WorldWideScience

Sample records for sheet thinning initiated

  1. Geometry of thin liquid sheet flows

    Science.gov (United States)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  2. Weld Repair of Thin Aluminum Sheet

    Science.gov (United States)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  3. Nonlinear dynamics of thin current sheets

    International Nuclear Information System (INIS)

    Daughton, William

    2002-01-01

    Observations indicate that the current sheet in the Earth's geomagnetic tail may compress to a thickness comparable to an ion gyro-radius prior to substorm onset. In recent years, there has been considerable controversy regarding the kinetic stability of these thin structures. In particular, the growth rate of the kink instability and its relevance to magnetotail dynamics is still being debated. In this work, a series of fully kinetic particle-in-cell simulations are performed for a thin Harris sheet. The ion to electron mass ratio is varied between m i /m e =4→400 and careful comparisons are made with a formally exact approach to the linear Vlasov theory. At low mass ratio m i /m e <64, the simulations are in excellent agreement with the linear theory, but at high mass ratio the kink instability is observed to grow more rapidly in the kinetic simulations than predicted by theory. The resolution to this apparent discrepancy involves the lower hybrid instability which is active on the edge of the sheet and rapidly produces nonlinear modifications to the initial equilibrium. The nature of this nonlinear deformation is characterized and a simple model is proposed to explain the physics. After the growth and saturation of the lower hybrid fluctuations, the deformed current sheet is similar in structure to a Harris equilibrium with an additional background population. This may explain the large growth rate of the kink instability at later times, since this type of modification to the Harris sheet has been shown to greatly enhance the growth rate of the kink mode

  4. FDTD modeling of thin impedance sheets

    Science.gov (United States)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  5. Complete plasma dropouts at Vela satellites during thinning of the plasma sheet

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Hones, E.W. Jr.; Venkatesan, D.; Akasofu, S.; Bame, S.J.

    1975-01-01

    Five satellite years of Vela data are examined for plasma sheet thinnings. Complete proton disappearances (plasma dropouts) are the main subject here. During such times, the Vela satellite is temporarily in the high-latitude tail lobe. The distribution of such plasma dropouts within the magnetotail suggests that the semithickness of the plasma sheet near midnight seldom reaches less than 1 R/sub E/ during substorms and that the dawn and dusk portions of the plasma sheet remain thicker than the midnight portion. But it is also shown that the plasma sheet occasionally becomes very thin near the dusk magnetopause. No such severe thinnings of the plasma sheet are found near the dawn magnetopause. Plasma dropouts can occur regardless of the sign of the Z component of the IMF, but their frequency of occurrence seems to be greater when the Z component is negative.Three plasma dropouts which occurred in the midnight sector at unusually large distances from the estimated position of the neutral sheet were observed during geomagnetic storms. It is likely that the midnight sector of the plasma sheet can become very thick (approx.18 R/sub E/) at certain times during the main phase of storms. Detailed measurements in the plasma sheet were obtained near the beginning of a geomagnetic storm whose sc triggered a substorm. A compression of the plasma sheet at X/sub SM/approx. =-15 R/sub E/ occurred about 10 min after the sc onset at the earth and about 5 min after the start of plasma sheet thinning associated with the sc-related substorm. If compression-thinning of the plasma sheet initiated this substorm, the triggering action must have occurred earthward of X/sub SM/approx. =-15 R/sub E/

  6. Buckling and stretching of thin viscous sheets

    Science.gov (United States)

    O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich

    2016-11-01

    Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.

  7. SU-F-T-550: Radiochromic Plastic Thin Sheet Dosimeter: Initial Performance

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K [London Regional Cancer Program, London, ON (United Kingdom); Adamovics, J [John Adamovics, Skillman, NJ (United States)

    2016-06-15

    Purpose: Thin sheets, of a high sensitivity formulation of radiochromic dosimeter, Presage were prepared and evaluated for optical readout. Methods: Sheets of radiochromic polyurethane, 12 cm long, 10 cm wide and 0.2 cm thick were prepared with leuco crystal violet as the reporter molecule. Sample transmission was evaluated at a wavelength of 590 nm with in-house constructed instruments: optical cone beam laser CT scanner, fixed and scanning spot densitometers. Sample sequential irradiations to a total dose of 40 Gy were conducted with a modified, Theratron 60, cobalt radiotherapy machine at dose rates of 1 or 0.25 Gy per minute. Exposure to ambient and readout light was minimized to limit background photochromic signals. Samples were stored at 4°C. Optical activity was assessed from linearly polarized transmission images. Comparison sensitivity measurements with EBT3 film were conducted. Results: Samples were transparent, smooth and pale purple before irradiation. Radiochromic reaction was completed in less than 5 minutes. A linear dose response with a sensitivity of 0.5 cm-1Gy-1 was observed. Micrometer measurements found sheet thickness variations up to 20%. Uniform dose, 2 Gy attenuation images, correlated with local sheet thicknesses. Comparable measurements with EBT3 film were 3 times more sensitive at 1 Gy but above 15 Gy, EBT3 film had lower sensitivity than 0.2 cm thick Presage sheet dosimeter due to its non-linear response. Conclusion: Dose sensitivity provided a 10% decrease in transmission for a 1 Gy dose. Improvements in mold design are expected to allow production of sheets with less than 5% variation in thickness. Above, 10 Gy, Presage sheet dosimeter performance expected to exceed EBT3 film based on linearity, sensitivity, transparency and smoothness of samples. J Adamovics is owner of Heuris Inc.

  8. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  9. Improvement of formability for fabricating thin continuously corrugated structures in sheet metal forming process

    International Nuclear Information System (INIS)

    Choi, Sung Woo; Park, Sang Hu; Park, Seong Hun; Ha, Man Yeong; Jeong, Ho Seung; Cho, Jong Rae

    2012-01-01

    A stamping process is widely used for fabricating various sheet metal parts for vehicles, airplanes, and electronic devices by the merit of low processing cost and high productivity. Recently, the use of thin sheets with a corrugated structure for sheet metal parts has rapidly increased for use in energy management devices, such as heat exchangers, separators in fuel cells, and many others. However, it is not easy to make thin corrugated structures directly using a single step stamping process due to their geometrical complexity and very thin thickness. To solve this problem, a multi step stamping (MSS) process that includes a heat treatment process to improve formability is proposed in this work: the sequential process is the initial stamping, heat treatment, and final shaping. By the proposed method, we achieved successful results in fabricating thin corrugated structures with an average thickness of 75μm and increased formability of about 31% compared to the single step stamping process. Such structures can be used in a plate-type heat exchanger requiring low weight and a compact shape

  10. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    Science.gov (United States)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  11. Sausage mode instability of thin current sheets as a cause of magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    J. Büchner

    Full Text Available Observations have shown that, prior to substorm explosions, thin current sheets are formed in the plasma sheet of the Earth's magnetotail. This provokes the question, to what extent current-sheet thinning and substorm onsets are physically, maybe even causally, related. To answer this question, one has to understand the plasma stability of thin current sheets. Kinetic effects must be taken into account since particle scales are reached in the course of tail current-sheet thinning. We present the results of theoretical investigations of the stability of thin current sheets and about the most unstable mode of their decay. Our conclusions are based upon a non-local linear dispersion analysis of a cross-magnetic field instability of Harris-type current sheets. We found that a sausage-mode bulk current instability starts after a sheet has thinned down to the ion inertial length. We also present the results of three-dimensional electromagnetic PIC-code simulations carried out for mass ratios up to Mi / me=64. They verify the linearly predicted properties of the sausage mode decay of thin current sheets in the parameter range of interest.

    Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms · Space plasma physics (magnetic reconnection

  12. The crack growth resistance of thin steel sheets under eccentric ...

    Indian Academy of Sciences (India)

    Ľ AMBRIŠKO

    2018-03-10

    Mar 10, 2018 ... Abstract. The stable crack growth in thin steel sheets is the topic of this paper. The crack opening was observed using a videoextensometry system, allowing the crack extension determination. JR-curve and dR-curve were established from obtained data. The ductile tearing properties of different thin sheets ...

  13. Copper contamination in thin stainless steel sheet

    International Nuclear Information System (INIS)

    Holbert, R.K. Jr.; Dobbins, A.G.; Bennett, R.K. Jr.

    1986-01-01

    The standard welding technique used at Oak Ridge Y-12 Plant for joining thin stainless sheet is the gas tungsten arc (GTA) welding process. One of the reoccurring problems with the sheet welds is surface cracking in the heat-affected zone (HAZ). Metallography shows that the cracks are only about 0.05 mm (0.002 in.) deep which is significant in a 0.25 mm (0.01 in.) thick sheet. Thus, welding requirements do not permit any surfacing cracking as detected by a fluorescent dye penetrant test conducted on every part after welding. Surface cracks have been found in both of the two most common weld designs in the thin sheet fabricated at the Oak Ridge Y-12 Plant. These butt joints are welded between two 0.25 mm thick stainless steel sheets and a tube with eyelet welded to a 25 mm (0.98 in.) thick sheet. The weld between the two sheets is made on a semiautomatic seam welding unit, whereas the tube-to-eyelet-to-sheet welds are done manually. The quality of both welds is very dependent on the welding procedure and the way the parts are placed in the weld fixturing. Metallographic examination has indicated that some welded parts with surface cracking in the weld region had copper particles on the surface, and the question of copper contamination has been raised. With the aid of a scanning electron microscope and an electron microprobe, the existence of copper in an around the surface cracks has been verified. The copper is on the surface of the parts prior to welding in the form of small dust particles

  14. Greenland Ice Sheet: High-Elevation Balance and Peripheral Thinning.

    Science.gov (United States)

    Krabill; Abdalati; Frederick; Manizade; Martin; Sonntag; Swift; Thomas; Wright; Yungel

    2000-07-21

    Aircraft laser-altimeter surveys over northern Greenland in 1994 and 1999 have been coupled with previously reported data from southern Greenland to analyze the recent mass-balance of the Greenland Ice Sheet. Above 2000 meters elevation, the ice sheet is in balance on average but has some regions of local thickening or thinning. Thinning predominates at lower elevations, with rates exceeding 1 meter per year close to the coast. Interpolation of our results between flight lines indicates a net loss of about 51 cubic kilometers of ice per year from the entire ice sheet, sufficient to raise sea level by 0.13 millimeter per year-approximately 7% of the observed rise.

  15. Flapping dynamics of a thin liquid sheet

    Science.gov (United States)

    Vadivukkarasan, M.; Kumaran, Dhivyaraja; Panchagnula, Mahesh; Multi-phase flow physics Group Team

    2017-11-01

    We attempt to delineate and describe the complete evolution of a thin soap film when air is blown through a nozzle in the normal direction. The sequence of events and its intrinsic dynamics are captured using high speed imaging. By careful observation, it was observed that multiple mechanisms occur in the same system and each event is triggered by an independent mechanism. The events include (a) flapping of a liquid sheet and pinching of the bubble, (b) onset of rupture on the liquid sheet, (c) formation of ligaments and (d) ejection of drops. From this study, it is shown that these events are predominantly governed by Kelvin-Helmholtz instability, Taylor - Culick law, Rayleigh-Taylor instability and capillary instability, respectively. The present experiments can be considered as an extension to the previous studies on soap films as well as thin flapping sheets which has direct relevance to coaxial atomizers used in aircraft applications.

  16. LASER CUTTING MACHINES FOR 3-D THIN SHEET PARTS

    Directory of Open Access Journals (Sweden)

    Miroslav RADOVANOVIC

    2012-11-01

    Full Text Available Laser cutting machines are used for precise contour cutting thin sheet. In industrial application nowadays various types and construction of laser cutting machines can be met. For contour cutting 3-D thin sheet parts laser cutting machines with rotation movements and laser robots are used. Laser generates the light beam, that presents a tool in working process. Application of laser cutting machines made possible good quality of products, flexibility of production and enlargement of economy

  17. Thin current sheets observation by MMS during a near-Earth's magnetotail reconnection event

    Science.gov (United States)

    Nakamura, R.; Varsani, A.; Nakamura, T.; Genestreti, K.; Plaschke, F.; Baumjohann, W.; Nagai, T.; Burch, J.; Cohen, I. J.; Ergun, R.; Fuselier, S. A.; Giles, B. L.; Le Contel, O.; Lindqvist, P. A.; Magnes, W.; Schwartz, S. J.; Strangeway, R. J.; Torbert, R. B.

    2017-12-01

    During summer 2017, the four spacecraft of the Magnetospheric Multiscale (MMS) mission traversed the nightside magnetotail current sheet at an apogee of 25 RE. They detected a number of flow reversal events suggestive of the passage of the reconnection current sheet. Due to the mission's unprecedented high-time resolution and spatial separation well below the ion scales, structure of thin current sheets is well resolved both with plasma and field measurements. In this study we examine the detailed structure of thin current sheets during a flow reversal event from tailward flow to Earthward flow, when MMS crossed the center of the current sheet . We investigate the changes in the structure of the thin current sheet relative to the X-point based on multi-point analysis. We determine the motion and strength of the current sheet from curlometer calculations comparing these with currents obtained from the particle data. The observed structures of these current sheets are also compared with simulations.

  18. Fabrication and properties of strip casting 4.5 wt% Si steel thin sheet

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Guoqing, E-mail: gz854@uowmail.edu.au [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zhang, Xiaoming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Wang, Yuqian [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Yan, Yi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Li, Chengang; Cao, Guangming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Jiang, Zhengyi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia)

    2017-02-15

    Three 4.5 wt% Si steel thin sheets with different thicknesses were efficiently fabricated by twin-roll strip casting, warm rolling and cold rolling followed by final annealing. A comprehensive investigation from the workability of the as-cast strip to the magnetic property of the produces was performed to illustrate the superiority of the new materials. The results show that the as-cast strip, which has a much lower Vickers hardness than that of the 6.5 wt% Si steel, is suitable for rolling processing. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirm that no ordering phase exists in the as-cast strip. The cold-rolled thin sheets exhibit good surface quality without edge cracks. Furthermore, all the three 4.5 wt% Si steel thin sheets possess relative strong <100>//ND texture and present high magnetic inductions and low iron losses after finial annealing. - Highlights: • 4.5 wt% Si as-cast sheet with excellent workability was produced by strip casting. • Three 4.5 wt% Si thin sheets were effectively fabricated by warm and cold rolling. • The microstructure and macro-texture of the thin sheets were elucidated. • High magnetic inductions and low iron losses were achieved simultaneously.

  19. Associations of geomagnetic activity with plasma sheet thinning and expansion: A statistical study

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Pytte, T.; West, H.I. Jr.

    1984-01-01

    Associations of geomagnetic activity in the auroral zone with thinnings and expansions of the magnetotail plasma sheet are examined statistically in this paper. We first identified many plasma sheet thinnings and expansions in plasma and particle data from VELA satellites and from OGO 5 without reference to the ground magnetic data. These events were grouped according to the location of the detecting satellite in the magnetotail. For each such group the times of thinning or expansion were then used as fiducial times in a superposed-epoch analysis of the geomagnetic AL index values that were recorded in 8-hour intervals centered on the event times. The results show that many plasma sheet thinnings and expansions are related to discrete negative bay structures that are the classical signature of substorms. Furthermore, they support earlier findings that plasma sheet thinning and expansion at the VELA orbit (rroughly-equal18 R/sub E/) tend to be associated with the onset of the auroral zone negative bay and the beginning of its subsidence, respectively. Earthward of rroughly-equal13-15 R/sub E/, plasma sheet expansion occurs near the time of the onset of the negative bay, again in agreement with earlier findings. A large fraction of plasma sheet expansions to half thicknesses of > or approx. =6 R/sub E/ at the VELA orbit are associated not with a baylike geomagnetic disturbance but with subsidence of a prolonged interval of disturbance. The study also shows that many plasma sheet expansions are related simply to generally enhanced geomagnetic activity showing no baylike or other distinctive features

  20. Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy

    Directory of Open Access Journals (Sweden)

    L. M. Zelenyi

    2004-01-01

    Full Text Available Thin current sheets represent important and puzzling sites of magnetic energy storage and subsequent fast release. Such structures are observed in planetary magnetospheres, solar atmosphere and are expected to be widespread in nature. The thin current sheet structure resembles a collapsing MHD solution with a plane singularity. Being potential sites of effective energy accumulation, these structures have received a good deal of attention during the last decade, especially after the launch of the multiprobe CLUSTER mission which is capable of resolving their 3D features. Many theoretical models of thin current sheet dynamics, including the well-known current sheet bifurcation, have been developed recently. A self-consistent 1D analytical model of thin current sheets in which the tension of the magnetic field lines is balanced by the ion inertia rather than by the plasma pressure gradients was developed earlier. The influence of the anisotropic electron population and of the corresponding electrostatic field that acts to restore quasi-neutrality of the plasma is taken into account. It is assumed that the electron motion is fluid-like in the direction perpendicular to the magnetic field and fast enough to support quasi-equilibrium Boltzmann distribution along the field lines. Electrostatic effects lead to an interesting feature of the current density profile inside the current sheet, i.e. a narrow sharp peak of electron current in the very center of the sheet due to fast curvature drift of the particles in this region. The corresponding magnetic field profile becomes much steeper near the neutral plane although the total cross-tail current is in all cases dominated by the ion contribution. The dependence of electrostatic effects on the ion to electron temperature ratio, the curvature of the magnetic field lines, and the average electron magnetic moment is also analyzed. The implications of these effects on the fine structure of thin current sheets

  1. Thin sheet numerical modelling of continental collision

    NARCIS (Netherlands)

    Jimenez-Munt, I.; Garcia-Gastellanos, D.; Fernandez, M.

    2005-01-01

    We study the effects of incorporating surface mass transport and the gravitational potential energy of both crust and lithospheric mantle to the viscous thin sheet approach. Recent 2D (cross-section) numerical models show that surface erosion and sediment transport can play a major role in shaping

  2. Rapidly cast crystalline thin sheet materials

    International Nuclear Information System (INIS)

    Warlimont, H.; Emmerich, K.

    1986-01-01

    The current state and progress of casting thin sheet and ribbons directly from the melt are reviewed. First, the solidification phenomena pertinent to the process are outlined. Subsequently, Fe-Si,l Fe-Si-Al, Fe-Nd-B, Ag-Cu-Ti, alloy steels, Ni superalloys and Si are treated as examples. Finally, the information available on process development is critically assessed

  3. Surface Morphology and Bending Deformation of 2024-T3 Thin Sheets with Laser Peen Forming

    Directory of Open Access Journals (Sweden)

    Wu Junfeng

    2018-01-01

    Full Text Available Laser peen forming (LPF is a pure mechanical forming method through accumulated plastic strain, which has been successfully applied in wing components. Experimental investigation has been performed to understand the effect of process parameters such as constraint conditions, sheet thickness and laser energy on surface morphology and bending deformation of 2024-T3 thin sheets of dimensions of 76 mm ×19 mm (length × width. The research results indicated that bulges on the aluminum foil were generated at the bottom surface and not generated at the topmost surface. It was different for transition value of two-way bending deformations of thin sheets after LPF with different constraint conditions. Remain flat thicknesses of thin sheets after LPF were about 1 mm ~ 2 mm for 20 J, 25 J and 30 J. Arc heights and curvatures of 3 mm thickness sheets increased with laser energy and those of 2 mm thickness sheets only made little change. It was found that convex deformation, flat, concave deformation and laser deep drawing for thin sheets with different thicknesses after LPF.

  4. Forced tearing of ductile and brittle thin sheets.

    Science.gov (United States)

    Tallinen, T; Mahadevan, L

    2011-12-09

    Tearing a thin sheet by forcing a rigid object through it leads to complex crack morphologies; a single oscillatory crack arises when a tool is driven laterally through a brittle sheet, while two diverging cracks and a series of concertinalike folds forms when a tool is forced laterally through a ductile sheet. On the other hand, forcing an object perpendicularly through the sheet leads to radial petallike tears in both ductile and brittle materials. To understand these different regimes we use a combination of experiments, simulations, and simple theories. In particular, we describe the transition from brittle oscillatory tearing via a single crack to ductile concertina tearing with two tears by deriving laws that describe the crack paths and wavelength of the concertina folds and provide a simple phase diagram for the morphologies in terms of the material properties of the sheet and the relative size of the tool.

  5. Thin lead sheets in the decorative features in Pavia Charterhouse.

    Science.gov (United States)

    Colombo, Chiara; Realini, Marco; Sansonetti, Antonio; Rampazzi, Laura; Casadio, Francesca

    2006-01-01

    The facade of the church of the Pavia Charterhouse, built at the end of the 15th century, shows outstanding decorative features made of different stone materials, such as marbles, breccias and sandstones. Magnificent ornamental elements are made of thin lead sheets, and some marble slabs are inlaid with them. Metal elements are shaped in complex geometric and phytomorphic design, to form a Greek fret in black contrasting with the white Carrara marble. Lead pins were fixed to the back of the thin lead sheets with the aim of attaching the metal elements to the marble; in so doing the pins and the lead sheets constitute a single piece of metal. In some areas, lead elements have been lost, and they have been substituted with a black plaster, matching the colour of the metal. To the authors' knowledge, this kind of decorative technique is rare, and confirms the refinement of Renaissance Lombard architecture. This work reports on the results of an extensive survey of the white, orange and yellowish layers, which are present on the external surface of the lead. The thin lead sheets have been characterized and their state of conservation has been studied with the aid of Optical Microscopy, SEM-EDS, FTIR and Raman analyses. Lead sulphate, lead carbonates and oxides have been identified as decay products.

  6. Thin-Sheet zinc-coated and carbon steels laser welding

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.

    1998-01-01

    This paper describes the results of a research on CO 2 laser welding of thin-sheet carbon steels (Zinc-coated and uncoated), at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignment, and zinc-coated laser welding defects like porous and zinc ventilation. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion test. (Author) 8 refs

  7. Patterns through elastic instabilities, from thin sheets to twisted ribbons

    Science.gov (United States)

    Damman, Pascal

    Sheets embedded in a given shape by external forces store the exerted work in elastic deformations. For pure tensile forces, the work is stored as stretching energy. When the forces are compressive, several ways to store the exerted work, combining stretching and bending deformations can be explored. For large deflections, the ratio of bending, Eh3ζ2 /L4 and stretching, Ehζ4 /L4 energies, suggests that strain-free solutions should be favored for thin sheets, provided ζ2 >>h2 (where E , ζ , Land h are the elastic modulus, the deflection, a characteristic sheet size and its thickness). For uniaxially constrained sheets deriving from the Elastica, strain-free solutions are obvious, i.e., buckles, folds or wrinkles grow to absorb the stress of compression. In contrast, crumpled sheets exhibit ``origami-like'' solutions usually described as an assembly of flat polygonal facets delimitated by ridges focusing strains are observed. This type of solutions is particularly interesting since a faceted morphology is isometric to the undeformed sheet, except at those narrow ridges. In some cases however, the geometric constraints imposed by the external forces do not allow solutions with negligible strain in the deformed state. For instance, considering a circular sheet on a small drop, so thin that bending becomes negligible, i.e., Eh3 / γL2 geometry and a competition between various energy terms, involving stretching and bending modes.

  8. Prototypical model for tensional wrinkling in thin sheets

    KAUST Repository

    Davidovitch, B.; Schroll, R. D.; Vella, D.; Adda-Bedia, M.; Cerda, E. A.

    2011-01-01

    The buckling and wrinkling of thin films has recently seen a surge of interest among physicists, biologists, mathematicians, and engineers. This activity has been triggered by the growing interest in developing technologies at ever-decreasing scales and the resulting necessity to control the mechanics of tiny structures, as well as by the realization that morphogenetic processes, such as the tissue-shaping instabilities occurring in animal epithelia or plant leaves, often emerge from mechanical instabilities of cell sheets. Although the most basic buckling instability of uniaxially compressed plates was understood by Euler more than two centuries ago, recent experiments on nanometrically thin (ultrathin) films have shown significant deviations from predictions of standard buckling theory. Motivated by this puzzle, we introduce here a theoretical model that allows for a systematic analysis of wrinkling in sheets far from their instability threshold. We focus on the simplest extension of Euler buckling that exhibits wrinkles of finite length--a sheet under axisymmetric tensile loads. The first study of this geometry, which is attributed to Lamé, allows us to construct a phase diagram that demonstrates the dramatic variation of wrinkling patterns from near-threshold to far-from-threshold conditions. Theoretical arguments and comparison to experiments show that the thinner the sheet is, the smaller is the compressive load above which the far-from-threshold regime emerges. This observation emphasizes the relevance of our analysis for nanomechanics applications.

  9. Prototypical model for tensional wrinkling in thin sheets

    KAUST Repository

    Davidovitch, B.

    2011-10-31

    The buckling and wrinkling of thin films has recently seen a surge of interest among physicists, biologists, mathematicians, and engineers. This activity has been triggered by the growing interest in developing technologies at ever-decreasing scales and the resulting necessity to control the mechanics of tiny structures, as well as by the realization that morphogenetic processes, such as the tissue-shaping instabilities occurring in animal epithelia or plant leaves, often emerge from mechanical instabilities of cell sheets. Although the most basic buckling instability of uniaxially compressed plates was understood by Euler more than two centuries ago, recent experiments on nanometrically thin (ultrathin) films have shown significant deviations from predictions of standard buckling theory. Motivated by this puzzle, we introduce here a theoretical model that allows for a systematic analysis of wrinkling in sheets far from their instability threshold. We focus on the simplest extension of Euler buckling that exhibits wrinkles of finite length--a sheet under axisymmetric tensile loads. The first study of this geometry, which is attributed to Lamé, allows us to construct a phase diagram that demonstrates the dramatic variation of wrinkling patterns from near-threshold to far-from-threshold conditions. Theoretical arguments and comparison to experiments show that the thinner the sheet is, the smaller is the compressive load above which the far-from-threshold regime emerges. This observation emphasizes the relevance of our analysis for nanomechanics applications.

  10. Confined disclinations: exterior versus material constraints in developable thin elastic sheets.

    Science.gov (United States)

    Efrati, Efi; Pocivavsek, Luka; Meza, Ruben; Lee, Ka Yee C; Witten, Thomas A

    2015-02-01

    We examine the shape change of a thin disk with an inserted wedge of material when it is pushed against a plane, using analytical, numerical, and experimental methods. Such sheets occur in packaging, surgery, and nanotechnology. We approximate the sheet as having vanishing strain, so that it takes a conical form in which straight generators converge to a disclination singularity. Then, its shape is that which minimizes elastic bending energy alone. Real sheets are expected to approach this limiting shape as their thickness approaches zero. The planar constraint forces a sector of the sheet to buckle into the third dimension. We find that the unbuckled sector is precisely semicircular, independent of the angle δ of the inserted wedge. We generalize the analysis to include conical as well as planar constraints and thereby establish a law of corresponding states for shallow cones of slope ε and thin wedges. In this regime, the single parameter δ/ε^{2} determines the shape. We discuss the singular limit in which the cone becomes a plane, and the unexpected slow convergence to the semicircular buckling observed in real sheets.

  11. Fabrication and microwave shielding properties of free standing polyaniline-carbon fiber thin sheets

    International Nuclear Information System (INIS)

    Joon, Seema; Kumar, Rakesh; Singh, Avanish Pratap; Shukla, Rajni; Dhawan, S.K.

    2015-01-01

    Attempt has been made to synthesize polyaniline-carbon fiber (PANI-CF) composite via in-situ emulsion polymerization using β-naphthalene sulphonic acid (NSA) which acts as both surfactant as well as dopant. Free standing PANI-CF thin sheets are prepared which have electrical conductivity ∼1.02 S/cm with improved mechanical strength and thermal stability. The scanning electron microscopy is used to study the surface morphology of the composites. Structural characterization is done by using XRD. The dielectric attributes (ε* = ε′ − iε″) of PANI-CF sheets are calculated using experimental S parameters (S 11 , S 12 ) by Nicolson Ross Wier equations. It has been demonstrated that these sheets show maximum shielding effectiveness (SE) of 31.9 dB at 12.4 GHz frequency at a thickness of 1.5 mm. Free standing PANI-CF sheets so prepared have a potential for X-band microwave absorber application. - Highlights: • Free standing polyaniline-carbon fiber thin sheets fabricated for EMI shielding. • The mechanical strength of sheets improves with phenolic resin loading. • The dielectric parameters were calculated by Nicholson Ross Wier equations. • Sheets (1.5 mm thickness) demonstrate SE of 31.9 dB at 12.4 GHz frequency. • Sheets find potential application for X-band microwave absorption

  12. Stimulation of confocal unstable resonators using thin gain sheet

    International Nuclear Information System (INIS)

    Du Yanyi

    2000-01-01

    Mode calculation in unstable resonators with flowing saturable gain using the fast Fourier transform (FFT) algorithm and thin gain sheet just nearly inside the big mirror. This method is in resonators of small disturbance (ψ 0max = π/2), middle magnification (m 0 ∼= 1%)

  13. Interaction of a charge with a thin plasma sheet

    International Nuclear Information System (INIS)

    Bordag, M.

    2007-01-01

    The interaction of the electromagnetic field with a two-dimensional plasma sheet intended to describe the pi-electrons of a carbon nanotube or a C 60 molecule is investigated. By first integrating out the displacement field of the plasma or the electromagnetic field, different representations for quantities like the Casimir energy are derived which are shown to be consistent with one another. Starting from the covariant gauge for the electromagnetic field, it is shown that the matching conditions to which the presence of the plasma sheet can be reduced are different from the commonly used ones. The difference in the treatments does not show up in the Casimir force between two parallel sheets, but it is present in the Casimir-Polder force between a charge or a neutral atom and a sheet. At once, since the plasma sheet is a regularization of the conductor boundary conditions, this sheds light on the difference in physics found earlier in the realization of conductor boundary conditions as 'thin' or 'thick' boundary conditions in Phys. Rev. D 70, 085010 (2004)

  14. Experimental Investigation into Suitable Process Conditions for Plastic Injection Molding of Thin-Sheet Parts

    Directory of Open Access Journals (Sweden)

    Dyi-Cheng Chen

    2014-04-01

    Full Text Available This study performs an experimental investigation into the effects of the process parameters on the surface quality of injection molded thin-sheet thermoplastic components. The investigations focus specifically on the shape, number and position of the mold gates, the injection pressure and the injection rate. It can be seen that the gravity force entering point improved filling of the cavity for the same forming time and injection pressure. Moreover, it shows the same injection pressure and packing time, the taper-shape gate yields a better surface appearance than the sheet-shape gate. The experimental results provide a useful source of reference in suitable the process conditions for the injection molding of thin-sheet plastic components.

  15. Anomalous resistivity due to kink modes in a thin current sheet

    International Nuclear Information System (INIS)

    Moritaka, Toseo; Horiuchi, Ritoku; Ohtani, Hiroaki

    2007-01-01

    The roles of microscopic plasma instabilities on the violation of the frozen-in constraint are investigated by examining the force balance equation based on explicit electromagnetic particle simulation for a thin current sheet. Wave-particle interactions associated with lower hybrid drift instability and drift kink instability (DKI) contribute to the wavy electric force term at the periphery of the current sheet and the wavy magnetic force term at the neutral sheet, respectively. In the linear growing phase of DKI, the wavy magnetic force term balances with the electric force term due to the dc electric field at the neutral sheet. It is concluded that the growth of DKI can create anomalous resistivity and result in the violation of the frozen-in constraint as well as the diffusion of current density

  16. Assisted crack tip flipping under Mode I thin sheet tearing

    DEFF Research Database (Denmark)

    Felter, Christian Lotz; Nielsen, Kim Lau

    2017-01-01

    Crack tip flipping, where the fracture surface alternates from side to side in roughly 45° shear bands, seems to be an overlooked propagation mode in Mode I thin sheet tearing. In fact, observations of crack tip flipping is rarely found in the literature. Unlike the already established modes...

  17. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection.

    Science.gov (United States)

    Schröter, Tobias J; Johnson, Shane B; John, Kerstin; Santi, Peter A

    2012-01-01

    We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. 2011 Optical Society of America

  18. Mountain building and the initiation of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Solgaard, Anne Munck; Bonow, Johan; Langen, Peter Lang

    2013-01-01

    The effects of a new hypothesis about mountain building in Greenland on ice sheet initiation are investigated using an ice sheet model in combination with a climate model. According to this hypothesis, low-relief landscapes near sea level characterised Greenland in Miocene times until two phases...... superimposed by cold and warm excursions. The modelling results show that no ice initiates in the case of the low-lying and almost flat topography prior to the uplifts. However, the results demonstrate a significant ice sheet growth in response to the orographically induced increase in precipitation....... Under conditions that are colder than the present, the ice can overcome the Föhn effect, flow into the interior and form a coherent ice sheet. The results thus indicate that the Greenland Ice Sheet of today is a relict formed under colder conditions. The modelling results are consistent...

  19. Method and apparatus for determining weldability of thin sheet metal

    Science.gov (United States)

    Goodwin, Gene M.; Hudson, Joseph D.

    1988-01-01

    A fixture is provided for testing thin sheet metal specimens to evaluate hot-cracking sensitivity for determining metal weldability on a heat-to-heat basis or through varying welding parameters. A test specimen is stressed in a first direction with a load selectively adjustable over a wide range and then a weldment is passed along over the specimen in a direction transverse to the direction of strain to evaluate the hot-cracking characteristics of the sheet metal which are indicative of the weldability of the metal. The fixture provides evaluations of hot-cracking sensitivity for determining metal weldability in a highly reproducible manner with minimum human error.

  20. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering.

    Science.gov (United States)

    Lee, Bora; Jiao, Alex; Yu, Seungjung; You, Jae Bem; Kim, Deok-Ho; Im, Sung Gap

    2013-08-01

    Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer known to be nontoxic, water soluble and biocompatible. Here, PNVCL homopolymer was successfully synthesized for the first time by use of a one-step vapor-phase process, termed initiated chemical vapor deposition (iCVD). Fourier transform infrared spectroscopy results showed that radical polymerization took place from N-vinylcaprolactam monomers without damaging the functional caprolactam ring. A sharp lower critical solution temperature transition was observed at 31°C from the iCVD poly(N-vinylcaprolactam) (PNVCL) film. The thermoresponsive PNVCL surface exhibited a hydrophilic/hydrophobic alteration with external temperature change, which enabled the thermally modulated attachment and detachment of cells. The conformal coverage of PNVCL film on various substrates with complex topography, including fabrics and nanopatterns, was successfully demonstrated, which can further be utilized to fabricate cell sheets with aligned cell morphology. The advantage of this system is that cells cultured on such thermoresponsive surfaces could be recovered as an intact cell sheet by simply lowering the temperature, eliminating the need for conventional enzymatic treatments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Impulse Hydroforming Method for Very Thin Sheets from Metallic or Hybrid Materials

    OpenAIRE

    Beerwald, C.; Beerwald, M.; Dirksen, U.; Henselek, A.

    2010-01-01

    Forming of very thin metallic and hybrid material foils is a demanding task in several application areas as for example in food or pharmaceutical packaging industries. Narrow forming limits of very thin sheet metals as well as minor process reliability due to necessary exact tool manufacturing (small punch-die clearance), both, causes abiding interest in new and innovative forming processes. In this contribution a new method using high pressure pulses will be introduced to form small geometry...

  2. Double fillet lap of laser welding of thin sheet AZ31B Mg alloy

    Science.gov (United States)

    Ishak, Mahadzir; Salleh, M. N. M.

    2018-05-01

    In this paper, we describe the experimental laser welding of thin sheet AZ31B using double fillet lap joint method. Laser welding is capable of producing high quality weld seams especially for small weld bead on thin sheet product. In this experiment, both edges for upper and lower sheets were subjected to the laser beam from the pulse wave (PW) mode of fiber laser. Welded sample were tested their joint strength by tensile-shear strength method and the fracture loads were studied. Strength for all welded samples were investigated and the effect of laser parameters on the joint strength and appearances were studied. Pulsed energy (EP) from laser process give higher effect on joint strength compared to the welding speed (WS) and angle of irradiation (AOI). Highest joint strength was possessed by sample with high EP with the same value of WS and AOI. The strength was low due to the crack defect at the centre of weld region.

  3. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yimin A; Kirkland, Angus I; Schaeffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H, E-mail: Jamie.warner@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-05-13

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moire patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  4. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals

    International Nuclear Information System (INIS)

    Wu, Yimin A; Kirkland, Angus I; Schaeffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H

    2011-01-01

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moire patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  5. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    Directory of Open Access Journals (Sweden)

    Tobias Gabriel

    2017-03-01

    Full Text Available Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM and scanning electron microscopy (SEM, combined with electron backscatter diffraction (EBSD and energy dispersive X-ray spectroscopy (EDX. Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  6. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    Science.gov (United States)

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  7. Compressive pre-stress effects on magnetostrictive behaviors of highly textured Galfenol and Alfenol thin sheets

    Directory of Open Access Journals (Sweden)

    Julia R. Downing

    2017-05-01

    Full Text Available Fe-Ga (Galfenol and Fe-Al (Alfenol are rare-earth-free magnetostrictive alloys with mechanical robustness and strong magnetoelastic coupling. Since highly textured Galfenol and Alfenol thin sheets along orientations have been developed with magnetostrictive performances of ∼270 ppm and ∼160 ppm, respectively, they have been of great interest in sensor and energy harvesting applications. In this work, we investigate stress-dependent magnetostrictive behaviors in highly textured rolled sheets of NbC-added Fe80Al20 and Fe81Ga19 alloys with a single (011 grain coverage of ∼90%. A compact fixture was designed and used to introduce a uniform compressive pre-stress to those thin sheet samples along a [100] direction. As compressive pre-stress was increased to above 100 MPa, the maximum observed magnetostriction increased 42% in parallel magnetostriction along the stress direction, λ//, in highly textured (011 Fe81Ga19 thin sheets for a compressive pre-stress of 60 MPa. The same phenomena were observed for (011 Fe80Al20 (maximum increase of 88% with a 49 MPa compressive stress. This trend is shown to be consistent with published results on the effect of pre-stress on magnetostriction in rods of single crystal and textured polycrystalline Fe-Ga alloy of similar compositions, and single crystal data gathered using our experimental set up. Interestingly, the saturating field (Hs does not vary with pre-stresses, while the saturating field in rod-shaped samples of Fe-Ga increases with an increase of pre-stress. This suggests that for a range of compressive pre-stresses, thin sheet samples have larger values of d33 transduction coefficients and susceptibility than rod-shaped samples of similar alloy compositions, and hence they should provide performance benefits when used in sensor and actuator device applications. Thus, we discuss potential reasons for the unexpected trends in Hs with pre-stress, and present preliminary results from tests conducted

  8. Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt% Si steel thin sheets and its influence on magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianglong, E-mail: 215454278@qq.com; Liu, Zhenyu, E-mail: zyliu@mail.neu.edu.cn; Li, Haoze; Wang, Guodong

    2017-07-01

    Highlights: • The experimental materials used in the study are based on strip casting. • Magnetic properties between warm rolled and cold rolled sheets are investigated. • Cold rolled 6.5% Si sheet has better magnetic properties than warm rolled sheet. • The γ and λ-fiber recrystallization textures can be optimized after cold rolling. • Cold rolling should be more suitable for fabricating 6.5% Si steel thin sheets. - Abstract: 6.5 wt% Si steel thin sheets were usually fabricated by warm rolling. In our previous work, 6.5 wt% Si steel thin sheets with good magnetic properties had been successfully fabricated by cold rolling based on strip casting. In the present work, the main purposes were to find out the influences of warm rolling and cold rolling on microstructures and magnetic properties of the thin sheets with the thickness of 0.2 mm, and to confirm which rolling method was more suitable for fabricating 6.5 wt% Si steel thin sheets. The results showed that the cold rolled sheet could obtain good surface quality and flatness, while the warm rolled sheet could not. The intensity of γ-fiber rolling texture (<1 1 1>//ND) of cold rolled specimen was weaker than that of the warm rolled specimen, especially for the {1 1 1}<1 1 2> component at surface layer and {1 1 1}<1 1 0> component at center layer. After the same annealing treatment, the cold rolled specimen, which had higher stored energy and weaker intensity of γ-fiber rolling texture, could obtain smaller recrystallization grain size, weaker intensity of γ-fiber recrystallization texture and stronger intensity of λ-fiber recrystallization texture. Therefore, due to the good surface quality, smaller recrystallization grain size and optimum recrystallization texture, the cold rolled specimen possessed improved magnetic properties, and cold rolling should be more suitable for fabricating 6.5 wt% Si steel thin sheets.

  9. Experimental determination of spring back and thinning effect of aluminum sheet metal during L-bending operation

    International Nuclear Information System (INIS)

    Dilip Kumar, K.; Appukuttan, K.K.; Neelakantha, V.L.; Naik, Padmayya S.

    2014-01-01

    Highlights: • The spring back and thinning effect during L-bending was determined on aluminum sheet. • Beyond a particular clearance, the above said effects are linearly increasing. • Below the critical clearance scratches will occur on the surface due to wear. • As the clearance reduces, the wear rate increases on the punching surface. - Abstract: In automotive industry, significant efforts are being put forth to replace steel sheets with aluminum sheets for various applications. Besides its higher cost, there are several technical hurdles for wide usage of aluminum sheets in forming. Major problems in aluminum sheet metal forming operations are deformation errors and spring back effect. These problems are dependent on the number of parameters such as die and tool geometry, friction condition, loading condition and anisotropic properties of the metal. To predict the exact shape, the geometry based punch contact program must be used. The shape changes once the punch is withdrawn, because of the materials elasticity. Prediction of such a spring back effect is a major challenging problem in industry involving sheet metal forming operations. It also needs applying appropriate back tension during the forming complex shapes. Slight deformation of the metal leads to non-axisymmetric loading. One can predict the residual stress by determining plastic and elastic deformation. Thus appropriate spring back effect can be investigated. The present investigation was carried out to determine the spring back and thinning effect of aluminum sheet metal during L-bending operation. Number of specimens with thickness varying from 0.5 mm to 3.5 mm were prepared. The experiments were conducted for different clearances between punch and die. It is observed that, beyond a particular clearance for each thickness of the sheet metal, the spring back and thinning effects were linearly increasing. However, below the critical clearance, scratches on the surface of the sheet metal were

  10. PHYSICAL BASES OF SYSTEMS CREATION FOR MAGNETIC-IMPULSIVE ATTRACTION OF THIN-WALLED SHEET METALS

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2009-01-01

    Full Text Available The work is dedicated to the physical base of systems creating for the thin-walled sheet metals magnetic pulse attraction. Some practical realization models of the author’s suggestions are represented.

  11. Keyhole shapes during laser welding of thin metal sheets

    International Nuclear Information System (INIS)

    Aalderink, B J; Lange, D F de; Aarts, R G K M; Meijer, J

    2007-01-01

    Camera observations of the full penetration keyhole laser welding process show that the keyhole shape is elongated under certain welding conditions. Under these unfavourable circumstances, the welding process is susceptible to holes in the weld bead. Existing models of the pressure balance at the keyhole wall cannot explain this keyhole elongation. In this paper a new model is presented, accounting for the doubly curved shape of the keyhole wall. In this model, the surface tension pressure has one term that tends to close the keyhole and another term that tries to open it. Model calculations show that when the keyhole diameter is of the same order as the sheet thickness, the latter part can become dominant, causing the keyhole to elongate. Experiments on thin aluminium (AA5182) and mild steel (DC04) sheets verify these model calculations. As the keyhole radius depends on the radius of the focused laser spot, it was found for both materials that the ratio of the spot radius and the sheet thickness must be above a critical value to prevent keyhole elongation. These critical radii are 0.25 for AA5182 and 0.4 for DC04, respectively. Furthermore, differences in appearance of the weld bead between the circular and the elongated keyhole welds could be explained by this model

  12. Buckling of thin viscous sheets with inhomogenous viscosity under extensional flows

    Science.gov (United States)

    Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.

    2016-11-01

    We investigate the dynamics, shape and stability of a thin viscous sheet subjected to an extensional flow under an imposed non-uniform temperature field. Using finite element simulations, we first solve for the stretching flow to determine the pre-buckling sheet thickness and in-plane flow velocities. Next, we use this solution as the base state and solve the linearized partial differential equation governing the out-of-plane deformation of the mid-surface as a function of two dimensionless operating parameters: the normalized stretching ratio α and a dimensionless width of the heating zone β. We show the sheet can become unstable via a buckling instability driven by the development of localized compressive stresses, and determine the global shape and growth rates of the most unstable mode. The growth rate is shown to exhibit a transition from stationary to oscillatory modes in region upstream of the heating zone. Finally, we investigate the effect of surface tension and present an operating diagram that indicates regions of the parameter space that minimizes or entirely suppresses the instability while achieving desired outlet sheet thickness. Therefore, our work is directly relevant to various industrial processes including the glass redraw & float-glass method.

  13. SunShot Initiative Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    DOE Solar Energy Technologies Office

    2015-04-01

    The U.S. Department of Energy (DOE) SunShot Initiative is a collaborative national effort launched in 2011 that aggressively drives innovation to make solar energy fully cost competitive with traditional energy sources before the end of the decade. The SunShot fact sheet outlines goals and successes of the program as it works with private companies, universities, non-profit organizations, state and local governments, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, without incentives, by the year 2020.

  14. Using Microporous Polytetrafluoroethylene Thin Sheets as a Flexible Solar Diffuser to Minimize Sunlight Glint to Cameras in Space

    Science.gov (United States)

    Choi, Michael K.

    2016-01-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  15. Using microporous polytetrafluoroethylene thin sheets as a flexible solar diffuser to minimize sunlight glint to cameras in space

    Science.gov (United States)

    Choi, Michael K.

    2016-09-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  16. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    Science.gov (United States)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  17. Near-earth Thin Current Sheets and Birkeland Currents during Substorm Growth Phase

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.

    2003-01-01

    Two important phenomena observed during the magnetospheric substorm growth phase are modeled: the formation of a near-Earth (|X| ∼ 9 R E ) thin cross-tail current sheet, as well as the equatorward shift of the ionospheric Birkeland currents. Our study is performed by solving the 3-D force-balance equation with realistic boundary conditions and pressure distributions. The results show a cross-tail current sheet with large current (J φ ∼ 10 nA/m 2 ) and very high plasma β (β ∼ 40) between 7 and 10 R E . The obtained region-1 and region-2 Birkeland currents, formed on closed field lines due to pressure gradients, move equatorward and become more intense (J parallel max ∼ 3 (micro)A/m 2 ) compared to quiet times. Both results are in agreement with substorm growth phase observations. Our results also predict that the cross-tail current sheet maps into the ionosphere in the transition region between the region-1 and region-2 currents

  18. Diffusion-induced bending of thin sheet couples : theory and experiments in Ti-Zr system

    NARCIS (Netherlands)

    Daruka, I.; Szabo, I.A.; Beke, D.L.; Cserhati, C.; Kodentsov, A.; Loo, van F.J.J.

    1996-01-01

    Numerical and analytical calculations of concentration and stress distributions of thin-sheet diffusion couples have been carried out as well as the time dependence of the Kirkendall shift, xk, and the curvature has also been determined. It is shown that the concentration distribution is not

  19. Congenital cheek teratoma with temporo-mandibular joint ankylosis managed with ultra-thin silicone sheet interpositional arthroplasty.

    Science.gov (United States)

    Bhatnagar, Ankur; Verma, Vinay Kumar; Purohit, Vishal

    2013-01-01

    Primary cheek teratomas are rare with joint ankylosis (TMJA). The fundamental aim in the treatment of TMJA is the successful surgical resection of ankylotic bone, prevention of recurrence, and aesthetic improvement by ensuring functional occlusion. Early treatment is necessary to promote proper growth and function of mandible and to facilitate the positive psychological development of child. Inter-positional arthroplasty with ultra-thin silicone sheet was performed. Advantages include short operative time, less foreign material in the joint space leading to negligible foreign body reactions and least chances of implant extrusion. Instead of excising a large bony segment, a thin silicone sheet was interposed and then sutured ensuring preservation of mandibular height. Aggressive post-operative physiotherapy with custom made dynamic jaw exerciser was used to prevent recurrence.

  20. A technology to improve formability for aluminum alloy thin-wall corrugated sheet component hydroforming

    Directory of Open Access Journals (Sweden)

    Lang Lihui

    2015-01-01

    Full Text Available The explosively forming projectile (EFP had been traditional adopted for the aluminum thin-walled corrugated sheet, whose deformation range is large but the formability is poor, and this process usually has problems of poor surface quality, long manufacturing cycle and high cost. The active hydroforming process was suggested to solve these issues during EFP. A new technology named as blank bulging by turning the upside down active hydroforming technology was proposed to overcome difficulties in non-uniform thickness distribution and cracking failure of corrugated sheet during the conventional hydroforming process. Both numerical simulations and experiments were conducted for this new technology. The result show that the deformation capacity of aluminum alloys can be improved effectively, and the more uniform distribution of wall thickness was obtained by this new method. It is conducted that the new method is universal for thin-walled, shallow drawing parts with complex section.

  1. Effects of die quench forming on sheet thinning and 3-point bend testing of AA7075-T6

    Science.gov (United States)

    Kim, Samuel; Omer, Kaab; Rahmaan, Taamjeed; Butcher, Clifford; Worswick, Michael

    2017-10-01

    Lab-scaled AA7075 aluminum side impact beams were manufactured using the die quenching technique in which the sheet was solutionized and then quenched in-die during forming to a super saturated solid state. Sheet thinning measurements were taken at various locations throughout the length of the part and the effect of lubricant on surface scoring and material pick-up on the die was evaluated. The as-formed beams were subjected to a T6 aging treatment and then tested in three-point bending. Simulations were performed of the forming and mechanical testing experiments using the LS-DYNA finite element code. The thinning and mechanical response was predicted well.

  2. Effects of Cold Rolling Reduction and Initial Goss Grains Orientation on Texture Evolution and Magnetic Performance of Ultra-thin Grain-oriented Silicon Steel

    Directory of Open Access Journals (Sweden)

    LIANG Rui-yang

    2017-06-01

    Full Text Available The ultra-thin grain-oriented silicon steel strips with a thickness of 0.06-0.12mm were produced by one-step-rolling methods with different Goss-orientation of grain-oriented silicon steel sheets. The effect of cold rolling reduction and initial Goss-orientation of samples on texture evolution and magnetic performance of ultra-thin grain-oriented silicon steel strips was studied by EBSD. The result shows that with the increase of cold rolling reduction and decrease of strips thickness, the recrystallization texture is enhanced after annealing.When the cold rolling reduction is 70%,RD//〈001〉 recrystallization texture is the sharpest, and the magnetic performance is the best. The higher degree of Goss orientation in initial sample is, the better magnetic performance of ultra-thin grain-oriented silicon steel.Therefore, for producing an ultra-thin grain-oriented silicon steel with high performance, a material with a concentrated orientation of Goss grains can be used.

  3. Hall effect measurement for precise sheet resistance and thickness evaluation of Ruthenium thin films using non-equidistant four-point probes

    Directory of Open Access Journals (Sweden)

    Frederik Westergaard Østerberg

    2018-05-01

    Full Text Available We present a new micro Hall effect measurement method using non-equidistant electrodes. We show theoretically and verify experimentally that it is advantageous to use non-equidistant electrodes for samples with low Hall sheet resistance. We demonstrate the new method by experiments where Hall sheet carrier densities and Hall mobilities of Ruthenium thin films (3-30 nm are determined. The measurements show that it is possible to measure Hall mobilities as low as 1 cm2V−1s−1 with a relative standard deviation of 2-3%. We show a linear relation between measured Hall sheet carrier density and film thickness. Thus, the method can be used to monitor thickness variations of ultra-thin metal films.

  4. Thin liquid sheet target capabilities for ultra-intense laser acceleration of ions at a kHz repetition rate

    Science.gov (United States)

    Klim, Adam; Morrison, J.; Orban, C.; Chowdhury, E.; Frische, K.; Feister, S.; Roquemore, M.

    2017-10-01

    The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) glycol sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. These thin targets can be used to produce energetic electrons, light ions, and neutrons as well as x-rays, we present results from liquid glycol targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.

  5. Tearing resistance of some co-polyester sheets

    International Nuclear Information System (INIS)

    Kim, Ho Sung; Karger-Kocsis, Jozsef

    2004-01-01

    A three-zone model consisting of initial, evolutionary and stabilised plastic zones for tearing resistance was proposed for polymer sheets. An analysis with the model, based on the essential work of fracture (EWF) approach, was demonstrated to be capable for predicting specific total work of fracture along the tear path across all the plastic zones although accuracy of specific essential work of fracture is subject to improvement. Photo-elastic images were used for identification of plastic deformation sizes and profiles. Fracture mode change during loading was described in relation with the three zones. Tearing fracture behaviour of extruded mono- and bi-layer sheets of different types of amorphous co-polyesters and different thicknesses was investigated. Thick material exhibited higher specific total work of tear fracture than thin mono-layer sheet in the case of amorphous polyethylene terephthalate (PET). This finding was explained in terms of plastic zone size formed along the tear path, i.e., thick material underwent larger plastic deformation than thin material. When PET and polyethylene terephthalate glycol (PETG) were laminated with each other, specific total work of fracture of the bi-layer sheets was not noticeably improved over that of the constituent materials

  6. Dynamics of Radially Expanding Liquid Sheets

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh S.

    2018-04-01

    The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long been attributed to the sheet's interaction with the surrounding gas phase. Here, we present experimental evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the predictions of a recent theory that accounts for the sheet's thinning but ignores aerodynamic interactions. We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution but also enable more efficient designs of atomizers.

  7. Characterisation of organic thin film coatings on automobile steel sheets by photothermal methods

    Energy Technology Data Exchange (ETDEWEB)

    Orth, T. [Salzgitter Mannesmann Forschung GmbH, Duisburg (Germany); Fluegge, W. [Salzgitter Mannesmann Forschung GmbH, Salzgitter (Germany); Gibkes, J. [Ruhr-Univ. Bochum (Germany). AG FestKoerperSpektroskopie

    2006-07-01

    In the nineties, the first generation of organic thin film coatings for corrosion protection of zinc-coated thin sheet steel have been introduced. The coating typically consists of a suspension of small zinc particles, embedded in a polymer matrix. In the scope of quality control, the characterisation of the resulting layer structure is of great interest, comprising not only a constant layer thickness and a local homogeneity of the coating, but also the depth distribution of the particles within the layer. Especially the latter parameter does have a direct influence on the spot weldability of the steel sheets. The present work shows, how photothermal methods like modulated infrared radiometry and photoacoustics can be used for a successful depth profiling of the thin film coatings. The sample surface is periodically heated using an intensitymodulated laser beam, and a thermal wave is induced in the layer system. By variation of the modulation frequency of the laser beam, the thermal diffusion length and, as a consequence, the penetration depth of the thermal wave can be adjusted. By a suitable evaluation of the amplitude and phase lag signals as a function of the modulation frequency, accurate depth profiling has been realized which can be used for a very reliable prediction of the welding properties of the product. In the first investigations, artificial samples with well defined extreme distributions of the particles have been analyzed, and in a second step, an evaluation strategy has been developed for real production samples. (orig.)

  8. Greenland Regional and Ice Sheet-wide Geometry Sensitivity to Boundary and Initial conditions

    Science.gov (United States)

    Logan, L. C.; Narayanan, S. H. K.; Greve, R.; Heimbach, P.

    2017-12-01

    Ice sheet and glacier model outputs require inputs from uncertainly known initial and boundary conditions, and other parameters. Conservation and constitutive equations formalize the relationship between model inputs and outputs, and the sensitivity of model-derived quantities of interest (e.g., ice sheet volume above floatation) to model variables can be obtained via the adjoint model of an ice sheet. We show how one particular ice sheet model, SICOPOLIS (SImulation COde for POLythermal Ice Sheets), depends on these inputs through comprehensive adjoint-based sensitivity analyses. SICOPOLIS discretizes the shallow-ice and shallow-shelf approximations for ice flow, and is well-suited for paleo-studies of Greenland and Antarctica, among other computational domains. The adjoint model of SICOPOLIS was developed via algorithmic differentiation, facilitated by the source transformation tool OpenAD (developed at Argonne National Lab). While model sensitivity to various inputs can be computed by costly methods involving input perturbation simulations, the time-dependent adjoint model of SICOPOLIS delivers model sensitivities to initial and boundary conditions throughout time at lower cost. Here, we explore both the sensitivities of the Greenland Ice Sheet's entire and regional volumes to: initial ice thickness, precipitation, basal sliding, and geothermal flux over the Holocene epoch. Sensitivity studies such as described here are now accessible to the modeling community, based on the latest version of SICOPOLIS that has been adapted for OpenAD to generate correct and efficient adjoint code.

  9. Effect of Annealing on Mechanical Properties and Formability of Cold Rolled Thin Sheets of Fe-P P/M Alloys

    Science.gov (United States)

    Trivedi, Shefali; Ravi Kumar, D.; Aravindan, S.

    2016-10-01

    Phosphorus in steel is known to increase strength and hardness and decrease ductility. Higher phosphorus content (more than 0.05%), however, promotes brittle behavior due to segregation of Fe3P along the grain boundaries which makes further mechanical working of these alloys difficult. In this work, thin sheets of Fe-P alloys (with phosphorus in range of 0.1-0.35%) have been developed through processing by powder metallurgy followed by hot rolling and cold rolling. The effect of phosphorus content and annealing parameters (temperature and time) on microstructure, mechanical properties, formability in biaxial stretching and fracture behavior of the cold rolled and annealed sheets has been studied. A comparison has also been made between the properties of the sheets made through P/M route and the conventional cast route with similar phosphorus content. It has been shown that thin sheets of Fe-P alloys with phosphorous up to 0.35% possessing a good combination of strength and formability can be produced through rolling of billets of these alloys made through powder metallurgy technique without the problem of segregation.

  10. Enhancement of absorption in vertically-oriented graphene sheets growing on a thin copper layer

    Energy Technology Data Exchange (ETDEWEB)

    Rozouvan, Tamara; Poperenko, Leonid [Taras Shevchenko National University of Kyiv, Department of Physics 4, Prospect Glushkova, Kyiv, 03187 (Ukraine); Kravets, Vasyl, E-mail: vasyl_kravets@yahoo.com [School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Shaykevich, Igor [Taras Shevchenko National University of Kyiv, Department of Physics 4, Prospect Glushkova, Kyiv, 03187 (Ukraine)

    2017-02-28

    Highlights: • The optical properties and surface structure of graphene films. • Chemical vapour deposition method. • Scanning tunneling microscopy revealed vertical crystal lattice structure of graphene layer. • We report a significant enhancement of the absorption band in the vertically-oriented graphene sheets. - Abstract: The optical properties and surface structure of graphene films grown on thin copper Cu (1 μm) layer using chemical vapour deposition method were investigated via spectroscopic ellipsometry and nanoscopic measurements. Angle variable ellipsometry measurements were performed to analyze the features of dispersion of the complex refractive index and optical conductivity. It was observed significant enhancement of the absorption band in the vertically-oriented graphene sheets layer with respect to the bulk graphite due to interaction between excited localized surface plasmon at surface of thin Cu layer and graphene’s electrons. Scanning tunneling microscopy measurements with atomic spatial resolution revealed vertical crystal lattice structure of the deposited graphene layer. The obtained results provide direct evidence of the strong influence of the growing condition and morphology of nanostructure on electronic and optical behaviours of graphene film.

  11. Status of Joining Thin Sheet and Thin Wall Tubes of 14YWT

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tang, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    Beginning this fiscal year, the FCRD research project initiated an investigation on joining thin sections of the advanced ODS 14YWT ferritic alloy. Friction stir welding (FSW) was investigated as a method to join thin plate and tubing of 14YWT since it is a solid state joining method that has been shown in past studies to be a promising method for joining plates of ODS alloys, such as 14YWT. However, this study will attempt to be the first to demonstrate if FSW can successfully join thin plates and thin wall tubing of 14YWT. In the first FSW attempt, a 1.06 cm thick plate of 14YWT (SM13 heat) was successfully rolled at 1000ºC to the target thickness of 0.1 cm with no edge cracking. This achievement is a highlight since previous attempts to roll 14YWT plates have resulted in extensive cracking. For the FSW run, a pin tool being developed by the ORNL FSW Process Development effort was used. The first FSW run successfully produced a bead-on-plate weld in the 0.1 cm thick plate. The quality of the weld zone appears very good with no evidence of large defects such as cavities. The microstructural characterization study of the bead-on-plate weld zone has been initiated to compare the results of the microstructure analysis with those obtained in the reference microstructural analysis of the 14YWT (SM13 heat) that showed ultra-fine grain size of 0.43 μm and a high number density of ~2-5 nm sizes oxygen-enriched nanoclusters.

  12. A very thin light sheet technique used to investigate meniscus shapes by laser induced fluorescence

    International Nuclear Information System (INIS)

    Khan, M.A.

    2003-01-01

    In this paper a light sheet technique is described to accurately (50 μm) measure meniscus profiles in film formation problems. The use of a slit to create the thin (0.1 mm) laser sheet makes the technique easy to implement, and allows tunable sheet thickness. The low light intensity obtained through the slit is compensated by the induced fluorescence of the tested fluid, which provides good picture contrast. After video recording through a microscope, the actual meniscus is recovered by image processing and proper calibration. The efficiency of the technique is demonstrated on a coating flow experiment. Due to its good accuracy and ease of use, this technique is expected to provide useful quantitative information about meniscus problems, in particular for the validation of computational fluid dynamics CFD solutions of coating flows. (author)

  13. The Work Softening by Deformation-Induced Disordering and Cold Rolling of 6.5 wt pct Si Steel Thin Sheets

    Science.gov (United States)

    Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan

    2016-09-01

    As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.

  14. The crack growth resistance of thin steel sheets under eccentric ...

    Indian Academy of Sciences (India)

    Ľ AMBRIŠKO

    2018-03-10

    Mar 10, 2018 ... of zinc-coated automotive steel sheets (IF – deep drawing interstitial free steel ..... to determine; therefore, the Ji was determined for observ- able crack initiation .... M R S, da Silva L F M and de Castro P M S T 2011. Analysis of ...

  15. Periodic folding of viscous sheets

    Science.gov (United States)

    Ribe, Neil M.

    2003-09-01

    The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.

  16. Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile

    Science.gov (United States)

    Sharma, Amit; Yadava, Vinod

    2012-02-01

    Thin sheets of aluminium alloys are widely used in aerospace and automotive industries for specific applications. Nd:YAG laser beam cutting is one of the most promising sheetmetal cutting process for cutting sheets for any profile. Al-alloy sheets are difficult to cut by laser beam because of its highly reflective nature. This paper presents modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile. In the present study, four input process parameters such as oxygen pressure, pulse width, pulse frequency, and cutting speed and two output parameters such as average kerf taper ( Ta) and average surface roughness ( Ra) are considered. The hybrid approach comprising of Taguchi methodology (TM) and response surface methodology (RSM) is used for modelling whereas multi-objective optimization is performed using hybrid approach of TM and grey relational analysis (GRA) coupled with entropy measurement methodology. The entropy measurement methodology is employed for the calculation of weight corresponding to each quality characteristic. The results indicate that the hybrid approaches applied for modelling and optimization of the LBC process are reasonable.

  17. Elastic behavior and onset of cracking in cement composite plates reinforced by perforated thin steel sheets

    Science.gov (United States)

    Aronchik, V.

    1996-03-01

    Thin cement mortar plates reinforced by perforated thin steel sheets have been tested in four-point flexure loading. Six kinds of sheet reinforcement and to additional ones (for control) were used. Perforated sheets of the Daugavpils Factory of Machinery Chains differed by their thickness (0.6-1.8 mm), shape (round, rectangular, oval, "dumbbell"), and mark of steel (St. 08, 50, 70). Dimensions of plantes were 100×20×2 cm. Cements-sand mortar with a 1∶2 ratio of cement PZ35 and river sand of 3 mm grains was used as a matrix. Control specimens of similar dimensions and matrix were reinforced by wire cages and meshes (ferrocement). The testing was performed using an UMM-5 testing machine. Maximum deflection (at the midspan), tension, and shear strains were recorded. The expeimental data are presented in tables and graphs. The testing results showed that the elasticity modulus of material was in good agreement with the "admixture rule;" an onset of cracking for all types (excluding one) practically did not differ from reference samples; the mode of fracture in typical cases included an adhesion failure and significant shear strains. In one case the limit of the tension strength of the reinforcement was achieved.

  18. Unzip instabilities: Straight to oscillatory transitions in the cutting of thin polymer sheets

    Science.gov (United States)

    Reis, P. M.; Kumar, A.; Shattuck, M. D.; Roman, B.

    2008-06-01

    We report an experimental investigation of the cutting of a thin brittle polymer sheet with a blunt tool. It was recently shown that the fracture path becomes oscillatory when the tool is much wider than the sheet thickness. Here we uncover two novel transitions from straight to oscillatory fracture by varying either the tilt angle of the tool or the speed of cutting, respectively. We denote these by angle and speed unzip instabilities and analyze them by quantifying both the dynamics of the crack tip and the final shapes of the fracture paths. Moreover, for the speed unzip instability, the straight crack lip obtained at low speeds exhibits out-of-plane buckling undulations (as opposed to being flat above the instability threshold) suggesting a transition from ductile to brittle fracture.

  19. Research on Liquid Forming Process of Nickel Superalloys Thin Sheet Metals

    Directory of Open Access Journals (Sweden)

    Hyrcza-Michalska M.

    2017-12-01

    Full Text Available The paper presents the study of drawability of thin sheet metals made of a nickel superalloy Inconel type. The manufacturing process of axisymmetric cup – cone and a closed section profile in the form of a circular tube were designed and analyzed. In both cases, working fluid-oil was used in place of the rigid tools. The process of forming liquid is currently the only alternative method for obtaining complex shapes, coatings, and especially if we do it with high-strength materials. In the case of nickel superalloys the search for efficient methods to manufacture of the shaped shell is one of the most considerable problems in aircraft industry [1-5]. However, the automotive industries have the same problem with so-called advanced high-strength steels (AHSS. Due to this, both industrial problems have been examined and the emphasis have been put on the process of liquid forming (hydroforming. The study includes physical tests and the corresponding numerical simulations performed, using the software Eta/Dynaform 5.9. Numerical analysis of the qualitative and quantitative forecasting enables the formability of materials with complex and unusual characteristics of the mechanical properties and forming technology. It has been found that only the computer aided design based on physical and numerical modeling, makes efficient plastic processing possible using a method of hydroforming. Drawability evaluation based on the determination of the mechanical properties of complex characteristics is an indispensable element of this design in the best practice of industrial manufacturing products made of thin sheet metals.

  20. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  1. Thin-sheet zinc-coated and carbon steels laser welding

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available This paper describes the results of a research on CO2 laser welding of thin-sheet carbon steels (zinccoated and uncoated, at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignement, and zinc-coated laser welding defects like porous and zinc volatilization. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion tests.

    Este artigo descreve os resultados da investigação da soldadura laser de CO2 de chapa fina de acó carbono (simples e galvanizado, em diferentes combinações de espessura. A soldadura laser é um processo de elevado potencial no fabrico de tailored-blanks (sub-conjuntos para posterior enformação, constituidos por varias partes de diferentes materiais e espessuras para a indústria automóvel. São analisados os aspectos de optimização paramétrica, de qualidade metalúrgica da junta soldada e das deformações resultantes da soldadura. São descritos os mecanismos desenvolvidos de fixação das chapas e protecção gasosa, por forma a minimizar os defeitos típicos na soldadura laser de chapa fina como o desalinhamento e da soldadura laser de chapa galvanizada como os poros e a volatilização do zinco. Por fim apresentam-se resultados da avaliação da qualidade da soldadura do ponto de vista qualitativo através da norma DIN 8563, e do pontos de vista quantitativo através de ensaios de tracção, dureza e corrosão.

  2. Initial rigid response and softening transition of highly stretchable kirigami sheet materials.

    Science.gov (United States)

    Isobe, Midori; Okumura, Ko

    2016-04-27

    We study, experimentally and theoretically, the mechanical response of sheet materials on which line cracks or cuts are arranged in a simple pattern. Such sheet materials, often called kirigami (the Japanese words, kiri and gami, stand for cut and paper, respectively), demonstrate a unique mechanical response promising for various engineering applications such as stretchable batteries: kirigami sheets possess a mechanical regime in which sheets are highly stretchable and very soft compared with the original sheets without line cracks, by virtue of out-of-plane deformation. However, this regime starts after a transition from an initial stiff regime governed by in-plane deformation. In other words, the softness of the kirigami structure emerges as a result of a transition from the two-dimensional to three-dimensional deformation, i.e., from stretching to bending. We clarify the physical origins of the transition and mechanical regimes, which are revealed to be governed by simple scaling laws. The results could be useful for controlling and designing the mechanical response of sheet materials including cell sheets for medical regeneration and relevant to the development of materials with tunable stiffness and mechanical force sensors.

  3. Study of microstructural evolution in friction-stir welded thin-sheet Al-Cu-Li alloy using transmission-electron microscopy

    International Nuclear Information System (INIS)

    Shukla, A.K.; Baeslack, W.A.

    2007-01-01

    Microstructure evolution in friction-stir welded thin-sheet Al-Cu-Li alloy was studied using transmission-electron microscopy (TEM) and the dissolution and coarsening of T 1 and θ' precipitates were related to the microhardness profile of the weld

  4. Kinetic instabilities of thin current sheets: Results of two-and-one-half-dimensional Vlasov code simulations

    International Nuclear Information System (INIS)

    Silin, I.; Buechner, J.

    2003-01-01

    Nonlinear triggering of the instability of thin current sheets is investigated by two-and-one-half- dimensional Vlasov code simulations. A global drift-resonant instability (DRI) is found, which results from the lower-hybrid-drift waves penetrating from the current sheet edges to the center where they resonantly interact with unmagnetized ions. This resonant nonlinear instability grows faster than a Kelvin-Helmholtz instability obtained in previous studies. The DRI is either asymmetric or symmetric mode or a combination of the two, depending on the relative phase of the lower-hybrid-drift waves at the edges of the current sheet. With increasing particle mass ratio the wavenumber of the fastest-growing mode increases as kL z ∼(m i /m e ) 1/2 /2 and the growth rate of the DRI saturates at a finite level

  5. Modelling geomagnetically induced currents in midlatitude Central Europe using a thin-sheet approach

    Science.gov (United States)

    Bailey, Rachel L.; Halbedl, Thomas S.; Schattauer, Ingrid; Römer, Alexander; Achleitner, Georg; Beggan, Ciaran D.; Wesztergom, Viktor; Egli, Ramon; Leonhardt, Roman

    2017-06-01

    Geomagnetically induced currents (GICs) in power systems, which can lead to transformer damage over the short and the long term, are a result of space weather events and geomagnetic variations. For a long time, only high-latitude areas were considered to be at risk from these currents, but recent studies show that considerable GICs also appear in midlatitude and equatorial countries. In this paper, we present initial results from a GIC model using a thin-sheet approach with detailed surface and subsurface conductivity models to compute the induced geoelectric field. The results are compared to measurements of direct currents in a transformer neutral and show very good agreement for short-period variations such as geomagnetic storms. Long-period signals such as quiet-day diurnal variations are not represented accurately, and we examine the cause of this misfit. The modelling of GICs from regionally varying geoelectric fields is discussed and shown to be an important factor contributing to overall model accuracy. We demonstrate that the Austrian power grid is susceptible to large GICs in the range of tens of amperes, particularly from strong geomagnetic variations in the east-west direction.

  6. Texture evolution in thin-sheets on AISI 301 metastable stainless steel under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y. [Posco Steels, Pohan, South Korea (Korea, Republic of); Kozaczek, K. [Oak Ridge National Lab., TN (United States); Kulkarni, S.M. [TRW Vehicle Safety Systems, Mesa, AZ (United States); Bastias, P.C.; Hahn, G.T. [Vanderbilt Univ., Nashville, TN (United States)

    1995-05-08

    The evolution of texture in thin sheets of metastable austenitic stainless steel AISI 301 is affected by external conditions such as loading rate and temperature, by inhomogeneous deformation phenomena such as twinning and shear band formation, and by the concurent strain induced phase transformation of the retained austenitc ({gamma}) into martensite ({alpha}). The present paper describes texture measurements on different gauges of AISI 301 prior and after uniaxial stretching under different conditions.

  7. Mechanical characterization of auxetic stainless steel thin sheets with reentrant structure

    Science.gov (United States)

    Lekesiz, H.; Bhullar, S. K.; Karaca, A. A.; Jun, M. B. G.

    2017-08-01

    Smart materials in auxetic form present a great potential for various medical applications due to their unique deformation mechanisms along with durable infrastructure. Both analytical and finite element (FE) models are extensively used in literature to characterize mechanical response of auxetic structures but these structures are mostly thick enough to be considered as bulk material and 3D inherently. Auxetic plates in very thin form, a.e. foil, may bring numerous advantages such as very light design and better biodegradability when needed. However, there is a gap in literature on mechanical characterization of auxetic thin plates. In this study, structural analysis of very thin auxetic plates under uniaxial loading is investigated using both FE method and experimental method. 25 μm thick stainless steel (316L) plates are fabricated with reentrant texture for three different unit cell dimensions and tested under uniaxial loading using universal testing machine. 25 and 50 μm thick sheets with same cell dimensions were analyzed using implicit transient FE model including strain hardening and failure behaviors. FE results cover all the deformation schemes seen in actual tests and total deformation level matches with test results. Effect of plate thickness and cell geometry on auxetic behavior is discussed in detail using FE results. Finally, based on FE analysis results, an optimum geometry for prolonged auxetic behavior, high flexibility and high durability is suggested for future potential applications.

  8. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films

    Science.gov (United States)

    Hudaya, Chairul; Park, Ji Hun; Lee, Joong Kee

    2012-01-01

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system.

  9. Diffusion-induced bending of thin sheet couples : theory and experiments in Ti-Zr system

    OpenAIRE

    Daruka, I.; Szabo, I.A.; Beke, D.L.; Cserhati, C.; Kodentsov, A.; Loo, van, F.J.J.

    1996-01-01

    Numerical and analytical calculations of concentration and stress distributions of thin-sheet diffusion couples have been carried out as well as the time dependence of the Kirkendall shift, xk, and the curvature has also been determined. It is shown that the concentration distribution is not sensitive to the boundary conditions (bent and planar, constrained, samples) and is influenced mainly by the feeding back effects of stresses (described by the stress term in the genealized diffusion pote...

  10. Floating Carpets and the Delamination of Elastic Sheets

    KAUST Repository

    Wagner, Till J. W.

    2011-07-22

    We investigate the deformation of a thin elastic sheet floating on a liquid surface and subject to a uniaxial compression. We show that at a critical compression the sheet delaminates from the liquid over a finite region forming a delamination "blister." This blistering regime adds to the wrinkling and localized folding regimes that have been studied previously. The transition from wrinkled to blistered states occurs when delamination becomes energetically favorable compared with wrinkling. We determine the initial blister size and the evolution of blister size with continuing compression before verifying our theoretical results with experiments at a macroscopic scale. © 2011 American Physical Society.

  11. Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2015-02-01

    In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.

  12. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    Science.gov (United States)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  13. Hindcasting to measure ice sheet model sensitivity to initial states

    Directory of Open Access Journals (Sweden)

    A. Aschwanden

    2013-07-01

    Full Text Available Validation is a critical component of model development, yet notoriously challenging in ice sheet modeling. Here we evaluate how an ice sheet system model responds to a given forcing. We show that hindcasting, i.e. forcing a model with known or closely estimated inputs for past events to see how well the output matches observations, is a viable method of assessing model performance. By simulating the recent past of Greenland, and comparing to observations of ice thickness, ice discharge, surface speeds, mass loss and surface elevation changes for validation, we find that the short term model response is strongly influenced by the initial state. We show that the thermal and dynamical states (i.e. the distribution of internal energy and momentum can be misrepresented despite a good agreement with some observations, stressing the importance of using multiple observations. In particular we identify rates of change of spatially dense observations as preferred validation metrics. Hindcasting enables a qualitative assessment of model performance relative to observed rates of change. It thereby reduces the number of admissible initial states more rigorously than validation efforts that do not take advantage of observed rates of change.

  14. Thin-Sheet Inversion Modeling of Geomagnetic Deep Sounding Data Using MCMC Algorithm

    Directory of Open Access Journals (Sweden)

    Hendra Grandis

    2013-01-01

    Full Text Available The geomagnetic deep sounding (GDS method is one of electromagnetic (EM methods in geophysics that allows the estimation of the subsurface electrical conductivity distribution. This paper presents the inversion modeling of GDS data employing Markov Chain Monte Carlo (MCMC algorithm to evaluate the marginal posterior probability of the model parameters. We used thin-sheet model to represent quasi-3D conductivity variations in the heterogeneous subsurface. The algorithm was applied to invert field GDS data from the zone covering an area that spans from eastern margin of the Bohemian Massif to the West Carpathians in Europe. Conductivity anomalies obtained from this study confirm the well-known large-scale tectonic setting of the area.

  15. Rupture of nanoscaled water sheets in the presence of an applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Gopan, Nandu, E-mail: nandug@jncasr.ac.in [Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064 (India)

    2016-12-15

    Understanding the behaviour of water sheets is relevant in numerous areas, such as thin film coating and atomisation. The rupture of planar liquid sheets are interesting due to the fact that they are objects of co-dimension 1. Previous work seems to suggest that a generic route to liquid structure fragmentation is via liquid sheets. The interplay between inertia, surface tension and viscosity is crucial in determining the dynamics of liquid sheets at a macro scale. At the nanoscale, where thermal fluctuations are expected to play a dominant role, the dynamics become more interesting. The stability and rupture dynamics of nanoscaled water sheets, at constant temperature, are studied using constrained molecular dynamics (MD) simulations. The SPC/E potential with long range electrostatics is used to simulate water molecules. The effect of an applied electric field on the stability of the nanoscaled water sheet forms the focus of this study. The effect of the initial configuration is studied by changing the random seed values used for velocity initialisation. The effect of sheet thickness on the rupture dynamics is also explored. It is seen that when large electric fields (5 V/nm) act across very thin sheets (1 layer), then breakup into multiple ellipsoidal structures is a possibility, and the response of the fluid structure to the applied electric field is non-linear. Furthermore, it is seen that Taylor's predictions for the critical electric field intensity, based on classical electro-hydrodynamics for the onset of instability in macroscopic drops, scales surprisingly well for the case of nanoscaled sheets. (paper)

  16. Numerical analysis of tailored sheets to improve the quality of components made by SPIF

    Science.gov (United States)

    Gagliardi, Francesco; Ambrogio, Giuseppina; Cozza, Anna; Pulice, Diego; Filice, Luigino

    2018-05-01

    In this paper, the authors pointed out a study on the profitable combination of forming techniques. More in detail, the attention has been put on the combination of the single point incremental forming (SPIF) and, generally, speaking, of an additional process that can lead to a material thickening on the initial blank considering the local thinning which the sheets undergo at. Focalizing the attention of the research on the excessive thinning of parts made by SPIF, a hybrid approach can be thought as a viable solution to reduce the not homogeneous thickness distribution of the sheet. In fact, the basic idea is to work on a blank previously modified by a deformation step performed, for instance, by forming, additive or subtractive processes. To evaluate the effectiveness of this hybrid solution, a FE numerical model has been defined to analyze the thickness variation on tailored sheets incrementally formed optimizing the material distribution according to the shape to be manufactured. Simulations based on the explicit formulation have been set up for the model implementation. The mechanical properties of the sheet material have been taken in literature and a frustum of cone as benchmark profile has been considered for the performed analysis. The outcomes of numerical model have been evaluated in terms of both maximum thinning and final thickness distribution. The feasibility of the proposed approach will be deeply detailed in the paper.

  17. Towards crack-free ablation cutting of thin glass sheets with picosecond pulsed lasers

    Science.gov (United States)

    Sun, Mingying; Eppelt, Urs; Hartmann, Claudia; Schulz, Wolfgang; Zhu, Jianqiang; Lin, Zunqi

    2017-08-01

    We investigated the morphology and mechanism of laser-induced damage in the ablation cutting of thin glass sheets with picosecond laser. Two kinds of damage morphologies observed on the cross-section of the cut channel, are caused by high-density free-electrons and the temperature accumulation, respectively. Notches and micro-cracks can be observed on the top surface of the sample near the cut edge. The surface micro-cracks were related to high energy free-electrons and also the heat-affected zone. Heat-affected-zone and visible-cracks free conditions of glass cutting were achieved by controlling the repetition rate and spatial overlap of laser pulses.

  18. Effects of electron pressure anisotropy on current sheet configuration

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: aartemyev@igpp.ucla.edu; Angelopoulos, V.; Runov, A. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095 (United States); Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)

    2016-09-15

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. We find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.

  19. Effects of electron pressure anisotropy on current sheet configuration

    International Nuclear Information System (INIS)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Vasko, I. Y.

    2016-01-01

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. We find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.

  20. Material Behavior Based Hybrid Process for Sheet Draw-Forging Thin Walled Magnesium Alloys

    International Nuclear Information System (INIS)

    Sheng, Z.Q.; Shivpuri, R.

    2005-01-01

    Magnesium alloys are conventionally formed at the elevated temperatures. The thermally improved formability is sensitive to the temperature and strain rate. Due to limitations in forming speeds, tooling strength and narrow processing windows, complex thin walled parts cannot be made by traditional warm drawing or hot forging processes. A hybrid process, which is based on the deformation mechanism of magnesium alloys at the elevated temperature, is proposed that combines warm drawing and hot forging modes to produce an aggressive geometry at acceptable forming speed. The process parameters, such as temperatures, forming speeds etc. are determined by the FEM modeling and simulation. Sensitivity analysis under the constraint of forming limits of Mg alloy sheet material and strength of tooling material is carried out. The proposed approach is demonstrated on a conical geometry with thin walls and with bottom features. Results show that designed geometry can be formed in about 8 seconds, this cannot be formed by conventional forging while around 1000s is required for warm drawing. This process is being further investigated through controlled experiments

  1. Controlled bending and folding of a bilayer structure consisting of a thin stiff film and a heat shrinkable polymer sheet

    Science.gov (United States)

    Cui, Jianxun; Adams, John G. M.; Zhu, Yong

    2018-05-01

    Bending pre-designed flat sheets into three-dimensional (3D) structures is attracting much interest, as it provides a simple approach to make 3D devices. Here we report controlled bending and folding of a bilayer structure consisting of a heat shrinkable polymer sheet and a thin stiff film (not thermally responsive). Upon heating, the prestrained polymer sheet shrinks, leading to bending or folding of the bilayer. We studied the effect of relative dimensions of the two layers on the bending behavior and demonstrated the transition from longitudinal bending to transverse bending of the bilayer strip. Transverse bending was utilized to fold origami structures, including several flat letters, a crane, and a corrugated metal sheet via Miura-ori folding. We developed a method to further control the bending orientation based on bio-inspired anisotropic bending stiffness. By bending the metal foil in different orientations, several structures were obtained, including cylindrical surfaces and left-handed/right-handed helical structures.

  2. Instabilities of collisionless current sheets revisited: The role of anisotropic heating

    International Nuclear Information System (INIS)

    Muñoz, P. A.; Kilian, P.; Büchner, J.

    2014-01-01

    In this work, we investigate the influence of the anisotropic heating on the spontaneous instability and evolution of thin Harris-type collisionless current sheets, embedded in antiparallel magnetic fields. In particular, we explore the influence of the macroparticle shape-function using a 2D version of the PIC code ACRONYM. We also investigate the role of the numerical collisionality due to the finite number of macroparticles in PIC codes. It is shown that it is appropriate to choose higher order shape functions of the macroparticles compared to a larger number of macroparticles per cell. This allows to estimate better the anisotropic electron heating due to the collisions of macroparticles in a PIC code. Temperature anisotropies can stabilize the tearing mode instability and trigger additional current sheet instabilities. We found a good agreement between the analytically derived threshold for the stabilization of the anisotropic tearing mode and other instabilities, either spontaneously developing or initially triggered ones. Numerical effects causing anisotropic heating at electron time scales become especially important for higher mass ratios (above m i /m e =180). If numerical effects are carefully taken into account, one can recover the theoretical estimated linear growth rates of the tearing instability of thin isotropic collisionless current sheets, also for higher mass ratios

  3. Antibubbles and fine cylindrical sheets of air

    NARCIS (Netherlands)

    Beilharz, D.; Guyon, A.; Li, E.Q.; Thoraval, Marie-Jean; Thoroddsen, S.T.

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a

  4. Thinning regimes and initial spacing for Eucalyptus plantations in Brazil.

    Science.gov (United States)

    Ferraz Filho, Antonio C; Mola-Yudego, Blas; González-Olabarria, José R; Scolforo, José Roberto S

    2018-01-01

    This study focuses on the effects of different thinning regimes on clonal Eucalyptus plantations growth. Four different trials, planted in 1999 and located in Bahia and Espírito Santo States, were used. Aside from thinning, initial planting density, and post thinning fertilization application were also evaluated. Before canopy closure, and therefore before excessive competition between trees took place, it was found that stands planted under low densities (667 trees per hectare) presented a lower mortality proportion when compared to stand planted under higher densities (1111 trees per hectare). However, diameter growth prior to thinning operations was not statistically different between these two densities, presenting an overall mean of 4.9 cm/year. After canopy closure and the application of the thinning treatments, it was found that thinning regimes beginning early in the life of the stand and leaving a low number of residual trees presented the highest diameter and height growth. Unthinned treatments and thinning regimes late in the life of the stand (after 5.5 years), leaving a large number of residual trees presented the highest values of basal area production. The choice of the best thinning regime for Eucalyptus clonal material will vary according to the plantation objective.

  5. Energized Oxygen : Speiser Current Sheet Bifurcation

    Science.gov (United States)

    George, D. E.; Jahn, J. M.

    2017-12-01

    A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs

  6. Thermografic measurement of crack initiation and propagation at thin sheet joints; Rissentstehung thermometrisch ermitteln. Zerstoerungsfreie Bestimmung der Rissinitiierung in mechanisch gefuegten und widerstandpunktgeschweissten Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Bathke, W.; Stahlfeld, G. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachgruppe V.5 - Sicherheit in der Fuegetechnik

    2000-07-01

    This contribution demonstrates how a thermometric procedure might be applied to determine crack initiation during fatigue testing of joints at steel sheets. The procedure is based on the measurement of the temperature increase which is produced by the heat at the respective joint caused by deformation energy. Such investigations are aimed at detection of crack initiation before it becomes visible at the specimen surface. Thermografic measurements at different mechanical joints and resistance welded spots are compared and various applications are suggested. (orig.) [German] In diesem Beitrag wird gezeigt, wie sich ein thermometrisches Verfahren einsetzen laesst, um die Rissentstehung waehrend der Dauerschwingpruefung von Stahlblechen zu erfassen. Vergleichend werden Messungen an Proben, die durch Stanznieten, Clinchen und Widerstandspunktschweissen gefuegt wurden, gegenuebergestellt. Hierzu wird die am Fuegepunkt waehrend der Pruefung in Waerme umgewandelte Formaenderungsenergie kontinuierlich in Form der Temperaturerhoehung gemessen. Ziel dieser Untersuchungen ist es, solche Temperaturerhoehungen zur Erkennung der Rissentstehung zu verwenden, bevor der Riss die Blechoberflaeche erreicht hat und visuell erkennbar wird. Zudem werden verschiedene Anwendungsmoeglichkeiten vorgeschlagen. (orig.)

  7. Study of the influence between the strength of antibending of working rolls on the widening during hot rolling of thin sheet metal

    Directory of Open Access Journals (Sweden)

    U. Muhin

    2016-07-01

    Full Text Available Based on the variation principle of Jourdan was developed a mathematical model of the process of widening freely in hot rolling of thin sheet metal. The principle applies to rigid-plastic materials and for the cinematically admissible area of speeds. The developed model allows to study the distribution of the widening on the length of the deformation zone depending on the parameters of the rolling process and sheet metal. Results are obtained, characterizing the size of the widening and effectiveness of the process control on tension at the entrance and exit from the stand. The widening is dependent on the strength of anti bending.

  8. Local processes and regional patterns - Interpreting a multi-decadal altimetry record of Greenland Ice Sheet changes

    Science.gov (United States)

    Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; van den Broeke, M. R.; Kuipers Munneke, P.; van der Veen, C. J.; Khan, S. A.; Porter, D. F.

    2016-12-01

    This study presents a new, comprehensive reconstruction of Greenland Ice Sheet elevation changes, generated using the Surface Elevation And Change detection (SERAC) approach. 35-year long elevation-change time series (1980-2015) were obtained at more than 150,000 locations from observations acquired by NASA's airborne and spaceborne laser altimeters (ATM, LVIS, ICESat), PROMICE laser altimetry data (2007-2011) and a DEM covering the ice sheet margin derived from stereo aerial photographs (1970s-80s). After removing the effect of Glacial Isostatic Adjustment (GIA) and the elastic crustal response to changes in ice loading, the time series were partitioned into changes due to surface processes and ice dynamics and then converted into mass change histories. Using gridded products, we examined ice sheet elevation, and mass change patterns, and compared them with other estimates at different scales from individual outlet glaciers through large drainage basins, on to the entire ice sheet. Both the SERAC time series and the grids derived from these time series revealed significant spatial and temporal variations of dynamic mass loss and widespread intermittent thinning, indicating the complexity of ice sheet response to climate forcing. To investigate the regional and local controls of ice dynamics, we examined thickness change time series near outlet glacier grounding lines. Changes on most outlet glaciers were consistent with one or more episodes of dynamic thinning that propagates upstream from the glacier terminus. The spatial pattern of the onset, duration, and termination of these dynamic thinning events suggest a regional control, such as warming ocean and air temperatures. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. We use statistical methods, such as principal

  9. 78 FR 79400 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Initiation...

    Science.gov (United States)

    2013-12-30

    ... order on polyethylene terephthalate film, sheet, and strip (``PET film'') from the People's Republic of... INFORMATION CONTACT: Jonathan Hill, AD/CVD Operations, Office IV, Enforcement & Compliance, International... Operations, Office IV ``Initiation of Antidumping New Shipper Review of Polyethylene Terephthalate Film...

  10. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    Science.gov (United States)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  11. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    International Nuclear Information System (INIS)

    Li Na; Chen Fei; Shen Qiang; Wang Chuanbin; Zhang Lianmeng

    2013-01-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  12. Magnetic properties and recrystallization texture of phosphorus-added non-oriented electrical steel sheets

    International Nuclear Information System (INIS)

    Tanaka, I.; Yashiki, H.

    2006-01-01

    The effect of phosphorus on magnetic properties and recrystallization texture has been investigated in non-oriented electrical steel sheets to develop low core loss and high permeability core materials. Specimens with different phosphorus contents were cold-rolled to various thicknesses, i.e. with various cold-rolling reductions, and annealed for recrystallization and grain growth. Although magnetic induction of the steel with low phosphorus content dramatically dropped with reducing thickness, i.e. with increasing in cold-rolling reduction, that of the steel with high phosphorus content only slightly decreased. The most effective way to reduce core loss was to reduce thickness of electrical steel sheets. Therefore, phosphorus-added thin gauge non-oriented electrical steel sheets have achieved low core loss and high permeability. The typical magnetic properties of phosphorus-added non-oriented electrical steel sheets 0.27mm in sheet thickness were 16.6W/kg in W 10/400 and 1.73T in B 50 . These excellent magnetic properties were due to the recrystallization texture control. {111} component in recrystallization texture was suppressed by the phosphorus segregation at initial grain boundaries. Accordingly, phosphorus would greatly contribute to the improvement of magnetic properties

  13. Microprobe metrology for direct sheet resistance and mobility characterization

    DEFF Research Database (Denmark)

    Nielsen, Peter Folmer; Petersen, Dirch Hjorth; Lin, Rong

    2012-01-01

    The M4PP measurement technique has gained increased interest from the semiconductor industry for direct sheet resistance measurements on ultra thin layers and small structures/pads. Several fully automatic microRSP probing tools are today in use for in-line sheet resistance measurements on blanket...

  14. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.

    2015-08-14

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  15. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.; Guyon, A.; Li, E.  Q.; Thoraval, M.-J.; Thoroddsen, Sigurdur T

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  16. Radar Interferometry Studies of the Mass Balance of Polar Ice Sheets

    Science.gov (United States)

    Rignot, Eric (Editor)

    1999-01-01

    The objectives of this work are to determine the current state of mass balance of the Greenland and Antarctic Ice Sheets. Our approach combines different techniques, which include satellite synthetic-aperture radar interferometry (InSAR), radar and laser altimetry, radar ice sounding, and finite-element modeling. In Greenland, we found that 3.5 times more ice flows out of the northern part of the Greenland Ice Sheet than previously accounted for. The discrepancy between current and past estimates is explained by extensive basal melting of the glacier floating sections in the proximity of the grounding line where the glacier detaches from its bed and becomes afloat in the ocean. The inferred basal melt rates are very large, which means that the glaciers are very sensitive to changes in ocean conditions. Currently, it appears that the northern Greenland glaciers discharge more ice than is being accumulated in the deep interior, and hence are thinning. Studies of temporal changes in grounding line position using InSAR confirm the state of retreat of northern glaciers and suggest that thinning is concentrated at the lower elevations. Ongoing work along the coast of East Greenland reveals an even larger mass deficit for eastern Greenland glaciers, with thinning affecting the deep interior of the ice sheet. In Antarctica, we found that glaciers flowing into a large ice shelf system, such as the Ronne Ice Shelf in the Weddell Sea, exhibit an ice discharge in remarkable agreement with mass accumulation in the interior, and the glacier grounding line positions do not migrate with time. Glaciers flowing rapidly into the Amudsen Sea, unrestrained by a major ice shelf, are in contrast discharging more ice than required to maintain a state of mass balance and are thinning quite rapidly near the coast. The grounding line of Pine Island glacier (see diagram) retreated 5 km in 4 years, which corresponds to a glacier thinning rate of 3.5 m/yr. Mass imbalance is even more negative

  17. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  18. Titanium Alloys Thin Sheet Welding with the Use of Concentrated Solar Energy

    Science.gov (United States)

    Pantelis, D. I.; Kazasidis, M.; Karakizis, P. N.

    2017-12-01

    The present study deals with the welding of titanium alloys thin sheets 1.3 mm thick, with the use of concentrated solar energy. The experimental part of the work took place at a medium size solar furnace at the installation of the Centre National de la Recherche Scientifique, at Odeillo, in Southern France, where similar and dissimilar defect-free welds of titanium Grades 4 and 6 were achieved, in the butt joint configuration. After the determination of the appropriate welding conditions, the optimum welded structures were examined and characterized microstructurally, by means of light optical microscopy, scanning electron microscopy, and microhardness testing. In addition, test pieces extracted from the weldments were tested under uniaxial tensile loading aiming to the estimation of the strength and the ductility of the joint. The analysis of the experimental results and the recorded data led to the basic concluding remarks which demonstrate increased hardness distribution inside the fusion area and severe loss of ductility, but adequate yield and tensile strength of the welds.

  19. Mass Balance of the Greenland Ice Sheet at High Elevations.

    Science.gov (United States)

    Thomas; Akins; Csatho; Fahnestock; Gogineni; Kim; Sonntag

    2000-07-21

    Comparison of ice discharge from higher elevation areas of the entire Greenland Ice Sheet with total snow accumulation gives estimates of ice thickening rates over the past few decades. On average, the region has been in balance, but with thickening of 21 centimeters per year in the southwest and thinning of 30 centimeters per year in the southeast. The north of the ice sheet shows less variability, with average thickening of 2 centimeters per year in the northeast and thinning of about 5 centimeters per year in the northwest. These results agree well with those from repeated altimeter surveys, except in the extreme south, where we find substantially higher rates of both thickening and thinning.

  20. Feature Size Effect on Formability of Multilayer Metal Composite Sheets under Microscale Laser Flexible Forming

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2017-07-01

    Full Text Available Multilayer metal composite sheets possess superior properties to monolithic metal sheets, and formability is different from monolithic metal sheets. In this research, the feature size effect on formability of multilayer metal composite sheets under microscale laser flexible forming was studied by experiment. Two-layer copper/nickel composite sheets were selected as experimental materials. Five types of micro molds with different diameters were utilized. The formability of materials was evaluated by forming depth, thickness thinning, surface quality, and micro-hardness distribution. The research results showed that the formability of two-layer copper/nickel composite sheets was strongly influenced by feature size. With feature size increasing, the effect of layer stacking sequence on forming depth, thickness thinning ratio, and surface roughness became increasingly larger. However, the normalized forming depth, thickness thinning ratio, surface roughness, and micro-hardness of the formed components under the same layer stacking sequence first increased and then decreased with increasing feature size. The deformation behavior of copper/nickel composite sheets was determined by the external layer. The deformation extent was larger when the copper layer was set as the external layer.

  1. Magnetic configurations of the tilted current sheets in magnetotail

    Directory of Open Access Journals (Sweden)

    C. Shen

    2008-11-01

    Full Text Available In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1 The magnetic field lines (MFLs in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2 The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3 In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4 In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of

  2. Method for making thin carbon foam electrodes

    Science.gov (United States)

    Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  3. Exploration of a possible cause of magnetic reconfiguration/reconnection due to generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet

    Science.gov (United States)

    Huang, Y. C.; Lyu, L. H.

    2014-12-01

    Magnetic reconfiguration/reconnection plays an important role on energy and plasma transport in the space plasma. It is known that magnetic field lines on two sides of a tangential discontinuity can connect to each other only at a neutral point, where the strength of the magnetic field is equal to zero. Thus, the standard reconnection picture with magnetic field lines intersecting at the neutral point is not applicable to the component reconnection events observed at the magnetopause and in the solar corona. In our early study (Yu, Lyu, & Wu, 2011), we have shown that annihilation of magnetic field near a thin current sheet can lead to the formation of normal magnetic field component (normal to the current sheet) to break the frozen-in condition and to accelerate the reconnected plasma flux, even without the presence of a neutral point. In this study, we examine whether or not a generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet can also lead to reconnection of plasma flux. Our results indicate that a non-uniform enhancement of electric current can yield formation of field-aligned currents. The normal-component magnetic field generated by the field-aligned currents can yield reconnection of plasma flux just outside the current-enhancement region. The particle motion that can lead to non-uniform enhancement of electric currents will be discussed.

  4. Preparation of a thin polysulfone phosphor sheet for the detection of alpha particles using adhesive process

    International Nuclear Information System (INIS)

    Seo, B. K.; Woo, Z. H.; Kim, G. H.; Chang, U. S.; Oh, W. Z.; Lee, K. W.; Han, M. J.

    2005-01-01

    According to atomic energy law and connection regs, the surface contamination of nuclear facilities should be monitored routinely. Surface contamination is divided into removable and fixed contamination. Fixed contamination is measured by a direct method with a survey meter. And removable contamination is measured by an indirect method using smear paper and a low background proportional counter. Also, in the decommissioning process of a nuclear research facilities, such as Korean Research Reactor 1 and 2 and Uranium Conversion Plant, a significant amount of nuclear wastes is produced. The wastes contaminated must be surveyed for the disposal and reuse in the future. In the previous study the medium, scintillatorembedded polymer membrane for detecting the alpharay, was prepared by impregnating organic scintillators in a membrane structure. The plastic scintillator consists of polysulfone(PSF) as a matrix with PPO as an organic scintillator and POPOP as a wave shifting agent dissolved in the matrix. But, an organic plastic scintillator was inadequate to detect the alpha particle in the alpha-beta mixing field because its light output is smaller than beta ray one. So, a thin phosphor sheet was prepared, which consisted of a very uniform deposit of silver activated zinc sulfide (ZnS(Ag)) phosphor applied to on side of clear polysulfone plastic sheet

  5. Effects of transverse temperature field nonuniformity on stress in silicon sheet growth

    Science.gov (United States)

    Mataga, P. A.; Hutchinson, J. W.; Chalmers, B.; Bell, R. O.; Kalejs, J. P.

    1987-01-01

    Stress and strain rate distributions are calculated using finite element analysis for steady-state growth of thin silicon sheet temperature nonuniformities imposed in the transverse (sheet width) dimension. Significant reductions in residual stress are predicted to occur for the case where the sheet edge is cooled relative to its center provided plastic deformation with high creep rates is present.

  6. Initial postbuckling analysis of elastoplastic thin-shear structures

    Science.gov (United States)

    Carnoy, E. G.; Panosyan, G.

    1984-01-01

    The design of thin shell structures with respect to elastoplastic buckling requires an extended analysis of the influence of initial imperfections. For conservative design, the most critical defect should be assumed with the maximum allowable magnitude. This defect is closely related to the initial postbuckling behavior. An algorithm is given for the quasi-static analysis of the postbuckling behavior of structures that exhibit multiple buckling points. the algorithm based upon an energy criterion allows the computation of the critical perturbation which will be employed for the definition of the critical defect. For computational efficiency, the algorithm uses the reduced basis technique with automatic update of the modal basis. The method is applied to the axisymmetric buckling of cylindrical shells under axial compression, and conclusions are given for future research.

  7. Strain tensor selection and the elastic theory of incompatible thin sheets.

    Science.gov (United States)

    Oshri, Oz; Diamant, Haim

    2017-05-01

    The existing theory of incompatible elastic sheets uses the deviation of the surface metric from a reference metric to define the strain tensor [Efrati et al., J. Mech. Phys. Solids 57, 762 (2009)JMPSA80022-509610.1016/j.jmps.2008.12.004]. For a class of simple axisymmetric problems we examine an alternative formulation, defining the strain based on deviations of distances (rather than distances squared) from their rest values. While the two formulations converge in the limit of small slopes and in the limit of an incompressible sheet, for other cases they are found not to be equivalent. The alternative formulation offers several features which are absent in the existing theory. (a) In the case of planar deformations of flat incompatible sheets, it yields linear, exactly solvable, equations of equilibrium. (b) When reduced to uniaxial (one-dimensional) deformations, it coincides with the theory of extensible elastica; in particular, for a uniaxially bent sheet it yields an unstrained cylindrical configuration. (c) It gives a simple criterion determining whether an isometric immersion of an incompatible sheet is at mechanical equilibrium with respect to normal forces. For a reference metric of constant positive Gaussian curvature, a spherical cap is found to satisfy this criterion except in an arbitrarily narrow boundary layer.

  8. Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance.

    Science.gov (United States)

    Wang, Cunjing; Wu, Dapeng; Wang, Hongju; Gao, Zhiyong; Xu, Fang; Jiang, Kai

    2018-08-01

    A facile potassium chloride salt-locking technique combined with hydrothermal treatment on precursors was explored to prepare nitrogen-doped hierarchical porous carbon sheets in air from biomass. Benefiting from the effective synthesis strategy, the as-obtained carbon possesses a unique nitrogen-doped thin carbon sheet structure with abundant hierarchical pores and large specific surface areas of 1459 m 2  g -1 . The doped nitrogen in carbon framework has a positive effect on the electrochemical properties of the electrode material, the thin carbon sheet structure benefits for fast ion transfer, the abundant meso-pores provide convenient channels for rapid charge transportation, large specific surface area and lots of micro-pores guarantee sufficient ion-storage sites. Therefore, applied for supercapacitors, the carbon electrode material exhibits an outstanding specific capacitance of 451 F g -1 at 0.5 A g -1 in a three-electrode system. Moreover, the assembled symmetric supercapacitor based on two identical carbon electrodes also displays high specific capacitance of 309 F g -1 at 0.5 A g -1 , excellent rate capacity and remarkable cycling stability with 99.3% of the initial capacitance retention after 10,000 cycles at 5 A -1 . The synthesis strategy avoids expensive inert gas protection and the use of corrosive KOH and toxic ZnCl 2 activated reagents, representing a promising green route to design advanced carbon electrode materials from biomass for high-capacity supercapacitors. Copyright © 2018. Published by Elsevier Inc.

  9. Initiated chemical vapor deposition of pH responsive poly(2-diisopropylamino)ethyl methacrylate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Mustafa, E-mail: karamanm@selcuk.edu.tr [Department of Chemical Engineering, Selcuk University (Turkey); Advanced Technology Research and Application Center, Selcuk University (Turkey); Cabuk, Nihat [Department of Chemical Engineering, Selcuk University (Turkey)

    2012-08-31

    Poly(2-(diisopropylamino)ethyl methacrylate) (PDPAEMA) thin films were deposited on low temperature substrates by initiated chemical vapor deposition (iCVD) method using tertbutyl peroxide as an initiator. Very high deposition rates up to 38 nm/min were observed at low filament temperatures due to the use of the initiator. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy show the formation of PDPAEMA films with high retention of tertiary amine functionality which is responsible for pH induced changes in the wetting behavior of the surfaces. As-deposited PDPAEMA thin films on flat Si surface showed a reversible switching of water contact angle values between 87 Degree-Sign and 28 Degree-Sign ; after successive treatments of high and low pH water solutions, respectively. Conformal and non-damaging nature of iCVD allowed to functionalize fragile and rough electrospun poly(methyl methacrylate) fiber mat surfaces by PDPAEMA, which creates a surface with a switching behavior between superhydrophobic and approaching superhydrophilic with contact angle values of 155 {+-} 3 Degree-Sign and 22 {+-} 5 Degree-Sign , respectively. - Highlights: Black-Right-Pointing-Pointer Poly(2-diisopropylaminoethyl methacrylate) thin films were deposited by a dry process. Black-Right-Pointing-Pointer Initiated chemical vapor deposition can produce thin films on fragile substrates. Black-Right-Pointing-Pointer We report a reversible pH-induced transition from hydrophilic to super-hydrophobic.

  10. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire

    Science.gov (United States)

    Takashima, Kazuto; Sugitani, Kazuhiro; Morimoto, Naohiro; Sakaguchi, Seiya; Noritsugu, Toshiro; Mukai, Toshiharu

    2014-12-01

    Shape-memory polymer (SMP) can be deformed by applying a small load above its glass transition temperature (Tg). Shape-memory polymer maintains its shape after it has cooled below Tg and returns to a predefined shape when subsequently heated above Tg. The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred times. Based on the change in stiffness of the SMP in relation to the change in temperature, the present study attempts to evaluate the application of the SMP to soft actuators of a robot. In order to control the temperature of the SMP, we developed an SMP sheet with an embedded electrical heating wire. We formed a uniform, thin SMP sheet without air bubbles using a heat press. The SMP sheet with a heating wire can be heated quickly and can be maintained at a constant temperature. Moreover, the effects of the embedded wire on the mechanical properties in bending and tensile tests were small. Then, we applied the SMP sheet with the embedded electrical heating wire to a pneumatic artificial rubber muscle. The enhanced versatility of SMP sheet applications is demonstrated through a series of experiments conducted using a prototype. The initial shape and bending displacement of the pneumatic artificial rubber muscle can be changed by controlling the temperature of the SMP sheet.

  11. Environmental constraints on West Antarctic ice-sheet formation

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, D R; MacAyeal, D R

    1987-01-01

    Small perturbations in Antarctic environmental conditions can culminate in the demise of the Antarctic ice sheet's western sector. This may have happened during the last interglacial period, and could recur within the next millennium due to atmospheric warming from trace gas and CO/sub 2/ increases. In this study, we investigate the importance of sea-level, accumulation rate, and ice influx from the East Antarctic ice sheet in the re-establishment of the West Antarctic ice sheet from a thin cover using a time-dependent numerical ice-shelf model. Our results show that a precursor to the West Antarctic ice sheet can form within 3000 years. Sea-level lowering caused by ice-sheet development in the Northern Hemisphere has the greatest environmental influence. Under favorable conditions, ice grounding occurs over all parts of the West Antarctic ice sheet except up-stream of Thwaites Glacier and in the Ross Sea region.

  12. Single clay sheets inside electrospun polymer nanofibers

    Science.gov (United States)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  13. The quantitative inspection of iron aluminide green sheet using transient thermography

    International Nuclear Information System (INIS)

    Watkins, Michael L.; Hinders, Mark K.; Scorey, Clive; Winfree, William

    1999-01-01

    The recent development of manufacturing techniques for the fabrication of thin iron aluminide, FeAl, sheet requires advanced quantitative methods for on-line inspection. An understanding of the mechanisms responsible for flaws and the development of appropriate flaw detection methods are key elements in an effective quality management system. The first step in the fabrication of thin FeAl alloy sheet is the formation of a green sheet, either by cold rolling or tape casting FeAl powder mixed with organic binding agents. The finished sheet is obtained using a series of process steps involving binder elimination, densification, sintering, and annealing. Non-uniformities within the green sheet are the major contributor to material failure in subsequent sheet processing and the production of non-conforming finished sheet. Previous work has demonstrated the advantages of using active thermography to detect the flaws and heterogeneity within green powder composites (1)(2)(3). The production environment and physical characteristics of these composites provide for unique challenges in developing a rapid nondestructive inspection capability. Thermography is non-contact and minimizes the potential damage to the fragile green sheet. Limited access to the material also demands a one-sided inspection technique. In this paper, we will describe the application of thermography for 100% on-line inspection within an industrial process. This approach is cost competitive with alternative technologies, such as x-ray imaging systems, and provides the required sensitivity to the variations in material composition. The formation of green sheet flaws and their transformation into defects within intermediate and finished sheet products will be described. A green sheet conformance criterion will be presented which would significantly reduce the probability of processing poor quality green sheet which contributes to higher waste and inferior bulk alloy sheet

  14. Current disruptions in the near-earth neutral sheet region

    International Nuclear Information System (INIS)

    Liu, A.T.Y.; Anderson, B.J.; Takahashi, K.; Zanetti, L.J.; McEntire, R.W.; Potemra, T.A.; Lopez, R.E.; Klumpar, D.M.; Greene, E.M.; Strangeway, R.

    1992-01-01

    Observations from the Charge Composition Explorer in 1985 and 1986 revealed fifteen current disruption events in which the magnetic field fluctuations were large and their onsets coincided well with ground onsets of substorm expansion or intensification. Over the disruption interval, the local magnetic field can change by as much as a factor of ∼7. In general, the stronger the current buildup and the closer the neutral sheet, the larger the resultant field change. There is also a tendency for a larger subsequent enhancement in the AE index with a stronger current buildup prior to current disruption. For events with good pitch angle coverage and extended observation in the neutral sheet region the authors find that the particle pressure increases toward the disruption onset and decreases afterward. Just prior to disruption, either the total particle pressure is isotropic, or the perpendicular component (P perpendicular ) dominates the parallel component (P parallel ), the plasma beta is seen to be as high as ∼70, and the observed plasma pressure gradient at the neutral sheet is large along the tail axis. The deduced local current density associated with pressure gradient is ∼27-80 n/Am 2 and is ∼85-105 mA/m when integrated over the sheet thickness. They infer from these results that just prior to the onset of current disruption, (1) an extremely thin current sheet requiring P parallel > P perpendicular for stress balance does not develop at these distances, (2) the thermal ion orbits are in the chaotic or Speiser regime while the thermal electrons are in the adiabatic regime and, in one case, exhibit peaked fluxes perpendicular to the magnetic field, thus implying no electron orbit chaotization to possibly initiate ion tearing instability, and (3) the neutral sheet is in the unstable regime specified by the cross-field current instability

  15. Enhancing Light-Trapping Properties of Amorphous Si Thin-Film Solar Cells Containing High-Reflective Silver Conductors Fabricated Using a Nonvacuum Process

    Directory of Open Access Journals (Sweden)

    Jun-Chin Liu

    2014-01-01

    Full Text Available We proposed a low-cost and highly reflective liquid organic sheet silver conductor using back contact reflectors in amorphous silicon (a-Si single junction superstrate configuration thin-film solar cells produced using a nonvacuum screen printing process. A comparison of silver conductor samples with vacuum-system-sputtered silver samples indicated that the short-circuit current density (Jsc of sheet silver conductor cells was higher than 1.25 mA/cm2. Using external quantum efficiency measurements, the sheet silver conductor using back contact reflectors in cells was observed to effectively enhance the light-trapping ability in a long wavelength region (between 600 nm and 800 nm. Consequently, we achieved an optimal initial active area efficiency and module conversion efficiency of 9.02% and 6.55%, respectively, for the a-Si solar cells. The results indicated that the highly reflective sheet silver conductor back contact reflector layer prepared using a nonvacuum process is a suitable candidate for high-performance a-Si thin-film solar cells.

  16. [Management of recurrent urethrocutaneous fistula after hypospadias surgery in pediatric patients: initial experience with dermal regeneration sheet Integra].

    Science.gov (United States)

    Casal-Beloy, I; Somoza Argibay, I; García-González, M; García-Novoa, A M; Míguez Fortes, L; Blanco, C; Dargallo Carbonell, T

    2017-10-25

    To present our initial experience using a dermal regeneration sheet as an urethral cover in the repair of recurrent urethrocutaneous fistulae in pediatric patients. Since May 2016 to March a total of 8 fistulaes were repaired using this new technique. We performed the ddissection of the fistulous tract and posterior closure of the urethral defect. A dermal regeneration sheet was used to cover the urethral suture. Finally a rotational flap was performed to avoid overlap sutures. During the follow-up (average 6 months), one patient presented in the immediate postoperative period infection of the surgical wound. This patient presented recurrence of the fistula. 88% of the patients included presented a good evolution with no other complications. In our initial experience the new technique seems easy, safe and effective in the management of the recurrent urethrocutaneous fistulae in pediatric patients. More studies are needed to prove these results.

  17. Sheet, ligament and droplet formation in swirling primary atomization

    Directory of Open Access Journals (Sweden)

    Changxiao Shao

    2018-04-01

    Full Text Available We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF method coupled with adapted mesh refinement (AMR technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  18. Sheet, ligament and droplet formation in swirling primary atomization

    Science.gov (United States)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  19. Predicting Pulsar Scintillation from Refractive Plasma Sheets

    Science.gov (United States)

    Simard, Dana; Pen, Ue-Li

    2018-05-01

    The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line-of-sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parameterized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: Only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.

  20. Thin film silicon photovoltaics: Architectural perspectives and technological issues

    Energy Technology Data Exchange (ETDEWEB)

    Mercaldo, Lucia Vittoria; Addonizio, Maria Luisa; Noce, Marco Della; Veneri, Paola Delli; Scognamiglio, Alessandra; Privato, Carlo [ENEA, Portici Research Center, Piazzale E. Fermi, 80055 Portici (Napoli) (Italy)

    2009-10-15

    Thin film photovoltaics is a particularly attractive technology for building integration. In this paper, we present our analysis on architectural issues and technological developments of thin film silicon photovoltaics. In particular, we focus on our activities related to transparent and conductive oxide (TCO) and thin film amorphous and microcrystalline silicon solar cells. The research on TCO films is mainly dedicated to large-area deposition of zinc oxide (ZnO) by low pressure-metallorganic chemical vapor deposition. ZnO material, with a low sheet resistance (<8 {omega}/sq) and with an excellent transmittance (>82%) in the whole wavelength range of photovoltaic interest, has been obtained. ''Micromorph'' tandem devices, consisting of an amorphous silicon top cell and a microcrystalline silicon bottom cell, are fabricated by using the very high frequency plasma enhanced chemical vapor deposition technique. An initial efficiency of 11.1% (>10% stabilized) has been obtained. (author)

  1. Effects of the IMF on the plasma sheet

    International Nuclear Information System (INIS)

    Akasofu, S.-I.; Meng, C.-I.

    1986-01-01

    It is suggested that the IMF Bsub(z) component controls partially the geometry of the cross-section (y-z plane) of the plasma sheet. Our vacuum superposition model suggests that the cross-section has a dumbbell shape for te IMF Bsub(z) O. It is also suggested that the thinning and subsequent expansion of the plasma sheet during magnetospheric substorms are partially due to a direct effect of the IMF Bsub(z). (author)

  2. Phase lags in oscillatory sheet flow: experiments and bed load modelling

    NARCIS (Netherlands)

    Dohmen-Janssen, Catarine M.; Kroekenstoel, D.F.; Kroekenstoel, D.F.; Hassan, Wael; Ribberink, Jan S.

    2002-01-01

    Sheet flow corresponds to the high velocity regime when small bed ripples are washed out and sand is transported in a thin layer close to the bed. Therefore, it is often assumed that sand transport in oscillatory sheet flow behaves quasi-steady: time-dependent transport rates are assumed to be

  3. Two-dimensional models for the optical response of thin films

    Science.gov (United States)

    Li, Yilei; Heinz, Tony F.

    2018-04-01

    In this work, we present a systematic study of 2D optical models for the response of thin layers of material under excitation by normally incident light. The treatment, within the framework of classical optics, analyzes a thin film supported by a semi-infinite substrate, with both the thin layer and the substrate assumed to exhibit local, isotropic linear response. Starting from the conventional three-dimensional (3D) slab model of the system, we derive a two-dimensional (2D) sheet model for the thin film in which the optical response is described by a sheet optical conductivity. We develop criteria for the applicability of this 2D sheet model for a layer with an optical thickness far smaller than the wavelength of the light. We examine in detail atomically thin semi-metallic and semiconductor van-der-Waals layers and ultrathin metal films as representative examples. Excellent agreement of the 2D sheet model with the 3D slab model is demonstrated over a broad spectral range from the radio frequency limit to the near ultraviolet. A linearized version of system response for the 2D model is also presented for the case where the influence of the optically thin layer is sufficiently weak. Analytical expressions for the applicability and accuracy of the different optical models are derived, and the appropriateness of the linearized treatment for the materials is considered. We discuss the advantages, as well as limitations, of these models for the purpose of deducing the optical response function of the thin layer from experiment. We generalize the theory to take into account in-plane anisotropy, layered thin film structures, and more general substrates. Implications of the 2D model for the transmission of light by the thin film and for the implementation of half- and totally absorbing layers are discussed.

  4. EMAT Evaluation of Thin Conductive Sheets

    Directory of Open Access Journals (Sweden)

    Ivo Cap

    2006-01-01

    Full Text Available At present a non-destructive testing of conducting materials becomes very important one in connection with monitoring and control of strategic technical facilities, e.g. nuclear power plants. There are more methods of material testing and evaluation and every of them has its advantages and disadvantages. Recently the electromagnetic methods are in increasing interest. There are many ways of conducting material testing. One of them often used utilises investigation of eddy currents induced in the surface layer by means of a proper coil. The arrangement is very simple and inexpensive but it offers only local information on cracks and other inhomogeneities in the thin surface layer. On the other hand there exist a method based on an electromagnetic – acoustic transducer (EMAT, which is able to generate and detect acoustic wave in a conducting body in a contact-less way. The present paper deals with a survey of EMATs for investigation of thin metalliclayers by means of Lamb waves. The new design of generation coil is presented.

  5. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. Development of thin film solar cell manufacturing technologies (Development of technologies to manufacture applied type thin film solar cells with new structure and development of high-efficiency hybrid thin film/sheet solar cells); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu (oyogata shin kozo usumaku taiyo denchi no seizo gijutsu kaihatsu (kokoritsu hybrid gata usumaku / sheet taiyo denchi no seizo gijutsu kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective to develop low-cost and high-efficiency hybrid thin film/sheet solar cells, research and development has been performed. This paper summarizes the achievements in fiscal 1999. The research is related to a hybrid construction, in which the upper cells of amorphous silicon thin film are formed on the lower cells bonded with micro-crystalline silicon thin film relative to a poly-crystalline silicon sheet. In the technology to form the upper cells, a pin-construction using amorphous silicon thin film made by using the plasma CVD process was adopted, whereas an open circuit voltage of 1.45V, a short circuit current of 13.6 mA/cm{sup 2}, and a conversion efficiency of 13.5% were obtained. In the technology to form the substrate for the lower cells, formation of flat silicon thin plate that can be peeled off was identified as a result of adopting the construction in which a graphite substrate is provided on a rotating cooling body of 12-prism type. With regard to the technology to bond and form the lower cells, electrical properties of hetero-bonded cells were discussed, and an open circuit voltage of 0.605V and a conversion efficiency of 14.3% were obtained as a result of enhancing the film quality and optimizing the film thickness. (NEDO)

  6. Continuous liquid sheet generator for ion stripping

    International Nuclear Information System (INIS)

    Gavin, B.; Batson, P.; Leemann, B.; Rude, B.

    1984-10-01

    Many of the technical problems of generating a large thin liquid sheet from 0.02 to 0.20 μm thick (3 to 40 μgm/cm 2 ) have been solved. It is shown that this perennial sheet is stable and consonant in dimension. Several ion beam species from the SuperHILAC have been used for evaluation; at 0.11 MeV/n. In one of three modes this sheet serves as an equivalent substitute for a carbon foil. The second mode is characterized by a solid-like charge state distribution but with a varying fraction of unstripped ions. The third mode gives stripping performance akin to a vapor stripping medium. 9 references, 7 figures

  7. Detection of defects in formed sheet metal using medial axis transformation

    Science.gov (United States)

    Murmu, Naresh C.; Velgan, Roman

    2003-05-01

    In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.

  8. Modelling the initiation of basal sliding

    Science.gov (United States)

    Mantelli, E.; Schoof, C.

    2017-12-01

    The initiation of basal sliding is a thermally-controlled process that affects ice speed, englacial heat transport, and melt water production at the bed, and ultimately influences the large-scale dynamics of ice sheets. From a modelling perspective, describing the onset of sliding in thin-film models suitable for ice sheet scale simulations is problematic. In particular, previous work concluded that, under shallow-ice mechanics, the scenario of a hard switch from frozen to molten bed leads to an infinite vertical velocity at the onset, and higher-order mechanical formulations are needed to describe sliding initiation. An alternative view considers the occurrence of subtemperate sliding, which allows for a smooth sliding velocity across the onset. However, the sliding velocity decreases rapidly as temperature drops below the melting point, thus raising the issue of whether a mechanical model that does not resolve the ice sheet thickness scale is ever appropriate to model the onset of sliding. In this study we first present a boundary layer model for the hard switch scenario. Our analysis, which considers a thermo-mechanically coupled Stokes flow near the onset, shows that the abrupt onset of sliding is never possible. In fact, the acceleration of ice flow deflects the flowlines towards the bed, which freezes again immediately downstream to the onset. This leads to the conclusion that the sliding velocity must change smoothly across the onset, thus the temperature dependence of sliding needs to be taken into account. In this context, we examine a limiting case of standard temperature-dependent sliding laws, where sliding onset takes the form of an extended transition region interposed between fully frozen and temperate bed. In the transition region basal temperature is at the melting point, and the sliding velocity varies smoothly as dictated by the energy budget of the bed. As the extent of this region is not small compared to the ice sheet length scale, we couple

  9. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - Development of production technology of thin film solar cells. Development of production technology of application type new structure thin film solar cells (Development of production technology of high efficiency hybrid thin films/sheet solar cells); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Hakumaku taiyodenchi no seizo gijutsu kaihatsu, Oyogata shinkozo hakumaku taiyodenchi no seizo gijutsu kaihatsu, (Kokoritsu hybrid gata hakumaku / sheet taiyodenchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of realizing low cost and high efficiency hybrid thin films/sheet solar cells, the R and D were carried out, and the FY 2000 results were reported. As to the formation technology of the upper cell, the following technologies were developed and the results contributory to the heightening of efficiency were obtained: technology for improvement of cell characteristics by gap widening of p layer, technology for optimization of formation conditions of i layer corresponding to the hybrid solar cell, technology for heightening of current by the intermediate ZnO layer just under the upper cell. Relating to the development of formation technology of high quality microcrystal thin films, it was indicated that the microcrystal silicon thin film had the conformity effective also for polycrystal silicon, and at the same time, the conversion efficiency of 12.8% and release voltage of 0.579V were obtained by the cell using the cast polycrystal board. In the thin film/polycrystal sheet hybrid solar cell in which all these technologies were integrated, the conversion efficiency of 12.0% was achieved, and the possibility was verified of achieving the target efficiency of 14% by further improvement of FF. (NEDO)

  10. Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance

    Science.gov (United States)

    Zhi, Lei; Zhang, Wenliang; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Liu, Zonghuai; Lei, Zhibin

    2018-05-01

    Strong coupling of electroactive components on conductive carbonaceous matrix to fabricate flexible hybrid electrodes represents a promising approach towards high performance supercapacitors. This work reports the fabrication of holey nickel cobalt layered double hydroxide (NiCo-LDH) nanosheets that are vertically grown on the cotton cloth-derived activated textile carbon (aTC). The abundant nanoholes on the thin-sheet NiCo-LDH not only enhance the electrode efficiency for efficient Faradaic redox reactions but also facilitate access of electrolyte to the electrode surface, thus giving rise to 70% capacitance arising from their outer surface. As a result, the aTC-NiCo hybrid electrode is capable of simultaneously achieving extremely high areal capacitance (6.37 F cm-2), mass capacitance (525 F g-1) and volumetric capacitance (249 F cm-3) at a practical level of mass loading (6.72 mg cm-2). Moreover, a solid-state asymmetric capacitor built with aTC-NiCo as positive electrode and active carbon-coated on aTC as negative electrode can deliver a volumetric energy density of 7.4 mWh cm-3 at a power density of 103 mW cm-3, while preserving a superior power performance, satisfying cycling stability and good mechanical flexibility.

  11. Recent development of non-oriented electrical steel sheet for automobile electrical devices

    International Nuclear Information System (INIS)

    Oda, Yoshihiko; Kohno, Masaaki; Honda, Atsuhito

    2008-01-01

    This paper describes non-oriented electrical steel sheet for automobile motors and reactors. Electrical steel sheets for energy efficient motors show high magnetic flux density and low iron loss. They are suitable for HEV traction motors and EPS motors. A thin-gauge electrical steel sheet and a gradient Si steel sheet show low iron loss in the high-frequency range. Therefore, the efficiency of high-frequency devices can be greatly improved. Since a 6.5% Si steel sheet possesses low iron loss and zero magnetostriction, it contributes to reduce the core loss and audible noise of high-frequency reactors

  12. On the structure of the magnetotail current sheet

    International Nuclear Information System (INIS)

    Ashour-Abdalla, M.; Peroomian, V.; Richard, R.L.; Zelenyi, L.M.

    1993-01-01

    Results from modeling ion distribution functions in a two-dimensional reduction of the Tsyganenko magnetic field model have enabled the authors to calculate the full ion pressure tensor inside the model magnetotail. A thin current sheet is formed in the distant tail and the pressure tensor within this sheet has significant off-diagonal terms. These terms resulting from quasiadiabatic ion trajectories create azimuthally asymmetric distribution functions which are capable of maintaining stress-balance. Outside the current sheet the off-diagonal terms disappear and moderate anisotropy builds up with P perpendicular/P parallel ∼ 0.8. Closer to the Earth rapid isotropization of the distribution occurs

  13. Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiyan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072 (China); Fu, Li, E-mail: fuli@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072 (China); Liang, Pei; Liu, Fenjun [Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072 (China)

    2017-03-15

    1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electron backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.

  14. Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets

    International Nuclear Information System (INIS)

    Chen, Haiyan; Fu, Li; Liang, Pei; Liu, Fenjun

    2017-01-01

    1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electron backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.

  15. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire

    International Nuclear Information System (INIS)

    Takashima, Kazuto; Sugitani, Kazuhiro; Morimoto, Naohiro; Sakaguchi, Seiya; Noritsugu, Toshiro; Mukai, Toshiharu

    2014-01-01

    Shape-memory polymer (SMP) can be deformed by applying a small load above its glass transition temperature (T g ). Shape-memory polymer maintains its shape after it has cooled below T g and returns to a predefined shape when subsequently heated above T g . The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred times. Based on the change in stiffness of the SMP in relation to the change in temperature, the present study attempts to evaluate the application of the SMP to soft actuators of a robot. In order to control the temperature of the SMP, we developed an SMP sheet with an embedded electrical heating wire. We formed a uniform, thin SMP sheet without air bubbles using a heat press. The SMP sheet with a heating wire can be heated quickly and can be maintained at a constant temperature. Moreover, the effects of the embedded wire on the mechanical properties in bending and tensile tests were small. Then, we applied the SMP sheet with the embedded electrical heating wire to a pneumatic artificial rubber muscle. The enhanced versatility of SMP sheet applications is demonstrated through a series of experiments conducted using a prototype. The initial shape and bending displacement of the pneumatic artificial rubber muscle can be changed by controlling the temperature of the SMP sheet. (paper)

  16. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    Science.gov (United States)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  17. Carbon sheet pumping

    International Nuclear Information System (INIS)

    Ohyabu, N.; Sagara, A.; Kawamura, T.; Motojima, O.; Ono, T.

    1993-07-01

    A new hydrogen pumping scheme has been proposed which controls recycling of the particles for significant improvement of the energy confinement in toroidal magnetic fusion devices. In this scheme, a part of the vacuum vessel surface near the divertor is covered with carbon sheets of a large surface area. Before discharge initiation, the sheets are baked up to 700 ∼ 1000degC to remove the previously trapped hydrogen atoms. After being cooled down to below ∼ 200degC, the unsaturated carbon sheets trap high energy charge exchange hydrogen atoms effectively during a discharge and overall pumping efficiency can be as high as ∼ 50 %. (author)

  18. Stability of high-speed lithium sheet jets for the neutron source in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Nakagawa, Masamichi; Takahashi, Minoru; Aritomi, Masanori; Kobayashi, Toru

    2014-01-01

    The stability of high-speed liquid lithium sheet jets was analytically studied for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to realize the thin and high-speed plane sheet jets of liquid lithium in a high-vacuum as an accelerator target. Linear analysis approach is made to the stability on thin plane sheet jets of liquid lithium in a high-vacuum, and then our analytical results were compared with the previous experimental ones. We proved that the waves of surface tension on thin lithium sheet jets in a high-vacuum are of supercritical flows and neutral stable under about 17.4 m/s in flow velocity and that the fast non-dispersive anti-symmetric waves are more significant than the very slow dispersive symmetric waves. We also formulated the equation of shrinking angle in isosceles-triangularly or isosceles-trapezoidal shrinking sheet jets corresponding to the Mach angle of supersonic gas flows. This formula states universally the physical meaning of Weber number of sheet jets on the wave of surface tension in supercritical flows. We obtained satisfactory prospects (making choice of larger flow velocity U and larger thickness of sheet a) to materialize a liquid target of accelerator in BNCT. (author)

  19. Spatial Offsets in Flare-CME Current Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Giordano, Silvio [INAF-Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Ciaravella, Angela, E-mail: jraymond@cfa.harvard.edu [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy)

    2017-07-10

    Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form magnetic flux ropes and to allow CMEs to escape. Structures that appear between flare loops and CME cores in optical, UV, EUV, and X-ray observations have been identified as current sheets and have been interpreted in terms of the nature of the reconnection process and the energetics of the events. Many of these studies have used UV spectral observations of high temperature emission features in the [Fe xviii] and Si xii lines. In this paper, we discuss several surprising cases in which the [Fe xviii] and Si xii emission peaks are spatially offset from each other. We discuss interpretations based on asymmetric reconnection, on a thin reconnection region within a broader streamer-like structure, and on projection effects. Some events seem to be easily interpreted as the projection of a sheet that is extended along the line of sight that is viewed an angle, but a physical interpretation in terms of asymmetric reconnection is also plausible. Other events favor an interpretation as a thin current sheet embedded in a streamer-like structure.

  20. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets

    Energy Technology Data Exchange (ETDEWEB)

    Karpagaraj, A.; Siva shanmugam, N., E-mail: nsiva@nitt.edu; Sankaranarayanasamy, K.

    2015-07-29

    Gas Tungsten Arc Welding (GTAW) is a commonly used welding process for welding Titanium materials. Welding of titanium and its alloys poses several intricacies to the designer as they are prone to oxidation phenomenon. To overcome this contamination, a relatively new type of shielding arrangement is experimented. The proposed design and arrangement have been employed for joining commercially pure titanium sheets with variations in the GTAW process parameters namely the welding current and travel speed. Bead on plate (BoP) trials were conducted on thin sheets of 2 mm thickness by varying the process parameters. Subsequently, the macro structure images were captured. Based on these results, the process parameters are chosen for carrying out full penetration butt joints on 1.6 mm and 2 mm thick titanium sheets. The influences of these parameters of GTAW on the microstructure, mechanical properties and surface morphology at the fractured locations of the welded joints are examined. The microstructural properties of base metal, heat affected zone and fusion zone are analyzed through optical microscopy. The welded joints showed an ultimate tensile strength of about 383 MPa with 15.7% elongation. The hardness value at fusion zone and base metal are typically observed to be 191 and 153 HV-0.5, respectively. X-ray diffraction study is conducted to examine the chemical composition in the parent metal and fusion zone of the weld. Fractured surface is examined using Scanning Electron Microscopy which revealed dimple kind of rupture present at the fractured surfaces owing to insufficient or excessive heat with slight impurities that prevents the accomplishment of stronger micro-level weld integrity.

  1. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets

    International Nuclear Information System (INIS)

    Karpagaraj, A.; Siva shanmugam, N.; Sankaranarayanasamy, K.

    2015-01-01

    Gas Tungsten Arc Welding (GTAW) is a commonly used welding process for welding Titanium materials. Welding of titanium and its alloys poses several intricacies to the designer as they are prone to oxidation phenomenon. To overcome this contamination, a relatively new type of shielding arrangement is experimented. The proposed design and arrangement have been employed for joining commercially pure titanium sheets with variations in the GTAW process parameters namely the welding current and travel speed. Bead on plate (BoP) trials were conducted on thin sheets of 2 mm thickness by varying the process parameters. Subsequently, the macro structure images were captured. Based on these results, the process parameters are chosen for carrying out full penetration butt joints on 1.6 mm and 2 mm thick titanium sheets. The influences of these parameters of GTAW on the microstructure, mechanical properties and surface morphology at the fractured locations of the welded joints are examined. The microstructural properties of base metal, heat affected zone and fusion zone are analyzed through optical microscopy. The welded joints showed an ultimate tensile strength of about 383 MPa with 15.7% elongation. The hardness value at fusion zone and base metal are typically observed to be 191 and 153 HV-0.5, respectively. X-ray diffraction study is conducted to examine the chemical composition in the parent metal and fusion zone of the weld. Fractured surface is examined using Scanning Electron Microscopy which revealed dimple kind of rupture present at the fractured surfaces owing to insufficient or excessive heat with slight impurities that prevents the accomplishment of stronger micro-level weld integrity

  2. Dynamics of a radially expanding liquid sheet: Experiments

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh

    2017-11-01

    A recent theory predicts that sinuous waves generated at the center of a radially expanding liquid sheet grow spatially even in absence of a surrounding gas phase. Unlike flat liquid sheets, the thickness of a radially expanding liquid sheet varies inversely with distance from the center of the sheet. To test the predictions of the theory, experiments were carried out on a horizontal, radially expanding liquid sheet formed by collision of a single jet on a solid impactor. The latter was placed on a speaker-vibrator with controlled amplitude and frequency. The growth of sinuous waves was determined by measuring the wave surface inclination angle using reflected laser light under both atmospheric and sub-atmospheric pressure conditions. It is shown that the measured growth rate matches with the predictions of the theory over a large range of Weber numbers for both pressure conditions suggesting that the thinning of the liquid sheet plays a dominant role in setting the growth rate of sinuous waves with minimal influence of the surrounding gas phase on its dynamics. IIT Bombay.

  3. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2017-01-01

    Full Text Available Rat bone marrow mesenchymal stem cell sheets (rBMSC sheets are attractive for cell-based tissue engineering. However, methods of culturing rBMSC sheets are critically limited. In order to obtain intact rBMSC sheets, a light-induced cell sheet method was used in this study. TiO2 nanodot films were coated with (TL or without (TN laminin-521. We investigated the effects of laminin-521 on rBMSCs during cell sheet culturing. The fabricated rBMSC sheets were subsequently assessed to study cell sheet viability, reattachment ability, cell sheet thickness, collagen type I deposition, and multilineage potential. The results showed that laminin-521 could promote the formation of rBMSC sheets with good viability under hyperconfluent conditions. Cell sheet thickness increased from an initial 26.7 ± 1.5 μm (day 5 up to 47.7 ± 3.0 μm (day 10. Moreover, rBMSC sheets maintained their potential of osteogenic, adipogenic, and chondrogenic differentiation. This study provides a new strategy to obtain rBMSC sheets using light-induced cell sheet technology.

  4. Multi-layered fabrication of large area PDMS flexible optical light guide sheets

    Science.gov (United States)

    Green, Robert; Knopf, George K.; Bordatchev, Evgueni V.

    2017-02-01

    Large area polydimethylsiloxane (PDMS) flexible optical light guide sheets can be used to create a variety of passive light harvesting and illumination systems for wearable technology, advanced indoor lighting, non-planar solar light collectors, customized signature lighting, and enhanced safety illumination for motorized vehicles. These thin optically transparent micro-patterned polymer sheets can be draped over a flat or arbitrarily curved surface. The light guiding behavior of the optical light guides depends on the geometry and spatial distribution of micro-optical structures, thickness and shape of the flexible sheet, refractive indices of the constituent layers, and the wavelength of the incident light. A scalable fabrication method that combines soft-lithography, closed thin cavity molding, partial curing, and centrifugal casting is described in this paper for building thin large area multi-layered PDMS optical light guide sheets. The proposed fabrication methodology enables the of internal micro-optical structures (MOSs) in the monolithic PDMS light guide by building the optical system layer-by-layer. Each PDMS layer in the optical light guide can have the similar, or a slightly different, indices of refraction that permit total internal reflection within the optical sheet. The individual molded layers may also be defect free or micro-patterned with microlens or reflecting micro-features. In addition, the bond between adjacent layers is ensured because each layer is only partially cured before the next functional layer is added. To illustrate the scalable build-by-layers fabrication method a three-layer mechanically flexible illuminator with an embedded LED strip is constructed and demonstrated.

  5. E12 sheet plastination: Techniques and applications.

    Science.gov (United States)

    Ottone, Nicolas Ernesto; Baptista, Carlos A C; Latorre, Rafael; Bianchi, Homero Felipe; Del Sol, Mariano; Fuentes, Ramon

    2017-10-30

    Plastination is an anatomical technique that consists of replacing the liquids and fat of specimens by reactive polymers through forced impregnation in a vacuum. These are then polymerized to achieve the final result. E12 sheet plastination involves epoxy resin impregnation of thin (2-4 mm) and ultra-thin (SciELO databases, and manual searches. After searching, 616 records were found using the online and manual searches (MEDLINE, n: 207; EMBASE, n: 346; SciELO, n: 44; Manual search: 23). Finally, 96 records were included in this review (after duplicates and articles unrelated to the subject were excluded). The aim of this work was to review the E12 sheet plastination technique, searching for articles concerning views of it, identifying the different variants implemented by researchers since its creation by Gunther von Hagens, and to identify its applications from teaching and research in anatomy to morphological sciences. Clin. Anat., 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.; Conrad, E.; Dogan, P.; Fenske, F.; Gorka, B.; Haenel, T.; Lee, K.Y.; Rau, B.; Ruske, F.; Weber, T.; Gall, S.; Rech, B. [Helmholtz-Zentrum Berlin fuer Materialien und Energie (formerly Hahn-Meitner-Institut Berlin), Kekulestr. 5, D-12489 Berlin (Germany); Berginski, M.; Huepkes, J. [Institute of Photovoltaics, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    2009-06-15

    The suitability of ZnO:Al thin films for polycrystalline silicon (poly-Si) thin-film solar cell fabrication was investigated. The electrical and optical properties of 700 -nm-thick ZnO:Al films on glass were analyzed after typical annealing steps occurring during poly-Si film preparation. If the ZnO:Al layer is covered by a 30 nm thin silicon film, the initial sheet resistance of ZnO:Al drops from 4.2 to 2.2 {omega} after 22 h annealing at 600 C and only slightly increases for a 200 s heat treatment at 900 C. A thin-film solar cell concept consisting of poly-Si films on ZnO:Al coated glass is introduced. First solar cell results will be presented using absorber layers either prepared by solid-phase crystallization (SPC) or by direct deposition at 600 C. (author)

  7. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  8. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    Science.gov (United States)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  9. Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets

    Science.gov (United States)

    2015-06-01

    Materials 2 2.2 Hot Rolling 3 2.2 Sample Characterization: Microstructure and Tensile Properties 3 3. Rolling Experiments 5 3.1 High-Temperature...material systems for protective and structural applications, especially in ground vehicles. Magnesium (Mg), due to its low density (~25% that of steel ...applications, wrought Mg is difficult to produce in thin sheets because of its inherently low ductility . As a result, Mg sheet is often produced at

  10. Plasma dynamics in current sheets

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Drejden, G.V.; Kirij, N.P.; AN SSSR, Leningrad

    1992-01-01

    Plasma dynamics in successive stages of current sheet evolution is investigated on the base of analysis of time-spatial variations of electron density and electrodynamic force fields. Current sheet formation is realized in a two-dimensional magnetic field with zero line under the action of relatively small initial disturbances (linear regimes). It is established that in the limits of the formed sheet is concentrated dense (N e ∼= 10 16 cm -3 ) (T i ≥ 100 eV, bar-Z i ≥ 2) hot pressure of which is balanced by the magnetic action of electrodynamic forces is carried out both plasma compression in the sheet limits and the acceleration along the sheet surface from a middle to narrow side edges

  11. Opposed-Flow Flame Spread in a Narrow Channel Apparatus over Thin PMMA Sheets

    Science.gov (United States)

    Bornand, G. R.; Olson, Sandra L.; Miller, F. J.; Pepper, J. M.; Wichman, I. S.

    2013-01-01

    that at 1 atm pressure, the SDSU NCA successfully simulates microgravity for not only thin cellulose fuels, but also for thin PMMA sheets as well. This further supports the idea that the NCA is a viable option to complement or replace NASA's Test 1 for material flammability testing. Tests with thick fuels will be conducted in the future to further characterize the SDSU NCA.

  12. THE FREE-FALL TIME OF FINITE SHEETS AND FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Toala, Jesus A. [Currently at Instituto de Astrofisica de Andalucia, CSIC, E-1808, Granada (Spain); Vazquez-Semadeni, Enrique; Gomez, Gilberto C. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Campus Morelia Apartado Postal 3-72, 58090 Morelia, Michoacan (Mexico)

    2012-01-10

    Molecular clouds often exhibit filamentary or sheet-like shapes. We compute the free-fall time ({tau}{sub ff}) for finite, uniform, self-gravitating circular sheets and filamentary clouds of small but finite thickness, so that their volume density {rho} can still be defined. We find that, for thin sheets, the free-fall time is larger than that of a uniform sphere with the same volume density by a factor proportional to {radical}A, where the aspect ratio A is given by A = R/h, R being the sheet's radius and h is its thickness. For filamentary clouds, the aspect ratio is defined as A=L/R, where L is the filament's half-length and R is its (small) radius, and the modification factor is more complicated, although in the limit of large A it again reduces to nearly {radical}A. We propose that our result for filamentary shapes naturally explains the ubiquitous configuration of clumps fed by filaments observed in the densest structures of molecular clouds. Also, the longer free-fall times for non-spherical geometries in general may contribute toward partially alleviating the 'star formation conundrum', namely, the star formation rate in the Galaxy appears to be proceeding in a timescale much larger than the total molecular mass in the Galaxy divided by its typical free-fall time. If molecular clouds are in general formed by thin sheets and long filaments, then their relevant free-fall time may have been systematically underestimated, possibly by factors of up to one order of magnitude.

  13. THE FREE-FALL TIME OF FINITE SHEETS AND FILAMENTS

    International Nuclear Information System (INIS)

    Toalá, Jesús A.; Vázquez-Semadeni, Enrique; Gómez, Gilberto C.

    2012-01-01

    Molecular clouds often exhibit filamentary or sheet-like shapes. We compute the free-fall time (τ ff ) for finite, uniform, self-gravitating circular sheets and filamentary clouds of small but finite thickness, so that their volume density ρ can still be defined. We find that, for thin sheets, the free-fall time is larger than that of a uniform sphere with the same volume density by a factor proportional to √A, where the aspect ratio A is given by A = R/h, R being the sheet's radius and h is its thickness. For filamentary clouds, the aspect ratio is defined as A=L/R, where L is the filament's half-length and R is its (small) radius, and the modification factor is more complicated, although in the limit of large A it again reduces to nearly √A. We propose that our result for filamentary shapes naturally explains the ubiquitous configuration of clumps fed by filaments observed in the densest structures of molecular clouds. Also, the longer free-fall times for non-spherical geometries in general may contribute toward partially alleviating the 'star formation conundrum', namely, the star formation rate in the Galaxy appears to be proceeding in a timescale much larger than the total molecular mass in the Galaxy divided by its typical free-fall time. If molecular clouds are in general formed by thin sheets and long filaments, then their relevant free-fall time may have been systematically underestimated, possibly by factors of up to one order of magnitude.

  14. On elastic waves in an thinly-layered laminated medium with stress couples under initial stress

    Directory of Open Access Journals (Sweden)

    P. Pal Roy

    1988-01-01

    Full Text Available The present work is concerned with a simple transformation rule in finding out the composite elastic coefficients of a thinly layered laminated medium whose bulk properties are strongly anisotropic with a microelastic bending rigidity. These elastic coefficients which were not known completely for a layered laminated structure, are obtained suitably in terms of initial stress components and Lame's constants λi, μi of initially isotropic solids. The explicit solutions of the dynamical equations for a prestressed thinly layered laminated medium under horizontal compression in a gravity field are derived. The results are discussed specifying the effects of hydrostatic, deviatoric and couple stresses upon the characteristic propagation velocities of shear and compression wave modes.

  15. Homotopy Perturbation Method for Thin Film Flow and Heat Transfer over an Unsteady Stretching Sheet with Internal Heating and Variable Heat Flux

    Directory of Open Access Journals (Sweden)

    I-Chung Liu

    2012-01-01

    Full Text Available We have analyzed the effects of variable heat flux and internal heat generation on the flow and heat transfer in a thin film on a horizontal sheet in the presence of thermal radiation. Similarity transformations are used to transform the governing equations to a set of coupled nonlinear ordinary differential equations. The obtained differential equations are solved approximately by the homotopy perturbation method (HPM. The effects of various parameters governing the flow and heat transfer in this study are discussed and presented graphically. Comparison of numerical results is made with the earlier published results under limiting cases.

  16. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

    Science.gov (United States)

    Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D

    2013-09-25

    Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. An ice sheet model validation framework for the Greenland ice sheet

    Science.gov (United States)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  18. Statistical study of plasma sheet dynamics using ISEE 1 and 2 energetic particle flux data

    International Nuclear Information System (INIS)

    Dandouras, J.; Reme, H.; Saint-Marc, A.; Sauvaud, J.A.; Parks, G.K.; Anderson, K.A.; Lin, R.P.

    1986-01-01

    During magnetospheric substorms, satellites embedded in the plasma sheet often detect transient dropouts of plasma and energetic particle fluxes, a phenomemon generally interpreted as indicating the exit of the satellite into the magnetospheric lobe due to a plasma sheet thinning. In order to determine the large-scale dynamics of the near-earth plasma sheet during substorms, three satellite years of ISEE 1 and 2 energetic particle flux data (1.5 and 6 keV), corresponding to 461 particle flux dropouts, have been analyzed. The principal results show that flux dropouts can be observed anywhere in the nightside plasma sheet, independent of the satellite's geocentric distance (for R>12R/sub E/), magnetic local time (except near the magnetospheric flanks) and estimated distance to the neutral sheet. Furthermore, flux dropouts can be observed for any combination of the AE index value and the satellite's distance to the neutral sheet, which shows that the plasma sheet is dynamic even during weak magnetospheric disturbances. Substorms during which the satellites, though situated in the plasma sheet, did not detect any flux dropout, have also been examined, and it is found that the plasma sheet thickness can locally remain unaffected by substorm development for AE index values up to at least 1000 nT. The predictions of the two major plasma sheet thinning models, i.e., the near-tail X-type magnetic neutral line formation model and the MHD rarefaction wave propagation model, are compared to the experimental results, and it is concluded that neither model can account for all of the observations; plasma sheet dynamics are more complex. Phenomenologically, this study suggests that multiple pinching of the plasma sheet and/or large-amplitude three-dimensional plasma sheet oscillations are important in plasma sheet dynamics

  19. Thin, Flexible Secondary Li-Ion Paper Batteries

    KAUST Repository

    Hu, Liangbing

    2010-10-26

    There is a strong interest in thin, flexible energy storage devices to meet modern society needs for applications such as interactive packaging, radio frequency sensing, and consumer products. In this article, we report a new structure of thin, flexible Li-ion batteries using paper as separators and free-standing carbon nanotube thin films as both current collectors. The current collectors and Li-ion battery materials are integrated onto a single sheet of paper through a lamination process. The paper functions as both a mechanical substrate and separator membrane with lower impedance than commercial separators. The CNT film functions as a current collector for both the anode and the cathode with a low sheet resistance (∼5 Ohm/sq), lightweight (∼0.2 mg/cm2), and excellent flexibility. After packaging, the rechargeable Li-ion paper battery, despite being thin (∼300 μm), exhibits robust mechanical flexibility (capable of bending down to <6 mm) and a high energy density (108 mWh/g). © 2010 American Chemical Society.

  20. Method for producing textured substrates for thin-film photovoltaic cells

    Science.gov (United States)

    Lauf, Robert J.

    1994-01-01

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.

  1. Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets.

    Science.gov (United States)

    Paulsen, Joseph D; Hohlfeld, Evan; King, Hunter; Huang, Jiangshui; Qiu, Zhanlong; Russell, Thomas P; Menon, Narayanan; Vella, Dominic; Davidovitch, Benny

    2016-02-02

    Wrinkle patterns in compressed thin sheets are ubiquitous in nature and technology, from the furrows on our foreheads to crinkly plant leaves, from ripples on plastic-wrapped objects to the protein film on milk. The current understanding of an elementary descriptor of wrinkles--their wavelength--is restricted to deformations that are parallel, spatially uniform, and nearly planar. However, most naturally occurring wrinkles do not satisfy these stipulations. Here we present a scheme that quantitatively explains the wrinkle wavelength beyond such idealized situations. We propose a local law that incorporates both mechanical and geometrical effects on the spatial variation of wrinkle wavelength. Our experiments on thin polymer films provide strong evidence for its validity. Understanding how wavelength depends on the properties of the sheet and the underlying liquid or elastic subphase is crucial for applications where wrinkles are used to sculpt surface topography, to measure properties of the sheet, or to infer forces applied to a film.

  2. UV and plasma treatment of thin silver layers and glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hluschi, J.H. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Helmke, A. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Roth, P. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Boewer, R. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Herlitze, L. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Vioel, W. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany)]. E-mail: vioel@hawk-hhg.de

    2006-11-10

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of {lambda}=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers.

  3. UV and plasma treatment of thin silver layers and glass surfaces

    International Nuclear Information System (INIS)

    Hluschi, J.H.; Helmke, A.; Roth, P.; Boewer, R.; Herlitze, L.; Vioel, W.

    2006-01-01

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of λ=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers

  4. The Effect of Creep on the Residual Stresses Generated During Silicon Sheet Growth

    Science.gov (United States)

    Hutchinson, J. W.; Lambropoulos, J. C.

    1984-01-01

    The modeling of stresses generated during the growth of thin silicon sheets at high speeds is an important part of the EFG technique since the experimental measurement of the stresses is difficult and prohibitive. The residual stresses which arise in such a growth process lead to serious problems which make thin Si ribbons unsuitable for fabrication. The constitutive behavior is unrealistic because at high temperature (close to the melting point) Si exhibits considerable creep which significantly relaxes the residual stresses. The effect of creep on the residual stresses generated during the growth of Si sheets at high speeds was addressed and the basic qualitative effect of creep are reported.

  5. FORMATION AND RECONNECTION OF THREE-DIMENSIONAL CURRENT SHEETS IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-01-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun's corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional (3D) magnetohydrodynamic simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to directly apply the vast body of knowledge gained from the many studies of two-dimensional (2D) reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet-Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona.

  6. Radial-rotation profile forming: A new processing technology of incremental sheet metal forming

    Science.gov (United States)

    Laue, Robert; Härtel, Sebastian; Awiszus, Birgit

    2018-05-01

    Incremental forming processes (i.e., spinning) of sheet metal blanks into cylindrical cups are suitable for lower lot sizes. The produced cups were frequently used as preforms to produce workpieces in further forming steps with additional functions like profiled hollow parts [1]. The incremental forming process radial-rotation profile forming has been developed to enable the production of profiled hollow parts with low sheet thinning and good geometrical accuracy. The two principal forming steps are the production of the preform by rotational swing-folding [2] and the subsequent radial profiling of the hollow part in one clamping position. The rotational swing-folding process is based on a combination of conventional spinning and swing-folding. Therefore, a round blank rotates on a profiled mandrel and due to the swinging of a cylindrical forming tool, the blank is formed to a cup with low sheet thinning. In addition, thickening results at the edge of the blank and wrinkling occurs. However, the wrinkles are formed into the indentation of the profiled mandrel and can be reshaped as an advantage in the second process step, the radial profiling. Due to the rotation and continuous radial feed of a profiled forming tool to the profiled mandrel, the axial profile is formed in the second process step. Because of the minor relative movement in axial direction between tool and blank, low sheet thinning occurs. This is an advantage of the principle of the process.

  7. Stamping of Thin-Walled Structural Components with Magnesium Alloy AZ31 Sheets

    International Nuclear Information System (INIS)

    Chen, F.-K.; Chang, C.-K.

    2005-01-01

    In the present study, the stamping process for manufacturing cell phone cases with magnesium alloy AZ31 sheets was studied using both the experimental approach and the finite element analysis. In order to determine the proper forming temperature and set up a fracture criterion, tensile tests and forming limit tests were first conducted to obtain the mechanical behaviors of AZ31 sheets at various elevated temperatures. The mechanical properties of Z31 sheets obtained from the experiments were then adopted in the finite element analysis to investigate the effects of the process parameters on the formability of the stamping process of cell phone cases. The finite element simulation results revealed that both the fracture and wrinkle defects could not be eliminated at the same time by adjusting blank-holder force or blank size. A drawbead design was then performed using the finite element simulations to determine the size and the location of drawbead required to suppress the wrinkle defect. An optimum stamping process, including die geometry, forming temperature, and blank dimension, was then determined for manufacturing the cell phone cases. The finite element analysis was validated by the good agreement between the simulation results and the experimental data. It confirms that the cell phone cases can be produced with magnesium alloy AZ31 sheet by the stamping process at elevated temperatures

  8. Breakup characteristics of power-law liquid sheets formed by two impinging jets

    International Nuclear Information System (INIS)

    Bai, Fuqiang; Diao, Hai; Chang, Qing; Wang, Endong; Du, Qing; Zhang, Mengzheng

    2014-01-01

    The breakup characteristics of the shear-thinning power-law liquid sheets formed by two impinging jets have been investigated with the shadowgraph technique. This paper focuses on the effects of spray parameters (jet velocity), physical parameters (viscosity) and geometry parameters (impinging angle and nozzle cross-sectional shape) on the breakup behaviors of liquid sheets. The breakup mode, sheet length and expansion angle of the sheet are extracted from the spray images obtained by a high speed camera. Impinging angle and Weber number play the similar roles in promoting the breakup of liquid sheets. With the increase of jet velocity, five different breakup modes are observed and the expansion angle increases consistently after the closed-rim mode while the sheet length first increases and then decreases. But there exists a concave consisting of a fierce drop and a second rising process on the sheet length curve for the fluid with smaller viscosity. Different nozzle cross-sectional shapes emphasize significant effects on the sheet length and expansion angle of liquid sheets. At a fixed Weber number, the liquid sheet with greater viscosity has a greater sheet length and a smaller expansion angle due to the damping effect of viscosity. (papers)

  9. SPR Characteristics Curve and Distribution of Residual Stress in Self-Piercing Riveted Joints of Steel Sheets

    OpenAIRE

    Haque, Rezwanul; Wong, Yat C.; Paradowska, Anna; Blacket, Stuart; Durandet, Yvonne

    2017-01-01

    Neutron diffraction was used to describe the residual stress distributions in self-piercing riveted (SPR) joints. The sheet material displayed a compressive residual stress near the joint, and the stress gradually became tensile in the sheet material far away from the joint. The stress in the rivet leg was lower in the thick joint of the softer steel sheet than in the thin joint of the harder steel sheet. This lower magnitude was attributed to the lower force gradient during the rivet flaring...

  10. Influence of the Aluminium Alloy Type on Defects Formation in Friction Stir Lap Welding of Thin Sheets

    Directory of Open Access Journals (Sweden)

    M. I. Costa

    Full Text Available Abstract The weldability in Friction Stir Lap Welding (FSLW of heat and non-heat treatable aluminium alloys, the AA6082-T6 and the AA5754-H22 aluminium alloys, respectively, are compared. For both alloys, welds were produced in very thin sheets, using the same welding parameters and procedures, and strong differences in welds morphology were found. The strength of the welds was evaluated by performing tensile-shear tests under monotonic and cyclic loading conditions. As-welded and heat-treated samples of the AA6082- T6 were tested. It was found that the heat-treatable alloy is more sensitive to defects formation, in lap welding, than the non-heat-treatable alloy. The presence of defects has a strong influence on the monotonic and fatigue behaviour of the welds. In spite of this, for very high-applied stresses, the heat-treatable alloy welds perform better in fatigue than the non-heat-treatable alloy welds.

  11. Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hong-Yu; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; Wang, Guo-Dong

    2017-03-15

    A 0.1 mm-thick grain-oriented silicon steel sheet was successfully produced using strip casting and three-stage cold rolling method. The microstructure, texture and inhibitor evolution during the processing was briefly analyzed. It was found that Goss texture was absent in the hot rolled sheet because of the lack of shear deformation. After normalizing, a large number of dispersed MnS precipitates with the size range of 15–90 nm were produced. During first cold rolling, dense shear bands were generated in the deformed ferrite grains, resulting in the intense Goss texture after first intermediate annealing. The microstructure was further refined and homogenized during the subsequent cold rolling and annealing processes. After primary recrystallization annealing, a homogeneous microstructure consisting of fine and equiaxed grains was produced while the associated texture was characterized by a strong γ-fiber texture. Finally, a complete secondary recrystallization microstructure consisting of entirely large Goss grains was produced. The magnetic induction B{sub 8} and iron loss P{sub 10/400} was 1.79 T and 6.9 W/kg, respectively. - Highlights: • Ultra-thin grain-oriented silicon steel was produced by strip casting process. • Microstructure, texture and inhibitor evolution was briefly investigated. • Goss texture was absent in primary recrystallization annealed sheet. • MnS precipitates with a size range of 15–90 nm formed after normalizing. • A complete secondary recrystallization microstructure was produced.

  12. Failure analysis of fusion clad alloy system AA3003/AA6xxx sheet under bending

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y., E-mail: shiyh@mcmaster.ca [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Jin, H. [Novelis Global Technology Center, P.O. Box 8400, Kingston, Ontario, Canada K7L 5L9 (Canada); Wu, P.D. [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Lloyd, D.J. [Aluminum Materials Consultants, 106 Nicholsons Point Road, Bath, Ontario, Canada K0H 1G0 (Canada); Embury, D. [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2014-07-29

    An ingot of AA6xxx Al–Si–Mg–Cu alloy clad with AA3003 Al–Mn alloy was co-cast by Fusion technology. Bending tests and numerical modeling were performed to investigate the potential for sub-surface cracking for this laminate system. To simulate particle-induced crack initiation and growth, both random and stringer particles have been selected to mimic the particle distribution in the tested samples. The morphology of cracking in the model was similar to that observed in clad sheet tested in the Cantilever bend test. The crack initiated in the core close to the clad-core interface where the strain in the core is highest, between particles or near particles and propagates along local shear bands in the core, while the clad layer experiences extreme thinning before failure.

  13. Electro-thermo-mechanical coupling analysis of deep drawing with resistance heating for aluminum matrix composites sheet

    Science.gov (United States)

    Zhang, Kaifeng; Zhang, Tuoda; Wang, Bo

    2013-05-01

    Recently, electro-plastic forming to be a focus of attention in materials hot processing research area, because it is a sort of energy-saving, high efficient and green manufacturing technology. An electro-thermo-mechanical model can be adopted to carry out the sequence simulation of aluminum matrix composites sheet deep drawing via electro-thermal coupling and thermal-mechanical coupling method. The first step of process is resistance heating of sheet, then turn off the power, and the second step is deep drawing. Temperature distribution of SiCp/2024Al composite sheet by resistance heating and sheet deep drawing deformation were analyzed. During the simulation, effect of contact resistances, temperature coefficient of resistance for electrode material and SiCp/2024Al composite on temperature distribution were integrally considered. The simulation results demonstrate that Sicp/2024Al composite sheet can be rapidly heated to 400° in 30s using resistances heating and the sheet temperature can be controlled by adjusting the current density. Physical properties of the electrode materials can significantly affect the composite sheet temperature distribution. The temperature difference between the center and the side of the sheet is proportional to the thermal conductivity of the electrode, the principal cause of which is that the heat transfers from the sheet to the electrode. SiCp/2024Al thin-wall part can be intactly manufactured at strain rate of 0.08s-1 and the sheet thickness thinning rate is limited within 20%, which corresponds well to the experimental result.

  14. Single point incremental forming: Formability of PC sheets

    Science.gov (United States)

    Formisano, A.; Boccarusso, L.; Carrino, L.; Lambiase, F.; Minutolo, F. Memola Capece

    2018-05-01

    Recent research on Single Point Incremental Forming of polymers has slightly covered the possibility of expanding the materials capability window of this flexible forming process beyond metals, by demonstrating the workability of thermoplastic polymers at room temperature. Given the different behaviour of polymers compared to metals, different aspects need to be deepened to better understand the behaviour of these materials when incrementally formed. Thus, the aim of the work is to investigate the formability of incrementally formed polycarbonate thin sheets. To this end, an experimental investigation at room temperature was conducted involving formability tests; varying wall angle cone and pyramid frusta were manufactured by processing polycarbonate sheets with different thicknesses and using tools with different diameters, in order to draw conclusions on the formability of polymer sheets through the evaluation of the forming angles and the observation of the failure mechanisms.

  15. An investigation of room temperature ''oxidized'' thin films of A1 for photovoltaic applications

    International Nuclear Information System (INIS)

    Adegboyega, G.A.

    1985-12-01

    Sheet resistance and transmittance changes of thin films of A1 evaporated in high vacuum were measured during sorption of oxygen at room atmosphere. An increase of both sheet resistance and transmittance with a tendency to saturation has been observed. Evaluation of various thicknesses of the films for possible use as transparent electrode material for photovoltaic applications shows that for very thin films ( = 200 A) the ''oxidized'' films are superior. (author)

  16. Ductile crack initiation and propagation assessed via in situ synchrotron radiation-computed laminography

    International Nuclear Information System (INIS)

    Morgeneyer, T.F.; Helfen, L.; Sinclair, I.; Proudhon, H.; Xu, F.; Baumbach, T.

    2011-01-01

    Ductile crack initiation and propagation within a naturally aged aluminium alloy sheet has been observed in situ via synchrotron radiation-computed laminography, a technique specifically adapted to three-dimensional imaging of thin objects that are laterally extended. Voids and intermetallic particles, and their subsequent evolution during ductile crack extension at different associated levels of stress triaxiality, were clearly observed within fracture coupons of a reasonable engineering length-scale, overcoming the conventional sample size limitation of computed tomography at high resolutions.

  17. Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment

    KAUST Repository

    Shen, Chao

    2012-05-24

    Structural changes of few-layer graphene sheets induced by CF4 plasma treatment are studied by optical microscopy and Raman spectroscopy, together with theoretical simulation. Experimental results suggest a thickness reduction of few-layer graphene sheets subjected to prolonged CF4 plasma treatment while plasma treatment with short time only leads to fluorine functionalization on the surface layer by formation of covalent bonds. Raman spectra reveal an increase in disorder by physical disruption of the graphene lattice as well as functionalization during the plasma treatment. The F/CF3 adsorption and the lattice distortion produced are proved by theoretical simulation using density functional theory, which also predicts p-type doping and Dirac cone splitting in CF4 plasma-treated graphene sheets that may have potential in future graphene-based micro/nanodevices.

  18. Carbon nanotubes length optimization for preparation of improved transparent and conducting thin film substrates

    Directory of Open Access Journals (Sweden)

    Mansoor Farbod

    2017-03-01

    Full Text Available Transparent and conductive thin films of multiwalled carbon nanotubes (MWCNTs with different lengths were prepared on glass substrates by the spin coating method. In order to reduce the MWCNTs length, they were functionalized. The initial length of MWCNTs (10–15 μm was reduced to 1200, 205 and 168 nm after 30, 60 and 120 min refluxing time, respectively. After post annealing at 285 °C for 24 h, the electrical and optical properties were greatly improved for functionalized MWCNT thin films. They strongly depend on the length of CNTs. The optical transmittance of the film prepared using 30 min reflux CNTs was 2.6% and 6.6% higher than that of the 60 min and 120 min refluxed samples respectively. The sheet resistance of this film showed reductions of 45% and 80% as well. The film also exhibited the least roughness. The percolative figure of merit, which is proportional to the transparency and disproportional to the sheet resistance, was found to be higher for the sample with 30 min refluxed MWCNTs.

  19. Cutting thin sheets of allyl diglycol carbonate (CR-39) with a CW CO2, laser

    International Nuclear Information System (INIS)

    Kukreja, L.M.; Bhawalkar, D.D.; Basu, C.; Goswami, J.N.

    1984-01-01

    Recent studies have shown that Allyl Diglycol Carbonate, commercially known as CR-39 (the most sensitive among etch track detectors) can detect relativistic oxygen and other heavier nuclei. We are using large sheets of special grade CR-39 (DOP) in our experiment in Space Shuttle-Spacelab-3. As CR-39 is a highly brittle substance, special care is required to cut CR-39 shetts, especially in case of large sheets and circular cuts. A study of cutting of CR-39 sheets using laser light is described in this paper. It has been found that this method is sufficiently fast to handle large number of sheets and also equally safe for big sheets. A maximum speed up to 200 cm/min with a 5 x 10 4 W/cm 2 laser is obtained during the present study. This study also shows that laser cutting does not affect the track properties of CR-39. (orig.)

  20. Preliminary experiments using light-initiated high explosive for driving thin flyer plates

    International Nuclear Information System (INIS)

    Benham, R.A.

    1980-02-01

    Light-initiated high explosive, silver acelytide - silver-nitrate (SASN), has been used to produce simulated x ray blow-off impulse loading on reentry vehicles to study the system structural response. SASN can be used to accelerate thin flyer plates to high terminal velocities which, in turn, can deliver a pressure pulse that can be tailored to the target material. This process is important for impulse tests where both structural and material response is desired. The theories used to calculate the dynamic state of the flyer plate prior to impact are summarized. Data from several experiments are presented which indicate that thin flyer plates can be properly accelerated and that there are predictive techniques available which are adequate to calculate the motion of the flyer plate. Recommendations are made for future study that must be undertaken to make the SASN flyer plate technique usable

  1. Method for casting thin metal objects

    Science.gov (United States)

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  2. Formability behavior studies on CP-Al sheets processed through the helical tool path of incremental forming process

    Science.gov (United States)

    Markanday, H.; Nagarajan, D.

    2018-02-01

    Incremental sheet forming (ISF) is a novel die-less sheet metal forming process, which can produce components directly from the CAD geometry using a CNC milling machine at less production time and cost. The formability of the sheet material used is greatly affected by the process parameters involved and tool path adopted, and the present study is aimed to investigate the influence of different process parameter values using the helical tool path strategy on the formability of a commercial pure Al and to achieve maximum formability in the material. ISF experiments for producing an 80 mm diameter axisymmetric dome were carried out on 2 mm thickness commercially pure Al sheets for different tool speeds and feed rates in a CNC milling machine with a 10 mm hemispherical forming tool. The obtained parts were analyzed for springback, amount of thinning and maximum forming depth. The results showed that when the tool speed was increased by keeping the feed rate constant, the forming depth and thinning were also increased. On contrary, when the feed rate was increased by keeping the tool speed constant, the forming depth and thinning were decreased. Springback was found to be higher when the feed rate was increased rather than the tool speed was increased.

  3. Growth and yield predictions for upland oak stands. 10 years after initial thinning

    Science.gov (United States)

    Martin E. Dale; Martin E. Dale

    1972-01-01

    The purpose of this paper is to furnish part of the needed information, that is, quantitative estimates of growth and yield 10 years after initial thinning of upland oak stands. All estimates are computed from a system of equations. These predictions are presented here in tabular form for convenient visual inspection of growth and yield trends. The tables show growth...

  4. Unsteady three dimensional flow of Casson liquid film over a porous stretching sheet in the presence of uniform transverse magnetic field and suction/injection

    Energy Technology Data Exchange (ETDEWEB)

    Maity, S., E-mail: susantamaiti@gmail.com [Department of Mathematics, National Institute of Technology, Arunachal Pradesh, Yupia, Papumpare 791112 (India); Singh, S.K. [Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Kumar, A.V. [Department of Mathematics, National Institute of Technology, Arunachal Pradesh, Yupia, Papumpare 791112 (India)

    2016-12-01

    Three dimensional flow of thin Casson liquid film over a porous unsteady stretching sheet is investigated under assumption of initial uniform film thickness. The effects of the uniform transverse magnetic field, suction and injection are also considered for investigation. The nonlinear governing set of equations and film evolution equation are solved analytically by using singular perturbation technique. It is found that the film thickness decreases with the increasing values of the Casson parameter. The Hartmann number and porosity parameter resist the film thinning process. It is also observed that the film thickness increases with the increasing values of the suction velocity whereas it decreases for increasing values of the injection velocity at the stretching surface.

  5. An integrated single- and two-photon non-diffracting light-sheet microscope

    Science.gov (United States)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  6. Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss

    International Nuclear Information System (INIS)

    Kim, Sun-Hong; Kim, Sung-Soo

    2010-01-01

    For the aim of wide-band noise absorbers with a special design for low frequency performance, this study proposes conductive indium-tin oxide (ITO) thin films as the absorbent materials in microstrip line. ITO thin films were deposited on the polyimide film substrates by rf magnetron cosputtering of In 2 O 3 and Sn targets. The deposited ITO films show a typical value of electrical resistivity (∼10 -4 Ω m) and sheet resistance can be controlled in the range of 20-230 Ω by variation in film thickness. Microstrip line with characteristic impedance of 50 Ω was used for determining their noise absorbing properties. It is found that there is an optimum sheet resistance of ITO films for the maximum power absorption. Reflection parameter (S 11 ) is increased with decrease in sheet resistance due to impedance mismatch. On the while, transmission parameter (S 21 ) is decreased with decrease in sheet resistance due to larger Ohmic loss of the ITO films. Experimental results and computational prediction show that the optimum sheet resistance is about 100 Ω. For this film, greater power absorption is predicted in the lower frequency region than ferrite thin films of high magnetic loss, which indicates that Ohmic loss is the predominant loss parameter for power absorption in the low frequency range.

  7. Bracing system of the reflecting sheets making up an insulating pile

    International Nuclear Information System (INIS)

    Carr, R.W.

    1976-01-01

    In order to reduce heat and radiation losses, the body of nuclear reactors and the connected pipe work are encased in reflecting and insulating piles of thin spaced sheets of aluminium or stainless steel. These spaced sheets are then encased in thicker and more solid internal and external shells. The piles and shells are generally shaped to follow the contour of the reactor and connected piping. It is therefore necessary to have available a study bracing system to keep the pile intact during the various handling and assembly operations. The fastening system must also exert an effect on the edge of the pile to prevent the sheets making it up from shifting in relation to each other. The description is given of a fastening system that includes an oblong section to be fitted along the edges of the piles up sheets; bracing substantially perpendicular to the oblong section, to space the sheets of the stack in pairs; and a maintaining system, normally perpendicular to the oblong section, to enable the fastener to be clipped to the edge of the sheets by bending it around the edge of each sheet of the pile [fr

  8. Comparison of the Effects of Tool Geometry for Friction Stir Welding Thin Sheet Aluminum Alloys for Aerospace Applications

    Science.gov (United States)

    Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight

    2006-01-01

    In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.

  9. Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors

    Science.gov (United States)

    Wang, Qian; Yan, Jun; Fan, Zhuangjun; Wei, Tong; Zhang, Milin; Jing, Xiaoyan

    2014-02-01

    A facile approach has been developed to fabricate mesoporous PANI film on ultra-thin graphene nanosheet (G-mPANI) hybrid by in situ polymerization using graphene-mesoporous silica composite as template. Due to its mesoporous structure, over-all conductive network, G-mPANI electrode displays a specific capacitance of 749 F g-1 at 0.5 A g-1 with excellent rate capability (remains 73% even at 5.0 A g-1), much higher than that of pristine PANI electrode (315 F g-1 at 0.5 A g-1, 39% retention at 5.0 A g-1) in 1 mol L-1 H2SO4 aqueous solution. More interestingly, the G-mPANI hybrid can maintain 88% of its initial capacitance compared to 45% for pristine PANI after 1000 cycles, suggesting a superior electrochemical cyclic stability.

  10. Fabrication of thin SU-8 cantilevers: initial bending, release and time stability

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Haefliger, D.; Boisen, Anja

    2010-01-01

    SU-8 cantilevers with a thickness of 2 mu m were fabricated using a dry release method and two steps of SU-8 photolithography. The processing of the thin SU-8 film defining the cantilevers was experimentally optimized to achieve low initial bending due to residual stress gradients. In parallel......, the rotational deformation at the clamping point allowed a qualitative assessment of the device release from the fluorocarbon-coated substrate. The change of these parameters during several months of storage at ambient temperature was investigated in detail. The introduction of a long hard bake in an oven after...... development of the thin SU-8 film resulted in reduced cantilever bending due to removal of residual stress gradients. Further, improved time-stability of the devices was achieved due to the enhanced cross-linking of the polymer. A post-exposure bake at a temperature T-PEB = 50 degrees C followed by a hard...

  11. Experimental and numerical determination of critical stress intensity factor of aluminum curved thin sheets under tensile stress

    Energy Technology Data Exchange (ETDEWEB)

    Heidarvand, Majid; Soltani, Naser; Hajializadeh, Farshid [University of Tehran, Tehran (Iran, Islamic Republic of)

    2017-05-15

    We determined the fracture toughness of aluminum curved thin sheets using tensile stress tests and finite element method. We applied Linear elastic fracture mechanics (LEFM) and Feddersen procedure to evaluate stress intensity factor of the samples with central wire-cut cracks and fatigue cracks with different lengths to investigate the notch radius effect. Special fixture design was utilized to establish uniform stress distribution at the crack zone. Less than 9 % difference was found between the wire-cut and the fatigue cracked samples. Since generating central fatigue crack with different lengths required so much effort, wire-cut cracked samples were used to determine critical stress intensity factor. Finite element analysis was also performed on one-quarter of the specimen using both the singular Borsum elements and the regular isoparametric elements to further investigate fracture toughness of the samples. It was observed that the singular elements presented better results than the isoparametric ones. A slight difference was also found between the results obtained from finite element method using singular elements and the experimental results.

  12. Pulsar current sheet C̆erenkov radiation

    Science.gov (United States)

    Zhang, Fan

    2018-04-01

    Plasma-filled pulsar magnetospheres contain thin current sheets wherein the charged particles are accelerated by magnetic reconnections to travel at ultra-relativistic speeds. On the other hand, the plasma frequency of the more regular force-free regions of the magnetosphere rests almost precisely on the upper limit of radio frequencies, with the cyclotron frequency being far higher due to the strong magnetic field. This combination produces a peculiar situation, whereby radio-frequency waves can travel at subluminal speeds without becoming evanescent. The conditions are thus conducive to C̆erenkov radiation originating from current sheets, which could plausibly serve as a coherent radio emission mechanism. In this paper we aim to provide a portrait of the relevant processes involved, and show that this mechanism can possibly account for some of the most salient features of the observed radio signals.

  13. INDUCTION HEATING OF NON-MAGNETIC SHEET METALS IN THE FIELD OF A FLAT CIRCULAR MULTITURN SOLENOID

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2016-06-01

    Full Text Available The theoretical analysis of electromagnetic processes in the system for induction heating presented by a flat circular multiturn solenoid positioned above a plane of thin sheet non-magnetic metal has been conducted. The calculated dependences for the current induced in a metal sheet blank and ratio of transformation determined have been obtained. The maximal value of the transformation ratio with regard to spreading the eddy-currents over the whole area of the sheet metal has been determined.

  14. Development of a low energy micro sheet forming machine

    Science.gov (United States)

    Razali, A. R.; Ann, C. T.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.; Ahmad, A. F.

    2017-10-01

    It is expected that with the miniaturization of materials being processed, energy consumption is also being `miniaturized' proportionally. The focus of this study was to design a low energy micro-sheet-forming machine for thin sheet metal application and fabricate a low direct current powered micro-sheet-forming machine. A prototype of low energy system for a micro-sheet-forming machine which includes mechanical and electronic elements was developed. The machine was tested for its performance in terms of natural frequency, punching forces, punching speed and capability, energy consumption (single punch and frequency-time based). Based on the experiments, the machine can do 600 stroke per minute and the process is unaffected by the machine's natural frequency. It was also found that sub-Joule of power was required for a single stroke of punching/blanking process. Up to 100micron thick carbon steel shim was successfully tested and punched. It concludes that low power forming machine is feasible to be developed and be used to replace high powered machineries to form micro-products/parts.

  15. Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu Tae; Black, Robert; Yim, Taeeun; Ji, Xiulei; Nazar, Linda F. [University of Waterloo, Department of Chemistry, Waterloo, ON (Canada)

    2012-12-15

    The concept of surface-initiated growth of oxides on functionalized carbons is introduced as a method to inhibit the dissolution of polysulfide ions in Li-S battery cathode materials. MO{sub x} (M: Si, V) thin layers are homogeneously coated on nanostructured carbon-sulfur composites. The coating significantly inhibits the dissolution of polysulfides on cycling, resulting in enhanced cycle performance and coulombic efficiency of the Li-S battery. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Ultrasonic spot welding of Al/Mg/Al tri-layered clad sheets

    International Nuclear Information System (INIS)

    Macwan, A.; Patel, V.K.; Jiang, X.Q.; Li, C.; Bhole, S.D.; Chen, D.L.

    2014-01-01

    Highlights: • The optimal welding condition is achieved at 100 J and 0.1 s. • Failure load first increases and then decreases with increasing welding energy. • The highest failure load after welding is close to that of the clad sheets. • At low energy levels failure occurs in the mode of interfacial failure. • At high energy levels failure takes place at the edge of nugget region. - Abstract: Solid-state ultrasonic spot welding (USW) was used to join Al/Mg/Al tri-layered clad sheets, aiming at exploring weldability and identifying failure mode in relation to the welding energy. It was observed that the application of a low welding energy of 100 J was able to achieve the optimal welding condition during USW at a very short welding time of 0.1 s for the tri-layered clad sheets. The optimal lap shear failure load obtained was equivalent to that of the as-received Al/Mg/Al tri-layered clad sheets. With increasing welding energy, the lap shear failure load initially increased and then decreased after reaching a maximum value. At a welding energy of 25 J, failure occurred in the mode of interfacial failure along the center Al/Al weld interface due to insufficient bonding. At a welding energy of 50 J, 75 J and 100 J, failure was also characterized by the interfacial failure mode, but it occurred along the Al/Mg clad interface rather than the center Al/Al weld interface, suggesting stronger bonding of the Al/Al weld interface than that of the Al/Mg clad interface. The overall weld strength of the Al/Mg/Al tri-layered clad sheets was thus governed by the Al/Mg clad interface strength. At a welding energy of 125 J and 150 J, thinning of weld nugget and extensive deformation at the edge of welding tip caused failure at the edge of nugget region, leading to a lower lap shear failure load

  17. High resolution transmission electron microscopic study of nanoporous carbon consisting of curved single graphite sheets

    International Nuclear Information System (INIS)

    Bourgeois, L.N.; Bursill, L.A.

    1997-01-01

    A high resolution transmission electron microscopic study of a nanoporous carbon rich in curved graphite monolayers is presented. Observations of very thin regions. including the effect of tilting the specimen with respect to the electron beam, are reported. The initiation of single sheet material on an oriented graphite substrate is also observed. When combined with image simulations and independent measurements of the density (1.37g cm -3 ) and sp 3 /sp 2 +sp 2 bonding fraction (0.16), these observations suggest that this material is a two phase mixture containing a relatively low density aggregation of essentially capped single shells like squat nanotubes and polyhedra, plus a relatively dense 'amorphous' carbon structure which may be described using a random-Schwarzite model. Some negatively-curved sheets were also identified in the low density phase. Finally, some discussion is offered regarding the growth mechanisms responsible for this nanoporous carbon and its relationship with the structures of amorphous carbons across a broad range of densities, porosities and sp 3 /sp 2 +sp 3 bonding fractions

  18. Dynamics of fluid lines, sheets, filaments and membranes

    International Nuclear Information System (INIS)

    Coutris, N.

    1988-01-01

    We establish the dynamic equations of two types of fluid structures: 1) lines-filaments and 2) sheets-membranes. In the first part, we consider one-dimensional (line) and two-dimensional (sheet) fluid structures. The second part concerns the associated three- dimensional structures: filaments and membranes. In the third part, we establish the equations for thickened lines and thickened sheets. For that purpose, we introduce a thickness in the models of the first part. The fourth part concerns the thinning of the filament and the membrane. Then, by an asymptotic process, we deduce the corresponding equations from the equations of the second part in order to show the purely formal equivalence of the equations of the third and fourth parts. To obtain the equations, we make use of theorems whose proofs can be found in the appendices. The equations can be applied to many areas of interest: instabilities of liquid jets and liquid films, modelisation of interfaces between two different fluids as sheets or membranes, modelisation with the averaged equations over a cross section of single phase flows and two-phase flows in channels with a nonrectilinear axis such as bends or pump casings [fr

  19. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    2018-01-01

    grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...... solution-processed masks for physical vapor-deposited metal electrodes consisting of hexagonally ordered aperture arrays with scalable aperture-size and spacing in an otherwise homogeneous noble metal thin-film that may exhibit better electrical performance than carbon nanotube-based thin-films...... for equivalent optical transparency. The fabricated electrodes are characterized optically and electrically by measuring transmittance and sheet resistance. The presented methods yield large-scale reproducible results. Experimentally realized thin-films with very low sheet resistance, Rsh = 2.01 ± 0.14 Ω...

  20. Thin, Flexible Secondary Li-Ion Paper Batteries

    KAUST Repository

    Hu, Liangbing; Wu, Hui; La Mantia, Fabio; Yang, Yuan; Cui, Yi

    2010-01-01

    , flexible Li-ion batteries using paper as separators and free-standing carbon nanotube thin films as both current collectors. The current collectors and Li-ion battery materials are integrated onto a single sheet of paper through a lamination process

  1. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  2. In situ detection of porosity initiation during aluminum thin film anodizing

    Science.gov (United States)

    Van Overmeere, Quentin; Nysten, Bernard; Proost, Joris

    2009-02-01

    High-resolution curvature measurements have been performed in situ during aluminum thin film anodizing in sulfuric acid. A well-defined transition in the rate of internal stress-induced curvature change is shown to allow for the accurate, real-time detection of porosity initiation. The validity of this in situ diagnostic tool was confirmed by a quantitative analysis of the spectral density distributions of the anodized surfaces. These were obtained by analyzing ex situ atomic force microscopy images of surfaces anodized for different times, and allowed to correlate the in situ detected transition in the rate of curvature change with the appearance of porosity.

  3. Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication

    Directory of Open Access Journals (Sweden)

    Vince Beachley

    2014-08-01

    Full Text Available A hybrid cell sheet engineering approach was developed using ultra-thin nanofiber arrays to host the formation of composite nanofiber/cell sheets. It was found that confluent aligned cell sheets could grow on uniaxially-aligned and crisscrossed nanofiber arrays with extremely low fiber densities. The porosity of the nanofiber sheets was sufficient to allow aligned linear myotube formation from differentiated myoblasts on both sides of the nanofiber sheets, in spite of single-side cell seeding. The nanofiber content of the composite cell sheets is minimized to reduce the hindrance to cell migration, cell-cell contacts, mass transport, as well as the foreign body response or inflammatory response associated with the biomaterial. Even at extremely low densities, the nanofiber component significantly enhanced the stability and mechanical properties of the composite cell sheets. In addition, the aligned nanofiber arrays imparted excellent handling properties to the composite cell sheets, which allowed easy processing into more complex, thick 3D structures of higher hierarchy. Aligned nanofiber array-based composite cell sheet engineering combines several advantages of material-free cell sheet engineering and polymer scaffold-based cell sheet engineering; and it represents a new direction in aligned cell sheet engineering for a multitude of tissue engineering applications.

  4. The instabilities of a polymer sheet floating at a fluid interface

    Science.gov (United States)

    Menon, Narayanan

    2014-03-01

    The beautiful patterns seen on thin floating polymer sheets have led to a new and broadened understanding of the instabilities of an elastic sheet under tension. I will briefly review this progress, which includes identification of a dimensionless number - the bendability - that demarcates regimes in which the wrinkling instability of the sheet may either be successfully described by conventional post-buckling theory or requires an entirely different scheme of calculation in which the bending energy is negligible. This new understanding throws into relief new puzzles associated with the dynamics of the pattern growth, and with the transition from the wrinkled state to a crumpled state. I will also describe the new opportunities opened up by phenomena at high bendability. These include measurements of surface energies and contact angles on a deformable substrate, a new method for studying the modulus and extensional rheology of a thin polymer film, and techniques for modification of surface properties of a fluid interface. I thank NSF DMR 12-0778 and the NSFon Polymers at UMass Amherst DMR 08-20506 My thanks to J. Huang, H. King, K.B. Toga, T.P. Russell for collaborations on the experiments and to B. Davidovitch, E. Cerda and R. Schroll for theoretical collaborations.

  5. Microstructure, thickness and sheet resistivity of Cu/Ni thin film produced by electroplating technique on the variation of electrolyte temperature

    Science.gov (United States)

    Toifur, M.; Yuningsih, Y.; Khusnani, A.

    2018-03-01

    In this research, it has been made Cu/Ni thin film produced with electroplating technique. The deposition process was done in the plating bath using Cu and Ni as cathode and anode respectively. The electrolyte solution was made from the mixture of HBrO3 (7.5g), NiSO4 (100g), NiCl2 (15g), and aquadest (250 ml). Electrolyte temperature was varied from 40°C up to 80°C, to make the Ni ions in the solution easy to move to Cu cathode. The deposition was done during 2 minutes on the potential of 1.5 volt. Many characterizations were done including the thickness of Ni film, microstructure, and sheet resistivity. The results showed that at all samples Ni had attacked on the Cu substrate to form Cu/Ni. The raising of electrolyte temperature affected the increasing of Ni thickness that is the Ni thickness increase with the increasing electrolyte temperature. From the EDS spectrum, it can be informed that samples already contain Ni and Cu elements and NiO and CuO compounds. Addition element and compound are found for sample Cu/Ni resulted from 70° electrolyte temperature of Ni deposition, that are Pt and PtO2. From XRD pattern, there are several phases which have crystal structure i.e. Cu, Ni, and NiO, while CuO and PtO2 have amorphous structure. The sheet resistivity linearly decreases with the increasing electrolyte temperature.

  6. Up-scaling perovskite solar cell manufacturing from sheet-to-sheet to roll-to-roll: challenges and solutions

    Science.gov (United States)

    Di Giacomo, Francesco; Galagan, Yulia; Shanmugam, Santhosh; Gorter, Harrie; van den Bruele, Fieke; Kirchner, Gerwin; de Vries, Ike; Fledderus, Henri; Lifka, Herbert; Veenstra, Sjoerd; Aernouts, Tom; Groen, Pim; Andrissen, Ronn

    2017-08-01

    Organometallic halide perovskite solar cells (PSCs) are extremely promising novel materials for thin-film photovoltaics, exhibiting efficiencies over 22% on glass and over 17% on foil 1, 2 . First, a sheet-to-sheet (S2S) production of PSCs and modules on 152x152 mm2 substrates was established, using a combination of sputtering, e-beam evaporation, slot die coating and thermal evaporation (average PCE of 14.6 +/- 1.3 % over 64 devices, more than 10% initial PCE on modules). Later the steps towards a roll-to-roll production will be investigated, starting from the optimization of the stack to make it compatible with a faster production at low temperature. A water based SnOx nanoparticles dispersion was used as solution processable ETL, and the deposition process was scaled-up from spin coating to R2R slot die coating on a 300 mm wide roll of PET/ITO. R2R production is often carried out in ambient atmosphere and involve the use of large volumes of materials, thus a first point is the development of a green solvent and precursor system for the perovskite layer to prevent the emission of toxic compound in the environment. The first results on device fabrication are encouraging, which allow partial R2R manufacturing of flexible PSC (R2R coating of SnOx and perovskite, S2S for Spiro-OMeTAD and gold) with stabilized PCE of 12.6%, a remarkable value for these novel devices. This result can be considered an important milestone towards the production of efficient, low cost, lightweight, flexible PSC on large area.

  7. Indentation of a floating elastic sheet: geometry versus applied tension.

    Science.gov (United States)

    Box, Finn; Vella, Dominic; Style, Robert W; Neufeld, Jerome A

    2017-10-01

    The localized loading of an elastic sheet floating on a liquid bath occurs at scales from a frog sitting on a lily pad to a volcano supported by the Earth's tectonic plates. The load is supported by a combination of the stresses within the sheet (which may include applied tensions from, for example, surface tension) and the hydrostatic pressure in the liquid. At the same time, the sheet deforms, and may wrinkle, because of the load. We study this problem in terms of the (relatively weak) applied tension and the indentation depth. For small indentation depths, we find that the force-indentation curve is linear with a stiffness that we characterize in terms of the applied tension and bending stiffness of the sheet. At larger indentations, the force-indentation curve becomes nonlinear and the sheet is subject to a wrinkling instability. We study this wrinkling instability close to the buckling threshold and calculate both the number of wrinkles at onset and the indentation depth at onset, comparing our theoretical results with experiments. Finally, we contrast our results with those previously reported for very thin, highly bendable membranes.

  8. Shear flow generation and transport barrier formation on rational surface current sheets in tokamaks

    International Nuclear Information System (INIS)

    Wang Xiaogang; Xiao Chijie; Wang Jiaqi

    2009-01-01

    Full text: A thin current sheet with a magnetic field component in the same direction can form the electrical field perpendicularly pointing to the sheet, therefore an ExB flow with a strong shear across the current sheet. An electrical potential well is also found on the rational surface of RFP as well as the neutral sheet of the magnetotail with the E-field pointing to the rational (neutral) surface. Theoretically, a current singularity is found to be formed on the rational surface in ideal MHD. It is then very likely that the sheet current on the rational surfaces will generate the electrical potential well in its vicinity so the electrical field pointing to the sheet. It results in an ExB flow with a strong shear in the immediate neighborhood of the rational surface. It may be the cause of the transport barrier often seen near the low (m, n) rational surfaces with MHD signals. (author)

  9. Prediction and optimization of thinning in automotive sealing cover using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ganesh M. Kakandikar

    2016-01-01

    Full Text Available Deep drawing is a forming process in which a blank of sheet metal is radially drawn into a forming die by the mechanical action of a punch and converted to required shape. Deep drawing involves complex material flow conditions and force distributions. Radial drawing stresses and tangential compressive stresses are induced in flange region due to the material retention property. These compressive stresses result in wrinkling phenomenon in flange region. Normally blank holder is applied for restricting wrinkles. Tensile stresses in radial direction initiate thinning in the wall region of cup. The thinning results into cracking or fracture. The finite element method is widely applied worldwide to simulate the deep drawing process. For real-life simulations of deep drawing process an accurate numerical model, as well as an accurate description of material behavior and contact conditions, is necessary. The finite element method is a powerful tool to predict material thinning deformations before prototypes are made. The proposed innovative methodology combines two techniques for prediction and optimization of thinning in automotive sealing cover. Taguchi design of experiments and analysis of variance has been applied to analyze the influencing process parameters on Thinning. Mathematical relations have been developed to correlate input process parameters and Thinning. Optimization problem has been formulated for thinning and Genetic Algorithm has been applied for optimization. Experimental validation of results proves the applicability of newly proposed approach. The optimized component when manufactured is observed to be safe, no thinning or fracture is observed.

  10. Surface elevation changes of the greenland ice sheet - results from ESA'S ice sheet CCI

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Khvorostovky, Kirill; Meister, Rakia

    2013-01-01

    In order to ensure long-term climate data records for the Greenland Ice Sheet (GIS), ESA have launched the Climate Change Initiative (CCI). This work presents the preliminary steps towards the Ice Sheet CCI's surface elevation change (SEC) derivation using radar altimeter data. In order to find...... the most optimal method, a Round Robin exercise was conducted in which the scientific community was asked to provide their best SEC estimate over the Jakobshavn Isbr drainage basin. The participants used both repeat-track (RT), overlapping footprints, and the cross-over (XO) methods, and both ICESat laser...... and Envisat radar altimeter data were used. Based on this and feedback sheets describing their methods we found that a combination of the RT and XO techniques yielded the best results. In the following, the obtained results will be presented and discussed....

  11. Experimental observations of the tearing of an electron current sheet

    International Nuclear Information System (INIS)

    Gekelman, W.; Pfister, H.

    1988-01-01

    A neutral magnetic sheet, in which the current is carried mainly by the electrons, is set up in a laboratory plasma. By forcing the current through a thin slot, the ratio of the length to height t of the sheet may be varied; the current is observed to tear when tapprox. >30. The structure of the magnetic islands and their associated currents is fully three dimensional, although a linear two-dimensional theory gives a very good estimate of the tearing mode growth time. Tearing is accompanied by the generation of significant Hall currents, and magnetic disturbances are observed to propagate at the whistler wave speed

  12. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  13. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    2001-08-01

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  14. Method and mold for casting thin metal objects

    Science.gov (United States)

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  15. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  16. Design and results of the ice sheet model initialisation initMIP-Greenland: an ISMIP6 intercomparison

    Directory of Open Access Journals (Sweden)

    H. Goelzer

    2018-04-01

    Full Text Available Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6, which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6 focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1 the initial present-day state of the ice sheet and (2 the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing and in response to a large perturbation (prescribed surface mass balance anomaly; they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.

  17. Effect of material flow on joint strength in activation spot joining of Al alloy and steel sheets

    International Nuclear Information System (INIS)

    Watanabe, Goro; Yogo, Yasuhiro; Takao, Hisaaki

    2014-01-01

    A new joining method for dissimilar metal sheets was developed where a rotated consumable rod of Al alloy is pressed onto an Al alloy sheet at the part overlapped with a mild steel sheet. The metal flow in the joining region is increased by the through-hole in the Al sheet and consumable Al rod. The rod creates the joint interface and pads out of the thinly joined parts through pressing. This produces a higher joint strength than that of conventional friction stir spot welding. Measurements of the joint interface showed the presence of a 5-10 nm thick amorphous layer consisting of Al and Mg oxides

  18. Electron precipitation morphology and plasma sheet dynamics: ground and magnetotail studies of the magnetospheric substorm

    International Nuclear Information System (INIS)

    Pytte, T.

    1976-12-01

    The main results of some recent studies of the magnetospheric substorm are summarised and discussed in view of the fundamental role of magnetospheric convection. The substorm growth phase is described in terms of a temporary imbalance between the rates of magnetic field-line merging on the dayside, and reconnection on the nightside, of the magnetosphere following a southward turning of the interplanetary magnetic field. Some new understanding of the possible causal relationship between growth-phase and expansion-phase phenomena is provided through studies of multiple-onset substorms, during which substorm expansions are observed to occur at intervals of 10-15 min. Detailed observations have revealed new features of the radial and azimuthal dynamics of these substorms that are not consistent with recent models proposed by Akasofu and by Rostoker and his co-workers. It is shown that the behaviour of the near-earth plasma sheet early in a substorm cannot be inferred from measurements at larger distances (e.g., in the Vela satellite orbits), and that the triggering of a substorm expansion may well be directly related to pre-substorm thinning of the near-earth plasma sheet, even though the most significant thinning in the tailward region may occur at the onset, and therefore appears to be an effect rather than a cause of triggering. Initial results from studies of a new type of magnetospheric activity, characterised by strong auroral-zone bay activity but no other indications of substorm expansions, are shown to be consistent with current models of the growth and expansion phases of substorms and of substorm triggering. (JIW)

  19. Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet

    Science.gov (United States)

    Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.

    2012-04-01

    As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.

  20. A flexible tactile sensitive sheet using a hetero-core fiber optic sensor

    Science.gov (United States)

    Fujino, S.; Yamazaki, H.; Hosoki, A.; Watanabe, K.

    2014-05-01

    In this report, we have designed a tactile sensitive sheet based on a hetero-core fiber-optic sensor, which realize an areal sensing by using single sensor potion in one optical fiber line. Recently, flexible and wide-area tactile sensing technology is expected to applied to acquired biological information in living space and robot achieve long-term care services such as welfare and nursing-care and humanoid technology. A hetero-core fiber-optic sensor has several advantages such as thin and flexible transmission line, immunity to EMI. Additionally this sensor is sensitive to moderate bending actions with optical loss changes and is independent of temperature fluctuation. Thus, the hetero-core fiber-optic sensor can be suitable for areal tactile sensing. We measure pressure characteristic of the proposed sensitive sheet by changing the pressure position and pinching characteristic on the surface. The proposed tactile sensitive sheet shows monotonic responses on the whole sensitive sheet surface although different sensitivity by the position is observed at the sensitive sheet surface. Moreover, the tactile sensitive sheet could sufficiently detect the pinching motion. In addition, in order to realize the discrimination between pressure and pinch, we fabricated a doubled-over sensor using a set of tactile sensitive sheets, which has different kinds of silicon robbers as a sensitive sheet surface. In conclusion, the flexible material could be given to the tactile sensation which is attached under proposed sensitive sheet.

  1. Fabrication of thin SU-8 cantilevers: initial bending, release and time stability

    International Nuclear Information System (INIS)

    Keller, Stephan; Boisen, Anja; Haefliger, Daniel

    2010-01-01

    SU-8 cantilevers with a thickness of 2 µm were fabricated using a dry release method and two steps of SU-8 photolithography. The processing of the thin SU-8 film defining the cantilevers was experimentally optimized to achieve low initial bending due to residual stress gradients. In parallel, the rotational deformation at the clamping point allowed a qualitative assessment of the device release from the fluorocarbon-coated substrate. The change of these parameters during several months of storage at ambient temperature was investigated in detail. The introduction of a long hard bake in an oven after development of the thin SU-8 film resulted in reduced cantilever bending due to removal of residual stress gradients. Further, improved time-stability of the devices was achieved due to the enhanced cross-linking of the polymer. A post-exposure bake at a temperature T PEB = 50 °C followed by a hard bake at T HB = 90 °C proved to be optimal to ensure low cantilever bending and low rotational deformation due to excellent device release and low change of these properties with time. With the optimized process, the reproducible fabrication of arrays with 2 µm thick cantilevers with a length of 500 µm and an initial bending of less than 20 µm was possible. The theoretical spring constant of these cantilevers is k = 4.8 ± 2.5 mN m −1 , which is comparable to the value for Si cantilevers with identical dimensions and a thickness of 500 nm.

  2. Large-area SnO2: F thin films by offline APCVD

    International Nuclear Information System (INIS)

    Wang, Yan; Wu, Yucheng; Qin, Yongqiang; Zhang, Zhihai; Shi, Chengwu; Zhang, Qingfeng; Li, Changhao; Xia, Xiaohong; Sun, Stanley; Chen, Leon

    2011-01-01

    Highlights: → Large-area (1245 mm x 635 mm) FTO thin films were successfully deposited by offline APCVD process. → The as-prepared FTO thin films with sheet resistance 8-11 Ω/□ and direct transmittance more than 83% exhibited better than that of the online ones. → The maximum quantum efficiency of the solar cells based on offline FTO substrate was 0.750 at wavelength 540 nm. → The power of the solar modules using the offline FTO as glass substrates was 51.639 W, higher than that of the modules based on the online ones. -- Abstract: In this paper, we reported the successful preparation of fluorine-doped tin oxide (FTO) thin films on large-area glass substrates (1245 mm x 635 mm x 3 mm) by self-designed offline atmospheric pressure chemical vapor deposition (APCVD) process. The FTO thin films were achieved through a combinatorial chemistry approach using tin tetrachloride, water and oxygen as precursors and Freon (F-152, C2H4F2) as dopant. The deposited films were characterized for crystallinity, morphology (roughness) and sheet resistance to aid optimization of materials suitable for solar cells. We got the FTO thin films with sheet resistance 8-11 Ω/□ and direct transmittance more than 83%. X-ray diffraction (XRD) characterization suggested that the as-prepared FTO films were composed of multicrystal, with the average crystal size 200-300 nm and good crystallinity. Further more, the field emission scanning electron microscope (FESEM) images showed that the films were produced with good surface morphology (haze). Selected samples were used for manufacturing tandem amorphous silicon (a-Si:H) thin film solar cells and modules by plasma enhanced chemical vapor deposition (PECVD). Compared with commercially available FTO thin films coated by online chemical vapor deposition, our FTO coatings show excellent performance resulting in a high quantum efficiency yield for a-Si:H solar cells and ideal open voltage and short circuit current for a-Si:H solar

  3. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Muñoz-Rojas, David [LMGP, University Grenoble-Alpes, CNRS, F-3800 Grenoble (France); Nelson, Shelby F. [Kodak Research Laboratories, Eastman Kodak Company, Rochester, New York 14650 (United States); Illiberi, Andrea; Poodt, Paul [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Roozeboom, Fred [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB (Netherlands)

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  4. Effect of initial strain and material nonlinearity on the nonlinear static and dynamic response of graphene sheets

    Science.gov (United States)

    Singh, Sandeep; Patel, B. P.

    2018-06-01

    Computationally efficient multiscale modelling based on Cauchy-Born rule in conjunction with finite element method is employed to study static and dynamic characteristics of graphene sheets, with/without considering initial strain, involving Green-Lagrange geometric and material nonlinearities. The strain energy density function at continuum level is established by coupling the deformation at continuum level to that at atomic level through Cauchy-Born rule. The atomic interactions between carbon atoms are modelled through Tersoff-Brenner potential. The governing equation of motion obtained using Hamilton's principle is solved through standard Newton-Raphson method for nonlinear static response and Newmark's time integration technique to obtain nonlinear transient response characteristics. Effect of initial strain on the linear free vibration frequencies, nonlinear static and dynamic response characteristics is investigated in detail. The present multiscale modelling based results are found to be in good agreement with those obtained through molecular mechanics simulation. Two different types of boundary constraints generally used in MM simulation are explored in detail and few interesting findings are brought out. The effect of initial strain is found to be greater in linear response when compared to that in nonlinear response.

  5. Spectral and directional radiation characteristics of thin-film coated isothermal semitransparent plates

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R P; Viskanta, R

    1975-01-01

    An analysis is presented for predicting the effective spectral directional radiation characteristics of an isothermal, semitransparent sheet surrounded on both sides by massive dielectrics. The sheet can be coated with an optically thin film and used as selective cover plates for solar collectors. Directional and polarization effects and the spectral transmittance and reflectance are considered. Sample results for candidate materials are presented.

  6. Failure Models of Thin-walled Steel Sheeting and Structural-spatial Design Process

    NARCIS (Netherlands)

    Hofmeyer, H.

    2009-01-01

    This presentation is the first on 20 years of research on the failure mechanisms of sheeting subjected to combined concentrated load and bending moment, performed at Technische Universiteit Eindhoven. The aim of this research is to develop accurate, insight providing design rules using simple

  7. A simple visible light photo-assisted method for assembling and curing multilayer GO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro da Silva, Mauro Francisco, E-mail: mfps@usp.br [Escola Politécnica da Universidade de São Paulo, Departamento de Engenharia Metalúrgica e de Materiais, PMT-EPUSP e Departamento de Engenharia de Sistemas Eletrônicos, PSI-EPUSP, Av. Professor Mello Moraes, n° 2463, Cidade Universitária, CEP 05508-030, São Paulo, SP (Brazil); Pontifícia Universidade de São Paulo, Faculdade de Ciências Exatas e Tecnologia, Rua Marquês de Paranaguá, 111, CEP 01303-050, São Paulo, SP (Brazil); Oliveira, Débora Rose de [Instituto de Criminalística da Secretaria de Segurança do Estado de São Paulo, Núcleo de Química, Rua Moncorvo Filho, CEP 05507-060, São Paulo, SP (Brazil); Pontifícia Universidade de São Paulo, Faculdade de Ciências Exatas e Tecnologia, Rua Marquês de Paranaguá, 111, CEP 01303-050, São Paulo, SP (Brazil); and others

    2015-09-01

    A simple and efficient method for deposition of reduced graphene oxide (RGO) thin films onto arbitrary substrates is described. The present protocol consists in the application of radial compression to a thin layer of graphene oxide (GO) formed at the air–liquid interface of an ammoniacal dispersion of graphene oxide by continuous irradiation with visible light, that drives both the formation and curing of the film. Both infrared and near infrared luminescence spectroscopies were used for the proposition of a chemical mechanism in which the in situ singlet oxygen Δ{sup 1}O{sub 2}, generated by the photosensitization of molecular oxygen to visible light, initiates the formation and curing of the film. The GO and RGO films display Raman spectral signatures typical of graphene – based materials, with thickness of ca. 20 nm as evaluated by atomic force microscopy. The deposited films exhibited good transparency to visible light (max. 85%; 550 ± 2 nm), electrical resistivity equals to 14 ± 0.02 Ω m, sheet resistance equals to 5 kΩ sq{sup −1} with associated charge carrier mobility of 200 cm{sup 2}/V s. - Highlights: • Visible light photochemical assembly of self-supported graphene oxide thin films. • Graphene oxide photosensitizer for in situ production of singlet oxygen Δ{sup 1}O{sub 2}. • Δ{sup 1}O{sub 2}, as initiator of formation and curing of graphene oxide thin film. • Deposition of colloidal graphene oxide thin film by radial compression. • Deposition of graphene oxide thin film in arbitrary solid substrate.

  8. Experimental and scale up study of the flame spread over the PMMA sheets

    Directory of Open Access Journals (Sweden)

    Mamourian Mojtaba

    2009-01-01

    Full Text Available To explore the flame spread mechanisms over the solid fuel sheets, downward flame spread over vertical polymethylmethacrylate sheets with thicknesses from 1.75 to 5.75 mm have been examined in the quiescent environment. The dependence of the flame spread rate on the thickness of sheets is obtained by one-dimensional heat transfer model. An equation for the flame spread rate based on the thermal properties and the thickness of the sheet by scale up method is derived from this model. During combustion, temperature within the gas and solid phases is measured by a fine thermocouple. The pyrolysis temperature, the length of the pyrolysis zone, the length of the preheating zone, and the flame temperature are determined from the experimental data. Mathematical analysis has yielded realistic results. This model provides a useful formula to predict the rate of flame spread over any thin solid fuel.

  9. Printed energy storage devices by integration of electrodes and separators into single sheets of paper

    KAUST Repository

    Hu, Liangbing; Wu, Hui; Cui, Yi

    2010-01-01

    We report carbon nanotube thin film-based supercapacitors fabricated with printing methods, where electrodes and separators are integrated into single sheets of commercial paper. Carbon nanotube films are easily printed with Meyer rod coating or ink

  10. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    Science.gov (United States)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew; Abe-Ouchi, Ayako; Aschwanden, Andy; Calov, Reinhard; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Golledge, Nicholas R.; Gregory, Jonathan; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Kennedy, Joseph H.; Larour, Eric; Lipscomb, William H.; Le clec'h, Sébastien; Lee, Victoria; Morlighem, Mathieu; Pattyn, Frank; Payne, Antony J.; Rodehacke, Christian; Rückamp, Martin; Saito, Fuyuki; Schlegel, Nicole; Seroussi, Helene; Shepherd, Andrew; Sun, Sainan; van de Wal, Roderik; Ziemen, Florian A.

    2018-04-01

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.

  11. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation.

    Science.gov (United States)

    Vergara, José; Favieres, Cristina; Magén, César; de Teresa, José María; Ibarra, Manuel Ricardo; Madurga, Vicente

    2017-12-05

    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  12. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation

    Directory of Open Access Journals (Sweden)

    José Vergara

    2017-12-01

    Full Text Available We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM. Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  13. Initiation and long-term instability of the East Antarctic Ice Sheet.

    Science.gov (United States)

    Gulick, Sean P S; Shevenell, Amelia E; Montelli, Aleksandr; Fernandez, Rodrigo; Smith, Catherine; Warny, Sophie; Bohaty, Steven M; Sjunneskog, Charlotte; Leventer, Amy; Frederick, Bruce; Blankenship, Donald D

    2017-12-13

    Antarctica's continental-scale ice sheets have evolved over the past 50 million years. However, the dearth of ice-proximal geological records limits our understanding of past East Antarctic Ice Sheet (EAIS) behaviour and thus our ability to evaluate its response to ongoing environmental change. The EAIS is marine-terminating and grounded below sea level within the Aurora subglacial basin, indicating that this catchment, which drains ice to the Sabrina Coast, may be sensitive to climate perturbations. Here we show, using marine geological and geophysical data from the continental shelf seaward of the Aurora subglacial basin, that marine-terminating glaciers existed at the Sabrina Coast by the early to middle Eocene epoch. This finding implies the existence of substantial ice volume in the Aurora subglacial basin before continental-scale ice sheets were established about 34 million years ago. Subsequently, ice advanced across and retreated from the Sabrina Coast continental shelf at least 11 times during the Oligocene and Miocene epochs. Tunnel valleys associated with half of these glaciations indicate that a surface-meltwater-rich sub-polar glacial system existed under climate conditions similar to those anticipated with continued anthropogenic warming. Cooling since the late Miocene resulted in an expanded polar EAIS and a limited glacial response to Pliocene warmth in the Aurora subglacial basin catchment. Geological records from the Sabrina Coast shelf indicate that, in addition to ocean temperature, atmospheric temperature and surface-derived meltwater influenced East Antarctic ice mass balance under warmer-than-present climate conditions. Our results imply a dynamic EAIS response with continued anthropogenic warming and suggest that the EAIS contribution to future global sea-level projections may be under-estimated.

  14. Process Parameter Identification in Thin Film Flows Driven by a Stretching Surface

    Directory of Open Access Journals (Sweden)

    Satyananda Panda

    2014-01-01

    Full Text Available The flow of a thin liquid film over a heated stretching surface is considered in this study. Due to a potential nonuniform temperature distribution on the stretching sheet, a temperature gradient occurs in the fluid which produces surface tension gradient at the free surface of the thin film. As a result, the free surface deforms and these deformations are advected by the flow in the stretching direction. This work focuses on the inverse problem of reconstructing the sheet temperature distribution and the sheet stretch rate from observed free surface variations. This work builds on the analysis of Santra and Dandapat (2009 who, based on the long-wave expansion of the Navier-Stokes equations, formulate a partial differential equation which describes the evolution of the thickness of a film over a nonisothermal stretched surface. In this work, we show that after algebraic manipulation of a discrete form of the governing equations, it is possible to reconstruct either the unknown temperature field on the sheet and hence the resulting heat transfer or the stretching rate of the underlying surface. We illustrate the proposed methodology and test its applicability on a range of test problems.

  15. Characterization of Alq3 thin films by a near-field microwave microprobe.

    Science.gov (United States)

    Hovsepyan, Artur; Lee, Huneung; Sargsyan, Tigran; Melikyan, Harutyun; Yoon, Youngwoon; Babajanyan, Arsen; Friedman, Barry; Lee, Kiejin

    2008-09-01

    We observed tris-8-hydroxyquinoline aluminum (Alq3) thin films dependence on substrate heating temperatures by using a near-field microwave microprobe (NFMM) and by optical absorption at wavelengths between 200 and 900 nm. The changes of absorption intensity at different substrate heating temperatures are correlated to the changes in the sheet resistance of Alq3 thin films.

  16. Plastic behaviour of zircoloy-4 sheets in function of the temperature

    International Nuclear Information System (INIS)

    Ordonez, S.; Marxsen, A.; Pochettino, A.; Vedoya, P.

    1988-01-01

    In order to the knowledge of plastic deformation mechanisms in Zry-4 thin sheets at high temperature and the effects that the interaction sample-oxidizing atmosphere induces on these mechanisms, a systematic study of the mechanical behaviour of the material in the temperature range 400 ' 0 C and under different oxidations contitions is present. (author) [pt

  17. Optimization of CO2 laser cutting parameters on Austenitic type Stainless steel sheet

    Science.gov (United States)

    Parthiban, A.; Sathish, S.; Chandrasekaran, M.; Ravikumar, R.

    2017-03-01

    Thin AISI 316L stainless steel sheet widely used in sheet metal processing industries for specific applications. CO2 laser cutting is one of the most popular sheet metal cutting processes for cutting of sheets in different profile. In present work various cutting parameters such as laser power (2000 watts-4000 watts), cutting speed (3500mm/min - 5500 mm/min) and assist gas pressure (0.7 Mpa-0.9Mpa) for cutting of AISI 316L 2mm thickness stainless sheet. This experimentation was conducted based on Box-Behenken design. The aim of this work is to develop a mathematical model kerf width for straight and curved profile through response surface methodology. The developed mathematical models for straight and curved profile have been compared. The Quadratic models have the best agreement with experimental data, and also the shape of the profile a substantial role in achieving to minimize the kerf width. Finally the numerical optimization technique has been used to find out best optimum laser cutting parameter for both straight and curved profile cut.

  18. Anatase TiO2 hierarchical structures composed of ultra-thin nano-sheets exposing high percentage {0 0 1} facets and their application in quantum-dot sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Dapeng; Zhang, Shuo; Jiang, Shiwei; He, Jinjin; Jiang, Kai

    2015-01-01

    Graphical abstract: TiO 2 hierarchical structures assembled from ultra-thin nanosheets exposing ∼90% {0 0 1} facets were employed as photoanode materials to improve the performance of CdS/CdSe co-sensitized solar cells. - Highlights: • THSs composited of nanosheets exposing high percent {0 0 1} facets were prepared. • THSs improve the QDs loading amount and light scattering of the photoanode. • THSs suppress the carrier recombination and finally lead to ∼25% PCE improvement. - Abstract: TiO 2 hierarchical structures (THSs) composed of ultra-thin nano-sheets exposing ∼90% {0 0 1} facets were prepared via a hydrothermal method. Time dependent trails revealed the formation of THSs experienced a self-assemble process. The as-prepared product were used as the photoanode materials for CdS/CdSe co-sensitized solar cells, and the THSs/nanoparticle hybrid photoanode demonstrated a power conversion efficiency of 3.47%, indicating ∼25% improvement compared with the nanoparticle cell

  19. Title: Using Alignment and 2D Network Simulations to Study Charge Transport Through Doped ZnO Nanowire Thin Film Electrodes

    KAUST Repository

    Phadke, Sujay

    2011-09-30

    Factors affecting charge transport through ZnO nanowire mat films were studied by aligning ZnO nanowires on substrates and coupling experimental measurements with 2D nanowire network simulations. Gallium doped ZnO nanowires were aligned on thermally oxidized silicon wafer by shearing a nanowire dispersion in ethanol. Sheet resistances of nanowire thin films that had current flowing parallel to nanowire alignment direction were compared to thin films that had current flowing perpendicular to nanowire alignment direction. Perpendicular devices showed ∼5 fold greater sheet resistance than parallel devices supporting the hypothesis that aligning nanowires would increase conductivity of ZnO nanowire electrodes. 2-D nanowire network simulations of thin films showed that the device sheet resistance was dominated by inter-wire contact resistance. For a given resistivity of ZnO nanowires, the thin film electrodes would have the lowest possible sheet resistance if the inter-wire contact resistance was one order of magnitude lower than the single nanowire resistance. Simulations suggest that the conductivity of such thin film devices could be further enhanced by using longer nanowires. Solution processed Gallium doped ZnO nanowires are aligned on substrates using an innovative shear coating technique. Nanowire alignment has shown improvement in ZnO nanowire transparent electrode conductivity. 2D network simulations in conjunction with electrical measurements have revealed different regimes of operation of nanowire thin films and provided a guideline for improving electrical performance of nanowire electrodes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Atomically thin two-dimensional organic-inorganic hybrid perovskites

    Science.gov (United States)

    Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong

    2015-09-01

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.

  1. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yanqing [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0340 (United States); Xu, Shuozhi, E-mail: shuozhixu@gatech.edu [GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2016-12-15

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  2. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    International Nuclear Information System (INIS)

    Su, Yanqing; Xu, Shuozhi

    2016-01-01

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  3. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Directory of Open Access Journals (Sweden)

    Robert L. Z. Hoye

    2015-04-01

    Full Text Available Atmospheric pressure spatial atomic layer deposition (AP-SALD has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  4. Morphological peculiarity of the renal parenchyma on S10 thin plastinated pig kidneys

    Directory of Open Access Journals (Sweden)

    Pendovski Lazo

    2008-11-01

    Full Text Available The aim of this study is to investigate the morphological structures on the renal parenchyma on the pig kidneys, prepared in thin slices by S10 sheet plastination method. A total number of 60 kidneys taken form two adult breeds are plastinated in 2mm sagital thin sections. The morphological structure on thin kidney slices is analyzed and their anatomic-topographical relationship is investigated. The prepared thin kidney slices are permanent, flexible, dry, and odorless with smooth surfaces anatomical models with clear distinction between renal medulla and renal cortex. In cross-bread landras/yorkshire, the number of renal pyramids is ranged between 8-14 (average 10.63 while in breed dalland the number is ranged between 8- 13(average 9.94(p>0.05. Three morphological forms are found in pig kidneys based of the variation of adhesion of renal pyramids and derange of their renal papilla into renal pelvis. According the results can be concluded that the S10 sheet plastination method could be used for preparing of thin anatomical models that are suitable for education and research purposes enabling three-dimensional plan view of anatomical structures inside of kidneys.

  5. The role of Ar plasma treatment in generating oxygen vacancies in indium tin oxide thin films prepared by the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Deuk-Kyu [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Misra, Mirnmoy; Lee, Ye-Eun [Department of BioNano Technology, Gachon University, 1342 Seong-nam dae-ro, Seong-nam si, Gyeonggi-do, 13120 (Korea, Republic of); Baek, Sung-Doo [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Lee, Tae Il, E-mail: t2.lee77@gachon.ac.kr [Department of BioNano Technology, Gachon University, 1342 Seong-nam dae-ro, Seong-nam si, Gyeonggi-do, 13120 (Korea, Republic of)

    2017-05-31

    Highlights: • Indium tin oxide thin film with about 41 nm thickness was obtained by the sol-gel process. • Thin film exhibited low resistivity. • Sheet resistance of thin film decreases with Ar plasma treatment time. • Ar plasma treatment on thin film does not alter the crystal structure and optical properties of the ITO thin-film. • There is no significant change in oxygen vacancies after 20 min of plasma treatment. - Abstract: Argon (Ar) plasma treatment was carried out to reduce the sheet resistance of indium tin oxide (ITO) thin films. The Ar plasma treatment did not cause any significant changes to the crystal structure, surface morphology, or optical properties of the ITO thin films. However, an X-ray photoelectron spectroscopy study confirmed that the concentration of oxygen vacancies in the film dramatically increased with the plasma treatment time. Thus, we concluded that the decrease in the sheet resistance was caused by the increase in the oxygen vacancy concentration in the film. Furthermore, to verify how the concentration of oxygen vacancies in the film increased with the Ar plasma treatment time, cumulative and continuous plasma treatments were conducted. The oxygen vacancies were found to be created by surface heating via the outward thermal diffusion of oxygen atoms from inside the film.

  6. Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo

    2012-06-01

    Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.

  7. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjaer, Kurt H.; Bevis, Michael

    2014-01-01

    The Greenland ice sheet has been one of the largest contributors to global sea-level rise over the past 20 years, accounting for 0.5 mm yr(-1) of a total of 3.2 mm yr(-1). A significant portion of this contribution is associated with the speed-up of an increased number of glaciers in southeast...... and northwest Greenland. Here, we show that the northeast Greenland ice stream, which extends more than 600 km into the interior of the ice sheet, is now undergoing sustained dynamic thinning, linked to regional warming, after more than a quarter of a century of stability. This sector of the Greenland ice sheet...... is of particular interest, because the drainage basin area covers 16% of the ice sheet (twice that of Jakobshavn Isbrae) and numerical model predictions suggest no significant mass loss for this sector, leading to an under-estimation of future global sea-level rise. The geometry of the bedrock and monotonic trend...

  8. Optical and electrical properties of transparent conductive ITO thin films under proton radiation with 100 keV

    International Nuclear Information System (INIS)

    Wei, Q.; He, S.Y.; Yang, D.Z.; Liu, J.C.

    2005-01-01

    Under the simulation environment for the vacuum and heat sink in space, the changes in optical and electrical properties of transparent conductive indium tin oxide (ITO) thin films induced by radiation of protons with 100 keV were studied. The ITO thin films were deposited on JGS1 quartz substrate by a sol-gel method. The sheet resistance and transmittance spectra of the ITO thin films were measured using the four-point probe method and a spectrophotometer, respectively. The surface morphology was analyzed by AFM. The experimental results showed that the electrical and optical performances of the ITO thin films were closely related to the irradiation fluence. When the fluence exceeded a given value 2 x 10 16 cm -2 , the sheet resistance increased obviously and the optical transmittance decreased. The AFM analysis indicated that the grain size of the ITO thin films diminished. The studies about the radiation effect on ITO thin films will help to predict performance evolution of the second surface mirrors on satellites under space radiation environment. (orig.)

  9. Symmetry breaking bifurcations of a current sheet

    International Nuclear Information System (INIS)

    Parker, R.D.; Dewar, R.L.; Johnson, J.L.

    1990-01-01

    Using a time evolution code with periodic boundary conditions, the viscoresistive hydromagnetic equations describing an initially static, planar current sheet with large Lundquist number have been evolved for times long enough to reach a steady state. A cosh 2 x resistivity model was used. For long periodicity lengths L p , the resistivity gradient drives flows that cause forced reconnection at X point current sheets. Using L p as a bifurcation parameter, two new symmetry breaking bifurcations were found: a transition to an asymmetric island chain with nonzero, positive, or negative phase velocity, and a transition to a static state with alternating large and small islands. These states are reached after a complex transient behavior, which involves a competition between secondary current sheet instability and coalescence

  10. Damage Prediction in Sheet Metal Forming

    International Nuclear Information System (INIS)

    Saanouni, Khemais; Badreddine, Houssem

    2007-01-01

    Ductile (or plastic) damage often occurs during sheet metal forming processes due to the large plastic flow localization. Accordingly, it is crucial for numerical tools, used in the simulation of that processes, to use fully coupled constitutive equations accounting for both hardening and damage. This can be used in both cases, namely to overcome the damage initiation during some sheet metal forming processes as deep drawing, ... or to enhance the damage initiation and growth as in sheet metal cutting. In this paper, a fully coupled constitutive equations accounting for combined isotropic and kinematic hardening as well as the ductile damage is implemented into the general purpose Finite Element code for metal forming simulation. First, the fully coupled anisotropic constitutive equations in the framework of Continuum Damage Mechanics are presented. Attention is paid to the strong coupling between the main mechanical fields as elasto-viscoplasticity, mixed hardening, ductile isotropic damage and contact with friction. The anisotropy of the plastic flow is taken into account using various kinds of quadratic or non quadratic yield criteria in the framework of non associative finite plasticity theory with two types of normality rules. The associated numerical aspects concerning both the local integration of the coupled constitutive equations as well as the (global) equilibrium integration schemes are presented. The local integration is outlined thanks to the Newton iterative scheme applied to a reduced system of 2 equations. For the global resolution of the initial and boundary value problem, the classical dynamic explicit (DE) scheme with an adaptive time step control is used. The numerical implementation of the damage is made in such a manner that calculations can be executed with or without damage effect, i.e. fully coupled or uncoupled calculations. For the 2D processes an advanced adaptive meshing procedure is used in order to enhance the numerical solution and

  11. Large Fleets Lead in Petroleum Reduction (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Proc, H.

    2011-03-01

    Fact sheet describes Clean Cities' National Petroleum Reduction Partnership, an initiative through which large private fleets can receive support from Clean Cities to reduce petroleum consumption.

  12. Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    M. M. Helsen

    2012-03-01

    Full Text Available It is notoriously difficult to couple surface mass balance (SMB results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs. In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS. Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.

  13. Clouds enhance Greenland ice sheet mass loss

    Science.gov (United States)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  14. Anatase TiO{sub 2} hierarchical structures composed of ultra-thin nano-sheets exposing high percentage {0 0 1} facets and their application in quantum-dot sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dapeng, E-mail: dpengwu@126.com [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Henan Province for Green Motive Power and Key Materials, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Zhang, Shuo; Jiang, Shiwei; He, Jinjin [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Jiang, Kai [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Henan Province for Green Motive Power and Key Materials, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, Henan 453007 (China)

    2015-03-05

    Graphical abstract: TiO{sub 2} hierarchical structures assembled from ultra-thin nanosheets exposing ∼90% {0 0 1} facets were employed as photoanode materials to improve the performance of CdS/CdSe co-sensitized solar cells. - Highlights: • THSs composited of nanosheets exposing high percent {0 0 1} facets were prepared. • THSs improve the QDs loading amount and light scattering of the photoanode. • THSs suppress the carrier recombination and finally lead to ∼25% PCE improvement. - Abstract: TiO{sub 2} hierarchical structures (THSs) composed of ultra-thin nano-sheets exposing ∼90% {0 0 1} facets were prepared via a hydrothermal method. Time dependent trails revealed the formation of THSs experienced a self-assemble process. The as-prepared product were used as the photoanode materials for CdS/CdSe co-sensitized solar cells, and the THSs/nanoparticle hybrid photoanode demonstrated a power conversion efficiency of 3.47%, indicating ∼25% improvement compared with the nanoparticle cell.

  15. 3D single-molecule super-resolution microscopy with a tilted light sheet.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-01-09

    Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.

  16. Photovoltaics Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-01

    This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials, processes, and device structure and characterization techniques.

  17. Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2013-01-01

    The influence of inserting a Ga 2 O 3 thin film as an n-type semiconductor layer on the obtainable photovoltaic properties in Cu 2 O-based heterojunction solar cells was investigated with a transparent conductive Al-doped ZnO (AZO) thin film/n-Ga 2 O 3 thin film/p-Cu 2 O sheet structure. It was found that this Ga 2 O 3 thin film can greatly improve the performance of Cu 2 O-based heterojunction solar cells fabricated using polycrystalline Cu 2 O sheets that had been prepared by a thermal oxidization of copper sheets. The obtained photovoltaic properties in the AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells were strongly dependent on the deposition conditions of the Ga 2 O 3 films. The external quantum efficiency obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells was found to be greater at wavelengths below approximately 500 nm than that obtained in AZO/Cu 2 O heterojunction solar cells (i.e., prepared without a Ga 2 O 3 layer) at equivalent wavelengths. This improvement of photovoltaic properties is mainly attributed to a decrease in the level of defects at the interface between the Ga 2 O 3 thin film and the Cu 2 O sheet. Conversion efficiencies over 5% were obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells fabricated using an n-Ga 2 O 3 thin-film layer prepared with a thickness of 40–80 nm at an O 2 gas pressure of approximately 1.7 Pa by a pulsed laser deposition. - Highlights: • We demonstrate high-efficiency Cu 2 O-based p-n heterojunction solar cells. • A non-doped Ga 2 O 3 thin film was used as an n-type semiconductor layer. • The Ga 2 O 3 thin film was prepared at a low temperature by a low damage deposition. • p-type Cu 2 O sheets prepared by thermal oxidization of copper sheets were used. • Conversion efficiencies over 5% were obtained in AZO/n-Ga 2 O 3 /p-Cu 2 O solar cells

  18. Remember the periroot sheet in orthodontic treatment of ectodermal dysplasia patients

    Directory of Open Access Journals (Sweden)

    Izabella Vest Hansen

    2014-01-01

    Full Text Available Introduction: Root resorption has various etiologies. Recent studies have demonstrated a periroot sheet covering the root. The outermost layer of this sheet is the Malassez′ epithelial layer. Tooth malformations are seen in ectodermal dysplasia and it is believed that the ectodermal layer in the periroot sheet differs in cases of ectodermal dysplasia. Case reports: Three cases of unexpected severe root resorption are demonstrated. Two cases were diagnosed with ectodermal dysplasia and the third appeared with thin, curly hair and absence of eyebrows but no ectodermal diagnosis. In the ectodermal cases, there were severe orthodontically provoked resorptions on the teeth that appeared to be permanent but were possibly primary. In the third case, there was heavy resorption on permanent teeth due to orthodontic treatment. Discussion: The orthodontist should be aware that aggressive resorption can occur in cases not diagnosed with ectodermal dysplasia but with signs of ectodermal deviations, and that tooth morphology, hair, and skin are important to observe before proceeding with treatment.

  19. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties.

    Science.gov (United States)

    Kim, Dae Woong; Lee, Dong Ho; Kim, Jung-Su; Sohn, Seok Su; Kim, Hyoung Seop; Lee, Sunghak

    2017-08-14

    Pure Ti or Ti alloys are recently spot-lighted in construction industries because they have excellent resistance to corrosions, chemicals, and climates as well as various coloring characteristics, but their wide applications are postponed by their expensiveness and poor formability. We present a new fabrication process of Ti/Al clad sheets by bonding a thin Ti sheet on to a 5052 Al alloy melt during vertical-twin-roll casting. This process has merits of reduced production costs as well as improved tensile properties. In the as-twin-roll-cast clad sheet, the homogeneously cast microstructure existed in the Al alloy substrate side, while the Ti/Al interface did not contain any reaction products, pores, cracks, or lateral delamination, which indicated the successful twin-roll casting. When this sheet was annealed at 350 °C~600 °C, the metallurgical bonding was expanded by interfacial diffusion, thereby leading to improvement in tensile properties over those calculated by a rule of mixtures. The ductility was also improved over that of 5052-O Al alloy (25%) or pure Ti (25%) by synergic effect of homogeneous deformation due to excellent Ti/Al bonding. This work provides new applications of Ti/Al clad sheets to lightweight-alloy clad sheets requiring excellent formability and corrosion resistance as well as alloy cost saving.

  20. Intermontane eolian sand sheet development, Upper Tulum Valley, central-western Argentina

    Directory of Open Access Journals (Sweden)

    Patrick Francisco Fuhr Dal' Bó

    Full Text Available ABSTRACTThe intermontane Upper Tulum eolian sand sheet covers an area of ca. 125 km² at north of the San Juan Province, central-western Argentina. The sand sheet is currently an aggrading system where vegetation cover, surface cementation and periodic flooding withhold the development of dunes with slipfaces. The sand sheet surface is divided into three parts according to the distribution of sedimentary features, which reflects the variation in sediment budget, water table level and periodic flooding. The central sand sheet part is the main area of eolian deposition and is largely stabilized by vegetation. The sedimentary succession is 4 m thick and records the vertical interbedding of eolian and subaqueous deposits, which have been deposited for at least 3.6 ky with sedimentation rates of 86.1 cm/ky. The construction of the sand sheet is associated with deflation of the sand-graded debris sourced by San Juan alluvial fan, which is available mainly in drier fall-winter months where water table is lower and wind speeds are periodically above the threshold velocity for sand transport. The accumulation of sedimentary bodies occurs in a stabilized eolian system where vegetation cover, thin mud veneers and surface cementation are the main agents in promoting accumulation. The preservation of the sand sheet accumulations is enabled by the progressive creation of the accommodation space in a tectonically active basin and the continuous burial of geological bodies favored by high rates of sedimentation.

  1. Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors

    International Nuclear Information System (INIS)

    Norwood, D.P.

    1989-01-01

    A standard thin film circuit containing Ta/sub 2/N (100 ohms/square) resistors is fabricated by depositing on a dielectric substrate successive layers of Ta/sub 2/N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standard TFN manufacturing process enables the formation of Ta/sub 2/N + Ti (10 ohms/square) and Ta/sub 2/N + Ti + Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure

  2. Combination process of diamond machining and roll-to-roll UV-replication for thin film micro- and nanostructures

    Science.gov (United States)

    Väyrynen, J.; Mönkkönen, K.; Siitonen, S.

    2016-09-01

    Roll-to-roll (R2R) ultraviolet (UV) curable embossing replication process is a highly accurate and cost effective way to replicate large quantities of thin film polymer parts. These structures can be used for microfluidics, LED-optics, light guides, displays, cameras, diffusers, decorative, laser sensing and measuring devices. In the R2R UV-process, plastic thin film coated with UV-curable lacquer, passes through an imprinting embossing drum and is then hardened by an UV-lamp. One key element for mastering this process is the ability to manufacture a rotating drum containing micro- and nanostructures. Depending on the pattern shapes, the drum can be directly machined by diamond machining or it can be done through wafer level lithographical process. Due to the shrinkage of UV-curable lacquer, the R2R drum pattern process needs to be prototyped few times, in order to get the desired performance and shape from the R2R produced part. To speed up the prototyping and overall process we have developed a combination process where planar diamond machining patterns are being turned into a drum roller. Initially diamond machined patterns from a planar surface are replicated on a polymer sheet using UV-replication. Secondly, a nickel stamper shim is grown form the polymer sheet and at the end the stamper is turned into a roller and used in the R2R process. This process allows various micro milled, turned, grooved and ruled structures to be made at thin film products through the R2R process. In this paper, the process flow and examples of fabricating R2R embossed UVcurable thin film micro- and nanostructures from planar diamond machined patterns, is reported.

  3. Highly transparent and conductive thin films fabricated with nano-silver/double-walled carbon nanotube composites.

    Science.gov (United States)

    Lee, Shie-Heng; Teng, Chih-Chun; Ma, Chen-Chi M; Wang, Ikai

    2011-12-01

    This study develops a technique for enhancing the electrical conductivity and optical transmittance of transparent double-walled carbon nanotube (DWNT) film. Silver nanoparticles were modified with a NH(2)(CH(2))(2)SH self-assembled monolayer terminated by amino groups and subsequent surface condensation that reacted with functionalized DWNTs. Ag nanoparticles were grafted on the surface of the DWNTs. The low sheet resistance of the resulting thin conductive film on a polyethylene terephthalate (PET) substrate was due to the increased contact areas between DWNTs and work function by grafting Ag nanoparticles on the DWNT surfaces. Increasing the contact area between DWNTs and work function improved the conductivity of the DWNT-Ag thin films. The prepared DWNT-Ag thin films had a sheet resistance of 53.4 Ω/sq with 90.5% optical transmittance at a 550 nm wavelength. After treatment with HNO(3) and annealing at 150 °C for 30 min, a lower sheet resistance of 45.8 Ω/sq and a higher transmittance of 90.4% could be attained. The value of the DC conductivity to optical conductivity (σ(DC)/σ(OP)) ratio is 121.3. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Thin Sheet Modeling for the Seismogenic Crust of Western North America: How Strong is the top Slice of "Sandwich Bread" Above the "Jelly"?

    Science.gov (United States)

    Klein, E. C.; Holt, W. E.; Flesch, L. M.; Haines, A. J.

    2006-12-01

    The "jelly sandwich" and "crème brûlée" models divides continental lithosphere into distinct rheological layers. Dynamic models from thin sheet approximations provide estimates of the total strength of the lithosphere, but only to a thickness governed by the degree of mechanical coupling between rheological layers. If either the "jelly sandwich" or the "crème brûlée" model of the lithosphere is appropriate for the diffuse plate boundary zone setting of western North America, we expect a sharp contrast or decoupling between the strong upper crust ("bread") layer overlying the weak lower crustal ("jelly") layer. We examine the strength of the upper crust with and without strength contribution from the lower crust using thin sheet modeling methodologies. We use seismically defined densities to constrain vertical integrals of vertical stress (GPE) within the crust. Neglecting stresses due to flexure as well as shear stresses at the base of the crustal layer, lateral differences in GPE within the layer, are balanced solely by gradients in horizontal deviatoric stress [Flesch et al., 2001, 2006]. We solve the force-balance equations for the minimum deviatoric stress field associated with gradients of GPE. This deviatoric stress field calibrates the magnitude of deviatoric stresses within the seismogenic layer. We then solve for stress field boundary conditions associated with the stress field contributions from sources outside the modeled region that together with the minimum solution from GPE differences provide a best match with stress field indicators within western North America. In order to infer appropriate stress field indicators we develop a long-term kinematic strain rate and velocity field model. Where we use this strain rate field we assume that the relationship between deviatoric stress directions and kinematic strain rate directions is isotropic. In our calculations the seismogenic layer extends from the surface to either a uniform depth below sea

  5. The elasto plastic fracture mechanics in ductile metal sheets

    International Nuclear Information System (INIS)

    Khan, M.A.; Malik, M.N.; Naeem, A.; Haq, A.U.; Atkins, A.G.

    1999-01-01

    The crack initiation of propagation in ductile metal sheets are caused by various micro and macro changes taking place due to material properties, applied loads, shape of the indenter (tool geometry) and the environmental conditions. These microstructural failures are directly related to the atomic bonding, crystal lattices, grain boundary status, material flaws in matrix, inhomogeneities and anisotropy in the metal sheets. The Elasto-Plastic related energy based equations are applied to these Rigid Plastic materials to determine the onset of fracture in metal forming. The combined stress and strain criterion of a critical plastic work per unit volume is no more considered as a universal ductile fracture criterion, rather a critical plastic work per unit volume dependence on all sort of stresses (hydrostatic) are the required features for the sheet metal failure (fracture). In this present study, crack initiation and propagation are related empirically with fracture toughness and the application of the theory in industry to save energy. (author)

  6. Motion and shape of snowplough sheets in coaxial accelerators

    International Nuclear Information System (INIS)

    Tsagas, N.F.; Mair, G.L.R.; Prinn, A.E.

    1978-01-01

    A long coaxial accelerator is filled with helium at initial gas pressure between 0.2 and 4 Torr. When connected to a large capacitor at < - 10 kV a discharge is started at one end; the central electrode has negative polarity. The velocity of the plasma sheet, the snowplough, and its shape have been derived from streak photographs for terminal currents between about 100 and 300 kA. The motion of the sheet has been analysed by balancing the electromagnetic driving force against the inertia of the mass of the gas swept up by a plane sheet taken to be impenetrable to gas atoms. The calculated positions and average sheet velocities, which involve simplifying assumptions, have been found to be in good agreement with observations at different positions and pressures. Also the shape of the sheet has been derived by allowing for the sheet's curvature in the linear momentum equation while net radial motions causing variations in profile have, at first, been excluded. The calculated shape of the sheet is very nearly that photographically observed. The axial velocity of a sheet element is evaluated under the assumption that the plasma is azimuthally uniform, free of spikes and that the vessel's wall does not affect the shape. (author)

  7. Onset of fast "ideal" tearing in thin current sheets: Dependence on the equilibrium current profile

    Science.gov (United States)

    Pucci, F.; Velli, M.; Tenerani, A.; Del Sarto, D.

    2018-03-01

    In this paper, we study the scaling relations for the triggering of the fast, or "ideal," tearing instability starting from equilibrium configurations relevant to astrophysical as well as laboratory plasmas that differ from the simple Harris current sheet configuration. We present the linear tearing instability analysis for equilibrium magnetic fields which (a) go to zero at the boundary of the domain and (b) contain a double current sheet system (the latter previously studied as a Cartesian proxy for the m = 1 kink mode in cylindrical plasmas). More generally, we discuss the critical aspect ratio scalings at which the growth rates become independent of the Lundquist number S, in terms of the dependence of the Δ' parameter on the wavenumber k of unstable modes. The scaling Δ'(k) with k at small k is found to categorize different equilibria broadly: the critical aspect ratios may be even smaller than L/a ˜ Sα with α = 1/3 originally found for the Harris current sheet, but there exists a general lower bound α ≥ 1/4.

  8. Symmetry breaking bifurcations of a current sheet

    International Nuclear Information System (INIS)

    Parker, R.D.; Dewar, R.L.; Johnson, J.L.

    1988-08-01

    Using a time evolution code with periodic boundary conditions, the viscoresistive hydromagnetic equations describing an initially static, planar current sheet with large Lundquist number have been evolved for times long enough to reach a steady state. A cosh 2 x resistivity model was used. For long periodicity lengths, L p , the resistivity gradient drives flows which cause forced reconnection at X point current sheets. Using L p as a bifurcation parameter, two new symmetry breaking bifurcations were found - a transition to an asymmetric island chain with nonzero, positive or negative phase velocity, and a transition to a static state with alternating large and small islands. These states are reached after a complex transient behavior which involves a competition between secondary current sheet instability and coalescence. 31 refs., 6 figs

  9. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.

    Science.gov (United States)

    Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N

    2015-12-30

    This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Molecular dynamics modeling on the role of initial void geometry in a thin aluminum film under uniaxial tension

    International Nuclear Information System (INIS)

    Cui, Yi; Chen, Zengtao

    2015-01-01

    The effect of initial void geometry on damage progression in a thin aluminum film under uniaxial load is studied via molecular dynamics (MD) method. The embedded voids are with different initial geometries regarding shape, porosity and intervoid ligament distance (ILD). Major simulations are run upon twelve MD geometries with each containing 8–27 million atoms. The corresponding stress–strain relation is monitored during the microstructure evolution of the specimens. The critical stress to trigger the dislocation emission is found in line with the prediction of the Lubarda model. The simulation results reveal that the initial void geometry has substantial impact on the stress–strain relation especially for a specimen with larger initial porosity. (paper)

  11. SPR Characteristics Curve and Distribution of Residual Stress in Self-Piercing Riveted Joints of Steel Sheets

    Directory of Open Access Journals (Sweden)

    Rezwanul Haque

    2017-01-01

    Full Text Available Neutron diffraction was used to describe the residual stress distributions in self-piercing riveted (SPR joints. The sheet material displayed a compressive residual stress near the joint, and the stress gradually became tensile in the sheet material far away from the joint. The stress in the rivet leg was lower in the thick joint of the softer steel sheet than in the thin joint of the harder steel sheet. This lower magnitude was attributed to the lower force gradient during the rivet flaring stage of the SPR process curve. This study shows how the residual stress results may be related to the physical occurrences that happened during joining, using the characteristics curve. The study also shows that neutron diffraction technique enabled a crack in the rivet tip to be detected which was not apparent from a cross-section.

  12. Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes

    KAUST Repository

    Ong, Rui Chin

    2015-01-01

    A novel hydrophilic cellulose ester with a high intrinsic water permeability and a water partition coefficient was discovered to construct membrane supports for flat-sheet thin film composite (TFC) forward osmosis (FO) membranes for water reuse and seawater desalination with high performance. The performance of TFC-FO membranes prepared from the hydrophilic cellulose ester containing a high degree of OH and a moderate degree of Pr substitutions clearly surpasses those prepared from cellulose esters and other polymers with moderate hydrophilicity. Post-treatments of TFC-FO membranes using sodium dodecyl sulfate (SDS) and glycerol followed by heat treatment further enhance the water flux without compromising the selectivity. Positron annihilation lifetime analyses have confirmed that the SDS/glycerol post-treatment increases the free volume size and fractional free volume of the polyamide selective layer. The newly developed post-treated TFC-FO membranes exhibit a remarkably high water flux up to 90 LMH when the selective layer is oriented towards the draw solution (i.e., PRO mode) using 1. M NaCl as the draw solution and DI water as the feed. For seawater desalination, the membranes display a high water flux up to 35 LMH using a 2. M NaCl draw solution. These water fluxes exceeded the water fluxes achieved by other types of FO membranes reported in literatures. © 2014 Elsevier B.V.

  13. On Rayleigh waves in a thinly layered laminated thermoelastic medium with stress couples under initial stresses

    Directory of Open Access Journals (Sweden)

    Pijush Pal Roy

    1988-01-01

    Full Text Available A study is made of the propagation of Rayleigh waves in a thinly layered laminated thermoelastic medium under deviatoric, hydrostatic, and couple stresses. The frequency equation of the Rayleigh waves is obtained. The phase velocity of the Rayleigh waves depends on the initial stress, deviatoric stress, and the couple stress. The laminated medium is first replaced by an equivalent anisotropic thermoelastic continuum. The corresponding thermoelastic coefficients (after deformation are derived in terms of initially isotropic thermoelastic coefficients (before deformation of individual layers. Several particular cases are discussed for the determination of the displacement fields with or without the effect of the couple stress.

  14. Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow

    KAUST Repository

    Ghattas, Omar

    2015-01-07

    The flow of ice from the interior of polar ice sheets is the primary contributor to projected sea level rise. One of the main difficulties faced in modeling ice sheet flow is the uncertain spatially-varying Robin boundary condition that describes the resistance to sliding at the base of the ice. Satellite observations of the surface ice flow velocity, along with a model of ice as a creeping incompressible shear-thinning fluid, can be used to infer this uncertain basal boundary condition. We cast this ill-posed inverse problem in the framework of Bayesian inference, which allows us to infer not only the basal sliding parameters, but also the associated uncertainty. To overcome the prohibitive nature of Bayesian methods for large-scale inverse problems, we exploit the fact that, despite the large size of observational data, they typically provide only sparse information on model parameters. We show results for Bayesian inversion of the basal sliding parameter field for the full Antarctic continent, and demonstrate that the work required to solve the inverse problem, measured in number of forward (and adjoint) ice sheet model solves, is independent of the parameter and data dimensions

  15. Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow

    KAUST Repository

    Ghattas, Omar

    2015-01-01

    The flow of ice from the interior of polar ice sheets is the primary contributor to projected sea level rise. One of the main difficulties faced in modeling ice sheet flow is the uncertain spatially-varying Robin boundary condition that describes the resistance to sliding at the base of the ice. Satellite observations of the surface ice flow velocity, along with a model of ice as a creeping incompressible shear-thinning fluid, can be used to infer this uncertain basal boundary condition. We cast this ill-posed inverse problem in the framework of Bayesian inference, which allows us to infer not only the basal sliding parameters, but also the associated uncertainty. To overcome the prohibitive nature of Bayesian methods for large-scale inverse problems, we exploit the fact that, despite the large size of observational data, they typically provide only sparse information on model parameters. We show results for Bayesian inversion of the basal sliding parameter field for the full Antarctic continent, and demonstrate that the work required to solve the inverse problem, measured in number of forward (and adjoint) ice sheet model solves, is independent of the parameter and data dimensions

  16. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    Science.gov (United States)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid

  17. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.

    Science.gov (United States)

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-01

    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  18. Morphological differences in transparent conductive indium-doped zinc oxide thin films deposited by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jongthammanurak, Samerkhae; Cheawkul, Tinnaphob; Witana, Maetapa

    2014-01-01

    In-doped ZnO thin films were deposited on glass substrates by an ultrasonic spray pyrolysis technique, using indium chloride (InCl 3 ) as a dopant and zinc acetate solution as a precursor. Increasing the [at.% In]/[at.% Zn] ratio changed the crystal orientations of thin films, from the (100) preferred orientation in the undoped, to the (101) and (001) preferred orientations in the In-doped ZnO thin films with 4 at.% and 6–8 at.%, respectively. Undoped ZnO thin film shows relatively smooth surface whereas In-doped ZnO thin films with 4 at.% and 6–8 at.% show surface features of pyramidal forms and hexagonal columns, respectively. X-ray diffraction patterns of the In-doped ZnO thin films with [at.% In]/[at.% Zn] ratios of 6–8% presented an additional peak located at 2-theta of 32.95°, which possibly suggested that a metastable Zn 7 In 2 O 10 phase was present with the ZnO phase. ZnO thin films doped with 2 at.% In resulted in a sheet resistance of ∼ 645 Ω/sq, the lowest value among thin films with [at.% In]/[at.% Zn] ratio in a range of 0–8%. The precursor molarity was changed between 0.05 M and 0.20 M at an [at.% In]/[at.% Zn] ratio of 2%. Increasing the precursor molarity in a range of 0.10 M–0.20 M resulted in In-doped ZnO thin films with the (100) preferred orientation. An In-doped ZnO thin film deposited by 0.20 M precursor showed a sheet resistance of 25 Ω/sq, and an optical transmission of 75% at 550 nm wavelength. The optical band gap estimated from the transmission result was 3.292 eV. - Highlights: • Indium-doped ZnO thin films were grown on glass using ultrasonic spray pyrolysis. • Thin films' orientations depend on In doping and Zn molarity of precursor solution. • Highly c-axis or a-axis orientations were found in the In-doped ZnO thin films. • In doping of 6–8 at.% may have resulted in ZnO and a metastable Zn 7 In 2 O 10 phases. • Increasing precursor molarity reduced sheet resistance of In-doped ZnO thin films

  19. Airborne Laser Altimetry Mapping of the Greenland Ice Sheet: Application to Mass Balance Assessment

    Science.gov (United States)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Wright, W.; Yungel, J.

    2000-01-01

    In 1998 and '99, the Arctic Ice Mapping (AIM) program completed resurveys of lines occupied 5 years earlier revealing elevation changes of the Greenland ice sheet and identifying areas of significant thinning, thickening and balance. In planning these surveys, consideration had to be given to the spatial constraints associated with aircraft operation, the spatial nature of ice sheet behavior, and limited resources, as well as temporal issues, such as seasonal and interannual variability in the context of measurement accuracy. This paper examines the extent to which the sampling and survey strategy is valid for drawing conclusions on the current state of balance of the Greenland ice sheet. The surveys covered the entire ice sheet with an average distance of 21.4 km between each location on the ice sheet and the nearest flight line. For most of the ice sheet, the elevation changes show relatively little spatial variability, and their magnitudes are significantly smaller than the observed elevation change signal. As a result, we conclude that the density of the sampling and the accuracy of the measurements are sufficient to draw meaningful conclusions on the state of balance of the entire ice sheet over the five-year survey period. Outlet glaciers, however, show far more spatial and temporal variability, and each of the major ones is likely to require individual surveys in order to determine its balance.

  20. Calculation of thermal effects occurring during the manufacture of CR-39 sheets

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, S.; Somogyi, G. (Magyar Tudomanyos Akademia, Debrecen. Atommag Kutato Intezete)

    1984-01-01

    To manufacture a good-quality, uniform CR-39 track detector, the polymerization rate should be chosen below a critical value to avoid the development of undesirable thermal gradients and internal temperature fluctuations in the sheet being cast. To improve curing cycles, especially for thick CR-39 sheets, a computer programme was developed by which we could study the trends of thermal effects under different casting conditions. Our calculations are based on the solution of the one dimensional heat transport equation, taking into account the relations proposed by Dial et al (1955) for describing the chemical kinetics of CR-39 polymerization. We have revised the empirical parameters available to such calculations. With new 'Dial constants' we have calculated the critical initial bath temperature (which results in thermal runaway at the central plane of the sheet being cast) as a function of the CR-39 thickness and IPP initiator concentration. Results are also presented for the temperature profile developing in the depth of cast CR-39 sheets.

  1. Calculation of thermal effects occurring during the manufacture of CR-39 sheets

    International Nuclear Information System (INIS)

    Szilagyi, S.; Somogyi, G.

    1984-01-01

    To manufacture a good-quality, uniform CR-39 track detector, the polymerization rate should be chosen below a critical value to avoid the development of undesirable thermal gradients and internal temperature fluctuations in the sheet being cast. To improve curing cycles, especially for thick CR-39 sheets, a computer programme was developed by which we could study the trends of thermal effects under different casting conditions. Our calculations are based on the solution of the one dimensional heat transport equation, taking into account the relations proposed by Dial et al (1955) for describing the chemical kinetics of CR-39 polymerization. We have revised the empirical parameters available to such calculations. With new 'Dial constants' we have calculated the critical initial bath temperature (which results in thermal runaway at the central plane of the sheet being cast) as a function of the CR-39 thickness and IPP initiator concentration. Results are also presented for the temperature profile developing in the depth of cast CR-39 sheets. (author)

  2. Texture and structure of VT-19 alloy thin sheets and their welded joints

    International Nuclear Information System (INIS)

    Ehgiz, I.V.; Babarehko, A.A.; Khorev, M.A.

    1986-01-01

    The phase content and texture of VT-19 alloys in all zones of welded joints (weld, a heat affected zone a base metal) after different heat treatments and the effect of the latter on mechanical properties of the welded joint are studied. It is characteristic of a 2.5 mm sheet of the VT-19 alloy rolled in the β → α phase transformation temperature range the development of β-phase plane deformation textures with (001), (112), (111) orientations in the rolling plane that compose 56% of the β-phase material volume. In this case a texture of univariant phase transformation of the above β-phase components { 1120 } - { 1122 } - { 1124 }, as well as that of α-phase plane deformation } 1014 } - { 1015 } are formed in the α-phase. Hardening with subsequent ageing of the rolled sheet leads to increasing the fraction of textured material in the β-phase up to 95% with expanding the volume with the (111) orientation, but as a whole the β-phase texture type remains the same. The α-phase texture type corresponds to the univariant β → α phase transformation, the material having the α-phase texture accounts for 70%. In the weld zone the and axes with orientation spreading to 20 deg are the β-phase crystallization axes in the trans verse direction. The textured material accounts for ∼ 70%. The same texture is observed along the normal to the sheet plane. The α-phase texture after hardening and ageing corresponds to the univariant phase transformation of the above-mentionedβ-phase orientations, the material volume with the α-phase texture is ∼80%

  3. Single-domain epitaxial silicene on diboride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fleurence, A., E-mail: antoine@jaist.ac.jp; Friedlein, R.; Aoyagi, K.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Gill, T. G. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH (United Kingdom); Department of Chemistry, UCL, London WC1H 0AJ (United Kingdom); Sadowski, J. T. [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States); Copel, M.; Tromp, R. M. [IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Hirjibehedin, C. F. [London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH (United Kingdom); Department of Chemistry, UCL, London WC1H 0AJ (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom)

    2016-04-11

    Epitaxial silicene, which forms spontaneously on ZrB{sub 2}(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. The realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility of silicene.

  4. Multi-decadal dynamic thinning on the northwest margin of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Korsgaard, Niels Jákup; Kjær, Kurt H.; Khan, Shfaqat Abbas

    records with a 25 m grid resolution and vertical uncertainty of 4.6m. Comparative DEMs were derived from laser altimetry data recorded in 2005 and 2010. Ice loss from the Greenland Ice Sheet (GrIS) can be partitioned into surface mass balance (SMB) processes (runoff and precipitation) and ice dynamics...

  5. Active current sheets near the earth's bow shock

    International Nuclear Information System (INIS)

    Schwartz, S.J.; Kessel, R.L.; Brown, C.C.; Woolliscroft, L.J.C.; Dunlop, M.W.; Farrugia, C.J.; Hall, D.S.

    1988-01-01

    The authors present here an investigation of active current sheets observed by the AMPTE UK spacecraft near the Earth's bow shock, concentrating on their macroscopic features and geometry. Events selected primarily by flow directions which deviate substantially from the Sun-Earth line show similar characteristics, including their association with an underlying macroscopic current sheet and a hot central region whose flow direction is organized, at least in part, by location relative to the inferred initial intersection point between the current sheet and the bow shock. This region is flanked by edges which, according to a Rankine-Hugoniot analysis, are often fast shocks whose orientation is consistent with that expected if a bulge on the bow shock convected past the spacecraft. They have found the magnetosheath manifestations of these events which they study in detail. They suggest that these events are the direct result of the disruption and reformation of the bow shock by the passage of an interplanetary current sheet, most probably a tangential discontinuity

  6. Decontamination sheet

    International Nuclear Information System (INIS)

    Hirose, Emiko; Kanesaki, Ken.

    1995-01-01

    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  7. On the role of topological complexity in spontaneous development of current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2015-08-15

    The computations presented in this work aim to asses the importance of field line interlacing on spontaneous development of current sheets. From Parker's magnetostatic theorem, such development of current sheets is inevitable in a topologically complex magnetofluid, with infinite electrical conductivity, at equilibrium. Relevant initial value problems are constructed by superposition of two untwisted component fields, each component field being represented by a pair of global magnetic flux surface. The intensity of field line interlacing is then specified by the relative amplitude of the two superposed fields. The computations are performed by varying this relative amplitude. Also to have a direct visualization of current sheet formation, we follow the evolution of flux surfaces instead of the vector magnetic field. An important finding of this paper is in the demonstration that initial field lines having intense interlacing tend to develop current sheets which are distributed throughout the computational domain with no preference for topologically favorable sites like magnetic nulls or field reversal layers. The onsets of these current sheets are attributed to favorable contortions of magnetic flux surfaces where two oppositely directed parts of the same field line or different field lines come to close proximity. However, for less intensely interlaced field lines, the simulations indicate development of current sheets at sites only where the magnetic topology is favorable. These current sheets originate as two sets of anti-parallel complimentary field lines press onto each other.

  8. The effect of ambient pressure on ejecta sheets from free-surface ablation

    KAUST Repository

    Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T; Truscott, T. T.

    2016-01-01

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

  9. The effect of ambient pressure on ejecta sheets from free-surface ablation

    KAUST Repository

    Marston, J. O.

    2016-04-16

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

  10. Electromagnetic confinement and movement of thin sheets of molten metal

    Science.gov (United States)

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1990-01-01

    An apparatus capable of producing a combination of magnetic fields that can retain a metal in liquid form in a region having a smooth vertical boundary including a levitation magnet that produces low frequency magnetic field traveling waves to retain the metal and a stabilization magnet that produces a high frequency magnetic field to produce a smooth vertical boundary. As particularly adapted to the casting of solid metal sheets, a metal in liquid form can be continuously fed into one end of the confinement region produced by the levitation and stabilization magnets and removed in solid form from the other end of confinement region. An additional magnet may be included for support at the edges of the confinement region where eddy currents loop.

  11. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    OpenAIRE

    Ren Penghao; Wang Aimin; Wang Xiaolong; Zhang Yanlin

    2017-01-01

    After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation ...

  12. Construction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture.

    Science.gov (United States)

    Son, Jaejung; Bae, Chae Yun; Park, Je-Kyun

    2016-01-11

    Hydrogels can be patterned at the micro-scale using microfluidic or micropatterning technologies to provide an in vivo-like three-dimensional (3D) tissue geometry. The resulting 3D hydrogel-based cellular constructs have been introduced as an alternative to animal experiments for advanced biological studies, pharmacological assays and organ transplant applications. Although hydrogel-based particles and fibers can be easily fabricated, it is difficult to manipulate them for tissue reconstruction. In this video, we describe a fabrication method for micropatterned alginate hydrogel sheets, together with their assembly to form a macro-scale 3D cell culture system with a controlled cellular microenvironment. Using a mist form of the calcium gelling agent, thin hydrogel sheets are easily generated with a thickness in the range of 100 - 200 µm, and with precise micropatterns. Cells can then be cultured with the geometric guidance of the hydrogel sheets in freestanding conditions. Furthermore, the hydrogel sheets can be readily manipulated using a micropipette with an end-cut tip, and can be assembled into multi-layered structures by stacking them using a patterned polydimethylsiloxane (PDMS) frame. These modular hydrogel sheets, which can be fabricated using a facile process, have potential applications of in vitro drug assays and biological studies, including functional studies of micro- and macrostructure and tissue reconstruction.

  13. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    Science.gov (United States)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  14. Anomalous Li Storage Capability in Atomically Thin Two-Dimensional Sheets of Nonlayered MoO2

    KAUST Repository

    Xia, Chuan

    2018-02-01

    Since the first exfoliation and identification of graphene in 2004, research on layered ultrathin two-dimensional (2D) nanomaterials has achieved remarkable progress. Realizing the special importance of 2D geometry, we demonstrate that the controlled synthesis of nonlayered nanomaterials in 2D geometry can yield some unique properties that otherwise cannot be achieved in these nonlayered systems. Herein, we report a systematic study involving theoretical and experimental approaches to evaluate the Li-ion storage capability in 2D atomic sheets of nonlayered molybdenum dioxide (MoO2). We develop a novel monomer-assisted reduction process to produce high quality 2D sheets of nonlayered MoO2. When used as lithium-ion battery (LIB) anodes, these ultrathin 2D-MoO2 electrodes demonstrate extraordinary reversible capacity, as high as 1516 mAh g–1 after 100 cycles at the current rate of 100 mA g–1 and 489 mAh g–1 after 1050 cycles at 1000 mA g–1. It is evident that these ultrathin 2D sheets did not follow the normal intercalation-cum-conversion mechanism when used as LIB anodes, which was observed for their bulk analogue. Our ex situ XPS and XRD studies reveal a Li-storage mechanism in these 2D-MoO2 sheets consisting of an intercalation reaction and the formation of metallic Li phase. In addition, the 2D-MoO2 based microsupercapacitors exhibit high areal capacitance (63.1 mF cm–2 at 0.1 mA cm–2), good rate performance (81% retention from 0.1 to 2 mA cm–2), and superior cycle stability (86% retention after 10,000 cycles). We believe that our work identifies a new pathway to make 2D nanostructures from nonlayered compounds, which results in an extremely enhanced energy storage capability.

  15. Prediction of hole expansion ratio for various steel sheets based on uniaxial tensile properties

    Science.gov (United States)

    Kim, Jae Hyung; Kwon, Young Jin; Lee, Taekyung; Lee, Kee-Ahn; Kim, Hyoung Seop; Lee, Chong Soo

    2018-01-01

    Stretch-flangeability is one of important formability parameters of thin steel sheets used in the automotive industry. There have been many attempts to predict hole expansion ratio (HER), a typical term to evaluate stretch-flangeability, using uniaxial tensile properties for convenience. This paper suggests a new approach that uses total elongation and average normal anisotropy to predict HER of thin steel sheets. The method provides a good linear relationship between HER of the machined hole and the predictive variables in a variety of materials with different microstructures obtained using different processing methods. The HER of the punched hole was also well predicted using the similar approach, which reflected only the portion of post uniform elongation. The physical meaning drawn by our approach successfully explained the poor HER of austenitic steels despite their considerable elongation. The proposed method to predict HER is simple and cost-effective, so it will be useful in industry. In addition, the model provides a physical explanation of HER, so it will be useful in academia.

  16. Fabrication of micro-channel arrays on thin metallic sheet using internal fluid pressure: Investigations on size effects and development of design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Mahabunphachai, Sasawat [NSF I/UCR Center for Precision Forming, Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, VA 23284 (United States); Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Koc, Muammer [NSF I/UCR Center for Precision Forming, Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2008-01-03

    Micro-feature (channel, protrusion, cavity, etc.) arrays on large area-thin metallic sheet alloys are increasingly needed for compact and integrated heat/mass transfer applications (such as fuel cells and fuel processors) that require high temperature resistance, corrosion resistance, good electrical/thermal conductivity, etc. The performance of these micro-feature arrays mainly affects the volume flow velocity of the reactants inside the arrays which directly controls the rate of convection mass/heat transport. The key factors that affect the flow velocity include channel size and shape, flow field pattern, flow path length, fluid pressure, etc. In this study, we investigated these micro-feature arrays from the manufacturability perspective since it is also an important factor to be considered in the design process. Internal fluid pressure (hydroforming) technique is investigated in this study with the specific goals to, first, understand if the so-called ''size effects'' (grain vs. feature size) are effective on the manufacturability of thin metallic sheet into micro-channels, and second, to establish design guidelines for the micro-channel hydroforming technique for robust mass production conditions. Thin stainless steel 304 blanks of 0.051 mm thick with three different grain sizes of 9.3, 10.6, and 17.0 {mu}m were used in hydroforming experiments to form micro-channels with the dimensions between 0.46-1.33 and 0.15-0.98 mm in width and height, respectively. Based on the experimental results, the effect of the grain size on the channel formability was found to be insignificant for the grain size range used in this study. On the other hand, the effect of the channel (feature) size was shown to dominate the overall formability. In addition, FE models of the process were developed and validated with the experimental results, then used to conduct a parametric study to establish micro-channel design guidelines. The results from the parametric

  17. Tc depression and superconductor-insulator transition in molybdenum nitride thin films

    Science.gov (United States)

    Ichikawa, F.; Makise, K.; Tsuneoka, T.; Maeda, S.; Shinozaki, B.

    2018-03-01

    We have studied that the Tc depression and the superconductor-insulator transition (SIT) in molybdenum nitride (MoN) thin films. Thin films were fabricated by reactive DC magnetron sputtering method onto (100) MgO substrates in the mixture of Ar and N2 gases. Several dozen MoN thin films were prepared in the range of 3 nm < thickness d < 60 nm. The resistance was measured by a DC four-probe technique. It is found that Tc decreases from 6.6 K for thick films with increase of the normal state sheet resistance {R}{{sq}}{{N}} and experimental data were fitted to the Finkel’stein formula using the bulk superconducting transition temperature Tc 0 = 6.45 K and the elastic scattering time of electron τ = 1.6 × 10‑16 s. From this analysis the critical sheet resistance Rc is found about 2 kΩ, which is smaller than the quantum sheet resistance R Q. This value of Rc is almost the same as those for 2D NbN films. The value of τ for MoN films is also the similar value for NbN films 1.0 × 10‑16 s, while Tc 0 is different from that for NbN films 14.85 K. It is indicated that the mechanism of SIT for MoN films is similar to that of NbN films, while the mean free path ℓ for MoN films is larger than that for NbN films.

  18. Spontaneous formation of stringlike clusters and smectic sheets for colloidal rods confined in thin wedgelike gaps.

    Science.gov (United States)

    Maeda, Hideatsu; Maeda, Yoshiko

    2013-08-20

    Monodispersed colloidal rods of β-FeOOH with sizes ranging from 270 to 580 nm in length and 50 to 80 nm in width were synthesized. Narrow wedgelike gaps (0 to 700 nm in height) were formed around the inner bottom edge of the suspension glass cells. Optical microscopic observations revealed the formation of stringlike clusters of the rods and smectic sheets (by spontaneous side-by-side clustering of the strings) in the isotropic phase of the rod suspensions confined in narrow gaps; the electrolyte (HCl) concentrations of the suspensions are 5-40 mM, at which inter-rod interactions are attractive. The strings exhibit different colors that were used to investigate the structures of the strings with the help of interference color theory for thin films. The results are as follows. (1) The rods, lying flat on the gap bottom, are connected side-by-side and stacked upward to form stringlike clusters with different thicknesses depending on the gap height. (2) The stacking numbers (N(sr)) of the rods are estimated to be 1-5. With N(sr) increasing from 2 to 5, the volume fractions (ϕ) of the rods in the strings increased typically from 0.25-0.3 to 0.35-0.42 to reach limiting values (close to the ϕ values of the rods in the bulk smectic phase). (3) Unexpected low-ϕ strings are found in regions with an intermediate height in the gaps. These behaviors of ϕ may be caused by thermal fluctuations of the strings.

  19. Soft Costs Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-05-01

    This fact sheet is an overview of the systems integration subprogram at the U.S. Department of Energy SunShot Initiative. Soft costs can vary significantly as a result of a fragmented energy marketplace. In the U.S., there are 18,000 jurisdictions and 3,000 utilities with different rules and regulations for how to go solar. The same solar equipment may vary widely in its final installation price due to process and market variations across jurisdictions, creating barriers to rapid industry growth. SunShot supports the development of innovative solutions that enable communities to build their local economies and establish clean energy initiatives that meet their needs, while at the same time creating sustainable solar market conditions.

  20. Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone

    Science.gov (United States)

    Cooper, Matthew G.; Smith, Laurence C.; Rennermalm, Asa K.; Miège, Clément; Pitcher, Lincoln H.; Ryan, Jonathan C.; Yang, Kang; Cooley, Sarah W.

    2018-03-01

    We document the density and hydrologic properties of bare, ablating ice in a mid-elevation (1215 m a.s.l.) supraglacial internally drained catchment in the Kangerlussuaq sector of the western Greenland ice sheet. We find low-density (0.43-0.91 g cm-3, μ = 0.69 g cm-3) ice to at least 1.1 m depth below the ice sheet surface. This near-surface, low-density ice consists of alternating layers of water-saturated, porous ice and clear solid ice lenses, overlain by a thin (sheet ablation zone surface. A conservative estimate for the ˜ 63 km2 supraglacial catchment yields 0.009-0.012 km3 of liquid meltwater storage in near-surface, porous ice. Further work is required to determine if these findings are representative of broader areas of the Greenland ice sheet ablation zone, and to assess the implications for sub-seasonal mass balance processes, surface lowering observations from airborne and satellite altimetry, and supraglacial runoff processes.

  1. The Potsdam Parallel Ice Sheet Model (PISM-PIK – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    M. A. Martin

    2011-09-01

    Full Text Available We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK. The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  2. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets.

    Science.gov (United States)

    Niu, Liyong; Li, Mingjian; Tao, Xiaoming; Xie, Zhuang; Zhou, Xuechang; Raju, Arun P A; Young, Robert J; Zheng, Zijian

    2013-08-21

    We report a facile and low-cost method to directly exfoliate graphite powders into large-size, high-quality, and solution-dispersible few-layer graphene sheets. In this method, aqueous mixtures of graphite and inorganic salts such as NaCl and CuCl2 are stirred, and subsequently dried by evaporation. Finally, the mixture powders are dispersed into an orthogonal organic solvent solution of the salt by low-power and short-time ultrasonication, which exfoliates graphite into few-layer graphene sheets. We find that the as-made graphene sheets contain little oxygen, and 86% of them are 1-5 layers with lateral sizes as large as 210 μm(2). Importantly, the as-made graphene can be readily dispersed into aqueous solution in the presence of surfactant and thus is compatible with various solution-processing techniques towards graphene-based thin film devices.

  3. Propagation of edge waves in a thinly layered laminated medium with stress couples under initial stresses

    Directory of Open Access Journals (Sweden)

    Pijush Pal Roy

    1987-01-01

    Full Text Available The propagation of edge waves in a thinly layered laminated medium with stress couples under initial stresses is examined. Based upon an approximate representation of a laminated medium by an equivalent anisotropic continuum with average initial and couple stresses, an explicit form of frequency equation is obtained to derive the phase velocity of edge waves. Edge waves exist under certain conditions. The inclusion of couple stresses increases the velocity of wave propagation. For a specific compression, the presence of couple stresses increases the velocity of wave propagation with the increase of wave number, whereas the reverse is the case when there is no couple stress. Numerical computation is performed with graphical representations. Several special cases are also examined.

  4. Collision of hydrogen molecules interacting with two grapheme sheets

    Directory of Open Access Journals (Sweden)

    Malivuk-Gak Dragana

    2017-01-01

    Full Text Available It have been performed the computational experiments with two hydrogen molecules and two graphene sheets. Hydrogen - hydrogen and hydrogen - carbon interactions are described by Lennard - Jones potential. Equations of motion of the wave packet centre are solved numerically. The initial molecule velocity was determined by temperature and collisions occur in central point between two sheets. The molecules after collision stay near or get far away of graphene sheets. Then one can find what temperatures, graphene sheet sizes and their distances are favourable for hydrogen storage. It is found that quantum corrections of the molecule classical trajectories are not significant here. Those investigations of possibility of hydrogen storage by physisorption are of interest for improvement of the fuel cell systems. The main disadvantages of computational experiments are: (1 it cannot compute with very large number of C atoms, (2 it is assumed that carbon atoms are placed always in their equilibrium positions and (3 the changes of wave packet width are not considered.

  5. Fuels planning: science synthesis and integration; environmental consequences fact sheet 10: The Understory Response Model

    Science.gov (United States)

    Steve Sutherland; Melanie Miller

    2005-01-01

    The Understory Response Model is a species-specific computer model that qualitatively predicts change in total species biomass for grasses, forbs, and shrubs after thinning, prescribed fire, or wildfire. The model examines the effect of fuels management on plant survivorship and reproduction. This fact sheet identifies the intended users and uses, required inputs, what...

  6. Experimental investigation on photoelectric properties of ZAO thin film deposited on flexible substrate by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ming [School of Mechanical Engineering and Automation, Northeastern University, 3-11 WenHua Rd., 319#, Shenyang, 110004 (China); Liu, Kun, E-mail: kliu@mail.neu.edu.cn [School of Mechanical Engineering and Automation, Northeastern University, 3-11 WenHua Rd., 319#, Shenyang, 110004 (China); Liu, Xinghua [Hubei Aerospace Industry Technology Academe Special Vehicle Technology Center, Wuhan (China); Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai [School of Mechanical Engineering and Automation, Northeastern University, 3-11 WenHua Rd., 319#, Shenyang, 110004 (China)

    2016-12-01

    Highlights: • ZAO thin films were deposited on PET substrate. • A set of experimental parameters were systematically investigated. • Change rule of film photoelectric properties was obtained. • ZAO films with optimal properties were obtained at our working conditions. - Abstract: Transparent conductive ZAO (Zinc Aluminum Oxide) films on flexible substrates have a great potential for low-cost mass-production solar cells. ZAO thin films were achieved on flexible PET (polyethylene terephthalate) substrates by RF magnetron sputtering technology. The surface morphology and element content, the transmittance and the sheet resistance of the films were measured to determine the optical process parameters. The results show that the ZAO thin film shows the best parameters in terms of photoelectric performance including sputtering power, working pressure, sputtering time, substrate temperature (100 W, 1.5 Pa, 60 min, 125 °C). The sheet resistance of 510 Ω and transmittance in visible region of 92% were obtained after characterization. Surface morphology was uniform and compact with a good crystal grain.

  7. Experimental investigation on photoelectric properties of ZAO thin film deposited on flexible substrate by magnetron sputtering

    International Nuclear Information System (INIS)

    Hao, Ming; Liu, Kun; Liu, Xinghua; Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai

    2016-01-01

    Highlights: • ZAO thin films were deposited on PET substrate. • A set of experimental parameters were systematically investigated. • Change rule of film photoelectric properties was obtained. • ZAO films with optimal properties were obtained at our working conditions. - Abstract: Transparent conductive ZAO (Zinc Aluminum Oxide) films on flexible substrates have a great potential for low-cost mass-production solar cells. ZAO thin films were achieved on flexible PET (polyethylene terephthalate) substrates by RF magnetron sputtering technology. The surface morphology and element content, the transmittance and the sheet resistance of the films were measured to determine the optical process parameters. The results show that the ZAO thin film shows the best parameters in terms of photoelectric performance including sputtering power, working pressure, sputtering time, substrate temperature (100 W, 1.5 Pa, 60 min, 125 °C). The sheet resistance of 510 Ω and transmittance in visible region of 92% were obtained after characterization. Surface morphology was uniform and compact with a good crystal grain.

  8. Geothermal Heat Flux: Linking Deep Earth's Interior and the Dynamics of Large-Scale Ice Sheets

    Science.gov (United States)

    Rogozhina, Irina; Vaughan, Alan

    2014-05-01

    Greenland results from the remanent effects of an Early Cenozoic passage of the lithosphere above the Iceland mantle plume that is implicated in strong thermochemical erosion of the lithosphere and significant long-term effects on the present-day subglacial heat flow pattern and thermodynamic state of the Greenland ice sheet. These observations and our modeling results (Petrunin et al., 2013) show that the present-day thermal state of Greenland and Antarctic lithosphere cannot be well understood without taking into account a long-term tectonic history of these regions. The goal of the IceGeoHeat project is to combine existing independent geophysical data and innovative modeling approaches to comprehensively study the evolution and present state of the lithosphere in Greenland and Antarctica, and assess the role of geothermal heat flux in shaping the present-day ice sheet dynamics. This requires multiple collaborations involving experts across a range of disciplines. The project builds on the IceGeoHeat initiative formed in April 2012 and now including researchers from ten countries in the main core (MC) with expertise in numerical modeling and data assessment in geodynamics, geology, geothermics, cryosphere and (paleo-)climate. Petrunin, A., Rogozhina, I., Vaughan, A. P. M., Kukkonen, I. T., Kaban, M., Koulakov, I., Thomas, M. (2013): Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere. - Nature Geoscience, 6, 746-750.

  9. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets

    KAUST Repository

    Fan, Zhanxi

    2015-03-13

    Conventionally, the phase transformation of inorganic nanocrystals is realized under extreme conditions (for example, high temperature or high pressure). Here we report the complete phase transformation of Au square sheets (AuSSs) from hexagonal close-packed (hcp) to face-centered cubic (fcc) structures at ambient conditions via surface ligand exchange, resulting in the formation of (100)f-oriented fcc AuSSs. Importantly, the phase transformation can also be realized through the coating of a thin metal film (for example, Ag) on hcp AuSSs. Depending on the surfactants used during the metal coating process, two transformation pathways are observed, leading to the formation of (100)f-oriented fcc Au@Ag core-shell square sheets and (110)h/(101)f-oriented hcp/fcc mixed Au@Ag nanosheets. Furthermore, monochromated electron energy loss spectroscopy reveals the strong surface plasmon resonance absorption of fcc AuSS and Au@Ag square sheet in the infrared region. Our findings may offer a new route for the crystal-phase and shape-controlled synthesis of inorganic nanocrystals. © 2015 Macmillan Publishers Limited. All rights reserved.

  10. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets

    KAUST Repository

    Fan, Zhanxi; Huang, Xiao; Han, Yu; Bosman, Michel; Wang, Qingxiao; Zhu, Yihan; Liu, Qing; Li, Bing; Zeng, Zhiyuan; Wu, Jumiati; Shi, Wenxiong; Li, Shuzhou; Gan, Chee Lip; Zhang, Hua

    2015-01-01

    Conventionally, the phase transformation of inorganic nanocrystals is realized under extreme conditions (for example, high temperature or high pressure). Here we report the complete phase transformation of Au square sheets (AuSSs) from hexagonal close-packed (hcp) to face-centered cubic (fcc) structures at ambient conditions via surface ligand exchange, resulting in the formation of (100)f-oriented fcc AuSSs. Importantly, the phase transformation can also be realized through the coating of a thin metal film (for example, Ag) on hcp AuSSs. Depending on the surfactants used during the metal coating process, two transformation pathways are observed, leading to the formation of (100)f-oriented fcc Au@Ag core-shell square sheets and (110)h/(101)f-oriented hcp/fcc mixed Au@Ag nanosheets. Furthermore, monochromated electron energy loss spectroscopy reveals the strong surface plasmon resonance absorption of fcc AuSS and Au@Ag square sheet in the infrared region. Our findings may offer a new route for the crystal-phase and shape-controlled synthesis of inorganic nanocrystals. © 2015 Macmillan Publishers Limited. All rights reserved.

  11. Battery with a microcorrugated, microthin sheet of highly porous corroded metal

    Science.gov (United States)

    LaFollette, Rodney M.

    2005-09-27

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.

  12. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  13. Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses

    International Nuclear Information System (INIS)

    Liu Wenning; Sun Xin; Ruokolainen, Robert; Gayden Xiaohong

    2007-01-01

    Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated

  14. Substorms in the Inner Plasma Sheet

    Science.gov (United States)

    Le Contel, O.; Perraut, S.; Roux, A.; Pellat, R.; Korth, A.

    Thin Current Sheets (TCS) are regularly formed prior to substorm breakup, even in the near-Earth plasma sheet, as close as the geostationary orbit. A self-consistent kinetic theory describing the response of the plasma sheet to an electromagnetic perturbation is given. This perturbation corresponds to an external forcing, for instance caused by the solar wind (not an internal instability). The equilibrium of the configuration of this TCS in the presence of a time varying perturbation is shown to produce a strong parallel thermal anisotropy (T∥ > T⊺) of energetic electrons and ions (E>50keV) as well as an enhanced diamagnetic current carried by low energy ions (Ecurrents tend to enhance the confinement of this current sheet near the magnetic equator. These results are compared with data gathered by GEOS-2 at the geostationary orbit, where the magnetic signatures of TCS, and parallel anisotropies are regularly observed prior to breakup. By ensuring quasi-neutrality everywhere we find, when low frequency electromagnetic perturbations are applied, that although the magnetic field line remains an equipotential to the lowest order in Te/Ti, a field-aligned potential drop exists to the next order in (Te/Ti). Thus the development of a TCS implies the formation of a field-aligned potential drop (~= few hundred volts) to ensure the quasi-neutrality everywhere. For an earthward directed pressure gradient, a field-aligned electric field, directed towards the ionosphere, is obtained, on the western edge of the perturbation (i.e. western edge of the current sheet). Thus field aligned beams of electrons are expected to flow towards the equatorial region on the western edge of the current sheet. We study the stability of these electron beams and show that they are unstable to ``High Frequency'' (HF) waves. These ``HF'' waves are regularly observed at frequencies of the order of the proton gyrofrequency (fH+) just before, or at breakup. The amplitude of these HF waves is so

  15. Experimental investigation on photoelectric properties of ZAO thin film deposited on flexible substrate by magnetron sputtering

    Science.gov (United States)

    Hao, Ming; Liu, Kun; Liu, Xinghua; Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai

    2016-12-01

    Transparent conductive ZAO (Zinc Aluminum Oxide) films on flexible substrates have a great potential for low-cost mass-production solar cells. ZAO thin films were achieved on flexible PET (polyethylene terephthalate) substrates by RF magnetron sputtering technology. The surface morphology and element content, the transmittance and the sheet resistance of the films were measured to determine the optical process parameters. The results show that the ZAO thin film shows the best parameters in terms of photoelectric performance including sputtering power, working pressure, sputtering time, substrate temperature (100 W, 1.5 Pa, 60 min, 125 °C). The sheet resistance of 510 Ω and transmittance in visible region of 92% were obtained after characterization. Surface morphology was uniform and compact with a good crystal grain.

  16. Effect of dopants and thermal treatment on properties of Ga-Al-ZnO thin films fabricated by hetero targets sputtering system

    International Nuclear Information System (INIS)

    Hong, JeongSoo; Matsushita, Nobuhiro; Kim, KyungHwan

    2013-01-01

    In this study, we fabricated Ga and Al doped ZnO (Ga-Al-ZnO; GAZO) thin films by using the facing targets sputtering system under various conditions such as input current and thermal treatment temperature. The properties of the as-deposited GAZO thin films were examined by four-point, UV/Vis spectrometry, X-ray diffraction, atomic force microscopy and field-emission scanning electron microscopy. The result showed that the lowest sheet resistance of the films was 59.3 ohm/sq and transmittance was about 85%. After thermal treatment, the properties of GAZO thin films were improved. The lowest sheet resistance (47.3 ohm/sq) of the GAZO thin films were obtained at thermal treatment temperature of 300 °C, considered to be the result of continuous substitutions by dopants and improved crystallinity by the thermal treatment. - Highlights: ► Ga and Al doped ZnO thin films were prepared by hetero targets sputtering system. ► Free electrons were increased due to the continuous substitutions of Ga and Al. ► Crystallinity was improved by recombination of particles with increasing of temperature

  17. The Integration and Applications of Organic Thin Film Transistors and Ferroelectric Polymers

    Science.gov (United States)

    Hsu, Yu-Jen

    Organic thin film transistors and ferroelectric polymer (polyvinylidene difluoride) sheet material are integrated to form various sensors for stress/strain, acoustic wave, and Infrared (heat) sensing applications. Different from silicon-based transistors, organic thin film transistors can be fabricated and processed in room-temperature and integrated with a variety of substrates. On the other hand, polyvinylidene difluoride (PVDF) exhibits ferroelectric properties that are highly useful for sensor applications. The wide frequency bandwidth (0.001 Hz to 10 GHz), vast dynamic range (100n to 10M psi), and high elastic compliance (up to 3 percent) make PVDF a more suitable candidate over ceramic piezoelectric materials for thin and flexible sensor applications. However, the low Curie temperature may have impeded its integration with silicon technology. Organic thin film transistors, however, do not have the limitation of processing temperature, hence can serve as transimpedance amplifiers to convert the charge signal generated by PVDF into current signal that are more measurable and less affected by any downstream parasitics. Piezoelectric sensors are useful for a range of applications, but passive arrays suffer from crosstalk and signal attenuation which have complicated the development of array-based PVDF sensors. We have used organic field effect transistors, which are compatible with the low Curie temperature of a flexible piezoelectric polymer,PVDF, to monolithically fabricate transimpedance amplifiers directly on the sensor surface and convert the piezoelectric charge signal into a current signal which can be detected even in the presence of parasitic capacitances. The device couples the voltage generated by the PVDF film under strain into the gate of the organic thin film transistors (OFET) using an arrangement that allows the full piezoelectric voltage to couple to the channel, while also increasing the charge retention time. A bipolar detector is created by

  18. Annealing of SnO2 thin films by ultra-short laser pulses

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Bor, T.; Eijt, S.W.H.; Schut, H.; Römer, G.R.B.E.; Lange, D.F. de; Huis In't Veld, A.J.

    2014-01-01

    Post-deposition annealing by ultra-short laser pulses can modify the optical properties of SnO2 thin films by means of thermal processing. Industrial grade SnO2 films exhibited improved optical properties after picosecond laser irradiation, at the expense of a slightly increased sheet resistance

  19. Improving the angular resolution of existing air shower arrays by adding a thin layer of lead

    International Nuclear Information System (INIS)

    Poirier, J.; Mikocki, S.

    1987-01-01

    Calculations show that placing a thin sheet of lead above conventional extensive air shower counters yields an additional signal which is earlier in time. This will improve the array's angular resolution. (orig.)

  20. SunShot Catalyst Prize Competition Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2015-04-01

    This fact sheet is an overview of the Catalyst Energy Innovation Prize, an open innovation program launched in 2014 by the U.S. Department of Energy SunShot Initiative. This program aims to catalyze the rapid creation and development of products and solutions that address near-term challenges in the U.S. solar energy marketplace.

  1. Dense sheet Z-pinches

    International Nuclear Information System (INIS)

    Tetsu, Miyamoto

    1999-01-01

    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  2. Experimental investigation and finite element simulation of laser beam welding induced residual stresses and distortions in thin sheets of AA 6056-T4

    International Nuclear Information System (INIS)

    Zain-ul-abdein, Muhammad; Nelias, Daniel; Jullien, Jean-Francois; Deloison, Dominique

    2010-01-01

    Laser beam welding has recently found its application in the fabrication of aircraft structures where fuselage panels, made of thin sheets of AA 6056-T4 (an aluminium alloy), are welded with stiffeners of the same material in a T-joint configuration. The present work simulates laser beam welding induced residual stresses and distortions using industrially employed thermal and mechanical boundary conditions. Various measurements performed on small-scale welded test specimens provide a database of experimental results that serves as a benchmark for qualification of the simulation results. The welding simulation is performed with the commercial finite element software Abaqus and a Fortran programme encoding a conical heat source with Gaussian volumetric distribution of flux. A sequentially coupled temperature-displacement analysis is undertaken to simulate the weld pool geometry, transient temperature and displacement fields. The material is assumed to follow an elasto-plastic law with isotropic hardening behaviour (von Mises plasticity model). A comparison between the experimental and simulation results shows a good agreement. Finally, the residual stress and strain states in a T-joint are predicted.

  3. Removal of Crotamiton from Reverse Osmosis Concentrate by a TiO2/Zeolite Composite Sheet

    Directory of Open Access Journals (Sweden)

    Qun Xiang

    2017-07-01

    Full Text Available Reverse osmosis (RO concentrate from wastewater reuse facilities contains concentrated emerging pollutants, such as pharmaceuticals. In this research, a paper-like composite sheet consisting of titanium dioxide (TiO2 and zeolite was synthesized, and removal of the antipruritic agent crotamiton from RO concentrate was studied using the TiO2/zeolite composite sheet. The RO concentrate was obtained from a pilot-scale municipal secondary effluent reclamation plant. Effective immobilization of the two powders in the sheet made it easy to handle and to separate the photocatalyst and adsorbent from purified water. The TiO2/zeolite composite sheet showed excellent performance for crotamiton adsorption without obvious inhibition by other components in the RO concentrate. With ultraviolet irradiation, crotamiton was simultaneously removed through adsorption and photocatalysis. The photocatalytic decomposition of crotamiton in the RO concentrate was significantly inhibited by the water matrix at high initial crotamiton concentrations, whereas rapid decomposition was achieved at low initial crotamiton concentrations. The major degradation intermediates were also adsorbed by the composite sheet. This result provides a promising method of mitigating secondary pollution caused by the harmful intermediates produced during advanced oxidation processes. The cyclic use of the HSZ-385/P25 composite sheet indicated the feasibility of continuously removing crotamiton from RO concentrate.

  4. Nuclear accident dosimetry. Revision of emergency data sheets

    International Nuclear Information System (INIS)

    Delafield, H.J.

    1976-09-01

    The Emergency Data Sheets on Nuclear Accident Dosimetry have been revealed following the publication of a three part manual on this subject (Delafield, Dennis and Gibson, AERE-R 7485/6/7, 1973). This memo provides an explanation of the action levels adopted for the initial segregation of irradiated persons following a criticality accident, by monitoring the activity of indium foils contained in personnel dosimeters and the induced body sodium activity. The data sheets are given as an Appendix. They provide basic information on; the segregation of irradiated persons, the estimation of radiation exposure, and the assessment of personnel γ-ray and neutron doses. (author)

  5. Current sheet particle acceleration - theory and observations for the geomagnetic tail

    International Nuclear Information System (INIS)

    Speiser, T.W.

    1984-01-01

    It has been found that the current sheet in the geomagnetic tail is a source of plasma and energetic particles for the magnetospheric ring current and radiation belts. It is also a seat for instabilities and magnetospheric substorms. Theoretical studies related to the geomagnetic tail are discussed, taking into account Dungey's (1953) original ideas concerning neutral point acceleration, and studies of particle motion in current sheets conducted by many authors. A description of observations concerning the geomagnetic tail is also provided, taking into account plasma sheet populations, and the plasma sheet boundary layer. Some remaining problems are partly related to the location and the behavior of the distant source, the nature of the relative (time-dependent) ionospheric versus solar wind contributions, and the role of the solar wind in the initiation of distant or near-earth neutral lines. 56 references

  6. Heated Hydro-Mechanical Deep Drawing of Magnesium Sheet Metal

    Science.gov (United States)

    Kurz, Gerrit

    In order to reduce fuel consumption efforts have been made to decrease the weight of automobile constructions by increasing the use of lightweight materials. In this field of application magnesium alloys are important because of their low density. A promising alternative to large surfaced and thin die casting parts has been found in construction parts that are manufactured by sheet metal forming of magnesium. Magnesium alloys show a limited formability at room temperature. A considerable improvement of formability can be achieved by heating the material. Formability increases above a temperature of approximately T = 225 °C.

  7. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source.

    Science.gov (United States)

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-10-10

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-10(5) Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.

  8. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source

    International Nuclear Information System (INIS)

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-01-01

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1–10 5 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz–10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed. (paper)

  9. Calculation of thermal effects occuring during the manufacture of CR-39 sheets

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, S.; Somogyi, G.

    1984-01-01

    To manufacture a good-quality, uniform CR-39 track detector, the polymerization rate should be below a critical value to avoid the development of undesirable thermal gradients and internal temperature fluctuations in the sheet being cast. To improve curing cycles a computer program was developed to study the trends of thermal effects under different casting conditions. These calculations are based on the solution of the one-dimensional heat transport equation and take into account the relations proposed by Dial et. al. for describing the chemical kinetics of CR-39 polymerization. The authors have revised the empirical parameters available to such calculations. With new ''Dial constants'' they have calculated the critical initial bath temperature (which results in thermal runaway at the central plane of the sheet being cast) as a function of the CR-39 thickness and IPP initiator concentration. Results are also presented for the temperature profile in the depth of cast CR-39 sheets.

  10. Implementation of a Diabetes Management Flow Sheet in a Long-Term Care Setting.

    Science.gov (United States)

    Williams, Evelyn; Curtis, Ashley

    2015-08-01

    Physicians lack clear guidance about adaptation of clinical practice guidelines for elderly institutionalized patients with diabetes. In a large long-term care facility, a diabetes management flow sheet was trialed to determine which clinical parameters were found useful by clinicians in the management of diabetes in that setting. Clinical practice guidelines for diabetes management were reviewed with attending physicians. Diabetes management flow sheets were distributed for all patients coded as having diabetes on their most recent minimum data sets. After a period of 14 months, flow sheet completion rates were ascertained and physicians were surveyed regarding the utility of the flow sheet. Initial flow sheet data were completed in full or in part for only 57% of the 121 study subjects; 39% of the subjects died within 14 months. Quarterly follow-up data were completed for 58% of the flow sheets. The diabetes management flow sheet was not found to be useful by attending physicians as a chronic-disease management tool. Copyright © 2015 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  11. A NEW TREND IN MAGNETIC-PULSE METAL WORKING ASSOCIATED WITH THIN-WALLED SHEET METAL ATTRACTION. HISTORY AND DEVELOPMENT PROSPECTS

    Directory of Open Access Journals (Sweden)

    A.V. Gnatov

    2013-04-01

    Full Text Available Within the scope of this article, a summary is presented on the main world achievements of the new trend in magnetic-pulse metal working associated with attraction of specified sheet metal sections in vehicle production and repair. The importance of the new trend has been justified, its basic sources disclosed. Alternative straightening methods for damaged sheet metals are given.

  12. Superposed epoch analysis of pressure and magnetic field configuration changes in the plasma sheet

    International Nuclear Information System (INIS)

    Kistler, L.M.; Moebius, E.; Baumjohann, W.; Nagai, T.

    1993-01-01

    The authors report on an analysis of pressure and magnetic configuration within the plasma sheet following the initiation of substorm events. They have constructed this time dependent picture by using an epoch analysis of data from the AMPTE/IRM spacecraft. This analysis procedure can be used to construct a unified picture of events, provided they are reproducible, from a statistical analysis of a series of point measurements. The authors first determine the time dependent pressure changes in the plasma sheet. With some simplifying assumptions they then determine the z dependence of the pressure profiles, and from this distribution determine how field lines in the plasma sheet map to the neutral sheet

  13. Shape Optimization of Swimming Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, J.; Hosoi, A.E.

    2005-03-01

    The swimming behavior of a flexible sheet which moves by propagating deformation waves along its body was first studied by G. I. Taylor in 1951. In addition to being of theoretical interest, this problem serves as a useful model of the locomotion of gastropods and various micro-organisms. Although the mechanics of swimming via wave propagation has been studied extensively, relatively little work has been done to define or describe optimal swimming by this mechanism.We carry out this objective for a sheet that is separated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication approximation to model the dynamics, we derive the relevant Euler-Lagrange equations to optimize swimming speed and efficiency. The optimization equations are solved numerically using two different schemes: a limited memory BFGS method that uses cubic splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that uses the Levenberg-Marquardt method to vary the parameters of the equations until the constraints are satisfied. The former approach is less efficient but generalizes nicely to the non-lubrication setting. For each optimization problem we obtain a one parameter family of solutions that becomes singular in a self-similar fashion as the parameter approaches a critical value. We explore the validity of the lubrication approximation near this singular limit by monitoring higher order corrections to the zeroth order theory and by comparing the results with finite element solutions of the full Stokes equations.

  14. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    Science.gov (United States)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  15. A new tensile impact test for the toughness characterization of sheet material

    Science.gov (United States)

    Könemann, Markus; Lenz, David; Brinnel, Victoria; Münstermann, Sebastian

    2018-05-01

    In the past, the selection of suitable steels has been carried out primarily based on the mechanical properties of different steels. One of these properties is the resistance against crack propagation. For many constructions, this value plays an important role, because it can compare the impact toughness of different steel grades easily and gives information about the loading capacity of the specific materials. For thin sheets, impact toughness properties were usually not considered. One of the reasons for this is that the Charpy-impact test is not applicable for sheets with thicknesses below 2 mm. For a long time, this was not relevant because conventional steels had a sufficient impact toughness in a wide temperature range. However, since new multiphase steel grades with improved mechanical property exploitations are available, it turned out that impact toughness properties need to be considered during the component design phase, as the activation of the cleavage fracture mechanism is observed under challenging loading conditions. Therefore, this work aims to provide a new and practical testing procedure for sheet material or thin walled structures. The new testing procedure is based on tensile tests conducted in an impact pendulum similar to the Charpy impact hammer. A new standard geometry is provided, which enables a comparison between different steels or steel grades. A connection to the conventional Charpy test is presented using a damage mechanics model, which predicts material failure with consideration of to the stress state at various temperatures. Different specimen geometries are analysed to cover manifold stress states. A special advantage of the damage mechanics model is also the possibility to predict the materials behaviour in the transition area. To verify the method a conventional steel was tested in Charpy tests as well as in the new tensile impact test.

  16. [Getting an insight into the brain - new optical clearing techniques and imaging using light-sheet microscope].

    Science.gov (United States)

    Pawłowska, Monika; Legutko, Diana; Stefaniuk, Marzena

    2017-01-01

    One of the biggest challenges in neuroscience is to understand how brain operates. For this, it would be the best to image the whole brain with at least cellular resolution, preserving the three-dimensional structure in order to capture the connections between different areas. Most currently available high-resolution imaging techniques are based on preparing thin brain sections that are next photographed one by one and subsequently bigger structures are reconstructed. These techniques are laborious and create artifacts. Recent optical clearing methods allow to obtain literally transparent brains that can be imaged using light-sheet microscope. The present review summarizes the most popular optical clearing techniques, describing their different mechanisms and comparing advantages and disadvantages of different approaches, and presents the principle of light-sheet microscopy and its use in imaging. Finally, it gives examples of application of optical tissue clearing and light-sheet imaging in neuroscience and beyond it.

  17. Particle pitch angle diffusion due to nonadiabatic effects in the plasma sheet

    International Nuclear Information System (INIS)

    Gray, P.C.; Lee, L.C.

    1982-01-01

    In order to understand certain aspects of the plasma sheet dynamics, a numerical study of the nonadiabatic behavior of particles in a model field geometry is performed. The particle's magnetic moment as a function of time is calculated for various initial parameters, corresponding to various particle energies and degrees of field curvature. It is shown that the magnetic moment changes as the particle passes through the plasma sheet and that the magnitude of the change is related to the curvature of the field at the middle of the plasma sheet. The relation of the magnitude of the change in magnetic moment to the particle's pitch and phase angles as it passes through the sheet is numerically resolved. The nature of the change may be considered as a mechanism for pitch angle diffusion, and the diffusion coefficient is calculated. This scattering mechanism is significant for plasma sheet ions (1--10 keV) as well as energetic electrons (>100 keV)

  18. Spaceborne measurement of Greenland ice sheet changes: the ESA Greenland CCI project

    DEFF Research Database (Denmark)

    Forsberg, René; Sørensen, Louise Sandberg; Meister, Rakia

    The ESA “Greenland_ice_sheet_cci” project is currently making past and present space measurements of Greenland ice sheet changes available for use by scientists, stakeholders and the general public. The data are part of a large set of ECV’s (Essential Climate Variables) made available by the ESA...... Climate Initiative, as a contribution to the global Climate Observing System. The ECV data produced for the Greenlandice sheet include detailed grids of elevation changes and ice flow velocities, as well as line data of grounding lines and calving front locations for major outlet glaciers. The “ice_sheets......_cci” goal is to generate a consistent, validated, long-term and timely set of ECV’s, a.o. to improve the impact of satellite data on climate research and coupled ice sheet/climate models. Special focus is on use of data from ESA missions such as ERS, Envisat and the new Sentinel missions, but in the 2nd...

  19. Enhancement of the guide field during the current sheet formation in the three-dimensional magnetic configuration with an X line

    International Nuclear Information System (INIS)

    Frank, Anna; Bugrov, Sergey; Markov, Vladimir

    2009-01-01

    Results are presented from studies of the formation of current sheets during exciting a current aligned with the X line of the 3D magnetic configuration, in the CS-3D device. Enhancement of the guide field (parallel to the X line) was directly observed for the first time, on the basis of magnetic measurements. After the current sheet formation, the guide field inside the sheet exceeds its initial value, as well as the field outside. It is convincingly demonstrated that an enhancement of the guide field is due to its transportation by plasma flows on the early stage of the sheet formation. The in-plane plasma currents, which produce the excess guide field, are comparable to the total current along the X line that initiates the sheet itself.

  20. Efficiency loss prevention in monolithically integrated thin film solar cells by improved front contact

    NARCIS (Netherlands)

    Deelen, J. van; Barink, M.; Klerk, L.; Voorthuijzen, P.; Hovestad, A.

    2015-01-01

    Modeling indicates a potential efficiency boost of 17% if thin-film solar panels are featured with a metallic grid. Variations of transparent conductive oxide sheet resistance, cell length, and grid dimensions are discussed. These parameters were optimized simultaneously to obtain the best result.

  1. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    Science.gov (United States)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  2. MHD Ballooning Instability in the Plasma Sheet

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Zaharia, S.

    2003-01-01

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum

  3. Control of electrical resistivity of TaN thin films by reactive sputtering for embedded passive resistors

    International Nuclear Information System (INIS)

    Kang, S.M.; Yoon, S.G.; Suh, S.J.; Yoon, D.H.

    2008-01-01

    Tantalum nitride thin films were deposited by radio frequency (RF) reactive sputtering at various N 2 /Ar gas flow ratios and working pressures to examine the change of their electrical resistivity. From the X-ray diffraction (XRD) and four-point probe sheet resistance measurements of the TaN x films, it was found that the change of the crystalline structures of the TaN x films as a function of the N 2 partial pressure caused an abrupt change of the electrical resistivity. When the hexagonal structure TaN thin films changed to an f.c.c. structure, the sheet resistance increased from 16 Ω/sq to 1396 Ω/sq. However, we were able to control the electrical resistivity of the TaN thin film in the range from 69 Ω/sq to 875 Ω/sq, with no change in crystalline structure, within a certain range of working pressures. The size of the grains in the scanning electron microscopy (SEM) images seemed to decrease with the increase of working pressure

  4. Sintering and microstructure evolution of columnar nickel-based superalloy sheets prepared by EB-PVD

    International Nuclear Information System (INIS)

    Chen, S.; Qu, S.J.; Liang, J.; Han, J.C.

    2010-01-01

    Research highlights: → EB-PVD technology is commonly used to deposit thermal barrier coatings (TBCs) and columnar structure is commonly seen in EB-PVD condensates. The unique columnar structure can provide outstanding resistance against thermal shock and mechanical strains for TBCs. However, a number of researchers have found that the columnar structure can affect the mechanical properties of EB-PVD alloy thin sheet significantly. As yet, works on how to reduce this kind of effects are seldom done. In the present article, we tried to reveal the sintering effects on microstructure evolution and mechanical properties of columnar Ni-based superalloy sheet. The results suggests that after sintering, the columnar structure degrades. Degradation depends on sintering temperature and time. Both the ultimate tensile strength and the elongation percentage are effectively improved after sintering. - Abstract: A ∼0.15 mm-thick columnar nickel-based superalloy sheet was obtained by electron beam physical vapor deposition (EB-PVD). The as-deposited alloy sheet was sintered at different conditions. The microstructure of the specimens before and after sintering was characterized by using scanning electron microscopy. An X'Pert texture facility was used to determine the crystallographic orientation of the as-deposited alloy sheet. The phase transformation was investigated by X-ray diffraction. Tensile tests were conducted at room temperature on as-deposited and sintered specimens. The results show that the as-deposited sheet is composed of typical columnar structures. After sintering, however, the columnar structure degrades. The degradation depends on sintering temperature and time. Both the ultimate tensile strength and the elongation percentage are effectively improved after sintering.

  5. The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet

    Science.gov (United States)

    Coroniti, F. V.; Pritchett, P. L.

    2014-03-01

    The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.

  6. Numerical simulations of plasma equilibrium in a one-dimensional current sheet with a nonzero normal magnetic field component

    International Nuclear Information System (INIS)

    Mingalev, O. V.; Mingalev, I. V.; Malova, Kh. V.; Zelenyi, L. M.

    2007-01-01

    The force balance in a thin collisionless current sheet in the Earth's magnetotail with a given constant magnetic field component B z across the sheet is numerically studied for the first time in a self-consistent formulation of the problem. The current sheet is produced by oppositely directed plasma flows propagating from the periphery of the sheet toward the neutral plane. A substantially improved version of a macroparticle numerical model is used that makes it possible to simulate on the order of 10 7 macroparticles even with a personal computer and to calculate equilibrium configurations with a sufficiently low discrete noise level in the first-and second-order moments of the distribution function, which determine the stress tensor elements. Quasisteady configurations were calculated numerically for several sets of plasma parameters in some parts of the magnetotail. The force balance in the sheet was checked by calculating the longitudinal and transverse pressures as well as the elements of the full stress tensor. The stress tensor in the current sheet is found to be nondiagonal and to differ appreciably from the gyrotropic stress tensor in the Chew-Goldberger-Low model, although the Chew-Goldberger-Low theory and numerical calculations yield close results for large distances from the region of reversed magnetic field

  7. Holocene glacial history of the west Greenland Ice Sheet inferred from cosmogenic exposure ages and threshold lakes

    DEFF Research Database (Denmark)

    Larsen, Nicolaj Krog; Kjaer, K. H.; Colding, Sune Oluf

    2011-01-01

    In this study, we use a combination of 10Be exposure ages and threshold lakes to constrain the ice sheet history in Godthåbs- and Buksefjorden, west Greenland (63-64°N) during the Holocene. The 10Be cosmogenic exposure ages have been used to quantify both the ice retreat and thinning of the west...

  8. Stranski-Krastanow islanding initiated on the stochastic rough surfaces of the epitaxially strained thin films

    International Nuclear Information System (INIS)

    Tarik Ogurtani, Omer; Celik, Aytac; Emre Oren, Ersin

    2014-01-01

    Quantum dots (QD) have discrete energy spectrum, which can be adjusted over a wide range by tuning composition, density, size, lattice strain, and morphology. These features make quantum dots attractive for the design and fabrication of novel electronic, magnetic and photonic devices and other functional materials used in cutting-edge applications. The formation of QD on epitaxially strained thin film surfaces, known as Stranski-Krastanow (SK) islands, has attracted great attention due to their unique electronic properties. Here, we present a systematic dynamical simulation study for the spontaneous evolution of the SK islands on the stochastically rough surfaces (nucleationless growth). During the development of SK islands through the mass accumulation at randomly selected regions of the film via surface drift-diffusion (induced by the capillary and mismatch stresses) with and/or without growth, one also observes the formation of an extremely thin wetting layer having a thickness of a few Angstroms. Above a certain threshold level of the mismatch strain and/or the size of the patch, the formation of multiple islands separated by shallow wetting layers is also observed as metastable states such as doublets even multiplets. These islands are converted into a distinct SK islands after long annealing times by coalescence through the long range surface diffusion. Extensive computer simulation studies demonstrated that after an initial transient regime, there is a strong quadratic relationship between the height of the SK singlet and the intensity of the lattice mismatch strain (in a wide range of stresses up to 8.5 GPa for germanium thin crystalline films), with the exception at those critical points where the morphological (shape change with necking) transition takes place.

  9. A tone analyzer based on a piezoelectric polymer and organic thin film transistors.

    Science.gov (United States)

    Hsu, Yu-Jen; Kymissis, Ioannis

    2012-12-01

    A tone analyzer is demonstrated using a distributed resonator architecture on a tensioned piezoelectric polyvinyledene diuoride (PVDF) sheet. This sheet is used as both the resonator and detection element. Two architectures are demonstrated; one uses distributed, directly addressed elements as a proof of concept, and the other integrates organic thin film transistor-based transimpedance amplifiers directly with the PVDF to convert the piezoelectric charge signal into a current signal. The PVDF sheet material is instrumented along its length, and the amplitude response at 15 sites is recorded and analyzed as a function of the frequency of excitation. The determination of the dominant component of an incoming tone is demonstrated using linear system decomposition of the time-averaged response of the sheet and is performed without any time domain analysis. This design allows for the determination of the spectral composition of a sound using the mechanical signal processing provided by the amplitude response and eliminates the need for time-domain downstream signal processing of the incoming signal.

  10. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 04: role of silviculture in fuel treatments

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The principal goals of fuel treatments are to reduce fireline intensities, reduce the potential for crown fires, improve opportunities for successful fire suppression, and improve forest resilience to forest fires. This fact sheet discusses thinning, and surface fuel treatments, as well as challenges associated with those treatments.

  11. Fabrication of oxide-free graphene suspension and transparent thin films using amide solvent and thermal treatment

    International Nuclear Information System (INIS)

    Oh, Se Young; Kim, Sung Hwan; Chi, Yong Seung; Kang, Tae Jin

    2012-01-01

    Graphical abstract: New methodology for suspended graphene sheets of high-quality (oxide-free), high-yield (high concentration) using amide solvent exfoliation and thermal treatment at 800 °C. We confirmed that the van der Waals force between the graphene layers decreases as increasing thermal treatment temperatures as shown XRD data (b). Highlights: ► Propose of new methodology to prepare oxide-free graphene sheets suspension. ► The graphene suspension concentration is enhanced by thermal treatment. ► Decrease of van der Waals force between the graphene layers by high temperature and pressure. ► This method has the potential as technology for mass production. ► It could be applied in transparent and flexible electronic devices. - Abstract: High quality graphene sheets were produced from graphite by liquid phase exfoliation using N-methyl-2-pyrrolidone (NMP) and a subsequent thermal treatment to enhance the exfoliation. The exfoliation was enhanced by treatment with organic solvent and high thermal expansion producing high yields of the high-quality and defect-free graphene sheets. The graphene was successfully deposited on a flexible and transparent polymer film using the vacuum filtration method. SEM images of thin films of graphene treated at 800 °C showed uniform structure with no defects commonly found in films made of graphene produced by other techniques. Thin films of graphene prepared at higher temperatures showed superior transmittance and conductivity. The sheet-resistance of the graphene film treated at 800 °C was 2.8 × 10 3 kΩ/□ with 80% transmittance.

  12. Forming limit diagrams for anisotropic metal sheets with different yield criteria

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2000-01-01

    For thin metal sheets subject to stretching under various in-plane tensile stress histories, localized necking is analyzed by using the M-K-model approach, and forming limit diagrams are drawn based on the critical strains for localization. The analyses account for plastic anisotropy......, and predictions are shown based on four different anisotropic plasticity models, which have all been fitted to agree with the same set of experimental data. Situations where the tensile axis is along one of the orthotropic axes of the anisotropy are studied, as well as situations where the tensile axis...

  13. Effects of flow sheet implementation on physician performance in the management of asthmatic patients.

    Science.gov (United States)

    Ruoff, Gary

    2002-01-01

    This project focused on increasing compliance, in a large family practice group, with quality indicators for the management of asthma. The objective was to determine if use of a flow sheet incorporating the Global Initiative for Asthma (GINA) guidelines could improve compliance with those guidelines if the flow sheet was placed in patients' medical records. After review and selection of 14 clinical quality indicators, physicians in the practice implemented a flow sheet as an intervention. These flow sheets were inserted into the records of 122 randomly selected patients with asthma. Medical records were reviewed before the flow sheets were placed in the records, and again approximately 6 months later, to determine if there was a change in compliance with the quality indicators. Improvement of documentation was demonstrated in 13 of the 14 quality indicators. The results indicate that compliance with asthma management quality indicators can improve with the use of a flow sheet.

  14. Ranking beta sheet topologies of proteins

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Helles, Glennie; Winter, Pawel

    2010-01-01

    One of the challenges of protein structure prediction is to identify long-range interactions between amino acids. To reliably predict such interactions, we enumerate, score and rank all beta-topologies (partitions of beta-strands into sheets, orderings of strands within sheets and orientations...... of paired strands) of a given protein. We show that the beta-topology corresponding to the native structure is, with high probability, among the top-ranked. Since full enumeration is very time-consuming, we also suggest a method to deal with proteins with many beta-strands. The results reported...... in this paper are highly relevant for ab initio protein structure prediction methods based on decoy generation. The top-ranked beta-topologies can be used to find initial conformations from which conformational searches can be started. They can also be used to filter decoys by removing those with poorly...

  15. Filament structure, organization, and dynamics in MreB sheets.

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Maeda, Kayo; Fujisawa, Tetsuro; Ghoshdastider, Umesh; Iwasa, Mitsusada; Maéda, Yuichiro; Robinson, Robert C

    2010-05-21

    In vivo fluorescence microscopy studies of bacterial cells have shown that the bacterial shape-determining protein and actin homolog, MreB, forms cable-like structures that spiral around the periphery of the cell. The molecular structure of these cables has yet to be established. Here we show by electron microscopy that Thermatoga maritime MreB forms complex, several mum long multilayered sheets consisting of diagonally interwoven filaments in the presence of either ATP or GTP. This architecture, in agreement with recent rheological measurements on MreB cables, may have superior mechanical properties and could be an important feature for maintaining bacterial cell shape. MreB polymers within the sheets appear to be single-stranded helical filaments rather than the linear protofilaments found in the MreB crystal structure. Sheet assembly occurs over a wide range of pH, ionic strength, and temperature. Polymerization kinetics are consistent with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation. Steady-state TIRF microscopy studies of MreB suggest filament treadmilling while high pressure small angle x-ray scattering measurements indicate that the stability of MreB polymers is similar to that of F-actin filaments. In the presence of ADP or GDP, long, thin cables formed in which MreB was arranged in parallel as linear protofilaments. This suggests that the bacterial cell may exploit various nucleotides to generate different filament structures within cables for specific MreB-based functions.

  16. Relation between current sheets and vortex sheets in stationary incompressible MHD

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2012-03-01

    Full Text Available Magnetohydrodynamic configurations with strong localized current concentrations and vortices play an important role in the dissipation of energy in space and astrophysical plasma. Within this work we investigate the relation between current sheets and vortex sheets in incompressible, stationary equilibria. For this approach it is helpful that the similar mathematical structure of magnetohydrostatics and stationary incompressible hydrodynamics allows us to transform static equilibria into stationary ones. The main control function for such a transformation is the profile of the Alfvén-Mach number MA, which is always constant along magnetic field lines, but can change from one field line to another. In the case of a global constant MA, vortices and electric current concentrations are parallel. More interesting is the nonlinear case, where MA varies perpendicular to the field lines. This is a typical situation at boundary layers like the magnetopause, heliopause, the solar wind flowing around helmet streamers and at the boundary of solar coronal holes. The corresponding current and vortex sheets show in some cases also an alignment, but not in every case. For special density distributions in 2-D, it is possible to have current but no vortex sheets. In 2-D, vortex sheets of field aligned-flows can also exist without strong current sheets, taking the limit of small Alfvén Mach numbers into account. The current sheet can vanish if the Alfvén Mach number is (almost constant and the density gradient is large across some boundary layer. It should be emphasized that the used theory is not only valid for small Alfvén Mach numbers MA MA ≲ 1. Connection to other theoretical approaches and observations and physical effects in space plasmas are presented. Differences in the various aspects of theoretical investigations of current sheets and vortex sheets are given.

  17. Cylindrical thin-shell wormholes

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2004-01-01

    A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands forever, depending only on the sign of its initial velocity

  18. Changes of optical, dielectric, and structural properties of Si15Sb85 phase change memory thin films under different initializing laser power

    International Nuclear Information System (INIS)

    Huang Huan; Zhang Lei; Wang Yang; Han Xiaodong; Wu Yiqun; Zhang Ze; Gan Fuxi

    2011-01-01

    Research highlights: → We study the optical, dielectric, and structural characteristics of Si 15 Sb 85 phase change memory thin films under a moving continuous-wave laser initialization. → The optical and dielectric constants, absorption coefficient of Si 15 Sb 85 change regularly with the increasing laser power. → The optical band gaps of Si 15 Sb 85 irradiated upon different power lasers were calculated. → HRTEM images of the samples were observed and the changes of optical and dielectric constants are determined by crystalline structures changes of the films. - Abstract: The optical, dielectric, and structural characteristics of Si 15 Sb 85 phase change memory thin films under a moving continuous-wave laser initialization are studied by using spectroscopic ellipsometry and high-resolution transmission electron microscopy. The dependence of complex refractive index, dielectric functions, absorption coefficient, and optical band gap of the films on its crystallization extents formed by the different initialization laser power are analyzed in detail. The structural change from as-deposited amorphous phase to distorted rhombohedra-Sb-like crystalline structure with the increase of initialization laser power is clearly observed with sub-nanometer resolution. The optical and dielectric constants, the relationship between them, and the local atomic arrangements of this new phase change material can help explain the phase change mechanism and design the practical phase change memory devices.

  19. Mass balance and surface movement of the Greenland Ice Sheet at Summit, Central Greenland

    DEFF Research Database (Denmark)

    Hvidberg, C.S.; Keller, K.; Gundestrup, N.S.

    1997-01-01

    During the GRIP deep drilling in Central Greenland, the ice sheet topography and surface movement at Summit has been mapped with GPS. Measurements of the surface velocity are presented for a strain net consisting of 13 poles at distances of 25-60 km from the GRIP site. Some results are: The GRIP...... site is located approximately 2 km NW of the topographic summit; the surface velocity at the GISP 2 site is 1.7 m/yr in the W direction. The present mass balance at Summit is calculated to be -0.03+/-0.04 m/yr, i.e. close to steady state. This result is the best now available for Summit. A small...... thinning rate might be a transient response of the Greenland Ice Sheet due to the temperature increase at the Wisconsin-Holocene transition....

  20. Modelling large-scale ice-sheet-climate interactions at the last glacial inception

    Science.gov (United States)

    Browne, O. J. H.; Gregory, J. M.; Payne, A. J.; Ridley, J. K.; Rutt, I. C.

    2010-05-01

    In order to investigate the interactions between coevolving climate and ice-sheets on multimillenial timescales, a low-resolution atmosphere-ocean general circulation model (AOGCM) has been coupled to a three-dimensional thermomechanical ice-sheet model. We use the FAMOUS AOGCM, which is almost identical in formulation to the widely used HadCM3 AOGCM, but on account of its lower resolution (7.5° longitude × 5° latitude in the atmosphere, 3.75°× 2.5° in the ocean) it runs about ten times faster. We use the community ice-sheet model Glimmer at 20 km resolution, with the shallow ice approximation and an annual degree-day scheme for surface mass balance. With the FAMOUS-Glimmer coupled model, we have simulated the growth of the Laurentide and Fennoscandian ice sheets at the last glacial inception, under constant orbital forcing and atmospheric composition for 116 ka BP. Ice grows in both regions, totalling 5.8 m of sea-level equivalent in 10 ka, slower than proxy records suggest. Positive climate feedbacks reinforce this growth at local scales (order hundreds of kilometres), where changes are an order of magnitude larger than on the global average. The albedo feedback (higher local albedo means a cooler climate) is important in the initial expansion of the ice-sheet area. The topography feedback (higher surface means a cooler climate) affects ice-sheet thickness and is not noticeable for the first 1 ka. These two feedbacks reinforce each other. Without them, the ice volume is ~90% less after 10 ka. In Laurentia, ice expands initially on the Canadian Arctic islands. The glaciation of the islands eventually cools the nearby mainland climate sufficiently to produce a positive mass balance there. Adjacent to the ice-sheets, cloud feedbacks tend to reduce the surface mass balance and restrain ice growth; this is an example of a local feedback whose simulation requires a model that includes detailed atmospheric physics.

  1. XUV laser-produced plasma sheet beam and microwave agile mirror

    International Nuclear Information System (INIS)

    Shen, W.; Scharer, J.E.; Porter, B.; Lam, N.T.

    1994-01-01

    An excimer-laser (λ = 193 nm) produced plasma in an organic gas (TMAE) has been generated and studied. These studies have determined the ion-electron recombination coefficient and the photon absorption cross-section, of the neutral gas. The dependences of wave transmission, reflection and absorption on plasma density are obtained. A new optical system with an array of cylindrical XUV coated lenses has been implemented to form a plasma sheet to study its usage as agile mirror microwave reflector. The lens system expands the incident laser beam in X direction and compresses it in Y direction to form a sheet beam. The expanded beam then passes through a vacuum chamber filled with TMAE at 50--500 nTorr to produce the plasma sheet. Space-time measurements of the plasma density and temperature as measured by a Langmuir probe are presented. XUV optical measurements of the laser beam as measured by a photodiode are presented. Initial experiments have generated a plasma sheet of 5--10 mm x 11 cm with peak plasma density of 5 x 10 13 cm -3 . A microwave source will be utilized to study the agile mirror character of the plasma sheet. Modeling of the microwave reflection from the plasma profile will also be discussed

  2. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    Science.gov (United States)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  3. Interaction of β-sheet folds with a gold surface.

    Directory of Open Access Journals (Sweden)

    Martin Hoefling

    Full Text Available The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111 surface using computational molecular dynamics (MD simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN. We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance.

  4. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  5. Sheet universes and the shapes of Friedmann universes

    International Nuclear Information System (INIS)

    Lynden-Bell, D.; Redmount, I.H.

    1989-01-01

    Unless Ω>1,the Big Bang did not start from a point. Consideration shows sheet universes in which matter is confined to a homogeneous universe. Sheet universes and the corresponding embeddings of FRW universes into Minkowski space are drawn. Their initial singularities are shown to be point-like for the 'closed' case, line-like for the 'flat' (Ω=1) case and surface-like for the 'open' case. In contrast to the cross-sections at constant comoving proper time, typical spacelike cross-sections of the 'flat' universes are closed and encounter their extensive singularities. All cross-sections of the 'closed' universe are closed and only very special cross-sections encounter the point singularities at the Big Bang or the Big Crunch. (author)

  6. Chlamydia - CDC Fact Sheet

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... sheet Pelvic Inflammatory Disease (PID) – CDC fact sheet Gonorrhea – CDC fact sheet STDs Home Page Bacterial Vaginosis ( ...

  7. Measurement of the Young's modulus of thin or flexible specimen with digital-image correlation method

    Science.gov (United States)

    Xu, Lianyun; Hou, Zhende; Qin, Yuwen

    2002-05-01

    Because some composite material, thin film material, and biomaterial, are very thin and some of them are flexible, the classical methods for measuring their Young's moduli, by mounting extensometers on specimens, are not available. A bi-image method based on image correlation for measuring Young's moduli is developed in this paper. The measuring precision achieved is one order enhanced with general digital image correlation or called single image method. By this way, the Young's modulus of a SS301 stainless steel thin tape, with thickness 0.067mm, is measured, and the moduli of polyester fiber films, a kind of flexible sheet with thickness 0.25 mm, are also measured.

  8. Antarctic and Greenland ice sheet mass balance products from satellite gravimetry

    Science.gov (United States)

    Horwath, Martin; Groh, Andreas; Horvath, Alexander; Forsberg, René; Meister, Rakia; Barletta, Valentina R.; Shepherd, Andrew

    2017-04-01

    Because of their important role in the Earth's climate system, ESA's Climate Change Initiative (CCI) has identified both the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GIS) as Essential Climate Variables (ECV). Since respondents of a user survey indicated that the ice sheet mass balance is one of the most important ECV data products needed to better understand climate change, the AIS_cci and the GIS_cci project provide Gravimetric Mass Balance (GMB) products based on satellite gravimetry data. The GMB products are derived from GRACE (Gravity Recovery and Climate Experiment) monthly solutions of release ITSG-Grace2016 produced at TU Graz. GMB basin products (i.e. time series of monthly mass changes for the entire ice sheets and selected drainage basins) and GMB gridded products (e.g. mass balance estimates with a formal resolution of about 50km, covering the entire ice sheets) are generated for the period from 2002 until present. The first GMB product was released in mid 2016. Here we present an extended and updated version of the ESA CCI GMB products, which are freely available through data portals hosted by the projects (https://data1.geo.tu-dresden.de/ais_gmb, http://products.esa-icesheets-cci.org/products/downloadlist/GMB). Since the initial product release, the applied processing strategies have been improved in order to further reduce GRACE errors and to enhance the separation of signals super-imposed to the ice mass changes. While a regional integration approach is used by the AIS_cci project, the GMB products of the GIS_cci project are derived using a point mass inversion. The differences between both approaches are investigated through the example of the GIS, where an alternative GMB product was generated using the regional integration approach implemented by the AIS_cci. Finally, we present the latest mass balance estimates for both ice sheets as well as their corresponding contributions to global sea level rise.

  9. Wave excited motion of a body floating on water confined between two semi-infinite ice sheets

    Science.gov (United States)

    Ren, K.; Wu, G. X.; Thomas, G. A.

    2016-12-01

    The wave excited motion of a body floating on water confined between two semi-infinite ice sheets is investigated. The ice sheet is treated as an elastic thin plate and water is treated as an ideal and incompressible fluid. The linearized velocity potential theory is adopted in the frequency domain and problems are solved by the method of matched eigenfunctions expansion. The fluid domain is divided into sub-regions and in each sub-region the velocity potential is expanded into a series of eigenfunctions satisfying the governing equation and the boundary conditions on horizontal planes including the free surface and ice sheets. Matching is conducted at the interfaces of two neighbouring regions to ensure the continuity of the pressure and velocity, and the unknown coefficients in the expressions are obtained as a result. The behaviour of the added mass and damping coefficients of the floating body with the effect of the ice sheets and the excitation force are analysed. They are found to vary oscillatorily with the wave number, which is different from that for a floating body in the open sea. The motion of the body confined between ice sheets is investigated, in particular its resonant behaviour with extremely large motion found to be possible under certain conditions. Standing waves within the polynya are also observed.

  10. Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo

    Science.gov (United States)

    Takahashi, F.

    2011-12-01

    Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.

  11. Acoustoelastic effect of textured (Ba,Sr)TiO{sub 3} thin films under an initial mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Kamel, Marwa; Mseddi, Souhir; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, Sfax (Tunisia); Donner, Wolfgang [Institute of Materials Science, University of Technology, Alarich-Weiss-Strasse.2, 64287 Darmstadt (Germany)

    2015-12-14

    Acoustoelastic (AE) analysis of initial stresses plays an important role as a nondestructive tool in current engineering. Two textured BST (Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3}) thin films, with different substrate to target distance, were grown on Pt(111)/TiO{sub 2}/SiO{sub 2}/Si(001) substrate by rf-magnetron sputtering deposition techniques. A conventional “sin{sup 2} ψ” method to determine residual stress and strain in BST films by X-ray diffraction is applied. A laser acoustic waves (LA-waves) technique is used to generate surface acoustic waves (SAW) propagating in both samples. Young's modulus E and Poisson ratio ν of BST films in different propagation directions are derived from the measured dispersion curves. Estimation of effective second-order elastic constants of BST thin films in stressed states is served in SAW study. This paper presents an original investigation of AE effect in prestressed Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3} films, where the effective elastic constants and the effect of texture on second and third order elastic tensor are considered and used. The propagation behavior of Rayleigh and Love waves in BST thin films under residual stress is explored and discussed. The guiding velocities affected by residual stresses, reveal some shifts which do not exceed four percent mainly in the low frequency range.

  12. Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films

    Energy Technology Data Exchange (ETDEWEB)

    Nehm, Frederik, E-mail: frederik.nehm@iapp.de; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl

    2014-04-01

    The growth behavior of thin silver films on organic layers is investigated during deposition by means of simultaneous in-situ monitoring of sheet resistance and transmittance. Thermally evaporated films up to 11 nm show a distinct percolation behavior with strong resistance drop at the percolation thickness. Additionally, evaporations are divided into a sequence of one nanometer steps. In the deposition breaks, the films exhibit a ripening effect with an inversion at the percolation thickness, by changing from an increasing to decreasing sheet resistance over time. Scanning electron micrographs suggest same ripening mechanisms for islands below the percolation thickness as for holes above. - Highlights: • Fundamental understanding of metal thin film growth is presented. • Optical and electrical in-situ measurements used for optimizing transparent electrodes • Stepwise Ag deposition reveals extraordinary ripening effects. • Feature ripening inversion is discovered at the percolation threshold.

  13. Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films

    International Nuclear Information System (INIS)

    Nehm, Frederik; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl

    2014-01-01

    The growth behavior of thin silver films on organic layers is investigated during deposition by means of simultaneous in-situ monitoring of sheet resistance and transmittance. Thermally evaporated films up to 11 nm show a distinct percolation behavior with strong resistance drop at the percolation thickness. Additionally, evaporations are divided into a sequence of one nanometer steps. In the deposition breaks, the films exhibit a ripening effect with an inversion at the percolation thickness, by changing from an increasing to decreasing sheet resistance over time. Scanning electron micrographs suggest same ripening mechanisms for islands below the percolation thickness as for holes above. - Highlights: • Fundamental understanding of metal thin film growth is presented. • Optical and electrical in-situ measurements used for optimizing transparent electrodes • Stepwise Ag deposition reveals extraordinary ripening effects. • Feature ripening inversion is discovered at the percolation threshold

  14. Wicking and flooding of liquids on vertical porous sheets

    Science.gov (United States)

    Kim, Seong Jin; Choi, Jin Woo; Moon, Myoung-Woon; Lee, Kwang-Ryeol; Chang, Young Soo; Lee, Dae-Young; Kim, Ho-Young

    2015-03-01

    When one brings a wet paintbrush into contact with a vertical watercolor paper, the paint may wick into the porous sheet completely or run down to ruin the art. We study a simple model of this spreading dynamics of liquids on hydrophilic porous sheets under the effects of gravity, using a capillary as a liquid source and thin fabrics of non-woven polyethylene terephthalate. Upon finding the maximum flow rate, Qw, that can be absorbed into the fabric, we show that the model can be used to obtain an estimate of the in-plane permeability of fabrics in a simpler manner than the conventional schemes. The shape of a wetting area that grows when the flow rate exceeds Qw to lead to rivulet formation is also theoretically given. The nose shape of the wetting front is shown to be time-invariant, while its profile depends on the properties of the liquid and the fabric. This study can be applied to understand and improve the liquid absorption behavior of hygiene items, heating, ventilation, and air-conditioning equipments, and fuel cell membranes in addition to elucidating the mundane painting activity.

  15. Prediction of stress- and strain-based forming limits of automotive thin sheets by numerical, theoretical and experimental methods

    Science.gov (United States)

    Béres, Gábor; Weltsch, Zoltán; Lukács, Zsolt; Tisza, Miklós

    2018-05-01

    Forming limit is a complex concept of limit values related to the onset of local necking in the sheet metal. In cold sheet metal forming, major and minor limit strains are influenced by the sheet thickness, strain path (deformation history) as well as material parameters and microstructure. Forming Limit Curves are plotted in ɛ1 - ɛ2 coordinate system providing the classic strain-based Forming Limit Diagram (FLD). Using the appropriate constitutive model, the limit strains can be changed into the stress-based Forming Limit Diagram (SFLD), irrespective of the strain path. This study is about the effect of the hardening model parameters on defining of limit stress values during Nakazima tests for automotive dual phase (DP) steels. Five limit strain pairs were specified experimentally with the loading of five different sheet geometries, which performed different strain-paths from pure shear (-2ɛ2=ɛ1) up to biaxial stretching (ɛ2=ɛ1). The former works of Hill, Levy-Tyne and Keeler-Brazier made possible some kind of theoretical strain determination, too. This was followed by the stress calculation based on the experimental and theoretical strain data. Since the n exponent in the Nádai expression is varying with the strain at some DP steels, we applied the least-squares method to fit other hardening model parameters (Ludwik, Voce, Hockett-Sherby) to calculate the stress fields belonging to each limit strains. The results showed that each model parameters could produce some discrepancies between the limit stress states in the range of higher equivalent strains than uniaxial stretching. The calculated hardening models were imported to FE code to extend and validate the results by numerical simulations.

  16. Study of CW Nd-Yag laser welding of Zn-coated steel sheets

    International Nuclear Information System (INIS)

    Fabbro, Remy; Coste, Frederic; Goebels, Dominique; Kielwasser, Mathieu

    2006-01-01

    The welding of Zn-coated steel thin sheets is a great challenge for the automotive industry. Previous studies have defined the main physical processes involved. For non-controlled conditions, the zinc vapour expelled from the interface of the two sheets violently expands inside the keyhole and expels the melt pool. When using CO 2 lasers, we have previously shown that an elongated laser spot produces an elongated keyhole, which is efficient for suppressing this effect. We have adopted a similar approach for CW Nd : Yag laser welding and we observe that an elongated spot is not necessary for achieving good weld seams. Several diagnostics were used in order to understand these interesting results. High-speed video camera visualizations of the top and the bottom of the keyhole during the process show the dynamics of the keyhole hydrodynamic behaviour. It appears that the role of the reflected beam on the front keyhole wall for generating a characteristic rear wall deformation is crucial for an efficient stabilization of the process. Our dynamic keyhole modelling, which includes ray tracing, totally confirms this interpretation and explains the results for very different experimental conditions (effect of welding speed, laser intensity, variable sheet thickness, laser beam intensity distribution) that will be presented

  17. Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission

    Science.gov (United States)

    Arons, Jonathan

    The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of

  18. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

    Science.gov (United States)

    Kagan; Mitzi; Dimitrakopoulos

    1999-10-29

    Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

  19. Deglaciation of the Eurasian ice sheet complex

    Science.gov (United States)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Auriac, Amandine; Whitehouse, Pippa L.; Stroeven, Arjen P.; Shackleton, Calvin; Winsborrow, Monica; Heyman, Jakob; Hall, Adrian M.

    2017-08-01

    The Eurasian ice sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum with a span of over 4500 km and responsible for around 20 m of eustatic sea-level lowering. Whilst recent terrestrial and marine empirical insights have improved understanding of the chronology, pattern and rates of retreat of this vast ice sheet, a concerted attempt to model the deglaciation of the EISC honouring these new constraints is conspicuously lacking. Here, we apply a first-order, thermomechanical ice sheet model, validated against a diverse suite of empirical data, to investigate the retreat of the EISC after 23 ka BP, directly extending the work of Patton et al. (2016) who modelled the build-up to its maximum extent. Retreat of the ice sheet complex was highly asynchronous, reflecting contrasting regional sensitivities to climate forcing, oceanic influence, and internal dynamics. Most rapid retreat was experienced across the Barents Sea sector after 17.8 ka BP when this marine-based ice sheet disintegrated at a rate of ∼670 gigatonnes per year (Gt a-1) through enhanced calving and interior dynamic thinning, driven by oceanic/atmospheric warming and exacerbated by eustatic sea-level rise. From 14.9 to 12.9 ka BP the EISC lost on average 750 Gt a-1, peaking at rates >3000 Gt a-1, roughly equally partitioned between surface melt and dynamic losses, and potentially contributing up to 2.5 m to global sea-level rise during Meltwater Pulse 1A. Independent glacio-isostatic modelling constrained by an extensive inventory of relative sea-level change corroborates our ice sheet loading history of the Barents Sea sector. Subglacial conditions were predominately temperate during deglaciation, with over 6000 subglacial lakes predicted along with an extensive subglacial drainage network. Moreover, the maximum EISC and its isostatic footprint had a profound impact on the proglacial hydrological network, forming the Fleuve Manche mega-catchment which had an area of

  20. Reducing the cost of MWT module technology based on conductive back-sheet foils

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, I.J.; Goris, M.J.A.A.; Eerenstein, W. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-10-15

    MWT cell and module technology has shown to result in modules with a higher power output than H-pattern modules and to be suitable for use with thin and fragile cells. In this work, the use of low-cost module materials and their effect on module performance and reliability has been assessed. These materials include a conductive back-sheet patterned by milling with no silver plating at the contacts on the foil and no isolation coating on the copper and a low-silver content conductive adhesive. The sensitivity of module performance for the anti-corrosion coating on the copper of the conductive back-sheet is measured, as is the reliability in climate chamber testing of mini-modules made with these materials. The results show that these low cost materials can be used to manufacture module with good performance and reliability. Options are given for further cost reduction.

  1. Annealing effect on the structural, morphological and electrical properties of TiO2/ZnO bilayer thin films

    Science.gov (United States)

    Khan, M. I.; Imran, S.; Shahnawaz; Saleem, Muhammad; Ur Rehman, Saif

    2018-03-01

    The effect of annealing temperature on the structural, morphological and electrical properties of TiO2/ZnO (TZ) thin films has been observed. Bilayer thin films of TiO2/ZnO are deposited on FTO glass substrate by spray pyrolysis method. After deposition, these films are annealed at 573 K, 723 K and 873 K. XRD shows that TiO2 is present in anatase phase only and ZnO is present in hexagonal phase. No other phases of TiO2 and ZnO are present. Also, there is no evidence of other compounds like Zn-Ti etc. It also shows that the average grain size of TiO2/ZnO films is increased by increasing annealing temperature. AFM (Atomic force microscope) showed that the average roughness of TiO2/ZnO films is decreased at temperature 573-723 K and then increased at 873 K. The calculated average sheet resistivity of thin films annealed at 573 K, 723 K and 873 K is 152.28 × 102, 75.29 × 102 and 63.34 × 102 ohm-m respectively. This decrease in sheet resistivity might be due to the increment of electron concentration with increasing thickness and the temperature of thin films.

  2. Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass

    Energy Technology Data Exchange (ETDEWEB)

    Foucher, C.; Guilhabert, B.; Laurand, N.; Dawson, M. D. [Institute of Photonics, SUPA, University of Strathclyde, Glasgow (United Kingdom)

    2014-04-07

    A mechanically flexible and wavelength-tunable laser with an ultra-thin glass membrane as substrate is demonstrated. The optically pumped hybrid device has a distributed feedback cavity that combines a colloidal quantum dot gain film with a grating-patterned polymeric underlayer, all on a 30-μm thick glass sheet. The total thickness of the structure is only 75 μm. The hybrid laser has an average threshold fluence of 450 ± 80 μJ/cm{sup 2} (for 5-ns excitation pulses) at an emitting wavelength of 607 nm. Mechanically bending the thin-glass substrate enables continuous tuning of the laser emission wavelength over an 18-nm range, from 600 nm to 618 nm. The correlation between the wavelength tunability and the mechanical properties of the thin laser structure is verified theoretically and experimentally.

  3. Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets

    Science.gov (United States)

    Mailen, Russell W.; Dickey, Michael D.; Genzer, Jan; Zikry, Mohammed

    2017-11-01

    Shape memory polymer (SMP) sheets patterned with black ink hinges change shape in response to external stimuli, such as absorbed thermal energy from an infrared (IR) light. The geometry of these hinges, including size, orientation, and location, and the applied thermal loads significantly influence the final folded shape of the sheet, but these variables have not been fully investigated. We perform a systematic study on SMP sheets to fundamentally understand the effects of single and double hinge geometries, hinge orientation and spacing, initial temperature, heat flux intensity, and pattern width on the folding behavior. We have developed thermo-viscoelastic finite element models to characterize and quantify the stresses, strains, and temperatures as they relate to SMP shape changes. Our predictions indicate that hinge orientation can be used to reduce the total bending angle, which is the angle traversed by the folding face of the sheet. Two parallel hinges increase the total bending angle, and heat conduction between the hinges affects the transient folding response. IR intensity and initial temperatures can also influence the transient folding behavior. These results can provide guidelines to optimize the transient folding response and the three-dimensional folded structure obtained from self-folding polymer origami sheets that can be applied for myriad applications.

  4. Studies of tantalum nitride thin film resistors

    International Nuclear Information System (INIS)

    Langley, R.A.

    1975-01-01

    Backscattering of 2-MeV He ions was used to correlate the electrical properties of sputtered TaN/sub x/ thin-film resistors with their N content. The properties measured were sheet resistance, differential Seebeck potential (DSP), thermal coefficient of resistance (TCR), and stability. Resistivity and DSP are linearly dependent on N content for N/Ta ratios of 0.25 to 0.55. TCR decreases sharply below N/Ta = 0.35 and is relatively constant from 0.35 to 0.55. Stability is independent of N content. (DLC)

  5. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Science.gov (United States)

    Maeda, Yoshitaka; Urata, Shinya; Nakai, Hideo; Takeuchi, Yuuya; Yun, Kyyoul; Yanase, Shunji; Okazaki, Yasuo

    2017-05-01

    In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D) magnetic properties (properties under the arbitrary alternating and the rotating flux conditions) of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  6. CdS thin films prepared by continuous wave Nd:YAG laser

    Science.gov (United States)

    Wang, H.; Tenpas, Eric W.; Vuong, Khanh D.; Williams, James A.; Schuesselbauer, E.; Bernstein, R.; Fagan, J. G.; Wang, Xing W.

    1995-08-01

    We report new results on continuous wave Nd:YAG laser deposition of cadmium sulfide thin films. Substrates were soda-lime silicate glass, silica glass, silicon, and copper coated formvar sheets. As deposited films were mixtures of cubic and hexagonal phases, with two different grain sizes. As revealed by SEM micrographs, films had smooth surface morphology. As revealed by TEM analysis, grain sizes were extremely small.

  7. Development of natively textured surface hydrogenated Ga-doped ZnO-TCO thin films for solar cells via magnetron sputtering

    International Nuclear Information System (INIS)

    Wang, Fei; Chen, Xin-liang; Geng, Xin-hua; Zhang, De-kun; Wei, Chang-chun; Huang, Qian; Zhang, Xiao-dan; Zhao, Ying

    2012-01-01

    Highlights: ► Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. ► The directly deposited HGZO thin films present rough crater-type surface morphology. ► Typical HGZO thin film exhibits a high electron mobility of 41.3 cm 2 /V s and a relative low sheet resistance of ∼7.0 Ω. ► These HGZO thin films have high optical transmittances in the visible and near infrared region (∼380–1100 nm). ► A gradient H 2 growth method for fabricating HGZO thin films has been proposed in magnetron sputtering process. - Abstract: The main purposes are to obtain high quality transparent conductive oxide (TCO) based on zinc oxide (ZnO) thin films with high optical transparency in the visible and near infrared spectral range, high electrical conductivity and good light-scattering capability to enhance the path of the light inside the Si-based thin film solar cells. Natively textured surface hydrogenated gallium-doped ZnO (HGZO) thin films have been deposited via pulsed direct current (DC) magnetron sputtering on glass substrates at a substrate temperature of 553 K. These natively textured HGZO thin films exhibit high optical transmittance (over 80%) in the visible and near infrared region (λ = 380–1100 nm) and excellent electrical properties. The optimized HGZO thin film with crater-type textured surface obtained at the hydrogen flow rate of ∼2.0 sccm exhibits a high electron mobility of 41.3 cm 2 /V s and a relatively low sheet resistance of ∼7.0 Ω. The influences of hydrogen flow rates on the surface morphology, electrical and optical properties of HGZO thin films were investigated in detail. In addition, we put forward a method of gradient H 2 growth technique for fabricating HGZO thin films so as to obtain rough surface structure with good light-scattering capability and high electrical conductivity. “Crater-like” surface feature size and optical transmittance

  8. Superfund fact sheet: The remedial program. Fact sheet

    International Nuclear Information System (INIS)

    1992-09-01

    The fact sheet describes what various actions the EPA can take to clean up hazardous wastes sites. Explanations of how the criteria for environmental and public health risk assessment are determined and the role of state and local governments in site remediation are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no formal scientific training

  9. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    Energy Technology Data Exchange (ETDEWEB)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  10. Natively textured surface hydrogenated gallium-doped zinc oxide transparent conductive thin films with buffer layers for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin-liang, E-mail: cxlruzhou@163.com; Wang, Fei; Geng, Xin-hua; Huang, Qian; Zhao, Ying; Zhang, Xiao-dan

    2013-09-02

    Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. These natively textured HGZO thin films exhibit rough pyramid-like textured surface, high optical transmittances in the visible and near infrared region and excellent electrical properties. The experiment results indicate that tungsten-doped indium oxide (In{sub 2}O{sub 3}:W, IWO) buffer layers can effectively improve the surface roughness and enhance the light scattering ability of HGZO thin films. The root-mean-square roughness of HGZO, IWO (10 nm)/HGZO and IWO (30 nm)/HGZO thin films are 28, 44 and 47 nm, respectively. The haze values at the wavelength of 550 nm increase from 7.0% of HGZO thin film without buffer layer to 18.37% of IWO (10 nm)/HGZO thin film. The optimized IWO (10 nm)/HGZO exhibits a high optical transmittance of 82.18% in the visible and near infrared region (λ ∼ 400–1100 nm) and excellent electrical properties with a relatively low sheet resistance of 3.6 Ω/□ and the resistivity of 6.21 × 10{sup −4} Ωcm. - Highlights: • Textured hydrogenated gallium-doped zinc oxide (HGZO) films were developed. • Tungsten-doped indium oxide (IWO) buffer layers were applied for the HGZO films. • Light-scattering ability of the HGZO films can be improved through buffer layers. • Low sheet resistance and high haze were obtained for the IWO(10 nm)/HGZO film. • The IWO/HGZO films are promising transparent conductive layers for solar cells.

  11. Effect of hydroxyl bond formation on the adhesion improvement of a polyethylene copper thin film system

    International Nuclear Information System (INIS)

    Camacho, M.; Blantocas, G.; Ramos, H.

    2009-01-01

    Formation of hydroxyl bonds on the surface of a gas plasma treated high density polyethylene (HDPE) sheets significantly enhanced the adhesion strength of the polyethylene copper thin film system. Surface treatments using oxygen gas plasmas at varying plasma parameters are applied in this study to identify the most effective plasma parameters that would promote the best adhesion strength. Analysis of gas plasma adulterated HDPE sheets showed best enhancement of polyethylene copper adhesion after an oxygen gas plasma treatment for 60 minutes at 5mA discharge current. Scanning Electron Microscopy Analysis, Fourier Transform Infrared Spectroscopy and Adhesion measurements using Pull out Force Analysis were used to measure the changes in the surface chemistry and surface topology of the HDPE sheets. (author)

  12. THE ROLE OF FAST MAGNETOSONIC WAVES IN THE RELEASE AND CONVERSION VIA RECONNECTION OF ENERGY STORED BY A CURRENT SHEET

    Energy Technology Data Exchange (ETDEWEB)

    Longcope, D. W.; Tarr, L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2012-09-10

    Using a simple two-dimensional, zero-{beta} model, we explore the manner by which reconnection at a current sheet releases and dissipates free magnetic energy. We find that only a small fraction (3%-11% depending on current-sheet size) of the energy is stored close enough to the current sheet to be dissipated abruptly by the reconnection process. The remaining energy, stored in the larger-scale field, is converted to kinetic energy in a fast magnetosonic disturbance propagating away from the reconnection site, carrying the initial current and generating reconnection-associated flows (inflow and outflow). Some of this reflects from the lower boundary (the photosphere) and refracts back to the X-point reconnection site. Most of this inward wave energy is reflected back again and continues to bounce between X-point and photosphere until it is gradually dissipated, over many transits. This phase of the energy dissipation process is thus global and lasts far longer than the initial purely local phase. In the process, a significant fraction of the energy (25%-60%) remains as undissipated fast magnetosonic waves propagating away from the reconnection site, primarily upward. This flare-generated wave is initiated by unbalanced Lorentz forces in the reconnection-disrupted current sheet, rather than by dissipation-generated pressure, as some previous models have assumed. Depending on the orientation of the initial current sheet, the wave front is either a rarefaction, with backward-directed flow, or a compression, with forward-directed flow.

  13. Radiation protecting sheet

    International Nuclear Information System (INIS)

    Makiguchi, Hiroshi.

    1989-01-01

    As protection sheets used in radioactivity administration areas, a thermoplastic polyurethane composition sheet with a thickness of less 0.5 mm, solid content (ash) of less than 5% and a shore D hardness of less than 60 is used. A composite sheet with thickness of less than 0.5 mm laminated or coated with such a thermoplastic polyurethane composition as a surface layer and the thermoplastic polyurethane composition sheet applied with secondary fabrication are used. This can satisfy all of the required properties, such as draping property, abrasion resistance, high breaking strength, necking resistance, endurance strength, as well as chemical resistance and easy burnability in burning furnace. Further, by forming uneveness on the surface by means of embossing, etc. safety problems such as slippage during operation and walking can be overcome. (T.M.)

  14. Effect of the Die Temperature and Blank Thickness on the Formability of a Laser-Welded Blank of a Boron Steel Sheet with Removing Al-Si Coating Layer

    Directory of Open Access Journals (Sweden)

    M. S. Lee

    2014-05-01

    Full Text Available Reducing carbon emissions has been a major focus in the automobile industry to address various environmental issues. In particular, studies on parts comprised of high strength sheets and light car bodies are ongoing. Accordingly, this study examined the use of boron steel, which is commonly used in high strength sheets. Boron steel is a type of sheet used for hot stamping parts. Although it has high strength, the elongation is inferior, which reduces its crash energy absorption capacity. To solve this problem, two sheets of different thickness were welded so the thin sheet would absorb crash energy and the thick sheet would work as a support. Boron steel, however, may show weakening at the welding spot due to the Al-Si coating layer used to prevent oxidation from occurring during the welding process. Therefore, a certain part of the coating layer of a double-thickness boron steel sheet that is welded in the hot stamping process is removed through laser ablation, and the formability of the hot-work was examined.

  15. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    Directory of Open Access Journals (Sweden)

    Ren Penghao

    2017-01-01

    Full Text Available After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation of the workpiece, a linear relationship between initial stress and deformation is found; Through simulative analysis of coupling direction-stress release, the superposing relationship between the deformation caused by coupling direction-stress and the deformation caused by single direction stress is found. The research results provide important theoretical support for the stress threshold setting and deformation controlling of the workpieces in the production practice.

  16. Crack Propagation on ESE(T) Specimens Strengthened with CFRP Sheets

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Jensen, Peter Holmstrøm; Dyrelund, Jens

    2009-01-01

    In this paper fatigue tests on side notched steel test specimens strengthened with adhesive bonded fibre reinforced polymer (FRP) sheets are presented. The specimens are subject to crack growth both in the steel and bond line. Influence of the load ratio and initial crack length on the overall...

  17. Representing grounding line migration in synchronous coupling between a marine ice sheet model and a z-coordinate ocean model

    Science.gov (United States)

    Goldberg, D. N.; Snow, K.; Holland, P.; Jordan, J. R.; Campin, J.-M.; Heimbach, P.; Arthern, R.; Jenkins, A.

    2018-05-01

    Synchronous coupling is developed between an ice sheet model and a z-coordinate ocean model (the MITgcm). A previously-developed scheme to allow continuous vertical movement of the ice-ocean interface of a floating ice shelf ("vertical coupling") is built upon to allow continuous movement of the grounding line, or point of floatation of the ice sheet ("horizontal coupling"). Horizontal coupling is implemented through the maintenance of a thin layer of ocean ( ∼ 1 m) under grounded ice, which is inflated into the real ocean as the ice ungrounds. This is accomplished through a modification of the ocean model's nonlinear free surface evolution in a manner akin to a hydrological model in the presence of steep bathymetry. The coupled model is applied to a number of idealized geometries and shown to successfully represent ocean-forced marine ice sheet retreat while maintaining a continuous ocean circulation.

  18. Relationships among the Microstructure, Mechanical Properties, and Fatigue Behavior in Thin Ti6Al4V

    Directory of Open Access Journals (Sweden)

    Y. Fan

    2016-01-01

    Full Text Available The microstructures of Ti6Al4V are complex and strongly affect its mechanical properties and fatigue behavior. This paper investigates the role of microstructure on mechanical and fatigue properties of thin-section Ti6Al4V sheets, with the aim of reviewing the effects of microstructure on fatigue properties where suboptimal microstructures might result following heat treatment of assemblies that may not be suited to further annealing, for example, following laser welding. Samples of Ti6Al4V sheet were subjected to a range of heat treatments, including annealing and water quenching from temperatures ranging from 650°C to 1050°C. Micrographs of these samples were inspected for microstructure, and hardness, 0.2% proof stress, elongation, and fracture strength were measured and attributed back to microstructure. Fractography was used to support the findings from microstructure and mechanical analyses. The strength ranking from high to low for the microstructures of thin Ti6Al4V sheets observed in this study is as follows: acicular α′ martensite, Widmanstätten, bimodal, and equiaxed microstructure. The fatigue strength ranking from high to low is as follows: equiaxed, bimodal, Widmanstätten, and acicular α′ martensite microstructure.

  19. Rheological and secondary structural characterization of rice flour-zein composites for noodles slit from gluten-free sheeted dough.

    Science.gov (United States)

    Jeong, Sungmin; Kim, Hee Won; Lee, Suyong

    2017-04-15

    Rice flour-zein composites in a hydrated viscoelastic state were utilized to compensate for the role of wheat gluten in gluten-free sheeted dough. The use of zein above its glass transition temperature was able to form a viscoelastic protein network of non-wheat dough with rice flour. The mixing stability and development time of the rice dough were positively increased with increasing levels of zein. The protein secondary structural analysis by FTIR spectroscopy demonstrated that the rice doughs with high levels of zein showed significant increases in β-sheet structures whose intensity was almost doubled by the use of 10% zein. The use of zein at more than 5% (w/w) successfully produced gluten-free dough sheets that could be slit into thin and long noodle strands. In addition, the composites were effective in improving the rheological characteristics of gluten-free noodle strands by increasing their maximum force to extension, compared to wheat-based noodles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Possibility of the vortex-antivortex transition temperature of a thin-film superconductor being renormalized by disorder

    International Nuclear Information System (INIS)

    Hebard, A.F.; Kotliar, G.

    1989-01-01

    The universal relation between the Kosterlitz-Thouless transition temperature T/sub c/ and the superfluid sheet density of thin-film superconductors with mean-field transition temperature T/sub c/ 0 results in a monotonically decreasing dependence of the ratio T/sub c//T/sub c0/ on the normal-state sheet resistance R/sub n/. Ambiguity in the experimental definition of R/sub n/ in highly disordered thin-film superconductors is addressed by reexamining previously published data on amorphous composite In/InO/sub x/ films. Arguments are presented in favor of using the zero-temperature value of R/sub n/, a quantity obtained by extrapolation. The dependence of T/sub c//T/sub c0/ on R/sub n/ that results from such a choice is in agreement with theory for dirty superconductors and thus suggests that additional corrections to T/sub c/ in the presence of extreme disorder are not required

  1. On-Orbit Demonstration of a Lithium-Ion Capacitor and Thin-Film Multijunction Solar Cells

    Science.gov (United States)

    Kukita, Akio; Takahashi, Masato; Shimazaki, Kazunori; Kobayashi, Yuki; Sakai, Tomohiko; Toyota, Hiroyuki; Takahashi, Yu; Murashima, Mio; Uno, Masatoshi; Imaizumi, Mitsuru

    2014-08-01

    This paper describes an on-orbit demonstration of the Next-generation Small Satellite Instrument for Electric power systems (NESSIE) on which an aluminum- laminated lithium-ion capacitor (LIC) and a lightweight solar panel called KKM-PNL, which has space solar sheets using thin-film multijunction solar cells, were installed. The flight data examined in this paper covers a period of 143 days from launch. We verified the integrity of an LIC constructed using a simple and lightweight mounting method: no significant capacitance reduction was observed. We also confirmed that inverted metamorphic multijunction triple-junction thin-film solar cells used for evaluation were healthy at 143 days after launch, because their degradation almost matched the degradation predictions for dual-junction thin-film solar cells.

  2. Automobile sheet metal part production with incremental sheet forming

    Directory of Open Access Journals (Sweden)

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  3. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jessica S. [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States); Schlenoff, Joseph B. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Keller, Thomas C.S., E-mail: tkeller@bio.fsu.edu [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States)

    2016-08-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  4. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    International Nuclear Information System (INIS)

    Martinez, Jessica S.; Schlenoff, Joseph B.; Keller, Thomas C.S.

    2016-01-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  5. Electric field dependence of excess electrical conductivity below transition temperature in thin superconducting lead films

    Energy Technology Data Exchange (ETDEWEB)

    Ashwini Kumar, P K; Duggal, V P [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-01-26

    Results of measurements of the electric field dependence of the excess electrical conductivity are reported in thin superconducting lead films below the transition temperature. It is observed that the normal state sheet resistance has some effect on the nonlinearity but the theory of Yamaji still fits well to the experimental data.

  6. Stresses, fatigue and fracture analysis in the tube sheets

    International Nuclear Information System (INIS)

    Billon, F.

    1986-05-01

    The purpose of the present work is to study the behaviour of the nuclear PWR steam generator tube sheet. But the methods developed in this field can easily be generalized in order to study tube sheets from any other type of heat exchangers. The aim of the stress analysis of these sheets is to verify their correct design, to quantify the risk of fatigue damage in the areas submitted to a high stress concentration and through the fracture mechanic, to make sure there is no risk of fast fracture resulting from initiated or pre-existing defects. This analysis necessarily relates to the calculation of stresses in all parts of the multidrilled area, mainly around the holes where they are concentrated. However the tube sheets are so complexe structures that their direct modelization cannot be envisaged within the context of the finite element method. We then must refer to the concept of equivalent medium in order to calculate the nominal stresses. Then using the stresses multiple fonctions appropriate to the net geometry, we can calculate the actual stresses concentrated around the holes. The method depends on the behaviour of the elementary volume which represents the behaviour of the multidrilled medium. This approach must allow to correctly take account of the ''thermal skin effect'', which is a phenomenon particular to the tube sheets with thermal loads. It must as well be generalized in order to analyse the irregular ligaments which affect the periodical stresses distribution and locally overconcentrate them [fr

  7. Structural and electrical properties of CuAlMo thin films prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Birkett, Martin, E-mail: martin.birkett@northumbria.ac.uk; Penlington, Roger; Wan, Chaoying; Zoppi, Guillaume

    2013-07-01

    The structural and electrical properties of a low resistivity CuAlMo thin film resistor material were investigated. The thin films were grown on Al{sub 2}O{sub 3} and glass substrates by direct current (dc) magnetron sputtering. The key electrical properties of sheet resistance, temperature coefficient of resistance (TCR) and resistance stability were investigated as a function of sputtering pressure and post-deposition heat treatment time and temperature. A low sputtering pressure range of 0.13 to 0.40 Pa produced CuAlMo films with sheet resistance in the range 0.1 to 0.2 Ω/□ and resistance stability of 0.45 to 0.65% with a TCR of − 90 ppm/°C which could be shifted to zero following annealing in air at 425 °C. Films grown at higher sputtering pressures of 0.53 to 0.80 Pa had increased sheet resistance in the range 0.4 to 0.6 Ω/□ and inferior stability of 0.8 to 1.7% with a more negative TCR of − 110 to − 180 ppm/°C which could not be shifted to zero following annealing. The stability of the films grown at 0.13 and 0.40 Pa could be further improved to < 0.25% with heat treatment, due to the formation of a protective aluminium oxide layer. A minimum dwell time of 3 h at 425 °C was required to stabilise the films and set the electrical properties. - Highlights: • Thin films of copper–aluminium–molybdenum were sputtered on alumina substrates. • Film properties were investigated with variation in process conditions. • Low sputtering pressure gave improved electrical performance. • Post deposition annealing in air further improved electrical performance.

  8. Structural and electrical properties of CuAlMo thin films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Birkett, Martin; Penlington, Roger; Wan, Chaoying; Zoppi, Guillaume

    2013-01-01

    The structural and electrical properties of a low resistivity CuAlMo thin film resistor material were investigated. The thin films were grown on Al 2 O 3 and glass substrates by direct current (dc) magnetron sputtering. The key electrical properties of sheet resistance, temperature coefficient of resistance (TCR) and resistance stability were investigated as a function of sputtering pressure and post-deposition heat treatment time and temperature. A low sputtering pressure range of 0.13 to 0.40 Pa produced CuAlMo films with sheet resistance in the range 0.1 to 0.2 Ω/□ and resistance stability of 0.45 to 0.65% with a TCR of − 90 ppm/°C which could be shifted to zero following annealing in air at 425 °C. Films grown at higher sputtering pressures of 0.53 to 0.80 Pa had increased sheet resistance in the range 0.4 to 0.6 Ω/□ and inferior stability of 0.8 to 1.7% with a more negative TCR of − 110 to − 180 ppm/°C which could not be shifted to zero following annealing. The stability of the films grown at 0.13 and 0.40 Pa could be further improved to < 0.25% with heat treatment, due to the formation of a protective aluminium oxide layer. A minimum dwell time of 3 h at 425 °C was required to stabilise the films and set the electrical properties. - Highlights: • Thin films of copper–aluminium–molybdenum were sputtered on alumina substrates. • Film properties were investigated with variation in process conditions. • Low sputtering pressure gave improved electrical performance. • Post deposition annealing in air further improved electrical performance

  9. Effects of concentration of reduced graphene oxide on properties of sol–gel prepared Al-doped zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ching-Tian; Wang, Fang-Hsing, E-mail: fansen@dragon.nchu.edu.tw; Chen, Wei-Chun

    2016-04-30

    Reduced-graphene-oxide-incorporated aluminum-doped zinc oxide (AZO:rGO) composite thin films were synthesized on glass substrates by using the sol–gel method. The effect of the rGO concentration (0–3 wt%) on structural, electrical, and optical properties of the composite film was investigated by X-ray diffraction, scanning electron microscopy, atomic force microscopy, Hall-effect measurement, and ultraviolet–visible spectrometry. All of the composite films showed a typical hexagonal wurtzite structure, and the films incorporated with 1 wt% rGO showed the highest (0 0 2) peak intensity. The sheet resistance of the films was effectively reduced by a factor of more than two as the rGO ratio increased from 0 to 1 wt%. However, the sheet resistance increased with a further increase in the rGO ratio. The optical transmittance of the composite film monotonically decreased with increasing the rGO ratio from 0 to 3 wt%. The average optical transmittance (400–700 nm) of the AZO:rGO thin film within 1 wt% rGO was above 81%. - Highlights: • Reduced-graphene-oxide-doped ZnO:Al composite films are synthesized by sol–gel. • All AZO:rGO thin films show a typical hexagonal wurtzite structure. • Sheet resistance of AZO:rGO(1 wt%) film decreases by a factor of more than two. • The average visible transmittance of the AZO:rGO(1 wt%) film was 81%.

  10. Laser-assisted micro sheet forming

    Science.gov (United States)

    Holtkamp, Jens; Gillner, Arnold

    2008-01-01

    The fast growing market for micro technical products requires parts with increasing complexity. While sheet metal forming enables low cost mass production with short cycle times, it is limited by the maximum degree of deformation and the quality of the cut edge. The technology of warm forming partially eliminates these deficiencies. This operation takes place at elevated temperatures before structural transformation is initiated. It combines characteristic advantages of traditional cold and hot forming processes. Lasers as heat sources provide a high, selective and controllable energy input. The general difficulty of a uniform temperature distribution during the heating process can be reached by using an Axicon which generates an annulus on the sheet metal surface. The temperature of the workpiece, measured by a pyrometer, is tuned by a PI-Controller. A tool incorporating a multistage operation die is used for the manufacturing of up to three parts at the same time. The tool is integrated into a hydraulical press. A gearwheel made of the magnesium alloy AZ31 is chosen as metal demonstrator. The quality of these punched parts could be significantly improved at elevated temperatures

  11. The evolution of the Antarctic ice sheet at the Eocene-Oligocene Transition.

    Science.gov (United States)

    Ladant, Jean-Baptiste; Donnadieu, Yannick; Dumas, Christophe

    2017-04-01

    An increasing number of studies suggest that the Middle to Late Eocene has witnessed the waxing and waning of relatively small ephemeral ice sheets. These alternating episodes culminated in the Eocene-Oligocene transition (34 - 33.5 Ma) during which a sudden and massive glaciation occurred over Antarctica. Data studies have demonstrated that this glacial event is constituted of two 50 kyr-long steps, the first of modest (10 - 30 m of equivalent sea level) and the second of major (50 - 90 m esl) glacial amplitude, and separated by 200 kyrs. Since a decade, modeling studies have put forward the primary role of CO2 in the initiation of this glaciation, in doing so marginalizing the original "gateway hypothesis". Here, we investigate the impacts of CO2 and orbital parameters on the evolution of the ice sheet during the 500 kyrs of the EO transition using a tri-dimensional interpolation method. The latter allows precise orbital variations, CO2 evolution and ice sheet feedbacks (including the albedo) to be accounted for. Our results show that orbital variations are instrumental in initiating the first step of the EO glaciation but that the primary driver of the major second step is the atmospheric pCO2 crossing a modelled glacial threshold of 900 ppm. Although model-dependant, this higher glacial threshold makes a stronger case for ephemeral Middle-Late Eocene ice sheets. In addition, sensitivity tests demonstrate that the small first step only exists if the absolute pCO2 value remains within 100 ppm higher than the glacial threshold during the first 250 kyrs of the transition. Thereby, the pCO2 sufficiently counterbalances the strong insolation minima occurring at 33.9 and 33.8 Ma but is low enough to allow the ice sheet to nucleate. Nevertheless, questions remain as to what may cause this pCO2 drop.

  12. TURBULENT DYNAMICS IN SOLAR FLARE SHEET STRUCTURES MEASURED WITH LOCAL CORRELATION TRACKING

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D. E., E-mail: mckenzie@physics.montana.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840 (United States)

    2013-03-20

    High-resolution observations of the Sun's corona in extreme ultraviolet and soft X-rays have revealed a new world of complexity in the sheet-like structures connecting coronal mass ejections (CMEs) to the post-eruption flare arcades. This article presents initial findings from an exploration of dynamic flows in two flares observed with Hinode/XRT and SDO/AIA. The flows are observed in the hot ({approx}> 10 MK) plasma above the post-eruption arcades and measured with local correlation tracking. The observations demonstrate significant shears in velocity, giving the appearance of vortices and stagnations. Plasma diagnostics indicate that the plasma {beta} exceeds unity in at least one of the studied events, suggesting that the coronal magnetic fields may be significantly affected by the turbulent flows. Although reconnection models of eruptive flares tend to predict a macroscopic current sheet in the region between the CME and the flare arcade, it is not yet clear whether the observed sheet-like structures are identifiable as the current sheets or 'thermal halos' surrounding the current sheets. Regardless, the relationship between the turbulent motions and the embedded magnetic field is likely to be complicated, involving dynamic fluid processes that produce small length scales in the current sheet. Such processes may be crucial for triggering, accelerating, and/or prolonging reconnection in the corona.

  13. 76 FR 27005 - Polyethylene Terephthalate Film, Sheet, and Strip From the Republic of Korea: Initiation and...

    Science.gov (United States)

    2011-05-10

    ... typically examines several factors including, but not limited to: (1) Management; (2) production facilities; (3) supplier relationships; and (4) customer base. See Brass Sheet and Strip from Canada: Final... Saehan to TAMK resulted in little or no change in management, production facilities, supplier...

  14. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction

    Science.gov (United States)

    Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk

    2018-03-01

    This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.

  15. Transparent conductive Ta2O5-codoped ITO thin films prepared by different heating process

    International Nuclear Information System (INIS)

    Zhang, B.; Dong, X.P.; Wu, J.S.; Xu, X.F.

    2008-01-01

    Tantalum-doped indium tin oxide thin films were deposited by a cosputtering technique with an ITO target and a Ta 2 O 5 target. The variations of microstructure, electrical and optical properties with substrate temperature and annealing temperature were investigated in some detail. Ta-doped ITO thin films showed better crystalline structure with different prominent plane orientation by different heating process. ITO:Ta thin films deposited at room temperature showed better optical and electrical properties. Increasing substrate temperature and reasonable annealing temperature could remarkably improve the optical and electrical properties of the films. The variation of carrier concentration had an important influence on near-IR reflection, near-UV absorption and optical bandgap. ITO:Ta thin films showed wider optical bandgap. ITO:Ta thin films under the optimum parameters had a sheet resistance of 10-20 and ohm;/sq and a transmittance of 85% with an optical bandgap of above 4.0 eV. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Three-dimensional, nonlinear evolution of the Rayleigh--Taylor instability of a thin layer

    International Nuclear Information System (INIS)

    Manheimer, W.; Colombant, D.; Ott, E.

    1984-01-01

    A numerical simulation scheme is developed to examine the nonlinear evolution of the Rayleigh--Taylor instability of a thin sheet in three dimensions. It is shown that the erosion of mass at the top of the bubble is approximately as described by two-dimensional simulations. However, mass is lost into spikes more slowly in three-dimensional than in two-dimensional simulations

  17. Indium-tin-oxide thin film deposited by a dual ion beam assisted e-beam evaporation system

    International Nuclear Information System (INIS)

    Bae, J.W.; Kim, J.S.; Yeom, G.Y.

    2001-01-01

    Indium-tin-oxide (ITO) thin films were deposited on polycarbonate (PC) substrates at low temperatures (<90 deg. C) by a dual ion beam assisted e-beam evaporation system, where one gun (gun 1) is facing ITO flux and the other gun (gun 2) is facing the substrate. In this experiment, effects of rf power and oxygen flow rate of ion gun 2 on the electrical and optical properties of depositing ITO thin films were investigated. At optimal deposition conditions, ITO thin films deposited on the PC substrates larger than 20 cmx20 cm showed the sheet resistance of less than 40 Ω/sq., the optical transmittance of above 90%, and the uniformity of about 5%

  18. A Novel 2D Porous Print Fabric-like α-Fe_2O_3 Sheet with High Performance as the Anode Material for Lithium-ion Battery

    International Nuclear Information System (INIS)

    Zhang, Suyue; Zhang, Peigen; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Shen, Yuhua

    2016-01-01

    Anode materials are very crucial in lithium ion batteries. Exploring the simple and low cost production of anodes with excellent electrochemical performance remains a great challenge. Here, we used natural flower spikes of Typha orientalis as the bio-templates and organizers to prepare a novel two-dimensional (2D) porous print fabric-like α-Fe_2O_3 sheet with thickness of about 30 nm. The prepared large-area sheets were orderly assembled by many nanosheets or nanoparticles, and two kinds of pore structures, such as pores with average diameter of about 50 nm or pore channels with aspect ratio of ca. 4, presented between adjacent nanosheets. The pre-treatment by ammonium for flower spikes has a great effect on the microstructure and electrochemical performance of the products. As the anode material for lithium ion battery (LIB), the as-obtained porous print fabric-like α-Fe_2O_3 sheets show an initial discharge capacity of 2264 mA h g"−"1 and the specific capacity of 1028 mA h g"−"1 after 100 cycles at a current density of 500 mA g"−"1, which is higher than the theoretical capacity of α-Fe_2O_3 (1007 mA h g"−"1). This highly reversible capacity is attributed to the very thin large-area sheet structure, and many pores or pore channels among the interconnected nanosheets, which could increase lithium-ion mobility, facilitate the transport of electrons and shorten the distance for Li"+ diffusion, and also buffer large volume changes of the anodes during lithium insertion and extraction at the same time. The synthesis process is very simple, providing a low-cost production approach toward high-performance energy storage materials.

  19. Functionalized graphene sheet-Poly(vinylidene fluoride) conductive nanocomposites

    KAUST Repository

    Ansari, Seema

    2009-05-01

    PVDF nanocomposites based on functionalized graphene sheets, FGS prepared from graphite oxide, and exfoliated graphite, EG, were prepared by solution processing and compression molding. FGS remains well dispersed in the PVDF composites as evidenced by the lack of the characteristic graphite reflection in the composites. Although the α-phase of PVDF is seen in the EG-based composites, a mixture of α- and β-phases is present in the FGS analogs. SEM and TEM imaging show smooth fractured surfaces with oriented platelets of graphite stacks and obvious debonding from the matrix in the EG-PVDF composites. In contrast, the FGS-PVDF composites show a wrinkled topography of relatively thin graphene sheets bonded well to the matrix. Storage modulus of the composites was increased with FGS and EG concentration. A lower percolation threshold (2 wt %) was obtained for FGSPVDF composites compared to EG-PVDF composites (above 5 wt %). Lastly, the FGS-PVDF composites show an unusual resistance/temperature behavior. The resistance decreases with temperature, indicating an NTC behavior, whereas EG-PVDF composites show a PTC behavior (e.g., the resistance increases with temperature). We attribute the NTC behavior of the FGS based composites to the higher aspect ratio of FGS which leads to contact resistance predominating over tunneling resistance. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 888-897, 2009.

  20. Study of toughening mechanisms through the observations of crack propagation in nanostructured and layered metallic sheet

    International Nuclear Information System (INIS)

    Chen, A.Y.; Li, D.F.; Zhang, J.B.; Liu, F.; Liu, X.R.; Lu, J.

    2011-01-01

    Highlights: → A nanostructured and layered steel exhibits high strength and large ductility. → The excellent combination originates from a multiple interlaminar cracking. → The initiation and propagation of cracks are controlled by three aspects. → The cracks are deflected by interface and arrested by compressive residual stress. → Finally, the cracks are blunted by the graded grain size distribution. - Abstract: A layered and nanostructured (LN) 304 SS sheet was produced by combination of surface mechanical attrition treatment (SMAT) with warm co-rolling. The microstructure of LN sheet is characterized by a periodic distribution of nanocrystalline layers and micron-grained layers with a graded transition of grain size. Tensile test results show that exceptional properties of high yield strength and large elongation to fracture are achieved. A multiple interlaminar cracking was observed by scanning electron microscopy, which is induced by repeated crack initiation and propagation. The toughening mechanisms of the LN sheet are proposed to be controlling the crack propagation path by several strategies. The main cracks initiating at interface defects are arrested by large compressive residual stress, deflected by weak interface bonding and blunted by the graded grain size distribution.

  1. A study of dynamic resistance during small scale resistance spot welding of thin Ni sheets

    International Nuclear Information System (INIS)

    Tan, W; Zhou, Y; Kerr, H W; Lawson, S

    2004-01-01

    The dynamic resistance has been investigated during small scale resistance spot welding (SSRSW) of Ni sheets. Electrical measurements have been correlated with scanning electron microscope images of joint development. The results show that the dynamic resistance curve can be divided into the following stages based on physical change in the workpieces: asperity heating, surface breakdown, asperity softening, partial surface melting, nugget growth and expulsion. These results are also compared and contrasted with dynamic resistance behaviour in large scale RSW

  2. Antarctic Ice-Sheet Mass Balance from Satellite Altimetry 1992 to 2001

    Science.gov (United States)

    Zwally, H. Jay; Brenner, Anita C.; Cornejo, Helen; Giovinetto, Mario; Saba, Jack L.; Yi, Donghui

    2003-01-01

    A major uncertainty in understanding the causes of the current rate of sea level rise is the potential contributions from mass imbalances of the Greenland and Antarctic ice sheets. Estimates of the current mass balance of the Antarctic ice sheet are derived from surface- elevation changes obtained from 9 years of ERS - 1 & 2 radar altimeter data. Elevation time-series are created from altimeter crossovers among 90-day data periods on a 50 km grid to 81.5 S. The time series are fit with a multivariate linear/sinusoidal function to give the average rate of elevation change (dH/dt). On the major Rome-Filchner, Ross, and Amery ice shelves, the W d t are small or near zero. In contrast, the ice shelves of the Antarctic Peninsula and along the West Antarctic coast appear to be thinning significantly, with a 23 +/- 3 cm per year surface elevation decrease on the Larsen ice shelf and a 65 +/- 4 cm per year decrease on the Dotson ice shelf. On the grounded ice, significant elevation decreases are obtained over most of the drainage basins of the Pine Island and Thwaites glaciers in West Antarctica and inland of Law Dome in East Antarctica. Significant elevation increases are observed within about 200 km of the coast around much of the rest of the ice sheet. Farther inland, the changes are a mixed pattern of increases and decreases with increases of a few centimeters per year at the highest elevations of the East Antarctic plateau. The derived elevation changes are combined with estimates of the bedrock uplift from several models to provide maps of ice thickness change. The ice thickness changes enable estimates of the ice mass balances for the major drainage basins, the overall mass balance, and the current contribution of the ice sheet to global sea level change.

  3. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Directory of Open Access Journals (Sweden)

    Yoshitaka Maeda

    2017-05-01

    Full Text Available In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D magnetic properties (properties under the arbitrary alternating and the rotating flux conditions of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  4. Best Management Practice, Fact Sheet 2. Sheet Flow to Open Space

    OpenAIRE

    Sample, David; Doumar, Lia

    2013-01-01

    This publication explains what sheet flow to open space is, where and how it is used, their limitations, routine and nonroutine maintenance, expected costs, and a glossary of terms. This fact sheet is one of a 15-part series on urban stormwater management practices.

  5. 75 FR 10758 - Polyethylene Terephthalate Film, Sheet and Strip from India: Initiation of Antidumping Duty and...

    Science.gov (United States)

    2010-03-09

    ..., Sheet and Strip (PET Film) from India. The Department determines that these requests are sufficient to... CONTACT: Elfi Blum or Mark Hoadley, AD/CVD Operations, Office 6, Import Administration, International...: Background The notice announcing the antidumping duty order on PET Film from India was published on July 1...

  6. Direct Laser Writing of Single-Material Sheets with Programmable Self-Rolling Capability

    Science.gov (United States)

    Bauhofer, Anton; KröDel, Sebastian; Bilal, Osama; Daraio, Chiara; Constantinescu, Andrei

    Direct laser writing, a sub-class of two-photon polymerization, facilitates 3D-printing of single-material microstructures with inherent residual stresses. Here we show that controlled distribution of these stresses allows for fast and cost-effective fabrication of structures with programmable self-rolling capability. We investigate 2D sheets that evolve into versatile 3D structures. Precise control over the shape morphing potential is acquired through variations in geometry and writing parameters. Effects of capillary action and gravity were shown to be relevant for very thin sheets (thickness 1.5um) are dominated by residual stresses and adhesion forces. The presented structures create local tensions up to 180MPa, causing rolling curvatures of 25E3m-1. A comprehensive analytical model that captures the relevant influence factors was developed based on laminate plate theory. The predicted curvature and directionality correspond well with the experimentally obtained data. Potential applications are found in drug encapsulation and particle traps for emulsions with differing surface energies. This work was supported by the Swiss National Science Foundation.

  7. Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism

    International Nuclear Information System (INIS)

    Lostak, Thomas; Maljusch, Artjom; Klink, Björn; Krebs, Stefan; Kimpel, Matthias; Flock, Jörg; Schulz, Stephan; Schuhmann, Wolfgang

    2014-01-01

    Zr-based conversion layers are considered as environmentally friendly alternatives replacing trication phosphatation in the automotive industry. Based on excellent electronic barrier properties they provide an effective corrosion protection of the metallic substrate. In this work, thin protective layers were grown on novel Zn-Al-Mg alloy coated steel sheets by increasing the local pH-value at the sample surface leading to deposition of a Zr-based conversion layer. For this purpose Zn-Al-Mg alloy (ZM) coated steel sheets were treated in an aqueous model conversion solution containing well-defined amounts of hexafluorozirconic acid (H 2 ZrF 6 ) and characterized after different immersion times with SKPFM and field emission SEM (FE-SEM)/EDX techniques. A deposition mechanism of Zr-based conversion coatings on microstructural heterogeneous Zn-Al-Mg alloy surfaces was proposed

  8. Reaction of Tri-methylaluminum on Si (001) Surface for Initial Aluminum Oxide Thin-Film Growth

    International Nuclear Information System (INIS)

    Kim, Dae Hee; Kim, Dae Hyun; Jeong, Yong Chan; Seo, Hwa Il; Kim, Yeong Cheol

    2010-01-01

    We studied the reaction of tri-methylaluminum (TMA) on hydroxyl (OH)-terminated Si (001) surfaces for the initial growth of aluminum oxide thin-films using density functional theory. TMA was adsorbed on the oxygen atom of OH due to the oxygen atom's lone pair electrons. The adsorbed TMA reacted with the hydrogen atom of OH to produce a di-methylaluminum group (DMA) and methane with an energy barrier of 0.50 eV. Low energy barriers in the range of 0 - 0.11 eV were required for DMA migration to the inter-dimer, intra-dimer, and inter-row sites on the surface. A unimethylaluminum group (UMA) was generated at each site with low energy barriers in the range of 0.21 - 0.25 eV. Among the three sites, the inter-dimer site was the most probable for UMA formation

  9. Microplasma light tiles: thin sheet lamps for general illumination

    Energy Technology Data Exchange (ETDEWEB)

    Eden, J G; Park, S-J [Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); Herring, C M; Bulson, J M [Eden Park Illumination, 903 North Country Fair Drive, Champaign, IL 61821 (United States)

    2011-06-08

    Flat, thin and lightweight lamps providing spatially uniform and dimmable illumination from active areas as large as 400 cm{sup 2} are being developed for general illumination and specialty applications. Comprising an array of low-temperature, nonequilibrium microplasmas driven by a dielectric barrier structure and operating at pressures of typically 400-700 Torr, these lamps have a packaged thickness <4 mm and yet produce luminance values beyond 26 000 cd m{sup -2} with a luminous efficacy approaching 30 lm W{sup -1}. Third generation lamps, presently in limited production, offer a correlated colour temperature in the 3000-4100 K interval and a colour rendering index of 80. Current lamps employ Xe{sub 2} ({lambda} {approx} 172 nm) as the primary emitter photoexciting a mixture of phosphors, and the pressure dependence of the wavelength-integrated fluorescence from the electronically excited dimer has been investigated with a vacuum ultraviolet spectrometer. In contrast to other promising lighting technologies, the decline in luminous efficacy of microplasma lamps with increasing power delivered to the lamp is small. For a 6 x 6 inch{sup 2} ({approx}225 cm{sup 2}) lamp, efficacy falls <16% when the radiant output (luminance) is raised from 2000 cd m{sup -2} to > 10 000 cd m{sup -2}.

  10. Optimizing the Parameters in Heat Treatment for Achieving High Hardness and Efficient Bending of Thin BS 2014 Aluminium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Abirami Priyadarshini B.

    2016-05-01

    Full Text Available The present work targets in setting a standard heat treatment procedure for obtaining high hardness values of the order of 80 HRB in BS 2014 aluminium alloy sheets of 2mm thick commonly used in aerospace industries. A hardness range of 60HRB to 72HRB is possible in low thickness sheets as stated in the standard BS EN 485-2:2013. Experiments were performed to achieve higher hardness values by controlling the heat treatment temperatures thereby understanding the ageing mechanism of the Al-Cu alloy to a wider extent. The validated process sequence in turn resulted in complications where bending of the sheets resulted in cracking. Further investigation was performed and it was found that the BS 2014 alloy has to be bent within two hours of solution annealing in order to have an efficient bending. The results showed that the natural ageing is so rapid in this alloy, which strengthens the material so quickly by the formation of CuAl2 precipitates, thereby, demanding the bending procedure to be performed before the growth of precipitates becomes dominant.

  11. Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery.

    Science.gov (United States)

    Awara, Kousuke; Kitai, Ryuhei; Isozaki, Makoto; Neishi, Hiroyuki; Kikuta, Kenichiro; Fushisato, Naoki; Kawamoto, Akira

    2014-12-15

    Intraoperative morphological and functional monitoring is essential for safe neurosurgery. Functional monitoring is based on electroencephalography (EEG), which uses silver electrodes. However, these electrodes generate metal artifacts as silver blocks X-rays, creating white radial lines on computed tomography (CT) images during surgery. Thick electrodes interfere with surgical procedures. Thus, thinner and lighter electrodes are ideal for intraoperative use. The authors developed thin brain electrodes using carbon nanotubes that were formed into thin sheets and connected to electrical wires. The nanotube sheets were soft and fitted the curve of the head very well. When attached to the head using paste, the impedance of the newly developed electrodes was 5 kΩ or lower, which was similar to that of conventional metal electrodes. These electrodes can be used in combination with intraoperative CT, magnetic resonance imaging (MRI), or cerebral angiography. Somatosensory-evoked potentials, auditory brainstem responses, and visually evoked potentials were clearly identified in ten volunteers. The electrodes, without any artifacts that distort images, did not interfere with X-rays, CT, or MR images. They also did not cause skin damage. Carbon nanotube electrodes may be ideal for neurosurgery.

  12. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    Science.gov (United States)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-05-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  13. Thin Film Solar Cells and their Optical Properties

    Directory of Open Access Journals (Sweden)

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  14. Wearable strain sensors based on thin graphite films for human activity monitoring

    Science.gov (United States)

    Saito, Takanari; Kihara, Yusuke; Shirakashi, Jun-ichi

    2017-12-01

    Wearable health-monitoring devices have attracted increasing attention in disease diagnosis and health assessment. In many cases, such devices have been prepared by complicated multistep procedures which result in the waste of materials and require expensive facilities. In this study, we focused on pyrolytic graphite sheet (PGS), which is a low-cost, simple, and flexible material, used as wearable devices for monitoring human activity. We investigated wearable devices based on PGSs for the observation of elbow and finger motions. The thin graphite films were fabricated by cutting small films from PGSs. The wearable devices were then made from the thin graphite films assembled on a commercially available rubber glove. The human motions could be observed using the wearable devices. Therefore, these results suggested that the wearable devices based on thin graphite films may broaden their application in cost-effective wearable electronics for the observation of human activity.

  15. Thermally Induced Alpha-Helix to Beta-Sheet Transition in Regenerated Silk Fibers and Films

    Energy Technology Data Exchange (ETDEWEB)

    Drummy,L.; Phillips, D.; Stone, M.; Farmer, B.; Naik, R.

    2005-01-01

    The structure of thin films cast from regenerated solutions of Bombyx mori cocoon silk in hexafluoroisopropyl alcohol (HFIP) was studied by synchrotron X-ray diffraction during heating. A solid-state conformational transition from an alpha-helical structure to the well-known beta-sheet silk II structure occurred at a temperature of approximately 140 degrees C. The transition appeared to be homogeneous, as both phases do not coexist within the resolution of the current study. Modulated differential scanning calorimetry (DSC) of the films showed an endothermic melting peak followed by an exothermic crystallization peak, both occurring near 140 degrees C. Oriented fibers were also produced that displayed this helical molecular conformation. Subsequent heating above the structural transition temperature produced oriented beta-sheet fibers very similar in structure to B. mori cocoon fibers. Heat treatment of silk films at temperatures well below their degradation temperature offers a controllable route to materials with well-defined structures and mechanical behavior.

  16. Systems Integration Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstration projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.

  17. Mechanics analysis of axisymmetric thin-walled part in warm sheet hydroforming

    Directory of Open Access Journals (Sweden)

    Yang Xiying

    2015-10-01

    Full Text Available To obtain the influence of fluid pressure and temperature on warm hydroforming of 5A06-O aluminum alloy sheet, the unified mechanics equilibrium equations, which take through-thickness normal stress and friction into account, were established in spherical coordinate system. The distribution of through-thickness normal stress in the thickness direction was determined. The relation between through-thickness normal stress and fluid pressure was also analyzed in different regions of cylindrical cup. Based on the method of subtracting one increasing function from another, the constitutive equation of 5A06-O applied to warm hydroforming was established and in a good agreement with uniaxial tensile data. Based on whether the thickness variation was taken into account, two mechanic models were established to do the comparative study. The results for the studied case show that the calculated stress values are pretty close according to the two models and consistent with results of finite element analysis; the thickness distribution in flange computed by the second model conforms to the experimental data. Finally, the influences of fluid pressure on the flange thickness and radial stress were analyzed.

  18. Molecular dynamics simulation about porous thin-film growth in secondary deposition

    International Nuclear Information System (INIS)

    Chen Huawei; Tieu, A. Kiet; Liu Qiang; Hagiwara, Ichiro; Lu Cheng

    2007-01-01

    The thin film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin film at short time as gas fluids through surface of substrate. In order to grow condensed thin film using series of cluster deposition, the effect of initial velocity, substrate temperature and density of clusters on property of deposited thin film, especially appearance of nanoscale pores inside thin film must be investigated. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000 and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. We have clarified that adhesion between clusters and substrate is greatly influenced by initial velocity. As a result, the exfoliation pattern of deposited thin film is dependent on initial velocity and different between them. One borderline dividing whole region into porous region and nonporous region are obtained to show the effect of growth conditions on appearance of nanoscale pores inside thin film. Moreover, we have also shown that the likelihood of porous thin film is dependent on the point of impact of a cluster relative to previously deposited clusters

  19. Molecular dynamics simulation about porous thin-film growth in secondary deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huawei [School of Mechanical Engineering and Automation, Beihang University, No. 37 Xuyuan Road, Haidian District, Beijing (China) and Mechanical Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, NSW 2522 (Australia)]. E-mail: chen_hua_wei@yahoo.com; Tieu, A. Kiet [Mechanical Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, NSW 2522 (Australia); Liu Qiang [School of Mechanical Engineering and Automation, Beihang University, No. 37 Xuyuan Road, Haidian District, Beijing (China); Hagiwara, Ichiro [Department of Mechanical Sciences and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo (Japan); Lu Cheng [Mechanical Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, NSW 2522 (Australia)

    2007-07-15

    The thin film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin film at short time as gas fluids through surface of substrate. In order to grow condensed thin film using series of cluster deposition, the effect of initial velocity, substrate temperature and density of clusters on property of deposited thin film, especially appearance of nanoscale pores inside thin film must be investigated. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000 and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. We have clarified that adhesion between clusters and substrate is greatly influenced by initial velocity. As a result, the exfoliation pattern of deposited thin film is dependent on initial velocity and different between them. One borderline dividing whole region into porous region and nonporous region are obtained to show the effect of growth conditions on appearance of nanoscale pores inside thin film. Moreover, we have also shown that the likelihood of porous thin film is dependent on the point of impact of a cluster relative to previously deposited clusters.

  20. MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING

    Directory of Open Access Journals (Sweden)

    HYUN-GIL KIM

    2014-08-01

    Full Text Available The surface modification of engineering materials by laser beam scanning (LBS allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and Y2O3 particles of 10 μm were selected for ODS treatment using LBS. Through the LBS method, the Y2O3 particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at 500°C was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive Y2O3 particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.

  1. Synthesis of high quality graphene on capped (1 1 1) Cu thin films obtained by high temperature secondary grain growth on c-plane sapphire substrates

    Science.gov (United States)

    Kim, Youngwoo; Moyen, Eric; Yi, Hemian; Avila, José; Chen, Chaoyu; Asensio, Maria C.; Lee, Young Hee; Pribat, Didier

    2018-07-01

    We propose a novel growth technique, in which graphene is synthesized on capped Cu thin films deposited on c-plane sapphire. The cap is another sapphire plate which is just laid upon the Cu thin film, in direct contact with it. Thanks to this ‘contact cap’, Cu evaporation can be suppressed at high temperature and the 400 nm-thick Cu films can be annealed above 1000 °C, resulting in (1 1 1)-oriented grains of millimeter size. Following this high temperature annealing, graphene is grown by chemical vapor deposition during the same pump-down operation, without removing the contact cap. The orientation and doping type of the as-grown graphene were first studied, using low energy electron diffraction, as well as high resolution angle-resolved photoemission spectroscopy. In particular, the orientation relationships between the graphene and copper thin film with respect to the sapphire substrate were precisely determined. We find that the graphene sheets exhibit a minimal rotational disorder, with ~90% of the grains aligned along the copper high symmetry direction. Detailed transport measurements were also performed using field-effect transistor structures. Carrier mobility values as high as 8460 cm2 V‑1 s‑1 have been measured on top gate transistors fabricated directly on the sapphire substrate, by etching the Cu film from underneath the graphene sheets. This is by far the best carrier mobility value obtained to date for graphene sheets synthesized on a thin film-type metal substrate.

  2. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    Science.gov (United States)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests

  3. Formation and interpretation of eskers beneath retreating ice sheets

    Science.gov (United States)

    Creyts, T. T.; Hewitt, I.

    2017-12-01

    The retreat of the ice sheets during the Pleistocene left large and spectacular subglacial features exposed. Understanding these features gives us insight into how the ice sheets retreated, how meltwater influenced retreat, and can help inform our understanding of potential future rates of ice sheet retreat. Among these features, eskers, long sinuous ridges primarily composed of clastic sediments, lack a detailed explanation of how surface melt rates and ice sheet retreat rates influence their growth and spatial distribution. Here, we develop a theory for esker formation based on the initial work of Rothlisberger modified for sediment transport and inclusion of surface meltwater forcing. The primary subglacial ingredients include water flow through subglacial tunnels with the addition of mass balances for sediment transport. We show how eskers when water flow slows below a critical stress for sediment motion. This implies that eskers are deposited in a localized region near the snout of the ice sheet. Our findings suggest that very long eskers form sequentially as the ice front retreats. The position of the esker follows the path of the channel mouth through time, which does not necessarily coincide with the instantaneous route of the feeding channel. However, in most cases, we expect those locations to be similar. The role of surface meltwater and the climatology associated with the forcing is crucial to the lateral spacing of the eskers. We predict that high surface melt rates lead to narrower catchments but that the greater extent of the ablation area means that channels are likely larger. At the same time, for a given channel size (and hence sediment flux), the size of a deposited esker depends on a margin retreat rate. Hence, the size of the eskers is related delicately to the balance between surface melt rates and margin retreat rates. We discuss how our theory can be combined with observed esker distributions to infer the relationship between these two rates

  4. Effect of strain path change on limits to ductility of anisotropic metal sheets

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2000-01-01

    of the anisotropic plasticity models, and it is shown that elastic straining plays a large role, as the stresses quickly move from one point of the yield surface to another. When the load is removed between steps, the stress point moves in a different manner, which results in quite different flow localization......Localized necking in thin metal sheets is analyzed by using the M-K-model approach, and the effect of a number of different non-proportional strain paths prior to the occurrence flow localization are considered. The analyses account for plastic anisotropy, using four different anisotropic...

  5. An evolutionary yield function based on Barlat 2000 yield function for the superconducting niobium sheet

    Science.gov (United States)

    Darbandi, Payam; Pourboghrat, Farhang

    2011-08-01

    Superconducting radio frequency (SRF) niobium cavities are widely used in high-energy physics to accelerate particle beams in particle accelerators. The performance of SRF cavities is affected by the microstructure and purity of the niobium sheet, surface quality, geometry, etc. Following optimum strain paths in the forming of these cavities can significantly control these parameters. To select these strain paths, however, information about the mechanical behavior, microstructure, and formability of the niobium sheet is required. In this study the Barlat 2000 yield function has been used as a yield function for high purity niobium. Results from this study showed that, due to intrinsic behavior, it is necessary to evolve the anisotropic coefficients of Barlat's yield function in order to properly model the plastic behavior of the niobium sheet. The accuracy of the newly developed evolutionary yield function was verified by applying it to the modeling of the hydrostatic bulging of the niobium sheet. Also, in a separate attempt crystal plasticity finite element method was use to model the behavior of the polycrystalline niobium sheet with a particular initial texture.

  6. An evolutionary yield function based on Barlat 2000 yield function for the superconducting niobium sheet

    International Nuclear Information System (INIS)

    Darbandi, Payam; Pourboghrat, Farhang

    2011-01-01

    Superconducting radio frequency (SRF) niobium cavities are widely used in high-energy physics to accelerate particle beams in particle accelerators. The performance of SRF cavities is affected by the microstructure and purity of the niobium sheet, surface quality, geometry, etc. Following optimum strain paths in the forming of these cavities can significantly control these parameters. To select these strain paths, however, information about the mechanical behavior, microstructure, and formability of the niobium sheet is required. In this study the Barlat 2000 yield function has been used as a yield function for high purity niobium. Results from this study showed that, due to intrinsic behavior, it is necessary to evolve the anisotropic coefficients of Barlat's yield function in order to properly model the plastic behavior of the niobium sheet. The accuracy of the newly developed evolutionary yield function was verified by applying it to the modeling of the hydrostatic bulging of the niobium sheet. Also, in a separate attempt crystal plasticity finite element method was use to model the behavior of the polycrystalline niobium sheet with a particular initial texture.

  7. 46 CFR 232.4 - Balance sheet accounts.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose the...

  8. Spatiotemporal Variability of Meltwater Refreezing in Southwest Greenland Ice Sheet Firn

    Science.gov (United States)

    Rennermalm, A. K.; Hock, R.; Tedesco, M.; Corti, G.; Covi, F.; Miège, C.; Kingslake, J.; Leidman, S. Z.; Munsell, S.

    2017-12-01

    A substantial fraction of the summer meltwater formed on the surface of the Greenland ice sheet is retained in firn, while the remaining portion runs to the ocean through surface and subsurface channels. Refreezing of meltwater in firn can create impenetrable ice lenses, hence being a crucial process in the redistribution of surface runoff. To quantify the impact of refreezing on runoff and current and future Greenland surface mass balance, a three year National Science Foundation funded project titled "Refreezing in the firn of the Greenland ice sheet: Spatiotemporal variability and implications for ice sheet mass balance" started this past year. Here we present an overview of the project and some initial results from the first field season in May 2017 conducted in proximity of the DYE-2 site in the percolation zone of the Southwest Greenland ice sheet at elevations between 1963 and 2355 m a.s.l.. During this fieldwork two automatic weather stations were deployed, outfitted with surface energy balance sensors and 16 m long thermistor strings, over 300 km of ground penetrating radar data were collected, and five 20-26 m deep firn cores were extracted and analyzed for density and stratigraphy. Winter snow accumulation was measured along the radar tracks. Preliminary work on the firn-core data reveals increasing frequency and thickness of ice lenses at lower ice-sheet elevations, in agreement with other recent work in the area. Data collected within this project will facilitate advances in our understanding of the spatiotemporal variability of firn refreezing and its role in the hydrology and surface mass balance of the Greenland Ice Sheet.

  9. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  10. A Meteorological Experiment in the Melting Zone of the Greenland Ice Sheet

    NARCIS (Netherlands)

    Oerlemans, J.; Vugts, H.F.

    1993-01-01

    Preliminary results are described from a glaciometeorological experiment carried out in the margin (melting zone) of the Greenland ice sheet in the summers of 1990 and 1991. This work was initiated within the framework of a Dutch research program on land ice and sea level change. Seven

  11. Sheet production apparatus for removing a crystalline sheet from the surface of a melt using gas jets located above and below the crystalline sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter L.; Thronson, Gregory D.

    2017-06-14

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  12. Hall magnetohydrodynamic effects for current sheet flapping oscillations related to the magnetic double gradient mechanism

    International Nuclear Information System (INIS)

    Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.

    2010-01-01

    Hall magnetohydrodynamic model is investigated for current sheet flapping oscillations, which implies a gradient of the normal magnetic field component. For the initial undisturbed current sheet structure, the normal magnetic field component is assumed to have a weak linear variation. The profile of the electric current velocity is described by hyperbolic functions with a maximum at the center of the current sheet. In the framework of this model, eigenfrequencies are calculated as functions of the wave number for the ''kink'' and ''sausage'' flapping wave modes. Because of the Hall effects, the flapping eigenfrequency is larger for the waves propagating along the electric current, and it is smaller for the opposite wave propagation with respect to the current. The asymmetry of the flapping wave propagation, caused by Hall effects, is pronounced stronger for thinner current sheets. This is due to the Doppler effect related to the electric current velocity.

  13. Intermittent ice sheet discharge events in northeastern North America during the last glacial period

    Energy Technology Data Exchange (ETDEWEB)

    Papa, Brian D.; Mysak, Lawrence A.; Wang, Zhaomin [McGill University, Earth System Modelling Group, Department of Atmospheric and Oceanic Sciences, Montreal, QC (Canada)

    2006-02-01

    The 3D ice sheet model of Marshall and Clarke, which includes both dynamics and thermodynamics, is used to successfully simulate millennial-scale oscillations within an ice sheet under steady external forcing. Such internal oscillations are theorized to be the main cause of quasi-periodic large-scale ice discharges known as Heinrich Events. An analysis of the mechanisms associated with multi-millennial oscillations of the Laurentide Ice Sheet, including the initiation and termination of sliding events, is performed. This analysis involves an examination of the various heat sources and sinks that affect the basal ice temperature, which in turn determines the nature of the ice sheet movement. The ice sheet thickness and surface slope, which affect the pressure-melting point and strain heating, respectively, are found to be critical for the formation and development of fast moving ice streams, which lead to large iceberg calving. Although the main provenance for Heinrich Events is thought to be from Hudson Bay and Hudson Strait, we show that the more northerly regions around Lancaster Strait and Baffin Island may also be important sources for ice discharges during the last glacial period. (orig.)

  14. Temporal variability of the Antarctic Ice sheet observed from space-based geodesy

    Science.gov (United States)

    Memin, A.; King, M. A.; Boy, J. P.; Remy, F.

    2017-12-01

    Quantifying the Antarctic Ice Sheet (AIS) mass balance still remains challenging as several processes compete to differing degrees at the basin scale with regional variations, leading to multiple mass redistribution patterns. For instance, analysis of linear trends in surface-height variations from 1992-2003 and 2002-2006 shows that the AIS is subject to decimetric scale variability over periods of a few years. Every year, snowfalls in Antarctica represent the equivalent of 6 mm of the mean sea level. Therefore, any fluctuation in precipitation can lead to changes in sea level. Besides, over the last decade, several major glaciers have been thinning at an accelerating rate. Understanding the processes that interact on the ice sheet is therefore important to precisely determine the response of the ice sheet to a rapid changing climate and estimate its contribution to sea level changes. We estimate seasonal and interannual changes of the AIS between January 2003 and October 2010 and to the end of 2016 from a combined analysis of surface-elevation and surface-mass changes derived from Envisat data and GRACE solutions, and from GRACE solutions only, respectively. While we obtain a good correlation for the interannual signal between the two techniques, important differences (in amplitude, phase, and spatial pattern) are obtained for the seasonal signal. We investigate these discrepancies by comparing the crustal motion observed by GPS and those predicted using monthly surface mass balance derived from the regional atmospheric climate model RACMO.

  15. Sensing sheet: the response of full-bridge strain sensors to thermal variations for detecting and characterizing cracks

    Science.gov (United States)

    Tung, S.-T.; Glisic, B.

    2016-12-01

    Sensing sheets based on large-area electronics consist of a dense array of unit strain sensors. This new technology has potential for becoming an effective and affordable monitoring tool that can identify, localize and quantify surface damage in structures. This research contributes to their development by investigating the response of full-bridge unit strain sensors to thermal variations. Overall, this investigation quantifies the effects of temperature on thin-film full-bridge strain sensors monitoring uncracked and cracked concrete. Additionally, an empirical formula is developed to estimate crack width given an observed strain change and a measured temperature change. This research led to the understanding of the behavior of full-bridge strain sensors installed on cracked concrete and exposed to temperature variations. It proves the concept of the sensing sheet and its suitability for application in environments with variable temperature.

  16. Statistical mechanics of microscopically thin thermalized shells

    Science.gov (United States)

    Kosmrlj, Andrej

    Recent explosion in fabrication of microscopically thin free standing structures made from graphene and other two-dimensional materials has led to a renewed interest in the mechanics of such structures in presence of thermal fluctuations. Since late 1980s it has been known that for flat solid sheets thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli in a scale-dependent fashion. However, much is still unknown about the mechanics of thermalized flat sheets of complex geometries and about the mechanics of thermalized shells with non-zero background curvature. In this talk I will present recent development in the mechanics of thermalized ribbons, spherical shells and cylindrical tubes. Long ribbons are found to behave like hybrids between flat sheets with renormalized elastic constants and semi-flexible polymers, and these results can be used to predict the mechanics of graphene kirigami structures. Contrary to the anticipated behavior for ribbons, the non-zero background curvature of shells leads to remarkable novel phenomena. In shells, thermal fluctuations effectively generate negative surface tension, which can significantly reduce the critical buckling pressure for spherical shells and the critical axial load for cylindrical tubes. For large shells this thermally generated load becomes big enough to spontaneously crush spherical shells and cylindrical tubes even in the absence of external loads. I will comment on the relevance for crushing of microscopic shells (viral capsids, bacteria, microcapsules) due to osmotic shocks and for crushing of nanotubes.

  17. Vanadium oxide thin films deposited on silicon dioxide buffer layers by magnetron sputtering

    International Nuclear Information System (INIS)

    Chen Sihai; Ma Hong; Wang Shuangbao; Shen Nan; Xiao Jing; Zhou Hao; Zhao Xiaomei; Li Yi; Yi Xinjian

    2006-01-01

    Thin films made by vanadium oxide have been obtained by direct current magnetron sputtering method on SiO 2 buffer layers. A detailed electrical and structural characterization has been performed on the deposited films by four-point probe method and scanning electron microscopy (SEM). At room temperature, the four-point probe measurement result presents the resistance of the film to be 25 kU/sheet. The temperature coefficient of resistance is - 2.0%/K. SEM image indicates that the vanadium oxide exhibits a submicrostructure with lamella size ranging from 60 nm to 300 nm. A 32 x 32-element test microbolometer was fabricated based on the deposited thin film. The infrared response testing showed that the response was 200 mV. The obtained results allow us to conclude that the vanadium oxide thin films on SiO 2 buffer layers is suitable for uncooled focal plane arrays applications

  18. Two-scale homogenization to determine effective parameters of thin metallic-structured films

    Science.gov (United States)

    Marigo, Jean-Jacques

    2016-01-01

    We present a homogenization method based on matched asymptotic expansion technique to derive effective transmission conditions of thin structured films. The method leads unambiguously to effective parameters of the interface which define jump conditions or boundary conditions at an equivalent zero thickness interface. The homogenized interface model is presented in the context of electromagnetic waves for metallic inclusions associated with Neumann or Dirichlet boundary conditions for transverse electric or transverse magnetic wave polarization. By comparison with full-wave simulations, the model is shown to be valid for thin interfaces up to thicknesses close to the wavelength. We also compare our effective conditions with the two-sided impedance conditions obtained in transmission line theory and to the so-called generalized sheet transition conditions. PMID:27616916

  19. Vitamin and Mineral Supplement Fact Sheets

    Science.gov (United States)

    ... website Submit Search NIH Office of Dietary Supplements Vitamin and Mineral Supplement Fact Sheets Search the list ... Supplements: Background Information Botanical Dietary Supplements: Background Information Vitamin and Mineral Fact Sheets Botanical Supplement Fact Sheets ...

  20. Printed energy storage devices by integration of electrodes and separators into single sheets of paper

    Science.gov (United States)

    Hu, Liangbing; Wu, Hui; Cui, Yi

    2010-05-01

    We report carbon nanotube thin film-based supercapacitors fabricated with printing methods, where electrodes and separators are integrated into single sheets of commercial paper. Carbon nanotube films are easily printed with Meyer rod coating or ink-jet printing onto a paper substrate due to the excellent ink absorption of paper. A specific capacity of 33 F/g at a high specific power of 250 000 W/kg is achieved with an organic electrolyte. Such a lightweight paper-based supercapacitor could be used to power paper electronics such as transistors or displays.

  1. Microchannel laminated mass exchanger and method of making

    Science.gov (United States)

    Martin, Peter M.; Bennett, Wendy D.; Matson, Dean W.; Stewart, Donald C.; Drost, Monte K.; Wegeng, Robert S.; Perez, Joseph M.; Feng, Xiangdong; Liu, Jun

    2000-01-01

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  2. Non-ohmic transport behavior in ultra-thin gold films

    International Nuclear Information System (INIS)

    Alkhatib, A.; Souier, T.; Chiesa, M.

    2011-01-01

    Highlights: → C-AFM study on ultra-thin gold films. → Connection between ultra-thin film morphology and lateral electrical transport. → Transition between ohmic and non-ohmic behavior. → Electrical transition correlation to the film structure continuity. → Direct and indirect tunneling regimes related to discontinuous structures. - Abstract: Structure and local lateral electrical properties of Au films of thicknesses ranging from 10 to 140 nm are studied using conductive atomic force microscopy. Comparison of current maps taken at different thicknesses reveals surprising highly resistive regions (10 10 -10 11 Ω), the density of which increases strongly at lower thickness. The high resistivity is shown to be directly related to discontinuities in the metal sheet. Local I-V curves are acquired to show the nature of electrical behavior relative to thickness. Results show that in Au films of higher thickness the electrical behavior is ohmic, while it is non-ohmic in highly discontinuous films of lower thickness, with the transition happening between 34 and 39 nm. The non-ohmic behavior is explained with tunneling occurring between separated Au islands. The results explain the abrupt increase of electrical resistivity at lower thin film thicknesses.

  3. Linux thin-client conversion in a large cardiology practice: initial experience.

    Science.gov (United States)

    Echt, Martin P; Rosen, Jordan

    2004-01-01

    Capital Cardiology Associates (CCA) is a single-specialty cardiology practice with offices in New York and Massachusetts. In 2003, CCA converted its IT system from a Microsoft-based network to a Linux network employing Linux thin-client technology with overall positive outcomes.

  4. An optimal control model of crop thinning in viticulture

    OpenAIRE

    Schamel Guenter H.; Schubert Stefan F.

    2016-01-01

    We develop an economic model of cluster thinning in viticulture to control for grape quantity harvested and grape quality, applying a simple optimal control model with the aim to raise grape quality and related economic profits. The model maximizes vineyard owner profits and allows to discuss two relevant scenarios using a phase diagram analysis: (1) when the initial grape quantity is sufficiently small, thinning grapes will not be optimal and (2) when the initial grape quantity is high enoug...

  5. Deposition Rate and Energy Enhancements of TiN Thin-Film in a Magnetized Sheet Plasma Source

    OpenAIRE

    Hamdi Muhyuddin D. Barra; Henry J. Ramos

    2011-01-01

    Titanium nitride (TiN) has been synthesized using the sheet plasma negative ion source (SPNIS). The parameters used for its effective synthesis has been determined from previous experiments and studies. In this study, further enhancement of the deposition rate of TiN synthesis and advancement of the SPNIS operation is presented. This is primarily achieved by the addition of Sm-Co permanent magnets and a modification of the configuration in the TiN deposition process. The ...

  6. Influence of film thickness on structural, optical, and electrical properties of spray deposited antimony doped SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Abhijit A., E-mail: aay_physics@yahoo.co.in

    2015-09-30

    Transparent conducting antimony doped SnO{sub 2} thin films with varying thickness were deposited by chemical spray pyrolysis technique from non-aqueous solvent Propan-2-ol. The effect of film thickness on the properties of antimony doped SnO{sub 2} thin films have been studied. X-ray diffraction measurements showed tetragonal crystal structure of as-deposited antimony doped SnO{sub 2} films irrespective of film thickness. The surface morphology of antimony doped SnO{sub 2} thin film is spherical with the continuous distribution of grains. Electrical and optical properties were investigated by Hall Effect and optical measurements. The average optical transmittance of films decreased from 89% to 73% within the visible range (350–850 nm) with increase in film thickness. The minimum value of sheet resistance observed is 4.81 Ω/cm{sup 2}. The lowest resistivity found is 3.76 × 10{sup −4} Ω cm at 660 nm film thickness. - Highlights: • Effect of film thickness on the properties of antimony doped SnO{sub 2} thin films • Crystalline size in the range of 34–37 nm • Average transmittance decreased from 89% to 73% in the visible region. • Minimum sheet resistance of 4.81 Ω/cm{sup 2} • Lowest resistivity is found to be 3.76 × 10{sup −4} Ω cm at 660 nm film thickness.

  7. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma

    Science.gov (United States)

    Golledge, Nicholas R.; Thomas, Zoë A.; Levy, Richard H.; Gasson, Edward G. W.; Naish, Timothy R.; McKay, Robert M.; Kowalewski, Douglas E.; Fogwill, Christopher J.

    2017-07-01

    The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23 Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6 ± 2.8 m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400 ppm). Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points.

  8. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration.

    Science.gov (United States)

    Gao, Hui; Li, Bei; Zhao, Lingzhou; Jin, Yan

    2015-01-01

    Periodontal regeneration is an important part of regenerative medicine, with great clinical significance; however, the effects of nanotopography on the functions of periodontal ligament (PDL) stem cells (PDLSCs) and on PDLSC sheet based periodontal regeneration have never been explored. Titania nanotubes (NTs) layered on titanium (Ti) provide a good platform to study this. In the current study, the influence of NTs of different tube size on the functions of PDLSCs was observed. Afterward, an ectopic implantation model using a Ti/cell sheets/hydroxyapatite (HA) complex was applied to study the effect of the NTs on cell sheet based periodontal regeneration. The NTs were able to enhance the initial PDLSC adhesion and spread, as well as collagen secretion. With the Ti/cell sheets/HA complex model, it was demonstrated that the PDLSC sheets were capable of regenerating the PDL tissue, when combined with bone marrow mesenchymal stem cell (BMSC) sheets and HA, without the need for extra soluble chemical cues. Simultaneously, the NTs improved the periodontal regeneration result of the ectopically implanted Ti/cell sheets/HA complex, giving rise to functionally aligned collagen fiber bundles. Specifically, much denser collagen fibers, with abundant blood vessels as well as cementum-like tissue on the Ti surface, which well-resembled the structure of natural PDL, were observed in the NT5 and NT10 sample groups. Our study provides the first evidence that the nanotopographical cues obviously influence the functions of PDLSCs and improve the PDLSC sheet based periodontal regeneration size dependently, which provides new insight to the periodontal regeneration. The Ti/cell sheets/HA complex may constitute a good model to predict the effect of biomaterials on periodontal regeneration.

  9. From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model

    Directory of Open Access Journals (Sweden)

    J. Feldmann

    2017-08-01

    Full Text Available >Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.

  10. Transparent Patch Antenna on a-Si Thin Film Glass Solar Module

    OpenAIRE

    Roo Ons, Maria; Shynu, S.; Ammann, Max; McCormack, Sarah; Norton, Brian

    2011-01-01

    An optically transparent microstrip patch mounted on the surface of a commercially available solar module is proposed. The patch comprises a thin sheet of clear polyester with a conductive coating. The amorphous silicon solar cells in the module are used as both photovoltaic generator and antenna ground plane. The proposed structure provides a peak gain of 3.96 dBi in the 3.4-3.8 GHz range without significantly compromising the light transmission in the module. A comparison between copper and...

  11. Ohm's law for a current sheet

    Science.gov (United States)

    Lyons, L. R.; Speiser, T. W.

    1985-01-01

    The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.

  12. Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear

    KAUST Repository

    Duan, Wen Hui

    2011-08-01

    The initiation and development of wrinkles in a single layer graphene sheet subjected to in-plane shear displacements are investigated. The dependence of the wavelength and amplitude of wrinkles on the applied shear displacements is explicitly obtained with molecular mechanics simulations. A continuum model is developed for the characteristics of the wrinkles which show that the wrinkle wavelength decreases with an increase in shear loading, while the amplitude of the wrinkles is found to initially increase and then become stable. The propagation and growth process of the wrinkles in the sheet is elucidated. It is expected that the research could promote applications of graphenes in the transportation of biological systems, separation science, and the development of the fluidic electronics. © 2011 Elsevier Ltd. All rights reserved.

  13. Adjustable focus laser sheet module for generating constant maximum width sheets for use in optical flow diagnostics

    International Nuclear Information System (INIS)

    Hult, J; Mayer, S

    2011-01-01

    A general design of a laser light sheet module with adjustable focus is presented, where the maximum sheet width is preserved over a fixed region. In contrast, conventional focusing designs are associated with a variation in maximum sheet width with focal position. A four lens design is proposed here, where the first three lenses are employed for focusing, and the last for sheet expansion. A maximum sheet width of 1100 µm was maintained over a 50 mm long distance, for focal distances ranging from 75 to 500 mm, when a 532 nm laser beam with a beam quality factor M 2 = 29 was used for illumination

  14. On the instability of a quasiequilibrium current sheet and the onset of impulsive bursty reconnection

    International Nuclear Information System (INIS)

    Skender, Marina; Lapenta, Giovanni

    2010-01-01

    A two-dimensional reconnecting current sheet is studied numerically in the magnetohydrodynamic approach. Different simulation setups are employed in order to follow the evolution of the formed current sheet in diverse configurations: two types of initial equilibria, Harris and force-free, two types of boundary conditions, periodic and open, with uniform and nonuniform grid set, respectively. All the simulated cases are found to exhibit qualitatively the same behavior in which a current sheet evolves slowly through a series of quasiequilibria; eventually it fragments and enters a phase of fast impulsive bursty reconnection. In order to gain more insight on the nature and characteristics of the instability taking place, physical characteristics of the simulated current sheet are related to its geometrical properties. At the adopted Lundquist number of S=10 4 and Reynolds number R=10 4 , the ratio of the length to width (aspect ratio) of the formed current sheet is observed to increase slowly in time up to a maximum value at which it fragments. Moreover, additional turbulence applied to the system is shown to exhibit the same qualitative steps, but with the sooner onset of the fragmentation and at smaller aspect ratio.

  15. Comparison of Two Commercial FE-Codes for Sheet Metal Forming

    International Nuclear Information System (INIS)

    Revuelta, A.; Larkiola, J.; Kanervo, K.; Korhonen, A. S.; Myllykoski, P.

    2007-01-01

    There is urgent need to develop new advanced fast and cost-effective mass-production methods for small sheet metal components. Traditionally progressive dies have been designed by using various CAD techniques. Recent results in mass production of small sheet metal parts using progressive dies and a transfer press showed that the tool design time may be cut in up to a half by using 3D finite element simulation of forming. In numerical simulation of sheet metal forming better constitutive models are required to obtain more accurate results, reduce the time for tool design and cut the production costs further. Accurate models are needed to describe the initial yielding, subsequent work hardening and to predict the formability. In this work two commercially available finite element simulation codes, PAM-STAMP and LS-DYNA, were compared in forming of small austenitic stainless steel sheet part for electronic industry. Several constitutive models were used in both codes and the results were compared. Comparisons were made between the same models in each of the codes and also between different models in the same code. Material models ranged from very simple to advanced ones, which took into account anisotropy and both isotropic and kinematic hardening behavior. In order to make a valid comparison we employed similar finite element meshes. The effects of the material models parameters were studied and the results were compared with experiments. The effects of the computational time were also studied

  16. Plastic response of thin films due to thermal cycling

    NARCIS (Netherlands)

    Nicola, L.; van der Giessen, E.; Needleman, A.; Ahzi, S; Cherkaoui, M; Khaleel, MA; Zbib, HM; Zikry, MA; Lamatina, B

    2004-01-01

    Discrete dislocation simulations of thin films on semi-infinite substrates under cyclic thermal loading are presented. The thin film is modelled as a two-dimensional single crystal under plane strain conditions. Dislocations of edge character can be generated from initially present sources and glide

  17. Collisionless current sheet equilibria

    Science.gov (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  18. Design of Faraday cup ion detectors built by thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Szalkowski, G.A., E-mail: gszalkowski3@gatech.edu [Department of Nuclear Engineering, Georgia Institute of Technology, 770 State St., Atlanta, GA 30332 (United States); Darrow, D.S., E-mail: ddarrow@pppl.gov [Princeton Plasma Physics Laboratory, P. O. Box 451, Princeton, NJ 08543 (United States); Cecil, F.E., E-mail: fcecil@mines.edu [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States)

    2017-03-11

    Thin film Faraday cup detectors can provide measurements of fast ion loss from magnetically confined fusion plasmas. These multilayer detectors can resolve the energy distribution of the lost ions in addition to giving the total loss rate. Prior detectors were assembled from discrete foils and insulating sheets. Outlined here is a design methodology for creating detectors using thin film deposition that are suited to particular scientific goals. The intention is to use detectors created by this method on the Joint European Torus (JET) and the National Spherical Torus Experiment-Upgrade (NSTX-U). The detectors will consist of alternating layers of aluminum and silicon dioxide, with layer thicknesses chosen to isolate energies of interest. Thin film deposition offers the advantage of relatively simple and more mechanically robust construction compared to other methods, as well as allowing precise control of film thickness. Furthermore, this depositional fabrication technique places the layers in intimate thermal contact, providing for three-dimensional conduction and dissipation of the ion-produced heating in the layers, rather than the essentially two-dimensional heat conduction in the discrete foil stack implementation.

  19. Design and numerical analysis of an SMA mesh-based self-folding sheet

    International Nuclear Information System (INIS)

    Peraza-Hernandez, Edwin A; Hartl, Darren J; Malak Jr, Richard J

    2013-01-01

    Origami engineering, which is the practice of creating useful three-dimensional structures through folding and fold-like operations applied to initially two-dimensional entities, has the potential to impact several areas of design and manufacturing. In some instances, however, it may be impractical to apply external manipulations to produce the desired folds (e.g., as in remote applications such as space systems). In such cases, self-folding capabilities are valuable. A self-folding material or material system is one that can perform folding operations without manipulations from external forces. This work considers a concept for a self-folding material system. The system extends the ‘programmable matter’ concept and consists of an active, self-morphing sheet composed of two meshes of thermally actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The geometric and power input parameters of the self-folding sheet are optimized to achieve the tightest local fold possible subject to stress and temperature constraints. The sheet folding performance considering folds at different angles relative to the orientation of the wire mesh is also analyzed. The optimization results show that a relatively low elastomer thickness is preferable to generate the tightest fold possible. The results also show that the self-folding sheet does not require large power inputs to achieve an optimal folding performance. It was shown that the self-folding sheet is capable of creating similar quality folds at different orientations. (paper)

  20. 17 CFR 210.6-04 - Balance sheets.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.6-04... sheets. This rule is applicable to balance sheets filed by registered investment companies except for... of this part. Balance sheets filed under this rule shall comply with the following provisions: Assets...