pollution prevention plan for the Oak Ridge Y-12 Plant

    NONE

    1995-09-01

    The Environmental Protection Agency (EPA) published the final storm water regulation on November 16, 1990. The storm water regulation is included in the National Pollutant Discharge Elimination System (NPDES) regulations. An NPDES permit was issued for the Y-12 Plant on April 28, 1995, and was effective on July 1, 1995. The permit requires that a Storm Water Pollution Prevention Plan (SWP3) be developed by December 28, 1995, and be fully implemented by July 1, 1996; this plan has been developed to fulfill that requirement. The outfalls and monitoring points described in this plan contain storm water discharges associated with industrial activities as defined in the NPDES regulations. For storm water discharges associated with industrial activity, including storm water discharges associated with construction activity, that are not specifically monitored or limited in this permit, Y-12 Plant personnel will meet conditions of the General Storm Water Rule 1200-4-10. This document presents the programs and physical controls that are in place to achieve the following objectives: ensure compliance with Section 1200-4-10-.04(5) of the TDEC Water Quality Control Regulations and Part 4 of the Y-12 Plant NPDES Permit (TN0002968); provide operating personnel with guidance relevant to storm water pollution prevention and control requirements for their facility and/or project; and prevent or reduce pollutant discharge to the environment, in accordance with the Clean Water Act (CWA) and the Tennessee Water Quality Control Act.

  1. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing.

    Schilperoort, Rémy; Hoppe, Holger; de Haan, Cornelis; Langeveld, Jeroen

    2013-01-01

    A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm water in foul sewer systems can be significant, resulting in a number of detrimental effects on the performance of the wastewater system. Efficient removal of storm water inflows into foul sewers requires knowledge of the exact locations of the inflows. This paper presents the use of distributed temperature sensing (DTS) monitoring data to localize illicit storm water inflows into foul sewer systems. Data results from two monitoring campaigns in foul sewer systems in the Netherlands and Germany are presented. For both areas a number of storm water inflow locations can be derived from the data. Storm water inflow can only be detected as long as the temperature of this inflow differs from the in-sewer temperatures prior to the event. Also, the in-sewer propagation of storm and wastewater can be monitored, enabling a detailed view on advection.

  2. Leaching of additives from construction materials to urban storm water runoff

    Burkhardt, Mike; Zuleeg, S.; Boller, M.

    2011-01-01

    Urban water management requires further clarification about pollutants in storm water. Little is known about the release of organic additives used in construction materials and the impact of these compounds to storm water runoff. We investigated sources and pathways of additives used...... shows approximately one to two orders of magnitude lower concentrations. Concentrations decreased also during individual runoff events. In storm water and receiving water the occurrence of additives did not follow the typical first flush model. This can be explained by the release lasting over the time...

  3. Storm water and wastewater management for improving water quality

    Boogaard, Floris; Vojinovic, Zoran; Heikoop, Rick

    Climate change and urbanization will increase the frequency and magnitude of urban flooding and water quality problems in many regions of the world. In coastal and delta areas like The Netherlands and the Philippines, where urbanization is often high, there has been an increase in the adoption of

  4. Influence of Closing Storm Surge Barrier on Extreme Water Levels and Water Exchange; The Limfjord, Denmark

    Nørgaard, Jørgen Quvang Harck; Bentzen, Thomas Ruby; Larsen, Torben

    2014-01-01

    the increased risk of flooding in the estuary has revitalized the discussion whether this connection should be closed. In this paper, it is shown by numerical simulation that the establishment of a storm surge barrier across Thyborøn Channel can significantly reduce the peak water levels in the central...

  5. Dispersive O+ conics observed in the plasma-sheet boundary layer with CRRES/LOMICS during a magnetic storm

    M. Wüest

    1996-06-01

    Full Text Available We present initial results from the Low-energy magnetospheric ion composition sensor (LOMICS on the Combined release and radiation effects satellite (CRRES together with electron, magnetic field, and electric field wave data. LOMICS measures all important magnetospheric ion species (H+, He++, He+, O++, O+ simultaneously in the energy range 60 eV to 45 keV, as well as their pitch-angle distributions, within the time resolution afforded by the spacecraft spin period of 30 s. During the geomagnetic storm of 9 July 1991, over a period of 42 min (0734 UT to 0816 UT the LOMICS ion mass spectrometer observed an apparent O+ conic flowing away from the southern hemisphere with a bulk velocity that decreased exponentially with time from 300 km/s to 50 km/s, while its temperature also decreased exponentially from 700 to 5 eV. At the onset of the O+ conic, intense low-frequency electromagnetic wave activity and strong pitch-angle scattering were also observed. At the time of the observations the CRRES spacecraft was inbound at L~7.5 near dusk, magnetic local time (MLT, and at a magnetic latitude of –23°. Our analysis using several CRRES instruments suggests that the spacecraft was skimming along the plasma sheet boundary layer (PSBL when the upward-flowing ion conic arrived. The conic appears to have evolved in time, both slowing and cooling, due to wave-particle interactions. We are unable to conclude whether the conic was causally associated with spatial structures of the PSBL or the central plasma sheet.

  6. Drinking water regulations under the Safe Drinking Water Act. Fact sheet

    1990-12-01

    The fact sheet describes the requirements covered under the 1986 amendments to the Safe Drinking Water Act. Levels of various contaminants (including radio nuclides) are explained. Also discussed are the Surface Water Treatment Rule and the Total Coliforms Rule

  7. Relative location of a powerful flare, the heliospheric current sheet and the Earth favourable for the onset of a strong geomagnetic storm

    Ivanov, K.G.; Kharshiladze, A.F.; Romashets, E.P.

    1992-01-01

    Problem of magnetic clouds propagation in regular-nonuniform internal heliosphere is discussed. High dependence of their retardation and consequently intensity of interplanetary and geomagnetic disturbances on mutual location of flares, heliospheric current sheet and the Earth is identified. Eight solar flares, four of which caused strong storms, and another four led to weak disturbances, all of them being in fair agreement with theoretical conclusions, are presented as examples

  8. Storms do not alter long-term watershed development influences on coastal water quality.

    Chen, Yushun; Cebrian, Just; Lehrter, John; Christiaen, Bart; Stutes, Jason; Goff, Josh

    2017-09-15

    A twelve year (2000-2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially in the degree of watershed urban development and nutrient loading rates. In total the lagoons experienced 22 storm events during the period studied. Specifically, we examine (1) whether there are influences on water quality in the lagoons from watershed development, (2) whether there are influences on water quality in the lagoons from storm activity, and (3) whether water quality is affected to a greater degree by watershed development versus storm activity. The two urbanized lagoons typically showed higher water-column nitrate, dissolved organic nitrogen, and phosphate compared with the non-urbanized lagoon. One of the urbanized lagoons had higher water-column chlorophyll a concentrations than the other two lagoons on most sampling dates, and higher light extinction coefficients on some sampling dates. The non-urbanized lagoon had higher water-column dissolved oxygen concentrations than other lagoons on many sampling dates. Our results suggest long-term influences of watershed development on coastal water quality. We also found some evidence of significant storm effects on water quality, such as increased nitrate, phosphate, and dissolved oxygen, and decreased salinity and water temperature. However, the influences of watershed development on water quality were greater. These results suggest that changes in water quality induced by human watershed development pervade despite the storm effects. These findings may be useful for environmental management since they suggest that storms do not profoundly alter long-term changes in water quality that resulted from human development of watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Annual Storm Water Report for the Y-12 National Security Complex Oak Ridge, Tennessee

    Environment Compliance Department

    2012-01-01

    The storm water pollution prevention program at the Y-12 National Security Complex (Y-12 Complex) intends to protect the quality of storm water runoff through: (1) reducing the exposure of metal accumulation areas to precipitation, (2) implementation of Best Management Practices, (3) sampling during rain events and subsequent analysis, and (4) routine surveillances. When prescribed, the analytical data is compared to a set of cut-off concentration values to determine how the Y-12 Complex relates to other metal fabrication industries in the state of Tennessee. The quality of the storm water exiting the Y-12 Complex via East Fork Poplar Creek indicated some improvement in 2011. This improvement is attributable to the completion of several construction, demolition and remediation projects which occurred in 2010 and 2011. Emphasis will continue to be placed on site inspections and the timely implementation of improved storm water control measures as deemed necessary.

  10. Annual Storm Water Report for the Y-12 National Security Complex, Oak Ridge, Tennessee

    Clean Water Compliance Section of the Environment Compliance Department

    2012-01-01

    The storm water pollution prevention program at the Y-12 National Security Complex (Y-12 Complex) intends to protect the quality of storm water runoff through: (1) reducing the exposure of metal accumulation areas to precipitation, (2) implementation of Best Management Practices, (3) sampling during rain events and subsequent analysis, and (4) routine surveillances. When prescribed, the analytical data is compared to a set of cut-off concentration values to determine how the Y-12 Complex relates to other metal fabrication industries in the state of Tennessee. The quality of the storm water exiting the Y-12 Complex via East Fork Poplar Creek indicated some improvement in 2011. This improvement is attributable to the completion of several construction, demolition and remediation projects which occurred in 2010 and 2011. Emphasis will continue to be placed on site inspections and the timely implementation of improved storm water control measures as deemed necessary.

  11. Green Residential Demolitions: Case Study of Vacant Land Reuse in Storm Water Management in Cleveland

    The demolition process impacts how vacant land might be reused for storm water management. For five residential demolition sites (Cleveland, Ohio), an enhanced green demolition process was observed in 2012, and soil physical and hydrologic characteristics were measured predemolit...

  12. Lack of data for predicting storm water pollutant removal by post-construction best management practices.

    2016-03-01

    The project objective was to conduct a detailed literature review of storm water pollutants and mitigation technologies and synthesize : the information so that INDOT can implement project results into standards. Because it is a municipal separate st...

  13. Leaching of additives from construction materials to urban storm water runoff.

    Burkhardt, M; Zuleeg, S; Vonbank, R; Schmid, P; Hean, S; Lamani, X; Bester, K; Boller, M

    2011-01-01

    Urban water management requires further clarification about pollutants in storm water. Little is known about the release of organic additives used in construction materials and the impact of these compounds to storm water runoff. We investigated sources and pathways of additives used in construction materials, i.e., biocides in facades' render as well as root protection products in bitumen membranes for rooftops. Under wet-weather conditions, the concentrations of diuron, terbutryn, carbendazim, irgarol 1051 (all from facades) and mecoprop in storm water and receiving water exceeded the predicted no-effect concentrations values and the Swiss water quality standard of 0.1 microg/L. Under laboratory conditions maximum concentrations of additives were in the range of a few milligrams and a few hundred micrograms per litre in runoff of facades and bitumen membranes. Runoff from aged materials shows approximately one to two orders of magnitude lower concentrations. Concentrations decreased also during individual runoff events. In storm water and receiving water the occurrence of additives did not follow the typical first flush model. This can be explained by the release lasting over the time of rainfall and the complexity of the drainage network. Beside the amounts used, the impact of construction materials containing hazardous additives on water quality is related clearly to the age of the buildings and the separated sewer network. The development of improved products regarding release of hazardous additives is the most efficient way of reducing the pollutant load from construction materials in storm water runoff.

  14. Storm Water Pollution Removal Performance of Compost Filter Socks

    In 2005, the US Environmental Protection Agency National Menu of Best Management Practices (BMPs) listed compost filter socks as an approved BMP for controlling sediment in storm runoff on construction sites. Filtrexx International manufactures and distributes Filter Soxx (FS). Literature suggests...

  15. Impact of storm water on groundwater quality below retention/detention basins.

    Zubair, Arif; Hussain, Asif; Farooq, Mohammed A; Abbasi, Haq Nawaz

    2010-03-01

    Groundwater from 33 monitoring of peripheral wells of Karachi, Pakistan were evaluated in terms of pre- and post-monsoon seasons to find out the impact of storm water infiltration, as storm water infiltration by retention basin receives urban runoff water from the nearby areas. This may increase the risk of groundwater contamination for heavy metals, where the soil is sandy and water table is shallow. Concentration of dissolved oxygen is significantly low in groundwater beneath detention basin during pre-monsoon season, which effected the concentration of zinc and iron. The models of trace metals shown in basin groundwater reflect the land use served by the basins, while it differed from background concentration as storm water releases high concentration of certain trace metals such as copper and cadmium. Recharge by storm water infiltration decreases the concentration and detection frequency of iron, lead, and zinc in background groundwater; however, the study does not point a considerable risk for groundwater contamination due to storm water infiltration.

  16. ENVIRONMENTAL ASSESSMENT FOR THE NPDES STORM WATER COMPLIANCE ALTERNATIVES AT THE SRS

    Shedrow, C

    2006-01-01

    The U.S. Department of Energy (DOE) prepared this environmental assessment (EA) to evaluate the potential environmental impacts associated with proposed and alternative actions to achieve water quality permit compliance at 38 storm water outfalls located at the Savannah River Site (SRS) (Figure 1-1). Effluent monitoring data indicates that some of these outfalls may not presently comply with new National Pollutant Discharge Elimination System (NPDES) Storm Water General Permit effluent standards that became effective July 1, 2005 (SCR000000). The NPDES permit requires that best management practices (BMPs) be implemented and maintained, as necessary, to ensure that storm water discharges at SRS do not cause or contribute to the contravention of applicable state water quality standards (WQS)

  17. ENVIRONMENTAL ASSESSMENT FOR THE NPDES STORM WATER COMPLIANCE ALTERNATIVES AT THE SRS

    Shedrow, C

    2006-11-01

    The U.S. Department of Energy (DOE) prepared this environmental assessment (EA) to evaluate the potential environmental impacts associated with proposed and alternative actions to achieve water quality permit compliance at 38 storm water outfalls located at the Savannah River Site (SRS) (Figure 1-1). Effluent monitoring data indicates that some of these outfalls may not presently comply with new National Pollutant Discharge Elimination System (NPDES) Storm Water General Permit effluent standards that became effective July 1, 2005 (SCR000000). The NPDES permit requires that best management practices (BMPs) be implemented and maintained, as necessary, to ensure that storm water discharges at SRS do not cause or contribute to the contravention of applicable state water quality standards (WQS).

  18. The modelled liquid water balance of the Greenland Ice Sheet

    Steger, Christian R.; Reijmer, Carleen H.; van den Broeke, Michiel R.

    2017-11-01

    Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS) contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB) of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with the SNOWPACK model for the GrIS and over the period 1960-2014 with a special focus on the LWB and refreezing. Evaluations of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model-observation agreement. Results of the LWB analysis reveal a spatially uniform increase in surface melt (0.16 m w.e. a-1) during 1990-2014. As a response, refreezing and run-off also indicate positive changes during this period (0.05 and 0.11 m w.e. a-1, respectively), where refreezing increases at only half the rate of run-off, implying that the majority of the additional liquid input runs off the ice sheet. This pattern of refreeze and run-off is spatially variable. For instance, in the south-eastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. Modelled increase in refreezing leads to a decrease in firn air content and to a substantial increase in near-surface firn temperature. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases are more gradual and are associated with the migration of firn aquifers to higher elevations.

  19. Accepting managed aquifer recharge of urban storm water reuse: The role of policy-related factors

    Mankad, Aditi; Walton, Andrea

    2015-12-01

    A between-groups experimental design examined public acceptance for managed aquifer recharge of storm water for indirect potable and nonpotable reuse; acceptance was based on five policy-related variables (fairness, effectiveness, trust, importance of safety assurances, and importance of communication activities). Results showed that public acceptance (N = 408) for managed aquifer recharge of storm water was higher for nonpotable applications, as was the importance of safety assurances. Analyses of variance also showed that perceptions of fairness and effectiveness were higher for a nonpotable scheme, but not trust. A three-step hierarchical regression (Step 1: age, gender, education, and income; Step 2: type of use; Step 3: fairness, effectiveness, trust, safety assurance, and communication activities) demonstrated that type of storm water use and the policy-related factors accounted for 73% of the variance in acceptance of storm water (R2 = 0.74, adjusted R2 = 0.74, F (10, 397) = 113.919, p important predictors were perceptions of trust in water authorities, perceptions of effectiveness, and perceptions of fairness. Interestingly, while safety assurance was important in attitudinal acceptance of managed aquifer recharge based on type of use, safety assurance was not found to be significant predictor of acceptance. This research suggests that policy-makers should look to address matters of greater public importance and drive such as fairness, trust, and effectiveness of storm water programs and advocate these at the forefront of their policies, rather than solely on education campaigns.

  20. Field and laboratory simulations of storm water pulses: Behavioural avoidance by marine epifauna

    Roberts, David A.; Johnston, Emma L.; Mueller, Stefanie; Poore, Alistair G.B.

    2008-01-01

    Epifaunal communities associated with macroalgae were exposed to storm water pulses using a custom made irrigation system. Treatments included Millipore freshwater, freshwater spiked with trace metals and seawater controls to allow for the relative importance of freshwater inundation, trace metals and increased flow to be determined. Experimental pulses created conditions similar to those that occur following real storm water events. Brief storm water pulses reduced the abundance of amphipods and gastropods. Freshwater was the causative agent as there were no additional effects of trace metals on the assemblages. Laboratory assays indicated that neither direct nor latent mortality was likely following experimental pulses and that epifauna readily avoid storm water. Indirect effects upon epifauna through salinity-induced changes to algal habitats were not found in field recolonisation experiments. Results demonstrate the importance of examining the effects of pulsed contaminants under realistic exposure conditions and the need to consider ecologically relevant endpoints. - Brief storm water pulses trigger avoidance response in mobile epifauna due to the inundation of freshwater

  1. Potential Release Site Sediment Concentrations Correlated to Storm Water Station Runoff through GIS Modeling

    McLean, C.T.

    2005-01-01

    This research examined the relationship between sediment sample data taken at Potential Release Sites (PRSs) and storm water samples taken at selected sites in and around Los Alamos National Laboratory (LANL). The PRSs had been evaluated for erosion potential and a matrix scoring system implemented. It was assumed that there would be a stronger relationship between the high erosion PRSs and the storm water samples. To establish the relationship, the research was broken into two areas. The first area was raster-based modeling, and the second area was data analysis utilizing the raster based modeling results and the sediment and storm water sample results. Two geodatabases were created utilizing raster modeling functions and the Arc Hydro program. The geodatabase created using only Arc Hydro functions contains very fine catchment drainage areas in association with the geometric network and can be used for future contaminant tracking. The second geodatabase contains sub-watersheds for all storm water stations used in the study along with a geometric network. The second area of the study focused on data analysis. The analytical sediment data table was joined to the PRSs spatial data in ArcMap. All PRSs and PRSs with high erosion potential were joined separately to create two datasets for each of 14 analytes. Only the PRSs above the background value were retained. The storm water station spatial data were joined to the table of analyte values that were either greater than the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP) benchmark value, or the Department of Energy (DOE) Drinking Water Defined Contribution Guideline (DWDCG). Only the storm water stations were retained that had sample values greater than the NPDES MSGP benchmark value or the DOE DWDCG. Separate maps were created for each analyte showing the sub-watersheds, the PRSs over background, and the storm water stations greater than the NPDES MSGP benchmark value or the

  2. Water quality of storm runoff and comparison of procedures for estimating storm-runoff loads, volume, event-mean concentrations, and the mean load for a storm for selected properties and constituents for Colorado Springs, southeastern Colorado, 1992

    Von Guerard, Paul; Weiss, W.B.

    1995-01-01

    The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110

  3. Measuring storm tide and high-water marks caused by Hurricane Sandy in New York: Chapter 2

    Simonson, Amy E.; Behrens, Riley

    2015-01-01

    In response to Hurricane Sandy, personnel from the U.S. Geological Survey (USGS) deployed a temporary network of storm-tide sensors from Virginia to Maine. During the storm, real-time water levels were available from tide gages and rapid-deployment gages (RDGs). After the storm, USGS scientists retrieved the storm-tide sensors and RDGs and surveyed high-water marks. These data demonstrate that the timing of peak storm surge relative to astronomical tide was extremely important in southeastern New York. For example, along the south shores of New York City and western Suffolk County, the peak storm surge of 6–9 ft generally coincided with the astronomical high tide, which resulted in substantial coastal flooding. In the Peconic Estuary and northern Nassau County, however, the peak storm surge of 9 ft and nearly 12 ft, respectively, nearly coincided with normal low tide, which helped spare these communities from more severe coastal flooding.

  4. Characterizations of the first flush in storm water runoff from an urban roadway.

    Lee, B C; Matsui, S; Shimizu, Y; Matsuda, T

    2005-07-01

    Storm water runoff from urban roadways contains anthropogenic pollutants, which are mainly generated from traffic-related activities. The purpose of this study was to evaluate the characteristics of pollutants from the roadway runoff as well as first flush effects. Storm water runoff was sampled during five storm events from the experimental site in Otsu, Shiga, Japan. From the hydrographs and pollutographs for the roadway runoff, the concentration of pollutants increased with increasing runoff flow in the low flow rate event, but did not significantly increase in the high flow rate event. Moreover, according to the analysis of cumulative pollutant mass versus runoff volume curves from five storm events, the first 50% of the runoff volume transported 62% of TOC and Mo, 60% of SS, 59% of Fe, Mn and Cu, 58% of Ni, 57% of Cd and Pb, 56% of Al, 55% of Zn, and 54% of Cr, as the mean values. The first 30% and 80% of the runoff volume also transported 34-43% mass of the pollutants and 82-88% mass of the pollutants, respectively. This study for storm water runoff may also provide useful information to correctly design treatment facilities, such as detention tanks and ponds, filtration and adsorption systems.

  5. Storm water runoff-a source of emerging contaminants in urban streams

    Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.

    2016-12-01

    Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This

  6. High-resolution Land Cover Datasets, Composite Curve Numbers, and Storm Water Retention in the Tampa Bay, FL region

    Policy makers need to understand how land cover change alters storm water regimes, yet existing methods do not fully utilize newly available datasets to quantify storm water changes at a landscape-scale. Here, we use high-resolution, remotely-sensed land cover, imperviousness, an...

  7. Engineering evaluation/cost analysis: Waste Pit Area storm water runoff control, Feed Materials Production Center, Fernald, Ohio

    1990-08-01

    This report evaluates remedial action alternatives at the Feed Materials production Center in response to the need to contain contaminated storm water runoff. The storm water is being contaminated as it falls over a radioactive/chemical waste pit which contains uranium contaminated wastes. Alternatives considered include no action, surface capping, surface capping with lateral drainage, runoff collection and treatment, and source removal

  8. Magnesium, Iron and Aluminum in LLNL Air Particulate and Rain Samples with Reference to Magnesium in Industrial Storm Water

    Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bibby, Richard K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, Craig [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-25

    Storm water runoff from the Lawrence Livermore National Laboratory’s (LLNL’s) main site and Site 300 periodically exceeds the Discharge Permit Numeric Action Level (NAL) for Magnesium (Mg) under the Industrial General Permit (IGP) Order No. 2014-0057-DWQ. Of particular interest is the source of magnesium in storm water runoff from the site. This special study compares new metals data from air particulate and precipitation samples from the LLNL main site and Site 300 to previous metals data for storm water from the main site and Site 300 and alluvial sediment from the main site to investigate the potential source of elevated Mg in storm water runoff. Data for three metals (Mg, Iron {Fe}, and Aluminum {Al}) were available from all media; data for additional metals, such as Europium (Eu), were available from rain, air particulates, and alluvial sediment. To attribute source, this study compared metals concentration data (for Mg, Al, and Fe) in storm water and rain; metal-metal correlations (Mg with Fe, Mg with Al, Al with Fe, Mg with Eu, Eu with Fe, and Eu with Al) in storm water, rain, air particulates, and sediments; and metal-metal ratios ((Mg/Fe, Mg/Al, Al/Fe, Mg/Eu, Eu/Fe, and Eu/Al) in storm water, rain, air particulates and sediments. The results presented in this study are consistent with a simple conceptual model where the source of Mg in storm water runoff is air particulate matter that has dry-deposited on impervious surfaces and subsequently entrained in runoff during precipitation events. Such a conceptual model is consistent with 1) higher concentrations of metals in storm water runoff than in precipitation, 2) the strong correlation of Mg with Aluminum (Al) and Iron (Fe) in both storm water and air particulates, and 3) the similarity in metal mass ratios between storm water and air particulates in contrast to the dissimilarity of metal mass ratios between storm water and precipitation or alluvial sediment. The strong correlation of Mg with Fe and Al

  9. The simple modelling method for storm- and grey-water quality ...

    The simple modelling method for storm- and grey-water quality management applied to Alexandra settlement. ... objectives optimally consist of educational programmes, erosion and sediment control, street sweeping, removal of sanitation system overflows, impervious cover reduction, downspout disconnections, removal of ...

  10. Accounting for multiple functions in environmental life cycle assessment of storm water management solutions

    Brudler, Sarah; Arnbjerg-Nielsen, Karsten; Rygaard, Martin

    The wide range of approaches to handle storm water runoff have varying effects on the environment. Local stormwater control measures for retention and treatment are increasingly used components in urban climate adaptation plans. Often, these solutions modify the multiple functions of urban...

  11. Storms do not alter long-term watershed development influences on coastal water quality

    A twelve year (2000 − 2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially i...

  12. Effects of field storage method on E. coli concentrations measured in storm water runoff

    Storm water runoff is increasingly assessed for fecal indicator organisms (e.g., Escherichia coli, E. coli) and its impact on contact recreation. Concurrently, use of autosamplers along with logistic, economic, technical, and personnel barriers are challenging conventional protocols for sample hold...

  13. Storm water control plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    1996-04-01

    This document provides the Environmental Restoration Program with information about the erosion and sediment control, storm water management, maintenance, and reporting and record keeping practices to be employed during Phase II of the remediation project for the Lower East Fork Poplar Creek (LEFPC) Operable Unit

  14. Coho salmon spawner mortality in western US urban watersheds: bioinfiltration prevents lethal storm water impacts.

    Spromberg, Julann A; Baldwin, David H; Damm, Steven E; McIntyre, Jenifer K; Huff, Michael; Sloan, Catherine A; Anulacion, Bernadita F; Davis, Jay W; Scholz, Nathaniel L

    2016-04-01

    Adult coho salmon Oncorhynchus kisutch return each autumn to freshwater spawning habitats throughout western North America. The migration coincides with increasing seasonal rainfall, which in turn increases storm water run-off, particularly in urban watersheds with extensive impervious land cover. Previous field assessments in urban stream networks have shown that adult coho are dying prematurely at high rates (>50%). Despite significant management concerns for the long-term conservation of threatened wild coho populations, a causal role for toxic run-off in the mortality syndrome has not been demonstrated.We exposed otherwise healthy coho spawners to: (i) artificial storm water containing mixtures of metals and petroleum hydrocarbons, at or above concentrations previously measured in urban run-off; (ii) undiluted storm water collected from a high traffic volume urban arterial road (i.e. highway run-off); and (iii) highway run-off that was first pre-treated via bioinfiltration through experimental soil columns to remove pollutants.We find that mixtures of metals and petroleum hydrocarbons - conventional toxic constituents in urban storm water - are not sufficient to cause the spawner mortality syndrome. By contrast, untreated highway run-off collected during nine distinct storm events was universally lethal to adult coho relative to unexposed controls. Lastly, the mortality syndrome was prevented when highway run-off was pretreated by soil infiltration, a conventional green storm water infrastructure technology.Our results are the first direct evidence that: (i) toxic run-off is killing adult coho in urban watersheds, and (ii) inexpensive mitigation measures can improve water quality and promote salmon survival. Synthesis and applications . Coho salmon, an iconic species with exceptional economic and cultural significance, are an ecological sentinel for the harmful effects of untreated urban run-off. Wild coho populations cannot withstand the high rates of

  15. Assessment of the Temporal Evolution of Storm Surge via Land to Water Isopleths in Coastal Louisiana

    Siverd, C. G.; Hagen, S. C.; Bilskie, M. V.; Braud, D.; Gao, S.; Peele, H.; Twilley, R.

    2017-12-01

    The low-lying coastal Louisiana deltaic landscape features an intricate system of fragmented wetlands, natural ridges, man-made navigation canals and flood protection infrastructure. Since 1900 and prior to the landfall of Hurricane Katrina in 2005, Louisiana lost approximately 480,000 ha (1,850 sq mi) of coastal wetlands and an additional 20,000 ha (77 sq mi) due to Katrina. This resulted in a total wetland storm protection value loss of USD 28.3 billion and USD 1.1 billion, respectively (Costanza 2008). To investigate the response of hurricane storm surge (e.g. peak water levels, inundation time and extent) through time due to land loss, hydrodynamic models that represent historical eras of the Louisiana coastal landscape were developed. Land:Water (L:W) isopleths (Gagliano 1970, 1971, Twilley 2016) have been calculated along the coast from the Sabine River to the Pearl River. These isopleths were utilized to create a simplified coastal landscape (bathymetry, topography, bottom roughness) representing circa 2010. Similar methodologies are employed with the objective of developing storm surge models that represent the coastal landscape for past eras. The goal is to temporally examine the evolution of storm surge along coastal Louisiana. The isopleths determined to best represent the Louisiana coast as a result of the methodology devised to develop the simple storm surge model for c.2010 are applied in the development of surge models for historical eras c.1930 and c.1970. The ADvaced CIRCulation (ADCIRC) code (Luettich 2004) is used to perform storm surge simulations with a predetermined suite of hurricane wind and pressure forcings. Hydrologic Unit Code 12 (HUC12) sub-watersheds provide geographical bounds to quantify mean maximum water surface elevations (WSEs), volume of inundation, and area of inundation. HUC12 sub-watersheds also provide a means to compare/contrast these quantified surge parameters on a HUC12-by-HUC12 basis for the c.1930, c.1970 and c.2010

  16. Transient, Small-Scale Field-Aligned Currents in the Plasma Sheet Boundary Layer During Storm Time Substorms

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.; hide

    2016-01-01

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  17. Understanding Variability in Beach Slope to Improve Forecasts of Storm-induced Water Levels

    Doran, K. S.; Stockdon, H. F.; Long, J.

    2014-12-01

    The National Assessment of Hurricane-Induced Coastal Erosion Hazards combines measurements of beach morphology with storm hydrodynamics to produce forecasts of coastal change during storms for the Gulf of Mexico and Atlantic coastlines of the United States. Wave-induced water levels are estimated using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon et al. (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. Seasonal and storm-induced changes in beach slope can lead to differences on the order of a meter in wave runup elevation, making accurate specification of this parameter essential to skillful forecasts of coastal change. Spatial variation in beach slope is accounted for through alongshore averaging, but temporal variability in beach slope is not included in the final computation of the likelihood of coastal change. Additionally, input morphology may be years old and potentially very different than the conditions present during forecast storm. In order to improve our forecasts of hurricane-induced coastal erosion hazards, the temporal variability of beach slope must be included in the final uncertainty of modeled wave-induced water levels. Frequently collected field measurements of lidar-based beach morphology are examined for study sites in Duck, North Carolina, Treasure Island, Florida, Assateague Island, Virginia, and Dauphin Island, Alabama, with some records extending over a period of 15 years. Understanding the variability of slopes at these sites will help provide estimates of associated water level uncertainty which can then be applied to other areas where lidar observations are infrequent, and improve the overall skill of future forecasts of storm-induced coastal change. Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger Jr, A. H. (2006). Empirical parameterization of setup

  18. A green roof experimental site in the Mediterranean climate: the storm water quality issue.

    Gnecco, Ilaria; Palla, Anna; Lanza, Luca G; La Barbera, Paolo

    2013-01-01

    Since 2007, the University of Genoa has been carrying out a monitoring programme to investigate the hydrologic response of green roofs in the Mediterranean climate by installing a green roof experimental site. In order to assess the influence of green roofs on the storm water runoff quality, water chemistry data have been included in the monitoring programme since 2010, providing rainfall and outflow data. For atmospheric source, the bulk deposition is collected to evaluate the role of the overall atmospheric deposition in storm water runoff quality. For subsurface outflow, a maximum of 24 composite samples are taken on an event basis, thus aiming at a full characterization of the outflow hydrograph. Water chemistry data reveal that the pollutant loads associated with green roof outflow is low; in particular, solids and metal concentrations are lower than values generally observed in storm water runoff from traditional rooftops. The concentration values of chemical oxygen demand, total dissolved solids, Fe, Ca and K measured in the subsurface outflow are significantly higher than those observed in the bulk deposition (p green roof behaviour as a sink/source of pollutants is investigated based on both concentration and mass.

  19. Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations.

    Carpenter, Corey M G; Todorov, Dimitar; Driscoll, Charles T; Montesdeoca, Mario

    2016-11-01

    Syracuse, New York is working under a court-ordered agreement to limit combined sewer overflows (CSO) to local surface waters. Green infrastructure technologies, including green roofs, are being implemented as part of a CSO abatement strategy and to develop co-benefits of diminished stormwater runoff, including decreased loading of contaminants to the wastewater system and surface waters. The objective of this study was to examine the quantity and quality of discharge associated with precipitation events over an annual cycle from a green roof in Syracuse, NY and to compare measurements from this monitoring program with results from a roof irrigation experiment. Wet deposition, roof drainage, and water quality were measured for 87 storm events during an approximately 12 month period over 2011-2012. Water and nutrient (total phosphorus, total nitrogen, and dissolved organic carbon) mass balances were conducted on an event basis to evaluate retention annually and during the growing and non-growing seasons. These results are compared with a hydrological manipulation experiment, which comprised of artificially watering of the roof. Loadings of nutrients were calculated for experimental and actual storms using the concentration of nutrients and the flow data of water discharging the roof. The green roof was effective in retaining precipitation quantity from storm events (mean percent retention 96.8%, SD = 2.7%, n = 87), although the relative fraction of water retained decreased with increases in the size of the event. There was no difference in water retention of the green roof for the growing and non-growing seasons. Drainage waters exhibited high concentration of nutrients during the warm temperature growing season, particularly total nitrogen and dissolved organic carbon. Overall, nutrient losses were low because of the strong retention of water. However, there was marked variation in the retention of nutrients by season due to variations in concentrations in roof

  20. Using Automatic Control Approach In Detention Storages For Storm Water Management In An Urban Watershed

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.

  1. Transportation and Bioavailability of Copper and Zinc in a Storm Water Retention Pond

    Camponelli, K.; Casey, R. E.; Wright, M. E.; Lev, S. M.; Landa, E. R.

    2006-05-01

    Highway runoff has been identified as a non-point source of metals to storm water retention ponds. Zinc and copper are major components of tires and brake pads, respectively. As these automobile parts degrade, they deposit particulates onto the roadway surface. During a storm event, these metal containing particulates are washed into a storm water retention pond where they can then accumulate over time. These metals may be available to organisms inhabiting the pond and surrounding areas. This study focuses on tracking the metals from their deposition on the roadway to their transport and accumulation into a retention pond. The retention pond is located in Owings Mills, MD and collects runoff from an adjacent four lane highway. Pond sediments, background soils, road dust samples, and storm events were collected and analyzed. Copper and zinc concentrations in the pond sediments are higher than local background soils indicating that the pond is storing anthropogenically derived metals. Storm event samples also reveal elevated levels of copper and zinc transported through runoff, along with a large concentration of total suspended solids. After looking at the particulate and dissolved fractions of both metals in the runoff, the majority of the Zn and Cu are in the particulate fraction. Changes in TSS are proportional with changes in particulate bound Zn, indicating that the solid particulates that are entering into the pond are a major contributor of the total metal loading. Sequential extractions carried out on the road dust show that the majority of zinc is extracted in the second and third fractions and could become available to organisms in the pond. There is a small amount of Cu that is being released in the more available stages of the procedure; however the bulk of the Cu is seen in the more recalcitrant steps. In the pond sediments however, both Cu and Zn are only being released from the sediments in the later steps and are most likely not highly available.

  2. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  3. Hanford Site Storm Water Comprehensive Site Compliance Evaluation Report - July 1, 1997 Through June 30, 1998

    Landon, R.J.

    1999-01-01

    On September 9, 1992, the U.S. Environmental Protection Agency (EPA) issued General Permit No. WA-R-00-000F, ''Authorization to Discharge Under the National Pollutant Discharge Elimination System (NPDES) for Storm Water Discharges Associated with Industrial Activity'' (EPA 1992) to the U.S. Department of Energy, Richland Operations Office (RL). As required by General Permit, Section IV, Part D, Section 4.c (EPA 1992), an annual report must be developed by RL and retained onsite to verify that the requirements listed in the General Permit are implemented. This document fulfills the requirement to prepare an annual report. This report also describes the methods used to conduct the Storm Water Comprehensive Site Compliance Evaluation (SWCSCE) as required in the General Permit, Part IV, Section D.4.c (EPA 1992); identifies the pollution prevention team (PPT) (Appendix A); summarizes the results of the compliance evaluation (Appendix B); and documents significant leaks and spills (Appendix C)

  4. Study on Storm-Water Management of Grassed Swales and Permeable Pavement Based on SWMM

    Jianguang Xie

    2017-10-01

    Full Text Available Grassed swales and permeable pavement that have greater permeable underlying surface relative to hard-pressing surface can cooperate with the city pipe network on participating in urban storm flood regulation. This paper took Nanshan village in Jiangsu Province as an example, the storm-water management model (SWMM was used to conceptualize the study area reasonably, and the low-impact development (LID model and the traditional development model were established in the region. Based on the storm-intensity equation, the simulation scene employed the Chicago hydrograph model to synthesize different rainfall scenes with different rainfall repetition periods, and then contrasted the storm-flood-management effect of the two models under the condition of using LID facilities. The results showed that when the rainfall repetition period ranged from 0.33a to 10a (a refers to the rainfall repetition period, the reduction rate of total runoff in the research area that adopted LID ranged from 100% to 27.5%, while the reduction rate of peak flow ranged from 100% to 15.9%, and when the values of unit area were the same, the combined system (permeable pavement + grassed swales worked more efficiently than the sum of the individuals in the reduction of total runoff and peak flow throughout. This research can provide technical support and theoretical basis for urban LID design.

  5. MODELING OF STORM WATER RUNOFF FROM GREEN ROOFS

    Ewa Burszta-Adamiak

    2014-10-01

    Full Text Available Apart from direct measurements, modelling of runoff from green roofs is valuable source of information about effectiveness of this type of structure from hydrological point of view. Among different type of models, the most frequently used are numerical models. They allow to assess the impact of green roofs on decrease and attenuation of runoff, reduction of peak runoff and value of water retention. This paper presents preliminary results of research on computing the rate of runoff from green roofs using GARDENIA model. The analysis has been carried out for selected rainfall events registered during measuring campaign on pilot-scale green roofs. Obtained results are promising and show good fit between observed and simulated runoff.

  6. Achieving multiple compliance objectives through a storm water pollution prevention plan

    Wagner, K.J.; Cataldo, R. [ENSR, Acton, MA (United States)

    1997-09-01

    All across the US, facility managers and environmental staff are trying to keep up with proliferating regulations and associated filing and reporting requirements. Added to the already full plate of regulations is the National Pollutant Discharge Elimination System (NPDES) program for storm water management. The NPDES program requires a permit for the discharge of runoff from facilities based on Standard Industrial Classification (SIC) code. Some businesses do not yet need to comply with NPDES, as not all types of facilities were included in the Phase 1 list of regulated activities (September 1992). However, most businesses will be included as part of Phase 2 by 2002. Furthermore, states adopting administration of the NPDES program have the option of accelerating the process. In addition to filing for a permit, the NPDES storm water program requires the preparation and implementation of a Storm Water Pollution Prevention Plan (SWPPP). A properly prepared SWPPP can help facilities more easily comply with regulatory requirements and serve as an overall facility management tool.

  7. The Distribution of Basal Water Beneath the Greenland Ice Sheet from Radio-Echo Sounding

    Jordan, T.; Williams, C.; Schroeder, D. M.; Martos, Y. M.; Cooper, M.; Siegert, M. J.; Paden, J. D.; Huybrechts, P.; Bamber, J. L.

    2017-12-01

    There is widespread, but often indirect, evidence that a significant fraction of the Greenland Ice Sheet is thawed at the bed. This includes major outlet glaciers and around the NorthGRIP ice-core in the interior. However, the ice-sheet-wide distribution of basal water is poorly constrained by existing observations, and the spatial relationship between basal water and other ice-sheet and subglacial properties is therefore largely unexplored. In principle, airborne radio-echo sounding (RES) surveys provide the necessary information and spatial coverage to infer the presence of basal water at the ice-sheet scale. However, due to uncertainty and spatial variation in radar signal attenuation, the commonly used water diagnostic, bed-echo reflectivity, is highly ambiguous and prone to spatial bias. Here we introduce a new RES diagnostic for the presence of basal water which incorporates both sharp step-transitions and rapid fluctuations in bed-echo reflectivity. This has the advantage of being (near) independent of attenuation model, and enables a decade of recent Operation Ice Bride RES survey data to be combined in a single map for basal water. The ice-sheet-wide water predictions are compared with: bed topography and drainage network structure, existing knowledge of the thermal state and geothermal heat flux, and ice velocity. In addition to the fast flowing ice-sheet margins, we also demonstrate widespread water routing and storage in parts of the slow-flowing northern interior. Notably, this includes a quasi-linear `corridor' of basal water, extending from NorthGRIP to Petermann glacier, which spatially correlates with a region of locally high (magnetic-derived) geothermal heat flux. The predicted water distribution places a new constraint upon the basal thermal state of the Greenland Ice Sheet, and could be used as an input for ice-sheet model simulations.

  8. 40 CFR 122.32 - As an operator of a small MS4, am I regulated under the NPDES storm water program?

    2010-07-01

    ... regulated under the NPDES storm water program? 122.32 Section 122.32 Protection of Environment ENVIRONMENTAL... operator of a small MS4, am I regulated under the NPDES storm water program? (a) Unless you qualify for a... a petition to the NPDES permitting authority to require an NPDES permit for your discharge of storm...

  9. Fact Sheet: Notice of Ambient Water Quality Criteria Document for Tributyltin (TBT) - Final

    Information pertaining to 2004 Final Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Tributyltin (TBT) for freshwater and saltwater. This fact sheet includes the safe levels of TBT that should protect the majority of species.

  10. On the possibility of calibrating urban storm-water drainage models using gauge-based adjusted radar rainfall estimates

    Ochoa-Rodriguez, S; Wang, L; Simoes, N; Onof, C; Maksimovi?, ?

    2013-01-01

    24/07/14 meb. Authors did not sign CTA. Traditionally, urban storm water drainage models have been calibrated using only raingauge data, which may result in overly conservative models due to the lack of spatial description of rainfall. With the advent of weather radars, radar rainfall estimates with higher temporal and spatial resolution have become increasingly available and have started to be used operationally for urban storm water model calibration and real time operation. Nonetheless,...

  11. Muon Excess at Sea Level during the Progress of a Geomagnetic Storm and High-Speed Stream Impact Near the Time of Earth's Heliospheric Sheet Crossing

    Augusto, C. R. A.; Navia, C. E.; de Oliveira, M. N.; Nepomuceno, A. A.; Kopenkin, V.; Sinzi, T.

    2017-08-01

    In this article we present results of studying the association between the muon flux variation at ground level, registered by the New-Tupi muon telescopes (22° 53'00'' S, 43° 06'13' W; 3 m above sea level), and the geomagnetic storm on 25 - 29 August 2015 that has raged for several days as a result of a coronal mass ejection (CME) impact on Earth's magnetosphere. A sequence of events started with an M3.5 X-ray class flare on 22 August 2015 at 21:19 UTC. The New-Tupi muon telescopes observed a Forbush decrease (FD) triggered by this geomagnetic storm, which began on 26 August 2015. After Earth crossed the heliospheric current sheet (HCS), an increase in particle flux was observed on 28 August 2015 by spacecraft and ground-level detectors. The observed peak was in temporal coincidence with the impact of a high-speed stream (HSS). We study this increase, which has been observed with a significance above 1.5% by ground-level detectors in different rigidity regimes. We also estimate the lower limit of the energy fluence injected on Earth. In addition, we consider the origin of this increase, such as acceleration of particles by shock waves at the front of the HSS and the focusing effect of the HCS crossing. Our results show possible evidence of a prolonged energetic (up to GeV energies) particle injection within the Earth atmosphere system, driven by the HSS. In most cases, these injected particles are directed to the polar regions. However, the particles from the high-energy tail of the spectrum can reach mid-latitudes, and this could have consequences for the atmospheric chemistry. For instance, the creation of NOx species may be enhanced, and this can lead to increased ozone depletion. This topic requires further study.

  12. Layering of confined water between two graphene sheets and its liquid–liquid transition

    Zhou Xuyan; Duan Yunrui; Wang Long; Liu Sida; Li Tao; Li Yifan; Li Hui

    2017-01-01

    Molecular dynamics (MD) simulations are performed to explore the layering structure and liquid–liquid transition of liquid water confined between two graphene sheets with a varied distance at different pressures. Both the size of nanoslit and pressure could cause the layering and liquid–liquid transition of the confined water. With increase of pressure and the nanoslit’s size, the confined water could have a more obvious layering. In addition, the neighboring water molecules firstly form chain structure, then will transform into square structure, and finally become triangle with increase of pressure. These results throw light on layering and liquid–liquid transition of water confined between two graphene sheets. (paper)

  13. Rupture of nanoscaled water sheets in the presence of an applied electric field

    Gopan, Nandu, E-mail: nandug@jncasr.ac.in [Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064 (India)

    2016-12-15

    Understanding the behaviour of water sheets is relevant in numerous areas, such as thin film coating and atomisation. The rupture of planar liquid sheets are interesting due to the fact that they are objects of co-dimension 1. Previous work seems to suggest that a generic route to liquid structure fragmentation is via liquid sheets. The interplay between inertia, surface tension and viscosity is crucial in determining the dynamics of liquid sheets at a macro scale. At the nanoscale, where thermal fluctuations are expected to play a dominant role, the dynamics become more interesting. The stability and rupture dynamics of nanoscaled water sheets, at constant temperature, are studied using constrained molecular dynamics (MD) simulations. The SPC/E potential with long range electrostatics is used to simulate water molecules. The effect of an applied electric field on the stability of the nanoscaled water sheet forms the focus of this study. The effect of the initial configuration is studied by changing the random seed values used for velocity initialisation. The effect of sheet thickness on the rupture dynamics is also explored. It is seen that when large electric fields (5 V/nm) act across very thin sheets (1 layer), then breakup into multiple ellipsoidal structures is a possibility, and the response of the fluid structure to the applied electric field is non-linear. Furthermore, it is seen that Taylor's predictions for the critical electric field intensity, based on classical electro-hydrodynamics for the onset of instability in macroscopic drops, scales surprisingly well for the case of nanoscaled sheets. (paper)

  14. Storm water runoff for the Y-12 Plant and selected parking lots

    Collins, E.T.

    1996-01-01

    A comparison of storm water runoff from the Y-12 Plant and selected employee vehicle parking lots to various industry data is provided in this document. This work is an outgrowth of and part of the continuing Non-Point Source Pollution Elimination Project that was initiated in the late 1980s. This project seeks to identify area pollution sources and remediate these areas through the Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act (RCRA/CERCLA) process as managed by the Environmental Restoration Organization staff. This work is also driven by the Clean Water Act Section 402(p) which, in part, deals with establishing a National Pollutant Discharge Elimination System (NPDES) permit for storm water discharges. Storm water data from events occurring in 1988 through 1991 were analyzed in two reports: Feasibility Study for the Best Management Practices to Control Area Source Pollution Derived from Parking Lots at the DOE Y-12 Plant, September 1992, and Feasibility Study of Best Management Practices for Non-Point Source Pollution Control at the Oak Ridge Y-12 Plant, February 1993. These data consisted of analysis of outfalls discharging to upper East Fork Poplar Creek (EFPC) within the confines of the Y-12 Plant (see Appendixes D and E). These reports identified the major characteristics of concern as copper, iron, lead, manganese, mercury, nitrate (as nitrogen), zinc, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliform, and aluminum. Specific sources of these contaminants were not identifiable because flows upstream of outfalls were not sampled. In general, many of these contaminants were a concern in many outfalls. Therefore, separate sampling exercises were executed to assist in identifying (or eliminating) specific suspected sources as areas of concern

  15. Water quality during storm events from two constructed wetlands receiving mine drainage

    Stark, L.R.; Brooks, R.P.; Williams, F.M.; Stevens, S.E. Jr.; Davis, L.K.

    1994-01-01

    Flow rates, pH, iron concentration, and manganese concentration were measured during several storm event at two constructed wetlands receiving mine water. During a substantial rain event, flow rates at both the wetland outlets surpassed flow rates at the wetland inlets, reflecting incident rainfall and differences in wetland area at the two sites. A significant positive correlation existed between local rainfall and outflow rates at the larger wetland, but not between rainfall and inflow rates. During storm events, outlet pH, relative to inlet pH, was slightly elevated at the larger wetland, and depressed at the smaller wetland. However, over the course of one year, rainfall was uncorrelated to outlet pH in the larger wetland. A substantial rain event at the smaller wetland resulted in a temporary elevation in outlet iron concentrations, with treatment efficiency reduced to near zero. However, in the larger wetland, outlet iron concentrations were not significantly affected by storm events. 14 refs., 7 figs., 4 tabs

  16. Evaluatiopn of Strategies for Modifying Urban Storm Water Drainage System Using Risk-based Criteria

    mahsa soleimani

    2016-01-01

    Full Text Available Appropriate modification of existing urban storm water drainage networks may help reduce network inundation and flood-borne pollution risks. It will, therefore, be necessary to analyze the risks associated with water quantity and quality during urban flooding before any reconstruction strategies can be identified that are adaptable to, or compatible with, urban sustainable development strategies. In this paper, three network modification strategies are evaluated against the three criteria of network inundation at different sections, flood pollution risks, and modification plan costs. The modification strategies evaluated include the conventional approach of increasing conduit dimensions as well as the two novels swale and bio-retention systems. The strategies are then prioritised using a Multi-Criteria Decision Analysis (MCDA method. The application of the proposed methodology is illustrated in the case study of urban storm water drainage systems in the Golestan City in Tehran Province for which a hydrological and hydraulic simulation model has been developed using the SWMM software. The results show that the swale system is the best strategy with an approximate cost of 20 billion Rials (almost US$ 6 million. Compared to the existing system in operation, the proposed system will be capable of reducing 59% of the quantitative risk of flooding (inundation and 26% of the water quality risk (pollution loads.

  17. Flow Velocity Effects on Fe(III Clogging during Managed Aquifer Recharge Using Urban Storm Water

    Xinqiang Du

    2018-03-01

    Full Text Available Storm water harvesting and storage has been employed for nearly a hundred years, and using storm water to recharge aquifers is one of the most important ways to relieve water scarcity in arid and semi-arid regions. However, it cannot be widely adopted because of clogging problems. The risk of chemical clogging is mostly associated with iron oxyhydroxide precipitation; anhydrous ferric oxide (HFO clogging remains a problem in many wellfields. This paper investigates Fe(III clogging levels at three flow velocities (Darcy velocities, 0.46, 1.62 and 4.55 m/d. The results indicate that clogging increases with flow velocity, and is mostly affected by the first 0–3 cm of the column. The highest water velocity caused full clogging in 35 h, whereas the lowest took 53 h to reach an stable 60% reduction in hydraulic conductivity. For the high flow velocity, over 90% of the HFO was deposited in the 0–1 cm section. In contrast, the lowest flow velocity deposited only 75% in this section. Fe(III deposition was used as an approximation for Fe(OH3. High flow velocity may promote Fe(OH3 flocculent precipitate, thus increasing Fe(III deposition. The main mechanism for a porous matrix interception of Fe(III colloidal particles was surface filtration. Thus, the effects of deposition, clogging phenomena, and physicochemical mechanisms, are more significant at higher velocities.

  18. Vertical flow soil filter for the elimination of micro pollutants from storm and waste water

    Janzen, Niklas; Banzhaf, Stefan; Scheytt, Traugott

    2009-01-01

    A technical scale activated soil filter has been used to study the elimination rates of diverse environmentally relevant micro pollutants from storm and waste water. The filter was made of layers of peat, sand and gravel. The upper (organic) layer was planted with reed (phragmites australis......) to prevent clogging and was spiked with activated sludge to enhance microbial biomass and biodegradation potential. Compounds used as UV filters, antioxidants or plasticizers, namely 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), butylated hydroxytoluene (BHT), N-butylbenzenesulfonamide (NBBS...

  19. Case study: design, operation, maintenance and water quality management of sustainable storm water ponds for roof runoff.

    Scholz, Miklas

    2004-12-01

    The purpose of this case study was to optimise design, operation and maintenance guidelines, and to assess the water treatment potential of a storm water pond system after 15 months of operation. The system was based on a combined silt trap, attenuation pond and vegetated infiltration basin. This combination was used as the basis for construction of a roof water runoff system from a single domestic property. United Kingdom Building Research Establishment and Construction Industry Research and Information Association, and German Association for Water, Wastewater and Waste design guidelines were tested. These design guidelines failed because they did not consider local conditions. The infiltration function for the infiltration basin was logarithmic. Algal control techniques were successfully applied, and treatment of rainwater runoff from roofs was found to be largely unnecessary for recycling (e.g., watering plants). However, seasonal and diurnal variations of biochemical oxygen demand, dissolved oxygen and pH were recorded.

  20. Fact sheet: National primary drinking water regulations for lead and copper

    1991-05-01

    The Fact Sheet contains a summary of what the regulations will do, establish, and provide; regulatory impact in regards to benefits and costs; treatment technique requirements; tap water monitoring for lead and copper; water quality monitoring (other than lead and copper); monitoring schedules, regulatory schedules for large, medium-sized, and small systems

  1. Hanford Site storm water comprehensive site compliance evaluation report for the reporting period July 1, 1996 through June 30, 1997

    Perkins, C.J.

    1997-01-01

    On September 9, 1992, the US Environmental Protection Agency (EPA) issued General Permit No. WA-R-00-OOOF, Authorization to Discharge Under the National Pollutant Discharge Elimination System (NPDES) for Storm Water Discharges Associated with Industrial Activity to the US Department of Energy, Richland Operations Office (RL). RL submitted a Notice of Intent to comply with this permit to EPA in conformance with the General Permit requirements on October 1, 1992. On February 14, 1994, EPA issued a Storm Water General Permit Coverage Notice and assigned WA-R-00-Al7F as the Hanford Site's National Pollutant Discharge Elimination System (NPDES) storm water permit number. The Hanford Site Storm Water Pollution Prevention Plan (SWPPP) (WHC 1996a) was certified by J. E Rasmussen, Director Environmental Assurance, RL, on September 24, 1996, in compliance with Part IV.B(i) of the General Permit. As required by General Permit No. WA-R-00-OOOF (WA-R-00-Al7F), Section IV, Part D, Section 4.c, an annual report must be developed by RL and retained on site to verify that the requirements listed in the General Permit are being implemented. The previous Hanford Site Storm Plater Comprehensive Site Compliance Evaluation Report (WHC 1996b) addressed the period from July 1995 through June 1996. This document fulfills the requirement to prepare an annual report and contains the results of inspections of the storm water outfalls listed in the SWPPP (WHC 1996a). This report also describes the methods used to conduct the 1100 Storm Plater Comprehensive Site Compliance Evaluation (SWCSCE) as required in Part IV, Section D.4.c in the General Permit; summarizes the results of the compliance evaluation; and documents significant leaks and spills. The reporting year for this SWCSCE report is July 1, 1996 through June 30, 1997

  2. Carcinogenic ptaquiloside in stream water at base flow and during storm events

    Strobel, Bjarne W.; Clauson-Kaas, Frederik; Hansen, Hans Chr. Bruun

    2017-01-01

    identified, of which the compound ptaquiloside (PTA) is the most abundant. Ptaquiloside has been shown to be highly water soluble, leachable from bracken fronds and litter, and present in the soil below bracken stands. During storm events throughfall from the bracken canopy was collected as well. Stream...... water samples were taken as grab samples, while throughfall accumulated in glass jars set out below the canopy. Field blanks and fortified lab controls were included to ensure reliability of the analysis. Ptaquiloside concentrations were determined using LC-MS/MS after a clean-up using solid phase...... extraction. Results showed that PTA levels in the stream were highly dependent on precipitation, and was rising considerably during rain events, peaking at 2.28 μg/L, before quickly (conservation...

  3. Efficiency of Oil Removal from Real Storm Water With Different Sorbents

    Aušra Mažeikienė

    2011-12-01

    Full Text Available Suspended solids and oil products are considered as the most important pollutants in storm water. Surface water flow and changes in pollutant concentration complicate conventional matching techniques and prolong the duration of technological processes; therefore, a comprehensive study on this area is necessary. For this reason, the research and analysis of three different sorbents (“FIBROIL®”, “Duck”, “Reo-dry” were performed in the laboratory. According to the results of the conducted experiment, all three sorbents have similar treatment efficiency: “FIBROIL®” – 99%, “Reo-dry” – 95%, “Duck” – 98%. Filtering rate had an influence on the effectiveness of removing petrol products (slower speed increases effectiveness.Article in Lithuanian

  4. Management of storm water in unitary sewer systems; Gestion de las aguas de tormenta en las redes de alcantarillado unitarias

    Rayos, C.

    1999-08-01

    A brief review is provided of the general problems of storm waters and how they are dealt with in Directive 91/27/EEC. An experiment in Asturias, Spain, is reported in which storm water storage tanks were designed to reduce the number and impact of discharges from the unitary sewer systems. The criteria for calculating the design flows in accordance with the guidelines of Spain`s Northern Hydrographic Confederation, the procedures used in determining the size of the overflows and the different elements employed in the equipment, control systems and safety systems are all described. (Author) 31 refs.

  5. Seasonal fluctuations of organophosphate concentrations in precipitation and storm water runoff.

    Regnery, Julia; Püttmann, Wilhelm

    2010-02-01

    To investigate seasonal fluctuations and trends of organophosphate (flame retardants, plasticizers) concentrations in rain and snow, precipitation samples were collected in 2007-2009 period at a densely populated urban sampling site and two sparsely populated rural sampling sites in middle Germany. In addition, storm water runoff was sampled from May 2008 to April 2009 at an urban storm water holding tank (SWHT). Samples were analyzed for tris(2-chloroethyl) phosphate (TCEP), tris(2-chloro-1-methylethyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCP), tris(2-butoxyethyl) phosphate (TBEP), tri-iso-butyl phosphate (TiBP), and tri-n-butyl phosphate (TnBP) by gas chromatography-mass spectrometry after solid phase extraction. Among the six analyzed organophosphates (OPs), TCPP dominated in all precipitation and SWHT water samples with maximum concentrations exceeding 1000ngL(-1). For all analytes, no seasonal trends were observed at the urban precipitation sampling site, although atmospheric photooxidation was expected to reduce particularly concentrations of non-chlorinated OPs during transport from urban to remote areas in summer months with higher global irradiation. In the SWHT a seasonal trend with decreasing concentrations in summer/autumn is evident for the non-chlorinated OPs due to in-lake degradation but not for the chlorinated OPs. Furthermore, an accumulation of OPs deposited in SWHTs was observed with concentrations often exceeding those observed in wet precipitation. Median concentrations of TCPP (880ngL(-1)), TDCP (13ngL(-1)) and TBEP (77ngL(-1)) at the SWHT were more than twice as high as median concentrations measured at the urban precipitation sampling site (403ngL(-1), 5ngL(-1), and 21ngL(-1) respectively).

  6. Abating coal tar seepage into surface water bodies using sheet piles with sealed interlocks

    Collingwood, B.I.; Boscardin, M.D.; Murdock, R.F.

    1995-01-01

    A former coal tar processing facility processed crude coal tar supplied from manufactured gas plants in the area. Coal-tar-contaminated ground water from the site was observed seeping through an existing timber bulkhead along a tidal river and producing a multicolored sheen on the surface of the river. As part of a short-term measure to abate the seepage into the river, 64-m long anchored sheet pile wall with sheet pile wing walls at each end was constructed inland of the of the timber bulkhead. The sheet piles extended to low-permeability soils at depth and the interlocks of the sheet piles were provided with polyurethane rubber seals. Based on postconstruction observations for leakage and sheens related to leakage, the steel sheet piles with polyurethane rubber interlock seals appeared to provide a successful seal and abate coal-tar-contaminated ground water seepage into the river. The tie rod penetration sealing proved to be a more problematic detail, but through several postconstruction grouting episodes, an effective seal was produced

  7. Storm Water Data 10-27-2016 for Upload to State Database.

    Holland, Robert C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-11-01

    In the California Industrial General Permit (IGP) 2014-0057-DWQ for storm water monitoring, effective July 1, 2015, there are 21 contaminants that have been assigned NAL (Numeric Action Level) values, both annual and instantaneous. For annual NALs, an exceedance occurs when the average of all analytical results from all samples taken at a facility during a reporting year for a given parameter exceeds an annual NAL value listed in Table 2 of the General Permit. For instantaneous maximum NALs, an exceedance occurs when two or more analytical results from samples taken for any parameter within a reporting year exceed the instantaneous maximum NAL value (for TSS and O&G), or are outside of the instantaneous maximum NAL range (for pH) listed in Table 2. Table 2 is attached here for your review.

  8. Evaluation of storm event inputs on levels of gross primary production and respiration in a drinking water reservoir

    Samal, Nihar; Stæhr, Peter A.; Pierson, Donald C.

    events using vertical profiles of temperature, dissolved oxygen, turbidity and chlorophyll automatically collected at 6 hour intervals in West basin of Ashokan Reservoir, which is a part of the New York City drinking water supply. Using data from before, during and after storm events, we examine how...

  9. The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale.

    Palla, A; Gnecco, I; La Barbera, P

    2017-04-15

    In the framework of storm water management, Domestic Rainwater Harvesting (DRWH) systems are recently recognized as source control solutions according to LID principles. In order to assess the impact of these systems in storm water runoff control, a simple methodological approach is proposed. The hydrologic-hydraulic modelling is undertaken using EPA SWMM; the DRWH is implemented in the model by using a storage unit linked to the building water supply system and to the drainage network. The proposed methodology has been implemented for a residential urban block located in Genoa (Italy). Continuous simulations are performed by using the high-resolution rainfall data series for the ''do nothing'' and DRWH scenarios. The latter includes the installation of a DRWH system for each building of the urban block. Referring to the test site, the peak and volume reduction rate evaluated for the 2125 rainfall events are respectively equal to 33 and 26 percent, on average (with maximum values of 65 percent for peak and 51 percent for volume). In general, the adopted methodology indicates that the hydrologic performance of the storm water drainage network equipped with DRWH systems is noticeable even for the design storm event (T = 10 years) and the rainfall depth seems to affect the hydrologic performance at least when the total depth exceeds 20 mm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. 40 CFR 122.31 - As a Tribe, what is my role under the NPDES storm water program?

    2010-07-01

    ... ELIMINATION SYSTEM Permit Application and Special NPDES Program Requirements § 122.31 As a Tribe, what is my... 40 Protection of Environment 21 2010-07-01 2010-07-01 false As a Tribe, what is my role under the NPDES storm water program? 122.31 Section 122.31 Protection of Environment ENVIRONMENTAL PROTECTION...

  11. 40 CFR 122.30 - What are the objectives of the storm water regulations for small MS4s?

    2010-07-01

    ... DISCHARGE ELIMINATION SYSTEM Permit Application and Special NPDES Program Requirements § 122.30 What are the... 40 Protection of Environment 21 2010-07-01 2010-07-01 false What are the objectives of the storm water regulations for small MS4s? 122.30 Section 122.30 Protection of Environment ENVIRONMENTAL...

  12. Drainage area characterization for evaluating green infrastructure using the Storm Water Management Model

    Lee, Joong Gwang; Nietch, Christopher T.; Panguluri, Srinivas

    2018-05-01

    Urban stormwater runoff quantity and quality are strongly dependent upon catchment properties. Models are used to simulate the runoff characteristics, but the output from a stormwater management model is dependent on how the catchment area is subdivided and represented as spatial elements. For green infrastructure modeling, we suggest a discretization method that distinguishes directly connected impervious area (DCIA) from the total impervious area (TIA). Pervious buffers, which receive runoff from upgradient impervious areas should also be identified as a separate subset of the entire pervious area (PA). This separation provides an improved model representation of the runoff process. With these criteria in mind, an approach to spatial discretization for projects using the US Environmental Protection Agency's Storm Water Management Model (SWMM) is demonstrated for the Shayler Crossing watershed (SHC), a well-monitored, residential suburban area occupying 100 ha, east of Cincinnati, Ohio. The model relies on a highly resolved spatial database of urban land cover, stormwater drainage features, and topography. To verify the spatial discretization approach, a hypothetical analysis was conducted. Six different representations of a common urbanscape that discharges runoff to a single storm inlet were evaluated with eight 24 h synthetic storms. This analysis allowed us to select a discretization scheme that balances complexity in model setup with presumed accuracy of the output with respect to the most complex discretization option considered. The balanced approach delineates directly and indirectly connected impervious areas (ICIA), buffering pervious area (BPA) receiving impervious runoff, and the other pervious area within a SWMM subcatchment. It performed well at the watershed scale with minimal calibration effort (Nash-Sutcliffe coefficient = 0.852; R2 = 0.871). The approach accommodates the distribution of runoff contributions from different spatial components and

  13. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Shaoxian Song

    2017-12-01

    Full Text Available Heavy metals usually referred to those with atomic weights ranging from 63.5 to 200.6. Because of natural-mineral dissolution and human activities such as mining, pesticides, fertilizer, metal planting and batteries manufacture, etc., these heavy metals, including zinc, copper, mercury, lead, cadmium and chromium have been excessively released into water courses, like underground water, lake and river, etc. The ingestion of the heavy metals-contaminated water would raise serious health problems to human beings even at a low concentration. For instance, lead can bring human beings about barrier to the normal function of kidney, liver and reproductive system, while zinc can cause stomach cramps, skin irritations, vomiting and anemia. Mercury is a horrible neurotoxin that may result in damages to the central nervous system, dysfunction of pulmonary and kidney, chest and dyspnea. Chromium (VI has been proved can cause many diseases ranging from general skin irritation to severe lung carcinoma. Accordingly, the World Health Organization announced the maximum contaminant levels (MCL for the heavy metals in drinking water. There are numerous processes for eliminating heavy metals from water in order to provide citizens safe drinking water, including precipitation, adsorption, ion exchange, membrane separation and biological treatment, etc. Adsorption is considered as a potential process for deeply removing heavy metals, in which the selection of adsorbents plays a predominant role. Nano-sheet minerals as the adsorbents are currently the hottest researches in the field. They are obtained from layered minerals, such as montmorillonite, graphite and molybdenite, through the processing of intercalation, electrochemical and mechanical exfoliation, etc. Nano-sheet minerals are featured by their large specific surface area, relatively low costs and active adsorbing sites, leading to be effective and potential adsorbents for heavy metals removal from water

  14. A simple metric to predict stream water quality from storm runoff in an urban watershed.

    Easton, Zachary M; Sullivan, Patrick J; Walter, M Todd; Fuka, Daniel R; Petrovic, A Martin; Steenhuis, Tammo S

    2010-01-01

    The contribution of runoff from various land uses to stream channels in a watershed is often speculated and used to underpin many model predictions. However, these contributions, often based on little or no measurements in the watershed, fail to appropriately consider the influence of the hydrologic location of a particular landscape unit in relation to the stream network. A simple model was developed to predict storm runoff and the phosphorus (P) status of a perennial stream in an urban watershed in New York State using the covariance structure of runoff from different landscape units in the watershed to predict runoff in time. One hundred and twenty-seven storm events were divided into parameterization (n = 85) and forecasting (n = 42) data sets. Runoff, dissolved P (DP), and total P (TP) were measured at nine sites distributed among three land uses (high maintenance, unmaintained, wooded), three positions in the watershed (near the outlet, midwatershed, upper watershed), and in the stream at the watershed outlet. The autocorrelation among runoff and P concentrations from the watershed landscape units (n = 9) and the covariance between measurements from the landscape units and measurements from the stream were calculated and used to predict the stream response. Models, validated using leave-one-out cross-validation and a forecasting method, were able to correctly capture temporal trends in streamflow and stream P chemistry (Nash-Sutcliffe efficiencies, 0.49-0.88). The analysis suggests that the covariance structure was consistent for all models, indicating that the physical processes governing runoff and P loss from these landscape units were stationary in time and that landscapes located in hydraulically active areas have a direct hydraulic link to the stream. This methodology provides insight into the impact of various urban landscape units on stream water quantity and quality.

  15. Seasonal variability of stream water quality response to storm events captured using high-frequency and multi-parameter data

    Fovet, O.; Humbert, G.; Dupas, R.; Gascuel-Odoux, C.; Gruau, G.; Jaffrezic, A.; Thelusma, G.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Grimaldi, C.

    2018-04-01

    The response of stream chemistry to storm is of major interest for understanding the export of dissolved and particulate species from catchments. The related challenge is the identification of active hydrological flow paths during these events and of the sources of chemical elements for which these events are hot moments of exports. An original four-year data set that combines high frequency records of stream flow, turbidity, nitrate and dissolved organic carbon concentrations, and piezometric levels was used to characterize storm responses in a headwater agricultural catchment. The data set was used to test to which extend the shallow groundwater was impacting the variability of storm responses. A total of 177 events were described using a set of quantitative and functional descriptors related to precipitation, stream and groundwater pre-event status and event dynamics, and to the relative dynamics between water quality parameters and flow via hysteresis indices. This approach led to identify different types of response for each water quality parameter which occurrence can be quantified and related to the seasonal functioning of the catchment. This study demonstrates that high-frequency records of water quality are precious tools to study/unique in their ability to emphasize the variability of catchment storm responses.

  16. Violent storms within the sea: Dense water formation episodes in the Mediterranean.

    Salat, J.

    2009-09-01

    The Mediterranean is a semi enclosed basin which receives surface water from the Atlantic Ocean. Most of this water is returned into the Ocean with higher density, spreading at more than 1000 m depth (the rest is transported by the atmosphere and the rivers to the Ocean surface). In terms of water budget, the Mediterranean is considered an evaporation basin, but the loss of water is neither the only process that increases the water density nor it is a steady or uniform process. The factors affecting the water density, temperature and salinity, are driven by mass and heat exchanges with the atmosphere. Those exchanges may be by direct contact or mediated by the land. Therefore, changes in water density depend on the water circulation and local weather conditions, both with seasonal and geographical constraints. As the compressibility of water is very low, stratification is expected and horizontal motion is the predominant in the sea interior. Among the few processes that may introduce a vertical component in the water motion are surface heat loss or evaporation that increase the surface water density triggering convective cells. Such processes will be enhanced by surface cooling or by dry continental winds, and counterbalanced by rain, river runoff, solar heating and condensation. Therefore dense water formation are more likely to occur when sea surface temperature is higher than the surface air temperature. There are several scales of convective motions in the ocean, starting from the formation of the surface mixed layer during summer, by night cooling, breezes, and occasional wind storms. During autumn and winter, the vertical scale of the mixing is increasing by steps, through wind storms and progressive cooling, to easily reach the bottom over the continental shelves, typically not deeper than 150 m. However, as the Gibraltar sill is relatively shallow (~350 m) in relation to the average Mediterranean basin (2000-3000 m), the stratification of the deeper layers

  17. Using smooth sheets to describe groundfish habitat in Alaskan waters, with specific application to two flatfishes

    Zimmermann, Mark; Reid, Jane A.; Golden, Nadine

    2016-01-01

    In this analysis we demonstrate how preferred fish habitat can be predicted and mapped for juveniles of two Alaskan groundfish species – Pacific halibut (Hippoglossus stenolepis) and flathead sole (Hippoglossoides elassodon) – at five sites (Kiliuda Bay, Izhut Bay, Port Dick, Aialik Bay, and the Barren Islands) in the central Gulf of Alaska. The method involves using geographic information system (GIS) software to extract appropriate information from National Ocean Service (NOS) smooth sheets that are available from NGDC (the National Geophysical Data Center). These smooth sheets are highly detailed charts that include more soundings, substrates, shoreline and feature information than the more commonly-known navigational charts. By bringing the information from smooth sheets into a GIS, a variety of surfaces, such as depth, slope, rugosity and mean grain size were interpolated into raster surfaces. Other measurements such as site openness, shoreline length, proportion of bay that is near shore, areas of rocky reefs and kelp beds, water volumes, surface areas and vertical cross-sections were also made in order to quantify differences between the study sites. Proper GIS processing also allows linking the smooth sheets to other data sets, such as orthographic satellite photographs, topographic maps and precipitation estimates from which watersheds and runoff can be derived. This same methodology can be applied to larger areas, taking advantage of these free data sets to describe predicted groundfish essential fish habitat (EFH) in Alaskan waters.

  18. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  19. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  20. Analysis of Tide and Offshore Storm-Induced Water Table Fluctuations for Structural Characterization of a Coastal Island Aquifer

    Trglavcnik, Victoria; Morrow, Dean; Weber, Kela P.; Li, Ling; Robinson, Clare E.

    2018-04-01

    Analysis of water table fluctuations can provide important insight into the hydraulic properties and structure of a coastal aquifer system including the connectivity between the aquifer and ocean. This study presents an improved approach for characterizing a permeable heterogeneous coastal aquifer system through analysis of the propagation of the tidal signal, as well as offshore storm pulse signals through a coastal aquifer. Offshore storms produce high wave activity, but are not necessarily linked to significant onshore precipitation. In this study, we focused on offshore storm events during which no onshore precipitation occurred. Extensive groundwater level data collected on a sand barrier island (Sable Island, NS, Canada) show nonuniform discontinuous propagation of the tide and offshore storm pulse signals through the aquifer with isolated inland areas showing enhanced response to both oceanic forcing signals. Propagation analysis suggests that isolated inland water table fluctuations may be caused by localized leakage from a confined aquifer that is connected to the ocean offshore but within the wave setup zone. Two-dimensional groundwater flow simulations were conducted to test the leaky confined-unconfined aquifer conceptualization and to identify the effect of key parameters on tidal signal propagation in leaky confined-unconfined coastal aquifers. This study illustrates that analysis of offshore storm signal propagation, in addition to tidal signal propagation, provides a valuable and low resource approach for large-scale characterization of permeable heterogeneous coastal aquifers. Such an approach is needed for the effective management of coastal environments where water resources are threatened by human activities and the changing climate.

  1. Impacts of transportation infrastructure on storm water and surfaces waters in Chittenden County, Vermont, USA.

    2014-06-01

    Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...

  2. Rainfall, runoff, and water-quality data for the urban storm-water program in the Albuquerque, New Mexico, metropolitan area, water year 2004

    Kelly, Todd; Romero, Orlando; Jimenez, Mike

    2006-01-01

    Urbanization has dramatically increased precipitation runoff to the system of drainage channels and natural stream channels in the Albuquerque, New Mexico, metropolitan area. Rainfall and runoff data are important for planning and designing future storm-water conveyance channels in newly developing areas. Storm-water quality also is monitored in accordance with the National Pollutant Discharge Elimination System mandated by the U.S. Environmental Protection Agency. The Albuquerque Metropolitan Arroyo Flood Control Authority, the City of Albuquerque, and the U.S. Geological Survey began a cooperative program to collect hydrologic data to assist in assessing the quality and quantity of surface-water resources in the Albuquerque area. This report presents water-quality, streamflow, and rainfall data collected from October 1, 2003, to September 30, 2004 (water year 2004). Also provided is a station analysis for each of the 18 streamflow-gaging sites and 39 rainfall-gaging sites, which includes a description of monitoring equipment, problems associated with data collection during the year, and other information used to compute streamflow discharges or rainfall records. A hydrographic comparison shows the effects that the largest drainage channel in the metropolitan area, the North Floodway Channel, has on total flow in the Rio Grande.

  3. Storm-wave trends in Mexican waters of the Gulf of Mexico and Caribbean Sea

    E. Ojeda

    2017-08-01

    Full Text Available Thirty-year time series of hindcast wave data were analysed for 10 coastal locations along the eastern Mexican coast to obtain information about storm events occurring in the region, with the goal of examining the possible presence of interannual trends in the number of storm-wave events and their main features (wave height, duration and energy content. The storms were defined according to their significant wave height and duration, and the events were classified as related to either tropical cyclones or Norte events. The occurrence and characteristics of both types of events were analysed independently. There is no statistically significant change in the number of storm-wave events related to Nortes or their characteristics during the study period. However, there is a subtle increase in the number of events related to tropical cyclones in the western Caribbean region and a more evident increase in wave height and energy content of these events.

  4. Observations and predictions of wave runup, extreme water levels, and medium-term dune erosion during storm conditions

    Suanez , Serge ,; Cancouët , Romain; Floc'h , France; Blaise , Emmanuel; Ardhuin , Fabrice; Filipot , Jean-François; Cariolet , Jean-Marie; Delacourt , Christophe

    2015-01-01

    Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France) over the past decade (2004–2014) has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i) astronomic tide; (ii) storm surge; and (iii) vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide wa...

  5. An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate

    A. Sterl

    2009-09-01

    Full Text Available The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.

  6. Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models

    Flament, T.; Berthier, E.; Rémy, F.

    2014-04-01

    We describe a major subglacial lake drainage close to the ice divide in Wilkes Land, East Antarctica, and the subsequent cascading of water underneath the ice sheet toward the coast. To analyse the event, we combined altimetry data from several sources and subglacial topography. We estimated the total volume of water that drained from Lake CookE2 by differencing digital elevation models (DEM) derived from ASTER and SPOT5 stereo imagery acquired in January 2006 and February 2012. At 5.2 ± 1.5 km3, this is the largest single subglacial drainage event reported so far in Antarctica. Elevation differences between ICESat laser altimetry spanning 2003-2009 and the SPOT5 DEM indicate that the discharge started in November 2006 and lasted approximately 2 years. A 13 m uplift of the surface, corresponding to a refilling of about 0.6 ± 0.3 km3, was observed between the end of the discharge in October 2008 and February 2012. Using the 35-day temporal resolution of Envisat radar altimetry, we monitored the subsequent filling and drainage of connected subglacial lakes located downstream of CookE2. The total volume of water traveling within the theoretical 500-km-long flow paths computed with the BEDMAP2 data set is similar to the volume that drained from Lake CookE2, and our observations suggest that most of the water released from Lake CookE2 did not reach the coast but remained trapped underneath the ice sheet. Our study illustrates how combining multiple remote sensing techniques allows monitoring of the timing and magnitude of subglacial water flow beneath the East Antarctic ice sheet.

  7. Data sheets of fission product release experiments for light water reactor fuel, (2)

    Ishiwatari, Nasumi; Nagai, Hitoshi; Takeda, Tsuneo; Yamamoto, Katsumune; Nakazaki, Chozaburo.

    1979-07-01

    This is the second data sheets of fission products (FP) release experiments for light water reactor fuel. Results of five FP release experiments from the third to the seventh are presented: results of pre-examinations of UO 2 pellets, photographs of parts of fuel rod assemblies for irradiation and the assemblies, operational conditions of JMTR and OWL-1, variations of radioiodine-131 level in the main loop coolant during experimental periods, and representative results of post-irradiation examinations of respective fuel rods. (author)

  8. Comparison of Microbial and Chemical Source Tracking Markers To Identify Fecal Contamination Sources in the Humber River (Toronto, Ontario, Canada) and Associated Storm Water Outfalls.

    Staley, Zachery R; Grabuski, Josey; Sverko, Ed; Edge, Thomas A

    2016-11-01

    Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp., human, ruminant/cow, gull, and dog) were detected in storm water outfalls and sites along the Humber River in Toronto, Ontario, Canada, and enumerated via endpoint PCR and quantitative PCR (qPCR). Additionally, chemical source tracking (CST) markers specific for human wastewater (caffeine, carbamazepine, codeine, cotinine, acetaminophen, and acesulfame) were quantified. Human and gull fecal sources were detected at all sites, although concentrations of the human fecal marker were higher, particularly in outfalls (mean outfall concentrations of 4.22 log 10 copies, expressed as copy numbers [CN]/100 milliliters for human and 0.46 log 10 CN/100 milliliters for gull). Higher concentrations of caffeine, acetaminophen, acesulfame, E. coli, and the human fecal marker were indicative of greater raw sewage contamination at several sites (maximum concentrations of 34,800 ng/liter, 5,120 ng/liter, 9,720 ng/liter, 5.26 log 10 CFU/100 ml, and 7.65 log 10 CN/100 ml, respectively). These results indicate pervasive sewage contamination at storm water outfalls and throughout the Humber River, with multiple lines of evidence identifying Black Creek and two storm water outfalls with prominent sewage cross-connection problems requiring remediation. Limited data are available on specific sources of pollution in storm water, though our results indicate the value of using both MST and CST methodologies to more reliably assess sewage contamination in impacted watersheds. Storm water runoff is one of the most prominent non-point sources of biological and chemical contaminants which can

  9. Storm Surge Reconstruction and Return Water Level Estimation in Southeast Asia for the 20th Century

    Cid, Alba; Wahl, Thomas; Chambers, Don P.; Muis, Sanne

    2018-01-01

    We present a methodology to reconstruct the daily maximum storm surge levels, obtained from tide gauges, based on the surrounding atmospheric conditions from an atmospheric reanalysis (20th Century Reanalysis-20CR). Tide gauge records in Southeast Asia are relatively short, so this area is often

  10. Impact of Prairie Cover on Hydraulic Conductivity and Storm Water Runoff

    Herkes, D. M. G.; Gori, A.; Juan, A.

    2017-12-01

    Houston has long struggled to find effective solutions to its historic flooding problems. Conventional strategies have revolved around constructing hard infrastructure such as levees or regional detention ponds to reduce flood impacts. However, there has been a recent shift to explore the implementation of nature-based solutions in reducing flood impacts. This is due to the price of structural mechanisms, as well as their failure to adequately protect areas from flooding during the latest flood events. One alternative could be utilizing the natural water retention abilities of native Texas prairies. This study examines the effect of Texas prairie areas in increasing soil infiltration capacities, thereby increasing floodwater storage and reducing surface runoff. For this purpose, an infiltration study of 15 sites was conducted on lands owned by the Katy Prairie Conservancy within Cypress Creek watershed. Located in Northwest Houston, it is an area which had been heavily impacted by recent flood events. Each sampling site was selected to represent a particular land cover or vegetation type, ranging from developed open space to native prairies. Field test results are then compared to literature values of soil infiltration capacity in order to determine the infiltration benefit of each vegetation type. Test results show that certain vegetation, especially prairies, significantly increase the infiltration capacity of the underlying soil. For example, the hydraulic conductivity of prairie on sandy loam soil is approximately an order of magnitude higher than that of the soil itself. Finally, a physics-based hydrologic model is utilized to evaluate the flood reduction potential of native Texas prairie. This model represents Cypress Creek watershed in gridded cell format, and allows varying hydraulic and infiltration parameters at each cell. Design storms are run to obtain flow hydrographs for selected watch points in the study area. Two scenarios are simulated and compared

  11. Magnetic Storms at Mars and Earth

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  12. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water.

    Zhang, Panpan; Li, Jing; Lv, Lingxiao; Zhao, Yang; Qu, Liangti

    2017-05-23

    Efficient utilization of solar energy for clean water is an attractive, renewable, and environment friendly way to solve the long-standing water crisis. For this task, we prepared the long-range vertically aligned graphene sheets membrane (VA-GSM) as the highly efficient solar thermal converter for generation of clean water. The VA-GSM was prepared by the antifreeze-assisted freezing technique we developed, which possessed the run-through channels facilitating the water transport, high light absorption capacity for excellent photothermal transduction, and the extraordinary stability in rigorous conditions. As a result, VA-GSM has achieved average water evaporation rates of 1.62 and 6.25 kg m -2 h -1 under 1 and 4 sun illumination with a superb solar thermal conversion efficiency of up to 86.5% and 94.2%, respectively, better than that of most carbon materials reported previously, which can efficiently produce the clean water from seawater, common wastewater, and even concentrated acid and/or alkali solutions.

  13. On the organization of commercial production of profiled polyethylene sheets used for water proofing under NPP construction

    Likhachev, V.D.; Korenev, K.I.; Chukvaidze, K.I.; Dzhurinskij, M.B.

    1986-01-01

    The problem on the organization of commercial production of profiled polyethylene sheets with special longitudinal ribs which are anchorized in concrete is considered. The use of new water proofing material applied under NPP construction allows one to enhance the commercialization of water proofing works which ensured cost reduction of these works

  14. Learning Storm

    Jain, Ankit

    2014-01-01

    If you are a Java developer who wants to enter into the world of real-time stream processing applications using Apache Storm, then this book is for you. No previous experience in Storm is required as this book starts from the basics. After finishing this book, you will be able to develop not-so-complex Storm applications.

  15. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-01

    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  16. Relationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm.

    Zhang, J S; Li, Z J; Wen, G L; Wang, Y L; Luo, L; Zhang, H J; Dong, H B

    2016-01-01

    An in-situ experiment was conducted to investigate the effect of tropical storm on the white spot syndrome virus (WSSV) loads in Litopenaeus vannamei rearing ponds. White spot syndrome virus loads, heterotrophic bacteria, Vibrio and water quality (including temperature, dissolved oxygen (DO), salinity, pH, NH 4 -N, and NO 2 -N) were continually monitored through one tropical storm. The WSSV loads decreased when tropical storm made landfall, and substantially increased when typhoon passed. The variation of WSSV loads was correlated with DO, temperature, heterotrophic bacteria count, and ammonia-N concentrations. These results suggested that maintaining high level DO and promoting heterotrophic bacteria growth in the shrimp ponds might prevent the diseases' outbreak after the landfall of tropical storm.

  17. Multiple Time-Scale Monitoring to Address Dynamic Seasonality and Storm Pulses of Stream Water Quality in Mountainous Watersheds

    Hyun-Ju Lee

    2015-11-01

    Full Text Available Rainfall variability and extreme events can amplify the seasonality and storm pulses of stream water chemistry in mountainous watersheds under monsoon climates. To establish a monitoring program optimized for identifying potential risks to stream water quality arising from rainfall variability and extremes, we examined water chemistry data collected on different timescales. At a small forested watershed, bi-weekly sampling lasted over two years, in comparison to three other biweekly sampling sites. In addition, high-frequency continuous measurements of pH, electrical conductivity, and turbidity were conducted in tandem with automatic water sampling at 2 h intervals during eight rainfall events. Biweekly monitoring showed that during the summer monsoon period, electrical conductivity (EC, dissolved oxygen (DO, and dissolved ion concentrations generally decreased, but total suspended solids (TSS slightly increased. A noticeable variation from the usual seasonal pattern was that DO levels substantially decreased during an extended drought. Bi-hourly storm event samplings exhibited large changes in the concentrations of TSS and particulate and dissolved organic carbon (POC; DOC during intense rainfall events. However, extreme fluctuations in sediment export during discharge peaks could be detected only by turbidity measurements at 5 min intervals. Concomitant measurements during rainfall events established empirical relationships between turbidity and TSS or POC. These results suggest that routine monitoring based on weekly to monthly sampling is valid only in addressing general seasonal patterns or long-lasting phenomena such as drought effects. We propose an “adaptive” monitoring scheme that combines routine monitoring for general seasonal patterns and high-frequency instrumental measurements of water quality components exhibiting rapid responses pulsing during intense rainfall events.

  18. Observations and Predictions of Wave Runup, Extreme Water Levels, and Medium-Term Dune Erosion during Storm Conditions

    Serge Suanez

    2015-07-01

    Full Text Available Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France over the past decade (2004–2014 has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i astronomic tide; (ii storm surge; and (iii vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide water level—HTWL data sets obtained from high frequency field surveys. The aim was to quantify in-situ environmental conditions and dimensional swash parameters for the best calibration of Battjes [1] runup formula. In addition, an empirical equation based on observed tidal water level and offshore wave height was produced to estimate extreme water levels over the whole period of dune morphological change monitoring. A good correlation between this empirical equation (1.01Hmoξo and field runup measurements (Rmax was obtained (R2 85%. The goodness of fit given by the RMSE was about 0.29 m. A good relationship was noticed between dune erosion and high water levels when the water levels exceeded the dune foot elevation. In contrast, when extreme water levels were below the height of the toe of the dune sediment budget increased, inducing foredune recovery. These erosion and accretion phases may be related to the North Atlantic Oscillation Index.

  19. Short-Term Forecasting of Urban Storm Water Runoff in Real-Time using Extrapolated Radar Rainfall Data

    Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2013-01-01

    Model based short-term forecasting of urban storm water runoff can be applied in realtime control of drainage systems in order to optimize system capacity during rain and minimize combined sewer overflows, improve wastewater treatment or activate alarms if local flooding is impending. A novel onl....... The radar rainfall extrapolation (nowcast) limits the lead time of the system to two hours. In this paper, the model set-up is tested on a small urban catchment for a period of 1.5 years. The 50 largest events are presented....... online system, which forecasts flows and water levels in real-time with inputs from extrapolated radar rainfall data, has been developed. The fully distributed urban drainage model includes auto-calibration using online in-sewer measurements which is seen to improve forecast skills significantly...

  20. Wave excited motion of a body floating on water confined between two semi-infinite ice sheets

    Ren, K.; Wu, G. X.; Thomas, G. A.

    2016-12-01

    The wave excited motion of a body floating on water confined between two semi-infinite ice sheets is investigated. The ice sheet is treated as an elastic thin plate and water is treated as an ideal and incompressible fluid. The linearized velocity potential theory is adopted in the frequency domain and problems are solved by the method of matched eigenfunctions expansion. The fluid domain is divided into sub-regions and in each sub-region the velocity potential is expanded into a series of eigenfunctions satisfying the governing equation and the boundary conditions on horizontal planes including the free surface and ice sheets. Matching is conducted at the interfaces of two neighbouring regions to ensure the continuity of the pressure and velocity, and the unknown coefficients in the expressions are obtained as a result. The behaviour of the added mass and damping coefficients of the floating body with the effect of the ice sheets and the excitation force are analysed. They are found to vary oscillatorily with the wave number, which is different from that for a floating body in the open sea. The motion of the body confined between ice sheets is investigated, in particular its resonant behaviour with extremely large motion found to be possible under certain conditions. Standing waves within the polynya are also observed.

  1. What caused the rise of water level in the battle of Luermen bay in 1661? Tsunami, Storm surge, or Tide?

    Wu, Tso-Ren; Wu, Han; Tsai, Yu-Lin

    2016-04-01

    In 1661, Chinese navy led by General Zheng Chenggong at the end of Ming Dynasty had a naval battle against Netherlands. This battle was not only the first official sea warfare that China confronted the Western world, but also the only naval battle won by Chinese Navy so far. This event was important because it changed the fate of Taiwan until today. One of the critical points that General Zheng won the battle was entering Luermen bay unexpected. Luermen bay was and is an extreme shallow bay with a 2.1m maximum water depth during the high tide, which was not possible for a fleet of 20,000 marines to across. Therefore, no defense was deployed from the Netherlands side. However, plenty of historical literatures mentioned a strange phenomenon that helped Chinese warships entered the Luermen bay, the rise of water level. In this study, we will discuss the possible causes that might rise the water level, e.g. Tsunami, storm surge, and high tide. We analyzed it based on the knowledge of hydrodynamics. We performed the newly developed Impact Intensify Analysis (IIA) for finding the potential tsunami sources, and the COMCOT tsunami model was adopted for the nonlinear scenario simulations, associated with the high resolution bathymetry data. Both earthquake and mudslide tsunamis were inspected. Other than that, we also collected the information of tide and weather for identifying the effects form high tide and storm surge. After the thorough study, a scenario that satisfy most of the descriptions in the historical literatures will be presented. The results will explain the cause of mysterious event that changed the destiny of Taiwan.

  2. Abrupt Greenland Ice Sheet runoff and sea water temperature changes since 1821, recorded by coralline algae

    Kamenos, N.; Hoey, T.; Bedford, J.; Claverie, T.; Fallick, A. E.; Lamb, C. M.; Nienow, P. W.; O'Neill, S.; Shepherd, I.; Thormar, J.

    2012-12-01

    The Greenland Ice Sheet (GrIS) contains the largest store of fresh water in the northern hemisphere, equivalent to ~7.4m of eustatic sea level rise, but its impacts on current, past and future sea level, ocean circulation and European climate are poorly understood. Previous estimates of GrIS melt, from 26 years of satellite observations and temperature driven melt-models over 48 years, show a trend of increasing melt. There are however no runoff data of comparable duration with which to validate temperature-based runoff models, or relationships between the spatial extent of melt and runoff. Further, longer runoff records that extend GrIS melt records to centennial timescales will enable recently observed trends to be put into a better historical context. We measured Mg/Ca, δ18O and structural cell size in annual growth bands of red coralline algae to reconstruct: (1) near surface sea water temperature; and, (2) melt/runoff from the GrIS. (1) Temperature: we reconstructed the longest (1821-2009) sub-annual resolution record of water temperature in Disko Bugt (western Greenland) showing an abrupt change in temperature oscillation patterns during the 1920s which may be attributable to the interaction between atmospheric temperature and mass loss from Jakobshavn Isbrae glacier. (2) GrIS runoff: using samples from distal parts of Søndre Strømfjord we produced the first reconstruction of decadal (1939-2002) GrIS runoff. We observed significant negative relationships between historic runoff, relative salinity and marine summer temperature. Our reconstruction shows a trend of increasing reconstructed runoff since the mid 1980s. In situ summer marine temperatures followed a similar trend. We suggest that since 1939 atmospheric temperatures have been important in forcing runoff. Subject to locating in situ coralline algae samples, these methods can be applied across hundreds to thousands of years. These results show that our technique has significant potential to enhance

  3. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes

    Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian

    2017-07-01

    We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the sea ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted sea-air CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum sea-air CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and sea-air CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, sea-air CO2 fluxes 16%, and temperature and salinity insignificant.

  4. Environmental Assessment: Maintenance of the Bear Lake Storm Water Retention Pond Whiteman Air Force Base, Missouri

    2010-10-01

    life cycles , provide a natural filter for water quality improvement and supply a source of fresh water and organic materials to downstream waters...associated wetlands have the capacity to contribute hydrology and convey pollutants to receiving waters, provide habitat for aquatic organism life cycles ...insects, spiders and small crayfish . Missouri Distribution: Prairie areas in the northern , central and western sections of Missouri Breeding

  5. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to the Wandel Sea (NE Greenland)

    Kirillov, Sergei; Dmitrenko, Igor; Rysgaard, Søren; Babb, David; Toudal Pedersen, Leif; Ehn, Jens; Bendtsen, Jørgen; Barber, David

    2017-11-01

    In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series showed that water dynamics and the thermohaline structure were modified considerably during a storm event on 22-24 April, when northerly winds exceeded 15 m s-1. The storm initiated downwelling-like water dynamics characterized by on-shore water transport in the surface (0-40 m) layer and compensating offshore flow at intermediate depths. After the storm, currents reversed in both layers, and the relaxation phase of downwelling lasted ˜ 4 days. Although current velocities did not exceed 5 cm s-1, the enhanced circulation during the storm caused cold turbid intrusions at 75-95 m depth, which are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic mode of the internal tide with a velocity minimum at ˜ 40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus. Our findings provide evidence that shelf-basin interaction and tidal forcing can potentially modify coastal Wandel Sea waters even though they are isolated from the atmosphere by landfast sea ice almost year-round. The northerly storms over the continental slope cause an enhanced circulation facilitating a release of cold and turbid subglacial water to the shelf. The tidal flow may contribute to the removal of such water from the glacial terminus.

  6. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff.

    Vijayaraghavan, K; Teo, Ting Ting; Balasubramanian, R; Joshi, Umid Man

    2009-05-30

    The ability of Sargassum sp. to biosorb four metal ions, namely lead, copper, zinc, and manganese from a synthetic multi-solute system and real storm water runoff has been investigated for the first time. Experiments on synthetic multi-solute systems revealed that Sargassum performed well in the biosorption of all four metal ions, with preference towards Pb, followed by Cu, Zn, and Mn. The solution pH strongly affected the metal biosorption, with pH 6 being identified as the optimal condition for achieving maximum biosorption. Experiments at different biosorbent dosages revealed that good biosorption capacity as well as high metal removal efficiency was observed at 3g/L. The biosorption kinetics was found to be fast with equilibrium being attained within 50 min. According to the Langmuir isotherm model, Sargassum exhibited maximum uptakes of 214, 67.5, 24.2 and 20.2mg/g for lead, copper, zinc, and manganese, respectively in single-solute systems. In multi-metal systems, strong competition between four metal ions in terms of occupancy binding sites was observed, and Sargassum showed preference in the order of Pb>Cu>Zn>Mn. The application of Sargassum to remove four heavy metal ions in real storm water runoff revealed that the biomass was capable of removing the heavy metal ions. However, the biosorption performance was slightly lower compared to that of synthetic metal solutions. Several factors were responsible for this difference, and the most important factor is the presence of other contaminants such as anions, organics, and other trace metals in the runoff.

  7. Differences in plankton community structure and carbon cycling along a climate gradient from the Greenland Ice Sheet to offshore waters

    Arendt, K.E.; Nielsen, Torkel Gissel; Rysgaard, S.

    Huge differences in plankton community structures and biomasses are observed along a climate gradient from the Greenland Ice Sheet to offshore waters at the West Greenland coast. The offshore region has a high biomass of copepods dominated by Calanus spp., which are capable of consuming 55....... Protozooplankton accounts for 20-38% of the carbon turnover in the offshore and inland areas. However, protozooplankton like copepods has low ability to turn over the primary production close to the Ice Sheet. Increased run of from the Greenland Ice Sheet due to global warming could displace the existing climate...... gradient. This would have a profound influence on the future plankton community structure as well as the energy transfer to higher trophic levels in Arctic coastal ecosystems....

  8. Screening models for releases of radionuclides to atmosphere, surface water, and ground -- Work sheets

    1996-01-01

    Three levels of screening for the atmospheric transport pathways and two levels for surface water are presented. The ground has only one screening level. Level 1 is the simplest approach and incorporates a high degree of conservatism. The estimate of the effective dose for this level assumes a concentration based upon the radionuclide concentration at the point of emission to the environment, i.e., at the stack for atmospheric emissions, at the end of the effluent pipe for liquid effluent releases, and at a well because of the buried radioactive material. Levels 2 and 3 are presented for atmospheric releases, and Level 2 for surface water releases only and are more detailed and correspondingly less conservative. Level 2 screening accounts for dispersion in the atmosphere and in surface waters and combines all recognized pathways into the screening factor. For the atmospheric pathway, Level 3 screening includes more definitive pathways analysis. Should the user be found in compliance on the basis of Level 1 screening, no further calculations are required. If the user fails Level 1, the user proceeds to the next level and checks for compliance. This process is repeated until the user passes screening (is in compliance) or no further screening levels exist. If the user fails the final level, professional assistance should be obtained in environmental radiological assessment. Work sheets are designed to lead the user through screening in a step-by-step manner until compliance is demonstrated or it is determined that more sophisticated methods or expertise are needed. Flow diagrams are provided as a guide to identify key steps in the screening process

  9. 40 CFR 122.34 - As an operator of a regulated small MS4, what will my NPDES MS4 storm water permit require?

    2010-07-01

    ... NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Permit Application and Special NPDES Program Requirements... water impacts. For example, providing information to restaurants on the impact of grease clogging storm... minimum, the relevant requirements of paragraph (b) of this section. (d)(1) In your permit application...

  10. Cordilleran Ice Sheet meltwater delivery to the coastal waters of the northeast Pacific Ocean

    Hendy, I. L.; Taylor, M.; Gombiner, J. H.; Hemming, S. R.; Bryce, J. G.; Blichert-Toft, J.

    2014-12-01

    Cordilleran Ice Sheet (CIS) delivered meltwater to the NE Pacific Ocean off BC and WA via glacial lake outburst floods (GLOFs), ice rafting and subglacial meltwater discharge. A deglacial glaciomarine sedimentation record is preserved in the well dated ~50-kyr core MD02-2496 (48˚58.47' N, 127˚02.14' W, water depth 1243 m), collected off Vancouver Island. To understand the history of the relationship between the CIS, climate and meltwater discharge, high resolution, multi-proxy geochemical records from the interval that captures the Fraser Glaciation (~30-10 ka) were generated. These proxies include Mg/Ca temperatures and δ18Oseawater from planktonic foraminiferal sp. N. pachyderma and G. bulloides, elemental and organic carbon (Corg) geochemistry of bulk sediments, ɛNd and K/Ar dating of the rose by > 3°C to 10-12°C in association with an additional IRD event at ~14.8 ka sourced from a ~75 Ma felsic volcanic source, likely the Southern Coast Plutonic Complex. At no point in the δ18Oseawater reconstruction is an obvious meltwater isotopic signature recorded despite the sedimentary evidence for both ice rafting and outburst flooding. Thus CIS meltwater likely entered the NE Pacific Ocean via hyperpycnal flow.

  11. Influence of storm characteristics on soil erosion and storm runoff

    Johnny M. III Grace

    2008-01-01

    Unpaved forest roads can be major sources of sediment from forested watersheds. Storm runoff from forest roads are a concern due to their potential delivery of sediments and nutrients to stream systems resulting in degraded water quality. The volume and sediment concentrations of stormwater runoff emanating from forest roads can be greatly influenced by storm...

  12. Demonstration of Enhanced Filtration for Treatment of Shipyard Storm Water, Deliverable 1, Design Report

    2000-01-01

    .... Shipyards are among the first industries to be targeted by the states for heavier regulation because of their high-profile water front locations and their necessary use of toxic antifouling compounds in hull coatings...

  13. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    Taylor, Nathan F.; Collins, Don R.; Lowenthal, Douglas H.; McCubbin, Ian B.; Gannet Hallar, A.; Samburova, Vera; Zielinska, Barbara; Kumar, Naresh; Mazzoleni, Lynn R.

    2017-02-01

    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer-CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall-winter of 2007-2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.

  14. Observation on oceanographic parameters of nearshore waters off Yanam, during the cyclonic storm

    SanilKumar, V.; AshokKumar, K.; Pednekar, P.

    the measurement location during the passage of the cyclone are described in this communication. The measured currents were mainly non-tidal. The measurements show a decrease of 8.6-11.5 degrees C in sea-water temperature at different depths and the currents were...

  15. Storm Water Management Model User’s Manual Version 5.1 - manual

    SWMM 5 provides an integrated environment for editing study area input data, running hydrologic, hydraulic and water quality simulations, and viewing the results in a variety of formats. These include color-coded drainage area and conveyance system maps, time series graphs and ta...

  16. [Effect of antecedent dry period on water quality of urban storm runoff pollution].

    Bian, Bo

    2009-12-01

    Identified the main factor influencing urban rainfall-runoff pollution provides a scientific basis for urban rainfall-runoff pollution control and management. Therefore, starting in May 2006, a study was conducted to characterize water quality from representative land uses types in Zhenjiang to analyse the effect of antecedent dry period on stormwater runoff quality. The results show that the beginning of rainfall, with the increase of antecedent dry periods, the percentages of less than 40 microm is increased, the correlation of the water quality parameters (TN, TP, Zn, Pb, Cu, TSS and COD) and antecedent dry period shows a significant positive correlation, dissolved pollutants in the initial period surface runoff is increased. These findings show that facilitating the recognition of antecedent dry periods is the main factor influencing the change in concentration and partitioning of pollutants to provide the scientific basis for non-point source pollution control and management.

  17. Storm water infiltration in a monitored green roof for hydrologic restoration.

    Palla, A; Sansalone, J J; Gnecco, I; Lanza, L G

    2011-01-01

    The objectives of this study are to provide detailed information about green roof performance in the Mediterranean climate (retained volume, peak flow reduction, runoff delay) and to identify a suitable modelling approach for describing the associated hydrologic response. Data collected during a 13-month monitoring campaign and a seasonal monitoring campaign (September-December 2008) at the green roof experimental site of the University of Genova (Italy) are presented together with results obtained in quantifying the green roof hydrologic performance. In order to examine the green roof hydrologic response, the SWMS_2D model, that solves the Richards' equation for two-dimensional saturated-unsaturated water flow, has been implemented. Modelling results confirm the suitability of the SWMS_2D model to properly describe the hydrologic response of the green roofs. The model adequately reproduces the hydrographs; furthermore, the predicted soil water content profile generally matches the observed values along a vertical profile where measurements are available.

  18. Enhanced particle fluxes and heterotrophic bacterial activities in Gulf of Mexico bottom waters following storm-induced sediment resuspension

    Ziervogel, K.; Dike, C.; Asper, V.; Montoya, J.; Battles, J.; D`souza, N.; Passow, U.; Diercks, A.; Esch, M.; Joye, S.; Dewald, C.; Arnosti, C.

    2016-07-01

    -amended compared to the unamended treatments. The broader range and higher activities of polysaccharide hydrolases in the presence of resuspended sediments compared to the unamended water reflected enzymatic capabilities typical for benthic bacteria. Our data suggest that the formation of BNLs in the deep Gulf of Mexico can lead to transport of sedimentary organic matter into bottom waters, stimulating bacterial food web interactions. Such storm-induced resuspension may represent a possible mechanism for the redistribution of sedimented oil-fallout from the Deepwater Horizon spill in 2010.

  19. COMBINED UNCOVERED SHEET-AND-TUBE PVT-COLLECTOR SYSTEM WITH BUILT-IN STORAGE WATER HEATER

    Muhammad Abid

    2012-02-01

    Full Text Available This work describes the design and investigation of a simple combined uncovered sheet-and-tube photo-voltaic-thermal (PVT collector system. The PVT-collector system consists of a support, standard PV module (1.22x0.305m, area=0.37m2, fill factor=0.75, sheet-and-tube water collector and storage tank-heater. The collector was fixed under PV module. Inclination angle of the PVT-collector to the horizontal plane was 45 degree. The storage tank-heater played double role i.e. for storage of hot water and for water heating. The PVT-collector system could work in the fixed and tracking modes of operation. During investigations of PVT-collector in natural conditions, solar irradiance, voltage and current of PV module, ambient temperature and water temperature in storage tank were measured. Average thermal and electrical powers of the PVT-collector system at the tracking mode of operation observed were 39W and 21W, with efficiencies of 15% and 8% respectively at the input power of 260W. The maximum temperature of the water obtained was 42oC. The system was observed efficient for low-temperature applications. The PVT-collector system may be used as a prototype for design of PVT-collector system for domestic application, teaching aid and for demonstration purposes.

  20. Final report for the IAEA urban aquifers RCA : determining the effects of storm water infiltration on groundwater quality in an urban fractured rock aquifer, Auckland, New Zealand

    Rosen, M.R.; Hong, Y.S.; Sheppard, D.; Roberts, K.; Viljevac, Z.; Smaill, A.; Reeves, R.R.

    2000-01-01

    Disposal of storm water in the Mt Eden-Mt Albert area of Auckland, New Zealand, is via ''soak holes'' drilled directly into the top of the fractured basalt. These soak holes receive storm water and sediment runoff from city streets throughout Mt Eden. Although this method of disposal has been used for at least 60 years, its sustainability with respect to groundwater quality has not been addressed. This study aimed to determine the impact of soakage on the chemical and isotopic composition of the groundwater. In addition, sediments captured by the soak holes were analysed to determine their effectiveness at trapping contaminants. Groundwater samples were collected between August 1998 and August 1999. Three sampling trips were carried out after rainfall events in October 1998, April 1999 and August 1999. Samples were analysed for major and trace components, including nutrients, dissolved and total heavy metals (As, Cr, Cu, Zn, Pb, Cd, and Ni), polynuclear aromatic hydrocarbons (PAHs), chlorofluorocarbons (CFCs) and stable and radiogenic isotopes. Cores of sediment collected in the soak holes were analysed for major components, total and leachable heavy metals, and PAHs to determine the ability of the sediments to adsorp contaminants. In summary, the Mt Eden aquifer system shows the effect of storm water infiltration rapidly after a rainfall event in some parts of the aquifer. Water quality has been effected in some areas, but in general the water quality is quite good considering the quantity of storm water discharge that has occurred in the area for the past 60 years. The relatively high quality of the water in the wells monitored may be attributed to the ability of the accumulated sediment in the soak holes and the aquifer fractures to trap contaminants. Further research is needed to determine if continued use of the groundwater system as a conduit for storm water infiltration will lead to clogging of the fractures in the aquifer and/or transport of particulates

  1. Geomagnetic storms

    McNamara, A.G.

    1980-01-01

    Disturbances due to geomagnetic storms can affect the functioning of communications satellites and of power lines and other long conductors. Two general classes of geomagnetic activity can be distinguished: ionospheric current flow (the auroral electrojet), and magnetospheric compression. Super magnetic storms, such as the one of August 1972, can occur at any time and average about 17 occurrences per century. Electrical transmission systems can be made more tolerant of such events at a price, but the most effective way to minimize damage is by better operator training coupled with effective early warning systems. (LL)

  2. A comprehensive study of the electrically conducting water based CuO and Al2O3 nanoparticles over coupled nanofluid-sheet interface

    Ahmad, R

    2016-01-01

    Many studies on nanofluid flow over a permeable/impermeable sheet prescribe the kinematics of the sheet and disregard the sheet’s mechanics. However, the current study is one of the infrequent contributions that anticipate the mechanics of both the electrically conducting nanofluid (a homogeneous mixture of nanoparticles and base fluid) and the sheet. Two types of nanoparticles, alumina and copper, with water as a base fluid over the sheet are considered. With the help of the similarity transformations, the corresponding partial differential equations for the coupled nanofluid-sheet interface are transformed into a system of ordinary differential equations. The simulations are done by using the experimentally verified results from the previous studies for viscosity and thermal conductivity. Self-similar solutions are attained by considering both analytical and numerical techniques. Dual skin friction coefficients are attained with different copper and alumina nanoparticles over both the stretching and viscous sheets. The influence of the Eckert number, magnetic and mass suction/blowing parameters on the dimensionless velocity, temperature, skin friction and heat transfer rates over the nanofluid-sheet interface are presented graphically as well as numerically. The obtained results are of potential benefit for studying nanofluid flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations. (paper)

  3. Numerical modeling of water-vapor transport during pre-storm and COHMEX

    Djuric, Dusan

    1986-01-01

    Initial conditions are designed for numerical simulation of mesocale processes in the atmosphere using the Limited Area Mesoscale Prediction System (LAMPS) model. These initial conditions represent an idealized baroclinic wave in which the transport of water vapor can be simulated. The constructed atmosphere has two homogeneous air masses, polar front, polar jet stream and a stratosphere. All these simulate the basic structure of the earth's atmosphere. The hydrostatic and geostrophic balances make it possible to evaluate mutually consistent fields of wind and of the height of isobaric surfaces.

  4. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to the Wandel Sea (NE Greenland

    S. Kirillov

    2017-11-01

    Full Text Available In April 2015, an ice-tethered conductivity–temperature–depth (CTD profiler and a down-looking acoustic Doppler current profiler (ADCP were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series showed that water dynamics and the thermohaline structure were modified considerably during a storm event on 22–24 April, when northerly winds exceeded 15 m s−1. The storm initiated downwelling-like water dynamics characterized by on-shore water transport in the surface (0–40 m layer and compensating offshore flow at intermediate depths. After the storm, currents reversed in both layers, and the relaxation phase of downwelling lasted ∼ 4 days. Although current velocities did not exceed 5 cm s−1, the enhanced circulation during the storm caused cold turbid intrusions at 75–95 m depth, which are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic mode of the internal tide with a velocity minimum at ∼ 40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus. Our findings provide evidence that shelf–basin interaction and tidal forcing can potentially modify coastal Wandel Sea waters even though they are isolated from the atmosphere by landfast sea ice almost year-round. The northerly storms over the continental slope cause an enhanced circulation facilitating a release of cold and turbid subglacial water to the shelf. The tidal flow may contribute to the removal of such water from the glacial terminus.

  5. Environmental impact of peat mining. Development of storm water treatment methods

    Kloeve, Bjoern

    1997-11-01

    The aim of this series of studies has been to develop methods to reduce the environmental impacts of peat mining, that function when the pollution load is high and that are economically viable for all peat mines. Sediment transport and nutrient leaving were studied with the purpose of establishing more efficient treatment alternatives. A controlled experiment was set up to measure the erosion of peat from the soil surface and from ditch beds during heavy rainfall and runoff events and to measure the settling characteristics of base soil peat and peat deposited in channels. The study demonstrates the importance of channel bed erosion as the main source of sediment during peak runoff. Sediment transport and nutrient leaching were further observed in the field during 1995 and 1996. The study showed that suspended solids (SS) is mainly generated during extreme events, such as flooding. These high flow events erode the material deposited on the channel bed during low flows. The leaching of nitrogen occurs after large rain events, while high phosphorous concentrations occur when the water table is low. Treatment alternatives were developed to improve removal of SS and nutrients. Different types of ponds were tested in a laboratory study. The study showed that the main factor affecting the settling of small peat particles is the depth of the settling basin. A mathematical model showed that in the case of bare soil erosion, the best treatment alternative would be to store the water in the large drainage network rather than in the sedimentation basin. Different structures suitable for peak runoff control were tested under laboratory and field conditions 54 refs, 11 figs

  6. Numerical study of Tallinn storm-water system flooding conditions using CFD simulations of multi-phase flow in a large-scale inverted siphon

    Kaur, K.; Laanearu, J.; Annus, I.

    2017-10-01

    The numerical experiments are carried out for qualitative and quantitative interpretation of a multi-phase flow processes associated with malfunctioning of the Tallinn storm-water system during rain storms. The investigations are focused on the single-line inverted siphon, which is used as under-road connection of pipes of the storm-water system under interest. A multi-phase flow solver of Computational Fluid Dynamics software OpenFOAM is used for simulating the three-phase flow dynamics in the hydraulic system. The CFD simulations are performed with different inflow rates under same initial conditions. The computational results are compared essentially in two cases 1) design flow rate and 2) larger flow rate, for emptying the initially filled inverted siphon from a slurry-fluid. The larger flow-rate situations are under particular interest to detected possible flooding. In this regard, it is anticipated that the CFD solutions provide an important insight to functioning of inverted siphon under a restricted water-flow conditions at simultaneous presence of air and slurry-fluid.

  7. Modeling storm waves

    Benoit, M.; Marcos, F.; Teisson, Ch.

    1999-01-01

    Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)

  8. Modelling transport of storm-water pollutants using the distributed Multi-Hydro platform on an urban catchment near Paris

    Hong, Yi; Bonhomme, Celine; Giangola-Murzyn, Agathe; Schertzer, Daniel; Chebbo, Ghassan

    2015-04-01

    Nowadays, the increasingly use of vehicles causes expanding contaminated storm-water runoff from roads and the associated quarters. Besides, the current utilization of city's separated sewer systems underlines the needs for evaluating precisely the growing impact of these polluted effluents on receiving water bodies. Nevertheless, traditional means of water quality modelling had shown its limits (Kanso, 2004), more accurate modelling schemes are hence required. In this paper, we found that the application of physically based and fully distributed model coupled with detailed high-resolution data is a promising approach to reproduce the various dynamics and interactions of water quantity/quality processes in urban or peri-urban environment. Over recent years, the physically based and spatially distributed numerical platform Multi-Hydro (MH) has been developed at Ecole des Ponts ParisTech (El-Tabach et al. , 2009 ; Gires et al., 2013 ; Giangola-Murzyn et al., 2014). This platform is particularly adapted for representing the hydrological processes for medium size watersheds, including the surface runoff, drainage water routing and the infiltrations on permeable zones. It is formed by the interactive coupling of several independent modules, which depend on generally used open-access models. In the framework of the ANR (French National Agency for Research) Trafipollu project, a new extension of MH, MH-quality, was set up for the water-quality modelling. MH-quality was used for the simulation of pollutant transport on a peri-urban and highly trafficked catchment located near Paris (Le Perreux-sur-Marne, 0.2 km2). The set-up of this model is based on the detailed description of urban land use features. For this purpose, 15 classes of urban land uses relevant to water quality modelling were defined in collaboration with the National Institute of Geography of France (IGN) using Digital Orthophoto Quadrangles (5cm). The delimitation of the urban catchment was then performed

  9. Green roof and storm water management policies: monitoring experiments on the ENPC Blue Green Wave

    Versini, Pierre-Antoine; Gires, Auguste; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2015-04-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building/parcel scale. Nevertheless, there is no specific policy promoting their implementation neither in Europe nor in France. Moreover they are not taken into account (and usually considered as an impervious area) in the sizing of a retention basin for instance. An interesting example is located in the heart of the Paris-East Cluster for Science and Technology (Champs-sur-Marne, France). Since 2013 a large (1 ha) wavy-form vegetated roof (called bleu green wave) is implemented. Green roof area and impervious areas are connected to a large retention basin, which has been oversized. The blue green wave represents a pioneering site where an initially amenity (decorative) design project has been transformed into a research oriented one. Several measurement campaigns have been conducted to investigate and better understand the hydrological behaviour of such a structure. Rainfall, humidity, wind velocity, water content and temperature have been particularly studied. The data collected are used for several purposes: (i) characterize the spatio-temporal variability of the green roof response, (ii) calibrate and validate a specific model simulating its hydrological behavior. Based on monitoring and modeling results, green roof performances will be quantified. It will be possible to estimate how they can reduce stormwater runoff and how these performances can vary in space and in time depending on green roof configuration, rainfall event characteristics and antecedent conditions. These quantified impacts will be related to regulation rules established by stormwater managers in order to connect the parcel to the sewer network. In the particular case of the building of a retention basin, the integration of green roof in the sizing of the basin will be studied. This work is funded by the European Blue Green Dream project (http://bgd.org.uk/, funded by Climate

  10. Deliberations about a perfect storm - The meaning of justice for food energy water-nexus (FEW-Nexus).

    Schlör, Holger; Venghaus, Sandra; Fischer, Wiltrud; Märker, Carolin; Hake, Jürgen-Friedrich

    2018-08-15

    The current global developments have the potential to cause a 'perfect storm' at the core of the Anthropocene: the Food-Energy-Water-Nexus. To discuss the ethical consequences of these developments, i.e., insufficient access to the life sustaining nexus resources, the analysis is focused on Rawls' theory of justice and its implementation in Germany with a special focus on the FEW nexus. Rawls stresses in his theory of justice the prominent meaning of institutions for a fair society to meet societal challenges and to meet the challenge of our time: a stable and just society. Hence, the realization of his ideas in Germany is scrutinized and income tax and value added tax are interpreted in the sense of Douglas North and John Rawls as institutions and formal rules of society. This paper focuses on taxes as the most important institutional incentive to organize and structure the political, social and economic cooperation and analyses how these incentives affect selected German households (all households, singles, single man and woman, and couples) with respect to income and FEW expenditures. The relevant income and usage data sample (Einkommens- und Verbrauchsstichprobe (EVS)) for Germany is used for the analysis of the distribution of income types, FEW expenditures and the revenues of income tax and value added tax, i.e., the main instruments to manage the challenges of the FEW nexus. Therefore two distribution measures have been used: the dispersion of income, taxes and FEW expenditures and their skewness. Five household groups were selected for this analysis: All households, all single households, the single women households, the single men households, as well as the households of couples. The EVS data sample allows the analysis of consequences of the current societal conditions on the various households and thus serves to provide a deeper understanding of the differences between singles and couples but also between single women and men. Copyright © 2018 Elsevier

  11. Mitigation of Hexavalent Chromium in Storm Water Resulting from Demolition of Large Concrete Structure at the East Tennessee Technology Park - 12286

    Britto, Ronnie; Brown, Bridget; Hale, Timothy B.; Hensley, Janice L.; Johnson, Robert T.; Patel, Madhu [Tetra Tech, Inc. (United States); Emery, Jerry A. [Energy Solutions, Inc. (United States); Gaston, Clyde [LATA-SHARP Remediation Services - LSRS (United States); Queen, David C. [U.S. DOE-ORO (United States)

    2012-07-01

    American Recovery and Reinvestment Act (ARRA) funding was provided to supplement the environmental management program at several DOE sites, including the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Demolition of the ETTP K-33 Building, the largest building to be demolished to date in Oak Ridge, was awarded to LSRS in FY-2010 under the ARRA program. The K-33 building was an 82 foot tall 2-story structure covering approximately 32 acres. Once this massive building was brought down to the ground, the debris was segregated and consolidated into piles of concrete rubble and steel across the remaining pad. The process of demolishing the building, tracking across concrete debris with heavy equipment, and stockpiling the concrete rubble caused it to become pulverized. During and after storm events, hexavalent chromium leached from the residual cement present in the large quantities of concrete. Storm water control measures were present to preclude migration of contaminants off-site, but these control measures were not designed to control hexavalent chromium dissolved in storm water from reaching nearby receiving water. The following was implemented to mitigate hexavalent chromium in storm water: - Steel wool was distributed around K-33 site catch basins and in water pools as an initial step in addressing hexavalent chromium. - Since the piles of concrete were too massive and unsafe to tarp, they were placed into windrows in an effort to reduce total surface area. - A Hach colorimetric field meter was acquired by the K-33 project to provide realtime results of hexavalent chromium in site surface water. - Three hexavalent chromium treatment systems were installed at three separate catch basins that receive integrated storm water flow from the K-33 site. Sodium bisulfite is being used as a reducing agent for the immobilization of hexavalent chromium while also assisting in lowering pH. Concentrations initially were 310 - 474 ppb of hexavalent chromium in

  12. Treatment of heavily contaminated storm water from an industrial site area by filtration through an adsorbent barrier with pine bark (Pinus Silvestris), polonite and active carbon in a comparison study

    Nehrenheim, Emma; Ribé, Veronica; Carlsson, Peter; Eneroth, Peder; Odlare, Monica

    2011-01-01

    This study aims to evaluate a simple and robust filtration method for separation of of heavy metals from storm water. The storm water, collected at a metals manufacturing site, is heavily contaminated with heavy metals, A first analysis of a water sample collected from the site in mid Sweden showed exceptionally high concentrations of especially Zn, which was present in concentrations exceeding 200 mgL-1. The basic idea is to filter the water as it flows out of the industry area through a pas...

  13. Laurentide Ice-Sheet Meltwater Sources to the Gulf of Mexico During the Last Deglaciation: Assessing Data Reconstructions Using Water Isotope Enabled Simulations

    Vetter, L.; LeGrande, A. N.; Ullman, D. J.; Carlson, A. E.

    2017-12-01

    Sediment cores from the Gulf of Mexico show evidence of meltwater derived from the Laurentide Ice Sheet during the last deglaciation. Recent studies using geochemical measurements of individual foraminifera suggest changes in the oxygen isotopic composition of the meltwater as deglaciation proceeded. Here we use the water isotope enabled climate model simulations (NASA GISS ModelE-R) to investigate potential sources of meltwater within the ice sheet. We find that initial melting of the ice sheet from the southern margin contributed an oxygen isotope value reflecting a low-elevation, local precipitation source. As deglacial melting proceeded, meltwater delivered to the Gulf of Mexico had a more negative oxygen isotopic value, which the climate model simulates as being sourced from the high-elevation, high-latitude interior of the ice sheet. This study demonstrates the utility of combining stable isotope analyses with climate model simulations to investigate past changes in the hydrologic cycle.

  14. [Electrical storm].

    Barnay, C; Taieb, J; Morice, R

    2007-11-01

    Electrical storm is defined as repeated occurrence of severe ventricular arrhythmias requiring multiple cardioversions, two or more or three or more following different studies. The clinical aspect can sometimes be made of multiple, self aggravating, life threatening accesses. There are three main clinical circumstances of occurrence: in patients equipped with intracardiac defibrillators, during the acute phase of myocardial infarction and in Brugada syndrome. 10 to 15% of patients with cardiac defibrillators are subject to electrical storms in a period of two years. The causative arrhythmia is most often ventricular tachycardia than ventricular fibrillation, especially in secondary prevention and if the initial arrhythmias justifying the device was a ventricular tachycardia. Precipitaing factors are present in one third of cases, mainly acute heart failure, ionic disorders and arrhythmogenic drugs. Predictive factors are age, left ventricular ejection fractionelectrical shock in 50% of cases, antitachycardi stimulation in 30% and in 20% by association of the two. Treatment, after elimination of inappropriate shocks, is mainly based on beta-blockers and amiodarone, class I antiarrhythmics, lidocaïne or bretylium in some cases, and sedation pushed to general anesthesia in some cases. Radio-frequency ablation and even heart transplantation have been proposed in extreme cases. Quinidine has been proved efficient in cases of Brugada syndrome.

  15. Geomagnetic Storm Sudden Commencements

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Sudden Commencements (ssc) 1868 to present: STORM1 and STORM2 Lists: (Some text here is taken from the International Association of Geomagnetism and Aeronomy...

  16. Storm water management implications on WWTPS in combined sewer systems: Integration strategies and process conditions; Implicaciones sobre la estacion depuradora de la gestion de aguas pluviales en los sistemas de saneamiento unitario: estrategias de integracion y afecciones sobre los procesos

    Suarez Lopez, J.; Jacome Burgos, A.; Anta Alvarez, J.; Blanco Menendez, J. P.; Hernaez Oubina, D.; Rio Cambeses, H. del

    2012-07-01

    New design and strategies to manage wet weather floes in combined sewer systems, which main objective is to minimize environmental impacts on water bodies, require the treatment of large volumes of storm water. Wet weather flows introduced into combined sewer show dynamic-transient behavior both in terms of flow discharges and pollution. With traditional design strategies, large pollution peaks are spilled during rain events into water receiving bodies by combined sewer overflows (CSOs). Nowadays, CSOs have been reduced providing some storage capacity into the combined sewer systems (either in network, by means storm water tanks, or in WWTP). The stored storm water and its associated pollution should be treated. WWTP inflows during rainy events are conditioned by the local storm water management strategy. The WWTP can be overcome if it is managed using traditional dry weather strategies. In order to optimize the treatment performance and to assure that urban pollution do not reach aquatic environment, the WWTP must participate in the system in an integrated manner. This is a key element. This paper shows firstly the importance of CSO pollution and the development of new strategies for storm water management in combined sewer systems. Storm water tanks, located in the sewerage system, have been one of the most common solutions adopted but there are some experiences of wet weather flow management at the WWTP. All these strategies are revised in the paper. Once the role of the WWTP in the new combined sewer systems is known, the article presents a review about the problems generated by the hydraulic overloads and the large variations of the pollution characteristics on different stages of the water line. Special emphasis is made on the problems generated in secondary processes based on activated sludge. these problems are analysed in detail and some mitigation strategies are proposed. (Author) 20 refs.

  17. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and

  18. Storm water detention tanks in Barcelona; Los depositos de retencion de aguas pluviales de Barcelona: un nuevo enfoque en la lucha contra las inundaciones y la proteccion medioambiental

    Pere Malgrat i Bregolat, P.; Verdejo, J. M.; Vilalta i Cambra, A.

    2004-07-01

    Storm water detention tanks are being implemented at first as a solution to the urban flooding problem and afterwards a second function was added to reduce the pollution of the sewerage waters before its overflow to the receiving bodies because these spills can contribute with up to 50% of the total pollution spilled. These solutions are often cheaper and have less impact on the urban activities than the classical solutions such as trunk sewers. In Spain, Barcelona was the first city to build this tanks to avoid flooding and also to reduce the contamination to the receiving waters, with a total volume of 492.200 m''3, operated by Clavegueram de Barcelona (Clabsa). These works have meant a big improvement in the management of the wet weather flows in Barcelona. These tanks have increased the capacity of the sewerage system and decreased the combined sewer overflows to the receiving waters (Besos river and Mediterranean sea). Another advantage is the protection of WWTP against flow variations. The environmental improvement achieved with the tanks is so hug that can even reduce the contamination spilled to the receiving waters around 30% and avoid the destruction of some ecosystems. Also, the contaminated sediments trapped in the detention tank are sen to to the WWTP so the don't reach the receiving waters. Also. the urban space close to the relieving waters are becoming more appreciated for leisure so the recovery and protection of these waters is a must. (Author)

  19. Utilizing Model Eliciting Activities (MEA's) to engage middle school teachers and students in storm water management practices to mitigate human impacts of land development

    Tazaz, A.; Wilson, R. M.; Schoen, R.; Blumsack, S.; King, L.; Dyehouse, M.

    2013-12-01

    'The Integrating STEM Project' engaged 6-8 grade teachers through activities incorporating mathematics, science and technology incorporating both Next Generation Science Standards (NGSS) and Common Core State Standards-Mathematics (CCSS-Math). A group of researchers from Oceanography, Mathematics, and Education set out to provide middle school teachers with a 2 year intensive STEM integration professional development with a focus on environmental topics and to monitor the achievement outcomes in their students. Over the course of 2 years the researchers created challenging professional development sessions to expand teacher knowledge and teachers were tasked to transform the information gained during the professional development sessions for classroom use. One lesson resource kit presented to the teachers, which was directly applicable to the classroom, included Model Eliciting Activities (MEA's) to explore the positive and negative effects land development has on climate and the environment, and how land development impacts storm water management. MEA's were developed to encourage students to create models to solve complex problems and to allow teachers to investigate students thinking. MEA's are a great curriculum technique used in engineering fields to help engage students by providing hands on activities using real world data and problems. We wish to present the Storm Water Management Resource toolkit including the MEA and present the outcomes observed from student engagement in this activity.

  20. Decontamination sheet

    Hirose, Emiko; Kanesaki, Ken.

    1995-01-01

    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  1. Current understanding of magnetic storms: Storm-substorm relationships

    Kamide, Y.; Gonzalez, W.D.; Baumjohann, W.; Daglis, I.A.; Grande, M.; Joselyn, J.A.; Singer, H.J.; McPherron, R.L.; Phillips, J.L.; Reeves, E.G.; Rostoker, G.; Sharma, A.S.; Tsurutani, B.T.

    1998-01-01

    storm-time ring current. An apparently new controversy regarding the relative importance of the two processes is thus created. It is important to identify the role of substorm occurrence in the large-scale enhancement of magnetospheric convection driven by solar wind electric fields. (3) Numerical schemes for predicting geomagnetic activity indices on the basis of solar/solar wind/interplanetary magnetic field parameters continue to be upgraded, ensuring reliable techniques for forecasting magnetic storms under real-time conditions. There is a need to evaluate the prediction capability of geomagnetic indices on the basis of physical processes that occur during storm time substorms. (4) It is crucial to differentiate between storms and nonstorm time substorms in terms of energy transfer/conversion processes, i.e., mechanical energy from the solar wind, electromagnetic energy in the magnetotail, and again, mechanical energy of particles in the plasma sheet, ring current, and aurora. To help answer the question of the role of substorms in energizing ring current particles, it is crucial to find efficient magnetospheric processes that heat ions up to some minimal energies so that they can have an effect on the strength of the storm time ring current. (5) The question of whether the Dst index is an accurate and effective measure of the storm time ring-current is also controversial. In particular, it is demonstrated that the dipolarization effect associated with substorm expansion

  2. 40 CFR 122.37 - Will the small MS4 storm water program regulations at §§ 122.32 through 122.36 and § 123.35 of...

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Will the small MS4 storm water program... 122.37 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Permit Application and...

  3. Fuels planning: science synthesis and integration; environmental consequences fact sheet 12: Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool

    William Elliot; David Hall

    2005-01-01

    The Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool was developed to estimate sediment generated by fuel management activities. WEPP FuMe estimates sediment generated for 12 fuel-related conditions from a single input. This fact sheet identifies the intended users and uses, required inputs, what the model does, and tells the user how to obtain the...

  4. TECHNICAL FACT SHEET: A Systematic Evaluation of Dissolved Metals Loss during Water Sample Filtration

    This research study examined how water quality collection and filtration approaches, including commonly used capsule and disc syringe filters, may cause losses in the amounts of soluble lead and copper found in a sample. A variety of commercially available filter materials with a...

  5. Solar noise storms

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  6. Artificial Neural Network forecasting of storm surge water levels at major estuarine ports to supplement national tide-surge models and improve port resilience planning

    French, Jon; Mawdsley, Robert; Fujiyama, Taku; Achuthan, Kamal

    2017-04-01

    Effective prediction of tidal storm surge is of considerable importance for operators of major ports, since much of their infrastructure is necessarily located close to sea level. Storm surge inundation can damage critical elements of this infrastructure and significantly disrupt port operations and downstream supply chains. The risk of surge inundation is typically approached using extreme value analysis, while short-term forecasting generally relies on coastal shelf-scale tide and surge models. However, extreme value analysis does not provide information on the duration of a surge event and can be sensitive to the assumptions made and the historic data available. Also, whilst regional tide and surge models perform well along open coasts, their fairly coarse spatial resolution means that they do not always provide accurate predictions for estuarine ports. As part of a NERC Environmental Risks to Infrastructure Innovation Programme project, we have developed a tool that is specifically designed to forecast the North Sea storm surges on major ports along the east coast of the UK. Of particular interest is the Port of Immingham, Humber estuary, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. A tidal surge in December 2013, with an estimated return period of 760 years, partly flooded the port, damaged infrastructure and disrupted operations for several weeks. This and other recent surge events highlight the need for additional tools to supplement the national UK Storm Tide Warning Service. Port operators are also keen to have access to less computationally expensive forecasting tools for scenario planning and to improve their resilience to actual events. In this paper, we demonstrate the potential of machine learning methods based on Artificial Neural Networks (ANNs) to generate accurate short-term forecasts of extreme water levels at estuarine North Sea ports such as Immingham. An ANN is

  7. Thermodynamical effects accompanied freezing of two water layers separated by sea ice sheet

    Bogorodsky, Petr; Marchenko, Aleksey

    2014-05-01

    The process of melt pond freezing is very important for generation of sea ice cover thermodynamic and mass balance during winterperiod. However, due to significant difficulties of field measurements the available data of model estimations still have no instrumental confirmation. In May 2009 the authors carried out laboratory experiment on freezing of limited water volume in the University Centre in Svalbard ice tank. In the course of experiment fresh water layer of 27.5 cm thickness at freezing point poured on the 24 cm sea ice layer was cooled during 50 hours at the temperature -10º C and then once again during 60 hours at -20º C. For revealing process typical characteristics the data of continuous measurements of temperature and salinity in different phases were compared with data of numerical computations obtained with thermodynamic model which was formulated in the frames of 1-D equation system (infinite extension of water freezing layer) and adapted to laboratory conditions. The known surprise of the experiment became proximity of calculated and measured estimates of process dynamics that confirmed the adequacy of the problem mathematical statement (excluding probably process finale stage). This effect can be explained by formation of cracks on the upper layer of ice at sharp decreases of air temperature, which temporary compensated hydrostatic pressure growth during freezing of closed water volume. Another compensated mechanism can be migration of brine through the lower layer of ice under influence of vertical pressure gradient and also rejection of gas dissolved in water which increased its compressibility. During 110 hours cooling thickness of water layer between ice layers reduced approximately to 2 cm. According to computations this layer is not chilled completely but keeps as thin brine interlayer within ice body whose thickness (about units of mm) is determined by temperature fluctuations of cooled surface. Nevertheless, despite good coincidence of

  8. Water-quality characteristics of urban storm runoff at selected sites in East Baton Rouge Parish, Louisiana, February 2006 through November 2009

    Frederick, C. Paul

    2011-01-01

    Water samples were collected at three watersheds in East Baton Rouge Parish, Louisiana, during February 2006 through November 2009 for continued evaluation of urban storm runoff. The watersheds represented land uses characterized predominantly as established commercial, industrial, and residential. The following water-quality data are reported: physical and chemical-related properties, fecal coliform, nutrients, trace elements, and organic compounds. Results of water-quality analyses enabled calculation of event-mean concentrations and estimated annual contaminant loads and yields of storm runoff from nonpoint sources for 12 water-quality properties and constituents. Lead met or exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level of 15 micrograms per liter for drinking water standards in 4 of 14 samples. Low level concentrations of mercury were detected in all 14 samples, and half were two to four times above the reporting limit of 0.02 micrograms per liter. The average dissolved phosphorus concentrations from each land use were two to four times the U.S. Environmental Protection Agency criterion of 0.05 milligrams per liter. Diazinon was detected in one sample at a concentration of 0.2 micrograms per liter. In the residential watershed, the largest at 216 acres, contaminant loads for 5 of the 12 water-quality properties and constituents were highest, with 4 of these being nutrients. The industrial watershed, 97 acres, had the highest contaminant loads for 6 of the 12 water-quality properties and constituents with 3 of these being metals, which is indicative of the type of land use. Zinc had the highest metal load (155 pounds per year) in the industrial watershed, compared to 36 pounds per year in the residential watershed, and 32 pounds per year in the established commercial watershed. The industrial watershed had the highest yields for 8 of the 12 water-quality properties and constituents, whereas the established commercial watershed had

  9. The potential use of storm water and effluent from a constructed wetland for re-vegetating a degraded pyrite trail in Queen Elizabeth National Park, Uganda

    Osaliya, R.; Kansiime, F.; Oryem-Origa, H.; Kateyo, E.

    During the operation of the Kilembe Mines (copper mining) a cobaltiferous stockpile was constructed, which began to erode after the closure of the mines in the early 1970s. The erosion of the pyrite stockpile resulted in a large acid trail all the way to Lake George (a Ramsar site). The acid trail contaminated a large area of Queen Elizabeth National Park (QENP) resulting in the death of most of the shallow-rooted vegetation. Processes and conditions created by storm water and effluent from a constructed wetland were assessed for vegetation regeneration in the degraded QENP pyrite trail. Cynodon dactylon, Imperata cylindrica and Hyparrhenia filipendula dominated the regeneration zone (RZ) where storm water and effluent from a constructed wetland was flowing; and the adjacent unpolluted area (UP) with importance value indices of 186.4 and 83.3 respectively. Typha latifolia and C. dactylon formed two distinct vegetation sub-zones within the RZ with the former inhabiting areas with a higher water table. Soil pH was significantly higher in the RZ, followed by UP and bare pyrite trail (BPT) at both 0-15 cm and 16-30 cm depths. Soil electrical conductivity was not significantly different in the RZ and BPT but significantly higher than that in UP for both depths. For 0-15 cm depth, RZ had significantly higher concentrations of copper than BPT and UP which had similar concentrations. Still at this depth (0-15 cm), the unpolluted area had significantly higher concentrations of total phosphorus and total nitrogen than the regeneration zone and the bare pyrite trail which had similar concentrations. The RZ dominated by Typha had significantly higher concentrations of TP and TN compared to the RZ dominated by Cynodon. The concentrations of NH 4-N were significantly lower in Typha regeneration zone than in CRZ at 0-15 cm depth but similar at 16-30 cm depth. At 16-30 cm depth, concentrations of copper were significantly higher in the regeneration zone followed by the bare pyrite

  10. Occurrence of contaminants of emerging concern in mussels (Mytilus spp.) along the California coast and the influence of land use, storm water discharge, and treated wastewater effluent.

    Dodder, Nathan G; Maruya, Keith A; Lee Ferguson, P; Grace, Richard; Klosterhaus, Susan; La Guardia, Mark J; Lauenstein, Gunnar G; Ramirez, Juan

    2014-04-30

    Contaminants of emerging concern were measured in mussels collected along the California coast in 2009-2010. The seven classes were alkylphenols, pharmaceuticals and personal care products, polybrominated diphenyl ethers (PBDE), other flame retardants, current use pesticides, perfluorinated compounds (PFC), and single walled carbon nanotubes. At least one contaminant was detected at 67 of the 68 stations (98%), and 67 of the 167 analytes had at least one detect (40%). Alkylphenol, PBDE, and PFC concentrations increased with urbanization and proximity to storm water discharge; pesticides had higher concentrations at agricultural stations. These results suggest that certain compounds; for example, alkylphenols, lomefloxacin and PBDE, are appropriate for inclusion in future coastal bivalve monitoring efforts based on maximum concentrations >50 ng/g dry weight and detection frequencies >50%. Other compounds, for example PFC and hexabromocyclododecane (HBCD), may also be suggested for inclusion due to their >25% detection frequency and potential for biomagnification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A Location Intelligence System for the Assessment of Pluvial Flooding Risk and the Identification of Storm Water Pollutant Sources from Roads in Suburbanised Areas

    Szymon Szewrański

    2018-06-01

    Full Text Available The interplay of an ever-growing number of inhabitants, sprawl development, soil sealing, changes in urban traffic characteristics, as well as observed climate trends gives rise to more frequent pluvial flooding in cities, a higher run-off of water, and an increasing pollution of surface water. The aim of this research is to develop a location intelligence system for the assessment of pluvial flooding risks and the identification of storm water pollutant sources from roads in newly-developed areas. The system combines geographic information systems and business intelligence software, and it is based on the original Pluvial Flood Risk Assessment tool. The location intelligence system effectively identifies the spatial and temporal distribution of pluvial flood risks, allows to preliminarily evaluate the total run-off from roads, and helps localise potential places for new water management infrastructure. Further improvements concern the modelling of a flow accumulation and drainage system, the application of weather radar precipitation data, and traffic monitoring and modelling.

  12. 40 CFR 35.925-21 - Storm sewers.

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Storm sewers. 35.925-21 Section 35.925... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-21 Storm... treatment works for control of pollutant discharges from a separate storm sewer system (as defined in § 35...

  13. Noncovalently-functionalized reduced graphene oxide sheets by water-soluble methyl green for supercapacitor application

    Ren, Xiaoying; Hu, Zhongai, E-mail: zhongai@nwnu.edu.cn; Hu, Haixiong; Qiang, Ruibin; Li, Li; Li, Zhimin; Yang, Yuying; Zhang, Ziyu; Wu, Hongying

    2015-10-15

    Graphical abstract: Electroactive methyl green (MG) is selected to functionalize reduced graphene oxide (RGO) through non-covalent modification and the composite achieves high specific capacitance, good rate capability and excellent long life cycle. - Highlights: • MG–RGO composites were firstly prepared through non-covalent modification. • The mass ratio in composites is a key for achieving high specific capacitance. • MG–RGO 5:4 exhibits the highest specific capacitance of 341 F g{sup −1}. • MG–RGO 5:4 shows excellent rate capability and long life cycle. - Abstract: In the present work, water-soluble electroactive methyl green (MG) has been used to non-covalently functionalize reduced graphene oxide (RGO) for enhancing supercapacitive performance. The microstructure, composition and morphology of MG–RGO composites are systematically characterized by UV–vis absorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performances are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). The fast redox reactions from MG could generate additional pseudocapacitance, which endows RGO higher capacitances. As a result, the MG–RGO composite (with the 5:4 mass ratio of MG:RGO) achieve a maximum value of 341 F g{sup −1} at 1 A g{sup −1} within the potential range from −0.25 to 0.75 V and provide a 180% enhancement in specific capacitance in comparison with pure RGO. Furthermore, excellent rate capability (72% capacitance retention from 1 A g{sup −1} to 20 A g{sup −1}) and long life cycle (12% capacitance decay after 5000 cycles) are achieved for the MG–RGO composite electrode.

  14. Comparing Sources of Storm-Time Ring Current O+

    Kistler, L. M.

    2015-12-01

    The first observations of the storm-time ring current composition using AMPTE/CCE data showed that the O+ contribution to the ring current increases significantly during storms. The ring current is predominantly formed from inward transport of the near-earth plasma sheet. Thus the increase of O+ in the ring current implies that the ionospheric contribution to the plasma sheet has increased. The ionospheric plasma that reaches the plasma sheet can come from both the cusp and the nightside aurora. The cusp outflow moves through the lobe and enters the plasma sheet through reconnection at the near-earth neutral line. The nightside auroral outflow has direct access to nightside plasma sheet. Using data from Cluster and the Van Allen Probes spacecraft, we compare the development of storms in cases where there is a clear input of nightside auroral outflow, and in cases where there is a significant cusp input. We find that the cusp input, which enters the tail at ~15-20 Re becomes isotropized when it crosses the neutral sheet, and becomes part of the hot (>1 keV) plasma sheet population as it convects inward. The auroral outflow, which enters the plasma sheet closer to the earth, where the radius of curvature of the field line is larger, does not isotropize or become significantly energized, but remains a predominantly field aligned low energy population in the inner magnetosphere. It is the hot plasma sheet population that gets accelerated to high enough energies in the inner magnetosphere to contribute strongly to the ring current pressure. Thus it appears that O+ that enters the plasma sheet further down the tail has a greater impact on the storm-time ring current than ions that enter closer to the earth.

  15. Effects on Storm-Water Management for Three Major US Cities Using Location Specific Extreme Precipitation Dynamical Downscaling

    Pelle, A.; Allen, M.; Fu, J. S.

    2013-12-01

    With rising population and increasing urban density, it is of pivotal importance for urban planners to plan for increasing extreme precipitation events. Climate models indicate that an increase in global mean temperature will lead to increased frequency and intensity of storms of a variety of types. Analysis of results from the Coupled Model Intercomparison Project, Phase 5 (CMIP5) has demonstrated that global climate models severely underestimate precipitation, however. Preliminary results from dynamical downscaling indicate that Philadelphia, Pennsylvania is expected to experience the greatest increase of precipitation due to an increase in annual extreme events in the US. New York City, New York and Chicago, Illinois are anticipated to have similarly large increases in annual extreme precipitation events. In order to produce more accurate results, we downscale Philadelphia, Chicago, and New York City using the Weather Research and Forecasting model (WRF). We analyze historical precipitation data and WRF output utilizing a Log Pearson Type III (LP3) distribution for frequency of extreme precipitation events. This study aims to determine the likelihood of extreme precipitation in future years and its effect on the of cost of stormwater management for these three cities.

  16. Characterization of sediment from the dredging of storm water channels in the city of Salvador-BA, Brazil aiming to use in structural ceramics

    Santos, O.C.; Breitenbach, S.B.; Coelho, R.E.; Andrade, J.C.S.; Sales Junior, J.C.C.; Paskocimas, C.A.; Martinelli, A.E.; Nascimento, R.M.

    2017-01-01

    The aim of this study was to characterize sediment from the dredging of storm water channels (Scp) in the city of Salvador, Bahia, aiming its maximum replacement by clay in structural ceramics, since this binary mixture is part of the pilot project of the standard mass, in the research of interlocked block ceramic formulation. Initially, the sediment was submitted to the following tests: plasticity index; chemical analysis by X-ray fluorescence; mineralogical analysis by X-ray diffraction; thermal and particle size analyses. The morphology of the material was analyzed by scanning electron microscopy, coupled with energy dispersive spectroscopy. Then, sediment (Scp) was added to clay from the municipality of Candelas, Bahia, in the proportions of 10, 20, 30 and 40 wt%. Specimens were prepared by uniaxial pressing in dimensions of 60 mm x 20 mm, with compacting pressure of 25 MPa, and the material was humidified with 8% of water. Firing was conducted in resistive furnace at temperatures of 850, 950 and 1050 deg C, with 5 deg C / min heating rate. The properties evaluated were: linear shrinkage; water absorption and modulus of rupture. The results indicated the possibility of using SCP in structural ceramics by the prerequisites required in standards, in the manufacture of tiles, sealing blocks and bricks. (author)

  17. NCDC Storm Events Database

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Data is provided by the National Weather Service (NWS) and contain statistics on personal injuries and damage estimates. Storm Data covers the United States of...

  18. Non-storm irregular variation of the Dst index

    S. Nakano

    2012-01-01

    Full Text Available The Dst index has a long-term variation that is not associated with magnetic storms. We estimated the long-term non-storm component of the Dst variation by removing the short-term variation related to magnetic storms. The results indicate that the variation of the non-storm component includes not only a seasonal variation but also an irregular variation. The irregular long-term variation is likely to be due to an anti-correlation with the long-term variation of solar-wind activity. In particular, a clear anti-correlation is observed between the non-storm component of Dst and the long-term variation of the solar-wind dynamic pressure. This means that in the long term, the Dst index tends to increase when the solar-wind dynamic pressure decreases. We interpret this anti-correlation as an indication that the long-term non-storm variation of Dst is influenced by the tail current variation. The long-term variation of the solar-wind dynamic pressure controls the plasma sheet thermal pressure, and the change of the plasma sheet thermal pressure would cause the non-storm tail current variation, resulting in the non-storm variation of Dst.

  19. The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness

    Welling, D. T.; Liemohn, M. W.; Ridley, A. J.

    2012-12-01

    It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric

  20. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    Xue Jin; Xiaoxia Shi; Jintian Gao; Tongbin Xu; Kedong Yin

    2018-01-01

    Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is di...

  1. Bioavailability of mercury in contaminated Oak Ridge watershed and potential remediation of river/runoff/storm water by an aquatic plant - 16319

    Su, Yi; Han, Fengxiang X.; Chen, Jian; Xia, Yunju; Monts, David L.

    2009-01-01

    Historically as part of its national security mission, the U.S. Department of Energy's Y-12 National Security Facility in Oak Ridge, TN, USA acquired a significant fraction of the world's supply of elemental mercury. During the 1950's and 1960's, a large amount of elemental mercury escaped confinement and is still present in the buildings and grounds of the Y-12 Facility and in the Y-12 Watershed. Because of the adverse effects of elemental mercury and mercury compounds upon human health, the Oak Ridge Site is engaged in an on-going effort to monitor and remediate the area. The main thrust of the Oak Ridge mercury remediation effort is currently scheduled for implementation in FY09. In order to more cost effectively implement those extensive remediation efforts, it is necessary now to obtain an improved understanding of the role that mercury and mercury compounds play in the Oak Ridge ecosystem. Most recently, concentrations of both total mercury and methylmercury in fish and water of lower East Fork Poplar Creek (LEFPC) of Oak Ridge increased although the majority of mercury in the site is mercury sulfide. This drives the US DOE and the Oak Ridge Site to study the long-term bioavailability of mercury and speciation at the site. The stability and bioavailability of mercury sulfide as affected by various biogeochemical conditions -presence of iron oxides have been studied. We examined the kinetic rate of dissolution of cinnabar from Oak Ridge soils and possible mechanisms and pathways in triggering the most recent increase of mercury solubility, bioavailability and mobility in Oak Ridge site. The effects of pH and chlorine on oxidative dissolution of cinnabar from cinnabar-contaminated Oak Ridge soils is discussed. On the other hand, aquatic plants might be good candidate for phyto-remediate contaminated waste water and phyto-filtration of collective storm water and surface runoff and river. Our greenhouse studies on uptake of Hg by water lettuce (Pistia stratiotes

  2. Improved estimates of global sea level change from Ice Sheets, glaciers and land water storage using GRACE

    Velicogna, I.; Hsu, C. W.; Ciraci, E.; Sutterley, T. C.

    2015-12-01

    We use observations of time variable gravity from GRACE to estimate mass changes for the Antarctic and Greenland Ice Sheets, the Glaciers and Ice Caps (GIC) and land water storage for the time period 2002-2015 and evaluate their total contribution to sea level. We calculate regional sea level changes from these present day mass fluxes using an improved scaling factor for the GRACE data that accounts for the spatial and temporal variability of the observed signal. We calculate a separate scaling factor for the annual and the long-term components of the GRACE signal. To estimate the contribution of the GIC, we use a least square mascon approach and we re-analyze recent inventories to optimize the distribution of mascons and recover the GRACE signal more accurately. We find that overall, Greenland controls 43% of the global trend in eustatic sea level rise, 16% for Antarctica and 29% for the GIC. The contribution from the GIC is dominated by the mass loss of the Canadian Arctic Archipelago, followed by Alaska, Patagonia and the High Mountains of Asia. We report a marked increase in mass loss for the Canadian Arctic Archipelago. In Greenland, following the 2012 high summer melt, years 2013 and 2014 have slowed down the increase in mass loss, but our results will be updated with summer 2015 observations at the meeting. In Antarctica, the mass loss is still on the rise with increased contributions from the Amundsen Sea sector and surprisingly from the Wilkes Land sector of East Antarctica, including Victoria Land. Conversely, the Queen Maud Land sector experienced a large snowfall in 2009-2013 and has now resumed to a zero mass gain since 2013. We compare sea level changes from these GRACE derived mass fluxes after including the atmospheric and ocean loading signal with sea level change from satellite radar altimetry (AVISO) corrected for steric signal of the ocean using Argo measurements and find an excellent agreement in amplitude, phase and trend in these estimates

  3. Hydrologic conditions and water quality of rainfall and storm runoff for two agricultural areas of the Oso Creek watershed, Nueces County, Texas, 2005-08

    Ockerman, Darwin J.; Fernandez, Carlos J.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and water quality of rainfall and storm runoff of two primarily agricultural subwatersheds of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is about 5,145 acres. The other area, a subwatershed drained by an unnamed tributary to Oso Creek (hereinafter, Oso Creek tributary), is about 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during the study period October 2005-September 2008. Seventeen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Twenty-four composite runoff water-quality samples (12 at West Oso Creek, 12 at Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-six discrete suspended-sediment samples (12 West Oso Creek, 14 Oso Creek tributary) and 17 bacteria samples (10 West Oso Creek, 7 Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the two subwatersheds. Quantities of fertilizers and pesticides applied in the two subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff from the two subwatersheds occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 13.95 inches compared with 9.45 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 3

  4. Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact Sheet)

    2012-07-01

    This fact sheet describes the technical assistance that the U.S. Department of Energy, through its National Renewable Energy Laboratory, provided to New Orleans, Louisiana, which helped the city incorporate energy efficiency into its rebuilding efforts for K-12 schools and homes following Hurricanes Katrina and Rita. NREL also provided support and analysis on energy policy efforts.

  5. Assimilating InSAR Maps of Water Vapor to Improve Heavy Rainfall Forecasts: A Case Study With Two Successive Storms

    Mateus, Pedro; Miranda, Pedro M. A.; Nico, Giovanni; Catalão, João.; Pinto, Paulo; Tomé, Ricardo

    2018-04-01

    Very high resolution precipitable water vapor maps obtained by the Sentinel-1 A synthetic aperture radar (SAR), using the SAR interferometry (InSAR) technique, are here shown to have a positive impact on the performance of severe weather forecasts. A case study of deep convection which affected the city of Adra, Spain, on 6-7 September 2015, is successfully forecasted by the Weather Research and Forecasting model initialized with InSAR data assimilated by the three-dimensional variational technique, with improved space and time distributions of precipitation, as observed by the local weather radar and rain gauge. This case study is exceptional because it consisted of two severe events 12 hr apart, with a timing that allows for the assimilation of both the ascending and descending satellite images, each for the initialization of each event. The same methodology applied to the network of Global Navigation Satellite System observations in Iberia, at the same times, failed to reproduce observed precipitation, although it also improved, in a more modest way, the forecast skill. The impact of precipitable water vapor data is shown to result from a direct increment of convective available potential energy, associated with important adjustments in the low-level wind field, favoring its release in deep convection. It is suggested that InSAR images, complemented by dense Global Navigation Satellite System data, may provide a new source of water vapor data for weather forecasting, since their sampling frequency could reach the subdaily scale by merging different SAR platforms, or when future geosynchronous radar missions become operational.

  6. Synergistic Effect between Metal-Nitrogen-Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Water-Oxidation Performance.

    Wang, Jun; Li, Kai; Zhong, Hai-xia; Xu, Dan; Wang, Zhong-li; Jiang, Zheng; Wu, Zhi-jian; Zhang, Xin-bo

    2015-09-01

    Identifying effective means to improve the electrochemical performance of oxygen-evolution catalysts represents a significant challenge in several emerging renewable energy technologies. Herein, we consider metal-nitrogen-carbon sheets which are commonly used for catalyzing the oxygen-reduction reaction (ORR), as the support to load NiO nanoparticles for the oxygen-evolution reaction (OER). FeNC sheets, as the advanced supports, synergistically promote the NiO nanocatalysts to exhibit superior performance in alkaline media, which is confirmed by experimental observations and density functional theory (DFT) calculations. Our findings show the advantages in considering the support effect for designing highly active, durable, and cost-effective OER electrocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nippon Storm Study design

    Takashi Kurita

    2012-10-01

    Full Text Available An understanding of the clinical aspects of electrical storm (E-storms in patients with implantable cardiac shock devices (ICSDs: ICDs or cardiac resynchronization therapy with defibrillator [CRT-D] may provide important information for clinical management of patients with ICSDs. The Nippon Storm Study was organized by the Japanese Heart Rhythm Society (JHRS and Japanese Society of Electrocardiology and was designed to prospectively collect a variety of data from patients with ICSDs, with a focus on the incidence of E-storms and clinical conditions for the occurrence of an E-storm. Forty main ICSD centers in Japan are participating in the present study. From 2002, the JHRS began to collect ICSD patient data using website registration (termed Japanese cardiac defibrillator therapy registration, or JCDTR. This investigation aims to collect data on and investigate the general parameters of patients with ICSDs, such as clinical backgrounds of the patients, purposes of implantation, complications during the implantation procedure, and incidence of appropriate and inappropriate therapies from the ICSD. The Nippon Storm Study was planned as a sub-study of the JCDTR with focus on E-storms. We aim to achieve registration of more than 1000 ICSD patients and complete follow-up data collection, with the assumption of a 5–10% incidence of E-storms during the 2-year follow-up.

  8. Assessing storm erosion hazards

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  9. A storm-based CSLE incorporating the modified SCS-CN method for soil loss prediction on the Chinese Loess Plateau

    Shi, Wenhai; Huang, Mingbin

    2017-04-01

    The Chinese Loess Plateau is one of the most erodible areas in the world. In order to reduce soil and water losses, suitable conservation practices need to be designed. For this purpose, there is an increasing demand for an appropriate model that can accurately predict storm-based surface runoff and soil losses on the Loess Plateau. The Chinese Soil Loss Equation (CSLE) has been widely used in this region to assess soil losses from different land use types. However, the CSLE was intended only to predict the mean annual gross soil loss. In this study, a CSLE was proposed that would be storm-based and that introduced a new rainfall-runoff erosivity factor. A dataset was compiled that comprised measurements of soil losses during individual storms from three runoff-erosion plots in each of three different watersheds in the gully region of the Plateau for 3-7 years in three different time periods (1956-1959; 1973-1980; 2010-13). The accuracy of the soil loss predictions made by the new storm-based CSLE was determined using the data for the six plots in two of the watersheds measured during 165 storm-runoff events. The performance of the storm-based CSLE was further compared with the performance of the storm-based Revised Universal Soil Loss Equation (RUSLE) for the same six plots. During the calibration (83 storms) and validation (82 storms) of the storm-based CSLE, the model efficiency, E, was 87.7% and 88.9%, respectively, while the root mean square error (RMSE) was 2.7 and 2.3 t ha-1 indicating a high degree of accuracy. Furthermore, the storm-based CSLE performed better than the storm-based RULSE (E: 75.8% and 70.3%; RMSE: 3.8 and 3.7 t ha-1, for the calibration and validation storms, respectively). The storm-based CSLE was then used to predict the soil losses from the three experimental plots in the third watershed. For these predictions, the model parameter values, previously determined by the calibration based on the data from the initial six plots, were used in

  10. Practical data collection : establishing methods and procedures for measuring water clarity and turbidity of storm water run-off from active major highway construction sites.

    2014-09-12

    In anticipation of regulation involving numeric turbidity limit at highway construction sites, research was : done into the most appropriate, affordable methods for surface water monitoring. Measuring sediment : concentration in streams may be conduc...

  11. Biomolecular Science (Fact Sheet)

    2012-04-01

    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  12. Fabrication of Robust Super hydrophobic Bamboo Based on ZnO Nano sheet Networks with Improved Water-, UV-, and Fire-Resistant Properties

    Li, J.; Sun, Q.; Yao, Q.; Wang, J.; Han, Sh.; Jin, Ch.

    2014-01-01

    Bamboo with water-resistant, UV-resistant, and fire-resistant properties was desirable in modern society. In this paper, the original bamboo was firstly treated with ZnO sol and then hydrothermally the ZnO nano sheet networks grow onto the bamboo surface and subsequently modified with fluoro alkyl silane (FAS-17). The FAS-17 treated bamboo substrate exhibited not only robust super hydrophobicity with a high contact angle of 161° but also stable repellency towards simulated acid rain (ph = 3) with a contact angle of 152°. Except for its robust super hydrophobicity, such a bamboo also presents superior water-resistant, UV-resistant, and fire-resistant properties.

  13. Storm Water Control Management & Monitoring

    2017-11-30

    Temple and Villanova universities collected monitoring and assessment data along the I-95 corridor to evaluate the performance of current stormwater control design and maintenance practices. An extensive inventory was developed that ranks plants in t...

  14. Mapping Hurricane Rita inland storm tide

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  15. Storm Data Publication

    National Oceanic and Atmospheric Administration, Department of Commerce — 'Storm Data and Unusual Weather Phenomena' is a monthly publication containing a chronological listing, by state, of hurricanes, tornadoes, thunderstorms, hail,...

  16. Storm surge climatology report

    Horsburgh, Kevin; Williams, Joanne; Cussack, Caroline

    2017-01-01

    Any increase in flood frequency or severity due to sea level rise or changes in storminess would adversely impact society. It is crucial to understand the physical drivers of extreme storm surges to have confidence in the datasets used for extreme sea level statistics. We will refine and improve methods to the estimation of extreme sea levels around Europe and more widely. We will do so by developing a comprehensive world picture of storm surge distribution (including extremes) for both tropi...

  17. The Effect of Storm Driver and Intensity on Magnetospheric Ion Temperatures

    Keesee, Amy M.; Katus, Roxanne M.; Scime, Earl E.

    2017-09-01

    Energy deposited in the magnetosphere during geomagnetic storms drives ion heating and convection. Ions are also heated and transported via internal processes throughout the magnetosphere. Injection of the plasma sheet ions to the inner magnetosphere drives the ring current and, thus, the storm intensity. Understanding the ion dynamics is important to improving our ability to predict storm evolution. In this study, we perform superposed epoch analyses of ion temperatures during storms, comparing ion temperature evolution by storm driver and storm intensity. The ion temperatures are calculated using energetic neutral atom measurements from the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) mission. The global view of these measurements provide both spatial and temporal information. We find that storms driven by coronal mass ejections (CMEs) tend to have higher ion temperatures throughout the main phase than storms driven by corotating interaction regions (CIRs) but that the temperatures increase during the recovery phase of CIR-driven storms. Ion temperatures during intense CME-driven storms have brief intervals of higher ion temperatures than those during moderate CME-driven storms but have otherwise comparable ion temperatures. The highest temperatures during CIR-driven storms are centered at 18 magnetic local time and occur on the dayside for moderate CME-driven storms. During the second half of the main phase, ion temperatures tend to decrease in the postmidnight to dawn sector for CIR storms, but an increase is observed for CME storms. This increase begins with a sharp peak in ion temperatures for intense CME storms, likely a signature of substorm activity that drives the increased ring current.

  18. About novelty of radiation drug 'Storm in cells'

    Korchubekov, B.

    2005-01-01

    Drugs 'Storm in cells' is intended for treatment of infection wounds and burns in medical practice. The preparation represents the electro- activated mixture consisting uranium and thorium masses in the mumie base, table salt, activated carbon and water. Advantage of the drug 'Storm in cells' in comparison with prototype is increase of wound and burns repair effectiveness in 10-11 %

  19. Cu-water nanofluid flow induced by a vertical stretching sheet in presence of a magnetic field with convective heat transfer

    Kalidas Das

    2017-09-01

    Full Text Available The convective heat transfer performance of nanofluid over a permeable stretching sheet with thermal convective boundary condition in presence of magnetic field and slip velocity is studied in the present paper. Cu-water nanofluid is used to investigate the effect of nanoparticles on the flow and heat transfer characteristic. The numerical results are compared with published results and are found in an excellent agreement. The influences of various relevant parameters on the velocity and temperature as well as the rate of shear stress and the rate of heat transfer are elucidated through graphs and tables. It is observed that nanoparticles volume fraction and surface convection parameter both increase the thickness of thermal boundary layer.

  20. 雨水排水体系构建和技术发展重点的综述%Overview on Framework Construction of Storm Water Drainage System and Key Points of Technical Development

    陈华

    2014-01-01

    该文介绍了国际通行的雨水排水体系构架,阐述了“小排水系统”和“大排水系统”的定义,分析了两者在防汛除涝方面的关系。%The framework of storm water drainage system used internationally was introduced. The definition of“minor drainage system”and“major drainage system”were illustrated. The relationship of them in regard of the flood control was analyzed.

  1. Chlamydia - CDC Fact Sheet

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... sheet Pelvic Inflammatory Disease (PID) – CDC fact sheet Gonorrhea – CDC fact sheet STDs Home Page Bacterial Vaginosis ( ...

  2. Water quality assessment in the "German River of the years 2014/2015": how a case study on the impact of a storm water sedimentation basin displayed impairment of fish health in the Argen River (Southern Germany).

    Thellmann, Paul; Kuch, Bertram; Wurm, Karl; Köhler, Heinz-R; Triebskorn, Rita

    2017-01-01

    The present work investigates the impact of discharges from a storm water sedimentation basin (SSB) receiving runoff from a connected motorway in southern Germany. The study lasted for almost two years and was aimed at assessing the impact of the SSB on the fauna of the Argen River, which is a tributary of Lake Constance. Two sampling sites were examined up- and downstream of the SSB effluent. A combination of different diagnostic methods (fish embryo test with the zebrafish, histopathology, micronucleus test) was applied to investigate health impairment and genotoxic effects in indigenous fish as well as embryotoxic potentials in surface water and sediment samples of the Argen River, respectively, in samples of the SSB effluent. In addition, sediment samples from the Argen River and tissues of indigenous fish were used for chemical analyses of 33 frequently occurring pollutants by means of gas chromatography. Furthermore, the integrity of the macrozoobenthos community and the fish population were examined at both investigated sampling sites. The chemical analyses revealed a toxic burden with trace substances (originating from traffic and waste water) in fish and sediments from both sampling sites. Fish embryo tests with native sediment and surface water samples resulted in various embryotoxic effects in exposed zebrafish embryos (Fig. 1). In addition, the health condition of the investigated fish species (e.g., severe alterations in the liver and kidney) provided clear evidence of water contamination at both Argen River sites (Fig. 2). At distinct points in time, some parameters (fish development, kidney and liver histopathology) indicated stronger effects at the sampling site downstream of the SSB effluent than at the upstream site. Our results clearly showed that the SSB cannot be assigned as the main source of pollutants that are released into the investigated Argen River section. Moreover, we showed that there is moderate background pollution with substances

  3. Warm Water Pools of the Western Caribbean and Eastern Tropical Pacific: Their Influence on Intraseasonal Rainfall Regimes and Tropical Storm Activity in Mexico

    Douglas, A. V.; Englehart, P. J.

    2007-05-01

    A dipole in tropical cyclone development between the Caribbean and the eastern tropical Pacific will be examined relative to its affect on southern Mexican rainfall. With the change over in the AMO and PDO in 1994 and 1998, respectively, tropical storm genesis has been increasing in the Caribbean while declining in the tropical east Pacific. This dipole in tropical cyclone development appears to be related to changes in the pre storm season heat content of the two ocean basins (data Scripps Institution of Oceanography). Preliminary work indicates that if the Caribbean is warmer than the Pacific by late May the dipole will be accentuated with a pronounced decrease in tropical storms in the east Pacific with an early and prolonged season in the Caribbean. In recent years there appears to have been an increase in the intensity and duration of midsummer drought (Canicula) in Mexico associated with changes in the PDO and AMO. These long term ocean oscillations appear to control the dipole in the strength of the Caribbean and East Pacific warm pools. Mid summer drought is a normal occurrence in much of Mexico and Central America, but the intensified droughts of the recent period have stressed the agricultural community of the region. Based on preliminary work, it appears that the recent increased frequency of midsummer drought can be linked to a shift in the warmest pool from the East Pacific to the Caribbean.

  4. GASN sheets

    2013-12-01

    This document gathers around 50 detailed sheets which describe and present various aspects, data and information related to the nuclear sector or, more generally to energy. The following items are addressed: natural and artificial radioactive environment, evolution of energy needs in the world, radioactive wastes, which energy for France tomorrow, the consequences in France of the Chernobyl accident, ammunitions containing depleted uranium, processing and recycling of used nuclear fuel, transport of radioactive materials, seismic risk for the basic nuclear installations, radon, the precautionary principle, the issue of low doses, the EPR, the greenhouse effect, the Oklo nuclear reactors, ITER on the way towards fusion reactors, simulation and nuclear deterrence, crisis management in the nuclear field, does nuclear research put a break on the development of renewable energies by monopolizing funding, nuclear safety and security, the plutonium, generation IV reactors, comparison of different modes of electricity production, medical exposure to ionizing radiations, the control of nuclear activities, food preservation by ionization, photovoltaic solar collectors, the Polonium 210, the dismantling of nuclear installations, wind energy, desalination and nuclear reactors, from non-communication to transparency about nuclear safety, the Jules Horowitz reactor, CO 2 capture and storage, hydrogen, solar energy, the radium, the subcontractors of maintenance of the nuclear fleet, biomass, internal radio-contamination, epidemiological studies, submarine nuclear propulsion, sea energy, the Three Mile Island accident, the Chernobyl accident, the Fukushima accident, the nuclear after Fukushima

  5. Storm impacts on small barrier islands

    Kroon, Aart; Fruergaard, Mikkel

    The shorelines of the Baltic Sea and the inner coastal waters in Denmark consist of many barrier islands. These sandy barrier islands were mainly formed in the Holocene and are still very dynamic. The present day changes in the morphology are dominantly governed by storm waves and associated high...

  6. Developing Design Storm Hydrographs for Small Tropical ...

    Hydrographs are vital tools in the design and construction of water-control structures in urban and rural systems. The purpose of this study was to explore the development of design storm hydrographs for the small tropical catchment with limited data. In this study, Clark's Unit Hydrograph method was used to develop ...

  7. The assessment of Urban Storm Inundation

    Setyandito, Oki; Wijayanti, Yureana; Alwan, Muhammad; Chayati, Cholilul; Meilani

    2017-12-01

    A Sustainable and integrated plan in order to solve urban storm inundation problem, is an urgent issue in Indonesia. A reliable and complete datasets of urban storm inundation area in Indonesia should become its basis to give clear description of inundation area for formulating the best solution. In this study, Statistics Indonesia data in thirty three provinces were assessed during 2000 until 2012 providing data series of urban flood area, flood frequency and land cover changes. Drainage system condition in big cities should be well understood to ensure its infrastructure condition and performance. If inundation occurred, it can be concluded that there is drainage system problem. Inundation data is also important for drainage system design process in the future. The study result is provided estimation of urban storm inundation area based on calculation of Statistics Indonesia data. Moreover, this study is preceded by analyzing and reviewing the capacity of existing drainage channel, using case study of Mataram, West Nusa Tenggara. Rainfall data was obtained from three rainfall stations surround Mataram City. The storm water quantity was calculated using three different approaches as follows: 1) Rational Method; 2) Summation of existing inundation and surface run off discharge; 3) Discharge calculation from existing channel dimensions. After that, the result of these approaches was compared. The storm water quantity gap was concluded as quantity of inundation. The result shows that 36% of drainage channel in Brenyok Kanan River sub system could not accommodate the storm water runoff in this area, which causing inundation. The redesign of drainage channel using design discharge from Rational Method approach should be performed. Within area with the lowest level topography, a construction of detention or storage pond is essential to prevent inundation in this area. Furthermore, the benefits and drawbacks of the statistics database are discussed. Recommendations

  8. Modelling the Antarctic Ice Sheet

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    to sea level high stands during past interglacial periods. A number of AIS models have been developed and applied to try to understand the workings of the AIS and to form a robust basis for future projections of the AIS contribution to sea level change. The recent DCESS (Danish Center for Earth System......The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...

  9. Biological effects of geomagnetic storms

    Chibisov, S.M.; Breus, T.K.; Levitin, A.E.; Drogova, G.M.; AN SSSR, Moscow; AN SSSR, Moscow

    1995-01-01

    Six physiological parameters of cardio-vascular system of rabbits and ultrastructure of cardiomyocytes were investigated during two planetary geomagnetic storms. At the initial and main phase of the storm the normal circadian structure in each cardiovascular parameter was lost. The disynchronozis was growing together with the storm and abrupt drop of cardia activity was observed during the main phase of storm. The main phase of storm followed by the destruction and degradation of cardiomyocytes. Parameters of cardia activity became substantially synchronized and characterized by circadian rhythm structure while the amplitude of deviations was still significant at the recovery stage of geomagnetic storm. 3 refs.; 7 figs

  10. Great magnetic storms

    Tsurutani, B.T.; Yen Te Lee; Tang, F.; Gonzalez, W.D.

    1992-01-01

    The five largest magnetic storms that occurred between 1971 and 1986 are studied to determine their solar and interplanetary causes. All of the events are found to be associated with high speed solar wind streams led by collisionless shocks. The high speed streams are clearly related to identifiable solar flares. It is found that (1) it is the extreme values of the southward interplanetary magnetic fields rather than solar wind speeds that are the primary causes of great magnetic storms, (2) shocked and draped sheath fields preceding the driver gas (magnetic cloud) are at least as effective in causing the onset of great magnetic storms (3 of 5 events ) as the strong fields within the driver gas itself, and (3) precursor southward fields ahead of the high speed streams allow the shock compression mechanism (item 2) to be particularly geoeffective

  11. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing.

    Ouyang, Wei; Guo, Bobo; Hao, Fanghua; Huang, Haobo; Li, Junqi; Gong, Yongwei

    2012-12-30

    Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Storm and cloud dynamics

    Cotton, William R

    1992-01-01

    This book focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models.Key Features* Key Highlight

  13. Improved regional sea-level estimates from Ice Sheets, Glaciers and land water storage using GRACE time series and other data

    He, Z.; Velicogna, I.; Hsu, C. W.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.; Fettweis, X.; van den Broeke, M. R.

    2017-12-01

    Changes in ice sheets, glaciers and ice caps (GIC) and land water mass cause regional sea level variations that differ significantly from a uniform re-distribution of mass over the ocean, with a decrease in sea level compared to the global mean sea level contribution (GMSL) near the sources of mass added to the ocean and an increase up to 30% larger than the GMSL in the far field. The corresponding sea level fingerprints (SLF) are difficult to separate from ocean dynamics on short time and spatial scales but as ice melt continues, the SLF signal will become increasingly dominant in the pattern of regional sea level rise. It has been anticipated that it will be another few decades before the land ice SLF could be identified in the pattern of regional sea level rise. Here, we combine 40 years of observations of ice sheet mass balance for Antarctica (1975-present) and Greenland (1978-present), along with surface mass balance reconstructions of glacier and ice caps mass balance (GIC) from 1970s to present to determine the contribution to the SLF from melting land ice (MAR and RACMO). We compare the results with observations from GRACE for the time period 2002 to present for evaluation of our approach. Land hydrology is constrained by GRACE data for the period 2002-present and by the GLDAS-NOAH land hydrology model for the longer time period. Over the long time period, we find that the contribution from land ice dominates. We quantify the contribution to the total SLF from Greenland and Antarctica in various parts of the world over the past 40 years. More important, we compare the cumulative signal from SLF with tide gauge records around the world, corrected for earth dynamics, to determine whether the land ice SLF can be detected in that record. Early results will be reported at the meeting. This work was performed at UC Irvine and at Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program.

  14. Ice sheet hydrology - a review

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  15. Ice sheet hydrology - a review

    Jansson, Peter; Naeslund, Jens-Ove; Rodhe, Lars

    2007-03-01

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  16. Ligand-free gold atom clusters adsorbed on graphene nano sheets generated by oxidative laser fragmentation in water

    Lau, Marcus; Haxhiaj, Ina; Wagener, Philipp; Intartaglia, Romuald; Brandi, Fernando; Nakamura, Junji; Barcikowski, Stephan

    2014-08-01

    Over three decades after the first synthesis of stabilized Au55-clusters many scientific questions about gold cluster properties are still unsolved and ligand-free colloidal clusters are difficult to fabricate. Here we present a novel route to produce ultra-small gold particles by using a green technique, the laser ablation and fragmentation in water, without using reductive or stabilizing agents at any step of the synthesis. For fabrication only a pulsed laser, a gold-target, pure water, sodium hydroxide and hydrogen peroxide are deployed. The particles are exemplarily hybridized to graphene supports showing that these carbon-free colloidal clusters might serve as versatile building blocks.

  17. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  18. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  19. Copper disinfection ban causes storm.

    Lester, Alan

    2013-05-01

    Since 1 February this year, under the EU's Biocidal Products Directive, it has been illegal to sell or use water treatment systems that use elemental copper, a practice employed historically by a significant number of UK healthcare facilities to combat Legionella. Alan Lester, managing director of specialist supplier of 'environmentally-friendly' water treatment systems, Advanced Hydro, says the ban has caused 'a storm of giant proportion,' with advocates of copper ion-based treatment systems arguing that this disinfection method dates back 3,000 years to Egyptian times, making it an 'undoubtedly proven' technology. Here he explains why the ban came into force, considers why the UK's Health and Safety Executive (HSE) is seeking a derogation, looks at the ban's likely impact, and gives a personal viewpoint on the 'pros and cons' of some of the alternative treatment technologies, including a titanium dioxide-based system marketed by Advanced Hydro itself in the UK.

  20. Comprehensive Condition Survey and Storm Waves, Circulation, and Sediment Study, Dana Point Harbor, California

    2014-12-01

    waters; 3) west to northwest local sea; 4) prefrontal local sea; 5) tropical storm swell; and 6) extratropical cyclone in the southern hemisphere...14-13 58 Prefrontal local sea The coastal zone within the south Orange County area is vulnerable under extratropical winter storm conditions (a...wave characteristics for severe extratropical storms during the 39 yr time period (1970–2008) are comparable to peak storm wave heights that were

  1. California's Perfect Storm

    Bacon, David

    2010-01-01

    The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…

  2. Dave Storm esitleb singlit

    2002-01-01

    7. märtsil klubis Spirit ja 8. märtsil klubis Terminal presenteerib tallinlane DJ Dave Storm oma uut singlit "Ride", millel teeb laulmisega kaasa ameeriklane Charlie C. Singelplaadi annab peadselt välja Inglise plaadifirma Refunkt

  3. Interview with Gert Storm

    Storm, Gerrit

    2013-01-01

    Gert Storm studied biology at the Utrecht University, The Netherlands, and obtained his PhD degree in 1987 at the Department of Pharmaceutics of the same university. He is now Professor of targeted drug delivery at the University of Utrecht, as well as Professor of targeted therapeutics at the MIRA

  4. Monitoring Hurricane Rita Inland Storm Surge: Chapter 7J in Science and the storms-the USGS response to the hurricanes of 2005

    McGee, Benton D.; Tollett, Roland W.; Goree, Burl B.

    2007-01-01

    Pressure transducers (sensors) are accurate, reliable, and cost-effective tools to measure and record the magnitude, extent, and timing of hurricane storm surge. Sensors record storm-surge peaks more accurately and reliably than do high-water marks. Data collected by sensors may be used in storm-surge models to estimate when, where, and to what degree stormsurge flooding will occur during future storm-surge events and to calibrate and verify stormsurge models, resulting in a better understanding of the dynamics of storm surge.

  5. Dynamic interactions between coastal storms and salt marshes: A review

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term

  6. Dynamic interactions between coastal storms and salt marshes: A review

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental

  7. Probabilistic storm surge inundation maps for Metro Manila based on Philippine public storm warning signals

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2015-03-01

    A storm surge is the sudden rise of sea water over the astronomical tides, generated by an approaching storm. This event poses a major threat to the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013. This hydro-meteorological hazard is one of the main reasons for the high number of casualties due to the typhoon, with 6300 deaths. It became evident that the need to develop a storm surge inundation map is of utmost importance. To develop these maps, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. The Japan Meteorological Agency storm surge model was used to simulate storm surge heights. The frequency distribution of the maximum storm surge heights was calculated using simulation results of tropical cyclones under a specific public storm warning signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of inundation for a specific PSWS using the probability of exceedance derived from the frequency distribution. Buildings and other structures were assigned a probability of exceedance depending on their occupancy category, i.e., 1% probability of exceedance for critical facilities, 10% probability of exceedance for special occupancy structures, and 25% for standard occupancy and miscellaneous structures. The maps produced show the storm-surge-vulnerable areas in Metro Manila, illustrated by the flood depth of up to 4 m and extent of up to 6.5 km from the coastline. This information can help local government units in developing early warning systems, disaster preparedness and mitigation plans, vulnerability assessments, risk-sensitive land use plans, shoreline

  8. Leonid storm research

    Rietmeijer, Frans; Brosch, Noah; Fonda, Mark

    2000-01-01

    This book will appeal to all researchers that have an interest in the current Leonid showers It contains over forty research papers that present some of the first observational results of the November 1999 Leonid meteor storm, the first storm observed by modern observing techniques The book is a first glimpse of the large amount of information obtained during NASA's Leonid Multi-Instrument Aircraft Campaign and groundbased campaigns throughout the world It provides an excellent overview on the state of meteor shower research for any professional researcher or amateur meteor observer interested in studies of meteors and meteoroids and their relation to comets, the origin of life on Earth, the satellite impact hazard issue, and upper atmosphere studies of neutral atom chemistry, the formation of meteoric debris, persistent trains, airglow, noctilucent clouds, sprites and elves

  9. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)

    None, None

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  10. Dust storm, northern Mexico

    1983-01-01

    This large dust storm along the left side of the photo, covers a large portion of the state of Coahuila, Mexico (27.5N, 102.0E). The look angle of this oblique photo is from the south to the north. In the foreground is the Sierra Madre Oriental in the states Coahuila and Nuevo Leon with the Rio Grande River, Amistad Reservoir and Texas in the background.

  11. Solar storms; Tormentas solares

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  12. LibrarySTORM

    Breüner, Niels; Bech, Tine

    2013-01-01

    Når flere uddannelser samles i en nybygning til Campus C på Ceres grunden i Aarhus, skal der også indrettes et fælles bibliotek. Når der samtidig er midler til at arbejde med brugerdreven innovation, lå det lige for at inddrage de studerende og få deres visioner for fremtidens bibliotek. Der blev...... arrangeret en udviklingsdag, hvor der skulle brainstormes – og projektet blev kaldt LibrarySTORM....

  13. Noise storm coordinated observations

    Elgaroey, Oe.; Tlamicha, A.

    1983-01-01

    The usually accepted bipolar model of noise storm centers is irrelevant for the present observations. An alternative model has been proposed in which the different sources of a noise storm center are located in different flux tubes connecting active regions with their surroundings. Radio emission is observed from the wide, descending branch of the flux tubes, opposite to the flaring site. The relation between the sense of circular polarization of the radio emission and the magnetic polarity, has been more precisely defined. The radiation is in the ordinary mode with respect to the underlying large scale photospheric magnetic polarity. Thus the ''irregular'' polarity of noice storm center ''B'' is explained. As regards center ''C'', one should note that although the observed radio emission is polarized in the ordinary mode with respect to the leading spot of region HR 17653, center ''C'' is not situated in flux tubes originating from the leading part of this region according to the proposed model. Rather, the radio sources are located in the wide and descending part of flux tubes connecting a large, quiet area of south magnetic polarity with the following part of the region HR 17653 (of north magnetic polarity). Thus it is the polarity of the extended area which determines the polarization of the radio emission. The observed polarization should result rather from the emission process than from complicated conditions of propagation for the radio waves

  14. Root-growth-inhibiting sheet

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  15. Root-growth-inhibiting sheet

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  16. fibrin–chitosan–sodium alginate composite sheet

    sodium alginate composite (F–C–SA) in sheet form. F–C–SA composite was prepared and characterized for its physicochemical properties like water absorption capacity, surface morphology, FTIR spectra and mechanical properties.

  17. Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK

    Dissanayake, P.; Brown, J.; Karunarathna, H.

    2015-07-01

    Impacts of storm chronology within a storm cluster on beach/dune erosion are investigated by applying the state-of-the-art numerical model XBeach to the Sefton coast, northwest England. Six temporal storm clusters of different storm chronologies were formulated using three storms observed during the 2013/2014 winter. The storm power values of these three events nearly halve from the first to second event and from the second to third event. Cross-shore profile evolution was simulated in response to the tide, surge and wave forcing during these storms. The model was first calibrated against the available post-storm survey profiles. Cumulative impacts of beach/dune erosion during each storm cluster were simulated by using the post-storm profile of an event as the pre-storm profile for each subsequent event. For the largest event the water levels caused noticeable retreat of the dune toe due to the high water elevation. For the other events the greatest evolution occurs over the bar formations (erosion) and within the corresponding troughs (deposition) of the upper-beach profile. The sequence of events impacting the size of this ridge-runnel feature is important as it consequently changes the resilience of the system to the most extreme event that causes dune retreat. The highest erosion during each single storm event was always observed when that storm initialised the storm cluster. The most severe storm always resulted in the most erosion during each cluster, no matter when it occurred within the chronology, although the erosion volume due to this storm was reduced when it was not the primary event. The greatest cumulative cluster erosion occurred with increasing storm severity; however, the variability in cumulative cluster impact over a beach/dune cross section due to storm chronology is minimal. Initial storm impact can act to enhance or reduce the system resilience to subsequent impact, but overall the cumulative impact is controlled by the magnitude and number

  18. Uranium mining sites - Thematic sheets

    2009-01-01

    A first sheet proposes comments, data and key numbers about uranium extraction in France: general overview of uranium mining sites, status of waste rock and tailings after exploitation, site rehabilitation. The second sheet addresses the sources of exposure to ionizing radiations due to ancient uranium mining sites: discussion on the identification of these sources associated with these sites, properly due to mining activities or to tailings, or due to the transfer of radioactive substances towards water and to the contamination of sediments, description of the practice and assessment of radiological control of mining sites. A third sheet addresses the radiological exposure of public to waste rocks, and the dose assessment according to exposure scenarios: main exposure ways to be considered, studied exposure scenarios (passage on backfilled path and grounds, stay in buildings built on waste rocks, keeping mineralogical samples at home). The fourth sheet addresses research programmes of the IRSN on uranium and radon: epidemiological studies (performed on mine workers; on French and on European cohorts, French and European studies on the risk of lung cancer associated with radon in housing), study of the biological effects of chronic exposures. The last sheet addresses studies and expertises performed by the IRSN on ancient uranium mining sites in France: studies commissioned by public authorities, radioactivity control studies performed by the IRSN about mining sites, participation of the IRSN to actions to promote openness to civil society

  19. Bamboo Fibre Reinforced Cement Used as a Roofing Sheet | Alade ...

    Bamboo fibre roofing sheet was able to withstand an average load of 51Kg, which is above the minimum required strength of 50kg. Comparatively, Asbestos roofing sheets and coconut fibre roofing sheets of similar dimensions had failure loads of 104.65Kg and 79Kg respectively. When immersed in water, bamboo fibre ...

  20. Modeling the ocean effect of geomagnetic storms

    Olsen, Nils; Kuvshinov, A.

    2004-01-01

    At coastal sites, geomagnetic variations for periods shorter than a few days are strongly distorted by the conductivity of the nearby sea-water. This phenomena, known as the ocean (or coast) effect, is strongest in the magnetic vertical component. We demonstrate the ability to predict the ocean...... if the oceans are considered. Our analysis also indicates a significant local time asymmetry (i.e., contributions from spherical harmonics other than P-I(0)), especially during the main phase of the storm....

  1. Synoptic Bi-monthly and storm response water quality sampling in Southern Kaneohe Bay, Hawaii, from November 2007 - April 2009 (NODC Accession 0062644)

    National Oceanic and Atmospheric Administration, Department of Commerce — Synoptic sampling including water column profiles and collected surface water samples was conducted on a bi-monthly basis throughout the rainy season (October-May)...

  2. Synoptic Bi-monthly and Storm Response Water Quality Sampling in Southern Kaneohe Bay, HI 2005-2007 (NODC Accession 0060061)

    National Oceanic and Atmospheric Administration, Department of Commerce — Synoptic sampling including water column profiles and collected surface water samples was conducted on a bi-monthly basis throughout the rainy season(October-May)...

  3. Synoptic Bi-monthly and Storm Response Water Quality Sampling in Southern Kaneohe Bay, HI November 2007 - April 2009 (NODC Accession 0062644)

    National Oceanic and Atmospheric Administration, Department of Commerce — Synoptic sampling including water column profiles and collected surface water samples was conducted on a bi-monthly basis throughout the rainy season(October-May)...

  4. Water System Adaptation to Hydrological Changes: Module 2, Stormwater Management and Sewer Performance under Intense Storms: Case Study from Lawrence, Massachusetts, U.S.A.

    This course focuses on water system adaptation to short-term and long-term climate and hydrologic stressors that affect water availability, water quality, security, and resilience. The course is organized into 15 sequential modules. The lectures will be augmented by weekly assign...

  5. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  6. Storm Warnings for Cuba

    1994-01-01

    Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Internet : order@rand.org. al Accesion For "Ni %&’ Storm WarningsDTI’ TAB E03 --- - - -for...reaction leading to an uncontrol- lable burgeoning of private entrepreneurial activity. As one observer 14See Acuerdo del Buro Politico , "Para llevar a...34 10Comisi6n de Relaciones Internacionales, Asamblea Nacional del Poder Popular, Datos, Reflexiones y Argumentos Sobre la Actual Situaci6n de Cuba, n.p

  7. The women day storm

    Parnowski, Aleksei; Polonska, Anna; Semeniv, Oleg

    2012-01-01

    On behalf of the International Women Day, the Sun gave a hot kiss to our mother Earth in a form of a full halo CME generated by the yesterday's double X-class flare. The resulting geomagnetic storm gives a good opportunity to compare the performance of space weather forecast models operating in near-real-time. We compare the forecasts of most major models and identify some common problems. We also present the results of our own near-real-time forecast models.

  8. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador, Brazil.

    Souza, Raquel Lima; Mugabe, Vánio André; Paploski, Igor Adolfo Dexheimer; Rodrigues, Moreno S; Moreira, Patrícia Sousa Dos Santos; Nascimento, Leile Camila Jacob; Roundy, Christopher Michael; Weaver, Scott C; Reis, Mitermayer Galvão; Kitron, Uriel; Ribeiro, Guilherme Sousa

    2017-07-11

    Aedes aegypti, the principal vector for dengue, chikungunya and Zika viruses, is a synanthropic species that uses stagnant water to complete its reproductive cycle. In urban settings, rainfall water draining structures, such as storm drains, may retain water and serve as a larval development site for Aedes spp. reproduction. Herein, we describe the effect of a community-based intervention on preventing standing water accumulation in storm drains and their consequent infestation by adult and immature Ae. aegypti and other mosquitoes. Between April and May of 2016, local residents association of Salvador, Brazil, after being informed of water accumulation and Ae. aegypti infestation in the storm drains in their area, performed an intervention on 52 storm drains. The intervention consisted of placing concrete at the bottom of the storm drains to elevate their base to the level of the outflow tube, avoiding water accumulation, and placement of a metal mesh covering the outflow tube to avoid its clogging with debris. To determine the impact of the intervention, we compared the frequency at which the 52 storm drains contained water, as well as adult and immature mosquitoes using data from two surveys performed before and two surveys performed after the intervention. During the pre-intervention period, water accumulated in 48 (92.3%) of the storm drains, and immature Ae. aegypti were found in 11 (21.2%) and adults in 10 (19.2%). After the intervention, water accumulated in 5 (9.6%) of the storm drains (P Aedes mosquitoes (mainly Culex spp.) in the storm drains also decreased after the intervention. This study exemplifies how a simple intervention targeting storm drains can result in a major reduction of water retention, and, consequently, impact Ae. aegypti larval populations. Larger and multi-center evaluations are needed to confirm the potential of citywide structural modifications of storm drains to reduce Aedes spp. infestation level.

  9. Tube sheet design for PFBR steam generator

    Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.

    1991-01-01

    Top and bottom tube sheets of PFBR Steam Generators have been analysed with 3D and axisymmetric models using CASTEM Programs. Analysis indicates that the effects of piping reactions at the inlet/outlet nozzles on the primary stresses in the tube sheets are negligible and the asymmetricity of the deformation pattern introduced in the tube sheet by the presence of inlet/outlet and manhole nozzles is insignificant. The minimum tube sheet thicknesses for evaporator and reheater are 135 mm and 75 mm respectively. Further analysis has indicated the minimum fillet radius at the junction of tube sheet and dished end should be 20 mm. Simplified methodology has been developed to arrive at the number of thermal baffles required to protect the tube sheet against fatigue damage due to thermal transient. This method has been applied to PFBR steam generators to determine the required number of thermal baffles. For protecting the bottom tube sheet of evaporator against the thermal shock due to feed water and secondary pump trip, one thermal shield is found to be sufficient. Further analysis is required to decide upon the actual number to take care of the severe thermal transient, following the event of sudden dumping of water/steam, immediately after the sodium-water reaction. (author)

  10. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida

    Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.

    2010-01-01

    Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.

  11. Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River Basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality

    Hirsch, Robert M.

    2012-01-01

    Concentrations of nitrogen, phosphorus, and suspended sediment are measured at the U.S. Geological Survey streamgage at Conowingo Dam at the downstream end of the Susquehanna River Basin in Maryland, where the river flows into the Chesapeake Bay. During the period September 7-15, 2011, in the aftermath of Tropical Storm Lee, concentrations of these three constituents were among the highest ever measured at this site. These measurements indicate that sediment-storage processes behind the three dams on the lower Susquehanna River are evolving. In particular, they indicate that scouring of sediment (and the nitrogen and phosphorus attached to that sediment) may be increasing with time. Trends in flow-normalized fluxes at the Susquehanna River at Conowingo, Maryland, streamgage during 1996-2011 indicate a 3.2-percent decrease in total nitrogen, but a 55-percent increase in total phosphorus and a 97-percent increase in suspended sediment. These large increases in the flux of phosphorus and sediment from the Susquehanna River to the Chesapeake Bay have occurred despite reductions in the fluxes of these constituents from the Susquehanna River watershed upstream from the reservoirs. Although the Tropical Storm Lee flood event contributed about 1.8 percent of the total streamflow from the Susquehanna River to the Chesapeake Bay over the past decade (water years 2002-11), it contributed about 5 percent of the nitrogen, 22 percent of the phosphorus, and 39 percent of the suspended sediment during the same period. These results highlight the importance of brief high-flow events in releasing nitrogen, phosphorus, and sediment derived from the Susquehanna River watershed and stored in the Conowingo Reservoir to the Chesapeake Bay.

  12. Enhanced poleward propagation of storms under climate change

    Tamarin-Brodsky, Talia; Kaspi, Yohai

    2017-12-01

    Earth's midlatitudes are dominated by regions of large atmospheric weather variability—often referred to as storm tracks— which influence the distribution of temperature, precipitation and wind in the extratropics. Comprehensive climate models forced by increased greenhouse gas emissions suggest that under global warming the storm tracks shift poleward. While the poleward shift is a robust response across most models, there is currently no consensus on what the underlying dynamical mechanism is. Here we present a new perspective on the poleward shift, which is based on a Lagrangian view of the storm tracks. We show that in addition to a poleward shift in the genesis latitude of the storms, associated with the shift in baroclinicity, the latitudinal displacement of cyclonic storms increases under global warming. This is achieved by applying a storm-tracking algorithm to an ensemble of CMIP5 models. The increased latitudinal propagation in a warmer climate is shown to be a result of stronger upper-level winds and increased atmospheric water vapour. These changes in the propagation characteristics of the storms can have a significant impact on midlatitude climate.

  13. 78 FR 9908 - Notice of Availability of the Draft Issuance of the Small Municipal Separate Storm Sewer System...

    2013-02-12

    ... Issuance of the Small Municipal Separate Storm Sewer System NPDES General Permit--New Hampshire AGENCY...) general permit for discharges from small Municipal Separate Storm Sewer Systems (MS4s) to certain waters... requirements of the CWA. The regulations at 40 CFR 122.26(b)(16) define a small municipal separate storm sewer...

  14. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    Shi, Xiaoxia; Xu, Tongbin; Yin, Kedong

    2018-01-01

    Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation. PMID:29584628

  15. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups.

    Jin, Xue; Shi, Xiaoxia; Gao, Jintian; Xu, Tongbin; Yin, Kedong

    2018-03-27

    Storm surge has become an important factor restricting the economic and social development of China's coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation.

  16. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    Xue Jin

    2018-03-01

    Full Text Available Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc., storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation.

  17. Ice sheet hydrology from observations

    Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden)

    2010-11-15

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  18. Ice sheet hydrology from observations

    Jansson, Peter

    2010-11-01

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  19. Substorms during different storm phases

    N. Partamies

    2011-11-01

    Full Text Available After the deep solar minimum at the end of the solar cycle 23, a small magnetic storm occurred on 20–26 January 2010. The Dst (disturbance storm time index reached the minimum of −38 nT on 20 January and the prolonged recovery that followed the main phase that lasted for about 6 days. In this study, we concentrate on three substorms that took place (1 just prior to the storm, (2 during the main phase of the storm, and (3 at the end of the recovery of the storm. We analyse the solar wind conditions from the solar wind monitoring spacecraft, the duration and intensity of the substorm events as well as the behaviour of the electrojet currents from the ground magnetometer measurements. We compare the precipitation characteristics of the three substorms. The results show that the F-region electron density enhancements and dominant green and red auroral emission of the substorm activity during the storm recovery resembles average isolated substorm precipitation. However, the energy dissipated, even at the very end of a prolonged storm recovery, is very large compared to the typical energy content of isolated substorms. In the case studied here, the dissipation of the excess energy is observed over a 3-h long period of several consecutive substorm intensifications. Our findings suggest that the substorm energy dissipation varies between the storm phases.

  20. Temporal Evolution of Ion Spectral Structures During a Geomagnetic Storm: Observations and Modeling

    Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2018-01-01

    Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1 to 50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet inner edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. As the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. We use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.

  1. Relationship between substorms and storms

    Kamide, Y.

    1980-01-01

    In an attempt to deduce a plausible working model of the relationship between magnetospheric substorms and storms, recent relevant studies of various processes occurring during disturbed periods are integrated along with some theoretical suggestions. It has been shown that the main phase of geomagnetic storms is associated with the successive occurrence of intense substorms and with the sustained southward component of the interplanetary magnetic field (IMF). However, these relations are only qualitatively understood, and thus basic questions remain unanswered involving the hypothesis whether a magnetic storm is a non-linear (or linear) superposition of intense substorms, each of which constitutes an elementary storm, or the main phase of magnetic storms occurs as a result of the intense southward IMF which enhances magnetospheric convection and increases occurrence probability of substorms. (Auth.)

  2. Thyroid storm: an updated review.

    Chiha, Maguy; Samarasinghe, Shanika; Kabaker, Adam S

    2015-03-01

    Thyroid storm, an endocrine emergency first described in 1926, remains a diagnostic and therapeutic challenge. No laboratory abnormalities are specific to thyroid storm, and the available scoring system is based on the clinical criteria. The exact mechanisms underlying the development of thyroid storm from uncomplicated hyperthyroidism are not well understood. A heightened response to thyroid hormone is often incriminated along with increased or abrupt availability of free hormones. Patients exhibit exaggerated signs and symptoms of hyperthyroidism and varying degrees of organ decompensation. Treatment should be initiated promptly targeting all steps of thyroid hormone formation, release, and action. Patients who fail medical therapy should be treated with therapeutic plasma exchange or thyroidectomy. The mortality of thyroid storm is currently reported at 10%. Patients who have survived thyroid storm should receive definite therapy for their underlying hyperthyroidism to avoid any recurrence of this potentially fatal condition. © The Author(s) 2013.

  3. Geomagnetic storm forecasting service StormFocus: 5 years online

    Podladchikova, Tatiana; Petrukovich, Anatoly; Yermolaev, Yuri

    2018-04-01

    Forecasting geomagnetic storms is highly important for many space weather applications. In this study, we review performance of the geomagnetic storm forecasting service StormFocus during 2011-2016. The service was implemented in 2011 at SpaceWeather.Ru and predicts the expected strength of geomagnetic storms as measured by Dst index several hours ahead. The forecast is based on L1 solar wind and IMF measurements and is updated every hour. The solar maximum of cycle 24 is weak, so most of the statistics are on rather moderate storms. We verify quality of selection criteria, as well as reliability of real-time input data in comparison with the final values, available in archives. In real-time operation 87% of storms were correctly predicted while the reanalysis running on final OMNI data predicts successfully 97% of storms. Thus the main reasons for prediction errors are discrepancies between real-time and final data (Dst, solar wind and IMF) due to processing errors, specifics of datasets.

  4. Dissolved Pesticide Concentrations Detected in Storm-Water Runoff at Selected Sites in the San Joaquin River Basin, California, 2000-2001

    Orlando, James L; Kuivila, Kathryn M; Whitehead, Andrew

    2003-01-01

    ...) and the University of California Davis Bodega Marine Laboratory (BML) water samples were collected at three sites within the San Joaquin River Basin of California and analyzed for dissolved pesticides...

  5. Ring Current Response to Different Storm Drivers. Van Allen Probes and Cluster Observations.

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.

    2015-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. However, it is not clear how these convecting particles affect the storm time ring current pressure development. We use Van Allen Probes and Cluster observations together with the Volland-Stern and dipole magnetic field models to determine the contribution in the ring current pressure of the plasma sheet particles convecting from the night side that are on open drift paths, during the storm evolution. We compare storms that are related to different interplanetary drivers, CME and CIR, as observed at different local times.

  6. Monitoring Inland Storm Surge and Flooding from Hurricane Rita

    McGee, Benton D.; Tollett, Roland W.; Mason, Jr., Robert R.

    2006-01-01

    Pressure transducers (sensors) and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network of sensors was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations, and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast.

  7. Complete plasma dropouts at Vela satellites during thinning of the plasma sheet

    Lui, A.T.Y.; Hones, E.W. Jr.; Venkatesan, D.; Akasofu, S.; Bame, S.J.

    1975-01-01

    Five satellite years of Vela data are examined for plasma sheet thinnings. Complete proton disappearances (plasma dropouts) are the main subject here. During such times, the Vela satellite is temporarily in the high-latitude tail lobe. The distribution of such plasma dropouts within the magnetotail suggests that the semithickness of the plasma sheet near midnight seldom reaches less than 1 R/sub E/ during substorms and that the dawn and dusk portions of the plasma sheet remain thicker than the midnight portion. But it is also shown that the plasma sheet occasionally becomes very thin near the dusk magnetopause. No such severe thinnings of the plasma sheet are found near the dawn magnetopause. Plasma dropouts can occur regardless of the sign of the Z component of the IMF, but their frequency of occurrence seems to be greater when the Z component is negative.Three plasma dropouts which occurred in the midnight sector at unusually large distances from the estimated position of the neutral sheet were observed during geomagnetic storms. It is likely that the midnight sector of the plasma sheet can become very thick (approx.18 R/sub E/) at certain times during the main phase of storms. Detailed measurements in the plasma sheet were obtained near the beginning of a geomagnetic storm whose sc triggered a substorm. A compression of the plasma sheet at X/sub SM/approx. =-15 R/sub E/ occurred about 10 min after the sc onset at the earth and about 5 min after the start of plasma sheet thinning associated with the sc-related substorm. If compression-thinning of the plasma sheet initiated this substorm, the triggering action must have occurred earthward of X/sub SM/approx. =-15 R/sub E/

  8. The Role of Ionospheric O+ in Forming the Storm-time Ring Current

    Kistler, L. M.; Mouikis, C.; Menz, A.; Bingham, S.

    2017-12-01

    During storm times, the particle pressure that creates the storm-time ring current in the inner magnetosphere can be dominated by O+. This is surprising, as the immediate source for the ring current is the nightside plasma sheet, and O+ is usually not the dominant species in the plasma sheet. In this talk we examine the many factors that lead to this result. The O+ outflow is enhanced during geomagnetically active times. The transport paths of O+ and H+ are different, such that the O+ that reaches the near-earth plasma sheet is more energetic than H+. The source spectrum in the near-earth plasma sheet can be harder for O+ than for H+, perhaps due to substorm injections, so that the more energetic plasma has a higher O+/H+ ratio. And finally the plasma sheet O+ can be more abundant towards the beginning of the storm, when the convection is largest, so the enhanced O+ is brought the deepest into the inner magnetosphere. We will discuss the interrelationships between these different effects as well as the ways in which O+ itself may influence the system.

  9. Storm Water Infiltration and Focused Groundwater Recharge in a Rain Garden: Finite Volume Model and Numerical Simulations for Different Configurations and Climates

    Aravena, J.; Dussaillant, A. R.

    2006-12-01

    Source control is the fundamental principle behind sustainable management of stormwater. Rain gardens are an infiltration practice that provides volume and water quality control, recharge, and multiple landscape, ecological and economic potential benefits. The fulfillment of these objectives requires understanding their behavior during events as well as long term, and tools for their design. We have developed a model based on Richards equation coupled to a surface water balance, solved with a 2D finite volume Fortran code which allows alternating upper boundary conditions, including ponding, which is not present in available 2D models. Also, it can simulate non homogeneous water input, heterogeneous soil (layered or more complex geometries), and surface irregularities -e.g. terracing-, so as to estimate infiltration and recharge. The algorithm is conservative; being an advantage compared to available finite difference and finite element methods. We will present performance comparisons to known models, to experimental data from a bioretention cell, which receives roof water to its surface depression planted with native species in an organic-rich root zone soil layer (underlain by a high conductivity lower layer that, while providing inter-event storage, percolates water readily), as well as long term simulations for different rain garden configurations. Recharge predictions for different climates show significant increases from natural recharge, and that the optimal area ratio (raingarden vs. contributing impervious area) reduces from 20% (humid) to 5% (dry).

  10. The size of the auroral belt during magnetic storms

    N. Yokoyama

    1998-05-01

    Full Text Available Using the auroral boundary index derived from DMSP electron precipitation data and the Dst index, changes in the size of the auroral belt during magnetic storms are studied. It is found that the equatorward boundary of the belt at midnight expands equatorward, reaching its lowest latitude about one hour before Dst peaks. This time lag depends very little on storm intensity. It is also shown that during magnetic storms, the energy of the ring current quantified with Dst increases in proportion to Le–3, where Le is the L-value corresponding to the equatorward boundary of the auroral belt designated by the auroral boundary index. This means that the ring current energy is proportional to the ion energy obtained from the earthward shift of the plasma sheet under the conservation of the first adiabatic invariant. The ring current energy is also proportional to Emag, the total magnetic field energy contained in the spherical shell bounded by Le and Leq, where Leq corresponds to the quiet-time location of the auroral precipitation boundary. The ratio of the ring current energy ER to the dipole energy Emag is typically 10%. The ring current leads to magnetosphere inflation as a result of an increase in the equivalent dipole moment.Key words. Ionosphere (Auroral ionosphere · Magnetospheric physics (Auroral phenomena; storms and substorms

  11. New insights on geomagnetic storms from observations and modeling

    Jordanova, Vania K [Los Alamos National Laboratory

    2009-01-01

    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bzstorms representative of each interplanetary condition with our kinetic ring current atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.

  12. Three-Step Buildup of the 17 March 2015 Storm Ring Current: Implication for the Cause of the Unexpected Storm Intensification

    Keika, Kunihiro; Seki, Kanako; Nosé, Masahito; Miyoshi, Yoshizumi; Lanzerotti, Louis J.; Mitchell, Donald G.; Gkioulidou, Matina; Manweiler, Jerry W.

    2018-01-01

    We examine the spatiotemporal variations of the energy density and the energy spectral evolution of energetic ions in the inner magnetosphere during the main phase of the 17 March 2015 storm, using data from the RBSPICE and EMFISIS instruments onboard Van Allen Probes. The storm developed in response to two southward IMF intervals separated by about 3 h. In contrast to two steps seen in the Dst/SYM-H index, the ring current ion population evolved in three steps: the first subphase was apparently caused by the earlier southward IMF, and the subsequent subphases occurred during the later southward IMF period. Ion energy ranges that contribute to the ring current differed between the three subphases. We suggest that the spectral evolution resulted from the penetration of different plasma sheet populations. The ring current buildup during the first subphase was caused by the penetration of a relatively low-energy population that had existed in the plasma sheet during a prolonged prestorm northward IMF interval. The deeper penetration of the lower-energy population was responsible for the second subphase. The third subphase, where the storm was unexpectedly intensified to a Dst/SYM-H level of population. We attribute the hot, dense population to the entry of hot, dense solar wind into the plasma sheet and/or ion heating/acceleration in the near-Earth plasma sheet associated with magnetotail activity such as reconnection and dipolarization.

  13. Thromboembolic complications of thyroid storm.

    Min, T; Benjamin, S; Cozma, L

    2014-01-01

    Thyroid storm is a rare but potentially life-threatening complication of hyperthyroidism. Early recognition and prompt treatment are essential. Atrial fibrillation can occur in up to 40% of patients with thyroid storm. Studies have shown that hyperthyroidism increases the risk of thromboembolic events. There is no consensus with regard to the initiation of anticoagulation for atrial fibrillation in severe thyrotoxicosis. Anticoagulation is not routinely initiated if the risk is low on a CHADS2 score; however, this should be considered in patients with thyroid storm or severe thyrotoxicosis with impending storm irrespective of the CHADS2 risk, as it appears to increase the risk of thromboembolic episodes. Herein, we describe a case of thyroid storm complicated by massive pulmonary embolism. Diagnosis of thyroid storm is based on clinical findings. Early recognition and prompt treatment could lead to a favourable outcome.Hypercoagulable state is a recognised complication of thyrotoxicosis.Atrial fibrillation is strongly associated with hyperthyroidism and thyroid storm.Anticoagulation should be considered for patients with severe thyrotoxicosis and atrial fibrillation irrespective of the CHADS2 score.Patients with severe thyrotoxicosis and clinical evidence of thrombosis should be immediately anticoagulated until hyperthyroidism is under control.

  14. IRI STORM validation over Europe

    Haralambous, Haris; Vryonides, Photos; Demetrescu, Crişan; Dobrică, Venera; Maris, Georgeta; Ionescu, Diana

    2014-05-01

    The International Reference Ionosphere (IRI) model includes an empirical Storm-Time Ionospheric Correction Model (STORM) extension to account for storm-time changes of the F layer peak electron density (NmF2) during increased geomagnetic activity. This model extension is driven by past history values of the geomagnetic index ap (The magnetic index applied is the integral of ap over the previous 33 hours with a weighting function deduced from physically based modeling) and it adjusts the quiet-time F layer peak electron density (NmF2) to account for storm-time changes in the ionosphere. In this investigation manually scaled hourly values of NmF2 measured during the main and recovery phases of selected storms for the maximum solar activity period of the current solar cycle are compared with the predicted IRI-2012 NmF2 over European ionospheric stations using the STORM model option. Based on the comparison a subsequent performance evaluation of the STORM option during this period is quantified.

  15. Understanding the varied response of the extratropical storm tracks to climate change

    O’Gorman, Paul A.

    2010-01-01

    Transient eddies in the extratropical storm tracks are a primary mechanism for the transport of momentum, energy, and water in the atmosphere, and as such are a major component of the climate system. Changes in the extratropical storm tracks under global warming would impact these transports, the ocean circulation and carbon cycle, and society through changing weather patterns. I show that the southern storm track intensifies in the multimodel mean of simulations of 21st century climate chang...

  16. Overview of the ARkStorm scenario

    Porter, Keith; Wein, Anne; Alpers, Charles N.; Baez, Allan; Barnard, Patrick L.; Carter, James; Corsi, Alessandra; Costner, James; Cox, Dale; Das, Tapash; Dettinger, Mike; Done, James; Eadie, Charles; Eymann, Marcia; Ferris, Justin; Gunturi, Prasad; Hughes, Mimi; Jarrett, Robert; Johnson, Laurie; Le-Griffin, Hanh Dam; Mitchell, David; Morman, Suzette; Neiman, Paul; Olsen, Anna; Perry, Suzanne; Plumlee, Geoffrey; Ralph, Martin; Reynolds, David; Rose, Adam; Schaefer, Kathleen; Serakos, Julie; Siembieda, William; Stock, Jonathan; Strong, David; Wing, Ian Sue; Tang, Alex; Thomas, Pete; Topping, Ken; Wills, Chris; Jones, Lucile

    2011-01-01

    coastal communities. Windspeeds in some places reach 125 miles per hour, hurricane-force winds. Across wider areas of the state, winds reach 60 miles per hour. Hundreds of landslides damage roads, highways, and homes. Property damage exceeds $300 billion, most from flooding. Demand surge (an increase in labor rates and other repair costs after major natural disasters) could increase property losses by 20 percent. Agricultural losses and other costs to repair lifelines, dewater (drain) flooded islands, and repair damage from landslides, brings the total direct property loss to nearly $400 billion, of which $20 to $30 billion would be recoverable through public and commercial insurance. Power, water, sewer, and other lifelines experience damage that takes weeks or months to restore. Flooding evacuation could involve 1.5 million residents in the inland region and delta counties. Business interruption costs reach $325 billion in addition to the $400 property repair costs, meaning that an ARkStorm could cost on the order of $725 billion, which is nearly 3 times the loss deemed to be realistic by the ShakeOut authors for a severe southern California earthquake, an event with roughly the same annual occurrence probability. The ARkStorm has several public policy implications: (1) An ARkStorm raises serious questions about the ability of existing federal, state, and local disaster planning to handle a disaster of this magnitude. (2) A core policy issue raised is whether to pay now to mitigate, or pay a lot more later for recovery. (3) Innovative financing solutions are likely to be needed to avoid fiscal crisis and adequately fund response and recovery costs from a similar, real, disaster. (4) Responders and government managers at all levels could be encouraged to conduct risk assessments, and devise the full spectrum of exercises, to exercise ability of their plans to address a similar event. (5) ARkStorm can be a reference point for application of Federal Emergency Ma

  17. Shifting Pacific storm tracks as stressors to ecosystems of western North America.

    Dannenberg, Matthew P; Wise, Erika K

    2017-11-01

    Much of the precipitation delivered to western North America arrives during the cool season via midlatitude Pacific storm tracks, which may experience future shifts in response to climate change. Here, we assess the sensitivity of the hydroclimate and ecosystems of western North America to the latitudinal position of cool-season Pacific storm tracks. We calculated correlations between storm track variability and three hydroclimatic variables: gridded cool-season standardized precipitation-evapotranspiration index, April snow water equivalent, and water year streamflow from a network of USGS stream gauges. To assess how historical storm track variability affected ecosystem processes, we derived forest growth estimates from a large network of tree-ring widths and land surface phenology and wildfire estimates from remote sensing. From 1980 to 2014, cool-season storm tracks entered western North America between approximately 41°N and 53°N. Cool-season moisture supply and snowpack responded strongly to storm track position, with positive correlations to storm track latitude in eastern Alaska and northwestern Canada but negative correlations in the northwestern U.S. Ecosystems of the western United States were greener and more productive following winters with south-shifted storm tracks, while Canadian ecosystems were greener in years when the cool-season storm track was shifted to the north. On average, larger areas of the northwestern United States were burned by moderate to high severity wildfires when storm tracks were displaced north, and the average burn area per fire also tended to be higher in years with north-shifted storm tracks. These results suggest that projected shifts of Pacific storm tracks over the 21st century would likely alter hydroclimatic and ecological regimes in western North America, particularly in the northwestern United States, where moisture supply and ecosystem processes are highly sensitive to the position of cool-season storm tracks.

  18. Ice sheet in peril

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions...

  19. Mobility Balance Sheet 2009

    Jorritsma, P.; Derriks, H.; Francke, J.; Gordijn, H.; Groot, W.; Harms, L.; Van der Loop, H.; Peer, S.; Savelberg, F.; Wouters, P.

    2009-06-01

    The Mobility Balance Sheet provides an overview of the state of the art of mobility in the Netherlands. In addition to describing the development of mobility this report also provides explanations for the growth of passenger and freight transport. Moreover, the Mobility Balance Sheet also focuses on a topical theme: the effects of economic crises on mobility. [nl

  20. Factors controlling storm impacts on coastal barriers and beaches - A preliminary basis for near real-time forecasting

    Morton, R.A.

    2002-01-01

    Analysis of ground conditions and meteorological and oceanographic parameters for some of the most severe Atlantic and Gulf Coast storms in the U.S. reveals the primary factors affecting morphological storm responses of beaches and barrier islands. The principal controlling factors are storm characteristics, geographic position relative to storm path, timing of storm events, duration of wave exposure, wind stress, degree of flow confinement, antecedent topography and geologic framework, sediment textures, vegetative cover, and type and density of coastal development. A classification of commonly observed storm responses demonstrates the sequential interrelations among (1) land elevations, (2) water elevations in the ocean and adjacent lagoon (if present), and (3) stages of rising water during the storm. The predictable coastal responses, in relative order from high frequency beach erosion to low frequency barrier inundation, include: beach erosion, berm migration, dune erosion, washover terrace construction, perched fan deposition, sheetwash, washover channel incision, washout formation, and forced and unforced ebb flow. Near real-time forecasting of expected storm impacts is possible if the following information is available for the coast: a detailed morphological and topographic characterization, accurate storm-surge and wave-runup models, the real-time reporting of storm parameters, accurate forecasts of the storm position relative to a particular coastal segment, and a conceptual model of geological processes that encompasses observed morphological changes caused by extreme storms.

  1. Storm runoff analysis using environmental isotopes and major ions

    Fritz, P.; Cherry, J.A.; Sklash, M.; Weyer, K.U.

    1976-01-01

    At a given locality the oxygen-18 content of rainwater varies from storm to storm but within broad seasonal trends. Very frequently, especially during heavy summer storms, the stable isotope composition of rainwater differs from that of the groundwater in the area. This isotopic difference can be used to differentiate between 'prestorm' and 'rain' components in storm runoff. This approach to the use of natural 18 O was applied in four hydrogeologically very different basins in Canada. Their surface areas range from less than 2km 2 to more than 700km 2 . Before, during and after the storm events samples of stream water, groundwater and rain were analysed for 18 O and in some cases for deuterium, major ions and electrical conductance. The 18 O hydrograph separations show that groundwater was a major component of the runoff in each of the basins, and usually exceeded 50% of the total water discharged. Even at peak stream flow most of discharge was subsurface water. The identification of geographic sources rather than time sources appears possible if isotope techniques are used in conjunction with chemical analyses, hydrological data - such as flow measurements - and visual observations. (author)

  2. Microbial contamination along the main open wastewater and storm water channel of Hanoi, Vietnam, and potential health risks for urban farmers

    Fuhrimann, Samuel; Pham-Duc, Phuc; Cissé, Guéladio; Tram, Nguyen Thuy; Thu Ha, Hoang; Dung, Do Trung; Ngoc, Pham; Nguyen-Viet, Hung; Anh Vuong, Tuan; Utzinger, Jürg; Schindler, Christian; Winkler, Mirko S.

    2016-01-01

    The use of wastewater in agriculture and aquaculture has a long tradition throughout Asia. For example, in Hanoi, it creates important livelihood opportunities for > 500,000 farmers in peri-urban communities. Discharge of domestic effluents pollute the water streams with potential pathogenic organisms posing a public health threat to farmers and consumers of wastewater-fed foodstuff. We determined the effectiveness of Hanoi's wastewater conveyance system, placing particular emphasis on the quality of wastewater used in agriculture and aquaculture. Between April and June 2014, a total of 216 water samples were obtained from 24 sampling points and the concentrations of total coliforms (TC), Escherichia coli, Salmonella spp. and helminth eggs determined. Despite applied wastewater treatment, agricultural field irrigation water was heavily contaminated with TC (1.3 × 10"7 colony forming unit (CFU)/100 mL), E. coli (1.1 × 10"6 CFU/100 mL) and Salmonella spp. (108 most probable number (MPN)/100 mL). These values are 110-fold above Vietnamese discharge limits for restricted agriculture and 260-fold above the World Health Organization (WHO)'s tolerable safety limits for unrestricted agriculture. Mean helminth egg concentrations were below WHO tolerable levels in all study systems (< 1 egg/L). Hence, elevated levels of bacterial contamination, but not helminth infections, pose a major health risk for farmers and consumers of wastewater fed-products. We propose a set of control measures that might protect the health of exposed population groups without compromising current urban farming activities. This study presents an important example for sanitation safety planning in a rapidly expanding Asian city and can guide public and private entities working towards Sustainable Development Goal target 6.3, that is to improve water quality by reducing pollution, halving the proportion of untreated wastewater and increasing recycling and safe reuse globally. - Highlights: • We

  3. Microbial contamination along the main open wastewater and storm water channel of Hanoi, Vietnam, and potential health risks for urban farmers

    Fuhrimann, Samuel, E-mail: samuel.fuhrimann@unibas.ch [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel (Switzerland); University of Basel, Basel (Switzerland); Pham-Duc, Phuc [Center for Public Health and Ecosystem Research, Hanoi School of Public Health, Hanoi (Viet Nam); Cissé, Guéladio [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel (Switzerland); University of Basel, Basel (Switzerland); Tram, Nguyen Thuy; Thu Ha, Hoang [Department of Microbiology, National Institute of Hygiene and Epidemiology, Hanoi (Viet Nam); Dung, Do Trung [Department of Parasitology, National Institute of Malaria, Parasitology, and Entomology, Hanoi (Viet Nam); Ngoc, Pham [Department of Animal Hygiene, National Institute for Veterinary Research, Hanoi (Viet Nam); Nguyen-Viet, Hung [Center for Public Health and Ecosystem Research, Hanoi School of Public Health, Hanoi (Viet Nam); International Livestock Research Institute, Hanoi (Viet Nam); Anh Vuong, Tuan [Department of Microbiology, National Institute of Hygiene and Epidemiology, Hanoi (Viet Nam); Utzinger, Jürg; Schindler, Christian; Winkler, Mirko S. [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel (Switzerland); University of Basel, Basel (Switzerland)

    2016-10-01

    The use of wastewater in agriculture and aquaculture has a long tradition throughout Asia. For example, in Hanoi, it creates important livelihood opportunities for > 500,000 farmers in peri-urban communities. Discharge of domestic effluents pollute the water streams with potential pathogenic organisms posing a public health threat to farmers and consumers of wastewater-fed foodstuff. We determined the effectiveness of Hanoi's wastewater conveyance system, placing particular emphasis on the quality of wastewater used in agriculture and aquaculture. Between April and June 2014, a total of 216 water samples were obtained from 24 sampling points and the concentrations of total coliforms (TC), Escherichia coli, Salmonella spp. and helminth eggs determined. Despite applied wastewater treatment, agricultural field irrigation water was heavily contaminated with TC (1.3 × 10{sup 7} colony forming unit (CFU)/100 mL), E. coli (1.1 × 10{sup 6} CFU/100 mL) and Salmonella spp. (108 most probable number (MPN)/100 mL). These values are 110-fold above Vietnamese discharge limits for restricted agriculture and 260-fold above the World Health Organization (WHO)'s tolerable safety limits for unrestricted agriculture. Mean helminth egg concentrations were below WHO tolerable levels in all study systems (< 1 egg/L). Hence, elevated levels of bacterial contamination, but not helminth infections, pose a major health risk for farmers and consumers of wastewater fed-products. We propose a set of control measures that might protect the health of exposed population groups without compromising current urban farming activities. This study presents an important example for sanitation safety planning in a rapidly expanding Asian city and can guide public and private entities working towards Sustainable Development Goal target 6.3, that is to improve water quality by reducing pollution, halving the proportion of untreated wastewater and increasing recycling and safe reuse globally

  4. US Weather Bureau Storm Reports

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Bureau and US Army Corps and other reports of storms from 1886-1955. Hourly precipitation from recording rain gauges captured during heavy rain, snow,...

  5. Toward an integrated storm surge application: ESA Storm Surge project

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www

  6. Magnetic storms and induction hazards

    Love, Jeffrey J.; Rigler, E. Joshua; Pulkkinen, Antti; Balch, Christopher

    2014-01-01

    Magnetic storms are potentially hazardous to the activities and technological infrastructure of modern civilization. This reality was dramatically demonstrated during the great magnetic storm of March 1989, when surface geoelectric fields, produced by the interaction of the time-varying geomagnetic field with the Earth's electrically conducting interior, coupled onto the overlying Hydro-Québec electric power grid in Canada. Protective relays were tripped, the grid collapsed, and about 9 million people were temporarily left without electricity [Bolduc, 2002].

  7. [Thyroid Storm and Myxedema Coma].

    Milkau, Malte; Sayk, Friedhelm

    2018-03-01

    Thyroid storm and myxedema coma are the most severe clinical forms of thyroid dysfunction. While both hyper- and hypothyroidsm are common diseases, thyroid storm and myxedema coma are rare. Due to their unspecific signs and symptoms they are often difficult to diagnose. Both disorders are medical emergencies, which still show a significant mortality. The following article summarizes diagnostic tools and treatment options for these disorders. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Coastal Storm Surge Analysis: Storm Forcing. Report 3. Intermediate Submission No. 1.3

    2013-07-01

    The storm surge study considers both tropical storms and extratropical cyclones for determination of return period storm surge elevations. The...Appendix B: Extratropical Cyclone Selection in Support of FEMA Region III Storm Surge Modeling...stations applied in the storm selection process. ............................................. 56  Table B2. Extratropical cyclones selected from the

  9. Thermomechanical processing of plasma sprayed intermetallic sheets

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  10. Probability based hydrologic catchments of the Greenland Ice Sheet

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  11. Future changes in extratropical storm tracks and baroclinicity under climate change

    Lehmann, Jascha; Coumou, Dim; Frieler, Katja; Eliseev, Alexey V.; Levermann, Anders

    2014-01-01

    The weather in Eurasia, Australia, and North and South America is largely controlled by the strength and position of extratropical storm tracks. Future climate change will likely affect these storm tracks and the associated transport of energy, momentum, and water vapour. Many recent studies have

  12. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to theWandel Sea (NE Greenland)

    Kirillov, Sergei; Dmitrenko, Igor; Rysgaard, Soren

    2017-01-01

    In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series...... are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic...... mode of the internal tide with a velocity minimum at similar to 40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus...

  13. Carbon sheet pumping

    Ohyabu, N.; Sagara, A.; Kawamura, T.; Motojima, O.; Ono, T.

    1993-07-01

    A new hydrogen pumping scheme has been proposed which controls recycling of the particles for significant improvement of the energy confinement in toroidal magnetic fusion devices. In this scheme, a part of the vacuum vessel surface near the divertor is covered with carbon sheets of a large surface area. Before discharge initiation, the sheets are baked up to 700 ∼ 1000degC to remove the previously trapped hydrogen atoms. After being cooled down to below ∼ 200degC, the unsaturated carbon sheets trap high energy charge exchange hydrogen atoms effectively during a discharge and overall pumping efficiency can be as high as ∼ 50 %. (author)

  14. 3-Dimensional simulations of storm dynamics on Saturn

    Hueso, R.; Sanchez-Lavega, A.

    2000-10-01

    The formation and evolution of convective clouds in the atmosphere of Saturn is investigated using an anelastic three-dimensional time-dependent model with parameterized microphysics. The model is designed to study the development of moist convection on any of the four giant planets and has been previously used to investigate the formation of water convective storms in the jovian atmosphere. The role of water and ammonia in moist convection is investigated with varying deep concentrations. Results imply that most of the convective activity observed at Saturn may occur at the ammonia cloud deck while the formation of water moist convection may happen only when very strong constraints on the lower troposphere are met. Ammonia storms can ascend to the 300 mb level with vertical velocities around 30 ms-1. The seasonal effect on the thermal profile at the upper troposphere may have important effects on the development of ammonia storms. In the cases where water storms can develop they span many scale heights with peak vertical velocities around 160 ms-1 and cloud particles can be transported up to the 150 mb level. These predicted characteristics are similar to the Great White Spots observed in Saturn which, therefore, could be originated at the water cloud base level. This work has been supported by Gobierno Vasco PI 1997-34. R. Hueso acknowledges a PhD fellowship from Gobierno Vasco.

  15. Legislation and regulations for prevention of legionella in drinking and hot water. Explanation of care obligation, alternate techniques and risk assessment. Fact sheet; Wet- en regelgeving Legionellapreventie in drink- en warmtapwater. Uitleg over zorgplicht, alternatieve technieken en risico-analyse. Informatieblad

    NONE

    2013-03-15

    The reason for this fact sheet is the revision of the drinking water regulations, including the regulations for the prevention of legionella, July 1, 2011. Many market parties consider the regulations as complex, even after the revision. This fact sheet provides more clarity [Dutch] Aanleiding voor dit informatieblad is de op 1 juli 2011 herziene drinkwaterregelgeving, inclusief de voor legionellapreventie relevante bepalingen. Veel marktpartijen ervaren deze regelgeving, ook na herziening, als complex. Dit informatieblad verschaft meer duidelijkheid.

  16. Developing an early warning system for storm surge inundation in the Philippines

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2014-10-01

    A storm surge is the sudden rise of sea water generated by an approaching storm, over and above the astronomical tides. This event imposes a major threat in the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013 where more than 6000 people lost their lives. It has become evident that the need to develop an early warning system for storm surges is of utmost importance. To provide forecasts of the possible storm surge heights of an approaching typhoon, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. Bathymetric data, storm track, central atmospheric pressure, and maximum wind speed were used as parameters for the Japan Meteorological Agency Storm Surge Model. The researchers calculated the frequency distribution of maximum storm surge heights of all typhoons under a specific Public Storm Warning Signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of probable area inundation and flood levels of storm surges along coastal areas for a specific PSWS using the results of the frequency distribution. These maps were developed from the time series data of the storm tide at 10 min intervals of all observation points in the Philippines. This information will be beneficial in developing early warnings systems, static maps, disaster mitigation and preparedness plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate counter

  17. Chasing storms in an agricultural catchment: the stream DOM story

    Hernes, P. J.; Spencer, R. G.; Pellerin, B. A.; Downing, B. D.; Saraceno, J.; Dyda, R. Y.; Bergamaschi, B. A.

    2011-12-01

    Storm events are notorious for mobilizing large amounts of dissolved and particulate substances in streams and rivers. Conversion of natural landscapes to agricultural land-use can significantly amplify this effect. We investigated the impacts of two storm events on stream dissolved organic matter (DOM) in 2008 in Willow Slough, a California/Sacramento Valley agricultural catchment. The tools utilized included carbon stable isotopes, fluorescence, ultraviolet-visible absorbance, lignin, disinfection byproduct formation potential, and biodegradation experiments. Dissolved organic carbon (DOC) concentrations at the mouth at peak discharge during the storms ranged from 9-10 mg/L compared to baseline conditions of 2-4 mg/L. Other storm effects included increased dissolved organic nitrogen, depleted carbon stable isotopes, increased humic fluorescence intensity, increased specific UV absorbance (SUVA), decreased spectral slopes, increased bioavailability, and increased carbon-normalized yields of lignin. Increased frequency and intensity of storms due to climate change are likely to have a non-linear effect on riverine exports and water quality, with subsequent impacts on carbon loading, mercury transport, and drinking water quality.

  18. Realistic thermal transient margin analysis of 'MONJU' based on plant performance measurements. Reactor vessel outlet nozzle and evaporator feed water inlet tube sheet of the manual reactor plant trip

    Yamada, Fumiaki; Mori, Takero

    2005-01-01

    In order to develop technologies and achieve safe and stable operation of Monju' as well as realize optimized design and construction of safe and economically competitive fast breeder reactors, the authors are evaluating design approach applied to 'Monju' based on actually measured behavioral data during plant operations. This report uses actual measured characteristic data of 'Monju' during a plant trip test obtained at a commissioning stage with up to 40% power output and introduces plant thermal hydraulic behavior analysis in a representative thermal transient event, i.e. a manual plant trip. Thermal transient driven loads incurred by the reactor vessel outlet nozzle and by the evaporator feed water inlet tube sheet were further derived by structural analyses and were compared with the previously derived values in the design stage and with the limit values. Though the reactor vessel outlet nozzle was exposed to larger temperature change in the trip test than the analytical prediction, the newly calculated mechanical load was about 50% of the previous evaluation in the design stage. Also, the newly analyzed mechanical load incurred by the evaporator feed water inlet tube sheet in this event had a large margin against the limit value of cumulative damage cycle fraction, although the observed temperature disturbance in a steam blow test was wilder than the analytical prediction. Thus we concluded that the Monju' plant has an assured safety margin against thermal transient in plant trip events. (author)

  19. Anesthesia Fact Sheet

    ... Education About NIGMS NIGMS Home > Science Education > Anesthesia Anesthesia Tagline (Optional) Middle/Main Content Area En español ... Version (464 KB) Other Fact Sheets What is anesthesia? Anesthesia is a medical treatment that prevents patients ...

  20. Structural Biology Fact Sheet

    ... NIGMS NIGMS Home > Science Education > Structural Biology Structural Biology Tagline (Optional) Middle/Main Content Area PDF Version (688 KB) Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  1. Radiation protecting sheet

    Makiguchi, Hiroshi.

    1989-01-01

    As protection sheets used in radioactivity administration areas, a thermoplastic polyurethane composition sheet with a thickness of less 0.5 mm, solid content (ash) of less than 5% and a shore D hardness of less than 60 is used. A composite sheet with thickness of less than 0.5 mm laminated or coated with such a thermoplastic polyurethane composition as a surface layer and the thermoplastic polyurethane composition sheet applied with secondary fabrication are used. This can satisfy all of the required properties, such as draping property, abrasion resistance, high breaking strength, necking resistance, endurance strength, as well as chemical resistance and easy burnability in burning furnace. Further, by forming uneveness on the surface by means of embossing, etc. safety problems such as slippage during operation and walking can be overcome. (T.M.)

  2. Global ice sheet modeling

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  3. Centering and alignment device of a fuel assembling under a heart upper sheet of a pressure water nuclear reactor and centering piece replacement process

    Bougis, J.C.

    1994-01-01

    The crossing opening of the heart upper sheet contains a central part and two end parts of which diameter is higher than the central part one. The centering piece contains a head putting down, thanks to a support part, on a retaining of the opening, a centering and positioning smooth part and a threaded part. The device also contains a nut screwed on the threaded part of the centering piece so far as to come supporting on a retaining of the opening. The nut is made not unscrewed thanks to a stopping washer soldered inside the end part of the crossing opening. (Author). 3 figs., 5 refs

  4. Energy information sheets

    NONE

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  5. Tormenta tiroidea Thyroid storm

    Lisette Leal Curí

    2012-12-01

    Full Text Available La tormenta tiroidea es una de las situaciones más críticas entre las emergencias endocrinas y tiene una significativa mortalidad. La etiología más común de tirotoxicosis es la enfermedad de Graves y el factor precipitante que predomina es la infección. Clínicamente se caracteriza por la disfunción de varios sistemas (termorregulador, nervioso central, gastrointestinal y cardiovascular, con niveles de hormonas tiroideas libres o totales por encima de los valores normales. El tratamiento debe tener un enfoque multidisciplinario, e incluye medidas de soporte en unidades de cuidados intensivos, normalización de la temperatura corporal, reducción de la producción y liberación de hormonas tiroideas, con antitiroideos de síntesis y yodo respectivamente, bloqueo de los efectos periféricos mediante la administración de beta-bloqueadores, y corrección del factor desencadenante. Una vez que el paciente se encuentra estable es necesario planificar una terapia definitiva que impida la recurrencia futura de la crisis tirotóxica.The thyroid storm is one of the most critical situations in the endocrine emergencies and exhibits a significant mortality rate. The most common etiology of thyrotoxicosis is Graves' disease and the predominant precipitating factor is infection. The clinical characteristics are dysfunction of several systems (heat-regulator, central nervous, gastrointestinal and cardiovascular, and levels of total or free thyroid hormones that exceed the normal values. The treatment must be multidisciplinary and include support measures in intensive care units, normalization of body temperature, reduction of the production and the release of thyroid hormones by using synthesis and iodine anti-thyroid products respectively, blockade of the peripheral effects through administration of Beta-blockers and correction of the unleashing factor. Once the patients are stabilized, it is necessary to plan the final therapy that will prevent the

  6. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  7. Model simulation of storm surge potential for Andaman islands

    Kumar, V.S.; RameshBabu, V.; Babu, M.T.; Dhinakaran, G.; Rajamanickam, G.V.

    Hydraulics and Oceanography, the Hydrodynamics Module Reference Manual. DHI Water and Environment, Horsholm, Denmark, 58 p. Dube, S.K., Sinha, P C , Rao, A.D., and Rao, G.S., 1985. Numerical modeling of storm surges in the Arabian Sea, Appl. Math Modelling, 9...

  8. Marine boundary layer characteristics during a cyclonic storm over ...

    raise the water level due to the generation of huge waves and .... mum intensity of the system was T2.5 on Dvorak's scale from 15 .... movement of cyclonic storm over land, the low level ... 15 and 18 are classified as deep convective sound-.

  9. Spatially ordered structures in storm clouds and fogs

    Shavlov, A.V.; Dzhumandzhi, V.A.

    2010-01-01

    The article shows the possibility of formation of the spatially ordered structures by the charged drops of water in both storm clouds and fogs. To predict the existence of the given structures there was proposed a model of interaction mechanism among the charged particles. We also estimated the influence of drop ordering onto the surface tension and the shear viscosity in clouds.

  10. Energization of the Ring Current through Convection of Substorm Enhancements of the Plasma Sheet Source.

    Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.

    2017-12-01

    It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.

  11. Annual Report: 2011-2012 Storm Season Sampling, Non-Dry Dock Stormwater Monitoring for Puget Sound Naval Shipyard, Bremerton, WA

    Brandenberger, Jill M.; Metallo, David; Rupert, Brian; Johnston, Robert K.; Gebhart, Christine

    2013-07-03

    Annual PSNS non-dry dock storm water monitoring results for 2011-2012 storm season. Included are a brief description of the sampling procedures, storm event information, laboratory methods and data collection, a results and discussion section, and the conclusions and recommendations.

  12. Space storms as natural hazards

    L. I. Dorman

    2008-04-01

    Full Text Available Eruptive activity of the Sun produces a chain of extreme geophysical events: high-speed solar wind, magnetic field disturbances in the interplanetary space and in the geomagnetic field and also intense fluxes of energetic particles. Space storms can potentially destroy spacecrafts, adversely affect astronauts and airline crew and human health on the Earth, lead to pipeline breaking, melt electricity transformers, and discontinue transmission. In this paper we deal with two consequences of space storms: (i rise in failures in the operation of railway devices and (ii rise in myocardial infarction and stroke incidences.

  13. Meteorology, Macrophysics, Microphysics, Microwaves, and Mesoscale Modeling of Mediterranean Mountain Storms: The M8 Laboratory

    Starr, David O. (Technical Monitor); Smith, Eric A.

    2002-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.

  14. Comparative properties of ceramic-based roofing sheets from local ...

    Ceramic roofing sheets were fabricated in the laboratory by using ideal raw materials. The fabricating materials are coiled coconut fibre, palm fruit fibre, fresh water, river sand, polymeric dust, saw dust and cement. The resulting product was compared with factory -produced ceramic-based roofing sheets that are easily ...

  15. Tropical storm Irene flood of August 2011 in northwestern Massachusetts

    Bent, Gardner C.; Olson, Scott A.; Massey, Andrew J.

    2016-09-02

    A Presidential disaster was declared in northwestern Massachusetts, following flooding from tropical storm Irene on August 28, 2011. During the storm, 3 to 10 inches of rain fell on soils that were susceptible to flash flooding because of wet antecedent conditions. The gage height at one U.S. Geological Survey streamgage rose nearly 20 feet in less than 4 hours because of the combination of saturated soils and intense rainfall. On August 28, 2011, in the Deerfield and Hoosic River Basins in northwestern Massachusetts, new peaks of record were set at six of eight U.S. Geological Survey long-term streamgages with 46 to 100 years of record. Additionally, high-water marks were surveyed and indirect measurements of peak discharge were calculated at two discontinued streamgages in the Deerfield and Hoosic River Basins with 24 and 61 years of record, respectively. This data resulted in new historic peaks of record at the two discontinued streamgages from tropical storm Irene.

  16. Storm time electric field penetration observed at mid-latitude

    Yeh, H.C.; Foster, J.C.; Rich, F.J.; Swider, W.

    1991-01-01

    During the height of the February 8-9, 1986, magnetic storm the Millstone Hill radar was in the evening local time sector (1600-2200 MLT). Radar observations indicate that high speed (>1,000 m s -1 ) westward ion flow penetrated deeply below 50 degree invariant latitude (Λ) and persisted for 6 hours between 2100 UT on February 8 and 0300 UT on February 9. The double-peaked ion convection feature was pronounced throughout the period, and the separation in the dual maxima ranged from 4 degree to 10 degree. The latitude positions of the high-latitude ion drift peak and the convection reversal varied in unison. The low-latitude ion drift peak (∼49 degree Λ or L =2.3) did not show significant universal time/magnetic local time (UT/MLT) variation in its latitude location but showed a decrease in magnitude during the initial recovery phase of the storm. Using simultaneous particle (30 eV-30 keV) precipitation data from the DMSP F6 and F7 satellites, the authors find the high-latitude ion drift peak to coincide with the boundary plasma sheet/central plasma sheet transition in the high ionospheric conductivity (>15 mho) region. The low-latitude ion drift peak lay between the equatorward edges of the electron and soft ( + dominated ring current energy density in magnetic latitude. The low-latitude ion drift peak is the low-altitude signature of the electric field shielding effect associated with ring current penetration into the outer layer of the storm time plasmasphere

  17. Flammability studies of impregnated paper sheets

    Ivan Simkovic; Anne Fuller; Robert White

    2011-01-01

    Paper sheets impregnated with flame retardants made from agricultural residues and other additives were studied with the cone calorimeter. The use of sugar beet ethanol eluent (SBE), CaCl2, and ZnCl2 lowered the peak rate of heat release (PRHR) the most in comparison to water treated material. The average effective heat of...

  18. Glacial Cycles and ice-sheet modelling

    Oerlemans, J.

    1982-01-01

    An attempt is made to simulate the Pleistocene glacial cycles with a numerical model of the Northern Hemisphere ice sheets. This model treats the vertically-integrated ice flow along a meridian, including computation of bedrock adjustment and temperature distribution in the ice. Basal melt water is

  19. Sheet GT1-3. Reflections based on available data in Augeres about the efficiency of water processing - Evolution perspectives and recommendations

    2009-01-01

    As the resurgence of waters from rehabilitated uranium mining sites is a potential cause of contamination for the environment, this document first recalls the legal framework for mining water processing and technical choices, and recent technical evolutions. It reports an investigation performed level with the Augeres water processing plant. This investigation aimed at determining under which form radionuclides are released in the environment. It also assessed the efficiency of the last modifications brought to water processing in this plant in terms of radiological quality improvement. Finally, the authors propose a synthesis of mining water processing techniques

  20. Patterns of Storm Injury and Tree Response

    Kevin Smith; Walter Shortle; Kenneth Dudzik

    2001-01-01

    The ice storm of January 1998 in the northeastern United States and adjacent Canada was an extreme example of severe weather that injures trees every year. Broken branches, split branch forks, and snapped stems are all examples of storm injury.

  1. Establishing Design Storm Values from Climate Models in Coastal Regions: Challenges and Opportunities

    Dynamic interactions of atmospheric and hydrological processes result in large spatiotemporal changes of precipitation and wind speed in coastal storm events under both current and future climates. This variability can impact the design and sustainability of water infrastructure ...

  2. The concept of Magnetically Driven Magnetosphere: storm/substorm dynamics and organization of the magnetotail

    Pavlov, Nikolai

    A set of novel ideas and approaches have been found in the long-lasting attempts to better understand how the magnetosphere operates. It is proposed a certain vision of the substorm/storm scenario, of the tail structure with moderate magnetic By-component, and with intrinsic turbulence. Particle acceleration and the place of the tail's current sheet(s) in the proposed vision are discussed as well. For the reasoning of the proposal, several key ideas on the purely magnetospheric topics are included in the presentation.

  3. Hindcast storm events in the Bering Sea for the St. Lawrence Island and Unalakleet Regions, Alaska

    Erikson, Li H.; McCall, Robert T.; van Rooijen, Arnold; Norris, Benjamin

    2015-01-01

    This study provides viable estimates of historical storm-induced water levels in the coastal communities of Gambell and Savoonga situated on St. Lawrence Island in the Bering Sea, as well as Unalakleet located at the head of Norton Sound on the western coast of Alaska. Gambell, Savoonga, and Unalakleet are small Native Villages that are regularly impacted by coastal storms but where little quantitative information about these storms exists. The closest continuous water-level gauge is at Nome, located more than 200 kilometers from both St. Lawrence Island and Unalakleet. In this study, storms are identified and quantified using historical atmospheric and sea-ice data and then used as boundary conditions for a suite of numerical models. The work includes storm-surge (temporary rise in water levels due to persistent strong winds and low atmospheric pressures) modeling in the Bering Strait region, as well as modeling of wave runup along specified sections of the coast in Gambell and Unalakleet. Modeled historical water levels are used to develop return periods of storm surge and storm surge plus wave runup at key locations in each community. It is anticipated that the results will fill some of the data void regarding coastal flood data in western Alaska and be used for production of coastal vulnerability maps and community planning efforts.

  4. Disintegration of liquid sheets

    Mansour, Adel; Chigier, Norman

    1990-01-01

    The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.

  5. Safety advice sheets

    HSE Unit

    2013-01-01

    You never know when you might be faced with questions such as: when/how should I dispose of a gas canister? Where can I find an inspection report? How should I handle/store/dispose of a chemical substance…?   The SI section of the DGS/SEE Group is primarily responsible for safety inspections, evaluating the safety conditions of equipment items, premises and facilities. On top of this core task, it also regularly issues “Safety Advice Sheets” on various topics, designed to be of assistance to users but also to recall and reinforce safety rules and procedures. These clear and concise sheets, complete with illustrations, are easy to display in the appropriate areas. The following safety advice sheets have been issued so far: Other sheets will be published shortly. Suggestions are welcome and should be sent to the SI section of the DGS/SEE Group. Please send enquiries to general-safety-visits.service@cern.ch.

  6. Modeling storm waves; Modeliser les houles de tempete

    Benoit, M.; Marcos, F.; Teisson, Ch

    1999-07-01

    Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)

  7. Stochastic Optical Reconstruction Microscopy (STORM).

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  8. Storms and Water Usage; Swine Flu

    Edwards, C. C.; Muttiah, Daniel

    2009-01-01

    This article offers a contemporary, authentic application of quantitative reasoning based on media clips. Students analyze items from the media to answer mathematical questions related to the article. Volumes, economics, and growth rates of a pandemic are featured in the two clips presented. (Contains 4 figures and 1 table.)

  9. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach

    Angnuureng, Donatus Bapentire; Almar, Rafael; Senechal, Nadia; Castelle, Bruno; Addo, Kwasi Appeaning; Marieu, Vincent; Ranasinghe, Roshanka

    2017-01-01

    This study investigates the impact of individual storms and storm clusters on shoreline recovery for the meso-to macrotidal, barred Biscarrosse beach in SW France, using 6 years of daily video observations. While the study area experienced 60 storms during the 6-year study period, only 36 storms

  10. Ice Sheets & Ice Cores

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  11. Energy information sheets

    1993-12-02

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  12. 46 CFR 108.221 - Storm rails.

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the following...

  13. 46 CFR 169.329 - Storm rails.

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must be...

  14. Er Storm P. en hardcore vagabond?

    Sortkær, Allan

    2002-01-01

    Den vagabond, som vi kender som Storm P.s, er ikke en figur, der kom fra en guddommelig inspiration eller deslige. Den var en allerede velkendt figur, før Storm P. tog den til sig, og figuren gennemgik radikale forandringer gennem Storm P.s liv: Krads social satire, hypervoldelig eller hyggelig...

  15. 46 CFR 116.920 - Storm rails.

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where necessary...

  16. 46 CFR 177.920 - Storm rails.

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must be...

  17. 46 CFR 127.320 - Storm rails.

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and at...

  18. Development of VLF noise storm and its relation to dynamics of magnetosphere during geomagnetic storms

    Fedyakina, N.I.; Khorosheva, O.V.

    1989-01-01

    Dependence between the development of geomagnetic storm and VLF noise storm is studied. Two conditions should be met for the development of noise storm in VLF-hiss (f ≅ 0.5-10 kHz): a) threshold intensity of electron fluxes with E e > 40 keV in plasma layers; b) the presence of substorms resulting to widening of electron belt and its collision with cold plasma of plasmasphere. The noise storm at the fixed longitude begins about midnight independently of the phase of magnetic storm; Noise storm duration is connected with geomagnetic storm intensity by direct linear relationship

  19. The size of the auroral belt during magnetic storms

    N. Yokoyama

    Full Text Available Using the auroral boundary index derived from DMSP electron precipitation data and the Dst index, changes in the size of the auroral belt during magnetic storms are studied. It is found that the equatorward boundary of the belt at midnight expands equatorward, reaching its lowest latitude about one hour before Dst peaks. This time lag depends very little on storm intensity. It is also shown that during magnetic storms, the energy of the ring current quantified with Dst increases in proportion to Le–3, where Le is the L-value corresponding to the equatorward boundary of the auroral belt designated by the auroral boundary index. This means that the ring current energy is proportional to the ion energy obtained from the earthward shift of the plasma sheet under the conservation of the first adiabatic invariant. The ring current energy is also proportional to Emag, the total magnetic field energy contained in the spherical shell bounded by Le and Leq, where Leq corresponds to the quiet-time location of the auroral precipitation boundary. The ratio of the ring current energy ER to the dipole energy Emag is typically 10%. The ring current leads to magnetosphere inflation as a result of an increase in the equivalent dipole moment.

    Key words. Ionosphere (Auroral ionosphere · Magnetospheric physics (Auroral phenomena; storms and substorms

  20. Water System Adaptation To Hydrological Changes: Module 6, Synchronous Management of Storm Surge, Sea Level Rise, and Salt Water Intrusion: Case Study in Mattapoisett, Massachusetts, U.S.A.

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  1. Collisionless current sheet equilibria

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  2. Cholera Fact Sheet

    ... news-room/fact-sheets/detail/cholera","@context":"http://schema.org","@type":"Article"}; العربية 中文 français русский español ... that includes feedback at the local level and information-sharing at the global level. Cholera cases are ...

  3. Pseudomonas - Fact Sheet

    Public Health Agency

    2012-01-01

    Fact sheet on Pseudomonas, including:What is Pseudomonas?What infections does it cause?Who is susceptible to pseudomonas infection?How will I know if I have pseudomonas infection?How can Pseudomonas be prevented from spreading?How can I protect myself from Pseudomonas?How is Pseudomonas infection treated?

  4. NTPR Fact Sheets

    History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak Atoll Cleanup Documents TRAC About Who We Are Our Values History Locations Our Leadership Director Support Center Contact Us FAQ Sheet Links Success Stories Contracts Business Opportunities Current

  5. Production (information sheets)

    2007-01-01

    Documentation sheets: Geo energy 2 Integrated System Approach Petroleum Production (ISAPP) The value of smartness 4 Reservoir permeability estimation from production data 6 Coupled modeling for reservoir application 8 Toward an integrated near-wellbore model 10 TNO conceptual framework for "E&P

  6. Hibernia fact sheet

    Anon.

    1994-01-01

    This fact sheet gives details of the Hibernia oil field including its location, discovery date, oil company's interests in the project, the recoverable reserves of the two reservoirs, the production system used, capital costs of the project, and overall targets for Canadian benefit. Significant dates for the Hibernia project are listed. (UK)

  7. Ethanol Basics (Fact Sheet)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  8. N : P Stoichiometry in a Forested Runoff during Storm Events: Comparisons with Regions and Vegetation Types

    Lanlan Guo

    2012-01-01

    Full Text Available Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.

  9. N : P stoichiometry in a forested runoff during storm events: comparisons with regions and vegetation types.

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.

  10. In vitro assessment of activity of graphene silver composite sheets ...

    International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African. Index Medicus ... was cooled to −5 °C. The excess water was removed under ..... Microwave synthesis of graphene sheets supporting.

  11. Influence of rice straw cooking conditions in the soda-ethanol-water pulping on the mechanical properties of produced paper sheets.

    Navaee-Ardeh, S; Mohammadi-Rovshandeh, J; Pourjoozi, M

    2004-03-01

    A normalized design was used to examine the influence of independent variables (alcohol concentration, cooking time and temperature) in the catalytic soda-ethanol pulping of rice straw on various mechanical properties (breaking length, burst, tear index and folding endurance) of paper sheets obtained from each pulping process. An equation of each dependent variable as a function of cooking variables (independent variables) was obtained by multiple non-linear regression using the least square method by MATLAB software for developing of empirical models. The ranges of alcohol concentration, cooking time and temperature were 40-65% (w/w), 150-180 min and 195-210 degrees C, respectively. Three-dimensional graphs of dependent variables were also plotted versus independent variables. The optimum values of breaking length, burst and tear index and folding endurance were 4683.7 (m), 30.99 (kN/g), 376.93 (mN m2/g) and 27.31, respectively. However, short cooking time (150 min), high ethanol concentration (65%) and high temperature (210 degrees C) could be used to produce papers with suitable burst and tear index. However, for papers with best breaking length and folding endurance low temperature (195 degrees C) was desirable. Differences between optimum values of dependent variables obtained by normalized design and experimental data were less than 20%.

  12. Morphodynamic Modeling Using The SToRM Computational System

    Simoes, F.

    2016-12-01

    The framework of the work presented here is the open source SToRM (System for Transport and River Modeling) eco-hydraulics modeling system, which is one of the models released with the iRIC hydraulic modeling graphical software package (http://i-ric.org/). SToRM has been applied to the simulation of various complex environmental problems, including natural waterways, steep channels with regime transition, and rapidly varying flood flows with wetting and drying fronts. In its previous version, however, channel bed was treated as static and the ability of simulating sediment transport rates or bed deformation was not included. The work presented here reports SToRM's newly developed extensions to expand the system's capability to calculate morphological changes in alluvial river systems. The sediment transport module of SToRM has been developed based on the general recognition that meaningful advances depend on physically solid formulations and robust and accurate numerical solution methods. The basic concepts of mass and momentum conservation are used, where the feedback mechanisms between the flow of water, the sediment in transport, and the bed changes are directly incorporated in the governing equations used in the mathematical model. This is accomplished via a non-capacity transport formulation based on the work of Cao et al. [Z. Cao et al., "Non-capacity or capacity model for fluvial sediment transport," Water Management, 165(WM4):193-211, 2012], where the governing equations are augmented with source/sink terms due to water-sediment interaction. The same unsteady, shock-capturing numerical schemes originally used in SToRM were adapted to the new physics, using a control volume formulation over unstructured computational grids. The presentation will include a brief overview of these methodologies, and the result of applications of the model to a number of relevant physical test cases with movable bed, where computational results are compared to experimental data.

  13. Sausage mode instability of thin current sheets as a cause of magnetospheric substorms

    J. Büchner

    Full Text Available Observations have shown that, prior to substorm explosions, thin current sheets are formed in the plasma sheet of the Earth's magnetotail. This provokes the question, to what extent current-sheet thinning and substorm onsets are physically, maybe even causally, related. To answer this question, one has to understand the plasma stability of thin current sheets. Kinetic effects must be taken into account since particle scales are reached in the course of tail current-sheet thinning. We present the results of theoretical investigations of the stability of thin current sheets and about the most unstable mode of their decay. Our conclusions are based upon a non-local linear dispersion analysis of a cross-magnetic field instability of Harris-type current sheets. We found that a sausage-mode bulk current instability starts after a sheet has thinned down to the ion inertial length. We also present the results of three-dimensional electromagnetic PIC-code simulations carried out for mass ratios up to Mi / me=64. They verify the linearly predicted properties of the sausage mode decay of thin current sheets in the parameter range of interest.

    Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms · Space plasma physics (magnetic reconnection

  14. [Diagnosis and treatment of thyroid storm].

    Akamizu, Takashi

    2012-11-01

    Thyrotoxic storm is a life-threatening condition requiring emergency treatment. Neither its epidemiological data nor diagnostic criteria have been fully established. We clarified the clinical and epidemiological characteristics of thyroid storm using nationwide surveys and then formulate diagnostic criteria for thyroid storm. To perform the nationwide survey on thyroid storm, we first developed tentative diagnostic criteria for thyroid storm, mainly based upon the literature (the first edition). We analyzed the relationship of the major features of thyroid storm to mortality and to certain other features. Finally, based upon the findings of these surveys, we revised the diagnostic criteria. Thyrotoxic storm is still a life-threatening disorder with over 10% mortality in Japan.

  15. Thermospheric storms and related ionospheric effects

    Chandra, S.; Spencer, N.W.

    1976-01-01

    A comparative study of thermospheric storms for the equinox and winter conditions is presented based on the neutral composition measurements from the Aeros-A Nate (Neutral Atmosphere Temperature Experiment) experiment. The main features of the two storms as inferred from the changes in N 2 , Ar, He, and O are described, and their implications to current theories of thermospheric storms are discussed. On the basis of the study of the F region critical frequency measured from a chain of ground-based ionospheric stations during the two storm periods, the general characteristics of the ionospheric storms and the traveling ionospheric disturbances are described. It is suggested that the positive and negative phases of ionospheric storms are the various manifestations of thermospheric storms

  16. Thyroid storm precipitated by duodenal ulcer perforation.

    Natsuda, Shoko; Nakashima, Yomi; Horie, Ichiro; Ando, Takao; Kawakami, Atsushi

    2015-01-01

    Thyroid storm is a rare and life-threatening complication of thyrotoxicosis that requires prompt treatment. Thyroid storm is also known to be associated with precipitating events. The simultaneous treatment of thyroid storm and its precipitant, when they are recognized, in a patient is recommended; otherwise such disorders, including thyroid storm, can exacerbate each other. Here we report the case of a thyroid storm patient (a 55-year-old Japanese male) complicated with a perforated duodenal ulcer. The patient was successfully treated with intensive treatment for thyroid storm and a prompt operation. Although it is believed that peptic ulcer rarely coexists with hyperthyroidism, among patients with thyroid storm, perforation of a peptic ulcer has been reported as one of the causes of fatal outcome. We determined that surgical intervention was required in this patient, reported despite ongoing severe thyrotoxicosis, and reported herein a successful outcome.

  17. Thyroid Storm Precipitated by Duodenal Ulcer Perforation

    Shoko Natsuda

    2015-01-01

    Full Text Available Thyroid storm is a rare and life-threatening complication of thyrotoxicosis that requires prompt treatment. Thyroid storm is also known to be associated with precipitating events. The simultaneous treatment of thyroid storm and its precipitant, when they are recognized, in a patient is recommended; otherwise such disorders, including thyroid storm, can exacerbate each other. Here we report the case of a thyroid storm patient (a 55-year-old Japanese male complicated with a perforated duodenal ulcer. The patient was successfully treated with intensive treatment for thyroid storm and a prompt operation. Although it is believed that peptic ulcer rarely coexists with hyperthyroidism, among patients with thyroid storm, perforation of a peptic ulcer has been reported as one of the causes of fatal outcome. We determined that surgical intervention was required in this patient, reported despite ongoing severe thyrotoxicosis, and reported herein a successful outcome.

  18. Rubella - Fact Sheet for Parents

    ... and 4 through 6 years Fact Sheet for Parents Color [2 pages] Español: Rubéola The best way ... according to the recommended schedule. Fact Sheets for Parents Diseases and the Vaccines that Prevent Them Chickenpox ...

  19. Sheet-gravel evidence for a late Holocene tsunami run-up on beach dunes, Great Barrier Island, New Zealand

    Nichol, Scott L.; Lian, Olav B.; Carter, Charles H.

    2003-01-01

    A semi-continuous sheet of granule to cobble-size clasts forms a distinctive deposit on sand dunes located on a coastal barrier in Whangapoua Bay, Great Barrier Island, New Zealand. The gravel sheet extends from the toe of the foredune to 14.3 m above mean sea level and 200 m landward from the beach. Clasts are rounded to sub-rounded and comprise lithologies consistent with local bedrock. Terrestrial sources for the gravel are considered highly unlikely due to the isolation of the dunes from hillslopes and streams. The only source for the clasts is the nearshore to inner shelf of Whangapoua Bay, where gravel sediments have been previously documented. The mechanism for transport of the gravel is unlikely to be storm surge due to the elevation of the deposit; maximum-recorded storm surge on this coast is 0.8 m above mean high water spring tide. Aeolian processes are also discounted due to the size of clasts and the elevation at which they occur. Tsunami is therefore considered the most probable mechanism for gravel transport. Minimum run-up height of the tsunami was 14.3 m, based on maximum elevation of gravel deposits. Optical ages on dune sands beneath and covering the gravel allow age bracketing to 0-4.7 ka. Within this time frame, numerous documented regional seismic and volcanic events could have generated the tsunami, notably submarine volcanism along the southern Kermadec arc to the east-southeast of Great Barrier Island where large magnitude events are documented for the late Holocene. Radiocarbon ages on shell from Maori middens that appear to have been reworked by tsunami run-up constrain the age of this event to post ca. 1400 AD. Regardless of the precise age of this event, the well-preserved nature of the Whangapoua gravel deposit provides for an improved understanding of the high degree of spatial variability in tsunami run-up.

  20. Understanding the varied response of the extratropical storm tracks to climate change.

    O'Gorman, Paul A

    2010-11-09

    Transient eddies in the extratropical storm tracks are a primary mechanism for the transport of momentum, energy, and water in the atmosphere, and as such are a major component of the climate system. Changes in the extratropical storm tracks under global warming would impact these transports, the ocean circulation and carbon cycle, and society through changing weather patterns. I show that the southern storm track intensifies in the multimodel mean of simulations of 21st century climate change, and that the seasonal cycle of storm-track intensity increases in amplitude in both hemispheres. I use observations of the present-day seasonal cycle to confirm the relationship between storm-track intensity and the mean available potential energy of the atmosphere, and show how this quantitative relationship can be used to account for much of the varied response in storm-track intensity to global warming, including substantially different responses in simulations with different climate models. The results suggest that storm-track intensity is not related in a simple way to global-mean surface temperature, so that, for example, a stronger southern storm track in response to present-day global warming does not imply it was also stronger in hothouse climates of the past.

  1. Reusing Water

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management System Environmental Outreach Feature Stories Individual Permit for Storm Water Public Reading Room Sustainability » Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by

  2. Studies of 212Pb storm

    Yunoki, E.; Kataoka, T.; Michihiro, K.; Sugiyama, H.; Shimizu, M.; Mori, T.

    1996-01-01

    212 Pb which reached its equilibrium state with its daughters in the air was measured around small uranium mines in Japan. Environmental. 212 Pb concentrations rose suddenly and reached a value ten times as high as usual values. These Phenomena were observed many times during the past six Years. We called these Phenomena 212 Pb storms. Meteorological conditions lead to the variations of 220 Rn progeny concentrations. These phenomena have been studied in the point of meteorology. (author)

  3. nuSTORM Costing document

    Bross, Alan D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-10-01

    Detailed costing of the nuSTORM conventional facilities has been done by the Fermilab Facilities Engineering Services Section (FESS) and is reported on in the nuSTORM Project Definition Report (PDR) 6-13-1. Estimates for outfitting the primary proton beam line, the target station, the pion capture/transport line and decay ring are based on either experience from existing Fermilab infrastructure (NuMI) or is based on the detailed costing exercises for DOE CD-1 approval for future experiments (mu2e and LBNE). The detector costing utilized the Euronu costing for the Neutrino Factory Magnetized Iron Neutrino Detector (MIND), extrapolations from MINOS as-built costs and from recent vendor quotes. Costs included all manpower and are fully burdened (FY2013 dollars). The costs are not escalated, however, beyond the 5-year project timeline, since a project start for nuSTORM is unknown. Escalation can be estimated from various models (see Figure 1). LBNE has used the Jacob’s model to determine their cost escalation.

  4. Flood inundation maps and water-surface profiles for tropical storm Irene and selected annual exceedance probability floods for Flint Brook and the Third Branch White River in Roxbury, Vermont

    Ahearn, Elizabeth A.; Lombard, Pamela J.

    2014-01-01

    Flint Brook, a tributary to the Third Branch White River in Roxbury, Vermont, has a history of flooding the Vermont Fish and Wildlife Department’s Roxbury Fish Culture Station (the hatchery) and surrounding infrastructure. Flooding resulting from tropical storm Irene on August 28–29, 2011, caused widespread destruction in the region, including extensive and costly damages to the State-owned hatchery and the transportation infrastructure in the Town of Roxbury, Vermont. Sections of State Route 12A were washed out, and several bridges and culverts on Oxbow Road, Thurston Hill Road, and the New England Central Railroad in Roxbury were heavily damaged. Record high peak-discharge estimates of 2,140 cubic feet per second (ft3/s) and 4,320 ft3/s were calculated for Flint Brook at its confluence with the Third Branch White River and for the Third Branch White River at about 350 feet (ft) downstream from the hatchery, respectively. The annual exceedance probabilities (AEPs) of the peak discharges for Flint Brook and the Third Branch White River were less than 0.2 percent (less than a one in 500 chance of occurring in a given year). Hydrologic and hydraulic analyses of Flint Brook and the Third Branch White River were done to investigate flooding at the hatchery in Roxbury and support efforts by the Federal Emergency Management Agency to assist State and local mitigation and reconstruction efforts. During the August 2011 flood, the majority of flow from Flint Brook (97 percent or 2,070 ft3/s) diverged from its primary watercourse due to a retaining wall failure immediately upstream of Oxbow Road and inundated the hatchery. Although a minor amount of flow from the Third Branch White River could have overtopped State Route 12A and spilled into the hatchery, the Third Branch White River did not cause flood damages or exacerbate flooding at the hatchery during the August 2011 flood. The Third Branch White River which flows adjacent to the hatchery does not flood the hatchery

  5. Film sheet cassette

    1981-01-01

    A novel film sheet cassette is described for handling CAT photographic films under daylight conditions and facilitating their imaging. A detailed description of the design and operation of the cassette is given together with appropriate illustrations. The resulting cassette is a low-cost unit which is easily constructed and yet provides a sure light-tight seal for the interior contents of the cassette. The individual resilient fingers on the light-trap permit the ready removal of the slide plate for taking pictures. The stippled, non-electrostatic surface of the pressure plate ensures an air layer and free slidability of the film for removal and withdrawal of the film sheet. The advantage of the daylight system is that a darkroom need not be used for inserting and removing the film in and out of the cassette resulting in a considerable time saving. (U.K.)

  6. Clean Cities Fact Sheet

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  7. Information sheets on energy

    2004-01-01

    These sheets, presented by the Cea, bring some information, in the energy domain, on the following topics: the world energy demand and the energy policy in France and in Europe, the part of the nuclear power in the energy of the future, the greenhouse gases emissions and the fight against the greenhouse effect, the carbon dioxide storage cost and the hydrogen economy. (A.L.B.)

  8. Sheet pinch devices

    Anderson, O.A.; Baker, W.R.; Ise, J. Jr.; Kunkel, W.B.; Pyle, R.V.; Stone, J.M.

    1958-01-01

    Three types of sheet-like discharges are being studied at Berkeley. The first of these, which has been given the name 'Triax', consists of a cylindrical plasma sleeve contained between two coaxial conducting cylinders A theoretical analysis of the stability of the cylindrical sheet plasma predicts the existence of a 'sausage-mode' instability which is, however, expected to grow more slowly than in the case of the unstabilized linear pinch (by the ratio of the radial dimensions). The second pinch device employs a disk shaped discharge with radial current guided between flat metal plates, this configuration being identical to that of the flat hydromagnetic capacitor without external magnetic field. A significant feature of these configurations is the absence of a plasma edge, i.e., there are no regions of sharply curved magnetic field lines anywhere in these discharges. The importance of this fact for stability is not yet fully investigated theoretically. As a third configuration a rectangular, flat pinch tube has been constructed, and the behaviour of a flat plasma sheet with edges is being studied experimentally

  9. Potential measures for emission reduction within the European Water Framework Directive : Illustrated by fact sheets for Cd, Hg, PAHs and TBT

    Janssen MPM; van Leeuwen LC; Posthuma-Doodeman CJAM; Vos JH; Linders JBJH; SEC; mev

    2012-01-01

    Landen van de Europese Unie zetten verschillende middelen in om te voldoen aan de verplichtingen van de Kaderrichtlijn Water (KRW). Volgens de KRW moeten lidstaten onder andere voldoen aan de normen voor chemische stoffen in oppervlaktewater en van zeer gevaarlijke stoffen moeten de emissies tot nul

  10. Noninvasive optical monitoring multiple physiological parameters response to cytokine storm

    Li, Zebin; Li, Ting

    2018-02-01

    Cancer and other disease originated by immune or genetic problems have become a main cause of death. Gene/cell therapy is a highlighted potential method for the treatment of these diseases. However, during the treatment, it always causes cytokine storm, which probably trigger acute respiratory distress syndrome and multiple organ failure. Here we developed a point-of-care device for noninvasive monitoring cytokine storm induced multiple physiological parameters simultaneously. Oxy-hemoglobin, deoxy-hemoglobin, water concentration and deep-tissue/tumor temperature variations were simultaneously measured by extended near infrared spectroscopy. Detection algorithms of symptoms such as shock, edema, deep-tissue fever and tissue fibrosis were developed and included. Based on these measurements, modeling of patient tolerance and cytokine storm intensity were carried out. This custom device was tested on patients experiencing cytokine storm in intensive care unit. The preliminary data indicated the potential of our device in popular and milestone gene/cell therapy, especially, chimeric antigen receptor T-cell immunotherapy (CAR-T).

  11. System for harvesting water wave energy

    Wang, Zhong Lin; Su, Yanjie; Zhu, Guang; Chen, Jun

    2016-07-19

    A generator for harvesting energy from water in motion includes a sheet of a hydrophobic material, having a first side and an opposite second side, that is triboelectrically more negative than water. A first electrode sheet is disposed on the second side of the sheet of a hydrophobic material. A second electrode sheet is disposed on the second side of the sheet of a hydrophobic material and is spaced apart from the first electrode sheet. Movement of the water across the first side induces an electrical potential imbalance between the first electrode sheet and the second electrode sheet.

  12. Optimal Design of Sheet Pile Wall Embedded in Clay

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  13. Acceleration of O+ from the cusp to the plasma sheet

    Liao, J.; Kistler, L. M.; Mouikis, C. G.; Klecker, B.; Dandouras, I.

    2015-02-01

    Heavy ions from the ionosphere that are accelerated in the cusp/cleft have been identified as a direct source for the hot plasma in the plasma sheet. However, the details of the acceleration and transport that transforms the originally cold ions into the hot plasma sheet population are not fully understood. The polar orbit of the Cluster satellites covers the main transport path of the O+ from the cusp to the plasma sheet, so Cluster is ideal for tracking its velocity changes. However, because the cusp outflow is dispersed according to its velocity as it is transported to the tail, due to the velocity filter effect, the observed changes in beam velocity over the Cluster orbit may simply be the result of the spacecraft accessing different spatial regions and not necessarily evidence of acceleration. Using the Cluster Ion Spectrometry/Composition Distribution Function instrument onboard Cluster, we compare the distribution function of streaming O+ in the tail lobes with the initial distribution function observed over the cusp and reveal that the observations of energetic streaming O+ in the lobes around -20 RE are predominantly due to the velocity filter effect during nonstorm times. During storm times, the cusp distribution is further accelerated. In the plasma sheet boundary layer, however, the average O+ distribution function is above the upper range of the outflow distributions at the same velocity during both storm and nonstorm times, indicating that acceleration has taken place. Some of the velocity increase is in the direction perpendicular to the magnetic field, indicating that the E × B velocity is enhanced. However, there is also an increase in the parallel direction, which could be due to nonadiabatic acceleration at the boundary or wave heating.

  14. Instability of drift Alfven wave accompanying polar magnetic storm

    Higuchi, Yoshihiro

    1974-01-01

    As the micro plasma instability due to the plasma non-uniformity in magnetosphere, there is the instability of drift Alfven wave. With the data obtained with the network of multiple observation points for geomagnetism, attempt was made to prove the hypothesis that the instability of drift Alfven wave due to the electron temperature gradient at the inner boundary of plasma sheet may be one of the causes for the geomagnetic pulsation (Pi 1) accompanying polar magnetic storm. Up to date, final conclusion is yet impossible as to the problems in it due to the discussion based on the data from widely separated observation points. The installation of economically efficient multi-point observation network is necessary for the solution. (Mori, K.)

  15. The electric storm of November 1882

    Love, Jeffrey J.

    2018-01-01

    In November 1882, an intense magnetic storm related to a large sunspot group caused widespread interference to telegraph and telephone systems and provided spectacular and unusual auroral displays. The (ring current) storm time disturbance index for this storm reached maximum −Dst ≈ 386 nT, comparable to Halloween storm of 29–31 October 2003, but from 17 to 20 November the aa midlatitude geomagnetic disturbance index averaged 214.25 nT, the highest 4 day level of disturbance since the beginning of aa index in 1868. This storm contributed to scientists' understanding of the reality of solar‐terrestrial interaction. Past occurrences of magnetic storms, like that of November 1882, can inform modern evaluations of the deleterious effects that a magnetic superstorm might have on technological systems of importance to society.

  16. Extreme Geomagnetic Storms – 1868–2010

    Vennerstrøm, Susanne; Lefèvre, L.; Dumbović, M.

    2016-01-01

    presents our investigation of the corresponding solar eventsand their characteristics. The storms were selected based on their intensity in the aa index,which constitutes the longest existing continuous series of geomagnetic activity. They areanalyzed statistically in the context of more well...... occurring in May 1921 and the Quebec storm from March 1989. We identifykey characteristics of the storms by combining several different available data sources, listsof storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks,solar wind in-situ measurements, neutron monitor data...... %), Forbushdecreases (100 %), and energetic solar proton events (70 %). A quantitative comparison ofthese associations relative to less intense storms is also presented. Most notably, we findthat most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar...

  17. Stresses and storms: the case of Bangladesh.

    Ahmad, N

    1993-01-01

    The problems of women and environmental degradation have recently come to be addressed by women's groups, nongovernmental organizations (NGOs), and government policies in Bangladesh. NGOs have been the most active, with 600 registered organizations: 40% international, 38% national, and 22% local. NGOs have promoted the recent inclusion of environmental concerns into development plans. About 100 NGOs are engaged in forestry projects. The National Association for Resource Improvement, for example, involves women in tree planting along roadsides and income-generating activities. About 75% of upazilas (administrative units) have environmental and women's projects, but under 20% of all villages are affected and 1% of landless people are reached. Women's groups have created awareness of women's problems and advocated for socioeconomic changes. Women, despite cultural and social restrictions on their social behavior, have changed environmental and economic conditions. Women's leadership and organizing abilities have contributed to public awareness of environmental degradation. Because Bangladesh is a delta, a rise in sea level from greenhouse effects would have serious consequences for the land and population. Global warming has contributed to river flooding and climate changes that have increased rainfall and tropical storms. Deforestation upriver adds to the water runoff problems. About 20% of the cultivable land area is affected by natural disasters. Population density is 760 persons per sq km. About 50% of forested areas have been destroyed within the past 20 years. 4% of gross domestic product comes from forest activity. The lack of wood fuel limits the ability of people to boil water and contributes to the increased incidence of diarrhea, other intestinal problems, and less nutritious food. Drought is another problem. Urban migration has overwhelmed the ability of urban centers to provide basic services. Coastal areas have been settled by 20% of total population

  18. Alternative salvage technique during postcardiotomy electrical storm.

    Ryu, Y G; Baek, M J; Kim, H J

    2010-08-01

    Cardiac electrical storm is generally treated with antiarrhythmic drugs, electrical cardioversion, or catheter ablation. However, these conservative treatment modalities are considered neither curative nor preventive with regard to recurrent arrhythmias in postoperative electrical storm after open heart surgery. We present a case of surgical ventricular assist device placement for postcardiotomy electrical storm in a 38-year-old patient. Copyright (c) Georg Thieme Verlag KG Stuttgart-New York.

  19. Coastal Storm Hazards from Virginia to Maine

    2015-11-01

    secondary terms • integration of joint probability of storm responses, including extratropical events. A diagram summarizing the JPM methodology is... Extratropical Cyclones. The GPD- based approach defined above was used to compute the final storm response statistics for XCs. ERDC/CHL TR-15-5 39...from the numerical modeling of all storms , tropical and extratropical . As discussed in Section 2.1.2, JPM methodology generally consists of the

  20. Clouds enhance Greenland ice sheet mass loss

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  1. Identification of Storm Surge Vulnerable Areas in the Philippines Through Simulations of Typhoon Haiyan-Induced Storm Surge Using Tracks of Historical Tropical Cyclones

    Lapidez, John Phillip; Suarez, John Kenneth; Tablazon, Judd; Dasallas, Lea; Gonzalo, Lia Anne; Santiago, Joy; Cabacaba, Krichi May; Ramos, Michael Marie Angelo; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) 07 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the typhoon's storm surge and strong winds. Storm surges up to a height of 7 meters were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards, the flagship disaster mitigation program of the Department of Science and Technology, Government of the Philippines, to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. DOST-Project NOAH used the Japan Meteorological Agency (JMA) Storm Surge Model, a numerical code that simulates and predicts storm surges spawned by tropical cyclones. Input parameters for the storm surge model include bathymetric data, storm track, central atmospheric pressure, and maximum wind speed. The simulations were made using Haiyan's pressure and wind speed as the forcing parameters. The simulated storm surge height values were added to the maximum tide level obtained from WXTide, software that contains a catalogue of worldwide astronomical tides, to come up with storm tide levels. The resulting water level was used as input to FLO-2D to generate the storm tide inundation maps. One product of this study is a list of the most vulnerable coastal areas that can be used as basis for choosing priority sites for further studies to implement appropriate site-specific solutions. Another product is the storm tide inundation maps that the local government units can use to develop a Risk-Sensitive Land Use Plan for identifying appropriate areas to build residential buildings

  2. Topographic Correction Module at Storm (TC@Storm)

    Zaksek, K.; Cotar, K.; Veljanovski, T.; Pehani, P.; Ostir, K.

    2015-04-01

    Different solar position in combination with terrain slope and aspect result in different illumination of inclined surfaces. Therefore, the retrieved satellite data cannot be accurately transformed to the spectral reflectance, which depends only on the land cover. The topographic correction should remove this effect and enable further automatic processing of higher level products. The topographic correction TC@STORM was developed as a module within the SPACE-SI automatic near-real-time image processing chain STORM. It combines physical approach with the standard Minnaert method. The total irradiance is modelled as a three-component irradiance: direct (dependent on incidence angle, sun zenith angle and slope), diffuse from the sky (dependent mainly on sky-view factor), and diffuse reflected from the terrain (dependent on sky-view factor and albedo). For computation of diffuse irradiation from the sky we assume an anisotropic brightness of the sky. We iteratively estimate a linear combination from 10 different models, to provide the best results. Dependent on the data resolution, we mask shades based on radiometric (image) or geometric properties. The method was tested on RapidEye, Landsat 8, and PROBA-V data. Final results of the correction were evaluated and statistically validated based on various topography settings and land cover classes. Images show great improvements in shaded areas.

  3. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

    Butler, T.

    2012-07-01

    Accurate, real-time forecasting of coastal inundation due to hurricanes and tropical storms is a challenging computational problem requiring high-fidelity forward models of currents and water levels driven by hurricane-force winds. Despite best efforts in computational modeling there will always be uncertainty in storm surge forecasts. In recent years, there has been significant instrumentation located along the coastal United States for the purpose of collecting data—specifically wind, water levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge forecasting based on the use of ensemble Kalman filters and the advanced circulation (ADCIRC) storm surge model is described. The singular evolutive interpolated Kalman (SEIK) filter has been shown to be effective at producing accurate results for ocean models using small ensemble sizes initialized by an empirical orthogonal function analysis. The SEIK filter is applied to the ADCIRC model to improve storm surge forecasting, particularly in capturing maximum water levels (high water marks) and the timing of the surge. Two test cases of data obtained from hindcast studies of Hurricanes Ike and Katrina are presented. It is shown that a modified SEIK filter with an inflation factor improves the accuracy of coarse-resolution forecasts of storm surge resulting from hurricanes. Furthermore, the SEIK filter requires only modest computational resources to obtain more accurate forecasts of storm surge in a constrained time window where forecasters must interact with emergency responders.

  4. Ice storm 1998 : lessons learned

    McCready, J. [Eastern Ontario Model Forest, Kemptville, ON (Canada)

    2006-07-01

    This paper presented details of a partnership formed in response to the ice storm of 1998, which caused extensive damage to trees in woodlots and urban settings in eastern Ontario and western Quebec. The aim of the Ice Storm Forest Recovery Group was to assist in the recovery of eastern forests, collect information on the extent of the damage to trees as well as contribute to the development of assistance programs for woodlot owners and municipalities. In response to the group's request, an initial aerial survey was conducted by the Ontario Ministry of Natural Resources to map the extent of the damage in eastern Ontario, which was followed by a more scientific survey with the Canadian Forest Service through the development of a flying grid pattern to observe the status of trees, followed by extensive ground checks. Damage was variable, depending on tree species, stand age and composition, management practices, wind direction, topography and ice deposition patterns. A summary of the severity of damage indicated that conifers suffered less than hardwoods. Consultants were hired to prepare news releases and extension notes to the public in order to provide information for the caring of trees. Various educational workshops were held which attracted large numbers of landowners and homeowners. A literature review was undertaken to produce a summary of current published knowledge covering the effects of storms and ice damage to trees and forests. Science efforts were published in a series of papers, and financial assistance programs were then organized by governmental agencies. It was concluded that cooperation between all agencies, groups and levels of government is needed in order to coordinate effective emergency strategies. 7 refs., 1 tab., 1 fig.

  5. The structure of the big magnetic storms

    Mihajlivich, J. Spomenko; Chop, Rudi; Palangio, Paolo

    2010-01-01

    The records of geomagnetic activity during Solar Cycles 22 and 23 (which occurred from 1986 to 2006) indicate several extremely intensive A-class geomagnetic storms. These were storms classified in the category of the Big Magnetic Storms. In a year of maximum solar activity during Solar Cycle 23, or more precisely, during a phase designated as a post-maximum phase in solar activity (PPM - Phase Post maximum), near the autumn equinox, on 29, October 2003, an extremely strong and intensive magnetic storm was recorded. In the first half of November 2004 (7, November 2004) an intensive magnetic storm was recorded (the Class Big Magnetic Storm). The level of geomagnetic field variations which were recorded for the selected Big Magnetic Storms, was ΔD st=350 nT. For the Big Magnetic Storms the indicated three-hour interval indices geomagnetic activity was Kp = 9. This study presents the spectral composition of the Di - variations which were recorded during magnetic storms in October 2003 and November 2004. (Author)

  6. Photovoltaic self-consumption: reference activity sheets

    2016-01-01

    In order to promote the use of photovoltaic energy in self-consumption, Enerplan, the French association of solar energy professionals, has edited a set of reference sheets comprising the main technical and economic data of recent installations (cold generation facility, water treatment plant, farm, commercial and public buildings), in various French regions: description of the installation, project owner testimony, technical characteristics of the site, expected results, economic data, production/consumption results

  7. [Thyrotoxic storm and myxedema coma].

    Takasu, N

    1999-08-01

    Thyrotoxic or hyperthyroid storm is a grave, life-threatening, but relatively infrequent medical emergency. Immediate causes of death in this emergency are severe hyperpyrexia and pulmonary edema associated with arrhythmias, shock, and coma. This emergency is found in Graves' patients most frequently. Myxedema coma is an emergency clinical state caused by severe deficiency of thyroid hormones. This crisis represents the extreme expression of hypothyroidism. While it is quite useful to elicit a history of previous hypothyroidism, thyroid surgery, or radioactive iodine treatment, it is not obtainable.

  8. Dense sheet Z-pinches

    Tetsu, Miyamoto

    1999-01-01

    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  9. Ice sheets on plastically-yielding beds

    Hewitt, Ian

    2016-11-01

    Many fast flowing regions of ice sheets are underlain by a layer of water-saturated sediments, or till. The rheology of the till has been the subject of some controversy, with laboratory tests suggesting almost perfectly plastic behaviour (stress independent of strain rate), but many models adopting a pseudo-viscous description. In this work, we consider the behaviour of glaciers underlain by a plastic bed. The ice is treated as a viscous gravity current, on a bed that allows unconstrained slip above a critical yield stress. This simplified description allows rapid sliding, and aims to investigate 'worst-case' scenarios of possible ice-sheet disintegration. The plastic bed results in an approximate ice-sheet geometry that is primarily controlled by force balance, whilst ice velocity is determined from mass conservation (rather than the other way around, as standard models would hold). The stability of various states is considered, and particular attention is given to the pace at which transitions between unstable states can occur. Finally, we observe that the strength of basal tills depends strongly on pore pressure, and combine the model with a description of subglacial hydrology. Implications for the present-day ice sheets in Greenland and Antarctica will be discussed. Funding: ERC Marie Curie FP7 Career Integration Grant.

  10. Perforation of metal sheets

    Steenstrup, Jens Erik

    simulation is focused on the sheet deformation. However, the effect on the tool and press is included. The process model is based on the upper bound analysis in order to predict the force progress and hole characteristics etc. Parameter analyses are divided into two groups, simulation and experimental tests......The main purposes of this project are:1. Development of a dynamic model for the piercing and performation process2. Analyses of the main parameters3. Establishing demands for process improvements4. Expansion of the existing parameter limitsThe literature survey describes the process influence...

  11. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers

    Goslin, Jérôme; Clemmensen, Lars B.

    2017-10-01

    Extreme storm events in the coastal zone are one of the main forcing agents of short-term coastal system behavior. As such, storms represent a major threat to human activities concentrated along the coasts worldwide. In order to better understand the frequency of extreme events like storms, climate science must rely on longer-time records than the century-scale records of instrumental weather data. Proxy records of storm-wave or storm-wind induced activity in coastal barrier systems deposits have been widely used worldwide in recent years to document past storm events during the last millennia. This review provides a detailed state-of-the-art compilation of the proxies available from coastal barrier systems to reconstruct Holocene storm chronologies (paleotempestology). The present paper aims (I) to describe the erosional and depositional processes caused by storm-wave action in barrier and back-barrier systems (i.e. beach ridges, storm scarps and washover deposits), (ii) to understand how storm records can be extracted from barrier and back-barrier sedimentary bodies using stratigraphical, sedimentological, micro-paleontological and geochemical proxies and (iii) to show how to obtain chronological control on past storm events recorded in the sedimentary successions. The challenges that paleotempestology studies still face in the reconstruction of representative and reliable storm-chronologies using these various proxies are discussed, and future research prospects are outlined.

  12. In the Eye of the Storm: A Participatory Course on Coastal Storms

    Curtis, Scott

    2013-01-01

    Storm disasters are amplified in the coastal environment due to population pressures and the power of the sea. The upper-division/graduate university course "Coastal Storms" was designed to equip future practitioners with the skills necessary to understand, respond to, and mitigate for these natural disasters. To accomplish this, "Coastal Storms"…

  13. Storm Surge and Tide Interaction: A Complete Paradigm

    Horsburgh, K.

    2014-12-01

    Estimates show that in 2005, in the largest 136 coastal cities, there were 40 million people and 3,000 billion of assets exposed to 1 in 100 year coastal flood events. Mean sea level rise will increase this exposure to 150 million people and 35,000 billion of assets by 2070. Any further change in the statistics of flood frequency or severity would impact severely on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. We present results from a storm surge model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are greater when tidal range is low. Our results contradict the absence of any such correlation in tide gauge records. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that flood forecasting models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model

  14. Spring Dust Storm Smothers Beijing

    2002-01-01

    A few days earlier than usual, a large, dense plume of dust blew southward and eastward from the desert plains of Mongolia-quite smothering to the residents of Beijing. Citizens of northeastern China call this annual event the 'shachenbao,' or 'dust cloud tempest.' However, the tempest normally occurs during the spring time. The dust storm hit Beijing on Friday night, March 15, and began coating everything with a fine, pale brown layer of grit. The region is quite dry; a problem some believe has been exacerbated by decades of deforestation. According to Chinese government estimates, roughly 1 million tons of desert dust and sand blow into Beijing each year. This true-color image was made using two adjacent swaths (click to see the full image) of data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on March 17, 2002. The massive dust storm (brownish pixels) can easily be distinguished from clouds (bright white pixels) as it blows across northern Japan and eastward toward the open Pacific Ocean. The black regions are gaps between SeaWiFS' viewing swaths and represent areas where no data were collected. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  15. Future changes in extratropical storm tracks and baroclinicity under climate change

    Lehmann, Jascha; Coumou, Dim; Frieler, Katja; Eliseev, Alexey V; Levermann, Anders

    2014-01-01

    The weather in Eurasia, Australia, and North and South America is largely controlled by the strength and position of extratropical storm tracks. Future climate change will likely affect these storm tracks and the associated transport of energy, momentum, and water vapour. Many recent studies have analyzed how storm tracks will change under climate change, and how these changes are related to atmospheric dynamics. However, there are still discrepancies between different studies on how storm tracks will change under future climate scenarios. Here, we show that under global warming the CMIP5 ensemble of coupled climate models projects only little relative changes in vertically averaged mid-latitude mean storm track activity during the northern winter, but agree in projecting a substantial decrease during summer. Seasonal changes in the Southern Hemisphere show the opposite behaviour, with an intensification in winter and no change during summer. These distinct seasonal changes in northern summer and southern winter storm tracks lead to an amplified seasonal cycle in a future climate. Similar changes are seen in the mid-latitude mean Eady growth rate maximum, a measure that combines changes in vertical shear and static stability based on baroclinic instability theory. Regression analysis between changes in the storm tracks and changes in the maximum Eady growth rate reveal that most models agree in a positive association between the two quantities over mid-latitude regions. (letter)

  16. The Development of Storm Surge Ensemble Prediction System and Case Study of Typhoon Meranti in 2016

    Tsai, Y. L.; Wu, T. R.; Terng, C. T.; Chu, C. H.

    2017-12-01

    Taiwan is under the threat of storm surge and associated inundation, which is located at a potentially severe storm generation zone. The use of ensemble prediction can help forecasters to know the characteristic of storm surge under the uncertainty of track and intensity. In addition, it can help the deterministic forecasting. In this study, the kernel of ensemble prediction system is based on COMCOT-SURGE (COrnell Multi-grid COupled Tsunami Model - Storm Surge). COMCOT-SURGE solves nonlinear shallow water equations in Open Ocean and coastal regions with the nested-grid scheme and adopts wet-dry-cell treatment to calculate potential inundation area. In order to consider tide-surge interaction, the global TPXO 7.1 tide model provides the tidal boundary conditions. After a series of validations and case studies, COMCOT-SURGE has become an official operating system of Central Weather Bureau (CWB) in Taiwan. In this study, the strongest typhoon in 2016, Typhoon Meranti, is chosen as a case study. We adopt twenty ensemble members from CWB WRF Ensemble Prediction System (CWB WEPS), which differs from parameters of microphysics, boundary layer, cumulus, and surface. From box-and-whisker results, maximum observed storm surges were located in the interval of the first and third quartile at more than 70 % gauge locations, e.g. Toucheng, Chengkung, and Jiangjyun. In conclusion, the ensemble prediction can effectively help forecasters to predict storm surge especially under the uncertainty of storm track and intensity

  17. A superposed epoch analysis of geomagnetic storms

    J. R. Taylor

    1994-06-01

    Full Text Available A superposed epoch analysis of geomagnetic storms has been undertaken. The storms are categorised via their intensity (as defined by the Dst index. Storms have also been classified here as either storm sudden commencements (SSCs or storm gradual commencements (SGCs, that is all storms which did not begin with a sudden commencement. The prevailing solar wind conditions defined by the parameters solar wind speed (vsw, density (ρsw and pressure (Psw and the total field and the components of the interplanetary magnetic field (IMF during the storms in each category have been investigated by a superposed epoch analysis. The southward component of the IMF, appears to be the controlling parameter for the generation of small SGCs (-100 nT< minimum Dst ≤ -50 nT for ≥ 4 h, but for SSCs of the same intensity solar wind pressure is dominant. However, for large SSCs (minimum Dst ≤ -100 nT for ≥ 4 h the solar wind speed is the controlling parameter. It is also demonstrated that for larger storms magnetic activity is not solely driven by the accumulation of substorm activity, but substantial energy is directly input via the dayside. Furthermore, there is evidence that SSCs are caused by the passage of a coronal mass ejection, whereas SGCs result from the passage of a high speed/ slow speed coronal stream interface. Storms are also grouped by the sign of Bz during the first hour epoch after the onset. The sign of Bz at t = +1 h is the dominant sign of the Bz for ~24 h before the onset. The total energy released during storms for which Bz was initially positive is, however, of the same order as for storms where Bz was initially negative.

  18. Experiments on sheet metal shearing

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  19. Distribution of auroral precipitation at midnight during a magnetic storm

    Sandahl, I.; Eliasson, L.; Pellinen-Wannberg, A.; Rostoker, G.; Block, L.P.; Erlandson, R.E.; Friis-Christensen, E.; Jacobsen, B.; Luehr, H.; Murphree, J.S.

    1990-01-01

    On the night of November 4, 1986, a very complex precipitation pattern was observed by Viking in the magnetic midnight sector over Scandinavia and Svalbard. The pass took place during a magnetic storm, and during substorm recovery phase. Going from north to south, the satellite first encountered a plasma region of BPS-type (name derived from boundary plasma sheet) and then a region of CPS type (derived from central plasma sheet). Then, however, a new region of BPS-type was traversed. The quite intense, most equatorward aurora corresponded to a plasma region which was not of ordinary CPS type but contained sharp quasi-monoenergetic peaks. The high-latitude midnight sector was totally dominated by eastward convection. The Harang discontinuity had passed northern Scandinavia the first time as early as 17 to 20 MLT, more than three house before the Viking pass. It is suggested that the particle precipitation pattern and the general shape of the aurora as observed by the Viking imager can be explained in a natural way by the convection pattern. The northernmost BPS- and CPS-type regions originated in the morningside convection cell, while the more equatorward population of BPS type had drifted in from the eveningside. The interpretation is supported by ground-based measurements by EISCAT and magnetometers

  20. Predicting the Storm Surge Threat of Hurricane Sandy with the National Weather Service SLOSH Model

    Cristina Forbes

    2014-05-01

    Full Text Available Numerical simulations of the storm tide that flooded the US Atlantic coastline during Hurricane Sandy (2012 are carried out using the National Weather Service (NWS Sea Lakes and Overland Surges from Hurricanes (SLOSH storm surge prediction model to quantify its ability to replicate the height, timing, evolution and extent of the water that was driven ashore by this large, destructive storm. Recent upgrades to the numerical model, including the incorporation of astronomical tides, are described and simulations with and without these upgrades are contrasted to assess their contributions to the increase in forecast accuracy. It is shown, through comprehensive verifications of SLOSH simulation results against peak water surface elevations measured at the National Oceanic and Atmospheric Administration (NOAA tide gauge stations, by storm surge sensors deployed and hundreds of high water marks collected by the U.S. Geological Survey (USGS, that the SLOSH-simulated water levels at 71% (89% of the data measurement locations have less than 20% (30% relative error. The RMS error between observed and modeled peak water levels is 0.47 m. In addition, the model’s extreme computational efficiency enables it to run large, automated ensembles of predictions in real-time to account for the high variability that can occur in tropical cyclone forecasts, thus furnishing a range of values for the predicted storm surge and inundation threat.

  1. Reconnaissance level study Mississippi storm surge barrier

    Van Ledden, M.; Lansen, A.J.; De Ridder, H.A.J.; Edge, B.

    2012-01-01

    This paper reports a reconnaissance level study of a storm surge barrier in the Mississippi River. Historical hurricanes have shown storm surge of several meters along the Mississippi River levees up to and upstream of New Orleans. Future changes due to sea level rise and subsidence will further

  2. The evaluation and management of electrical storm.

    Eifling, Michael; Razavi, Mehdi; Massumi, Ali

    2011-01-01

    Electrical storm is an increasingly common and life-threatening syndrome that is defined by 3 or more sustained episodes of ventricular tachycardia, ventricular fibrillation, or appropriate shocks from an implantable cardioverter-defibrillator within 24 hours. The clinical presentation can be dramatic. Electrical storm can manifest itself during acute myocardial infarction and in patients who have structural heart disease, an implantable cardioverter-defibrillator, or an inherited arrhythmic syndrome. The presence or absence of structural heart disease and the electrocardiographic morphology of the presenting arrhythmia can provide important diagnostic clues into the mechanism of electrical storm. Electrical storm typically has a poor outcome.The effective management of electrical storm requires an understanding of arrhythmia mechanisms, therapeutic options, device programming, and indications for radiofrequency catheter ablation. Initial management involves determining and correcting the underlying ischemia, electrolyte imbalances, or other causative factors. Amiodarone and β-blockers, especially propranolol, effectively resolve arrhythmias in most patients. Nonpharmacologic treatment, including radiofrequency ablation, can control electrical storm in drug-refractory patients. Patients who have implantable cardioverter-defibrillators can present with multiple shocks and may require drug therapy and device reprogramming. After the acute phase of electrical storm, the treatment focus should shift toward maximizing heart-failure therapy, performing revascularization, and preventing subsequent ventricular arrhythmias. Herein, we present an organized approach for effectively evaluating and managing electrical storm.

  3. Normothermic thyroid storm: an unusual presentation

    Sabir, Anas Ahmad; Sada, Kabiru; Yusuf, Bashir O.; Aliyu, Idris

    2016-01-01

    Thyroid storm is a rare life-threatening emergency due to thyrotoxicosis. A 30-year-old female presented with restlessness, tachycardia and vomiting but with normothermia which is an unusual presentation. There is the need for clinicians to be aware of atypical clinical features that can make the diagnosis of thyroid storm difficult. PMID:27540465

  4. Predicting the occurrence of super-storms

    N. Srivastava

    2005-11-01

    Full Text Available A comparative study of five super-storms (Dst<-300 nT of the current solar cycle after the launch of SoHO, to identify solar and interplanetary variables that influence the magnitude of resulting geomagnetic storms, is described. Amongst solar variables, the initial speed of a CME is considered the most reliable predictor of the strength of the associated geomagnetic storm because fast mass ejections are responsible for building up the ram pressure at the Earth's magnetosphere. However, although most of the super-storms studied were associated with high speed CMEs, the Dst index of the resulting geomagnetic storms varied between -300 to -472 nT. The most intense storm of 20 November 2003, (Dst ~ -472 nT had its source in a comparatively smaller active region and was associated with a relatively weaker, M-class flare while all other super-storms had their origins in large active regions and were associated with strong X-class flares. However, this superstorm did not show any associated extraordinary solar and interplanetary characteristics. The study also reveals the challenge in the reliable prediction of the magnitude of a geomagnetic storm from solar and interplanetary variables.

  5. Predicting the occurrence of super-storms

    N. Srivastava

    2005-11-01

    Full Text Available A comparative study of five super-storms (Dst<-300 nT of the current solar cycle after the launch of SoHO, to identify solar and interplanetary variables that influence the magnitude of resulting geomagnetic storms, is described. Amongst solar variables, the initial speed of a CME is considered the most reliable predictor of the strength of the associated geomagnetic storm because fast mass ejections are responsible for building up the ram pressure at the Earth's magnetosphere. However, although most of the super-storms studied were associated with high speed CMEs, the Dst index of the resulting geomagnetic storms varied between -300 to -472 nT. The most intense storm of 20 November 2003, (Dst ~ -472 nT had its source in a comparatively smaller active region and was associated with a relatively weaker, M-class flare while all other super-storms had their origins in large active regions and were associated with strong X-class flares. However, this superstorm did not show any associated extraordinary solar and interplanetary characteristics. The study also reveals the challenge in the reliable prediction of the magnitude of a geomagnetic storm from solar and interplanetary variables.

  6. Storm Sewage Dilution in Smaller Streams

    Larsen, Torben; Vestergaard, Kristian

    1987-01-01

    A numerical model has been used to show how dilution in smaller streams can be effected by unsteady hydraulic conditions caused by a storm sewage overflow.......A numerical model has been used to show how dilution in smaller streams can be effected by unsteady hydraulic conditions caused by a storm sewage overflow....

  7. Living with storm damage to forests

    Gardiner, B.; Schuck, A.; Schelhaas, M.J.; Orazio, C.; Blennow, K.; Nicoll, B.

    2013-01-01

    Windstorms are a major disturbance factor for European forests. In the past six decades wind storms have damaged standing forest volume, which on a yearly average equals about the size of Poland's annual fellings. The evedence also indicates that the actual severity of storms in the wake of climatic

  8. Storm real-time processing cookbook

    Anderson, Quinton

    2013-01-01

    A Cookbook with plenty of practical recipes for different uses of Storm.If you are a Java developer with basic knowledge of real-time processing and would like to learn Storm to process unbounded streams of data in real time, then this book is for you.

  9. The plasmasheet H+ and O+ contribution on the storm time ring current

    Mouikis, C.; Bingham, S.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.

    2015-12-01

    The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes and Cluster observations to determine the contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. Using the Volland-Stern model with a dipole magnetic field together with the identification of the observed energy cutoffs in the particle spectra, we specify the pressure contributed by H+ and O+ populations that are on open drift paths vs. the pressure contributed by the trapped populations, for different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L~2 and their pressure compares to the local magnetic field pressure as deep as L~3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current.

  10. Hanford Site Treated Effluent Disposal Facility process flow sheet

    Bendixsen, R.B.

    1993-04-01

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process

  11. Electrical storm: clinical manifestations and management.

    Littmann, L; Rennyson, S L

    2007-10-01

    Electrical storm is the clustering of hemodynamically destabilizing ventricular tachycardia or ventricular fibrillation that typically requires multiple electrical cardioversions or defibrillations within a 24-hour period. Electrical storm is frequently seen in the acute phase of myocardial infarction, in patients with the genetic arrhythmia syndromes, and in patients with implanted cardioverters-defibrillators. The evaluation and management should focus on the immediate suppression of the arrhythmia, a search for possible reversible causes, and attempts to prevent recurrences. In this review we present the most common conditions associated with electrical storm, therapeutic options for suppression of electrical storm, and new investigational techniques emerging for the treatment of electrical storm in refractory cases. The management of this life threatening arrhythmia typically requires the coordinated efforts of emergency medicine, critical care, cardiology, cardiac electrophysiology, and pacemaker experts.

  12. Thyroid storm precipitated by acute biliary pancreatitis

    Mehrdad Karimi

    2017-01-01

    Full Text Available Thyroid storm is an acute, life-threatening exacerbation and sudden releasing large amounts of thyroid hormone in a short period of time. Nevertheless, critical aggravation of hyperthyroidism typically resulted from concurrent disorder. Synchronous management of thyroid storm along with its precipitant, such as infection is recommended. We described the case of an acute biliary pancreatitis complicated with a thyroid storm. The patient was successfully managed with a quick surgical intervention and further critical care for thyroid storm. Although it is widely believed that pancreatitis is seldom concurrent with thyrotoxicosis, thyroid storm can be precipitated by a variety of factors, including intra-abdominal infections such as acute pancreatitis or perforated peptic ulcer. In conclusion, acute pancreatitis in patients with thyrotoxicosis seems to be extremely rare, but such patients should be managed intensively against underlying thyroid disorders as well as pancreatitis.

  13. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.

    Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N

    2015-12-30

    This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The Effect of Coastal Development on Storm Surge Flooding in Biscayne Bay, Florida, USA (Invited)

    Zhang, K.; Liu, H.; Li, Y.

    2013-12-01

    Barrier islands and associated bays along the Atlantic and Gulf Coasts are a favorite place for both living and visiting. Many of them are vulnerable to storm surge flooding because of low elevations and constantly being subjected to the impacts of storms. The population increase and urban development along the barrier coast have altered the shoreline configuration, resulting in a dramatic change in the coastal flooding pattern in some areas. Here we present such a case based on numerical simulations of storm surge flooding caused by the1926 hurricane in the densely populated area surrounding Biscayne Bay in Miami, Florida. The construction of harbor and navigation channels, and the development of real estate and the roads connecting islands along Biscayne Bay have changed the geometry of Biscayne Bay since 1910s. Storm surge simulations show that the Port of Miami and Dodge Island constructed by human after 1950 play an important role in changing storm surge inundation pattern along Biscayne Bay. Dodge Island enhances storm surge and increases inundation in the area south of the island, especially at the mouth of Miami River (Downtown of Miami), and reduces storm surge flooding in the area north of the island, especially in Miami Beach. If the Hurricane Miami of 1926 happened today, the flooding area would be reduced by 55% and 20% in the Miami Beach and North Miami areas, respectively. Consequently, it would prevent 400 million of property and 10 thousand people from surge flooding according to 2010 U.S census and 2007 property tax data. Meanwhile, storm water would penetrate further inland south of Dodge Island and increase the flooding area by 25% in the Miami River and Downtown Miami areas. As a result, 200 million of property and five thousand people would be impacted by storm surge.

  15. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  16. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  17. Sediment-driven mercury transport in post-fire storm runoff

    Burke, M. P.; Ferreira, M.; Hogue, T. S.; Jay, J.; Rademacher, L. K.

    2009-12-01

    Wildfire alters terrestrial stores of mercury (Hg) within a watershed, releasing Hg to the atmosphere and creating conditions that can be conducive to Hg export in streamwater. Hg transport to terrestrial waters is often associated with suspended sediments and organic matter, and particulate-bound Hg delivery to downstream water bodies may be enhanced following wildfire. Burned watersheds experience increased overland flow, soil erosion, sediment transport, and, consequently, transport of sediment bound contaminants during early post-fire storm events. Southern California’s September 2006 Day Fire consumed 660km2 and almost 50% of the 512km2 Piru Creek watershed. Piru Creek drains into Pyramid Lake, a storage reservoir for the California State Water Project, which provides drinking water for Los Angeles. Streamwater was collected from Piru Creek watershed over a 1.5 year period following the Day Fire, on a monthly basis during low flow periods, and every two hours during storm events using an automated sampler. Samples were analyzed for both dissolved and total Hg, total suspended solids, and basic anions and cations. Low Hg concentrations (> 1ng Hg/ L dissolved and > 5ng Hg/L total) were measured in inter-storm samples. The first winter (2006-07) following the Day Fire was one of the driest on record, with precipitation totals (130mm) less than one third of normal. The only significant storm measured total Hg concentrations just slightly higher than the inter-storm samples, while no change was observed in the dissolved Hg concentrations. However, these total Hg concentrations were well correlated to TSS measurements (r2 = 0.91) and followed the storm hydrograph. The following winter (2007-08) brought higher precipitation totals (370mm) and more intense storms. Elevated, turbid stream flow was observed in Piru Creek during many of the 2007-08 storms. Little change was observed in the dissolved Hg concentrations of the storm samples; however, a two-order magnitude

  18. Analysis of storm-tide impacts from Hurricane Sandy in New York

    Schubert, Christopher E.; Busciolano, Ronald J.; Hearn, Paul P.; Rahav, Ami N.; Behrens, Riley; Finkelstein, Jason S.; Monti, Jack; Simonson, Amy E.

    2015-07-21

    The hybrid cyclone-nor’easter known as Hurricane Sandy affected the mid-Atlantic and northeastern United States during October 28-30, 2012, causing extensive coastal flooding. Prior to storm landfall, the U.S. Geological Survey (USGS) deployed a temporary monitoring network from Virginia to Maine to record the storm tide and coastal flooding generated by Hurricane Sandy. This sensor network augmented USGS and National Oceanic and Atmospheric Administration (NOAA) networks of permanent monitoring sites that also documented storm surge. Continuous data from these networks were supplemented by an extensive post-storm high-water-mark (HWM) flagging and surveying campaign. The sensor deployment and HWM campaign were conducted under a directed mission assignment by the Federal Emergency Management Agency (FEMA). The need for hydrologic interpretation of monitoring data to assist in flood-damage analysis and future flood mitigation prompted the current analysis of Hurricane Sandy by the USGS under this FEMA mission assignment.

  19. Simulating Storm Surge Impacts with a Coupled Atmosphere-Inundation Model with Varying Meteorological Forcing

    Alexandra N. Ramos Valle

    2018-04-01

    Full Text Available Storm surge events have the potential to cause devastating damage to coastal communities. The magnitude of their impacts highlights the need for increased accuracy and real-time forecasting and predictability of storm surge. In this study, we assess two meteorological forcing configurations to hindcast the storm surge of Hurricane Sandy, and ultimately support the improvement of storm surge forecasts. The Weather Research and Forecasting (WRF model is coupled to the ADvanced CIRCulation Model (ADCIRC to determine water elevations. We perform four coupled simulations and compare storm surge estimates resulting from the use of a parametric vortex model and a full-physics atmospheric model. One simulation is forced with track-based meteorological data calculated from WRF, while three simulations are forced with the full wind and pressure field outputs from WRF simulations of varying resolutions. Experiments were compared to an ADCIRC simulation forced by National Hurricane Center best track data, as well as to station observations. Our results indicated that given accurate meteorological best track data, a parametric vortex model can accurately forecast maximum water elevations, improving upon the use of a full-physics coupled atmospheric-surge model. In the absence of a best track, atmospheric forcing in the form of full wind and pressure field from a high-resolution atmospheric model simulation prove reliable for storm surge forecasting.

  20. The influence of bed friction variability due to land cover on storm-driven barrier island morphodynamics

    Passeri, Davina L.; Long, Joseph W.; Plant, Nathaniel G.; Bilskie, Matthew V.; Hagen, Scott C.

    2018-01-01

    Variations in bed friction due to land cover type have the potential to influence morphologic change during storm events; the importance of these variations can be studied through numerical simulation and experimentation at locations with sufficient observational data to initialize realistic scenarios, evaluate model accuracy and guide interpretations. Two-dimensional in the horizontal plane (2DH) morphodynamic (XBeach) simulations were conducted to assess morphodynamic sensitivity to spatially varying bed friction at Dauphin Island, AL using hurricanes Ivan (2004) and Katrina (2005) as experimental test cases. For each storm, three bed friction scenarios were simulated: (1) a constant Chezy coefficient across land and water, (2) a constant Chezy coefficient across land and depth-dependent Chezy coefficients across water, and (3) spatially varying Chezy coefficients across land based on land use/land cover (LULC) data and depth-dependent Chezy coefficients across water. Modeled post-storm bed elevations were compared qualitatively and quantitatively with post-storm lidar data. Results showed that implementing spatially varying bed friction influenced the ability of XBeach to accurately simulate morphologic change during both storms. Accounting for frictional effects due to large-scale variations in vegetation and development reduced cross-barrier sediment transport and captured overwash and breaching more accurately. Model output from the spatially varying friction scenarios was used to examine the need for an existing sediment transport limiter, the influence of pre-storm topography and the effects of water level gradients on storm-driven morphodynamics.

  1. Soft Costs Fact Sheet

    None

    2016-05-01

    This fact sheet is an overview of the systems integration subprogram at the U.S. Department of Energy SunShot Initiative. Soft costs can vary significantly as a result of a fragmented energy marketplace. In the U.S., there are 18,000 jurisdictions and 3,000 utilities with different rules and regulations for how to go solar. The same solar equipment may vary widely in its final installation price due to process and market variations across jurisdictions, creating barriers to rapid industry growth. SunShot supports the development of innovative solutions that enable communities to build their local economies and establish clean energy initiatives that meet their needs, while at the same time creating sustainable solar market conditions.

  2. Photovoltaics Fact Sheet

    None

    2016-02-01

    This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials, processes, and device structure and characterization techniques.

  3. Systems Integration Fact Sheet

    None

    2016-06-01

    This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstration projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.

  4. Hyperspectral light sheet microscopy

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-09-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  5. Dust Storm Hits Canary Islands

    2002-01-01

    A thick pall of sand and dust blew out from the Sahara Desert over the Atlantic Ocean yesterday (January 6, 2002), engulfing the Canary Islands in what has become one of the worst sand storms ever recorded there. In this scene, notice how the dust appears particularly thick in the downwind wake of Tenerife, the largest of the Canary Islands. Perhaps the turbulence generated by the air currents flowing past the island's volcanic peaks is churning the dust back up into the atmosphere, rather than allowing it to settle toward the surface. This true-color image was captured by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on January 7, 2002. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  6. The state of the Greenland Ice Sheet

    Simonsen, Sebastian Bjerregaard

    Firn is defined as snow that has survived a melt season and provides the link between the high-frequency variability of the atmosphere to the ”slower” reacting ice sheet.In this thesis, firn is described by a theoretical and statistical approach to accommodate the variability in observed firn...... compaction on ice sheet scales. The modeling objectives are multiple and aim at estimating the contribution from the firn to the observed volume change of the GrIS and to the diffusion of stable water isotopes. The firn modeling then provides crucial information on total mass balance of the Gr......IS and the paleo-temperature reconstructions retrieved from ice cores.The dynamical firn model developed in this thesis explains13 % of the observed volume change of the GrIS from 2003-2008, without contributing to the global sea-level rise. This emphasizes the need for well constraint firn-compaction models. Here...

  7. Settlement during vibratory sheet piling

    Meijers, P.

    2007-01-01

    During vibratory sheet piling quite often the soil near the sheet pile wall will settle. In many cases this is not a problem. For situations with houses, pipelines, roads or railroads at relative short distance these settlements may not be acceptable. The purpose of the research described in this

  8. Northeast storms ranked by wind stress and wave-generated bottom stress observed in Massachusetts Bay, 1990-2006

    Butman, B.; Sherwood, C.R.; Dalyander, P.S.

    2008-01-01

    Along the coast of the northeastern United States, strong winds blowing from the northeast are often associated with storms called northeasters, coastal storms that strongly influence weather. In addition to effects caused by wind stress, the sea floor is affected by bottom stress associated with these storms. Bottom stress caused by orbital velocities associated with surface waves integrated over the duration of a storm is a metric of storm strength at the sea floor. Near-bottom wave-orbital velocities calculated by using measurements of significant wave height and dominant wave period and the parametric spectral method described in Wiberg and Sherwood [Wiberg, P.L., Sherwood, C.R. Calculating wave-generated bottom orbital velocities from surface wave parameters. Computers in Geosciences, in press] compared well with observations in Massachusetts Bay. Integrated bottom-wave stress (called IWAVES), calculated at 30 m water depth, and a companion storm-strength metric, integrated surface wind stress at 10 m (called IWINDS), are used to provide an overview of the strength, frequency, and timing of large storms in Massachusetts Bay over a 17-year period from January 1990 through December 2006. These new metrics reflect both storm duration and intensity. Northeast storms were the major cause of large waves in Massachusetts Bay because of the long fetch to the east: of the strongest 10% of storms (n=38) ranked by IWAVES, 22 had vector-averaged wind stress from the northeast quadrant. The Blizzard of December 1992, the Perfect Storm of October 1991, and a December 2003 storm were the strongest three storms ranked by IWAVES and IWINDS, and all were northeasters. IWAVES integrated over the winter season (defined as October-May) ranged by about a factor of 11; the winters with the highest integrated IWAVES were 1992-1993 and 2004-2005 and the winter with the lowest integrated IWAVES was 2001-2002. May 2005 was the only month in the 17-year record that two of the nine

  9. Deciphering storm-event runoff behavior in a coastal plain watershed using chemical and physical hydrograph separation techniques

    Timothy Callahan; Austin E. Morrison

    2016-01-01

    Interpreting storm-event runoff in coastal plain watersheds is challenging because of the space- and time-variable nature of different sources that contribute to stream flow. These flow vectors and the magnitude of water flux is dependent on the pre-storm soil moisture (as estimated from depth to water table) in the lower coastal plain (LCP) region.

  10. Predicting severe winter coastal storm damage

    Hondula, David M; Dolan, Robert

    2010-01-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'-such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989-are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the North

  11. Predicting severe winter coastal storm damage

    Hondula, David M; Dolan, Robert, E-mail: hondula@virginia.edu [Department of Environmental Sciences, University of Virginia, PO Box 400123, Charlottesville, VA 22903 (United States)

    2010-07-15

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'-such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989-are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the

  12. Predicting severe winter coastal storm damage

    Hondula, David M.; Dolan, Robert

    2010-07-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'—such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989—are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the

  13. Neutron spatial distribution measurement with 6Li-contained thermoluminescent sheets

    Konnai, A.; Odano, N.; Sawamura, H.; Ozasa, N.; Ishikawa, Y.

    2006-01-01

    We have been developing a thermoluminescent (TL) sheet for photon dosimetry (TL sheet) with thermoluminescent material of LiF:Mg, Cu, P and a co-polymer of ethylene and tetrafluoroethylene. For the purpose of a development of simple method for neutron spatial distribution measurement, TL sheet for neutron detection (NTL sheet) is made by adding 94.7% enriched 6 LiF to TL sheet. TL material in TL sheet is directly excited by ionizing radiation whereas, in the case of neutron detection, TL material in NTL sheet is indirectly excited by neutron capture reaction. That is neutron distribution can be obtained with TL caused by α particle from 6 Li(n, α) 3 H reaction. Responses of NTL sheets to neutrons were examined at the neutron beam irradiation facility for Boron Neutron Capture Therapy (BNCT) in JRR-4 research reactor in Japan Atomic Energy Agency. TL and NTL sheets were exposed to striped and roundly distributed neutron fields. Attenuations of neutron flux in air and water were also observed using NTL sheets. TL sheets were also exposed on the same conditions and compared with NTL sheets. TL intensity ratios of NTL sheet to TL sheet were consistent with the calculated value from 6 Li content. Thermal neutron attenuation observed by NTL sheet also corresponded with the result measured by Au wire radioactivation and TLD chips, which were currently used in BNCT at JRR-4. These results were analyzed with by Monte Carlo simulation. The present results indicated that NTL sheet is applicable to measurement of neutron spatial distribution. (author)

  14. Plasma dynamics in current sheets

    Bogdanov, S.Yu.; Drejden, G.V.; Kirij, N.P.; AN SSSR, Leningrad

    1992-01-01

    Plasma dynamics in successive stages of current sheet evolution is investigated on the base of analysis of time-spatial variations of electron density and electrodynamic force fields. Current sheet formation is realized in a two-dimensional magnetic field with zero line under the action of relatively small initial disturbances (linear regimes). It is established that in the limits of the formed sheet is concentrated dense (N e ∼= 10 16 cm -3 ) (T i ≥ 100 eV, bar-Z i ≥ 2) hot pressure of which is balanced by the magnetic action of electrodynamic forces is carried out both plasma compression in the sheet limits and the acceleration along the sheet surface from a middle to narrow side edges

  15. Geometric effects of ICMEs on geomagnetic storms

    Cho, KyungSuk; Lee, Jae-Ok

    2017-04-01

    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  16. Investigating and Modeling Ecosystem Response to an Experimental and a Natural Ice Storm

    Fakhraei, H.; Driscoll, C. T.; Rustad, L.; Campbell, J. L.; Groffman, P.; Fahey, T.; Likens, G.; Swaminathan, R.

    2017-12-01

    Our understanding of ecosystem response to the extreme events is generally limited to rare observations from the natural historical events. However, investigating extreme events under controlled conditions can improve our understanding of these natural phenomena. A novel field experiment was conducted in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire in the northeastern United States to quantify the influence of ice storms on the ecological processes. During subfreezing conditions in the winters of 2016 and 2017, water from a nearby stream was pumped and sprayed on the canopy of eight experimental plots to accrete ice to a targeted thickness on the canopy. The experiment was conducted at three levels of icing thickness (0.25, 0.5, 0.75 in.) in 2016 comparable to the naturally occurring 1998 ice storm and a second 0.5 in. treatment 2017 which were compared with reference plots. The most notable response of the icing treatments was a marked increase in fine and course litter fall which increased exponentially with increases in the icing thickness. Post-treatment openings in the canopy caused short-term increases in soil temperature in the ice-treatment plots compared to the reference plots. No response from the ice storm treatments were detected for soil moisture, net N mineralization, net nitrification, or denitrification after both natural and experimental ice storm. In contrast to the marked increase in the stream water nitrate after the natural occurring 1998 ice storm, we have not observed any significant change in soil solution N concentrations in the experimental ice storm treatments. Inconsistency in the response between the natural and experimental ice storm is likely due to differences in geophysical characteristics of the study sites including slope and lateral uptake of nutrient by the trees outside the experimental plots. In order to evaluate the long-term impacts of ice storms on northern hardwood forests, we used

  17. Vitamin and Mineral Supplement Fact Sheets

    ... website Submit Search NIH Office of Dietary Supplements Vitamin and Mineral Supplement Fact Sheets Search the list ... Supplements: Background Information Botanical Dietary Supplements: Background Information Vitamin and Mineral Fact Sheets Botanical Supplement Fact Sheets ...

  18. Energetic ion injection and formation of the storm-time symmetric ring current

    L. Xie

    2006-12-01

    Full Text Available An extensive study of ring current injection and intensification of the storm-time ring current is conducted with three-dimensional (3-D test particle trajectory calculations (TPTCs. The TPTCs reveal more accurately the process of ring current injection, with the main results being the following: (1 an intense convection electric field can effectively energize and inject plasma sheet particles into the ring current region within 1–3 h. (2 Injected ions often follow chaotic trajectories in non-adiabatic regions, which may have implications in storm and ring current physics. (3 The shielding electric field, which arises as a consequence of enhanced convection and co-exists with the injection and convection electric field, may cause the original open trajectories of injected ions with higher energy to change into closed ones, thus playing a role in the formation of the symmetric ring current.

  19. Deep Space Storm Shelter Simulation Study

    Dugan, Kathryn; Phojanamongkolkij, Nipa; Cerro, Jeffrey; Simon, Matthew

    2015-01-01

    Missions outside of Earth's magnetic field are impeded by the presence of radiation from galactic cosmic rays and solar particle events. To overcome this issue, NASA's Advanced Exploration Systems Radiation Works Storm Shelter (RadWorks) has been studying different radiation protective habitats to shield against the onset of solar particle event radiation. These habitats have the capability of protecting occupants by utilizing available materials such as food, water, brine, human waste, trash, and non-consumables to build short-term shelters. Protection comes from building a barrier with the materials that dampens the impact of the radiation on astronauts. The goal of this study is to develop a discrete event simulation, modeling a solar particle event and the building of a protective shelter. The main hallway location within a larger habitat similar to the International Space Station (ISS) is analyzed. The outputs from this model are: 1) the total area covered on the shelter by the different materials, 2) the amount of radiation the crew members receive, and 3) the amount of time for setting up the habitat during specific points in a mission given an event occurs.

  20. New type of nonglossy image-receiving sheet

    Aono, Toshiaki; Shibata, Takeshi; Nakamura, Yoshisada

    1990-07-01

    We have developed a new type of non-glossy surface of an image receiving sheet for a photothermographic color hardcopy system. There is a basic conflict in realizing uniform dye transfer with use of a receiving sheet having a matted surface, because when the degree of roughness exceeds a certain extent, uneven dye transfer readily takes place. It: has been solved by use of "microscopic" phase separation of a certain water-soluble polymer blend which constitutes the surface layer of the image receiving sheet. One of the preferable polymer blends for our purpose proved to be a ternary system, consisting of sodium salt of polymethacrylic acid (PMAA-Na), ammonium salt of polyacrylic acid (PAA-NH4) and water. Phase separation, which proceeded during the evaporation of water from the coated mixture, turned out to be of a spinodal decomposition type and thus capable of stably providing a desirable non-glossy surface.

  1. Synthesis and characterization of large WO{sub 3} sheets synthesized by resistive heating method

    Filippo, Emanuela, E-mail: emanuela.filippo@unisalento.it [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 Italy (Italy); Tepore, Marco [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 Italy (Italy); Baldassarre, Francesca [Department of Cultural Heritage, University of Salento, Lecce I-73100 Italy (Italy); Quarta, Gianluca; Calcagnile, Lucio [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 Italy (Italy); Guascito, Maria Rachele [DiSTeBA, University of Salento, Lecce I-73100 Italy (Italy); Tepore, Antonio [Department of Cultural Heritage, University of Salento, Lecce I-73100 Italy (Italy)

    2015-09-01

    A simple, low-cost method is presented to grow tungsten oxide large sheets simply by resistively heating a pure tungsten filament under air/water vapor flow. The obtained structures were studied using scanning and transmission electron microscopy, selected area diffraction, X Ray diffraction, Raman and X-ray photoelectron spectroscopy, photoluminescence and zeta potential measurements. SEM observations revealed that sheets formed by broadening of the wires/belts over longer growth period. Photoluminescence measurements showed that tungsten oxide sheets had an intense visible emission band. - Highlights: • WO{sub 3} large sheets were prepared by resistively heating a W filament. • WO{sub 3} sheets were carefully characterized. • Formation mechanism of sheets was studied. • WO{sub 3} sheets had an intense visible emission band at 462 nm.

  2. Increased rainfall volume from future convective storms in the US

    Prein, Andreas F.; Liu, Changhai; Ikeda, Kyoko; Trier, Stanley B.; Rasmussen, Roy M.; Holland, Greg J.; Clark, Martyn P.

    2017-12-01

    Mesoscale convective system (MCS)-organized convective storms with a size of 100 km have increased in frequency and intensity in the USA over the past 35 years1, causing fatalities and economic losses2. However, their poor representation in traditional climate models hampers the understanding of their change in the future3. Here, a North American-scale convection-permitting model which is able to realistically simulate MSCs4 is used to investigate their change by the end-of-century under RCP8.5 (ref. 5). A storm-tracking algorithm6 indicates that intense summertime MCS frequency will more than triple in North America. Furthermore, the combined effect of a 15-40% increase in maximum precipitation rates and a significant spreading of regions impacted by heavy precipitation results in up to 80% increases in the total MCS precipitation volume, focussed in a 40 km radius around the storm centre. These typically neglected increases substantially raise future flood risk. Current investments in long-lived infrastructures, such as flood protection and water management systems, need to take these changes into account to improve climate-adaptation practices.

  3. Temporal variations of isotopes in arid rain storms

    Adar, E.M.; Dodi, A.; Geyh, M.A.; Yair, A.

    1999-01-01

    The distribution of isotopes in rainfall has long been used to elaborate on hydrological systems. Both isotopic composition of stable isotopes (oxygen-18 and deuterium) and tritium content are used to illuminate on sources of groundwater recharge and as tracers upon which groundwater fluxes are assessed. As runoff is concerned, stable isotopes have been used to identify flow paths and the precise location of the rain storm which produced the floods. Analyses of stable isotopes in arid storms in the Negev desert revealed clear discrepancy between the spatial isotopic composition in floods versus the spatial and temporal isotopic composition in rainfall. In addition, simple water balance revealed that the entire flood volume is equivalent to a very small portion of the rain storm, suggesting that a specific flood is produced by a very short and intensive portion of the rainfall. Therefore, knowledge of the weighted isotopic average of a rainfall can not serve as an adequate input function for modeling of desert floods. Since in arid environment, floods are considered as major source of groundwater recharge it also can not be used as input function for modeling of groundwater systems. This paper summarizes detailed isotopic study of short segments (∼2 mm each) of desert rainstorms as sampled in the Negev desert, Israel

  4. Storm warning : gambling with the climate of our planet

    Dotto, L.

    1999-06-01

    This book gives a clear explanation of climate phenomena such as El Nino and the greenhouse effect, and provides a background and insight into the climate conferences held in recent years in Rio and Kyoto. It documents the extreme weather events of recent years, including the ice storm of 1998, the 1997 Manitoba floods, and the 1998 Atlantic hurricane season. Such events should prompt people to give serious thought to the implications of global warming and consider the strong evidence that our climate is changing due to human interference. The book warns that global warming will increase the frequency and severity of extreme weather events such as floods, droughts, and storm. Climate change is expected to affect agriculture, water supplies, food production, and the spread of human diseases. The book provides thoughtful answers to the major questions about global warming, detailed descriptions of the multiple effects on human health and safety, and discusses the steps that need to be taken to avoid and adapt to the oncoming storm. In answer to the non-believers, the author points out the futility of demanding more and more proof. In her view, we have all the proof needed, it is time to concentrate not on proof but on risk. refs.

  5. Climate Adaptation and Storms & Flooding

    EPA works with drinking water, wastewater and stormwater utilities, as well as local, state and tribal governments to help critical water infrastructure facilities prepare for and recover from the impacts of climate change.

  6. Impact of storm runoff on Salmonella and Escherichia coli prevalence in irrigation ponds of fresh produce farms in southern Georgia.

    Harris, C S; Tertuliano, M; Rajeev, S; Vellidis, G; Levy, K

    2018-03-01

    To examine Salmonella and Escherichia coli in storm runoff and irrigation ponds used by fresh produce growers, and compare Salmonella serovars with those found in cases of human salmonellosis. We collected water before and after rain events at two irrigation ponds on farms in southern Georgia, USA, and collected storm runoff/storm flow within the contributing watershed of each pond. Salmonella and E. coli concentrations were higher in ponds after rain events by an average of 0·46 (P storm runoff from fields and forests were not significantly higher than in ponds before rain events, but concentrations in storm flow from streams and ditches were higher by an average of 1·22 log 10 MPN per 100 ml (P storm runoff/storm flow and ponds. Seven of the serovars, including five of the shared serovars, were present in cases of human illness in the study region in the same year. However, several serovars most commonly associated with human illness in the study region (e.g. Javiana, Enteritidis, and Montevideo) were not found in any water samples. Salmonella and E. coli concentrations in irrigation ponds were higher, on average, after rain events, but concentrations of Salmonella were low, and the ponds met FDA water quality standards based on E. coli. Some similarities and notable differences were found between Salmonella serovars in water samples and in cases of human illness. This study directly examined storm runoff/storm flow into irrigation ponds and quantified increases in Salmonella and E. coli following rain events, with potential implications for irrigation pond management as well as human health. © 2018 The Society for Applied Microbiology.

  7. Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977

    Wolf, R.A.; Harel, M.; Spiro, R.W.; Voigt, G.; Reiff, P.H.; Chen, C.

    1982-01-01

    We present preliminary results of applying the Rice convection model to the early main phase of the magnetic storm of July 29, 1977. The computer model self-consistently computes electric fields and currents, as well as plasma distributions and velocities, in the inner-magnetosphere/ionosphere system. In the equatorial plane, the region modeled includes geocentric distances less than about the magnetopause standoff distance. Particle loss, parallel electric fields, and neutral winds are neglected. On the basis of solar wind parameters and the AL index as input, the model predicts the injection of plasma-sheet plasma to form a substantial storm time ring current. The total strength of the model-predicted ring current agrees accurately with the observed Dst index. Comparison of the model results with electric fields and Birkeland currents measured by S3-3 shows qualitative agreement but interesting quantitative discrepancies. During this event, region 1 currents, which in standard convection theory would connect to the outer magnetosphere, are observed as low as 60 0 invariant latitude at dawn and dusk. We examine the possibility that the magnetic field might be so highly inflated that 60 0 field lines extend to the outer magnetosphere. In the model, distortion of the inner edge of the plasma sheet by the magnetospheric compression associated with the sudden commencement temporarily disturbs the normal Birkeland-current pattern. The normal tendency for the plasma sheet's inner edge to shield low L alues from the convection electric field is also temporarily disrupted. Normal Birkeland currents and shielding reassert themselves after about an hour. Time-integrated Joule heating in the model ionosphere over the first 5.5 hours of the storm main phase is about half the increase in model ring-current energy

  8. Selectively reflective transparent sheets

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  9. The effect of severe storms on the ice cover of the northern Tatarskiy Strait

    Martin, Seelye; Munoz, Esther; Drucker, Robert

    1992-01-01

    Passive microwave images from the Special Sensor Microwave Imager are used to study the volume of ice and sea-bottom water in the Japan Sea as affected by winds and severe storms. The data set comprises brightness temperatures gridded on a polar stereographic projection, and the processing is accomplished with a linear algorithm by Cavalieri et al. (1983) based on the vertically polarized 37-GHz channel. The expressions for calculating heat fluxes and downwelling radiation are given, and ice-cover fluctuations are correlated with severe storm events. The storms generate large transient polynya that occur simultaneously with the strongest heat fluxes, and severe storms are found to contribute about 25 percent of the annual introduction of 25 cu km of ice in the region. The ice production could lead to the renewal of enough sea-bottom water to account for the C-14 data provided, and the generation of Japan Sea bottom water is found to vary directly with storm activity.

  10. Effect of Tide Elevation on Extratropical Storm Surge in Northwest Europe

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high tide may put coastal assets and infrastructure in risk. Also, during low tide, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 tide gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low tide, the pattern of coastal hydrodynamics is governed by tide and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high tide. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.

  11. Coastal Flooding in Florida's Big Bend Region with Application to Sea Level Rise Based on Synthetic Storms Analysis

    Scott C. Hagen Peter Bacopoulos

    2012-01-01

    Full Text Available Flooding is examined by comparing maximum envelopes of water against the 0.2% (= 1-in-500-year return-period flooding surface generated as part of revising the Federal Emergency Management Agency¡¦s flood insurance rate maps for Franklin, Wakulla, and Jefferson counties in Florida¡¦s Big Bend Region. The analysis condenses the number of storms to a small fraction of the original 159 used in production. The analysis is performed by assessing which synthetic storms contributed to inundation extent (the extent of inundation into the floodplain, coverage (the overall surface area of the inundated floodplain and the spatially variable 0.2% flooding surface. The results are interpreted in terms of storm attributes (pressure deficit, radius to maximum winds, translation speed, storm heading, and landfall location and the physical processes occurring within the natural system (storms surge and waves; both are contextualized against existing and new hurricane scales. The approach identifies what types of storms and storm attributes lead to what types of inundation, as measured in terms of extent and coverage, in Florida¡¦s Big Bend Region and provides a basis in the identification of a select subset of synthetic storms for studying the impact of sea level rise. The sea level rise application provides a clear contrast between a dynamic approach versus that of a static approach.

  12. Superfund fact sheet: The remedial program. Fact sheet

    1992-09-01

    The fact sheet describes what various actions the EPA can take to clean up hazardous wastes sites. Explanations of how the criteria for environmental and public health risk assessment are determined and the role of state and local governments in site remediation are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no formal scientific training

  13. Storm surge and wave simulations in the Gulf of Mexico using a consistent drag relation for atmospheric and storm surge models

    D. Vatvani

    2012-07-01

    Full Text Available To simulate winds and water levels, numerical weather prediction (NWP and storm surge models generally use the traditional bulk relation for wind stress, which is characterized by a wind drag coefficient. A still commonly used drag coefficient in those models, some of them were developed in the past, is based on a relation, according to which the magnitude of the coefficient is either constant or increases monotonically with increasing surface wind speed (Bender, 2007; Kim et al., 2008; Kohno and Higaki, 2006. The NWP and surge models are often tuned independently from each other in order to obtain good results. Observations have indicated that the magnitude of the drag coefficient levels off at a wind speed of about 30 m s−1, and then decreases with further increase of the wind speed. Above a wind speed of approximately 30 m s−1, the stress above the air-sea interface starts to saturate. To represent the reducing and levelling off of the drag coefficient, the original Charnock drag formulation has been extended with a correction term.

    In line with the above, the Delft3D storm surge model is tested using both Charnock's and improved Makin's wind drag parameterization to evaluate the improvements on the storm surge model results, with and without inclusion of the wave effects. The effect of waves on storm surge is included by simultaneously simulating waves with the SWAN model on identical model grids in a coupled mode. However, the results presented here will focus on the storm surge results that include the wave effects.

    The runs were carried out in the Gulf of Mexico for Katrina and Ivan hurricane events. The storm surge model was initially forced with H*wind data (Powell et al., 2010 to test the effect of the Makin's wind drag parameterization on the storm surge model separately. The computed wind, water levels and waves are subsequently compared with observation data. Based on the good

  14. Modeling Flood Inundation Induced by River Flow and Storm Surges over a River Basin

    Wei-Bo Chen

    2014-10-01

    Full Text Available Low-lying coastal regions and their populations are at risk during storm surge events and high freshwater discharges from upriver. An integrated storm surge and flood inundation modeling system was used to simulate storm surge and inundation in the Tsengwen River basin and the adjacent coastal area in southern Taiwan. A three-dimensional hydrodynamic model with an unstructured grid was used, which was driven by the tidal elevation at the open boundaries and freshwater discharge at the upriver boundary. The model was validated against the observed water levels for three typhoon events. The simulation results for the model were in reasonable agreement with the observational data. The model was then applied to investigate the effects of a storm surge, freshwater discharge, and a storm surge combined with freshwater discharge during an extreme typhoon event. The super Typhoon Haiyan (2013 was artificially shifted to hit Taiwan: the modeling results showed that the inundation area and depth would cause severe overbank flow and coastal flooding for a 200 year return period flow. A high-resolution grid model is essential for the accurate simulation of storm surges and inundation.

  15. Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS

    Stefanski, R; Sivakumar, M V K

    2009-01-01

    This paper will give an overview of the various impacts of sand and dust storms on agriculture and then address the potential applications of a Sand and Dust Storm Warning System (SDSWS) for agricultural users. Sand and dust storms have many negative impacts on the agricultural sector including: reducing crop yields by burial of seedlings under sand deposits, the loss of plant tissue and reduced photosynthetic activity as a result of sandblasting, delaying plant development, increasing end-of-season drought risk, causing injury and reduced productivity of livestock, increasing soil erosion and accelerating the process of land degradation and desertification, filling up irrigation canals with sediments, covering transportation routes, affecting water quality of rivers and streams, and affecting air quality. One positive impact is the fertilization of soil minerals to terrestrial ecosystems. There are several potential agricultural applications of a SDSWS. The first is to alert agricultural communities farmers to take preventive action in the near-term such as harvesting maturing crops (vegetables, grain), sheltering livestock, and strengthening infrastructure (houses, roads, grain storage) for the storm. Also, the products of a SDSWS could be used in for monitoring potential locust movement and post-storm crop damage assessments. An archive of SDSWS products (movement, amount of sand and dust) could be used in researching plant and animal pathogen movement and the relationship of sand and dust storms to disease outbreaks and in developing improved soil erosion and land degradation models.

  16. Characteristics of the overflow pollution of storm drains with inappropriate sewage entry.

    Yin, Hailong; Lu, Yi; Xu, Zuxin; Li, Huaizheng; Schwegler, Benedict R

    2017-02-01

    To probe the overflow pollution of separate storm drains with inappropriate sewage entries, in terms of the relationship between sewage entries and the corresponding dry-weather and wet-weather overflow, the monitoring activities were conducted in a storm drainage system in the Shanghai downtown area (374 ha). In this study site, samples from inappropriately entered dry-weather sewage and the overflow due to storm pumps operation on dry-weather and wet-weather days were collected and then monitored for six water quality constituents. It was found that overflow concentrations of dry-weather period could be higher than those of wet-weather period; under wet-weather period, the overflow concentrations of storm drains were close to or even higher than that of combined sewers. Relatively strong first flush mostly occurred under heavy rain that satisfied critical rainfall amount, maximum rainfall intensity, and maximum pumping discharge, while almost no first flush effect or only weak first flush effect was found for the other rainfall events. Such phenomenon was attributed to lower in-line pipe storage as compared to that of the combined sewers, and serious sediment accumulation within the storm pipes due to sewage entry. For this kind of system, treating a continuous overflow rate is a better strategy than treating the maximum amount of early part of the overflow. Correcting the key inappropriate sewage entries into storm drains should also be focused.

  17. Sawtooth events and O+ in the plasma sheet and boundary layer: CME- and SIR-driven events

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Liao, J.

    2017-12-01

    The role of ionospheric ions in sawtooth events is an open question. Simulations[1,2,3] suggest that O+ from the ionosphere produces a feedback mechanism for driving sawtooth events. However, observational evidence[4,5] suggest that the presence of O+ in the plasma sheet is neither necessary nor sufficient. In this study we investigate whether the solar wind driver of the geomagnetic storm has an effect on the result. Building on an earlier study[4] that used events for which Cluster data is available in the plasma sheet and boundary layer, we perform a superposed epoch analysis for coronal mass ejection (CME) driven storms and streaming interaction region (SIR) driven storms separately, to investigate the hypothesis that ionospheric O+ is an important contributor for CME-driven storms but not SIR-driven storms[2]. [1]O. J. Brambles et al. (2011), Science 332, 1183.[2]O. J. Brambles et al. (2013), JGR 118, 6026.[3]R. H. Varney et al. (2016), JGR 121, 9688.[4]J. Liao et al. (2014), JGR 119, 1572.[5]E. J. Lund et al. (2017), JGR, submitted.

  18. Rain storm models and the relationship between their parameters

    Stol, P.T.

    1977-01-01

    Rainfall interstation correlation functions can be obtained with the aid of analytic rainfall or storm models. Since alternative storm models have different mathematical formulas, comparison should be based on equallity of parameters like storm diameter, mean rainfall amount, storm maximum or total

  19. 46 CFR 72.40-10 - Storm rails.

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Storm rails. 72.40-10 Section 72.40-10 Shipping COAST... and Guards § 72.40-10 Storm rails. (a) Suitable storm rails shall be installed in all passageways and at the deckhouse sides where passengers or crew might have normal access. Storm rails shall be...

  20. Hindicast and forecast of the Parsifal storm

    Bertotti, L.; Cavaleri, L. [Istituto Studio Dinamica Grandi Masse, Venice (Italy); De girolamo, P.; Magnaldi, S. [Rome, Univ. `La Sapienza` (Italy). Dip. di Idraulica, Trasporti e Strade; Franco, L. [Rome, III Univ. (Italy). Dip. di Scienze dell`Ingegneria Civile

    1998-05-01

    On 2 November 1995 a Mistral storm in the Gulf of Lions sank the 16 metre yacht Parsifal claiming six lives out of the nine member crew. The authors analyse the storm with different meteorological and wave models, verifying the results against the available buoy and satellite measurements. Then the authors consider the accuracy of the storm forecasts and the information available the days before the accident. The limitations related to the resolution of the meteorological models are explored by hind casting the storm also with the winds produced by some limited area models. Finally, the authors discuss the present situation of wind and wave hind cast and forecast in the Mediterranean Sea, and the distribution of these results to the public.

  1. Nuclear magnetohydrodynamic EMP, solar storms, and substorms

    Rabinowitz, M.; Meliopoulous, A.P.S.; Glytsis, E.N.

    1992-01-01

    In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynamic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS-GIC). The MHD EMP electric field E approx-lt 10 - 1 V/m and lasts approx-lt 10 2 sec, whereas for solar storms E approx-gt 10 - 2 V/m and lasts approx-gt 10 3 sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS-GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects

  2. Joint Typhoon Warning Center (JTWC) Storm Wallets

    National Oceanic and Atmospheric Administration, Department of Commerce — The Joint Typhoon Warning Center (JTWC) is responsible for typhoon forecasts and warnings for the Western Pacific and Indian Ocean basins. After each storm, the JTWC...

  3. Ionospheric behaviour during storm recovery phase

    Buresova, D.; Lastovicka, J.; Boska, J.; Sindelarova, T.; Chum, J.

    2012-04-01

    Intensive ionospheric research, numerous multi-instrumental observations and large-scale numerical simulations of ionospheric F region response to magnetic storm-induced disturbances during the last several decades were primarily focused on the storm main phase, in most cases covering only a few hours of the recovery phase following after storm culmination. Ionospheric behaviour during entire recovery phase still belongs to not sufficiently explored and hardly predictable features. In general, the recovery phase is characterized by an abatement of perturbations and a gradual return to the "ground state" of ionosphere. However, observations of stormy ionosphere show significant departures from the climatology also within this phase. This paper deals with the quantitative and qualitative analysis of the ionospheric behaviour during the entire recovery phase of strong-to-severe magnetic storms at middle latitudes for nowadays and future modelling and forecasting purposes.

  4. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  5. The effects of storms and storm-generated currents on sand beaches in Southern Maine, USA

    Hill, H.W.; Kelley, J.T.; Belknap, D.F.; Dickson, S.M.

    2004-01-01

    Storms are one of the most important controls on the cycle of erosion and accretion on beaches. Current meters placed in shoreface locations of Saco Bay and Wells Embayment, ME, recorded bottom currents during the winter months of 2000 and 2001, while teams of volunteers profiled the topography of nearby beaches. Coupling offshore meteorological and beach profile data made it possible to determine the response of nine beaches in southern Maine to various oceanographic and meteorological conditions. The beaches selected for profiling ranged from pristine to completely developed and permitted further examination of the role of seawalls on the response of beaches to storms. Current meters documented three unique types of storms: frontal passages, southwest storms, and northeast storms. In general, the current meter results indicate that frontal passages and southwest storms were responsible for bringing sediment towards the shore, while northeast storms resulted in a net movement of sediment away from the beach. During the 1999-2000 winter, there were a greater percentage of frontal passages and southwest storms, while during the 2000-2001 winter, there were more northeast storms. The sediment that was transported landward during the 1999-2000 winter was reworked into the berm along moderately and highly developed beaches during the next summer. A northeast storm on March 5-6, 2001, resulted in currents in excess of 1 m s-1 and wave heights that reached six meters. The storm persisted over 10 high tides and caused coastal flooding and property damage. Topographic profiles made before and after the storm demonstrate that developed beaches experienced a loss of sediment volume during the storm, while sediment was redistributed along the profile on moderately developed and undeveloped beaches. Two months after the storm, the profiles along the developed beaches had not reached their pre-storm elevation. In comparison, the moderately developed and undeveloped beaches

  6. Synoptic bi-monthly and storm response water quality sampling in Southern Kaneohe Bay, HI, 2005-2007 in support of the Coral Reef Instrumented Monitoring Platform (CRIMP) (NODC Accession 0060061)

    National Oceanic and Atmospheric Administration, Department of Commerce — Synoptic sampling including water column profiles and collected surface water samples was conducted on a bi-monthly basis throughout the rainy season (October-May)...

  7. Ice Storms in a Changing Climate

    2016-06-01

    CHANGING CLIMATE by Jennifer M. McNitt June 2016 Thesis Advisor: Wendell Nuss Co-Advisor: David W. Titley THIS PAGE INTENTIONALLY LEFT...SUBTITLE ICE STORMS IN A CHANGING CLIMATE 5. FUNDING NUMBERS 6. AUTHOR(S) Jennifer M. McNitt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...increase in global temperatures, due to climate change, could affect the frequency, intensity, and geographic location of ice storms. Three known ice

  8. 2012 Swimming Season Fact Sheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  9. State Fact Sheets on COPD

    ... Submit Search The CDC Chronic Obstructive Pulmonary Disease (COPD) Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . COPD Homepage Data and Statistics Fact Sheets Publications Publications ...

  10. Australian Government Balance Sheet Management

    Wilson Au-Yeung; Jason McDonald; Amanda Sayegh

    2006-01-01

    Since almost eliminating net debt, the Australian Government%u2019s attention has turned to the financing of broader balance sheet liabilities, such as public sector superannuation. Australia will be developing a significant financial asset portfolio in the %u2018Future Fund%u2019 to smooth the financing of expenses through time. This raises the significant policy question of how best to manage the government balance sheet to reduce risk. This paper provides a framework for optimal balance sh...

  11. Energy information sheets, July 1998

    NONE

    1998-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  12. Energy information sheets, September 1996

    NONE

    1996-09-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  13. Metals extraction from sea water

    Chryssostomidis, C.; Larue, G.J.; Morgan, D.T.

    1981-01-01

    A method and system for continuously extracting metals from sea water by deploying adsorber sheets in a suitable current of sea water, recovering the adsorber sheets after they become loaded with metal and eluting the metal from the recovered sheets. The system involves the use of hollow, perforated bobbins on which the sheets are rolled as they are recovered and through which elutant is introduced

  14. Characterization of sediment from the dredging of storm water channels in the city of Salvador-BA, Brazil aiming to use in structural ceramics; Caracterizacao de sedimento proveniente de dragagem de canais pluviais do municipio de Salvador-BA visando sua utilizacao em ceramica estrutural

    Santos, O.C.; Breitenbach, S.B.; Coelho, R.E., E-mail: engcruz@ig.com.br, E-mail: silviabb@ifba.edu.br, E-mail: rodrigoecoelho@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Salvador (Brazil); Andrade, J.C.S.; Sales Junior, J.C.C., E-mail: jean.engmateriais@gmail.com, E-mail: jccalado@gmail.com [Universidade Federal do Amazonas (UFAM), Manaus (Brazil). Dept. de Engenharia de Materiais; Paskocimas, C.A.; Martinelli, A.E.; Nascimento, R.M., E-mail: paskocimas@uol.com.br, E-mail: aemart@uol.com.br, E-mail: rubensmaribondo@gmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2017-01-15

    The aim of this study was to characterize sediment from the dredging of storm water channels (Scp) in the city of Salvador, Bahia, aiming its maximum replacement by clay in structural ceramics, since this binary mixture is part of the pilot project of the standard mass, in the research of interlocked block ceramic formulation. Initially, the sediment was submitted to the following tests: plasticity index; chemical analysis by X-ray fluorescence; mineralogical analysis by X-ray diffraction; thermal and particle size analyses. The morphology of the material was analyzed by scanning electron microscopy, coupled with energy dispersive spectroscopy. Then, sediment (Scp) was added to clay from the municipality of Candelas, Bahia, in the proportions of 10, 20, 30 and 40 wt%. Specimens were prepared by uniaxial pressing in dimensions of 60 mm x 20 mm, with compacting pressure of 25 MPa, and the material was humidified with 8% of water. Firing was conducted in resistive furnace at temperatures of 850, 950 and 1050 deg C, with 5 deg C / min heating rate. The properties evaluated were: linear shrinkage; water absorption and modulus of rupture. The results indicated the possibility of using SCP in structural ceramics by the prerequisites required in standards, in the manufacture of tiles, sealing blocks and bricks. (author)

  15. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model : Model development and its application to 2007 Cyclone Sidr in Bangladesh

    Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip J.; Winsemius, Hessel C.; Verlaan, Martin; Kanae, Shinjiro

    2017-01-01

    Water-related disasters, such as fluvial floods and cyclonic storm surges, are a major concern in the world's mega-delta regions. Furthermore, the simultaneous occurrence of extreme discharges from rivers and storm surges could exacerbate flood risk, compared to when they occur separately. Hence, it

  16. Thyroid Storm: A Japanese Perspective.

    Akamizu, Takashi

    2018-01-01

    Thyroid storm (TS) is life threatening. In the mid-2000s, its incidence was poorly defined, peer-reviewed diagnostic criteria were not available, and management and treatment did not seem to be verified based upon evidence and latest advances in medicine. First, diagnostic criteria were developed based on 99 patients in the literature and seven patients in this study. Then, initial and follow-up surveys were conducted from 2004 through 2008, targeting all hospitals in Japan to obtain and verify information on patients who met diagnostic criteria for TS. Based on these data, the diagnostic criteria were revised, and management and treatment guidelines were created. The incidence of TS in hospitalized patients in Japan was estimated to be 0.20 per 100,000 per year and 0.22% of all thyrotoxic patients. The mortality rate was 10.7%. Multiple organ failure was the most common cause of death, followed by congestive heart failure, respiratory failure, and arrhythmia. In the final diagnostic criteria for TS, the definition of jaundice as serum bilirubin concentration >3 mg/dL was added. Based upon nationwide surveys and the latest information, guidelines for the management and treatment for TS were extensively revised and algorithms were developed. TS remains a life-threatening disorder, with >10% mortality in Japan. New peer-reviewed diagnostic criteria for TS are presented and its clinical features, prognosis, and incidence are clarified based on nationwide surveys. Furthermore, this information helped to establish detailed guidelines for the management and treatment of TS. A prospective prognostic study to validate the guidelines is eagerly anticipated.

  17. FDTD modeling of thin impedance sheets

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  18. Use of historical information in extreme storm surges frequency analysis

    Hamdi, Yasser; Duluc, Claire-Marie; Deville, Yves; Bardet, Lise; Rebour, Vincent

    2013-04-01

    The prevention of storm surge flood risks is critical for protection and design of coastal facilities to very low probabilities of failure. The effective protection requires the use of a statistical analysis approach having a solid theoretical motivation. Relating extreme storm surges to their frequency of occurrence using probability distributions has been a common issue since 1950s. The engineer needs to determine the storm surge of a given return period, i.e., the storm surge quantile or design storm surge. Traditional methods for determining such a quantile have been generally based on data from the systematic record alone. However, the statistical extrapolation, to estimate storm surges corresponding to high return periods, is seriously contaminated by sampling and model uncertainty if data are available for a relatively limited period. This has motivated the development of approaches to enlarge the sample extreme values beyond the systematic period. The nonsystematic data occurred before the systematic period is called historical information. During the last three decades, the value of using historical information as a nonsystematic data in frequency analysis has been recognized by several authors. The basic hypothesis in statistical modeling of historical information is that a perception threshold exists and that during a giving historical period preceding the period of tide gauging, all exceedances of this threshold have been recorded. Historical information prior to the systematic records may arise from high-sea water marks left by extreme surges on the coastal areas. It can also be retrieved from archives, old books, earliest newspapers, damage reports, unpublished written records and interviews with local residents. A plotting position formula, to compute empirical probabilities based on systematic and historical data, is used in this communication paper. The objective of the present work is to examine the potential gain in estimation accuracy with the

  19. ARkStorm@Tahoe: Stakeholder perspectives on vulnerabilities and preparedness for an extreme storm event in the greater Lake Tahoe, Reno, and Carson City region

    Albano, Christine M.; Cox, Dale A.; Dettinger, Michael; Shaller, Kevin; Welborn, Toby L.; McCarthy, Maureen

    2014-01-01

    Atmospheric rivers (ARs) are strongly linked to extreme winter precipitation events in the Western U.S., accounting for 80 percent of extreme floods in the Sierra Nevada and surrounding lowlands. In 2010, the U.S. Geological Survey developed the ARkStorm extreme storm scenario for California to quantify risks from extreme winter storms and to allow stakeholders to better explore and mitigate potential impacts. To explore impacts on natural resources and communities in montane and adjacent environments, we downscaled the scenario to the greater Lake Tahoe, Reno and Carson City region of northern Nevada and California. This ArkStorm@Tahoe scenario was presented at six stakeholder meetings, each with a different geographic and subject matter focus. Discussions were facilitated by the ARkStorm@Tahoe team to identify social and ecological vulnerabilities to extreme winter storms, science and information needs, and proactive measures that might minimize impacts from this type of event. Information collected in these meetings was used to develop a tabletop emergency response exercise and set of recommendations for increasing resilience to extreme winter storm events in both Tahoe and the downstream communities of Northern Nevada.Over 300 individuals participated in ARkStorm@Tahoe stakeholder meetings and the emergency response exercise, including representatives from emergency response, natural resource and ecosystem management, health and human services, public utilities, and businesses. Interruption of transportation, communications, and lack of power and backup fuel supplies were identified as the most likely and primary points of failure across multiple sectors and geographies, as these interruptions have cascading effects on natural and human systems by impeding emergency response efforts. Other key issues that arose in discussions included contamination risks to water supplies and aquatic ecosystems, especially in the Tahoe Basin and Pyramid Lake, interagency

  20. Analysis of Storm Surge in Hong Kong

    Kao, W. H.

    2017-12-01

    A storm surge is a type of coastal flood that is caused by low-pressure systems such as tropical cyclones. Storm surges caused by tropical cyclones can be very powerful and damaging, as they can flood coastal areas, and even destroy infrastructure in serious cases. Some serious cases of storm surges leading to more than thousands of deaths include Hurricane Katrina (2005) in New Orleans and Typhoon Haiyan (2013) in Philippines. Hong Kong is a coastal city that is prone to tropical cyclones, having an average of 5-6 tropical cyclones entering 500km range of Hong Kong per year. Storm surges have seriously damaged Hong Kong in the past, causing more than 100 deaths by Typhoon Wanda (1962), and leading to serious damage to Tai O and Cheung Chau by Typhoon Hagupit (2008). To prevent economic damage and casualties from storm surges, accurately predicting the height of storm surges and giving timely warnings to citizens is very important. In this project, I will be analyzing how different factors affect the height of storm surge, mainly using data from Hong Kong. These factors include the windspeed in Hong Kong, the atmospheric pressure in Hong Kong, the moon phase, the wind direction, the intensity of the tropical cyclone, distance between the tropical cyclone and Hong Kong, the direction of the tropical cyclone relative to Hong Kong, the speed of movement of the tropical cyclone and more. My findings will also be compared with cases from other places, to see if my findings also apply for other places.