WorldWideScience

Sample records for shear zone marked

  1. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  2. Friction of Shear-Fracture Zones

    Science.gov (United States)

    Riikilä, T. I.; Pylväinen, J. I.; Åström, J.

    2017-12-01

    A shear fracture of brittle solids under compression undergoes a substantial evolution from the initial microcracking to a fully formed powder-filled shear zone. Experiments covering the entire process are relatively easy to conduct, but they are very difficult to investigate in detail. Numerically, the large strain limit has remained a challenge. An efficient simulation model and a custom-made experimental device are employed to test to what extent a shear fracture alone is sufficient to drive material to spontaneous self-lubrication. A "weak shear zone" is an important concept in geology, and a large number of explanations, specific for tectonic conditions, have been proposed. We demonstrate here that weak shear zones are far more general, and that their emergence only demands that a microscopic, i.e., fragment-scale, stress relaxation mechanism develops during the fracture process.

  3. Quantifying the Variation in Shear Zone Character with Depth: a Case Study from the Simplon Shear Zone, Central Alps

    Science.gov (United States)

    Cawood, T. K.; Platt, J. P.

    2017-12-01

    A widely-accepted model for the rheology of crustal-scale shear zones states that they comprise distributed strain at depth, in wide, high-temperature shear zones, which narrow to more localized, high-strain zones at lower temperature and shallower crustal levels. We test and quantify this model by investigating how the width, stress, temperature and deformation mechanisms change with depth in the Simplon Shear Zone (SSZ). The SSZ marks a major tectonic boundary in the central Alps, where normal-sense motion and rapid exhumation of the footwall have preserved evidence of older, deeper deformation in rocks progressively further into the currently-exposed footwall. As such, microstructures further from the brittle fault (which represents the most localized, most recently-active part of the SSZ) represent earlier, higher- temperature deformation from deeper crustal levels, while rocks closer to the fault have been overprinted by successively later, cooler deformation at shallower depths. This study uses field mapping and microstructural studies to identify zones representing deformation at various crustal levels, and characterize each in terms of zone width (representing width of the shear zone at that time and depth) and dominant deformation mechanism. In addition, quartz- (by Electron Backscatter Diffraction, EBSD) and feldspar grain size (measured optically) piezometry are used to calculate the flow stress for each zone, while the Ti-in-quartz thermometer (TitaniQ) is used to calculate the corresponding temperature of deformation. We document the presence of a broad zone in which quartz is recrystallized by the Grain Boundary Migration (GBM) mechanism and feldspar by Subgrain Rotation (SGR), which represents the broad, deep zone of deformation occurring at relatively high temperatures and low stresses. In map view, this transitions to successively narrower zones, respectively characterized by quartz SGR and feldspar Bulge Nucleation (BLG); quartz BLG and brittle

  4. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    Science.gov (United States)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  5. Shear zones between rock units with no relative movement

    DEFF Research Database (Denmark)

    Koyi, Hemin; Schmeling, Harro; Burchardt, Steffi

    2013-01-01

    Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other. Such ...... given credit for and may be responsible for some reverse kinematics reported in shear zones....... or wakes, elongated bodies (vertical plates or horizontal rod-like bodies) produce tabular shear zones or wakes. Unlike conventional shear zones across which shear indicators usually display consistent symmetries, shear indicators on either side of the shear zone or wake reported here show reverse...... kinematics. Thus profiles exhibit shear zones with opposed senses of movement across their center-lines or -planes.We have used field observations and results from analytical and numerical models to suggest that examples of wakes are the transit paths that develop where denser blocks sink within salt...

  6. Shear zones between rock units with no relative movement

    DEFF Research Database (Denmark)

    Koyi, H.; Schmeling, H.; Burchardt, S.

    2012-01-01

    , elongated bodies (vertical plates or horizontal rod-like bodies) produce tabular shear zones. Unlike conventional shear zones across which shear indicators ideally display consistent symmetries, shear indicators on either sides of the shear zone reported here show reverse kinematics. Thus profiles exhibit...... by progressive extension and (perhaps) where slabs of subducted oceanic lithosphere delaminate from the continental crust and sink into the asthenosphere. We also argue that such shear zones may be more common than they have been given the credit for and may be responsible for some of the kinematic reversals...

  7. Deformation of footwall rock of Phulad Shear Zone, Rajasthan ...

    Indian Academy of Sciences (India)

    Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e. ...

  8. A new perspective on the significance of the Ranotsara shear zone in Madagascar

    Science.gov (United States)

    Schreurs, Guido; Giese, Jörg; Berger, Alfons; Gnos, Edwin

    2010-12-01

    The Ranotsara shear zone in Madagascar has been considered in previous studies to be a >350-km-long, intracrustal strike-slip shear zone of Precambrian/Cambrian age. Because of its oblique strike to the east and west coast of Madagascar, the Ranotsara shear zone has been correlated with shear zones in southern India and eastern Africa in Gondwana reconstructions. Our assessment using remote sensing data and field-based investigations, however, reveals that what previously has been interpreted as the Ranotsara shear zone is in fact a composite structure with a ductile deflection zone confined to its central segment and prominent NW-SE trending brittle faulting along most of its length. We therefore prefer the more neutral term “Ranotsara Zone”. Lithologies, tectonic foliations, and axial trace trajectories of major folds can be followed from south to north across most of the Ranotsara Zone and show only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E-W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East African Orogeny (c. 550-520 Ma). The Ranotsara Zone shows significant NW-SE striking brittle faulting that reactivates part of the NW-SE striking ductile structures in the flexure zone, but also extends along strike toward the NW and toward the SE. Brittle reactivation of ductile structures along the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone is not a megascale intracrustal strike-slip shear zone that crosscuts the entire basement of southern Madagascar. It can therefore not be used as a piercing point in Gondwana

  9. Seismic cycle feedbacks in a mid-crustal shear zone

    Science.gov (United States)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  10. Coexistence and transition between shear zones in slow granular flows.

    Science.gov (United States)

    Moosavi, Robabeh; Shaebani, M Reza; Maleki, Maniya; Török, János; Wolf, Dietrich E; Losert, Wolfgang

    2013-10-04

    We report experiments on slow granular flows in a split-bottom Couette cell that show novel strain localization features. Nontrivial flow profiles have been observed which are shown to be the consequence of simultaneous formation of shear zones in the bulk and at the boundaries. The fluctuating band model based on a minimization principle can be fitted to the experiments over a large variation of morphology and filling height with one single fit parameter, the relative friction coefficient μ(rel) between wall and bulk. The possibility of multiple shear zone formation is controlled by μ(rel). Moreover, we observe that the symmetry of an initial state, with coexisting shear zones at both side walls, breaks spontaneously below a threshold value of the shear velocity. A dynamical transition between two asymmetric flow states happens over a characteristic time scale which depends on the shear strength.

  11. Shear Zone-Hosted Base Metal Mineralization near Abraha ...

    African Journals Online (AJOL)

    Tadesse

    of Arabia; B) Plan view of northern Ethiopia showing the roads and position ... within NE trending shear zone in the basement rocks with well developed alterations ...... country rocks and transported to the sites of deposition i.e. structural weak.

  12. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)

    The results of parametric study are compared with those of Smith and Teng. They confirm the accuracy of the proposed approach in predicting both interfacial shear and normal stresses. Keywords. Strengthened beam; interfacial stresses; cohesive zone; shear deformation. 1. Introduction. The FRP plates can be either ...

  13. Inelastic deformations of fault and shear zones in granitic rock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1986-02-01

    Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads

  14. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    Science.gov (United States)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends

  15. Shear heating and metamorphism in subduction zones, 1. Thermal models

    Science.gov (United States)

    Kohn, M. J.; Castro, A. E.; Spear, F. S.

    2017-12-01

    Popular thermal-mechanical models of modern subduction systems are 100-500 °C colder at c. 50 km depth than pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks. This discrepancy has been ascribed by some to profound bias in the rock record, i.e. metamorphic rocks reflect only anomalously warm subduction, not normal subduction. Accurately inferring subduction zone thermal structure, whether from models or rocks, is crucial for predicting depths of seismicity, fluid release, and sub-arc melting conditions. Here, we show that adding realistic shear stresses to thermal models implies P-T conditions quantitatively consistent with those recorded by exhumed metamorphic rocks, suggesting that metamorphic rock P-T conditions are not anomalously warm. Heat flow measurements from subduction zone fore-arcs typically indicate effective coefficients of friction (µ) ranging from 0.025 to 0.1. We included these coefficients of friction in analytical models of subduction zone interface temperatures. Using global averages of subducting plate age (50 Ma), subduction velocity (6 cm/yr), and subducting plate geometry (central Chile), temperatures at 50 km depth (1.5 GPa) increase by c. 200 °C for µ=0.025 to 700 °C for µ=0.1. However, at high temperatures, thermal softening will reduce frictional heating, and temperatures will not increase as much with depth. Including initial weakening of materials ranging from wet quartz (c. 300 °C) to diabase (c. 600 °C) in the analytical models produces concave-upward P-T distributions on P-T diagrams, with temperatures c. 100 to 500 °C higher than models with no shear heating. The absolute P-T conditions and concave-upward shape of the shear-heating + thermal softening models almost perfectly matches the distribution of P-T conditions derived from a compilation of exhumed metamorphic rocks. Numerical models of modern subduction zones that include shear heating also overlap metamorphic data. Thus, excepting the

  16. Mesoscale modeling of amorphous metals by shear transformation zone dynamics

    International Nuclear Information System (INIS)

    Homer, Eric R.; Schuh, Christopher A.

    2009-01-01

    A new mesoscale modeling technique for the thermo-mechanical behavior of metallic glasses is proposed. The modeling framework considers the shear transformation zone (STZ) as the fundamental unit of deformation, and coarse-grains an amorphous collection of atoms into an ensemble of STZs on a mesh. By employing finite element analysis and a kinetic Monte Carlo algorithm, the modeling technique is capable of simulating glass processing and deformation on time and length scales greater than those usually attainable by atomistic modeling. A thorough explanation of the framework is presented, along with a specific two-dimensional implementation for a model metallic glass. The model is shown to capture the basic behaviors of metallic glasses, including high-temperature homogeneous flow following the expected constitutive law, and low-temperature strain localization into shear bands. Details of the effects of processing and thermal history on the glass structure and properties are also discussed.

  17. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    Science.gov (United States)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation

  18. The importance of strain localisation in shear zones

    Science.gov (United States)

    Bons, Paul D.; Finch, Melanie; Gomez-Rivas, Enrique; Griera, Albert; Llorens, Maria-Gema; Steinbach, Florian; Weikusat, Ilka

    2016-04-01

    The occurrence of various types of shear bands (C, C', C'') in shear zones indicate that heterogeneity of strain is common in strongly deformed rocks. However, the importance of strain localisation is difficult to ascertain if suitable strain markers are lacking, which is usually the case. Numerical modelling with the finite-element method has so far not given much insight in the development of shear bands. We suggest that this is not only because the modelled strains are often not high enough, but also because this technique (that usually assumes isotropic material properties within elements) does not properly incorporate mineral deformation behaviour. We simulated high-strain, simple-shear deformation in single- and polyphase materials with a full-field theory (FFT) model coupled to the Elle modelling platform (www.elle.ws; Lebensohn 2001; Bons et al. 2008). The FFT-approach simulates visco-plastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses in relations to the applied stresses. Griera et al. (2011; 2013) have shown that this approach is particularly well suited for strongly anisotropic minerals, such as mica and ice Ih (Llorens 2015). We modelled single- and polyphase composites of minerals with different anisotropies and strengths, roughly equivalent to minerals such as ice Ih, mica, quartz and feldspar. Single-phase polycrystalline aggregates show distinct heterogeneity of strain rate, especially in case of ice Ih, which is mechanically close to mica (see also Griera et al. 2015). Finite strain distributions are heterogeneous as well, but the patterns may differ from that of the strain rate distribution. Dynamic recrystallisation, however, usually masks any strain and strain rate localisation (Llorens 2015). In case of polyphase aggregates, equivalent to e.g. a granite, we observe extensive localisation in both syn- and antithetic shear bands. The antithetic shear bands

  19. Amphibious Shear Velocity Structure of the Cascadia Subduction Zone

    Science.gov (United States)

    Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.

    2017-12-01

    The amphibious Cascadia Initiative crosses the coastline of the Cascadia subduction zone (CSZ) deploying seismometers from the Juan de Fuca ridge offshore to beyond the volcanic arc onshore. This allows unprecedented seismic imaging of the CSZ, enabling examination of both the evolution of the Juan de Fuca plate prior to and during subduction as well as the along strike variability of the subduction system. Here we present new results from an amphibious shear velocity model for the crust and upper mantle across the Cascadia subduction zone. The primary data used in this inversion are surface-wave phase velocities derived from ambient-noise Rayleigh-wave data in the 10 - 20 s period band, and teleseismic earthquake Rayleigh wave phase velocities in the 20 - 160 s period band. Phase velocity maps from these data reflect major tectonic structures including the transition from oceanic to continental lithosphere, Juan de Fuca lithosphere that is faster than observations in the Pacific for oceanic crust of its age, slow velocities associated with the accretionary prism, the front of the fast subducting slab, and the Cascades volcanic arc which is associated with slower velocities in the south than in the north. Crustal structures are constrained by receiver functions in the offshore forearc and onshore regions, and by active source constraints on the Juan de Fuca plate prior to subduction. The shear-wave velocities are interpreted in their relationships to temperature, presence of melt or hydrous alteration, and compositional variation of the CSZ.

  20. DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS

    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov

    2016-01-01

    Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of

  1. Thermodynamic modeling of phase relations and metasomatism in shear zones

    Science.gov (United States)

    Goncalves, P.; Oliot, E.; Marquer, D.

    2009-04-01

    Ductile shear zones have been recognized for a long time as privileged sites of intense fluid-rock interactions in the crust. In most cases they induce focused changes in mineralogy and bulk chemical composition (metasomatism) which in turn may control the deformation and fluid-migration processes. Therefore understanding these processes requires in a first step to be able to model phase relations in such open system. In this contribution, emphasizes in placed on metasomatic aspects of the problem. Indeed , in many ductile shear zones reported in metagranites, deformation and fluid-rock interactions are associated with gain in MgO and losses of CaO and Na2O (K2O is also a mobile component but it can be either gained or lost). Although the mineralogical consequences of this so-called Mg-metasomatism are well-documented (replacement of K-feldspar into phengite, breakdown of plagioclase into ab + ep, crystallization of chlorite), the origin of this coupled mass-transfer is still unknown. We have performed a forward modeling of phase relationships using petrogenetic grids and pseudosections that consider variations in chemical potential (μ) of the mobile elements (MgO, CaO, Na2O). Chemical potential gradients being the driving force of mass transfer, μ-μ diagrams are the most appropriate diagrams to model open systems where fluid-rock interactions are prominent. Chemical potential diagrams are equivalent to activity diagrams but our approach differs from previous work because (1) solid solutions are taken into account (2) phase relations are modeled in a more realistic chemical system (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) and (3) the use of pseudosections allows to predict changes of the mineralogy (modes, composition) for the specific bulk composition studied. A particular attention is paid to the relationships between component concentrations and chemical potentials, which is not obvious in multi-component system. The studied shear zone is located in the Grimsel

  2. Geological and structural characterization and microtectonic study of shear zones Colonia

    International Nuclear Information System (INIS)

    Gianotti, V.; Oyhantcabal, P.; Spoturno, J.; Wemmer, K.

    2010-01-01

    The “Colonia Shear Zone System”, characterized by a transcurrent system of predominant sinistral shear sense, is defined by two approximately parallel shear zones, denominated Isla San Gabriel-Juan Lacaze Shear Zone (ISG-JL S.Z.) and Islas de Hornos-Arroyo Riachuelo Shear Zone (IH-AºR S. Z.). Represented by rocks with ductile and brittle deformation, are defined as a strike slip fault system, with dominant subvertical foliation orientations: 090-100º (dip-direction 190º) and 090-100º (dip-direction 005º). The K/Ar geochronology realized, considering the estimates temperatures conditions for shear zones (450-550º), indicate that 1780-1812 Ma should be considered a cooling age and therefore a minimum deformation age. The observed microstructures suggest deformation conditions with temperatures between 450-550º overprinted by cataclastic flow structures (reactivation at lower temperature)

  3. Geophysical characterization of an active hydrothermal shear zone in granitic rocks

    Science.gov (United States)

    Zahner, Tobias; Baron, Ludovic; Holliger, Klaus; Egli, Daniel

    2016-04-01

    Hydrothermally active faults and shear zones in the crystalline massifs of the central Alps are currently of particular interest because of their potential similarities and analogies with planned deep petrothermal reservoirs in the Alpine foreland. In order to better understand such hydrothermal systems, a near-vertical, hydrothermally active shear zone embedded in low-permeability granitic rocks has been drilled. This borehole is located on the Grimsel Pass in the central Swiss Alps, has an inclination of 24 degrees with regard to the vertical, and crosses the targeted shear zone between about 82 and 86 meters depth. The borehole has been fully cored and a comprehensive suite of geophysical logging data has been acquired. The latter comprises multi-frequency sonic, ground-penetrating radar, resistivity, self-potential, gamma-gamma, neutron-neutron, optical televiewer, and caliper log data. In addition to this, we have also performed a surface-to-borehole vertical seismic profiling experiment. The televiewer data and the retrieved core samples show a marked increase of the fracture density in the target region, which also finds its expression in rather pronounced and distinct signatures in all other log data. Preliminary results point towards a close correspondence between the ground-penetrating radar and the neutron-neutron log data, which opens the perspective of constraining the effective fracture porosity at vastly differing scales. There is also remarkably good agreement between the sonic log and the vertical seismic profiling data, which may allow for assessing the permeability of the probed fracture network by interpreting these data in a poroelastic context.

  4. Indirect dating of deformation: a geochronological study from the Pan African Ajaj shear zone, Saudi Arabia.

    Science.gov (United States)

    Hassan, Mahmoud; Abu-Alam, Tamer; Stüwe, Kurt; Klötzli, Urs

    2013-04-01

    The metamorphic complexes of the Arabian-Nubian Shield were exhumed by different exhumation mechanisms (i.e. in extension or oblique transpression regime) during the Pan African activity of Najd Fault System - the largest pre-Mesozoic shear zone on Earth. The different exhumation mechanisms could be the consequence of (i) orientation of the complexes at slightly different angles with respect to the overall orientation of the principal stresses of the Najd Fault System, (ii) exhumation from different depths, or (iii) change of the stress regime through time. In order to test the third hypothesis, geochronological work will be applied on a representative suite of complexes across the Najd Fault System. In particular we focus on three complexes in the Arabian part of the shield named Qazaz, Hamadat and Wajh. In general, the metamorphic complexes of the Arabian part of the shield exhibit left-lateral transcurrent tectonism along the NW-SE Najd faults and right-lateral movement along conjugate NE-SW striking structures. The whole unit forms an anastomosing network of planar structures that demarcate large fish-shaped bodies of high grade metamorphics. The Hamadat complex is surrounded by a left-lateral greenshist facies WNW-ESE Ajaj shear zone. The complex consists of folds that are strongly pinched to the north and more open to the south marked by a well-developed parallel stretching sub-horizontal lineation. Granite intrusions along and across the Ajaj shear zone may allow testing the timing of the deformation. Deformed and non-deformed samples of these granites will be examined by age dating to determine the absolute timing of the metamorphism and the deformation for the complex. Some 20 samples are currently being prepared for zircon dating. Whilst no results are available at the time of writing of this abstract, they will be presented at EGU 2013.

  5. Brittle-ductile gliding shear zone and its dynamic metallization in uranium deposit No. 3110

    International Nuclear Information System (INIS)

    Fang Shiyi.

    1990-01-01

    A preliminary study on the macroscopic geological structure, microstructures of plastic deformation rotary strain, structural geochemistry and zoning regularity of a brittle-ductile gliding shear zone in uranium deposit No. 3110 is made. Structural dynamic metallization of uranium caused by the strong shearing stress is discussed. It is pointed out that great attention must be paid to in further exploration

  6. Combined pump and marking tests for determining protection zones

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H.; Brauns, J.

    1982-02-01

    Under difficult conditions the determination of the protection area II on the basis of Mear pump tests becomes uncertain. The report shows how in such cases the results of supplementary marking tests can establish a more accurate finding. The execution of combined pump and marking tests enables us to check data gained on a theoretical basis and possibly alter these. This method is described in an example, in which certain hydrogeological conditions and rival interests of ground water protection prevail on the one side and utilization of land on the other side. A general tendency exists to take the utmost protective measure in safeguarding ground water, however in cases of collision of interests the boundary of the protective area should be optimized. Supplementary marking tests can be of great significance.

  7. Shear-transformation-zone theory of linear glassy dynamics.

    Science.gov (United States)

    Bouchbinder, Eran; Langer, J S

    2011-06-01

    We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees of freedom. Our theory accounts for the wide range of relaxation rates observed in both metallic glasses and soft glassy materials such as colloidal suspensions. We find that the frequency-dependent loss modulus is not just a superposition of Maxwell modes. Rather, it exhibits an α peak that rises near the viscous relaxation rate and, for nearly jammed, glassy systems, extends to much higher frequencies in accord with experimental observations. We also use this theory to compute strain recovery following a period of large, persistent deformation and then abrupt unloading. We find that strain recovery is determined in part by the initial barrier-height distribution, but that true structural aging also occurs during this process and determines the system's response to subsequent perturbations. In particular, we find by comparison with experimental data that the initial deformation produces a highly disordered state with a large population of low activation barriers, and that this state relaxes quickly toward one in which the distribution is dominated by the high barriers predicted by the near-equilibrium analysis. The nonequilibrium dynamics of the barrier-height distribution is the most important of the issues raised and left unresolved in this paper.

  8. FLUID EVOLUTION AND MINERAL REACTIONS DURING SHEAR ZONE FORMATION AT NUSFJORD, LOFOTEN, NORWAY (Invited)

    Science.gov (United States)

    Kullerud, K.

    2009-12-01

    At Nusfjord in Lofoten, Norway, three 0.3 - 3 m thick shear zones occur in a gabbro-anorthosite. During deformation, the shear zones were infiltrated by a hydrous fluid enriched in Cl. In the central parts of the shear zones, fluid-rock interaction resulted in complete break-down of the primary mafic silicates. Complete hydration of these minerals to Cl-free amphibole and biotite suggests that the hydrous fluid was present in excess during deformation in these parts of the shear zones. Along the margins of the shear zones, however, the igneous mafic silicates (Cpx, Bt, Opx) were only partly overgrown by hydrous minerals. Here, Cl-enriched minerals (Amph, Bt, Scp, Ap) can be observed. Amphibole shows compositions covering the range 0.1 - 4.0 wt % Cl within single thin sections. Mineral textures and extreme compositional variations of the Cl-bearing minerals indicate large chemical gradients of the fluid phase. Relics of primary mafic silicates and compositionally zoned reaction coronas around primary mafic silicates suggest that the free fluid was totally consumed before the alteration of the primary phases were completed. The extreme variations in the Cl-content of amphibole are inferred to monitor a gradual desiccation of the Cl-bearing grain-boundary fluid during fluid-mineral reactions accordingly: 1) The first amphibole that formed during the reactions principally extracted water from the fluid, resulting in a slight increase in the Cl content of the fluid. 2) Continued amphibole-forming reactions resulted in gradual consumption of the free fluid phase, principally by extracting water from the fluid, resulting in an increase in its Cl-content. Higher Cl-content of the fluid resulted in higher Cl-content of the equilibrium amphibole. 3) The most Cl-enriched amphibole (4 wt % Cl) formed in equilibrium with the last volumes of the grain-boundary fluid, which had evolved to a highly saline solution. Mineral reactions within a 1-2 thick zone of the host rock along

  9. Domino structures evolution in strike-slip shear zones; the importance of the cataclastic flow

    Science.gov (United States)

    Moreira, N.; Dias, R.

    2018-05-01

    The Porto-Tomar-Ferreira do Alentejo dextral Shear Zone is one of the most important structures of the Iberian Variscides. In its vicinity, close to Abrantes (Central Portugal), a localized heterogeneous strain pattern developed in a decimetric metamorphic siliceous multilayer. This complex pattern was induced by the D2 dextral shearing of the early S0//S1 foliation in brittle-ductile conditions, giving rise to three main shear zone families. One of these families, with antithetic kinematics, delimits blocks with rigid clockwise rotation surrounded by coeval cataclasites, generating a local domino structure. The proposed geometrical and kinematic analysis, coupled with statistical studies, highlights the relation between subsidiary shear zones and the main shear zone. Despite the heterogeneous strain pattern, a quantitative approach of finite strain was applied based on the restoration of the initial fracture pattern. This approach shows the importance of the cataclastic flow coupled with the translational displacement of the domino domain in solving space problems related to the rigid block rotation. Such processes are key in allowing the rigid block rotation inside shear zones whenever the simple shear component is a fundamental mechanism.

  10. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    Science.gov (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  11. Measuring Local Strain Rates In Ductile Shear Zones: A New Approach From Deformed Syntectonic Dykes

    Science.gov (United States)

    Sassier, C.; Leloup, P.; Rubatto, D.; Galland, O.; Yue, Y.; Ding, L.

    2006-12-01

    At the Earth surface, deformation is mostly localized in fault zones in between tectonic plates. In the upper crust, the deformation is brittle and the faults are narrow and produce earthquakes. In contrast, deformation in the lower ductile crust results in larger shear zones. While it is relatively easy to measure in situ deformation rates at the surface using for example GPS data, it is more difficult to determinate in situ values of strain rate in the ductile crust. Such strain rates can only be estimated in paleo-shear zones. Various methods have been used to assess paleo-strain rates in paleo-shear zones. For instance, cooling and/or decompression rates associated with assumptions on geothermic gradients and shear zone geometry can lead to such estimates. Another way to estimate strain rates is the integration of paleo-stress measurements in a power flow law. But these methods are indirect and imply strong assumptions. Dating of helicitic garnets or syntectonic fibres are more direct estimates. However these last techniques have been only applied in zones of low deformation and not in major shear zones. We propose a new direct method to measure local strain rates in major ductile shear zones from syntectonic dykes by coupling quantification of deformation and geochronology. We test our method in a major shear zone in a well constrained tectonic setting: the Ailao-Shan - Red River Shear Zone (ASRRsz) located in SE Asia. For this 10 km wide shear zone, large-scale fault rates, determined in three independent ways, imply strain rates between 1.17×10^{-13 s-1 and 1.52×10^{-13 s-1 between 35 and 16 Ma. Our study focused on one outcrop where different generations of syntectonic dykes are observed. First, we quantified the minimum shear strain γ for each dyke using several methods: (1) by measuring the stretching of dykes with a surface restoration method (2) by measuring the final angle of the dykes with respect to the shear direction and (3) by combining the two

  12. Tibet- Himalayan Analogs of Pan-African Shear Zones : Implications for Neoproterozoic Tectonics

    Science.gov (United States)

    Attoh, K.; Brown, L. D.

    2009-12-01

    Large-scale shear zones are distinct features of Tibet-Himalayan orogen and the Pan-African Trans-Saharan belt. Prominent examples in the Pan-African-belt extend for ~2500 km from the Sahara to the Gulf of Guinea and are characterized by right-slip movements. The NS shear zones, such as 4°50’-Kandi shear zone (KSZ) are complemented by NE-SW shear zones that preserve a record of sinistral movements and are represented by the Central Cameroon shear zone (CCSZ) in the eastern part of the Pan-African domain. The West African shear zones project into similar structures in the Borborema Province of northeast Brazil. In addition, the Pan-African belt preserves structures and rock assemblages that indicate subduction-collision tectonics We propose that structures of Tibet-Himalayan collisional orogen are instructive analogs of the Pan-African structures where: (i) the Pan-African front corresponds to the Main Himalayan thrust and it’s splays; (ii) the main Pan-African suture zone is analogous to the Indus-Tsangpo suture in the Tibet-Himalayan belt; (iii) the 4°50’-KSZ corresponds to Karakoram and it’s linkages with Jiali fault system and (iv) left-slip CCSZ and related shear zones are analogs of Altyn Tagh and Kumlun faults and their splays. This suggests the operation of escape-type tectonics in the Neoproterozoic belt of West-Africa and predicts the nature of the deep structures in the Cenozoic Tibet-Himalayan orogen.

  13. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    Science.gov (United States)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to

  14. Structural analysis and magmatism characterization of the Major Gercino shear zone, Santa Catarina State, Brazil

    International Nuclear Information System (INIS)

    Passarelli, Claudia Regina

    1996-01-01

    This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr 87 / Sr 86 initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 ± 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 ± 15 Ma.)

  15. Early lineations in a later shear zone: case study from the Eastern Ghats Belt, India

    Science.gov (United States)

    Bose, S.; Gupta, S.

    2016-12-01

    In polydeformed gneissic terranes, ductile shear zones may cut across rocks with older penetrative fabrics. Earlier lineations in later ductile shear zones need to be identified to avoid incorrect kinematic interpretation. To investigate the fate of early lineations during later ductile shearing, the Mahanadi Shear Zone (MSZ) from the Eastern Ghats Belt (EGB) in India is taken as a case study. The EGB is a Proterozoic granulite terrane correlated with Indo-Antarctica collision. The MSZ lies within the EGB, but is oriented almost perpendicular to the trend of the belt. The penetrative structural fabric in the EGB is NE-SW trending and dipping SE. However, a broad swing in structural trend from NE-SW to WNW-ESE can be detected near the MSZ from satellite imagery. In mylonitised rocks of the shear zone, a discrepancy between the shear zone lineation and inferred shear sense leads to uncertainty in kinematic interpretation of the shear zone. The EGB rock types include charnockites, quartzofeldspathic gneisses and garnet-sillimanite-bearing metapelitic gneisses (khondalites). Outside the MSZ, gneisses preserve an earlier, dominantly down-dip intersection lineation. Sillimanite needles in khondalites are aligned parallel to this lineation, while quartz and garnet are also annealed into the granulite facies fabric. In the vicinity of the shear zone, evidence of dextral non-coaxial shearing progressively increases but the lineation distribution is scattered. Quartz grains show strong undulose extinction caused by strain at lower temperatures, and crystallographic c-axis fabric analyses using EBSD indicate deformation by basal c-slip mechanism. Preferred alignment of the sillimanite needles is disrupted in khondalites within the MSZ because of partial rotation of the needles towards the sub-horizontal movement direction, with the extent of rotation of the needles being apparently controlled by grain size. Some sillimanite needles also appear to have undergone

  16. Sense of shear and displacement estimates in the Abeibara-Rarhous late Pan-African shear zone, Adrar des Iforas, Mali

    Science.gov (United States)

    Boullier, Anne-Marie

    The late Pan-African Abeibara-Rarhous shear zone in the Adrar des Iforas (Mali) is described and studied with the aim of defining the direction, sense of movement and amount of displacement along the zone. It is a strike-slip shear zone, the dextral sense of which is demonstrated at the scale of the map by the rotation of the related mylonitic foliation and at the scale of the thin section with characteristic microstructures. Preferred orientation of quartz c-axes is tentatively used; three quartz-rich samples of 35% or more quartz indicate dextral strike-slip movement, but other samples do not show preferred orientation of quartz c-axes. Strain measurements have been performed on one half of the shear zone using established techniques and a new technique using the thickness of mylonitic layering. The results vary along the length of the shear zone when using the same method and for the same cross-section when using the three methods together. A mean value of 4 km is obtained for total displacement which is low when considering the apparent width of the shear zone. This result is discussed in view of the assumptions involved in the strain estimation. The tectonic history of the Abeibara-Rarhous shear zone and its significance in the Trans-Saharan Pan-African collisional belt are discussed.

  17. Effect of Different Loading Conditions on the Nucleation and Development of Shear Zones Around Material Heterogeneities

    Science.gov (United States)

    Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.

    2017-12-01

    Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the

  18. Relating rheology to geometry in large-scale natural shear zones

    Science.gov (United States)

    Platt, John

    2016-04-01

    The geometry and width of the ductile roots of plate boundary scale faults are very poorly understood. Some field and geophysical data suggests widths of tens of km in the lower crust, possibly more in the upper mantle. Other observations suggest they are much narrower. Dip slip shear zones may flatten out and merge into zones of subhorizontal lower crustal or asthenospheric flow. The width of a ductile shear zone is simply related to relative velocity and strain rate. Strain rate is related to stress through the constitutive relationship. Can we constrain the stress, and do we understand the rheology of materials in ductile shear zones? A lot depends on how shear zones are initiated. If they are localized by pre-existing structures, width and/or rheology may be inherited, and we have too many variables. If shear zones are localized primarily by shear heating, initial shear stress has to be very high (> 1 GPa) to overcome conductive heat loss, and very large feedbacks (both positive and negative) make the system highly unstable. Microstructural weakening requires a minimum level of stress to cause deformation and damage in surrounding rock, thereby buffering the stress. Microstructural weakening leads to grain-size sensitive creep, for which we have constitutive laws, but these are complicated by phase mixing in polyphase materials, by viscous anisotropy, by hydration, and by changes in mineral assemblage. Here are some questions that need to be addressed. (1) If grain-size reduction by dynamic recrystallization results in a switch to grain-size sensitive creep (GSSC) in a stress-buffered shear zone, does dynamic recrystallization stop? Does grain growth set in? If grain-size is still controlled by dislocation processes, then the effective stress exponent for GSSC is 4-5, even though the dominant mechanism may be diffusion and/or grain-boundary sliding (GBS). (2) Is phase mixing in ultramylonites primarily a result of GBS + neighbour switching, creep cavitation and

  19. Finite Strain Analysis of the Wadi Fatima Shear Zone in Western Arabia, Saudi Arabia

    Science.gov (United States)

    Kassem, O. M. K.; Hamimi, Z.

    2018-03-01

    Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes ( Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.

  20. Intra-Continental Deformation by Mid-Crustal Shearing and Doming in a Cenozoic Compressive Setting Along the Ailao Shan-Red River Shear Zone

    Science.gov (United States)

    Zhang, B.

    2016-12-01

    Large-scale lateral strike-slip shear zones have been a key point in the debate about the deformation mechanisms of Asia in response to the India-Asia collision. The exhumed gneiss has been attributed to lateral strike-slip shear zone. This hypothesis has been challenged by recent discoveries indicating that a contractional doming deformation prior to the initiation of lateral strike-slip shearing. The Cenozoic Xuelong Shan antiformal dome is located at the northern segment of the Ailao Shan-Red River shear zone. Subhorizontal foliation in the gneiss core are recognized, representing a broad top-to-NE shear initiated under amphibolite facies conditions and propagated into greenschist facies in the mantling schist and strike-slip shear zone. Quartz CPOs and opening angles of crossed girdle fabrics in quartz suggest that the deformation temperatures increased with increasing structural depth from 300-500 °C in the mantling schist to ≥650 °C in the gneissic core. This trend is mirrored by variations in the metamorphic grade of the syn-kinematic mineral assemblages and microstructures, which ranges from garnet + amphibole + biotite + sillimanite + rutite + feldspar in the core to garnet + staurolite + biotite + epidote + muscovite within the limb units. Five-stage deformation is identified: (1) a broad top-to-NE shear in the subhorizontal level (D1); (2) opposing reverse-sense shear along the two schist limbs of the dome during contraction-related doming (D2-D3); (3) sinistral strike-slip shearing within the eastern limb (D4); and (4) extensional deformation (D5). The antiformal dome formation had been roughly coeval with top-to-NE ductile shearing in the mid-crust at 32 Ma or earlier. The geometries of the antiformal dome in the Xuelong Shan dome are similar to those associated with the antiform in the Dai Nui Con Voi, Diancang Shan and Ailao Shan zones. It is likely that the complex massifs, which define a regional linear gneiss dome zone in Cenozoic intra

  1. Rb-Sr dating of strain-induced mineral growth in two ductile shear zones in the western gneiss region of Nord-Troendelag, Central Norway

    International Nuclear Information System (INIS)

    Piasecki, M.A.; Cliff, R.A.

    1988-01-01

    In the Bjugn district of the northern part of the Western Gneiss Region, Nord-Troendelag, a basement gneiss-cover nappe boundary is marked by a thick zone of ductile shearing. In this zone a layer-parallel mylonitic fabric with related new mineral growth overprints and retrogresses a previous fabric associated with a granulite facies mineral assemblage. Related minor shear belts contain abundant new minerals and vein systems, including pegmatites, believed to represent strain-induced products formed at the time of the shearing movements. Central parts of two large muscovite books from such a pegmatite yielded Rb-Sr, Early to Middle Devonian ages of 389±6 Ma and 386±6 Ma, interpreted as indicating the approximate time of pegmatite formation and of the shearing. Small, matrix-size muscovite and biotite grains from the host mylonite gave ages of 378±6 Ma and 365±5 Ma, respectively, supposed to relate to post-shearing uplift and cooling

  2. A new perspective on the significance of the Ranotsara shear zone in Madagascar

    DEFF Research Database (Denmark)

    Schreurs, Guido; Giese, Jörg; Berger, Alfons

    2010-01-01

    only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E-W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East...... the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone...

  3. Structural setting and magnetic properties of pseudotachylyte in a deep crustal shear zone, western Canadian shield

    Science.gov (United States)

    Orlandini, O. F.; Mahan, K. H.; Brown, L. L.; Regan, S.; Williams, M. L.

    2012-12-01

    Seismic slip commonly produces pseudotachylytes, a glassy vein-filling substance that is typically interpreted as either a frictional melt or an ultra-triturated cataclasite. In either form, pseudotachylytes are commonly magnetite enriched, even in magnetite-free host rocks, and therefore are potentially useful as high fidelity recorders of natural magnetic fields at the time of slip in a wide array of lithologies. Pseudotachylytes generally have high magnetic susceptibility and thus should preserve the dominant field present as the material passes the Curie temperatures of magnetic minerals, primarily magnetite. Two potential sources have been proposed for the dominant magnetic field recorded: the earth's magnetic field at the time of slip or the temporary and orders of magnitude more intense field created by the presence of coseismic currents along the failure plane. Pseudotachylytes of the Cora Lake shear zone (CLsz) in the Athabasca Granulite Terrain, western Canadian shield, are consistently hosted in high strain ultramylonitic orthogneiss. Sinistral and extensional oblique-slip in the CLsz occurred at high-pressure granulite-grade conditions of ~1.0 GPa and >800°C and may have persisted to somewhat lower P-T conditions (~0.8 GPa, 700 °C) during ductile deformation. Pseudotachylyte-bearing slip surfaces have sinistral offset, matching the larger shear zone, and clasts of wall rock in the more brecciated veins display field evidence for ductile shear along the same plane prior to brittle failure. The presence of undeformed pseudotachylyte in kinematically compatible fracture arrays localized in ultramylonite indicates that brittle failure may have occurred in the waning stages of shear zone activity and at similar deep crustal conditions. Field-documented occurrences of pseudotachylyte include 2 cm-thick veins that run subparallel to mylonitic foliation and contain small flow-aligned clasts and large, heavily brecciated foliation-crosscutting zones up to

  4. The Main Shear Zone in Sør Rondane: A key feature for reconstructing the geodynamic evolution of East Antarctica

    Science.gov (United States)

    Ruppel, Antonia; Läufer, Andreas; Lisker, Frank; Jacobs, Joachim; Elburg, Marlina; Damaske, Detlef; Lucka, Nicole

    2013-04-01

    Structural investigations were carried out along the Main Shear Zone (MSZ) of western Sør Rondane (22°-25°E, 71.5°-72.5°S) to gain new information about the position of the East-/West-Gondwana suture and the ancient plate tectonic configuration during Gondwana amalgamation. The WSW-ENE striking MSZ divides south-western Sør Rondane in a northern amphibolite-facies terrane and a southern tonalite-trondhjemite-granodiorite (TTG) terrane. The structure can be traced over a distance of ca. 100 km and reaches several hundred meters in width. It is characterized by a right-lateral sense of movement and marked by a transpressional and also transtensional regime. Ductilely deformed granitoids (ca. 560 Ma: SHRIMP U-Pb of zircon) and ductile - brittle structures, which evolved in a transitional ductile to brittle regime in an undeformed syenite (ca. 499-459 Ma, Ar-Ar mica), provide a late Proterozoic/ early Paleozoic time limit for the activity of the shear zone (Shiraishi et al., 2008; Shiraishi et al., 1997). Documentation of ductile and brittle deformation allows reconstructing up to eight deformation stages. Cross-cutting relationships of structural features mapped in the field complemented by published kinematic data reveal the following relative age succession: [i] Dn+1 - formation of the main foliation during peak metamorphism, [ii] Dn+2 - isoclinal, intrafolial folding of the main foliation, mostly foliation-parallel mylonitic shear zones (1-2 meter thick), [iii] Dn+3 - formation of tight to closed folds, [iv] Dn+4 - formation of relatively upright, large-scale open folds, [v] Dn+5 - granitoid intrusion (e.g. Vengen granite), [vi] Dn+6 - dextral shearing between amphibolite and TTG terranes, formation of the MSZ, [vii] Dn+7 - intrusion of late- to post-tectonic granitoids, first stage of brittle deformation (late shearing along MSZ), intrusion of post-kinematic mafic dykes, [viii] Dn+8 - second stage of brittle deformation including formation of conjugate fault

  5. Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust

    Science.gov (United States)

    Yang, Xin-Yue

    Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone

  6. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    Science.gov (United States)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  7. Three-dimensional shear transformation zone dynamics model for amorphous metals

    International Nuclear Information System (INIS)

    Homer, Eric R; Schuh, Christopher A

    2010-01-01

    A fully three-dimensional (3D) mesoscale modeling framework for the mechanical behavior of amorphous metals is proposed. The model considers the coarse-grained action of shear transformation zones (STZs) as the fundamental deformation event. The simulations are controlled through the kinetic Monte Carlo algorithm and the mechanical response of the system is captured through finite-element analysis, where STZs are mapped onto a 3D finite-element mesh and are allowed to shear in any direction in three dimensions. Implementation of the technique in uniaxial creep tests over a wide range of conditions validates the model's ability to capture the expected behaviors of an amorphous metal, including high temperature flow conforming to the expected constitutive law and low temperature localization in the form of a nascent shear band. The simulation results are combined to construct a deformation map that is comparable to experimental deformation maps. The flexibility of the modeling framework is illustrated by performing a contact test (simulated nanoindentation) in which the model deforms through STZ activity in the region experiencing the highest shear stress

  8. Geophysical anomalies associated with uranium mineralization from Beldih mine, South Purulia Shear Zone, India

    International Nuclear Information System (INIS)

    Mandal, Animesh; Biswas, Arkoprovo; Mittal, Saurabh; Mohanty, William K.; Sharma, Shashi Prakash; Sengupta, Debashish; Sen, Joydip; Bhatt, A.K.

    2013-01-01

    Beldih mine at the central part of the South Purulia Shear Zone (SPSZ) has been reported with low grade uranium-bearing formation within quartz-magnetite-apatite host in kaolinized formation. Therefore, the present integrated geophysical study with gravity, magnetic, radiometric, very low frequency electromagnetic (VLF) and gradient resistivity profiling methods around the known mineralized zones aimed at identifying the exact geophysical signatures and lateral extent of these uranium mineralization bands. The closely spaced gravity-magnetic contours over the low to high anomaly transition zones of Bouguer, reduced-to-pole magnetic, and trend surface separated residual gravity-magnetic anomaly maps indicate the possibility of high altered zone(s) along NW-SE direction at the central part of the study area. High current density plots of VLF method and the low resistive zones in gradient resistivity study depict the coincidence with low gravity, moderately high magnetic and low resistivity anomalies at the same locations. Moderate high radioactive zones have also been observed over these locations. This also suggests the existence of radioactive mineralization over this region. Along profile P2, drilled borehole data revealed the presence of uranium mineralization at a depth of ∼100 m. The vertical projection of this mineralization band also identified as low gravity, low resistivity and high magnetic anomaly zone. Thus, the application of integrated geophysical techniques supported by geological information successfully recognized the nature of geophysical signatures associated with the uranium mineralization of this region. This enhances the scope of further integrated geophysical investigations in the unexplored regions of SPSZ. (author)

  9. Shear wave splitting and crustal anisotropy in the Eastern Ladakh-Karakoram zone, northwest Himalaya

    Science.gov (United States)

    Paul, Arpita; Hazarika, Devajit; Wadhawan, Monika

    2017-06-01

    Seismic anisotropy of the crust beneath the eastern Ladakh-Karakoram zone has been studied by shear wave splitting analysis of S-waves of local earthquakes and P-to-S or Ps converted phases originated at the crust-mantle boundary. The splitting parameters (Φ and δt), derived from S-wave of local earthquakes with shallow focal depths, reveal complex nature of anisotropy with NW-SE and NE oriented Fast Polarization directions (FPD) in the upper ∼22 km of the crust. The observed anisotropy in the upper crust may be attributed to combined effects of existing tectonic features as well as regional tectonic stress. The maximum delay time of fast and slow waves in the upper crust is ∼0.3 s. The Ps splitting analysis shows more consistent FPDs compared to S-wave splitting. The FPDs are parallel or sub parallel to the Karakoram fault (KF) and other NW-SE trending tectonic features existing in the region. The strength of anisotropy estimated for the whole crust is higher (maximum delay time δt: 0.75 s) in comparison to the upper crust. This indicates that the dominant source of anisotropy in the trans-Himalayan crust is confined within the middle and lower crustal depths. The predominant NW-SE trending FPDs consistently observed in the upper crust as well as in the middle and lower crust near the KF zone support the fact that the KF is a crustal-scale fault which extends at least up to the lower crust. Dextral shearing of the KF creates shear fabric and preferential alignment of mineral grains along the strike of the fault, resulting in the observed FPDs. A Similar observation in the Indus Suture Zone (ISZ) also suggests crustal scale deformation owing to the India-Asia collision.

  10. Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Hamimi, Zakaria; El-Sawy, El-Sawy K.; El-Fakharani, Abdelhamid; Matsah, Mohamed; Shujoon, Abdulrahman; El-Shafei, Mohamed K.

    2014-11-01

    The Ad-Damm Shear Zone (AdSZ) is a major NE- (to NNE-) trending fault zone separating Jiddah and Asir tectonic terranes in the Neoproterozoic Juvenile Arabian Shield (AS). AdSZ is characterized by the development of dextral transcurrent shear-sense indicators and moderately to steeply NW plunging stretching lineations. It is mainly developed under high amphibolite-to greenschist-facies conditions and extends ∼380 km, with an average width ∼2-4 km, from the conspicuous Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW-trending sinistral Najd Shear System. This assumption is, based on the noteworthy dextral shear criteria recorded within the 620 Ma mylonitic granite of No'man Complex. A total shear-zone strike length exceeding 117 km is carefully investigated during this study to reconstruct its structural evolution. Shear-sense indicators and other field observations including overprinting relations clearly demonstrate a complicated Neoproterozoic history of AdSZ, involving at least three phases of deformations (D1-D3). Both D1 and D2 phases were of contractional regime. During D1 phase a NW-SE compression led to the formation of NE-oriented low-angle thrusts and tight-overturned folds. D2 is represented by a NE-SW stress oriented that led to the development of an open folding. D3 is expressed by the NE-SW intensive dextral transcurrent brittle-ductile shearing. It is overprinting the early formed fabrics and played a significant role in the creation of AdSZ and the mega-scale related folds. Such deformation history reflects the same Neoproterozoic deformation regime recognized in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  11. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    Science.gov (United States)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  12. A hidden variable in shear transformation zone volume versus Poisson's ratio relation in metallic glasses

    Science.gov (United States)

    Kim, S. Y.; Oh, H. S.; Park, E. S.

    2017-10-01

    Herein, we elucidate a hidden variable in a shear transformation zone (STZ) volume (Ω) versus Poisson's ratio (ν) relation and clarify the correlation between STZ characteristics and the plasticity of metallic glasses (MGs). On the basis of cooperative shear model and atomic stress theories, we carefully formulate Ω as a function of molar volume (Vm) and ν. The twofold trend in Ω and ν is attributed to a relatively large variation of Vm as compared to that of ν as well as an inverse relation between Vm and ν. Indeed, the derived equation reveals that the number of atoms in an STZ instead of Ω is a microstructural characteristic which has a close relationship with plasticity since it reflects the preference of atomistic behaviors between cooperative shearing and the generation of volume strain fluctuation under stress. The results would deepen our understanding of the correlation between microscopic behaviors (STZ activation) and macroscopic properties (plasticity) in MGs and enable a quantitative approach in associating various STZ-related macroscopic behaviors with intrinsic properties of MGs.

  13. Na-metasomatism in the uranium fields of Singhbhum Shear zone, India

    International Nuclear Information System (INIS)

    Chaki, Anjan

    2013-01-01

    Singhbhum Shear Zone (SSZ) of eastern India hosts uranium, copper and apatite-magnetite mineralization, which occurs either independently or overlaps in space. SSZ is a nearly 200 km long, 1-5 km wide, intensely techtonized, northward-convex, arcuate mobile belt that separates the Archaean cratonic nucleus to its south from the Proterozoic North Singhbhum Fold Belt on the north. Except Bagjata mines in the eastern sector, majority of the known uranium deposits and mines (e.g. Jaduguda, Bhatin, Narwapahar, Banduhurang and Mohuldih) are situated in the central sector of the shear zone. All the deposits are of low grade (0.05% U 3 O 8 ) and low to medium tonnage. The common rock types of the SSZ are quartz-chlorite schists, quartzsericite schists, quartzite, metaconglomerate, soda granite, quartz-albite bearing schists/gneisses, granophyres and tourmalinite. The mineralization occur as lenticular to tabular bodies, which are (pene-) concordant with dominant planer structures, i.e. foliation parallel with the lithological layering (S 3 II S 0 ). Principal uranium mineral is uraninite with low thorium (UO 2 /ThO 2 =70-150), high lead (PbO =14-15%) and moderate REE contents with minor pitchblende and some secondary minerals near the surface. Many ore minerals, particularly the sulfide phases of Ni, Co, Mo, Cu and Fe are common

  14. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.

    2017-11-01

    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  15. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    International Nuclear Information System (INIS)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.

    2017-01-01

    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  16. The variation of crustal structure along the Song Ma Shear Zone, Northern Vietnam

    Science.gov (United States)

    Su, Chien-Min; Wen, Strong; Tang, Chi-Chia; Yeh, Yu-Lien; Chen, Chau-Huei

    2018-06-01

    Northern Vietnam is divided into two regions by suture zone. The southwestern region belongs to the Indochina block, and the northeastern region is a portion of the South China block with distinct geological characteristics. From previous studies, the closing the Paleotethys led the collision between the Indochina and South China blocks, and this collision form the suture zone in the Middle Triassic. In the Tertiary, Indian and Eurasian plates started to collide, and this collision caused the extrusion of the Indochina block along the suture zone and a clockwise rotation. Metamorphic rocks associated with the subduction process have been found at the Song Ma Shear Zone (SMSZ) from geological surveys, which indicated that the SMSZ is a possible boundary between the South China and Indochina block. However, according to previous study, there is an argument of whether the SMSZ is a subduction zone of the South China and Indochina plates or not. In this study, we applied the H-κ and the common conversion point (CCP) stacking method using teleseismic converted waves recorded by a seismic broadband array to obtain the Moho depth, VP/VS ratio and the crustal structure along the SMSZ. The CCP results are further used to identify whether the fault extends through the entire crust or not. We have selected two profiles along the SMSZ and a profile across the SMSZ for imaging lateral variations of impedance from stacking. According to H-κ stacking results, crustal thickness vary from 26.0 to 29.3 km, and the average of VP/VS ratio is about 1.77. Finally, the CCP results also show the heterogeneity of crust among the SMSZ. These evidences might support that SMSZ is the suture zone between the South China and Indochina plates.

  17. Middle Jurassic shear zones at Cap de Creus (eastern Pyrenees, Spain) : a record of pre-drift extension of the Piemonte–Ligurian Ocean?

    NARCIS (Netherlands)

    Vissers, Reinoud L. M.; Van Hinsbergen, Douwe J. J.; Wilkinson, Camilla M.; Ganerød, Morgan

    The Cap de Creus peninsula in NE Spain consists of greenschist- to amphibolite-facies metasediments and granitoid bodies of the Variscan Axial Zone of the Pyrenees, overprinted in the north by anastomosed greenschist-facies shear zones. Current tectonic interpretations ascribe these shear zones to

  18. The ultimate fate of a synmagmatic shear zone. Interplay between rupturing and ductile flow in a cooling granite pluton

    Science.gov (United States)

    Zibra, I.; White, J. C.; Menegon, L.; Dering, G.; Gessner, K.

    2018-05-01

    The Neoarchean Cundimurra Pluton (Yilgarn Craton, Western Australia) was emplaced incrementally along the transpressional Cundimurra Shear Zone. During syndeformational cooling, discrete networks of cataclasites and ultramylonites developed in the narrowest segment of the shear zone, showing the same kinematics as the earlier synmagmatic structures. Lithological boundaries between aplite/pegmatite veins and host granitic gneiss show more intense pre-cataclasite fabrics than homogeneous material, and these boundaries later became the preferred sites of shear rupture and cataclasite nucleation. Transient ductile instabilities established along lithological boundaries culminated in shear rupture at relatively high temperature (∼500-600 °C). Here, tensile fractures at high angles from the fault plane formed asymmetrically on one side of the fault, indicating development during seismic rupture, establishing the oldest documented earthquake on Earth. Tourmaline veins were emplaced during brittle shearing, but fluid pressure probably played a minor role in brittle failure, as cataclasites are in places tourmaline-free. Subsequent ductile deformation localized in the rheologically weak tourmaline-rich aggregates, forming ultramylonites that deformed by grain-size sensitive creep. The shape and width of the pluton/shear zone and the regime of strain partitioning, induced by melt-present deformation and established during pluton emplacement, played a key role in controlling the local distribution of brittle and then ductile subsolidus structures.

  19. Characterizing fractures and shear zones in crystalline rock using seismic and GPR methods

    Science.gov (United States)

    Doetsch, Joseph; Jordi, Claudio; Laaksonlaita, Niko; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansruedi

    2016-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. Borehole-based and tunnel-based ground-penetrating radar (GPR) and seismic measurements have the potential to image fractures and other heterogeneities between and around boreholes and tunnels, and to monitor subtle time-lapse changes in great detail. We present the analysis of data acquired in the Grimsel rock laboratory as part of the In-situ Stimulation and Circulation (ISC) experiment, in which a series of stimulation experiments have been and will be performed. The experiments in the granitic rock range from hydraulic fracturing to controlled fault-slip experiments. The aim is to obtain a better understanding of coupled seismo-hydro-mechanical processes associated with high-pressure fluid injections in crystalline rocks and their impact on permeability creation and enhancement. GPR and seismic data have been recorded to improve the geological model and characterize permeable fractures and shear zones. The acquired and processed data include reflection GPR profiles measured from tunnel walls, single-borehole GPR images, and borehole-to-borehole and tunnel-to-tunnel seismic and GPR tomograms. The reflection GPR data reveal the geometry of shear zones up to a distance of 30 m from the tunnels and boreholes, but the interpretation is complicated by the geometrical ambiguity around tunnels and boreholes and by spurious reflections from man-made structures such as boreholes. The GPR and seismic traveltime tomography results reveal brittle fractured rock between two ductile shear zones. The

  20. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    DEFF Research Database (Denmark)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars

    Fault zone. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below....... In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise normal block faults and one reverse block fault showing the complexity of the fault zone. The observed faults appear to affect both the Danian...

  1. Th-Pb ion probe dating of zoned hydrothermal monazite and its implications for repeated shear zone activity: An example from the Central Alps, Switzerland

    Science.gov (United States)

    Bergemann, C.; Gnos, E.; Berger, A.; Whitehouse, M.; Mullis, J.; Wehrens, P.; Pettke, T.; Janots, E.

    2017-04-01

    Th-Pb age dating of zoned hydrothermal monazite from alpine-type fissures/clefts is a powerful tool for constraining polyphase deformation at temperatures below 350°C and presents an alternative to K/Ar and 40Ar/39Ar dating techniques for dating brittle tectonics. This study considers the relationship between cleft orientations in ductile shear zones and cleft mineral crystallization during subsequent brittle overprinting. In the Grimsel area, located in the Aar Massif of the Central Alps, horizontal clefts formed during a primary thrust dominated deformation, while younger and vertically oriented clefts developed during secondary strike-slip movements. The change is due to a switch in orientation between the principal stress axes σ2 and σ3. The transition is associated with monazite crystallization and chloritization of biotite at around 11.5 Ma. Quartz fluid inclusion data allow a link between deformation stages and temperatures to be established and indicate that primary monazite crystallization occurred in both cleft systems at 300-350°C. While cleft monazite crystallization ceases at 11 Ma in inactive shear zones, monazite growth, and/or dissolution-reprecipitation continues under brittle deformation conditions in vertical clefts during later deformation until 7 Ma. This younger shear zone activity occurs in association with dextral strike-slip movement of the Rhone-Simplon fault system. With the exception of varying Th/U values correlated with the degree of oxidation, there is only limited compositional variation in the studied cleft monazites.

  2. Magnetic fabrics in characterization of magma emplacement and tectonic evolution of the Moyar Shear Zone, South India

    Directory of Open Access Journals (Sweden)

    P. Pratheesh

    2013-01-01

    Full Text Available The Moyar Shear Zone (MSZ of the South Indian granulite terrain hosts a prominent syenite pluton (∼560 Ma and associated NW-SE to NE-SW trending mafic dyke swarm (∼65 Ma and 95 Ma. Preliminary magnetic fabric studies in the mafic dykes, using Anisotropy of Magnetic Susceptibly (AMS studies at low-field, indicate successive emplacement and variable magma flow direction. Magnetic lineation and foliation in these dykes are identical to the mesoscopic fabrics in MSZ mylonites, indicating shear zone guided emplacement. Spatial distribution of magnetic lineation in the dykes suggests a common conduit from which the source magma has been migrated. The magnetic foliation trajectories have a sigmoidal shape to the north of the pluton and curve into the MSZ suggesting dextral sense of shear. Identical fabric conditions for magnetic fabrics in the syenite pluton and measured field fabrics in mylonite indicate syntectonic emplacement along the Proterozoic crustal scale dextral shear zone with repeated reactivation history.

  3. Ring shear characteristics of clays in fractured-zone-landslide. Hasaitai chisuberichi no nenseido no ring sendan tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yatabe, R; Yagi, N; Enoki, M [Ehime Univ., Ehime (Japan). Faculty of Engineering

    1991-09-20

    The importance of study on the residual strength, in addition to the peak strength, has been pointed out for the study of landslides. The residual strength characteristics, effects of shearing rate, and grain size of clays, as well as the residual strength characteristics of clay minerals of a fractured zone landslide were examined by ring shear tests. The residual friction angles {phi}{sub r} of the tested clays of the fractured zone landslide were from 10 to 31{degree}, and were smaller than those of shearing resistance angles {phi}{prime} obtained by triaxial tests by 5 to 15{degree}. Contrary to the pointing out made hitherto, no correlation between clay content CF and plastic index was recognized for {phi}{sub r} of clays of a fractured zone landslide. As regards CF, the relation with CF was far below the lowest limit indicated by now. Ring shear characteristics of principal structural clay minerals, vermiculite, mica, illite, chlorite, and kaolinite were investigated. {phi}{sub r} of these clay minerals were in the range from 10 to 25{degree}. 20 refs., 14 figs., 2 tabs.

  4. A viscoplastic shear-zone model for deep (15-50 km) slow-slip events at plate convergent margins

    Science.gov (United States)

    Yin, An; Xie, Zhoumin; Meng, Lingsen

    2018-06-01

    A key issue in understanding the physics of deep (15-50 km) slow-slip events (D-SSE) at plate convergent margins is how their initially unstable motion becomes stabilized. Here we address this issue by quantifying a rate-strengthening mechanism using a viscoplastic shear-zone model inspired by recent advances in field observations and laboratory experiments. The well-established segmentation of slip modes in the downdip direction of a subduction shear zone allows discretization of an interseismic forearc system into the (1) frontal segment bounded by an interseismically locked megathrust, (2) middle segment bounded by episodically locked and unlocked viscoplastic shear zone, and (3) interior segment that slips freely. The three segments are assumed to be linked laterally by two springs that tighten with time, and the increasing elastic stress due to spring tightening eventually leads to plastic failure and initial viscous shear. This simplification leads to seven key model parameters that dictate a wide range of mechanical behaviors of an idealized convergent margin. Specifically, the viscoplastic rheology requires the initially unstable sliding to be terminated nearly instantaneously at a characteristic velocity, which is followed by stable sliding (i.e., slow-slip). The characteristic velocity, which is on the order of <10-7 m/s for the convergent margins examined in this study, depends on the (1) effective coefficient of friction, (2) thickness, (3) depth, and (4) viscosity of the viscoplastic shear zone. As viscosity decreases exponentially with temperature, our model predicts faster slow-slip rates, shorter slow-slip durations, more frequent slow-slip occurrences, and larger slow-slip magnitudes at warmer convergent margins.

  5. Structural evolution of the Irtysh Shear Zone: implication for the Late Paleozoic amalgamation of multiple arc systems in Central Asia

    Science.gov (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon

    2015-04-01

    The NW-SE Irtysh Shear Zone represents a major tectonic boundary in the Central Asian Orogenic Belt, recording the amalgamation history between the peri-Siberian orogenic system and the Kazakhstan orogenic system. The structural evolution and geodynamics of this shear zone is still poorly documented. Here we present new structural data complemented by chronological data in an attempt to unravel the geodynamic significance of the Irtysh Shear Zone in the context of accretion history of the Central Asian Orogenic Belt. Our results show three episodes of deformation for the shear zone. D1 foliation is locally recognized in low strain area and recorded by garnet inclusions, whereas D2 is represented by a sub-horizontal fabric and related NW-SE lineation. D3 is characterized by a transpersonal deformation event, to form a series of NW-SE mylonitic belts with sinistral kinematics, and to overprint D2 fabric forming regional-scale NW-SE upright folds. A paragneiss sample from the shear zone yielded the youngest detrital zircon peaks in the late Carboniferous, placing a maximum age constraint on the deformation, which overlaps in time with the late Paleozoic collision between the Chinese Altai and the intraoceanic arc system of the East Junggar and West Junggar. We interpret three episodes of deformation to represent orogenic thickening (D1), collapse (D2) and thickening (D3) in response to this collisional event. Sinistral shearing (D3) together with the coeval dextral shearing in the Tianshan accommodate eastward extrusion of the Kazakhstan orogenic system during the late Paleozoic amalgamation of the Central Asian Orogenic Belt. Acknowledgements: This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (Grant: 2014CB440801), Hong Kong Research Grant Council (HKU705311P and HKU704712P), National Science Foundation of China (41273048, 41273012) and a HKU CRCG grant. The work is a contribution of the Joint

  6. Global shear speed structure of the upper mantle and transition zone

    Science.gov (United States)

    Schaeffer, A. J.; Lebedev, S.

    2013-07-01

    resolution of the imaging. Our new shear speed model is parametrized on a triangular grid with a ˜280 km spacing. In well-sampled continental domains, lateral resolution approaches or exceeds that of regional-scale studies. The close match of known surface expressions of deep structure with the distribution of anomalies in the model provides a useful benchmark. In oceanic regions, spreading ridges are very well resolved, with narrow anomalies in the shallow mantle closely confined near the ridge axis, and those deeper, down to 100-120 km, showing variability in their width and location with respect to the ridge. Major subduction zones worldwide are well captured, extending from shallow depths down to the transition zone. The large size of our waveform fit data set also provides a strong statistical foundation to re-examine the validity field of the JWKB approximation and surface wave ray theory. Our analysis shows that the approximations are likely to be valid within certain time-frequency portions of most seismograms with high signal-to-noise ratios, and these portions can be identified using a set of consistent criteria that we apply in the course of waveform fitting.

  7. Simulations of a stretching bar using a plasticity model from the shear transformation zone theory

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H.; Gibou, Frederic

    2010-06-05

    An Eulerian simulation is developed to study an elastoplastic model of amorphous materials that is based upon the shear transformation zone theory developed by Langer and coworkers. In this theory, plastic deformation is controlled by an effective temperature that measures the amount of configurational disorder in the material. The simulation is used to model ductile fracture in a stretching bar that initially contains a small notch, and the effects of many of the model parameters are examined. The simulation tracks the shape of the bar using the level set method. Within the bar, a finite difference discretization is employed that makes use of the essentially non-oscillatory (ENO) scheme. The system of equations is moderately stiff due to the presence of large elastic constants, and one of the key numerical challenges is to accurately track the level set and construct extrapolated field values for use in boundary conditions. A new approach to field extrapolation is discussed that is second order accurate and requires a constant amount of work per gridpoint.

  8. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    Science.gov (United States)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  9. The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault

    Science.gov (United States)

    Thatcher, Wayne R.; Savage, James C.; Simpson, Robert W.

    2016-01-01

    Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.

  10. A low-temperature ductile shear zone: The gypsum-dominated western extension of the brittle Fella-Sava Fault, Southern Alps.

    Science.gov (United States)

    Bartel, Esther Maria; Neubauer, Franz; Heberer, Bianca; Genser, Johann

    2014-12-01

    Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies.

  11. A review of porosity-generating mechanisms in crustal shear zones

    Science.gov (United States)

    Fusseis, F.; Regenauer-Lieb, K.; Revets, S.

    2009-04-01

    Knowledge of the spatiotemporal characteristics of permeability is critical for the understanding of fluid migration in rocks. In diagenetic and metamorphic rocks different porosity-generating mechanisms contribute to permeability and so influence fluid migration and fluid/rock interaction. However, little is known about their relative contributions to the porosity architecture of a rock in a tectono-metamorphic environment. This presentation reviews porosity-generating mechanisms that affect fluid migration in shear zones, the most important crustal fluid conduits, in the context of the tectonometamorphic evolution of rocks. Mechanisms that generate porosity can be classified in a) those that involve the direct action of a fluid, b) processes in which a fluid partakes or that are supported by a fluid or c) mechanism that do not involve a fluid. a) Hydraulic fracturing, where it happens through the formation of tensile fractures, occurs where pore fluid pressures equalize the combined lithostatic pressure and strength of the rock (Etheridge et al., 1984, Cox & Etheridge, 1989, Oliver, 1996). Here an internally released (devolatilisation reactions, e.g., Rumble, 1994, Hacker, 1997, Yardley, 1997 and references therein) or externally derived (infiltrating from metamorphic, magmatic or meteoric sources, Baumgartner et al., 1997, Jamtveit et al., 1997, Thompson, 1997, Gleeson et al., 2003) fluid directly causes the mechanical failure of a rock. Where a fluid is in chemical disequilibrium with a rock (undersaturated with regard to a chemical species) minerals will be dissolved, generating dissolution porosity. Rocks ‘leached' by the removal of chemical components by vast amounts of fluid are reported to lose up to 60% of their original volume (e.g., Kerrich et al., 1984, McCaig 1988). Dissolution porosity is probably an underrated porosity-generating mechanism. It can be expected along the entire metamorphic evolution, including diagenesis (Higgs et al., 2007) and

  12. An integrated study of aerospace data for uranium exploration in the Magajhi-Kotapali shear zone, Surguja district, Madhya Pradesh, India

    International Nuclear Information System (INIS)

    Chaturvedi, A.K.; Kak, S.N.

    1993-01-01

    Lower Proterozoic granite gneiss and associated cataclastic rocks of Surguja crystalline complex record uranium mineralisation along the WNW-ESE trending Magajhi-Kotapali shear zone. Extension of the shear zone and cross faults trending NE-SW were established using enhanced satellite data. On integrating it with aeroradiometric data, it has been found that uranium mineralisation is shear controlled and occur around the zone of intersection between the WNW-ESE trending shear and the NE-SW faults. The study has narrowed down the target area for detailed ground investigations and finally resulted in locating promising areas such as Chathila Pahar, Haskepi, Jarhakhar-Semarkhar, and Tilti forest with good extensions along the shear zone. (author). 18 refs., 5 figs

  13. Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones

    Science.gov (United States)

    Kirby, S.H.

    1985-01-01

    Emphasized in this paper are the deformation processes and rheologies of rocks at high temperatures and high effective pressures, conditions that are presumably appropriate to the lower crust and upper mantle in continental collision zones. Much recent progress has been made in understanding the flexure of the oceanic lithosphere using rock-mechanics-based yield criteria for the inelastic deformations at the top and base. At mid-plate depths, stresses are likely to be supported elastically because bending strains and elastic stresses are low. The collisional tectonic regime, however, is far more complex because very large permanent strains are sustained at mid-plate depths and this requires us to include the broad transition between brittle and ductile flow. Moreover, important changes in the ductile flow mechanisms occur at the intermediate temperatures found at mid-plate depths. Two specific contributions of laboratory rock rheology research are considered in this paper. First, the high-temperature steady-state flow mechanisms and rheology of mafic and ultramafic rocks are reviewed with special emphasis on olivine and crystalline rocks. Rock strength decreases very markedly with increases in temperature and it is the onset of flow by high temperature ductile mechanisms that defines the base of the lithosphere. The thickness of the continental lithosphere can therefore be defined by the depth to a particular isotherm Tc above which (at geologic strain rates) the high-temperature ductile strength falls below some arbitrary strength isobar (e.g., 100 MPa). For olivine Tc is about 700??-800??C but for other crustal silicates, Tc may be as low as 400??-600??C, suggesting that substantial decoupling may take place within thick continental crust and that strength may increase with depth at the Moho, as suggested by a number of workers on independent grounds. Put another way, the Moho is a rheological discontinuity. A second class of laboratory observations pertains to

  14. In-situ 40Ar/39Ar Laser Probe Dating of Micas from Mae Ping Shear Zone, Northern Thailand

    Science.gov (United States)

    Lin, Y. L.; Yeh, M. W.; Lo, C. H.; Lee, T. Y.; Charusiri, P.

    2012-04-01

    The Mae Ping Shear Zone (MPSZ, also known as Wang Chao Fault Zone), which trends NW-SE from Myanmar to central Thailand, was considered as the southern boundary of the SE extrusion of Indochina and Sibumasu block during the Cenozoic escape tectonic event of SE asia. Many analyses of 40Ar/39Ar dating on biotite and K-feldspar, K/Ar dating on biotite and illite, zircon fission-track and apatite fission-track dating had been accomplished to constrain the shearing period. Nevertheless, it is hard to convince that the ages could represent the end of the shearing since none of the dated minerals have been proved to be crystallized syn-tectonically. Meta-granitoid and gneiss from the MPSZ were analyzed in this study by applying in-situ 40Ar/39Ar laser probe dating with combination of petrology and micro-structural analysis in the purpose to decipher the geological significance of the dates. Plagioclase was replacing K-feldspar for K-feldspar was cut and embayed by plagioclase observed by SEM + EDS. Muscovite in the granitoid own fish shapes of sinistral sense of shearing, and are always in contact with plagioclase and quartz, which suggests that the muscovite crystallized from the dissolving K-feldspar under amphibolite facies condition. 117 spots on 12 muscovite fishes yield ages from 44 Ma to 35 Ma and have a mean age of 40 Ma. Since the growth condition of the muscovite is higher than the closure temperature, thus we can interpret these muscovite ages as cooling ages. Hence left-lateral shearing of the MPSZ can be deduced as syn- to post-muscovite growth and uplifted the crystalline rocks within the shear zone. The ages of matrix biotite in gneiss has a mean age of 35 Ma, which is consistent with the cooling path reconstructed from previous studies. While the ages of inclusion biotite in the K-feldspar phenocryst scatter from 40 to 50 Ma due to the isotopes were not totally re-equilibrated during the shearing. Consequently, the left-lateral shearing of the MPSZ was

  15. Field Observations and Modeling Results of the McMurdo Shear Zone, Antarctica: Implications on Shear Margin Dynamics and Long- Term Viability of the South Pole Traverse

    Science.gov (United States)

    Kaluzienski, L. M.; Koons, P. O.; Enderlin, E. M.; Courville, Z.; Campbell, S. W.; Arcone, S.; Jordan, M.; Ray, L.

    2017-12-01

    Antarctica's ice shelves modulate the flow of inland ice towards the ocean. Understanding the controls on ice-shelf stability are critical to predicting the future evolution of the Antarctic Ice Sheet. For the Ross Ice Shelf (RIS), an important region of lateral resistance is the McMurdo Shear Zone (MSZ), a 5-10 km wide strip of heavily crevassed ice. On a yearly basis the United States Antarctic Program (USAP) mitigates crevasse hazards along the South Pole Traverse (SPoT) route that crosses this region. However, as ice advects northward past the lateral buttress of White Island into a region of greater flow divergence, intensified crevassing has been observed which will continue to place a substantial burden on safety mitigation efforts. The route has advected down-glacier towards this complex region since 2002 so the USAP currently has plans to relocate the shear zone crossing upstream in the near future. Our work aims to assess the feasibility of moving the route to several potential locations based on results from an integrated project incorporating detailed field-based observations of crevasse distributions and orientation from ground-penetrating radar (GPR), GPS and remote sensing observations of the flow and stress field within the MSZ, and finite element numerical modeling of local and regional kinematics within the region. In addition, we assess plausible dynamic forcings both upstream and downstream of the MSZ that could influence shear zone stability. These include changes in mass flux across the grounding lines of tributary glaciers such as the observed increase in ice discharge from of Byrd Glacier (Stearns et al., 2008) as well as changes at the MIS front due to recent intensified rift propagation (Banwel et al., 2017). Results from this work will increase our understanding of ice shelf shear margin dynamics and provide a firm basis for predicting the long-term behavior of the MSZ and viability of the SPoT. Stearns, Leigh A., Benjamin E. Smith, and

  16. U-Pb SHRIMP data and geochemical characterization of granitoids intruded along the Coxixola shear zone, Provincia Borborema, NE Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Ignez de Pinho; Silva Filho, Adejardo Francisco da; Silva, Francis M.J.V. da, E-mail: ignez@ufpe.br [Universidade Federal de Pernanmbuco (UFPE), Recife, PE (Brazil). Dept. de Geologia; Armstrong, Richard [Australian National University (Australia)

    2011-07-01

    A large volume of granitic magmatism associated with large scale shear zone and metamorphism under high-T amphibolite facies conditions characterize the Brasiliano Orogeny in the Borborema Province, NE Brazil. Granitoids from two plutons and later dykes intruded along the Coxixola shear zone show distinct crystallization ages and geochemical signature. The oldest granitoids (618 ± 5 Ma), Serra de Inacio Pereira Pluton are coeval with the peak of regional metamorphism and they were probably originated by melting of a paleoproterozoic source. The granitoids from the Serra do Marinho Pluton show crystallization age of 563 ± 4 Ma and geochemical signature of post-collisional A-type granites. The later dykes have crystallization age of 526 ± 7 Ma, geochemical signature of A-type granitoids. (author)

  17. The role of chemical processes and brittle deformation during shear zone formation and its potential geophysical implications

    Science.gov (United States)

    Goncalves, Philippe; Leydier, Thomas; Mahan, Kevin; Albaric, Julie; Trap, Pierre; Marquer, Didier

    2017-04-01

    Ductile shear zones in the middle and lower continental crust are the locus of interactions between mechanical and chemical processes. Chemical processes encompass metamorphic reactions, fluid-rock interactions, fluid flow and chemical mass-transfer. Studying these processes at the grain scale, and even the atom scale, on exposed inactive shear zones can give insights into large-scale geodynamics phenomena (e.g. crustal growth and mountain building through the reconstruction of P-T-t-D-Ɛ evolutionary paths. However, other major issues in earth sciences can be tackled through these studies as well. For instance, the mechanism of fluid flow and mass transfer in the deep crust where permeability should be small and transient is still largely debated. Studying exhumed inactive shear zones can also help to interpret several new geophysical observations like (1) the origin of tremor and very low frequency earthquakes observed in the ductile middle and lower crust, (2) mechanisms for generating slow slip events and (3) the physical origin of puzzling crustal anisotropy observed in major active crustal shear zones. In this contribution, we present a collection of data (deformation, petrology, geochemistry, microtexture) obtained on various shear zones from the Alps that were active within the viscous regime (T > 450°C). Our observations show that the development of a shear zone, from its nucleation to its growth and propagation, is not only governed by ductile deformation coeval with reactions but also involves brittle deformation. Although brittle deformation is a very short-lived phenomenon, our petrological and textural observations show that brittle failure is also associated with fluid flow, mass transfer, metasomatic reactions and recrystallization. We speculate that the fluids and the associated mineralogical changes involved during this brittle failure in the ductile crust might play a role in earthquake / tremor triggering below the brittle - ductile transition

  18. Neoproterozoic Evolution and Najd‒Related Transpressive Shear Deformations Along Nugrus Shear Zone, South Eastern Desert, Egypt (Implications from Field‒Structural Data and AMS‒Technique)

    Science.gov (United States)

    Hagag, W.; Moustafa, R.; Hamimi, Z.

    2018-01-01

    The tectonometamorphic evolution of Nugrus Shear Zone (NSZ) in the south Eastern Desert of Egypt was reevaluated through an integrated study including field-structural work and magnetofabric analysis using Anisotropy of Magnetic Susceptibility (AMS) technique, complemented by detailed microstructural investigation. Several lines of evidence indicate that the Neoproterozoic juvenile crust within this high strain zone suffered an impressive tectonic event of left-lateral transpressional regime, transposed the majority of the earlier formed structures into a NNW to NW-directed wrench corridor depicts the northwestern extension of the Najd Shear System (NSS) along the Eastern Desert of Egypt. The core of the southern Hafafit dome underwent a high metamorphic event ( M 1) developed during the end of the main collisional orogeny in the Arabian-Nubian Shield (ANS). The subsequent M 2 metamorphic event was retrogressive and depicts the tectonic evolution and exhumation of the Nugrus-Hafafit area including the Hafafit gneissic domes, during the origination of the left-lateral transpressive wrench corridor of the NSS. The early tectonic fabric within the NSZ and associated highly deformed rocks was successfully detected by the integration of AMS-technique and microstructural observations. Such fabric grain was checked through a field-structural work. The outcomes of the present contribution advocate a complex tectonic evolution with successive and overlapped deformation events for the NSZ.

  19. Shear transformation zone activation during deformation in bulk metallic glasses characterized using a new indentation creep technique

    Science.gov (United States)

    J.B. Puthoff; H.B. Cao; Joseph E. Jakes; P.M. Voyles; D.S. Stone

    2009-01-01

    We have developed a novel type of nanoindentation creep experiment, called broadband nanoindentation creep (BNC), and used it to characterize the thermal activation of shear transformation zones (STZs) in three BMGs in the Zr-Cu-Al system. Using BNC, material hardness can be determined across a wide range of strain rates (10–4 to 10 s–...

  20. Neoproterozoic Structural Evolution of the NE-trending 620-540 Ma Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Hamimi, Z.; El-Sawy, E. K.; El-Fakharan, A. S.; Shujoon, A.; Matsah, M.; El-Shafei, M.

    2012-04-01

    Ad-Damm Shear Zone (ASZ) is a NE-trending fault zone separating Jeddah and Asir tectonostratigraphic terranes in the Neoproterozoic juvenile Arabian Shield. ASZ extends ~380 km, with an average width ~2-3 km, from the eye-catching Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW- trending sinistral Najd Shear System based on noteworthy dextral shear criteria recorded within the 620 Ma sheared granites of Numan Complex, as well as right-lateral offsets within quartz veins and dikes transected by the shear zone. The present study is an integrated field-based structural analysis and remote sensing. We utilized the ASTER data for lithologic discrimination and automatic structural lineament extraction and analysis of the Neoproterozoic basement lithologies encountered along and within the vicinity of ASZ. Various false color composite images were generated and evaluated for lithological mapping and structural lineaments. The obtained map was analyzed using GIS techniques to interpret the behavior of the existing lineaments and their spatial distribution. Based on the results of the ASTER data, two significant areas; around Bir Ad-Damm and to the south of Wadi Numan, are selected for detailed field investigation. Shear-sense indicators and overprinting relations clearly show a complicated Neoproterozoic history of ASZ, involving at least three deformations: (1) an early attenuated NE-SW sinistral shearing; followed by (2) a SE-directed thrusting phase resulted in the formation SE-verging thrusts and associated thrust-related folds; and (3) late NE-SW intensive dextral transcurrent shearing played a significant role in the creation of mesoscopic shear-zone related folds, particularly in the area near Bir Ad-Damm. Such deformation history demonstrates the same episode of Neoproterozoic deformation exhibited in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  1. Select transition zone prostate cancers may be radiocurable despite markedly elevated prostate-specific antigen levels

    International Nuclear Information System (INIS)

    D'Amico, Anthony V.; Kaplan, Irving

    1996-01-01

    In 1993, three men with transition zone prostate cancers were described (Stamey et al., J. Urol. 149: 510-515, 1993) who despite high prostate-specific antigen (PSA) levels remained PSA failure-free at 22 months postoperatively. This report illustrates that prolonged PSA failure free survival may be achieved when external beam radiation therapy is used to treat similar patients

  2. Metamorphic history of garnet-rich gneiss at Ktiš in the Lhenice shear zone, Moldanubian Zone of the southern Bohemian Massif, inferred from inclusions and compositional zoning of garnet

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, T.; Hirajima, T.; Kawakami, T.; Svojtka, Martin

    2011-01-01

    Roč. 124, 1/2 (2011), s. 46-65 ISSN 0024-4937 Institutional research plan: CEZ:AV0Z30130516 Keywords : Bohemian Massif * Lhenice shear zone * garnet * P-T path * partial melting Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.246, year: 2011

  3. Petrology, chronology and sequence of vein systems: Systematic magmatic and hydrothermal history of a major intracontinental shear zone, Canadian Appalachians

    Science.gov (United States)

    Pe-Piper, Georgia; Piper, David J. W.; McFarlane, Chris R. M.; Sangster, Chris; Zhang, Yuanyuan; Boucher, Brandon

    2018-04-01

    Intra-continental shear zones developed during continental collision may experience prolonged magmatism and mineralization. The Cobequid Shear Zone formed part of a NE-SW-trending, orogen-parallel shear system in the late Devonian-early Carboniferous, where syn-tectonic granite-gabbro plutons and volcanic rocks 4 km thick were progressively deformed. In late Carboniferous to Permian, Alleghanian collision of Africa with Laurentia formed the E-W trending Minas Fault Zone, reactivating parts of the Cobequid Shear Zone. The 50 Ma history of hydrothermal mineralization following pluton emplacement is difficult to resolve from field relationships of veins, but SEM study of thin sections provides clear detail on the sequence of mineralization. The general paragenesis is: albite ± quartz ± chlorite ± monazite → biotite → calcite, allanite, pyrite → Fe-carbonates, Fe-oxides, minor sulfides, calcite and synchysite. Chronology was determined from literature reports and new U-Pb LA-ICPMS dating of monazite and allanite in veins. Vein mineralization was closely linked to magmatic events. Vein emplacement occurred preferentially during fault movement recognised from basin-margin inversion, as a result of fractures opening in the damage zone of master faults. The sequence of mineralization, from ca. 355 Ma riebeckite and albite veins to ca. 327 (-305?) Ma siderite-magnetite and sulfide mineralization, resembles Precambrian iron-oxide-copper-gold (IOCG) systems in the literature. The abundant magmatic Na, halogens and CO2 in veins and some magmatic bodies, characteristic of IOCG systems, were derived from the deeply subducted Rheic Ocean slab with little terrigenous sediment. Regional extension of the Magdalen Basin caused asthenospheric upwelling and melting of the previously metasomatized sub-continental lithospheric mantle. Crustal scale strike-slip faulting facilitated the rise of magmas, resulting in high heat flow driving an active hydrothermal system. Table S2

  4. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    Science.gov (United States)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire

  5. Radon exhalation and radiometric prospecting on rocks associated with Cu-U mineralizations in the Singhbhum shear zone, Bihar

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, D.; Kumar, Rajeev; Singh, A.K.; Prasad, Rajendra E-mail: aptolrp@amu.up.nic.in

    2001-11-01

    The Singhbhum thrust belt is a 200 km long arcuate orogenic belt in Bihar, eastern India. The huge mineral resources, viz. copper, uranium, magnetite, apatite and molybdenite, etc., make it significant from an economic as well as a geological point of view. The belt hosts three types of mineralization: sulphides of copper and other metals, uranium oxides and apatite-magnetite. Several distinct geological episodes are responsible for the evolution of mineralization and the thrust zone itself. Extensive and reliable radiometric prospecting and assaying have been carried out by us for the past 5 years from Dhobani in the east to Turamdih in the west of the Singhbhum shear zone. The present work indicates uranium mineralization in the Pathargora-Rakha area presently being mined for copper and also within areas in the vicinity of Bhatin. Studies on radon emanation have also been undertaken in some parts of the shear zone which indicate reasonably high radon emanation of the soils and rocks studied. This suggests the need for regular monitoring and suitable controls on the mine environment (air quality) and its vicinity. Radon emanation studies coupled with gamma-ray spectrometry and the subsequent modelling of the radiometric and radon measurements will help in the application of radon as a geophysical tracer in exploration of radioactive ore bodies and in radon risk assessment as well as in delineating active and passive faults and even in petroleum exploration.

  6. The Sierra de Cabral range: a restraining bend related to the Sierra Ballena shear zone in Dom Feliciano belt

    International Nuclear Information System (INIS)

    Masquelin, H.

    2010-01-01

    Restraining and releasing bends occurring in all crustal environments are common but enigmatic features of strike-slip fault systems. They can be reported in all scales of observation. Regional-scale restraining bends are sites of mountain building, transpressional deformation and basement exhumation. Releasing bends are sites of subsidence, transtensional deformation and pull-apart basins. The Dom Feliciano Belt of Southern Uruguay has two main structures observed from the outer space: (i) the Sierra Ballena Shear Zone and (ii) the Sierra de Cabral flexure located to the SW of the former. Although a transpressional regime is commonly accepted for the Dom Feliciano Belt, the available tectonic models do not provide satisfactory explanations for its building mechanism. A restraining bend is proposed at the SW termination of Sierra Ballena strike-slip ductile shear zone. In a key-area (Alvariza Range) the relationship between the Zanja del Tigre volcanic-detritic and the calcareous succession shows three en-échelon upright bends of the same quartzite hanging-wall between two sub-vertical strike-slip faults, suggesting the existence of a shortened strike-slip duplex operating in viscous-elastic rheology. The deformation partitioning includes strike-slip and dip-slip simple-shear components as well as one contractional pure-shear component. Because restraining bends were scarcely described in Neoproterozoic low-grade regional exhumation conditions, this structural framework would be a natural laboratory to study fault kinematics, fault dynamics, their associated deformation and the tectonic and erosion constraints related to the exhumation of many crystalline terrains

  7. Two-stage structural development of a Paleozoic auriferous shear zone at the Globe-Progress deposit, Reefton, New Zealand

    International Nuclear Information System (INIS)

    Milham, L.; Craw, D.

    2009-01-01

    The Globe-Progress gold deposit at Reefton is hosted in a curvilinear mineralised zone that cuts Paleozoic Greenland Group basement metagreywackes. Two discrete phases of mineralisation have resulted in the formation of five different ore types along the shear. An initial phase of mineralisation formed hydrothermal quartz veins and associated Au, As, and S enrichment, with low-grade mineralised host rock. These quartz veins and mineralised host rocks form the outer regions of the mineralised zone. A second hydrothermal phase introduced Sb, Au, As, and S during brittle shear deformation focused on the pre-existing mineralised rocks. This deformation and mineralisation resulted in the formation of metre-scale cataclasite ore and quartz breccia from mineralised host rock and hydrothermal quartz veins, respectively. Cataclasite was derived from argillite layers in the host rock, from which Na, Fe, and Mg have been leached during mineralisation; Al, Ti, and Cr have been conserved; and there has been minor enrichment in Sr, Pb, Zn, and Cu. No quartz was added to the cataclasite or quartz breccia during mineralisation, but some quartz recrystallisation occurred locally, and quartz clasts were physically incorporated into the cataclasite during deformation. The presence of euhedral sulfides in the cataclasite (40% of total sulfides), late-stage undeformed stibnite veins infilling breccia (1-5 cm 3 scale), and undeformed free gold in quartz breccia, imply that the second phase of mineralisation persisted both during and after cataclasis and brecciation. Antimony deposition is greatest in the central cataclasite, up to 6 wt%, and locally in the quartz breccia where stibnite veins are present. Concentrations of Sb decrease with distance from the shear zone. The second, Sb-rich phase of mineralisation in the Globe-Progress deposit resembles similar Sb-rich overprints in the correlative Victorian goldfield of Australia. (author). 38 refs., 10 figs., 1 tab.

  8. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang; Lavier, Luc L.

    2016-01-01

    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  9. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang

    2016-08-22

    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  10. Structural analysis and magmatism characterization of the Major Gercino shear zone, Santa Catarina State, Brazil; Analise estrutural e caracterizacao do magmatismo da zona de cisalhamento Major Gercino, SC

    Energy Technology Data Exchange (ETDEWEB)

    Passarelli, Claudia Regina

    1996-12-31

    This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr{sup 87} / Sr{sup 86} initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 {+-} 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 {+-} 15 Ma.) 220 refs., 107 figs., 18 tabs., 4 maps

  11. Integrating Apparent Conductance in Resistivity Sounding to Constrain 2D Gravity Modeling for Subsurface Structure Associated with Uranium Mineralization across South Purulia Shear Zone, West Bengal, India

    Directory of Open Access Journals (Sweden)

    Arkoprovo Biswas

    2014-01-01

    Full Text Available South Purulia Shear Zone (SPSZ is an important area for the prospect of uranium mineralization and no detailed geophysical investigations have been carried out in this region. To delineate the subsurface structure in the present area, vertical electrical soundings using Schlumberger array and gravity survey were carried out along a profile perpendicular to the SPSZ. Apparent conductance in the subsurface revealed a possible connection from SPSZ to Raghunathpur. The gravity model reveals the presence of a northerly dipping low density zone (most likely the shear zone extending up to Raghunathpur under a thin cover of granitic schist of Chotanagpur Granite Gneissic Complex (CGGC. The gravity model also depicts the depth of the zone of density low within this shear zone at ~400 m near Raghunathpur village and this zone truncates with a steep slope. Integration of resistivity and gravity study revealed two possible contact zones within this low density zone in the subsurface at depth of 40 m and 200 m. Our study reveals a good correlation with previous studies in Raghunathpur area characterized by medium to high hydro-uranium anomaly. Thus the conducting zone coinciding with the low gravity anomaly is inferred to be a possible uranium mineralized zone.

  12. Micro tectonic milonitas analysis in the extreme south of the Sarandi del Yi shear zone: Kinematics and deformation conditions

    International Nuclear Information System (INIS)

    Oyhantçabal, P; Suarez, I; Seluchi, N; Martinez, X.

    2010-01-01

    The Shear Zone divides Sarandi del Yi Craton River Plate in Piedra Alta and Nico Perez land . The southern end of this zone extends to north - south from the vicinity of the town of Minas to Punta Solis. The predominant lithology of the study area consists of a granitic mylonite with abundant muscovite and biotite. Structural data of foliation , stretching lineation and kinematic indicators were surveyed .Petrographic analysis shows that quartz is presented as ribbons polycrystalline product subgrain rotation recrystallization and grain boundary migration . Feldspar porphyroclasts are partially recrystallized in developing type structures c ore and mantle . Kinematic indicators such as sigma porphyroclasts , mica fish and oblique foliation defined consistently sinistral sense . The presence of stable and mirmequitas in the plane of biotite foliation along the microstructures described in quartz and feldspar , can be inferred temperature conditions between 450 ° C and 550° C during deformation

  13. The Santa Rita Shear Zone: Major Mesozoic deformation along the western flank of the White-Inyo Range, CA

    Energy Technology Data Exchange (ETDEWEB)

    Brudos, T.C.; Paterson, S.R. (Univ. of Southern California, Los Angeles, CA (United States). Dept. of Geological Sciences)

    1993-04-01

    The Santa Rita Shear Zone (SRSZ), briefly described by Ross (1967), deforms the western part of the 164 Ma Santa Rita Flat pluton (SRFP), located SSE of Big Pine, CA. The SRSZ comprises a subvertical zone of solid-state deformation (strike N15E) over an area at least 13 km long by 2--3 km wide. Exposure of the shear zone is limited to the north and west by overlying Quaternary volcanics and basin fill within the Late Cenozoic Owens Valley graben. The SRSZ is larger than its present outcrop extent: strain magnitudes are highest within the westernmost exposures. The SRSZ along this western margin is a continuous zone of deformation comprising a mm-scale solid-state foliation containing igneous feldspars flattened into ovals with > 10:1 aspect ratios. The authors have identified three dike phases within the SRFP: (1) minor NE-striking Phase 1 dikes, comprising cm-scale aplites; (2) widespread m-scale Phase 2 dikes, which strike N10E; and (3) m-scale NW-striking Phase 3 mafic dikes. The Phase 1 and Phase 3 dikes are pre- and post-tectonic respectively; observations described below indicate the Phase 2 dikes are syn- to post-deformation. Deformation becomes localized along the Phase 2 dikes -- which are parallel to the orientation of the main body of the shear zone. Solid-state fabrics imposed on the Phase 2 dikes formed at higher temperatures than those within the SRFP, and in the east the SRFP is deformed only within a few cm of the dikes. They surmise syntectonic emplacement of the dikes into dislocational surfaces within the SRSZ, followed by solid-state deformation of the cooling dikes. Several workers have suggested the dikes within the SRFP are part of the 148 Ma independence dike swarm (referring to the Phase 2 or 3 dikes). If correct, this correlation indicates a Jurassic age for the SRSZ. Radiometric analyses of the dikes are in progress.

  14. Migration of the deforming zone during seismic shear and implications for field observations, dynamic weakening, and the onset of melting

    Science.gov (United States)

    Platt, J. D.; Rice, J. R.

    2013-12-01

    Prior work in our group has shown how micron-scale strain rate localization can be explained using models for thermal pressurization and thermal decomposition in fluid-saturated gouge materials. Using parameters modeling a typical centroidal depth for a crustal seismogenic zone we predicted localized zone thicknesses in line with laboratory (Brantut et al., 2008; Kitajima et al., 2010) and field (Chester and Chester, 1998; Heermance et al., 2003; De Paola et al., 2008) observations. Further work has shown that the localized zone need not remain in a single location and may migrate across the gouge layer, in agreement with laboratory observations that show a thickening of the highly localized material with slip, and a distinct banded structure within the highly localized material (T. Mitchell, priv. comm.; Kitajima et al., 2010). We have identified two mechanisms that could cause migration. The first is a combination of thermal diffusion, hydraulic diffusion and thermal pressurization, which leads to the location of maximum pore pressure moving away from its initial position [Rice, 2006]. Since the maximum strain rate coincides with the maximum pore pressure, this causes the deforming zone to move across the gouge layer. The second mechanism is reactant depletion in a material undergoing thermal decomposition. Fluid pressurization and strain rate are slaved to the reaction, so as the reactant depletes the deforming zone will migrate towards fresh reactant. An additional symmetry breaking instability exists but is not discussed here. We have also explored how spatial variations in fault gouge properties may control the distribution of seismic shear. Since at seismic slip rates localization in a fluid-saturated material is controlled largely by pore pressure generation and hydraulic diffusion, regions that generate or trap pore pressures more efficiently will attract straining. Numerical simulations show that the deforming zone moves towards regions of low hydraulic

  15. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    Science.gov (United States)

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  16. Crustal-scale shear zones recording 400 m.y. of tectonic activity in the North Caribou greenstone belt, western Superior Province of Canada

    Science.gov (United States)

    Kalbfleisch, Netasha

    A series of crustal-scale shear zones demarcates the northern and eastern margins of the North Caribou greenstone belt (NCGB), proximal to a Mesoarchean terrane boundary in the core of the western Superior Province of Canada. The dominant deformation produced a pervasive steeply dipping fabric that trends broadly parallel to the doubly arcuate shape of the belt and was responsible for tight folding the banded iron formation host to Goldcorp's prolific gold deposit at Musselwhite mine. The shear zones in the North Caribou greenstone belt are of particular interest because of their ability to channel hydrothermal fluids with the potential to bear ore and cause alteration of the middle to shallow crust. Shear zones are commonly reactivated during subsequent tectonism, but exhibit a consistent and dominant dextral shear sense across the belt; fabric-forming micas and chlorite are generally Mg-rich. Although garnets samples from within the shear zones are dominantly almandine, they possess variable geochemical trends (HREEs of >2 orders of magnitude) and can be syn-, intra-, or post-tectonic in origin. In situ geochronological analysis of zircon (U-Pb) and monazite (total-Pb) in high strain rocks in and around the NCGB, interpreted in light of in situ geochemical analysis of garnet and fabric-forming micas and chlorite, reveals four relatively discrete events that span 400 million years. Metamorphism of the mid-crust was coeval with magmatism during docking of the Island Lake domain at c. 2.86 Ga and subsequent terrane accretion at the north and south margins of the North Caribou Superterrane from c. 2.75 to 2.71 Ga. Transpressive shear at c. 2.60 to 2.56 Ga and late re-activation of shear zones at c. 2.44 Ga produced a steeply-dipping pervasive fabric, and channeled fluids for late crystallization of garnet and monazite recorded in the Markop Lake deformation zone. These observations implicate a horizontal tectonic model similar to the modern eastern Pacific plate

  17. Nanoindentation study on the characteristic of shear transformation zone in a Pd-based bulk metallic glass during serrated flow

    Science.gov (United States)

    Liao, G. K.; Long, Z. L.; Zhao, M. S. Z.; Peng, L.; Chai, W.; Ping, Z. H.

    2018-04-01

    This paper presents the research on the evolution of shear transformation zone (STZ) in a Pd-based bulk metallic glass (BMG) during serrated flow under nanoindentation. A novel method of estimating the STZ volume through statistical analysis of the serrated flow behavior was proposed for the first time. Based on the proposed method, the STZ volume of the studied BMG at various peak loads have been systematically investigated. The results indicate that the measured STZ volumes are in good agreement with that documented in literature, and the STZ size exhibits an increasing trend during indentation. Moreover, the correlation between the serrated flow dynamics and the STZ activation has also been evaluated. It is found that the STZ activation can promote the formation of self-organized critical (SOC) state during serrated flow.

  18. GAM - Gas Migration Experiments in a Heterogeneous Shear Zone of the Grimsel Test of the Grimsel Test Site

    International Nuclear Information System (INIS)

    Marschall, P.; Lunati, I.

    2006-12-01

    This report documents the scientific investigations carried out as part of the GAM project between June 1997 and April 2001 at the Grimsel Test Site within the framework of Investigation Phase V (1997 - 2001). Four radioactive waste management organisations participated in the GAM experiment, namely ANDRA, ENRESA, NAGRA and Sandia National Laboratories for the US Department of Energy. The experiment team consisted of the delegates of the participating organisations, research groups from the Swiss Federal Institute of Technology, Zurich and from the Technical University of Catalonia, Barcelona and, last but not least, several contractor teams. Essential aims of the GAM investigation programme were the development and testing of laboratory and field equipment for tracer experiments. Innovative laboratory technologies were applied, such as Laser Scanning Confocal Microscopy and X-ray tomography, flow visualisation in artificial fractures, nuclear magnetic resonance measurements and neutron radiography. Furthermore, a new technique was tested for the recovery of well preserved core samples from the GAM shear zone. Novelties in field testing comprised the use of an on-line counter for the particle tracer tests and a georadar survey of gas and brine injection tests with a high frequency borehole antenna. The development of upscaling methodologies and the derivation of effective parameters for single- and two-phase flow models was another issue of interest. The investigations comprised theoretical studies on solute transport in non-uniform flow fields and assessment of the impact of the microstructure on solute and gas transport. Closely related to these theoretical studies was the numerical interpretation of the combined solute and gas tracer tests, which revealed the great potential of such data sets with regard to model discrimination. As a final step in the synthesis task of the GAM project, a model abstraction process was established, aimed at integrating the

  19. The Sundance fault: A newly recognized shear zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Braun, C.A.; Martin, L.G.; Weisenberg, C.W.

    1994-01-01

    Ongoing detailed mapping at a scale of 1:240 of structural features within the potential repository area indicates the presence of several previously unrecognized structural features. Minor north-trending west-side-down faults occur east and west of the Ghost Dance fault and suggest a total width of the Ghost Dance fault system of nearly 366 m (1200 ft). A zone of near-vertical N30 degrees - 40 degrees W - trending faults, at least 274 m (900 ft) wide, has been identified in the northern part of our study area and may traverse across the proposed repository area. On the basis of a preliminary analysis of available data, we propose to name this zone the ''Sundance fault system'' and the dominant structure, occurring near the middle of the zone, the ''Sundance fault.'' Some field relations suggest left-stepping deflections of north-trending faults along a preexisting northwest-trending structural fabric. Other field observations suggest that the ''Sundance fault system'' offsets the Ghost Dance fault system in an apparent right lateral sense by at least 52 m (170 ft). Additional detailed field studies, however, are needed to better understand structural complexities at Yucca Mountain

  20. Combination of spaceborne radar interferometry (DEM) and Landsat TM imageries contributing to recent tectonic and geology studies in the Aswa lineament shear zone (Sudan)

    NARCIS (Netherlands)

    Kervyn, V.C.; Slob, S.; Derauw, D.; Cecchi, Giovanna; Zilioli, Eugenio

    1998-01-01

    Until recently, the Aswa lineament shear zone in Uganda and Sudan was considered to be tectonically at rest but the 1990- 1991 seismic events triggered a renewal of interest in this area. Using ERS1 - ERS2 tandem covering the area where earthquakes were observed, we have generated a high resolution

  1. The TIPA shear zone (NW-Argentina): Evidence for early devonian movement verified by Sm-Nd dating of garnet and whole rock systems

    International Nuclear Information System (INIS)

    Hockenreiner, M.; Sollner, F.; Miller, H

    2001-01-01

    The Sierra de Copacabana (Catamarca province, NW Argentina) hosts in its northernmost part a large shear zone, which can be traced back to the north into the Sa. de Fiambala and to the south at least into the Sa. de Velasco. Timing of mylonitization is an important puzzle-piece in order to understand Paleozoic geotectonic processes on the western border of Gondwana (au)

  2. Integrated geophysical investigations for the delineation of source and subsurface structure associated with hydro-uranium anomaly: A case study from South Purulia Shear Zone (SPSZ), India

    Science.gov (United States)

    Sharma, S. P.; Biswas, A.

    2012-12-01

    South Purulia Shear Zone (SPSZ) is an important region for prospecting of uranium mineralization. Geological studies and hydro-uranium anomaly suggest the presence of Uranium deposit around Raghunathpur village which lies about 8 km north of SPSZ. However, detailed geophysical investigations have not been carried out in this region for investigation of uranium mineralization. Since surface signature of uranium mineralization is not depicted near the location, a deeper subsurface source is expected for hydro uranium anomaly. To delineate the subsurface structure and to investigate the origin of hydro-uranium anomaly present in the area, Vertical Electrical Sounding (VES) using Schlumberger array and Gradient Resistivity Profiling (GRP) were performed at different locations along a profile perpendicular to the South Purulia Shear Zone. Apparent resistivity computed from the measured sounding data at various locations shows a continuously increasing trend. As a result, conventional apparent resistivity data is not able to detect the possible source of hydro uranium anomaly. An innovative approach is applied which depicts the apparent conductivity in the subsurface revealed a possible connection from SPSZ to Raghunathpur. On the other hand resistivity profiling data suggests a low resistive zone which is also characterized by low Self-Potential (SP) anomaly zone. Since SPSZ is characterized by the source of uranium mineralization; hydro-uranium anomaly at Raghunathpur is connected with the SPSZ. The conducting zone has been delineated from SPSZ to Raghunathpur at deeper depths which could be uranium bearing. Since the location is also characterized by a low gravity and high magnetic anomaly zone, this conducting zone is likely to be mineralized zone. Keywords: Apparent resistivity; apparent conductivity; Self Potential; Uranium mineralization; shear zone; hydro-uranium anomaly.

  3. Solution-mass transfer and grain boundary sliding in mafic shear zones - comparison between experiments and nature

    Science.gov (United States)

    Marti, Sina; Heilbronner, Renée; Stünitz, Holger; Plümper, Oliver; Drury, Martyn

    2017-04-01

    Grain size sensitive creep (GSSC) mechanisms are widely recognized to be the most efficient deformation mechanisms in shear zones. With or without initial fracturing and fluid infiltration, the onset of heterogeneous nucleation leading to strong grain size reduction is a frequently described process for the initiation of GSSC. Phase mixing due to reaction and heterogeneous nucleation during GSSC impedes grain growth, sustaining small grain sizes as a prerequisite for GSSC. Here we present rock deformation experiments on 'wet' plagioclase - pyroxene mixtures at T=800°C, P=1.0 and 1.5GPa and strain rates of 2e-5 - 2e-6 1/s, performed with a Griggs-type solid medium deformation apparatus. Microstructural criteria are used to show that both, grain boundary sliding (GBS) and solution-mass transfer processes are active and are interpreted to be the dominant strain accommodating processes. Displacement is localized within shear bands formed by fine-grained ( 300 - 500nm) plagioclase (Pl) and the syn-kinematic reaction products amphibole (Amph), quartz (Qz) and zoisite (Zo). We compare our experiments with a natural case - a sheared mafic pegmatite (P-T during deformation 0.7 - 0.9 GPa, 610 - 710 °C; Getsinger et al., 2013) from Northern Norway. Except for the difference in grain size of the experimental and natural samples, microstructures are strikingly alike. The experimental and natural P- and especially T-conditions are very similar. Consequently, extrapolation from experiments to nature must be made without a significant 'temperature-time' trade-off, which is normally taken advantage of when relating experimental to natural strain rates. We will discuss under which assumptions extrapolation to nature in our case is likely feasible. Syn-kinematic reactions during GBS and solution-mass transport are commonly interpreted to result in an ordered (anticlustered) phase mixture. However, phase mixing in our case is restricted: Mixing is extensive between Pl + Zo + Qz and

  4. A micro-kinematic framework for vorticity analysis in polyphase shear zones using integrated field, microstructural and crystallographic orientation-dispersion methods

    Science.gov (United States)

    Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.

    2017-12-01

    We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional

  5. Application of kinematic vorticity and gold mineralization for the wall rock alterations of shear zone at Dungash gold mining, Central Eastern Desert, Egypt

    Science.gov (United States)

    Kassem, Osama M. K.; Abd El Rahim, Said H.; El Nashar, EL Said R.; AL Kahtany, Kaled M.

    2016-11-01

    The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in wall rocks alterations of shear zone at Dungash gold mine. Furthermore, it shows the relationship between the gold mineralization and deformation and also detects the orientation of rigid objects during progressive deformation. The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures which are attributed to various deformational stages of the Neoproterozoic basement rocks. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. The kinematic vorticity number for the metavolcanic and metasedimentary samples in the Dungash area range from 0.80 to 0.92, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. Furthermore, we conclude that disseminated mineralization, chloritization, carbonatization and silicification of the wall rocks are associated with fluids migrating along shearing, fracturing and foliation of the metamorphosed wall rocks.

  6. Uraninite, Coffinite and Brannerite from Shear-Zone Hosted Uranium Deposits of the Bohemian Massif (Central European Variscan Belt

    Directory of Open Access Journals (Sweden)

    Miloš René

    2017-03-01

    Full Text Available New mineralogical data are presented for shear-zone hosted uranium mineralisation from selected uranium deposits that occur in the Bohemian Massif. The uranium mineralisation is in high-grade metamorphic rocks of the Moldanubian Zone and/or in granitic rocks of the Moldanubian batholith and Bor pluton as complex uraninite–coffinite and uraninite–coffinite–brannerite assemblages. For analysed coffinites and brannerites, anomalous enrichment of Y (up to 3.4 wt % Y2O3 and Zr (up to 13.8 wt % ZrO2 is significant. The microprobe data indicate that coffinites from the Rožná and Okrouhlá Radouň uranium deposits contain variable PbO (0–4.3 wt %, FeO (0–2.5 wt %, Al2O3 (0–3.5 wt %, P2O5 (0–1.8 wt %, and CaO (0.7–3.5 wt %. Brannerite is present in unaltered and altered grains with variable concentrations of U4+ (0–0.5 apfu, U6+ (0.06–0.49 apfu, Ti (0.90–2.63 apfu, Ca (0.09–0.41 apfu, and low concentrations of Al (0–0.19 apfu, Th (0–0.04 apfu, Y (0–0.08 apfu, Zr (0–0.13 apfu and REE (0–0.14 apfu.

  7. Seismic anisotropy in localized shear zones versus distributed tectonic fabrics: examples from geologic and seismic observations in western North America and the European Alps

    Science.gov (United States)

    Mahan, Kevin H.; Schulte-Pelkum, Vera; Condit, Cailey; Leydier, Thomas; Goncalves, Philippe; Raju, Anissha; Brownlee, Sarah; Orlandini, Omero F.

    2017-04-01

    Modern methods for detecting seismic anisotropy offer an array of promising tools for imaging deep crustal deformation but also present challenges, especially with respect to potential biases in both the detection methods themselves as well as in competing processes for localized versus distributed deformation. We address some of these issues from the geophysical perspective by employing azimuthally dependent amplitude and polarity variations in teleseismic receiver functions combined with a compilation of published rock elasticity tensors from middle and deep crustal rocks, and from the geological perspective through studies of shear zone deformation processes. Examples are highlighted at regional and outcrop scales from western North America and the European Alps. First, in regional patterns, strikes of seismically detected fabric from receiver functions in California show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition suggesting these faults have deep ductile roots. In contrast, despite NE-striking shear zones being the most prominent features portrayed on Proterozoic tectonic maps of the southwestern USA, receiver function anisotropy from the central Rocky Mountain region appears to more prominently reflect broadly distributed Proterozoic fabric domains that preceded late-stage localized shear zones. Possible causes for the discrepancy fall into two categories: those that involve a) bias in seismic sampling and/or b) deformation processes that lead to either weaker anisotropy in the shear zones compared to adjacent domains or to a symmetry that is different from that conventionally assumed. Most of these explanations imply that the seismically sampled domains contain important structural information that is distinct from the shear zones. The second set of examples stem from studies of outcrop-scale shear zones in upper

  8. Geochemical significance of neoproterozoic rasimalai alkali syenite emplaced along Dharmapuri shear zone in the Northern part of Tamil Nadu

    International Nuclear Information System (INIS)

    Thangavel, S.; Balasubramani, S.; Nagaraju, M.; Bhattacharya, D.; Zakaulla, Syed; Rai, A.K.

    2015-01-01

    The Rasimalai alkali syenite complex is emplaced within Peninsular Gneissic complex and spatially associated with NE-SW trending major Dharmapuri shear zone (DSZ) in the northern part of Tamil Nadu. It is surrounded by epidote hornblend egneiss, which is the fenetised product of Charnockite and occurs about 20 km NE of Alangayam in Vellore district. It is mainly comprised of medium to coarse grained grey syenite (albite and orthoclase) and medium to micro grained pink syenite (orthoclase, microcline and perthite) at places porphyritic in nature with hornblende, riebeckitc, aegirine and acmite as accessory minerals. Grey syenite is non radioactive and uranium mineralisation is associated with pink syenite (syngenetic and disseminated type) and quartz-barite veins (hydrothermal type). Hydrothermal activity is manifested in the form of pyrite, chalcopyrite, galena, barite, calcite and calcian-strontianite which occur in the form of disseminations, stringers, lumps, aggregates, veinlets and veins. Presence of high silica (63.14-75.43%) with high field strength elements (U, Th, Nb and Pb) and large ion lithophile elements (Rb, Sr, K, Ba) possibly indicates that Rasimalai alkali syenite is the product of crustal communication and partial melting of protracted emplacement of parental alkali basaltic magma

  9. C-O-H-N fluids circulations and graphite precipitation in reactivated Hudsonian shear zones during basement uplift of the Wollaston-Mudjatik Transition Zone: Example of the Cigar Lake U deposit

    Science.gov (United States)

    Martz, Pierre; Cathelineau, Michel; Mercadier, Julien; Boiron, Marie-Christine; Jaguin, Justine; Tarantola, Alexandre; Demacon, Mickael; Gerbeaud, Olivier; Quirt, David; Doney, Amber; Ledru, Patrick

    2017-12-01

    Graphitic shear zones are spatially associated with unconformity-related uranium deposits that are located around the unconformity between the strata of the Paleo- to Mesoproterozoic Athabasca Basin (Saskatchewan, Canada) and its underlying Archean to Paleoproterozoic basement. The present study focuses on basement-hosted ductile-brittle graphitic shear zones near the Cigar Lake U deposit, one of the largest unconformity-related U deposits. The goal of the study is to decipher the pre-Athabasca Basin fluid migration history recorded within such structures and its potential role on the formation of such exceptional deposit. Dominantly C-O-H(-N) metamorphic fluids have been trapped in Fluid Inclusion Planes (FIPs) in magmatic quartz within ductile-brittle graphitic shear zones active during retrograde metamorphism associated with the formation of the Wollaston-Mudjatik Transition Zone (WMTZ) between ca. 1805 and 1720 Ma. Such fluids show a compositional evolution along the retrograde path, from a dense and pure CO2 fluid during the earliest stages, through a lower density CO2 ± CH4-N2 (± H2O) fluid and, finally, to a very low density CH4-N2 fluid. Statistical study of the orientation, distribution, proportion, and chemical characterization of the FIPs shows that: i) CO2 (δ13CCO2 around - 9‰ PDB) from decarbonation reactions and/or partial water-metamorphic graphite equilibrium initially migrated regionally and pervasively under lithostatic conditions at about 500 to 800 °C and 150 to 300 MPa. Such P-T conditions attest to a high geothermal gradient of around 60 to 90 °C/km, probably related to rapid exhumation of the basement or a large-scale heat source. ii) Later brittle reactivation of the shear zone at around 450 °C and 25-50 MPa favored circulation of CO2-CH4-N2(± H2O) fluids in equilibrium with metamorphic graphite (δ13CCO2 around - 14‰) under hydrostatic conditions and only within the shear zones. Cooling of these fluids and the water uptake linked

  10. 2D shear-wave ultrasound elastography (SWE) evaluation of ablation zone following radiofrequency ablation of liver lesions: is it more accurate?

    Science.gov (United States)

    Bo, Xiao W; Li, Xiao L; Guo, Le H; Li, Dan D; Liu, Bo J; Wang, Dan; He, Ya P; Xu, Xiao H

    2016-01-01

    Objective: To evaluate the usefulness of two-dimensional quantitative ultrasound shear-wave elastography (2D-SWE) [i.e. virtual touch imaging quantification (VTIQ)] in assessing the ablation zone after radiofrequency ablation (RFA) for ex vivo swine livers. Methods: RFA was performed in 10 pieces of fresh ex vivo swine livers with a T20 electrode needle and 20-W output power. Conventional ultrasound, conventional strain elastography (SE) and VTIQ were performed to depict the ablation zone 0 min, 10 min, 30 min and 60 min after ablation. On VTIQ, the ablation zones were evaluated qualitatively by evaluating the shear-wave velocity (SWV) map and quantitatively by measuring the SWV. The ultrasound, SE and VTIQ results were compared against gross pathological and histopathological specimens. Results: VTIQ SWV maps gave more details about the ablation zone, the central necrotic zone appeared as red, lateral necrotic zone as green and transitional zone as light green, from inner to exterior, while the peripheral unablated liver appeared as blue. Conventional ultrasound and SE, however, only marginally depicted the whole ablation zone. The volumes of the whole ablation zone (central necrotic zone + lateral necrotic zone + transitional zone) and necrotic zone (central necrotic zone + lateral necrotic zone) measured by VTIQ showed excellent correlation (r = 0.915, p  0.05). Conclusion: The quantitative 2D-SWE of VTIQ is useful for the depiction of the ablation zone after RFA and it facilitates discrimination of different areas in the ablation zone qualitatively and quantitatively. This elastography technique might be useful for the therapeutic response evaluation instantly after RFA. Advances in knowledge: A new quantitative 2D-SWE (i.e. VTIQ) for evaluation treatment response after RFA is demonstrated. It facilitates discrimination of the different areas in the ablation zone qualitatively and quantitatively and may be useful for the therapeutic

  11. Stratigraphy, palynology and organic geochemistry of the Devonian-Mississippian metasedimentary Albergaria-a-Velha Unit (Porto-Tomar shear zone, W Portugal)

    Czech Academy of Sciences Publication Activity Database

    Machado, G.; Franců, E.; Vavrdová, Milada; Flores, D.; Fonseca, P. E.; Rocha, F.; Gama Pereira, L. C.; Gomes, A.; Fonseca, M.; Chaminé, H. I.

    2011-01-01

    Roč. 55, č. 2 (2011), s. 139-164 ISSN 1641-7291. [International Palynological Conference of the International Commission of the Paleozoic Microflora ( CIMP ). Warsaw-Kielce, 13.09.2010-19.09.2010] Institutional research plan: CEZ:AV0Z30130516 Keywords : Mississippian * Late Devonian * Ossa-Morena Zone * Porto-Tomar shear zone * palynology * organic geochemistry * turbidite systems * provenance * phytoplankton Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.844, year: 2011 http://gq.pgi.gov.pl/gq/article/viewFile/7606/pdf_4

  12. Slip rate of the Calico fault: Implications for geologic versus geodetic rate discrepancy in the Eastern California Shear Zone

    Science.gov (United States)

    Oskin, Michael; Perg, Lesley; Blumentritt, Dylan; Mukhopadhyay, Sujoy; Iriondo, Alexander

    2007-03-01

    Long-term (105 years) fault slip rates test the scale of discrepancy between infrequent paleoseismicity and relatively rapid geodetic rates of dextral shear in the Eastern California Shear Zone (ECSZ). The Calico fault is one of a family of dextral faults that traverse the Mojave Desert portion of the ECSZ. Its slip rate is determined from matching and dating incised Pleistocene alluvial fan deposits and surfaces displaced by fault slip. A high-resolution topographic base acquired via airborne laser swath mapping aids in identification and mapping of deformed geomorphic features. The oldest geomorphically preserved alluvial fan, unit B, is displaced 900 ± 200 m from its source at Sheep Springs Wash in the northern Rodman Mountains. This fan deposit contains the first preserved occurrence of basalt clasts derived from the Pipkin lava field and overlies Quaternary conglomerate deposits lacking these clasts. The 40Ar/39Ar dating of two flows from this field yields consistent ages of 770 ± 40 ka and 735 ± 9 ka. An age of 650 ± 100 ka is assigned to this fan deposit based on these ages and on the oldest cosmogenic 3He exposure date of 653 ± 20 ka on a basalt boulder from the surface of unit B. This assigned age and offset together yield a mid-Pleistocene to present average slip rate of 1.4 ± 0.4 mm/yr. A younger fan surface, unit K, records 100 ± 10 m of dextral displacement and preserves original depositional morphology of its surface. Granitic boulders and pavement samples from this surface yield an average age of 56.4 ± 7.7 ka after taking into account minimal cosmogenic inheritance of granitic clasts. The displaced and dated K fans yield a slip rate of 1.8 ± 0.3 mm/yr. Distributed deformation of the region surrounding the fault trace, if active, could increase the overall displacement rate to 2.1 ± 0.5 mm/yr. Acceleration of slip rate from an average of 1.4 mm/yr prior to ˜50 ka to 1.8 mm/yr since ˜50 ka is possible, though a single time-averaged slip

  13. Structure of pseudotachylyte vein systems as a key to co-seismic rupture dynamics: the case of Gavilgarh-Tan Shear Zone, central India

    Science.gov (United States)

    Chattopadhyay, A.; Bhattacharjee, D.; Mukherjee, S.

    2014-04-01

    The secondary fractures associated with a major pseudotachylyte-bearing fault vein in the sheared aplitic granitoid of the Proterozoic Gavilgarh-Tan Shear Zone in central India are mapped at the outcrop scale. The fracture maps help to identify at least three different types of co-seismic ruptures, e.g., X-X', T1 and T2, which characterize sinistral-sense shearing of rocks, confined between two sinistral strike-slip faults slipping at seismic rate. From the asymmetric distribution of tensile fractures around the sinistral-sense fault vein, the direction of seismic rupture propagation is predicted to have occurred from west-southwest to east-northeast, during an ancient (Ordovician?) earthquake. Calculations of approximate co-seismic displacement on the faults and seismic moment ( M 0) of the earthquake are attempted, following the methods proposed by earlier workers. These estimates broadly agree to the findings from other studied fault zones (e.g., Gole Larghe Fault zone, Italian Alps). This study supports the proposition by some researchers that important seismological information can be extracted from tectonic pseudotachylytes of all ages, provided they are not reworked by subsequent tectonic activity.

  14. Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?

    Science.gov (United States)

    ten Brink, Uri S.; Flores, C.H.

    2012-01-01

    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8-8.5 km) and widest (???15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3-4 km under the northern end of the lake and 5-6 km farther north. Crystalline basement is ???11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ???18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ???17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux

  15. Latest Quaternary paleoseismology and evidence of distributed dextral shear along the Mohawk Valley fault zone, northern Walker Lane, California

    Science.gov (United States)

    Gold, Ryan D.; Briggs, Richard; Personius, Stephen; Crone, Anthony J.; Mahan, Shannon; Angster, Stephen

    2014-01-01

    The dextral-slip Mohawk Valley fault zone (MVFZ) strikes northwestward along the eastern margin of the Sierra Nevada in the northern Walker Lane. Geodetic block modeling indicates that the MVFZ may accommodate ~3 mm/yr of regional dextral strain, implying that it is the highest slip-rate strike-slip fault in the region; however, only limited geologic data are available to constrain the system’s slip rate and earthquake history. We mapped the MVFZ using airborne lidar data and field observations and identified a site near Sulphur Creek for paleoseismic investigation. At this site, oblique dextral-normal faulting on the steep valley margin has created a closed depression that floods annually during spring snowmelt to form an ephemeral pond. We excavated three fault-perpendicular trenches at the site and exposed pond sediment that interfingers with multiple colluvial packages eroded from the scarp that bounds the eastern side of the pond. We documented evidence for four surface-rupturing earthquakes on this strand of the MVFZ. OxCal modeling of radiocarbon and luminescence ages indicates that these earthquakes occurred at 14.0 ka, 12.8 ka, 5.7 ka, and 1.9 ka. The mean ~4 kyr recurrence interval is inconsistent with slip rates of ~3 mm/yr; these rates imply surface ruptures of more than 10 m per event, which is geologically implausible for the subdued geomorphic expression and 60 km length of the MVFZ. We propose that unidentified structures not yet incorporated into geodetic models may accommodate significant dextral shear across the northern Walker Lane, highlighting the role of distributed deformation in this region.

  16. crustal shear zone

    Indian Academy of Sciences (India)

    Textural modeling integrating the textural features and balanced chemical reaction of the calc-silicate ... The style and geometry of the .... analyses return the following amphibole forming reaction: ... based on total Al (AlT) content in hornblende.

  17. Geochemical and isotopic characterization of the granitic magmatism along the Remígio - Pocinhos shear zone, Borborema Province, NE Brazil

    Science.gov (United States)

    de Lima, Jefferson V.; Guimarães, Ignez de P.; Santos, Lucilene; Amorim, José Victor A.; Farias, Douglas José S.

    2017-04-01

    Two granitoid plutons (Pilõezinhos and Curral de Cima) intruded along the Remígio - Pocinhos shear zone, eastern part of the Borborema Province. The Pilõezinhos and Curral de Cima granites were dated at 566 ± 3 Ma and 618 ± 5 Ma respectively. The granitoids from both plutons have distinct initial 143Nd/144Nd ratios, expressed by εNd(t) values, i.e. the granitoids of Pilõezinhos pluton have lower εNd(t) values (-15.47 to -15.81) and negative εHf (t = 570 Ma) values (-16.0 to -18.6), while the granitoids of the Curral de Cima pluton have εNd(t) values between -1.12 and -5.23. The granitoids of the Curral de Cima pluton are epidote bearing, magnesian calcalkaline I-type granitoids, crystallized under high fO2 conditions. The granitoids of the Pilõezinhos pluton are alkaline, low-fO2, ferroan, ilmenite-series, A2-type granite intrusions. The geochemical and isotopic signatures suggest that the origin of magma of the Curral de Cima granitoids involved mixing/mingling at depth between crustal and mantle magmas, associated to decompression (lateral escape) during the convergent stage of Brasiliano/Pan/African orogeny, which lead the asthenosphere melts to rise into the lower crust. The source of magma of the granitoids of the Pilõezinhos pluton involved a strong crustal component with geochemical and isotopic signatures similar to the orthogneisses of the Serrinha-Pedro Velho Complex, and small mantle component. The emplacement of the Pilõezinhos pluton is associated to an extensional space formed during high-T strike-slip shearing developed by the synchronic movement of the Matinhas sinistral shear zone and Remígio - Pocinhos dextral shear zone.

  18. Fault Slip Partitioning in the Eastern California Shear Zone-Walker Lane Belt: Pliocene to Late Pleistocene Contraction Across the Mina Deflection

    Science.gov (United States)

    Lee, J.; Stockli, D.; Gosse, J.

    2007-12-01

    Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain

  19. Microstructures and magnetic fabrics of the Ngaoundéré granite pluton (Cameroon): Implications to the late-Pan-African evolution of Central Cameroon Shear Zone

    Science.gov (United States)

    Dawaï, Daouda; Tchameni, Rigobert; Bascou, Jérome; Awe Wangmene, Salomon; Fosso Tchunte, Périclex Martial; Bouchez, Jean-Luc

    2017-05-01

    The Ngaoundéré granite pluton, in Central-North Cameroon, located near the Central Cameroon Shear zone (CCSZ), and previously studied for its petrography and geochemistry, is characterized by the absence of macroscopic markers of deformation. In this study, we report microstructures and magnetic fabrics (AMS) of this pluton and discuss the relationship with the Pan-African evolution of the CCSZ. The pluton consists of a porphyritic Hbl-Bt-monzogranite at its rim and a porphyritic biotite-granite at its core, a petrographic distribution denoting a normal zoning pattern, i.e. more silicic toward the centre. As expected, magnetic susceptibilities values also exhibit a zoning pattern in agreement with petrographic zonation. Thermomagnetic data indicate that this pluton is dominantly ferromagnetic in behaviour. As indicated by its microstructures, the pluton has suffered a continuum of deformation from the magmatic state to the high temperature solid-state during magma crystallization and solidification. The magnetic foliations dominantly strike NE-SW and dip moderately to steeply and the lineations mostly plunge shallowly to the NE or SW, roughly parallel to NE-to ENE-trending Central Cameroun Shear Zone (CCSZ). The foliation poles define a girdle pattern with a zone axis (52°/11°) rather close to the best line of the lineations (44°/21°). These fabrics correlate with the structures of the country rocks ascribed by several workers to a regional transpression. Toward the margins of the pluton, particularly the northern one, the lineations tend to rotate from NE to N in azimuth. This change is interpreted as due to strain partitioning, simple shearing with NE-SW extension being relayed by compression toward the northern pluton border. This new magnetic fabric study suggests that the Ngaoundéré pluton (poorly dated at c. 575 Ma) was emplaced during the late stages of the CCSZ dextral transpressive movement. It also provides some more constraints on the correlation

  20. Bauxite to eclogite: Evidence for late Permian supracontinental subduction at the Red River shear zone, northern Vietnam

    Science.gov (United States)

    Nakano, Nobuhiko; Osanai, Yasuhito; Nam, Nguyen Van; Tri, Tran Van

    2018-03-01

    We have investigated the geological processes recorded in aluminous granulites from the Red River shear zone in northern Vietnam using mineral and whole-rock chemistries, fluid inclusions, metamorphic pressure-temperature paths, and geochronology. The granulites are extremely rich in Al2O3 (36.3-50.9 wt%), TiO2, and total Fe2O3, and poor in SiO2 (7.9-24.1 wt%), MgO, CaO, Na2O, and K2O. The granulites are enriched in high-field-strength elements and rare earth elements, and severely depleted in large-ion lithophile elements. These features strongly suggest the protolith was lateritic bauxite. Moreover, the other elemental concentrations and the Zr/Ti ratios point to basaltic rock as the precursor of the bauxite. Some of the aluminous granulites contain high-pressure mineral inclusions of kyanite, staurolite, siderite, and rutile, none of which are observed in the matrix. Abundant primary carbonic fluid inclusions are observed in garnet, corundum, and staurolite, but are rare in quartz and zircon. The average densities of fluid inclusions in garnet, corundum, staurolite, quartz, and zircon are 1.00 ± 0.06, 1.07 ± 0.04, 1.09 ± 0.03, 0.29 ± 0.07, and 1.15 ± 0.05 g/cm3, respectively. The mineral features not only in the matrix and but also in garnet from all rock types, isochemical phase diagrams obtained for each bulk rock composition, and Zr-in-rutile thermometry indicate an early eclogite-facies metamorphism ( 2.5 GPa at 650 °C) and a subsequent nearly isothermal decompression. Zircons yield a wide range of U-Pb ages from 265 to 36 Ma, whereas the dark luminescent cores of the zircons, which contain high-density CO2 inclusions, yield a concordia age of 257 ± 8 Ma. These observations suggest that the dark luminescent zircon cores were formed at the same time as the garnet, corundum, and staurolite that contain high-density CO2 fluid inclusions. Based on the carbonic fluid inclusion isochore and the densities as well as calculated phase diagram, the concordia

  1. Brittle deformation in Southern Granulite Terrane (SGT): A study of pseudotachylyte bearing fractures along Gangavalli Shear Zone (GSZ), Tamil Nadu, India.

    Science.gov (United States)

    mohan Behera, Bhuban; Thirukumaran, Venugopal; Biswal, Tapas kumar

    2016-04-01

    High grade metamorphism and intense deformation have given a well recognition to the Southern Granulite Terrane (SGT) in India. TTG-Charnockite and basic granulites constitute the dominant lithoassociation of the area. Dunite-peridotite-anorthosite-shonkinite and syenites are the intrusives. TTG-charnockite-basic granulite have undergone F1 (isoclinal recumbent), F2 (NE-SW) and F3 (NW-SE) folds producing several interference pattern. E-W trending Neoarchean and Palaeoproterozoic Salem-Attur Shear Zone exhibits a low angle ductile thrust as well as some foot print of late stage brittle deformation near Gangavalli area of Tamil Nadu. The thrust causes exhumation of basic granulites to upper crust. Thrusting along the decollement has retrograded the granulite into amphibolite rock. Subsequently, deformation pattern of Gangavalli area has distinctly marked by numerous vertical to sub-vertical fractures mostly dominating along 0-15 and 270-300 degree within charnockite hills that creates a maximum stress (σ1) along NNW and minimum stress (σ3) along ENE. However, emplacement of pseudotachylyte vein along N-S dominating fracture indicates a post deformational seismic event. Extensive fractures produce anastomose vein with varying thickness from few millimeters to 10 centimeters on the outcrop. ICP-AES study results an isochemical composition of pseudotachylyte vein that derived from the host charnockitic rock where it occurs. But still some noticeable variation in FeO-MgO and Na2O-CaO are obtained from different parts within the single vein showing heterogeneity melt. Electron probe micro analysis of thin sections reveals the existence of melt immiscibility during its solidification. Under dry melting condition, albitic rich melts are considered to be the most favorable composition for microlites (e.g. sheaf and acicular micro crystal) re-crystallization. Especially, acicular microlites preserved tachylite texture that suggest its formation before the final coagulation

  2. Static and dynamic experimental study of strengthened reinforced short concrete corbel by using carbon fabrics, crack path in shear zone

    Directory of Open Access Journals (Sweden)

    I. Ivanova

    2015-10-01

    Full Text Available The paper presents an experimental analysis of tracking the path of the cracks and crack growth in strengthened or repair reinforced concrete short corbels bonded by carbon fiber fabrics under static and dynamic loads. The reinforced short concrete corbel is a used precast element, for industrial buildings and structures. In fact, their functioning interestingly unconventional is compared to classical beam type elements. Then the effects of bending and shearing are combined in this case. The horizontal reinforced steel is localized to resist to tensile strength induced in bending top and a transversal strength-absorbing contribution. The introduction of carbon fiber composite in the field of Civil Engineering allows to strengthen or repair reinforced concrete structures using adhesive. So the carbon fiber material has many advantages as its low weight, flexibility, easier handling and also interesting physicochemical properties. However maintenance of civil engineering works is to protect them by ensuring better sealing or limiting corrosion. Then strengthening is to repair structures by using bonding technique to compensate their rigidity loss and limit the cracking. This allows to improve their performance and durability. Bonding of composite material in tensile zone of corbel retrieves most tensile stress and allows the structure to extend their load-bearing capacity. The local behavior of the structure is measured by means of the extensometer technique based on electrical strain gauges. This technique allowed to measure strains of steel, carbon fiber fabrics and concrete. The results of this investigation showed that strengthened reinforced concrete corbel bonded by carbon fiber fabrics can improve the ultimate load to twice and stiffens less than a third. The ultimate load, strain and displacement of the specimen are compared to reference experimental model of monotonic and cyclic applied loads. The success of strengthening depends strongly

  3. Strengthening of Reinforced Concrete Beam in Shear Zone by Compensation the Stirrups with Equivalent External Steel Plates

    Directory of Open Access Journals (Sweden)

    Khamail Abdul-Mahdi Mosheer

    2016-09-01

    Full Text Available An experimental study on reinforced concrete beams strengthened with external steel plates instead of shear stirrups has been held in this paper. Eight samples of the same dimensions and properties were used. Two of them were tested up to failure and specified as references beams; one with shear reinforcement and the other without shear reinforcement. Another samples without shear reinforcement were tested until the first shear crack occurs, then the samples strengthened on both sides with external steel plates as equivalent area of removed stirrups. The strengthened beams were divided into three groups according to the thickness of plates (1, 1.5, 2 mm, each group involved two beams; one bonded using epoxy and the other bonded using epoxy with anchored bolts. Finally, the strengthened beams tested when using anchored bolts with epoxy glue to bond plates. Where the increasing in maximum load is higher than that in reference beam with no internal stirrups reach to (75.46 –106.13% and has a good agreement with the control beam with shear reinforcement reach to (76.06 – 89.36% of ultimate load.

  4. Radioactive contamination of the 30-km zone according to the sampling data within bench-marks of gamma-ray survey in 1991

    International Nuclear Information System (INIS)

    Lesnoj, D.A.; Rybalko, S.I.; Solyanek, E.G.

    1992-01-01

    It is noted that formation of radioactive contamination of the Chernobyl' 30-km zone is conditioned by two main factors: state of operation of the reactor and movement of air masses within the period of 26.04.86 till 5.06.86. The analyses of formation of the radioactive traces in this period is presented. It is noted that ground radiometric and spectrometric investigations in 1991 according to the bench-marks with regard to gamma-ray survey of the 30-km zone make it possible to recognize 25% areas as having values close on background rates of the exposure doze in south-western and south-eastern sectors. However, these areas can be recommended for agricultural use after careful geochemical and hydrological mapping and inspecting settlements, plants and animals contamination. 1 tabs

  5. In-situ tracer tests and models developed to understand flow paths in a shear zone at the Grimsel Test Site, Switzerland

    Science.gov (United States)

    Blechschmidt, I.; Martin, A. J.

    2012-12-01

    The Grimsel Test Site (www.grimsel.com) is an international underground research laboratory excavated at a depth of 450m below the surface in the crystalline Aare Massif of southern Switzerland in 1984. It is operated and owned by the National Cooperative for the Disposal of Radioactive Waste of Switzerland (NAGRA) which is the organization responsible for managing and researching the geological disposal of all types of radioactive wastes originating in Switzerland. One experiment, the Colloid Formation and Migration test (CFM*), is an ongoing in-situ migration test started in 2004 to study colloid facilitated transport behavior of radionuclides through a shear zone. The importance of colloid transport in the context of a radioactive waste repository is that it provides a mechanism for potentially enhancing the advective transport of radionuclides. The montmorillonite clays that are planned to be used as an engineered barrier around the radioactive waste in many repository concepts may be a source of such colloids under specific hydraulic and/or chemical boundary conditions. The CFM project includes an integrated programme of field testing, laboratory studies and modelling/interpretation. The field tests are performed in a shear zone where the natural outflow has been controlled by a tunnel packer system and flow is monitored with an array of boreholes drilled for CFM and previous experiments at the site. The flow field is controlled by a low-rate extraction from a surface packer. The controlled low-rate extraction creates a region of low hydraulic gradients and fluid velocity within the shear zone, suitable for study under repository-relevant or other geo-resource relevant conditions. Here we present a summary of the migration tracer tests carried out so far to understand the hydraulic properties and transport characteristics of the shear zone using both stable and radioactive (Na-22, Cs-137, Ba-133, Th-232, Np-237, Am-243, Pu-242) tracers as well as colloids, and

  6. Strain-dependent evolution of garnets in a high pressure ductile shear zone using Synchroton x-ray microtomography

    Science.gov (United States)

    Macente, Alice; Fusseis, Florian; Menegon, Luca; John, Timm

    2016-04-01

    Synkinematic reaction microfabrics carry important information on the kinetics, timing and rheology of tectonometamorphic processes. Despite being routinely interpreted in metamorphic and structural studies, reaction and deformation microfabrics are usually described in two dimensions. We applied Synchrotron-based x-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in 3D. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway) previously described by John et al., (2009), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets. Our microtomographic data allowed us to quantify changes to the garnet volume, their shapes and their spatial arrangement. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analyses to correlate mineral composition and orientation data with the x-ray absorption signal of the same mineral grains. This allowed us to extrapolate our interpretation of the metamorphic microfabric evolution to the third dimension, effectively yielding a 4-dimensional dataset. We found that: - The x-ray absorption contrast between individual mineral phases in our microtomographic data is sufficient to allow the same petrographic observations than in light- and electron microscopy, but extended to 3D. - Amongst the major constituents of the synkinematic reactions, garnet is the only phase that can be segmented confidently from the microtomographic data. - With increasing deformation, the garnet volume increases from about 9% to 25%. - Garnet coronas in the gabbros never completely encapsulate olivine grains. This may indicate that the reaction progressed preferentially in some directions, but also leaves pathways for element transport to and from the olivines that are

  7. Preliminary Interpretation of a Radionuclide and Colloid Tracer Test in a Granodiorite Shear Zone at the Grimsel Test Site, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul W. [Los Alamos National Laboratory

    2012-08-30

    In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wall approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor

  8. Texture, microstructure and geochemistry of magnetite from the Banduhurang uranium mine, Singhbhum shear zone, India - implications for physico-chemical evolution of magnetite mineralization

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Dutta, Tusar; Samanta, Susanta K.; Pal, Dipak C.

    2013-01-01

    The Singhbhum Shear zone in eastern India is one of the largest repositories of uranium and copper in India. Besides uranium and copper, apatite-magnetite mineralization is widespread in this shear zone. This study aims at deciphering the physico-chemical evolution of magnetite mineralization in relation to progressive shearing integrating field relations, micro-textures, structures and compositions of magnetite in the Banduhurang uranium mine. Apatite-magnetite ores occur as discrete patches, tongues, and veins in the strongly deformed, fine grained quartz-chlorite schist. Textures and microstructures of magnetite indicate at least three stages of magnetite formation. Coarse-grained magnetite (magnetite-1) with long, rotational, and complex strain fringes, defined by fibrous and elongate quartz, is assigned to a stage of pre-/early-shearing magnetite formation. Medium grained magnetite (magnetite-2), characterized by single non-rotational strain fringe equivalent to the youngest fringe of magnetite-1, grew likely at the mid-/late-stage of shearing. Fine grained magnetite (magnetite-3) is generally devoid of any pressure shadow. This indicates even a much later stage of formation of this magnetite, presumably towards the closing stage of shearing. Some of the magnetite-1 grains are optically heterogeneous with a dark, pitted Cr-Ti-bearing core overgrown by lighter, fresh rim locally containing pyrite, chalcopyrite, and chlorite inclusions. The cores are also locally characterized by high AI and Si content. Homogeneous magnetite-1 is optically and compositionally similar to the overgrowth of heterogeneous magnetite-1. This homogeneous magnetite-1 that grew as separate phase is contemporaneous with the overgrowth on pitted core of heterogeneous magnetite-1. Magnetite-2 is compositionally very similar to homogeneous magnetite-1, but is devoid of sulfide inclusion. Magnetite-3 is generally devoid of any silicate or sulfide inclusion and is most pure with least

  9. Preservation of Permian allanite within an Alpine eclogite facies shear zone at Mt Mucrone, Italy: Mechanical and chemical behaviour of allanite during mylonitization

    DEFF Research Database (Denmark)

    Cenki-Tok, Benedicte; Oliot, E.; Berger, Alfons

    2011-01-01

    This study addresses the mechanical and cehmical behavior of allanite during shear zone formation under high-pressure metamorphism. Understanding physico-chemical processes related to the retention or resetting of Pb isotopes in allanite during geological processes is essential for robust......, and they were thus chemically and mechanically shielded during Alpine mylonitization. In undeformed samples (8a and 8b), two populations of epidote group minerals were found. Allanite forms either coronas around Permianmonazite or individual grains with patchy zoning. Both types yield Permian ages (208Pb/232Th...... age: 291±5 Ma). On the other hand, grains of REE-rich clinozoisite of Cretaceous age are found in undeformed rocks. These grains appear as small fragments with embayed surface outlines and minute satellites or rims around Permian allanite. These (re)crystallized grains are Sr-rich and show mosaic...

  10. Finite strain analysis of metavolcanics and metapyroclastics in gold-bearing shear zone of the Dungash area, Central Eastern Desert, Egypt

    Science.gov (United States)

    Kassem, Osama M. K.; Abd El Rahim, Said H.

    2014-11-01

    The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures, which are attributed to various deformational stages of the Neoproterozoic basement rocks. Field geology, finite strain and microstructural analyses were carried out and the relation-ships between the lithological contacts and major/minor structures have been studied. The R f/ϕ and Fry methods were applied on the metavolcano-sedimentary and metapyroclastic samples from 5 quartz veins samples, 7 metavolcanics samples, 3 metasedimentary samples and 4 metapyroclastic samples in Dungash area. Finite-strain data show that a low to moderate range of deformation of the metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.70 to 4.80 for the R f/ϕ method and from 1.65 to 4.50 for the Fry method. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. Furthermore, the contact between principal rock units is sheared in the Dungash area under brittle to semi-ductile deformation conditions. In this case, the accumulated finite strain is associated with the deformation during thrusting to assemble nappe structure. It indicates that the sheared contacts have been formed during the accumulation of finite strain.

  11. Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: genetic tracing and age constraints of crustal hydrothermal activity

    Science.gov (United States)

    Frei, R.; Nägler, Th. F.; Schönberg, R.; Kramers, J. D.

    1998-06-01

    A combined Re-Os, Sm-Nd, U-Pb, and stepwise Pb leaching (PbSL) isotope study of hydrothermal (Mo-W)-bearing minerals and base metal sulfides from two adjacent shear zone hosted gold deposits (RAN, Kimberley) in the Harare-Shamva greenstone belt (Zimbabwe) constrain the timing of the mineralizing events to two periods. During an initial Late Archean event (2.60 Ga) a first molybdenite-scheelite bearing paragenesis was deposited in both shear zone systems, followed by a local reactivation of the shear systems during an Early Proterozoic (1.96 Ga) tectono-thermal overprint, during which base metal sulfides and most of the gold was (re-)deposited. While PbSL has revealed an open-system behavior of the U-Pb systematics in molybdenite and wolframite from the RAN mine, initial Archean Re-Os ages are still preserved implying that this system in these minerals was more resistant to the overprint. A similar retentivity could be shown for the Sm-Nd system in scheelite and powellite associated with the above ore minerals. Re-Os isotopic data from the Proterozoic mineralization in the Kimberley mine point to a recent gain of Re, most pronouncedly affecting Fe-rich sulfides such as pyrrhotite. A significant Re-loss in powellitic scheelite (an alteration phase of molybdenite-bearing scheelite), coupled with a marked loss of U in W-Mo ore minerals, complements the observation of a major Re uptake in Fe-sulfides during oxidizing conditions in a weathering environment. Pyrrhotite under these conditions behaves as an efficient Re-sink. Lead isotope signatures from PbSL residues of molybdenite, powellite, and quartz indicate a continental crustal source and/or contamination for the mineralizing fluid by interaction of the fluids with older sedimentary material as represented by the direct host country rocks. Our investigation reveals the potential of the Re-Os isotopic system applied to crustal hydrothermal ore minerals for genetic tracing and dating purposes. The simplified chemical

  12. Linenament analysis on LANDSAT imagery in the central Badajoz-Córdoba Shear Zone. Arguments for brittle stain partitioning and block rotation under transpression

    Directory of Open Access Journals (Sweden)

    Martínez-Torres, L. M.

    1989-12-01

    Full Text Available In the present work we deal with the statistical study oC the lineaments drawn by three different analysts on the same LANDSAT image on a geologically well-known portion oC the southem lberian Massif: the Badajoz-Córdoba Shear Zone. The results obtained let us establish the presence of two structural domains separated by a central band coinciding with the outcrop of the most metamorphic rocks of the central Badajoz-Córdoba Shear Zone. Each of these domains hold a distinctive lineament distribution arrangement, the whole being ascribable to a scheme of transpressive sinistral shearing within a band which rather fits a Bouguer gravity anomaly and a set of late-hercynian wrench faults.Se realiza un estudio estadístico de los tecto-lineamientos observados por tres analistas diferentes sobre una fotografía de satélite de la porción central de la Zona de Cizalla de Badajoz-Córdoba (Macizo Ibérico Meridional. Los resultados alcanzados permiten establecer la presencia de dos dominios estructurales separados entre sí por una banda central que coincide con el afloramiento de las rocas más metamórficas de la Zona de Cizalla. Cada uno de estos tres dominios tiene una distribución particular de lineamientos estructurales, explicándose el conjunto en el marco de un cizallamiento sinistroso en régimen transpresivo en una banda que se ajusta bastante a la distribución conocida para ese área de fallas y accidentes tardi-hercínicos de desgarre y a la posición de una anomalía gravimétrica de Bouguer.

  13. Structures, microfabrics, fractal analysis and temperature-pressure estimation of the Mesozoic Xingcheng-Taili ductile shear zone in the North China craton

    Science.gov (United States)

    Liang, Chenyue; Neubauer, Franz; Liu, Yongjiang; Jin, Wei; Zeng, Zuoxun; Bernroider, Manfred; Li, Weimin; Wen, Quanbo; Han, Guoqing; Zhao, Yingli

    2014-05-01

    The ductile shear zone in Xingcheng-Taili area (western Liaoning Province in China) is tectonically located in the eastern section of the northern margin of the North China craton, and dominantly comprises deformed granitic rocks of Neoarchean and Triassic to Late Jurassic age, which were affected by shearing within middle- to low-grade metamorphic conditions. Because a high-temperature metamorphic overprint is lacking, microstructures attesting to low-temperature ductile deformation are well preserved. However, the rocks and its structures have not been previously analyzed in detail except by U-Pb zircon dating and some geochemistry. Here, we describe the deformation characteristics and tectonic evolution of the Xingcheng-Taili ductile shear zone, in order to understand the mode of lithosphericscale reactivation, extension and thinning of the North China craton. The ductile deformation history comprises four successive deformation phases: (1) In the Neoarchean granitic rocks, a steep gneissosity and banded structures trend nearly E-W (D1). (2) A NE-striking sinistral structure of Upper Triassic rocks may indicate a deformation event (D2) in Late Triassic times, which ductile deformation structures superimposed on Neoarchean granitic rocks. (3) A gneissose structure with S-C fabrics as well as an ENE-trending sinistral strike-slip characteristic (D3) developed in Upper Jurassic biotite adamellite and show the deformation characteristics of a shallow crustal level and generated mylonitic fabrics superimposed on previous structures. (4) Late granitic dykes show different deformational behavior, and shortening with D4 folds. The attitude of the foliation S and mineral stretching lineation of three main types of rocks shows remarkable differences in orientation. The shapes of recrystallized quartz grains from three main types of granitic rocks with their jagged and indented boundaries were natural records of deformation conditions (D1to D3). Crystal preferred

  14. The integrated analyses of digital field mapping techniques and traditional field methods: implications from the Burdur-Fethiye Shear Zone, SW Turkey as a case-study

    Science.gov (United States)

    Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat

    2015-04-01

    The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this

  15. A microstructural study of SAFOD gouge from actively creeping San Andreas Fault zone; Implications for shear localization models

    Science.gov (United States)

    Blackburn, E. D.; Hadizadeh, J.; Babaie, H. A.

    2009-12-01

    The prevailing models of shear localization in fault gouges are mainly based on experimental aggregates that necessarily neglect the effects of chemical and mechanical maturation with time. The SAFOD cores have provided a chance to test whether cataclasis as a deformation mechanism and factors such as porosity and particle size, critical in some existing shear localization models continue to be critical in mature gouges. We studied a core sample from 3194m MD in the SAFOD phase 3, which consists of intensely foliated shale-siltstone cataclasites in contact with less deformed shale. Microstructures were studied in 3 perpendicular planes with reference to foliation using high resolution scanning electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The cataclastic foliation, recognizable at length scales >100 μm, is primarily defined by bands of clay gouge with distinct microstructure, clay content, and porosity. Variations in elemental composition and porosity of the clay gouge were measured continuously across the foliation. Prominent features within the foliation bands include lens-shaped clusters of highly brecciated and veined siltstone fragments, pyrite smears, and pyrite-cemented cataclasites. The microstructural relations and chemical data provide clear evidence of multiple episodes of veining and deformation with some possibility of relative age determination for the episodes. There is evidence of syn-deformation hydrothermal changes including growth and brittle shear of pyrite, alteration of host shale clays to illite-smectite clays and Fe-rich smectite. Evidence of grain-boundary corrosion of non-clay mineral fragments suggests pressure solution creep. The gouge porosity estimates varied from 0-18% (about 3% in less deformed shale) with the highest value in the bands with abundant siltstone fragments. The banding is mechanically significant since it pervasively segregates the gouge into

  16. Evolution of Brasiliano-age granitoid types in a shear-zone environment, Umarizal-Caraubas region, Rio Grande do Norte, northeast Brazil

    Science.gov (United States)

    Galindo, A. C.; Dall'Agnol, R.; McReath, I.; Lafon, J. M.; Teixeira, N.

    1995-01-01

    A sequence of Brasiliano-age granitoid types is exposed in a small area near the cities of Umarizal and Caraúbas in Rio Grande do Norte State, Northeast Brazil. Porphyritic K-alkali-calcic monzogranite is an important facies of the oldest Caraúbas intrusion (RbSr whole rock isochron age of ca. 630 Ma), which suffered solid-state deformation due to movements on a major NE-trending shear zone. The intrusion of the Prado and part of the Quixaba bodies was probably controlled by the shear zone. These two bodies include mafic/intermediate rocks, some of which contain two pyroxenes, and have hybrid, partly alkaline and partly shoshonitic geochemical characteristics. Rock types and ages are similar to those of some Pan-African occurrences in southwestern Nigeria. The Tourão body, intruded at ca. 590 Ma, presents preferred mineral orientations which are probably largely magmatic, since little evidence is found for widespread solid-state deformation. On the other hand, its intrusion may have been facilitated by the presence of the shear-zone faults. The rocks form a monomodal felsic K-alkali-calcic suite. With the exception of the Quixaba body, all these earlier granitoids are magmatic epidote- and magnetite-bearing porphyritic monzogranites with trace element geochemical characteristics of modern syn-collisional granites. The latest intrusion at ca. 545 Ma is mainly represented by potassic quartz syenites and related rocks, some of which contain fayalite or ferrohypersthene. These rocks possess neither well developed mineral orientations of magmatic origin nor signs of solid-state deformation. They are mineralogically similar to, but younger than some of the "bauchites" of central Nigeria. Geochemical signatures are comparable with those of modern within-plate granites. All granitoids present high ( 87Sr/ 86Sr)i ratios which range from 0.708 to 0.712, and increase with decreasing age. Such ratios are compatible with important or dominant crustal contributions. On the

  17. Uraninite, coffinite and brannerite from shear-zone hosted uranium deposits of the Bohemian Massif (Central European Variscan belt)

    Czech Academy of Sciences Publication Activity Database

    René, Miloš; Dolníček, Z.

    2017-01-01

    Roč. 7, č. 4 (2017), č. článku 50. ISSN 2075-163X Institutional support: RVO:67985891 Keywords : uranium deposits * mineralogy * uraninite * coffinite * brannerite * Moldanubian Zone * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.088, year: 2016 http://www.mdpi.com/2075-163X/7/4/50

  18. Clarification on shear transformation zone size and its correlation with plasticity for Zr-based bulk metallic glass in different structural states

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q.; Huang, L. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, P., E-mail: huangping@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Xu, K.W. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, F., E-mail: wangfei@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures Xi' an Jiaotong University, Xi' an 710049 (China); Lu, T.J. [State Key Laboratory for Strength and Vibration of Mechanical Structures Xi' an Jiaotong University, Xi' an 710049 (China); MOE Key Laboratory for Multifunctional Materials and Structures Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-11-20

    To clarify the real size of shear transformation zone (STZ) and its correlation with the plasticity of metallic glass, STZ sizes of a Zr-based bulk metallic glass (BMG) in three different structural states (as-cast, annealed and confining annealed) were examined using both rate-change and statistical methods upon nanoindentation. STZ sizes (less than 24 atoms) obtained by the statistical method approached the real STZ size of very few atoms, and showed no correlation with BMG plasticity. In sharp contrast, STZ sizes (hundreds of atoms) obtained by the rate-change method not only were much larger than the real STZ size but also exhibited a positive correlation with BMG plasticity. These discrepancies were discussed in terms of the structural evolution of BMGs upon nanoindentation.

  19. Unexpected earthquake hazard revealed by Holocene rupture on the Kenchreai Fault (central Greece): Implications for weak sub-fault shear zones

    Science.gov (United States)

    Copley, Alex; Grützner, Christoph; Howell, Andy; Jackson, James; Penney, Camilla; Wimpenny, Sam

    2018-03-01

    High-resolution elevation models, palaeoseismic trenching, and Quaternary dating demonstrate that the Kenchreai Fault in the eastern Gulf of Corinth (Greece) has ruptured in the Holocene. Along with the adjacent Pisia and Heraion Faults (which ruptured in 1981), our results indicate the presence of closely-spaced and parallel normal faults that are simultaneously active, but at different rates. Such a configuration allows us to address one of the major questions in understanding the earthquake cycle, specifically what controls the distribution of interseismic strain accumulation? Our results imply that the interseismic loading and subsequent earthquakes on these faults are governed by weak shear zones in the underlying ductile crust. In addition, the identification of significant earthquake slip on a fault that does not dominate the late Quaternary geomorphology or vertical coastal motions in the region provides an important lesson in earthquake hazard assessment.

  20. Kinematics of syn- and post-exhumational shear zones at Lago di Cignana (Western Alps, Italy): constraints on the exhumation of Zermatt-Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust

    Science.gov (United States)

    Kirst, Frederik; Leiss, Bernd

    2017-01-01

    Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.

  1. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    Science.gov (United States)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  2. Do the eclogites of the Variscan Malpica-Tuy shear zone in NW Spain point to continental subduction?

    Science.gov (United States)

    Li, Botao; Massonne, Hans-Joachim

    2014-05-01

    High-pressure (HP: P > 10 kbar) rocks such as eclogite typically occur in suture zones of collided continental plates in Phanerozoic times. In case of an extended area at the surface of a denuded orogen with HP and even ultrahigh pressure (UHP) metamorphic rocks, they are often interpreted as the result of continental subduction. We have tested this idea for the HP-UHP area of the Malpica-Tuy zone of the Variscan orogen, which was formed by the collision of Gondwana and Laurussia. For the test, we have initially studied an eclogite and its surrounding gneiss of this zone in detail. The eclogite contains the assemblage garnet, omphacite, amphibole, rutile, ilmenite, clinozoisite/epidote, quartz, and phengite with Si-contents as high as 3.45 per formula unit (pfu) in inner portions and 3.27-3.35 pfu in rims. Garnet exhibits chemical zonation with Gro25Alm55Pyr15Spe5, Gro29Alm57Pyr13Spe1, and Gro23Alm56Pyr20Spe1 as inner core, mantle, and outermost rim compositions, respectively. The gneiss is a former medium-grained granite now composed of quartz, plagioclase, K-feldspar, biotite, phengite, garnet, clinozoisite/epidote, titanite, apatite and ilmenite. Phengite shows Si contents between 3.40 (core) and 3.00 (rim) pfu. Garnet is chemically zoned with Gro69.6Alm27Pyr0.4Spe3, Gro65.5Alm32.5Pyr0.5Spe1.5, Gro65.7Alm31.7Pyr0.6Spe2, and Gro56.6Alm41.6Pyr1.2Spe0.6 as core, mantle, rim and outermost rim compositions, respectively. P-T pseudosections were calculated with the PERPLEX computer program in the system Na2O-K2O-CaO-FeO-O2-MnO-MgO-Al2O3-SiO2-TiO2-H2O for the bulk-rock compositions of the studied eclogite and gneiss. These pseudosections were contoured by isopleths of various parameters such as molar fractions of garnet components. Based on this contouring a P-T path was derived that starts at HP conditions for both lithologies. Garnet began to form at 22 kbar and 565°C in the eclogite. Subsequently, the temperatures increased to 585°C and the pressure decreased to

  3. Possible Different Rifting Mechanisms Between South and North Part of the Fenhe-Weihe Rift Zone Revealed by Shear Velocity Structures

    Science.gov (United States)

    Ai, S.; Zheng, Y.

    2017-12-01

    As an active intraplate continental rift, FWR plays an important role in accommodating the trans-tension in the Trans North China Craton (TNCO). Velocity field derived from GPS measurements reveals that the northern part of FWR is still under extension in N105°E direction at a rate of 4±2 mm/yr [Shen et al., 2000]. Actually, the FWR has been the most seismically active region in NCC. Bouguer gravity profile and seismic sounding lines [Xu and Ma, 1992] revealed a 2-3 km uplift of Moho depth beneath Taiyuan basin and 5-6 km beneath the Southwestern rift zone, those geophysical observations give clues to the un-evenly upwelling of the asthenosphere beneath the rift system and the different rifting process of the FWR. Therefore, studying the extension process of FWR is meaningful to understanding the NCC geodynamics associated with rifting tectonism. Using vertical continuous waveforms recorded during 2014 from CEarray, we construct a reliable and detailed 3-D crustal and uppermost mantle S-wave velocity structure of FWR, using a Bayesian Monte-Carlo method to jointly interpret teleseismic P-wave receiver functions and Rayleigh wave dispersions [Shen et al., 2013]. In the upmost crust, FWR appear as awful low velocity anomaly zone (LVZ), while the Taihang and Lvliang mountain ranges are imaged as strong high velocity anomaly zones(HVZ). In the middle crust, the low velocity zones still keep their LVZ features Additionally, nearly the whole FWR appears as a linearly LVZ line separating Taihang Uplift and Lvliang Uplift, except beneath Shilingguan and Linshi blocks that separate the Xinxian, Taiyuan and Linfen Basins, consisting with the high seismicity there. The velocity of the lower crust beneath Taiyuan and Weihe Basin are relatively higher than the rest rift regions, we interpret them as the limited mafic underplating beneath the TNCO. From the lower crust to upper mantle, the Datong volcanic zone display robust low velocity features, though the lowest velocity

  4. Reaction softening by dissolution–precipitation creep in a retrograde greenschist facies ductile shear zone, New Hampshire, USA

    Science.gov (United States)

    McAleer, Ryan J.; Bish, David L.; Kunk, Michael J.; Sicard, Karri R.; Valley, Peter M.; Walsh, Gregory J.; Wathen, Bryan A.; Wintsch, R.P.

    2016-01-01

    We describe strain localization by a mixed process of reaction and microstructural softening in a lower greenschist facies ductile fault zone that transposes and replaces middle to upper amphibolite facies fabrics and mineral assemblages in the host schist of the Littleton Formation near Claremont, New Hampshire. Here, Na-poor muscovite and chlorite progressively replace first staurolite, then garnet, and finally biotite porphyroblasts as the core of the fault zone is approached. Across the transect, higher grade fabric-forming Na-rich muscovite is also progressively replaced by fabric-forming Na-poor muscovite. The mineralogy of the new phyllonitic fault-rock produced is dominated by Na-poor muscovite and chlorite together with late albite porphyroblasts. The replacement of the amphibolite facies porphyroblasts by muscovite and chlorite is pseudomorphic in some samples and shows that the chemical metastability of the porphyroblasts is sufficient to drive replacement. In contrast, element mapping shows that fabric-forming Na-rich muscovite is selectively replaced at high-strain microstructural sites, indicating that strain energy played an important role in activating the dissolution of the compositionally metastable muscovite. The replacement of strong, high-grade porphyroblasts by weaker Na-poor muscovite and chlorite constitutes reaction softening. The crystallization of parallel and contiguous mica in the retrograde foliation at the expense of the earlier and locally crenulated Na-rich muscovite-defined foliation destroys not only the metastable high-grade mineralogy, but also its stronger geometry. This process constitutes both reaction and microstructural softening. The deformation mechanism here was thus one of dissolution–precipitation creep, activated at considerably lower stresses than might be predicted in quartzofeldspathic rocks at the same lower greenschist facies conditions.

  5. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    Science.gov (United States)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  6. Tracing of paleo-shear zones by self-potential data inversion: case studies from the KTB, Rittsteig, and Grossensees graphite-bearing fault planes

    Science.gov (United States)

    Mehanee, Salah A.

    2015-01-01

    This paper describes a new method for tracing paleo-shear zones of the continental crust by self-potential (SP) data inversion. The method falls within the deterministic inversion framework, and it is exclusively applicable for the interpretation of the SP anomalies measured along a profile over sheet-type structures such as conductive thin films of interconnected graphite precipitations formed on shear planes. The inverse method fits a residual SP anomaly by a single thin sheet and recovers the characteristic parameters (depth to the top h, extension in depth a, amplitude coefficient k, and amount and direction of dip θ) of the sheet. This method minimizes an objective functional in the space of the logarithmed and non-logarithmed model parameters (log( h), log( a), log( k), and θ) successively by the steepest descent (SD) and Gauss-Newton (GN) techniques in order to essentially maintain the stability and convergence of this inverse method. Prior to applying the method to real data, its accuracy, convergence, and stability are successfully verified on numerical examples with and without noise. The method is then applied to SP profiles from the German Continental Deep Drilling Program (Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschla - KTB), Rittsteig, and Grossensees sites in Germany for tracing paleo-shear planes coated with graphitic deposits. The comparisons of geologic sections constructed in this paper (based on the proposed deterministic approach) against the existing published interpretations (obtained based on trial-and-error modeling) for the SP data of the KTB and Rittsteig sites have revealed that the deterministic approach suggests some new details that are of some geological significance. The findings of the proposed inverse scheme are supported by available drilling and other geophysical data. Furthermore, the real SP data of the Grossensees site have been interpreted (apparently for the first time ever) by the deterministic inverse

  7. Geotechnical studies at Jaduguda uranium mine for optimisation of stopping and support parameters in molybdenite shear zone

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Sinha, A.; Prasad, L.; Prasad, M.; Raju, N.M.

    1991-01-01

    In recent years, a few geotechnical studies have been conducted by the Central Mining Research Station, Dhanbad, at Jaduguda mine to improve ground control system and to optimise stopping parameters in the wide orebody zone at deeper levels and thus to add to productivity and recovery of these mines ensuring adequate safety. The replacement of mechanical point-anchored rock-bolts by full column cement grouted bolts, installed as per the designed pattern, has improved the ground condition, decreased the consumption of timber supports by around 70%, curtailed the support installation time and reduced the support cost to a remarkable extent even at the most problematic sites of Jaduguda mine. The analysis of stress development observations in the slope pillars of this mine reveals that the size of the slope pillars may be reduced by 20% in width which means an extra recovery of about 75 to 100 tonnes of ore per pillar per slice. In this paper, the authors have presented a brief account of their studies at this mine in the last four years. (author). 10 refs., 10 tabs., 9 figs

  8. Recycling and utilisation of industrial solid waste: an explorative study on gold deposit tailings of ductile shear zone type in China.

    Science.gov (United States)

    Liu, Rui; Huang, Fei; Du, Runxiang; Zhao, Chunming; Li, Yongli; Yu, Haoran

    2015-06-01

    Tailings are solid waste arising from mineral processing. This type of waste can cause severe damage to the environment during stockpiling as a result of the leaching of something harmful into the ecosystem. Gold deposit of ductile shear zone type is an important type of gold deposit, and the recycling of its tailings has been challenging researchers for a long time. In this article, the characteristics of this type of tailings were systematically studied by using modern technical means. Considering the characteristics of the tailings, clay was selected to make up for the shortcomings of the tailings and improve their performance. Water and raw materials were mixed to produce green bodies, which are subsequently sintered into ceramic bodies at 980 °C~1020 °C (sintering temperature). The results showed that some new kinds of mineral phases, such as mullite, anorthite and orthoclase, appear in ceramic bodies. Furthermore, the ceramic bodies have a surface hardness of 5 to 6 (Mohs scale), and their water absorption and modulus of rupture can meet some technical requirements of ceramic materials described in ISO 13006-2012 and GB 5001-1985. These gold mine tailings can be made into ceramic tiles, domestic ceramic bodies, and other kinds of ceramic bodies for commercial and industrial purposes after further improvements. © The Author(s) 2015.

  9. On some aspects of the stratigraphy, depositional environment and its bearing on uranium mineralisation in parts of the Singhbhum shear zone, Bihar

    International Nuclear Information System (INIS)

    Virnave, S.N.; Mukhopadhyay, T.K.; Krishnabadri, N.S.R.

    1994-01-01

    A review of the geology and controls of uranium mineralisation in the Singhbhum Shear Zone between Narwapahar (Lat. 22deg44'N; Long. 86deg15'E) in the west, to Ghatsila (Lat. 22deg25'N; Long. 86deg20'E) in the southeast and up to Dalmas in the north is presented in the light of new data based on facies analysis and palaeo-current studies on the conglomerate and associated meta-sediments in the area. Synthesis and integration of geologic data have led to the following conclusions: a) The facies variation and its distribution pattern in the area demonstrate fluviatile conditions of deposition with upward fining and thinning sequences b) The sedimentary sequence shows progressive younging towards north without any obvious break or juxta-position of the older over the younger. c) The nature of Jaduguda sedimentary facies assemblage is indicative of a fluvial fan with conglomerate gray-wacke-arenite assemblage representing proximal fan facies. On the basis of facies model, the area north of Subarnarekha river represents a meandering fluvial pattern. d) Uranium mineralisation is distinctly stratabound with characteristic facies association. (author). 13 refs., 11 figs., 3 tabs

  10. Velocity Field of the McMurdo Shear Zone from Annual Three-Dimensional Ground Penetrating Radar Imaging and Crevasse Matching

    Science.gov (United States)

    Ray, L.; Jordan, M.; Arcone, S. A.; Kaluzienski, L. M.; Koons, P. O.; Lever, J.; Walker, B.; Hamilton, G. S.

    2017-12-01

    The McMurdo Shear Zone (MSZ) is a narrow, intensely crevassed strip tens of km long separating the Ross and McMurdo ice shelves (RIS and MIS) and an important pinning feature for the RIS. We derive local velocity fields within the MSZ from two consecutive annual ground penetrating radar (GPR) datasets that reveal complex firn and marine ice crevassing; no englacial features are evident. The datasets were acquired in 2014 and 2015 using robot-towed 400 MHz and 200 MHz GPR over a 5 km x 5.7 km grid. 100 west-to-east transects at 50 m spacing provide three-dimensional maps that reveal the length of many firn crevasses, and their year-to-year structural evolution. Hand labeling of crevasse cross sections near the MSZ western and eastern boundaries reveal matching firn and marine ice crevasses, and more complex and chaotic features between these boundaries. By matching crevasse features from year to year both on the eastern and western boundaries and within the chaotic region, marine ice crevasses along the western and eastern boundaries are shown to align directly with firn crevasses, and the local velocity field is estimated and compared with data from strain rate surveys and remote sensing. While remote sensing provides global velocity fields, crevasse matching indicates greater local complexity attributed to faulting, folding, and rotation.

  11. Hydration of an active shear zone: Interactions between deformation, metasomatism and magmatism - the spinel-lherzolites from the Montferrier (southern France) Oligocene basalts

    International Nuclear Information System (INIS)

    Cabanes, N.; Briqueu, L.

    1987-01-01

    Geochemical and textural investigations have been simultaneously performed on spinel-lherzolite xenoliths from the Oligo-Miocene alkali basalts of Montferrier (southern France). All the investigated samples have undergone a deformation very particular by intense shearing under high stresses (up to 1.75 kbar), low temperatures (≤900 0 C) and strain rates of about 10 -18 to 10 -15 s -1 . Mineral chemistry reveals that the Montferrier lherzolites are fragments of an undepleted relatively shallow upper mantle level located at a depth of 50 km (15 kbar). Moreover, Na and Ti enrichment in diopside would reflect a metasomatic event, also emphasized by the common occurrence of pargasite in 50-70% of the investigated samples. Crystallization of this amphibole is attributed to a hydrous infiltration which is related in time and space to the deformation. Indeed, amphibole is preferentially concentrated in strongly deformed zones and in kink-band boundaries of orthopyroxene porphyroclasts. Moreover, the grain boundaries were used by the pervasive agent to percolate into the lherzolite: significant chemical variations (increase in MgO: 15% and decrease in Al 2 O 3 : 55%) are observed within the range of 7-5 μm adjacent to the grain boundary. Finally, Sr isotopic data ( 87 Sr/ 86 Sr) demonstrate that the amphibole, i.e. the metasomatic agent, is genetically related to the host lava of the xenoliths. Thus, the hydrous silicate liquid from which the amphibole has crystallized may be an early percolation of the ascending alkali magma. (orig.)

  12. The complex systematics of zircons in migmatitic gneisses: An example from an Archean migmatite along the Patos Shear Zone, Borborema Province, NE Brazil

    International Nuclear Information System (INIS)

    Costa, A.C.D; Hackspacher, P.C; Dantas, E.L; Fetter, A.H.

    2001-01-01

    The Northem Tectonic Domain Borborema Province, in Northeast of Brazil records a complex history of tectonic activity ranging from 3.4 Ga to 0.6 Ga (Brito Neves, 1995 and Dantas, 1996). U-Pb systematics of zircons from a migmatitic gneiss just north of the Patos Shear Zone provide an excellent example of the difficulties encountered using conventional single-grain U/Pb zircon geochronology in polydeformed gneiss terranes. Our conventional single grain zircon analyses of a migmatite yielded Archean ages between ca. 3.3 at 2.8 a, as well as some highly discordant Paleoproterozoic ages. Subsequent cathodoluminescence images of these zircon grains showed complex internal structures that possibly record up to 4 separate stages of zircon growth. With such internal complexity, is impossible resolve primary crystallization ages as well as the ages of subsequent overgrowth events using conventional single grain analyses. Such resolution will require analyses of the individual grain domains using the SHRIMP method (au)

  13. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  14. The shear zone-related gold mineralization at the Turmalina deposit, Quadrilátero Ferrífero, Brazil: structural evolution and the two stages of mineralization

    Science.gov (United States)

    Fabricio-Silva, Wendell; Rosière, Carlos Alberto; Bühn, Bernhard

    2018-05-01

    Turmalina is an important orogenic gold deposit located in the NW region of the Quadrilátero Ferrífero. The deposit is hosted in an Archean greenstone belt composed of ortho-amphibolites and pelites with interleaved tuffs metamorphosed under amphibolite facies conditions and intruded by a granite stock. The orebodies are controlled by WNW-ESE-trending shear zones, associated with hydrothermal alteration. Three deformation events are recognized in the Turmalina gold deposit: D1 and D2 are the result of a progressive Archean deformation under ductile conditions between 2749 ± 7 and 2664 ± 35 Ma; D3 is characterized by a transpressional event under ductile-brittle conditions with the age still unclear. The three generations of garnet observed show that Grt1 blastesis is pre- to syn-D1 and Grt2 growth during the late to post-deformation stages of the D2 event. The initial temperature (Grt1 core) is around 548-600 °C, whereas during late D2, the temperatures reached 633 °C (metamorphic peak-Grt2 rim), likely as a result of granite intrusion. The Grt3 resulted from re-equilibration under retrograde conditions. Two gold-bearing sulfide stages were identified: pyrrhotite-arsenopyrite ± löllingite ± chalcopyrite ± gold stage I precipitated below a metamorphic peak temperature of 598 ± 19 °C associated with S1 foliation (D1), and pyrrhotite-pyrite-arsenopyrite ± chalcopyrite ± gold stage II is located commonly along V3 quartz-carbonate veinlets with a temperature range between 442 ± 9 and 510 ± 30 °C. We suggest that the granite intrusion imposed an additional thermal effect that promoted further dehydration of country rocks. The Au derived mainly from a metamorphic fluid source but potentially mixed with magmatic fluids from the granite.

  15. Influence of the Eastern California Shear Zone on deposition of the Mio-Pliocene Bouse Formation: Insights from the Cibola area, Arizona

    Science.gov (United States)

    Dorsey, Rebecca J.; O'Connell, Brennan; Homan, Mindy B.; Bennett, Scott E. K.

    2017-01-01

    The Eastern California Shear Zone (ECSZ) is a wide zone of late Cenozoic strike-slip faults and related diffuse deformation that currently accommodates ~20–25% of relative Pacific–North America plate motion in the lower Colorado River region (Fig. 1A; Dokka and Travis, 1990; Miller et al., 2001; Guest et al., 2007; Mahan et al., 2009). The ECSZ is kinematically linked southward to dextral faults in the northern Gulf of California (Bennett et al., 2016a), and it may have initiated ca. 8 Ma when major strike-slip faults developed in the northern Gulf and Salton Trough region (Bennett et al., 2016b; Darin et al., 2016; Woodburne, 2017). Thus deformation related to the ECSZ occurred in the lower Colorado River region during deposition of the Bouse Formation, which is commonly bracketed between 6.0 and 4.8 Ma (House et al., 2008; Sarna-Wojcicki et al., 2011; Spencer et al., 2013) and may be as old as 6–7 Ma in the south (McDougall and Miranda Martínez, 2014, 2016). Post-4.5 Ma broad sagging is recognized along the lower Colorado River (Howard et al., 2015), but the possibility that faults of the ECSZ influenced local to regional subsidence patterns during deposition of the Bouse Formation has received little attention to date (e.g., Homan, 2014; O’Connell et al., 2016). The Bouse Formation is a widespread sequence of late Miocene to early Pliocene deposits exposed discontinuously along the lower Colorado River corridor (Fig. 1A). In the southern Blythe basin it consists of three regionally correlative members: (1) Basal Carbonate, consisting of supratidal and intertidal mud-flat marls, intertidal and shallow subtidal bioclastic grainstone and conglomerate, and subtidal marl; (2) Siliciclastic member, consisting of Colorado River-derived green claystone, red mudstone and siltstone, and cross-bedded river channel sandstone; and (3) Upper Bioclastic member fossiliferous sandy calcarenite, coarse pebbly grainstone, and calcareous-matrix conglomerate (Homan, 2014

  16. 40Ar/39Ar ages (600-570 Ma of the Serra do Azeite transtensional shear zone: evidence for syncontractional extension in the Cajati area, southern Ribeira belt

    Directory of Open Access Journals (Sweden)

    Rômulo Machado

    2007-12-01

    Full Text Available This paper presents 40Ar/39Ar ages of the rocks from the Serra do Azeite transtensional shear zone in the southern part of the Ribeira belt, between the States of São Paulo and Paraná, and also discusses the regional correlations and the tectonic implications for other parts of the belt. The geochronological data suggest that transtensional deformation was active between 600 and 580 Ma (hornblende and muscovite apparent ages, respectively. This time span is considerably older than previous proposals for the period of activity of these structures (520-480 Ma in the northern segment of this belt and in the Araçuaí belt. Kinematic analysis of the dated mylonites shows extensional structures with top-down movement to ESE compatible with structures found in other tectonic segments in the eastern portion of the Quadrilátero Ferrífero and in the Rio Doce Valley region. Our ages are situated in the same time interval defined for the alkaline magmatism of the Serra do Mar suite. We suggest that the regional tectonic framework was developed during continental-scale extension. This process has been coeval with convergent strain in the adjacent Neoproterozoic shear zones of the Apiaí/Ribeira and Araçuaí belts, which make up significant segments of these belts. The available data show that these structures may not be simply related to post-orogenic gravitational collapse, but must involve a more complex process probably related to dynamic balance between crustal thickening and thinning during tectonic convergence, basin formation and exhumation processes.Este trabalho apresenta idades 40Ar/39Ar de rochas da Zona de Cisalhamento Transtrativa Sinistral da Serra do Azeite, situada na parte sul do cinturão Ribeira, entre os Estados de São Paulo e Paraná, bem como discute a correlação regional e as implicações tectônicas com outras partes do cinturão. Os dados geocronológicos sugerem que a deformação extensional foi ativa entre 600 e 580 Ma

  17. Stretch Marks

    Science.gov (United States)

    ... completely without the help of a dermatologist or plastic surgeon. These doctors may use one of many types of treatments — from actual surgery to techniques like microdermabrasion and laser treatment — to reduce the appearance of stretch marks. These techniques are ...

  18. Continuous shear - a method for studying material elements passing a stationary shear plane

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    2003-01-01

    circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....

  19. 27 CFR 28.154 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.154..., for Exportation or Transfer to a Foreign-Trade Zone § 28.154 Export marks. In addition to the marks... provisions of part 19 of this chapter, the proprietor shall mark the word “Export” on the Government side of...

  20. The Black Mountain tectonic zone--a reactivated northeast-trending crustal shear zone in the Yukon-Tanana Upland of east-central Alaska: Chapter D in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    Science.gov (United States)

    O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.

  1. CT-guided Irreversible Electroporation in an Acute Porcine Liver Model: Effect of Previous Transarterial Iodized Oil Tissue Marking on Technical Parameters, 3D Computed Tomographic Rendering of the Electroporation Zone, and Histopathology

    International Nuclear Information System (INIS)

    Sommer, C. M.; Fritz, S.; Vollherbst, D.; Zelzer, S.; Wachter, M. F.; Bellemann, N.; Gockner, T.; Mokry, T.; Schmitz, A.; Aulmann, S.; Stampfl, U.; Pereira, P.; Kauczor, H. U.; Werner, J.; Radeleff, B. A.

    2015-01-01

    PurposeTo evaluate the effect of previous transarterial iodized oil tissue marking (ITM) on technical parameters, three-dimensional (3D) computed tomographic (CT) rendering of the electroporation zone, and histopathology after CT-guided irreversible electroporation (IRE) in an acute porcine liver model as a potential strategy to improve IRE performance.MethodsAfter Ethics Committee approval was obtained, in five landrace pigs, two IREs of the right and left liver (RL and LL) were performed under CT guidance with identical electroporation parameters. Before IRE, transarterial marking of the LL was performed with iodized oil. Nonenhanced and contrast-enhanced CT examinations followed. One hour after IRE, animals were killed and livers collected. Mean resulting voltage and amperage during IRE were assessed. For 3D CT rendering of the electroporation zone, parameters for size and shape were analyzed. Quantitative data were compared by the Mann–Whitney test. Histopathological differences were assessed.ResultsMean resulting voltage and amperage were 2,545.3 ± 66.0 V and 26.1 ± 1.8 A for RL, and 2,537.3 ± 69.0 V and 27.7 ± 1.8 A for LL without significant differences. Short axis, volume, and sphericity index were 16.5 ± 4.4 mm, 8.6 ± 3.2 cm 3 , and 1.7 ± 0.3 for RL, and 18.2 ± 3.4 mm, 9.8 ± 3.8 cm 3 , and 1.7 ± 0.3 for LL without significant differences. For RL and LL, the electroporation zone consisted of severely widened hepatic sinusoids containing erythrocytes and showed homogeneous apoptosis. For LL, iodized oil could be detected in the center and at the rim of the electroporation zone.ConclusionThere is no adverse effect of previous ITM on technical parameters, 3D CT rendering of the electroporation zone, and histopathology after CT-guided IRE of the liver

  2. CT-guided Irreversible Electroporation in an Acute Porcine Liver Model: Effect of Previous Transarterial Iodized Oil Tissue Marking on Technical Parameters, 3D Computed Tomographic Rendering of the Electroporation Zone, and Histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Fritz, S., E-mail: stefan.fritz@med.uni-heidelberg.de [University Hospital Heidelberg, Department of General Visceral and Transplantation Surgery (Germany); Vollherbst, D., E-mail: dominikvollherbst@web.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Zelzer, S., E-mail: s.zelzer@dkfz-heidelberg.de [German Cancer Research Center (dkfz), Medical and Biological Informatics (Germany); Wachter, M. F., E-mail: fredericwachter@googlemail.com; Bellemann, N., E-mail: nadine.bellemann@med.uni-heidelberg.de; Gockner, T., E-mail: theresa.gockner@med.uni-heidelberg.de; Mokry, T., E-mail: theresa.mokry@med.uni-heidelberg.de; Schmitz, A., E-mail: anne.schmitz@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Aulmann, S., E-mail: sebastian.aulmann@mail.com [University Hospital Heidelberg, Department of General Pathology (Germany); Stampfl, U., E-mail: ulrike.stampfl@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Pereira, P., E-mail: philippe.pereira@slk-kliniken.de [SLK Kliniken Heilbronn GmbH, Clinic for Radiology, Minimally-invasive Therapies and Nuclear Medicine (Germany); Kauczor, H. U., E-mail: hu.kauczor@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Werner, J., E-mail: jens.werner@med.uni-heidelberg.de [University Hospital Heidelberg, Department of General Visceral and Transplantation Surgery (Germany); Radeleff, B. A., E-mail: boris.radeleff@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany)

    2015-02-15

    PurposeTo evaluate the effect of previous transarterial iodized oil tissue marking (ITM) on technical parameters, three-dimensional (3D) computed tomographic (CT) rendering of the electroporation zone, and histopathology after CT-guided irreversible electroporation (IRE) in an acute porcine liver model as a potential strategy to improve IRE performance.MethodsAfter Ethics Committee approval was obtained, in five landrace pigs, two IREs of the right and left liver (RL and LL) were performed under CT guidance with identical electroporation parameters. Before IRE, transarterial marking of the LL was performed with iodized oil. Nonenhanced and contrast-enhanced CT examinations followed. One hour after IRE, animals were killed and livers collected. Mean resulting voltage and amperage during IRE were assessed. For 3D CT rendering of the electroporation zone, parameters for size and shape were analyzed. Quantitative data were compared by the Mann–Whitney test. Histopathological differences were assessed.ResultsMean resulting voltage and amperage were 2,545.3 ± 66.0 V and 26.1 ± 1.8 A for RL, and 2,537.3 ± 69.0 V and 27.7 ± 1.8 A for LL without significant differences. Short axis, volume, and sphericity index were 16.5 ± 4.4 mm, 8.6 ± 3.2 cm{sup 3}, and 1.7 ± 0.3 for RL, and 18.2 ± 3.4 mm, 9.8 ± 3.8 cm{sup 3}, and 1.7 ± 0.3 for LL without significant differences. For RL and LL, the electroporation zone consisted of severely widened hepatic sinusoids containing erythrocytes and showed homogeneous apoptosis. For LL, iodized oil could be detected in the center and at the rim of the electroporation zone.ConclusionThere is no adverse effect of previous ITM on technical parameters, 3D CT rendering of the electroporation zone, and histopathology after CT-guided IRE of the liver.

  3. Prayer marks.

    Science.gov (United States)

    Abanmi, Abdullah A; Al Zouman, Abdulrahman Y; Al Hussaini, Husa; Al-Asmari, Abdulrahman

    2002-07-01

    Prayer marks (PMs) are asymptomatic, chronic skin changes that consist mainly of thickening, lichenification, and hyperpigmentation, and develop over a long period of time as a consequence of repeated, extended pressure on bony prominences during prayer. Three hundred and forty-nine Muslims and 24 non-Muslims were examined for the appearance of PMs at different body sites. The prospective study of 349 Muslims (both males and females) with regular praying habits showed the occurrence of PMs on specific locations, such as the forehead, knees, ankles, and dorsa of the feet, leading to dermatologic changes consisting of lichenification and hyperpigmentation. The incidence of PMs was significantly higher in males than in females. Older subjects (over 50 years of age) demonstrated a significantly higher frequency of lichenification and hyperpigmentation, suggesting that repeated pressure and friction for prolonged periods are the causative factors for the development of PMs. Histologic examination of skin biopsies from the affected sites showed compact orthokeratosis, hypergranulosis, dermal papillary fibrosis, and dermal vascularization. PMs were not associated with any risk of secondary complications, such as erythema, bullous formation, and infections. PMs are commonly occurring dermatologic changes in Muslims who pray for prolonged periods.

  4. Integrating GIS-based geologic mapping, LiDAR-based lineament analysis and site specific rock slope data to delineate a zone of existing and potential rock slope instability located along the grandfather mountain window-Linville Falls shear zone contact, Southern Appalachian Mountains, Watauga County, North Carolina

    Science.gov (United States)

    Gillon, K.A.; Wooten, R.M.; Latham, R.L.; Witt, A.W.; Douglas, T.J.; Bauer, J.B.; Fuemmeler, S.J.

    2009-01-01

    Landslide hazard maps of Watauga County identify >2200 landslides, model debris flow susceptibility, and evaluate a 14km x 0.5km zone of existing and potential rock slope instability (ZEPRSI) near the Town of Boone. The ZEPRSI encompasses west-northwest trending (WNWT) topographic ridges where 14 active/past-active rock/weathered rock slides occur mainly in rocks of the Grandfather Mountain Window (GMW). The north side of this ridgeline is the GMW / Linville Falls Fault (LFF) contact. Sheared rocks of the Linville Falls Shear Zone (LFSZ) occur along the ridge and locally in the valley north of the contact. The valley is underlain principally by layered granitic gneiss comprising the Linville Falls/Beech Mountain/Stone Mountain Thrust Sheet. The integration of ArcGIS??? - format digital geologic and lineament mapping on a 6m LiDAR (Light Detecting and Ranging) digital elevation model (DEM) base, and kinematic analyses of site specific rock slope data (e.g., presence and degree of ductile and brittle deformation fabrics, rock type, rock weathering state) indicate: WNWT lineaments are expressions of a regionally extensive zone of fractures and faults; and ZEPRSI rock slope failures concentrate along excavated, north-facing LFF/LFSZ slopes where brittle fabrics overprint older metamorphic foliations, and other fractures create side and back release surfaces. Copyright 2009 ARMA, American Rock Mechanics Association.

  5. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California

    Science.gov (United States)

    Kluesner, Jared W.; Brothers, Daniel

    2016-01-01

    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  6. Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands

    Science.gov (United States)

    1980-05-01

    X14A. It has been found that when bainitic and martensitic steels are sheared adiabatically, a layer of material within ths shear zone is altezed and...Sooiety for Metals, Metals Park, Ohio, 1978, pp. 148-0. 21 TABLE II SOLID-STATE TRANSFORMATIONS IN BAINITIC STEEL TRANSFORMATION TRANSFORMATION...shear, thermoplastic, plasticity, plastic deformation, armor, steel IL AnSRACT ( -=nba asoa.tm a naeoesM iN faity by bleak n bet/2972 Experiments

  7. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  8. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh/Chara shear zone and implications for arc amalgamation and oroclinal bending in the western Central Asian Orogenic Belt

    Science.gov (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon

    2016-04-01

    The Irtysh/Chara Shear Zone is one of the largest strike-slip systems in the Central Asian Orogenic Belt (CAOB). It records collisional processes of the peri-Siberian orogenic system with the West Junggar-Kazakhstan-Tianshan orogenic system following the closure of the Ob-Zaisan Ocean, but the exact timing of these events remains enigmatic. We conducted detailed structural analysis along the Irtysh Shear Zone (NW China), which together with new geochronological data allows us to reconstruct the tectonic evolution during the final closure of the Ob-Zaisan Ocean. Our results showed that subduction-accretion processes lasted at least until the Late Carboniferous in the Chinese Altai and the East/West Junggar. The subsequent arc amalgamation is characterized by a cycle of crustal thickening, orogenic collapse and transpressional thickening. On a larger scale, the West Junggar- Kazakhstan -Tianshan orogenic system defines a U-shape oroclinal structure (e.g. Xiao et al., 2010). A major phase of oroclinal bending that involved ~110° rotation may have occurred during the Late Devonian to Early Carboniferous (Levashova et al., 2012). Previous authors have linked oroclinal bending with the late Paleozoic amalgamation of the western CAOB, and proposed that a quasi-linear West Junggar- Kazakhstan -Tianshan orogenic system was buckled during the convergence of the Siberian and Tarim cratons following the closure of the Ob-Zaisan Ocean (in the north) and the South Tianshan Ocean (in the south) (e.g. Abrajevitch et al., 2008). This model, however, is not supported by our new data that constrain the closure of the Ob-Zaisan Ocean to the Late Carboniferous. Alternatively, we propose that oroclinal bending may have involved two phases of bending, with the ~110° rotation in the Late Devonian to Early Carboniferous possibly associated with trench retreat. Further tightening may have occurred in response to the convergence of the Siberian and Tarim cratons during the Late

  9. Modeling of shear wall buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A K [North Carolina State Univ., Raleigh (USA). Dept. of Civil Engineering

    1984-05-01

    Many nuclear power plant buildings, for example, the auxiliary building, have reinforced concrete shear walls as the primary lateral load resisting system. Typically, these walls have low height to length ratio, often less than unity. Such walls exhibit marked shear lag phenomenon which would affect their bending stiffness and the overall stress distribution in the building. The deformation and the stress distribution in walls have been studied which is applicable to both the short and the tall buildings. The behavior of the wall is divided into two parts: the symmetric flange action and the antisymmetry web action. The latter has two parts: the web shear and the web bending. Appropriate stiffness equations have been derived for all the three actions. These actions can be synthesized to solve any nonlinear cross-section. Two specific problems, that of lateral and torsional loadings of a rectangular box, have been studied. It is found that in short buildings shear lag plays a very important role. Any beam type formulation which either ignores shear lag or includes it in an idealized form is likely to lead to erroneous results. On the other hand a rigidity type approach with some modifications to the standard procedures would yield nearly accurate answers.

  10. Radiation protection zoning

    International Nuclear Information System (INIS)

    2015-01-01

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  11. Reconfiguring trade mark law

    DEFF Research Database (Denmark)

    Elsmore, Matthew James

    2013-01-01

    -border setting, with a particular focus on small business and consumers. The article's overall message is to call for a rethink of received wisdom suggesting that trade marks are effective trade-enabling devices. The case is made for reassessing how we think about European trade mark law.......First, this article argues that trade mark law should be approached in a supplementary way, called reconfiguration. Second, the article investigates such a reconfiguration of trade mark law by exploring the interplay of trade marks and service transactions in the Single Market, in the cross...

  12. The strain-dependent spatial evolution of garnet in a high- P ductile shear zone from the Western Gneiss Region (Norway): a synchrotron X-ray microtomography study

    Energy Technology Data Exchange (ETDEWEB)

    Macente, A. [School of Geosciences, University of Edinburgh, The King' s Building James Hutton Road Edinburgh EH9 3FE UK; Fusseis, F. [School of Geosciences, University of Edinburgh, The King' s Building James Hutton Road Edinburgh EH9 3FE UK; Menegon, L. [School of Geography, Earth and Environmental Sciences, Faculty of Science and Engineering, Plymouth University, Fitzroy Drake Circus Plymouth Devon PL4 8AA UK; Xianghui, X. [Argonne National Laboratory, 9700 S. Cass Ave Building 431-B003 Argonne IL USA; John, T. [Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100 12249 Berlin Germany

    2017-03-27

    Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono-metamorphic processes, however they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron-based X-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets with increasing strain. Our microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X-ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low strain domain, garnets form a well interconnected large garnet aggregate that develops throughout the entire Page 1 of 52 sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet show a near-random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo-nucleation and overgrowth. Microprobe chemical analysis

  13. In vitro shear stress measurements using particle image velocimetry in a family of carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration.

    Directory of Open Access Journals (Sweden)

    Sarah Kefayati

    Full Text Available Atherosclerotic disease, and the subsequent complications of thrombosis and plaque rupture, has been associated with local shear stress. In the diseased carotid artery, local variations in shear stress are induced by various geometrical features of the stenotic plaque. Greater stenosis severity, plaque eccentricity (symmetry and plaque ulceration have been associated with increased risk of cerebrovascular events based on clinical trial studies. Using particle image velocimetry, the levels and patterns of shear stress (derived from both laminar and turbulent phases were studied for a family of eight matched-geometry models incorporating independently varied plaque features - i.e. stenosis severity up to 70%, one of two forms of plaque eccentricity, and the presence of plaque ulceration. The level of laminar (ensemble-averaged shear stress increased with increasing stenosis severity resulting in 2-16 Pa for free shear stress (FSS and approximately double (4-36 Pa for wall shear stress (WSS. Independent of stenosis severity, marked differences were found in the distribution and extent of shear stress between the concentric and eccentric plaque formations. The maximum WSS, found at the apex of the stenosis, decayed significantly steeper along the outer wall of an eccentric model compared to the concentric counterpart, with a 70% eccentric stenosis having 249% steeper decay coinciding with the large outer-wall recirculation zone. The presence of ulceration (in a 50% eccentric plaque resulted in both elevated FSS and WSS levels that were sustained longer (∼20 ms through the systolic phase compared to the non-ulcerated counterpart model, among other notable differences. Reynolds (turbulent shear stress, elevated around the point of distal jet detachment, became prominent during the systolic deceleration phase and was widely distributed over the large recirculation zone in the eccentric stenoses.

  14. Mark Tompkins Canaccord

    OpenAIRE

    Mark Tompkins Canaccord

    2018-01-01

    Mark Tompkins Canaccord is a senior technologist for ecosystem and water resources management in SEC SAID Oakland, California office. In his career which lasts over fifteen years Mark has worked on project involving lake restorations, clean water engineering, ecological engineering and management, hydrology, hydraulics, sediment transport and other projects for environmental planning all over the country. Mark Tompkins Canaccord tries to blend his skills of planning and engineering with s...

  15. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  16. Lujan Mark-4

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavorka, Lukas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-13

    This is a review of Mark-IV target neutronics design. It involved the major redesign of the upper tier, offering harder neutron spectra for upper-tier FPs; a redesign of the high-resolution (HR) moderator; and a preservation of the rest of Mark-III features.

  17. Mark Stock | NREL

    Science.gov (United States)

    Stock Mark Stock Scientific Visualization Specialist Mark.Stock@nrel.gov | 303-275-4174 Dr. Stock , virtual reality, parallel computing, and manipulation of large spatial data sets. As an artist, he creates . Stock built the SUNLIGHT artwork that is installed on the Webb Building in downtown Denver. In addition

  18. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  19. Mark Raidpere portreefotod Kielis

    Index Scriptorium Estoniae

    1999-01-01

    Kieli Linnagaleriis avatud 2. Ars Baltica fototriennaalil 'Can You Hear Me?' esindab Eestit Mark Raidpere seeriaga 'Portreed 1998'. Näituse Eesti-poolne kuraator Anu Liivak, kataloogiteksti kirjutas Anders Härm. Tuntumaid osalejaid triennaalil Wolfgang Tillmans

  20. Marks of Metal Copenhell

    DEFF Research Database (Denmark)

    2015-01-01

    Planchebaseret udendørs udstilling på musikfestivalen Copenhell 18-20/6 2015. En mindre udgave af udstillingen Marks of Metal - Logodesign og visualitet i heavy metal. Udarbejdet i samarbejde med Mediemuseet.......Planchebaseret udendørs udstilling på musikfestivalen Copenhell 18-20/6 2015. En mindre udgave af udstillingen Marks of Metal - Logodesign og visualitet i heavy metal. Udarbejdet i samarbejde med Mediemuseet....

  1. COMPUTER HARDWARE MARKING

    CERN Multimedia

    Groupe de protection des biens

    2000-01-01

    As part of the campaign to protect CERN property and for insurance reasons, all computer hardware belonging to the Organization must be marked with the words 'PROPRIETE CERN'.IT Division has recently introduced a new marking system that is both economical and easy to use. From now on all desktop hardware (PCs, Macintoshes, printers) issued by IT Division with a value equal to or exceeding 500 CHF will be marked using this new system.For equipment that is already installed but not yet marked, including UNIX workstations and X terminals, IT Division's Desktop Support Service offers the following services free of charge:Equipment-marking wherever the Service is called out to perform other work (please submit all work requests to the IT Helpdesk on 78888 or helpdesk@cern.ch; for unavoidable operational reasons, the Desktop Support Service will only respond to marking requests when these coincide with requests for other work such as repairs, system upgrades, etc.);Training of personnel designated by Division Leade...

  2. Forensic surface metrology: tool mark evidence.

    Science.gov (United States)

    Gambino, Carol; McLaughlin, Patrick; Kuo, Loretta; Kammerman, Frani; Shenkin, Peter; Diaczuk, Peter; Petraco, Nicholas; Hamby, James; Petraco, Nicholas D K

    2011-01-01

    Over the last several decades, forensic examiners of impression evidence have come under scrutiny in the courtroom due to analysis methods that rely heavily on subjective morphological comparisons. Currently, there is no universally accepted system that generates numerical data to independently corroborate visual comparisons. Our research attempts to develop such a system for tool mark evidence, proposing a methodology that objectively evaluates the association of striated tool marks with the tools that generated them. In our study, 58 primer shear marks on 9 mm cartridge cases, fired from four Glock model 19 pistols, were collected using high-resolution white light confocal microscopy. The resulting three-dimensional surface topographies were filtered to extract all "waviness surfaces"-the essential "line" information that firearm and tool mark examiners view under a microscope. Extracted waviness profiles were processed with principal component analysis (PCA) for dimension reduction. Support vector machines (SVM) were used to make the profile-gun associations, and conformal prediction theory (CPT) for establishing confidence levels. At the 95% confidence level, CPT coupled with PCA-SVM yielded an empirical error rate of 3.5%. Complementary, bootstrap-based computations for estimated error rates were 0%, indicating that the error rate for the algorithmic procedure is likely to remain low on larger data sets. Finally, suggestions are made for practical courtroom application of CPT for assigning levels of confidence to SVM identifications of tool marks recorded with confocal microscopy. Copyright © 2011 Wiley Periodicals, Inc.

  3. Augmented marked graphs

    CERN Document Server

    Cheung, King Sing

    2014-01-01

    Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume

  4. Identification markings for gemstones

    International Nuclear Information System (INIS)

    Dreschhoff, G.A.M.; Zeller, E.J.

    1980-01-01

    A method is described of providing permanent identification markings to gemstones such as diamond crystals by irradiating the cooled gemstone with protons in the desired pattern. The proton bombardment results in a reaction limited to a defined plane and converting the bombarded area of the plane into a different crystal lattice from that of the preirradiated stone. (author)

  5. Effect of Boundary Condition on the Shear Behaviour of Rock Joints in the Direct Shear Test

    Science.gov (United States)

    Bahaaddini, M.

    2017-05-01

    The common method for determination of the mechanical properties of the rock joints is the direct shear test. This paper aims to study the effect of boundary condition on the results of direct shear tests. Experimental studies undertaken in this research showed that the peak shear strength is mostly overestimated. This problem is more pronounced for steep asperities and under high normal stresses. Investigation of the failure mode of these samples showed that tensile cracks are generated at the boundary of sample close to the specimen holders and propagated inside the intact materials. In order to discover the reason of observed failure mechanism in experiments, the direct shear test was simulated using PFC2D. Results of numerical models showed that the gap zone size between the upper and lower specimen holders has a significant effect on the shear mechanism. For the high gap size, stresses concentrate at the vicinity of the tips of specimen holders and result in generation and propagation of tensile cracks inside the intact material. However, by reducing the gap size, stresses are concentrated on asperities, and damage of specimen at its boundary is not observed. Results of this paper show that understanding the shear mechanism of rock joints is an essential step prior to interpreting the results of direct shear tests.

  6. Interview with Mark Watson

    Directory of Open Access Journals (Sweden)

    Katy Shaw

    2016-04-01

    Full Text Available Mark Watson is a British comedian and novelist. His five novels to date – 'Bullet Points' (2004, 'A Light-Hearted Look At Murder' (2007, 'Eleven' (2010, 'The Knot' (2012 and 'Hotel Alpha' (2014 – explore human relationships and communities in contemporary society. His latest novel Hotel Alpha tells the story of an extraordinary hotel in London and two mysterious disappearances that raise questions no one seems willing to answer. External to the novel, readers can also discover more about the hotel and its inhabitants in one hundred extra stories that expand the world of the novel and can be found at http://www.hotelalphastories.com. In conversation here with Dr Katy Shaw, Mark offers some reflections on his writing process, the field of contemporary literature, and the vitality of the novel form in the twenty-first century.

  7. Examining shear processes during magma ascent

    Science.gov (United States)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  8. Inflation in a shear-or curvature-dominated universe

    International Nuclear Information System (INIS)

    Steigman, G.; Turner, M.S.

    1983-01-01

    We show that new inflation occurs even if the universe is shear-or (negative) curvature-dominated when the phase transition begins. In such situations the size of a causally coherent region, after inflation, is only slightly smaller (by powers, but not by exponential factors) than the usual result. The creation and evolution of density perturbations is unaffected. This result is marked contrast to 'old' inflation, where shear- or curvature-domination could quench inflation. (orig.)

  9. Spontaneous formation of densely packed shear bands of rotating fragments.

    Science.gov (United States)

    Åström, J A; Timonen, J

    2012-05-01

    Appearance of self-similar space-filling ball bearings has been suggested to provide the explanation for seismic gaps, shear weakness, and lack of detectable frictional heat formation in mature tectonic faults (shear zones). As the material in a shear zone fractures and grinds, it could be thought to eventually form a conformation that allows fragments to largely roll against each other without much sliding. This type of space-filling "ball bearing" can be constructed artificially, but so far how such delicate structures may appear spontaneously has remained unexplained. It is demonstrated here that first-principles simulations of granular packing with fragmenting grains indeed display spontaneous formation of shear bands with fragment conformations very similar to those of densely packed ball bearings.

  10. Isotopic marking and tracers

    International Nuclear Information System (INIS)

    Morel, F.

    1997-01-01

    The use of radioactive isotopes as tracers in biology has been developed thanks to the economic generation of the required isotopes in accelerators and nuclear reactors, and to the multiple applications of tracers in the life domain; the most usual isotopes employed in biology are carbon, hydrogen, phosphorus and sulfur isotopes, because these elements are present in most of organic molecules. Most of the life science knowledge appears to be dependent to the extensive use of nuclear tools and radioactive tracers; the example of the utilization of radioactive phosphorus marked ATP to study the multiple reactions with proteins, nucleic acids, etc., is given

  11. Ceremony marking Einstein Year

    CERN Multimedia

    2005-01-01

    Sunday 13th November at 10:00amat Geneva's St. Peter's Cathedral To mark Einstein Year and the importance of the intercultural dialogue of which it forms a part, a religious service will take place on Sunday 13 November at 10 a.m. in St. Peter's Cathedral, to which CERN members and colleagues are warmly welcomed. Pastor Henry Babel, senior minister at the Cathedral, will speak on the theme: 'God in Einstein's Universe'. Diether Blechschmidt will convey a message on behalf of the scientific community.

  12. Shear-Rate-Dependent Behavior of Clayey Bimaterial Interfaces at Landslide Stress Levels

    Science.gov (United States)

    Scaringi, Gianvito; Hu, Wei; Xu, Qiang; Huang, Runqiu

    2018-01-01

    The behavior of reactivated and first-failure landslides after large displacements is controlled by the available shear resistance in a shear zone and/or along slip surfaces, such as a soil-bedrock interface. Among the factors influencing the resistance parameter, the dependence on the shear rate can trigger catastrophic evolution (rate-weakening) or exert a slow-down feedback (rate-strengthening) upon stress perturbation. We present ring-shear test results, performed under various normal stresses and shear rates, on clayey soils from a landslide shear zone, on its parent lithology and other lithologies, and on clay-rock interface samples. We find that depending on the materials in contact, the normal stress, and the stress history, the shear-rate-dependent behaviors differ. We discuss possible models and underlying mechanisms for the time-dependent behavior of landslides in clay soils.

  13. Minimal Marking: A Success Story

    Science.gov (United States)

    McNeilly, Anne

    2014-01-01

    The minimal-marking project conducted in Ryerson's School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The "minimal-marking" concept (Haswell, 1983), which requires…

  14. Strain gradient drives shear banding in metallic glasses

    Science.gov (United States)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  15. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  16. How weak is the subduction zone interface?

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.

    2015-01-01

    Several lines of evidence suggest that subduction zones are weak and that the unique availability of water on Earth is a critical factor in the weakening process. We have evaluated the strength of subduction zone interfaces using two approaches: (i) from empirical relationships between shear stress

  17. SLARette Mark 2 system

    International Nuclear Information System (INIS)

    Burnett, D.J.

    1992-01-01

    The SLAR (Spacer Location and Repositioning) program has developed the technology and tooling necessary to locate and reposition the fuel channel spacers that separate the pressure tube from the calandria tube in a CANDU reactor. The in-channel SLAR tool contains all the inspection probes, and is capable of moving spacers under remote control. The SLAR inspection computer system translates all eddy currents and ultrasonic signals from the in-channel tool into various graphic displays. The in-channel SLAR tool can be delivered and manipulated in a fuel channel by either a SLAR delivery machine or a SLARette delivery machine. The SLAR delivery machine consists of a modified fuelling machine, and is capable of operating under totally remote control in automatic or semi-automatic mode. The SLARette delivery machine is a smaller less automated version, which was designed to be quickly installed, operated, and removed from a limited number of fuel channels during regular annual maintenance outages. This paper describes the design and operation of the SLARette Mark 2 system. 5 figs

  18. Shear of ordinary and elongated granular mixtures

    Science.gov (United States)

    Hensley, Alexander; Kern, Matthew; Marschall, Theodore; Teitel, Stephen; Franklin, Scott

    2015-03-01

    We present an experimental and computational study of a mixture of discs and moderate aspect-ratio ellipses under two-dimensional annular planar Couette shear. Experimental particles are cut from acrylic sheet, are essentially incompressible, and constrained in the thin gap between two concentric cylinders. The annular radius of curvature is much larger than the particles, and so the experiment is quasi-2d and allows for arbitrarily large pure-shear strains. Synchronized video cameras and software identify all particles and track them as they move from the field of view of one camera to another. We are particularly interested in the global and local properties as the mixture ratio of discs to ellipses varies. Global quantities include average shear rate and distribution of particle species as functions of height, while locally we investigate the orientation of the ellipses and non-affine events that can be characterized as shear transformational zones or possess a quadrupole signature observed previously in systems of purely circular particles. Discrete Element Method simulations on mixtures of circles and spherocylinders extend the study to the dynamics of the force network and energy dissipated as the system evolves. Supported by NSF CBET #1243571 and PRF #51438-UR10.

  19. A Novel Geometry for Shear Test Using Axial Tensile Setup

    Directory of Open Access Journals (Sweden)

    Sibo Yuan

    2018-05-01

    Full Text Available This paper studies a novel geometry for the in-plane shear test performed with an axial electromechanical testing machine. In order to investigate the influence of the triaxiality rate on the mechanical behavior, different tests will be performed on the studied material: simple tensile tests, large tensile tests and shear tests. For the whole campaign, a common equipment should be employed to minimize the impact of the testing device. As a consequence, for the shear tests, the geometry of the specimen must be carefully designed in order to adapt the force value and make it comparable to the one obtained for the tensile tests. Like most of the existing shear-included tensile test specimens, the axial loading is converted to shear loading at a particular region through the effect of geometry. A symmetric shape is generally preferred, since it can restrict the in-plane rotation of the shear section, keep shear increasing in a more monotonic path and double the force level thanks to the two shear zones. Due to the specific experimental conditions, such as dimensions of the furnace and the clamping system, the position of the extensometer or the restriction of sheet thickness (related to the further studies of size effect at mesoscale and hot temperature, several geometries were brought up and evaluated in an iterative procedure via finite element simulations. Both the numerical and experimental results reveal that the final geometry ensures some advantages. For instance, a relatively low triaxiality in the shear zone, limited in-plane rotation and no necking are observed. Moreover, it also prevents any out-of-plane displacement of the specimen which seems to be highly sensitive to the geometry, and presents a very limited influence of the material and the thickness.

  20. Keyed shear joints

    DEFF Research Database (Denmark)

    Hansen, Klaus

    This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...

  1. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  2. An underwater shear compactor

    International Nuclear Information System (INIS)

    Biver, E.; Sims, J.

    1997-01-01

    This paper, originally presented at the WM'96 Conference in Tucson Arizona, describes a concept of a specialised decommissioning tool designed to operate underwater and to reduce the volume of radioactive components by shearing and compacting. The shear compactor was originally conceived to manage the size reduction of a variety of decommissioned stainless steel tubes stored within a reactor fuel cooling pond and which were consuming a substantial volume of the pond. The main objective of this tool was to cut the long tubes into shorter lengths and to compact them into a flat rectangular form which could be stacked on the pond floor, thus saving valuable space. The development programme, undertaken on this project, investigated a wide range of factors which could contribute to an extended cutting blade performance, ie: materials of construction, cutting blade shape and cutting loads required, shock effects, etc. The second phase was to review other aspects of the design, such as radiological protection, cutting blade replacement, maintenance, pond installation and resultant wall loads, water hydraulics, collection of products of shearing/compacting operations, corrosion of the equipment, control system, operational safety and the ability of the equipment to operate in dry environments. The paper summarises the extended work programme involved with this shear compactor tool. (author)

  3. Thrusting and transpressional shearing in the Pan-African nappe southwest El-Sibai core complex, Central Eastern Desert, Egypt

    Science.gov (United States)

    El-Wahed, Mohamed A. Abd.

    2008-01-01

    The Wadi El-Shush area in the Central Eastern Desert (CED) of Egypt is occupied by the Sibai core complex and its surrounding Pan-African nappe complex. The sequence of metamorphic and structural events in the Sibai core complex and the enveloping Pan-African nappe can be summarized as follows: (1) high temperature metamorphism associated with partial melting of amphibolites and development of gneissic and migmatitic rocks, (2) between 740 and 660 Ma, oblique island arc accretion resulted in Pan-African nappe emplacement and the intrusion of syn-tectonic gneissic tonalite at about 680 ± 10 Ma. The NNW-SSE shortening associated with oblique island arc accretion produced low angle NNW-directed thrusts and open folds in volcaniclastic metasediments, schists and isolated serpentinite masses (Pan-African nappe) and created NNE-trending recumbent folds in syn-tectonic granites. The NNW-SSE shortening has produced imbricate structures and thrust duplexes in the Pan-African nappe, (3) NE-ward thrusting which deformed the Pan-African nappe into SW-dipping imbricate slices. The ENE-WSW compression event has created NE-directed thrusts, folded the NNW-directed thrusts and produced NW-trending major and minor folds in the Pan-African nappe. Prograde metamorphism (480-525 °C at 2-4.5 kbar) was synchronous with thrusting events, (4) retrograde metamorphism during sinistral shearing along NNW- to NW-striking strike-slip shear zones (660-580 Ma), marking the external boundaries of the Sibai core complex and related to the Najd Fault System. Sinistral shearing has produced steeply dipping mylonitic foliation and open plunging folds in the NNW- and NE-ward thrust planes. Presence of retrograde metamorphism supports the slow exhumation of Sibai core complex under brittle-ductile low temperature conditions. Arc-accretion caused thrusting, imbrication and crustal thickening, whereas gravitational collapse of a compressed and thickened lithosphere initiated the sinistral movement

  4. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...

  5. Zones of emotional labour

    DEFF Research Database (Denmark)

    Strøbæk, Pernille Solveig

    2011-01-01

    The paper suggests that due to the difficult nature of their work public family law caseworkers are to be included in the definition of emotional labour even though they are omitted by Hochschild. Based upon a review of the structures involved in emotional labour an explorative qualitative study...... is put forth among 25 Danish public family law caseworkers. The study points to personal, professional, and social zones of emotional labour through which the caseworkers carry out their work. Emotional labour zones mark emotion structures that may be challenging due to complex emotional intersections...

  6. Mark Kostabi soovib muuta inimesi õnnelikumaks / Kalev Mark Kostabi

    Index Scriptorium Estoniae

    Kostabi, Kalev Mark, 1960-

    2008-01-01

    Kalev Mark Kostabi oma sisekujunduslikest eelistustest, ameeriklaste ja itaallaste kodude sisekujunduse erinevustest, kunstist kui ruumikujunduse ühest osast, oma New Yorgi ja Rooma korterite kujundusest

  7. N-S crustal shear system in the Bundelkhand massif: a unique ...

    Indian Academy of Sciences (India)

    56

    In the light of our detailed geological studies of the massif (Singh and Bhattacharya,. 2010 .... relations with, and displace, the earlier shear systems, i.e. BS1, BS2 and BS3 (Fig. 3D), (3) ..... and shear zone patterns: The South Indian case. Jour.

  8. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  9. Effects of shearing on biogas production and microbial community structure during anaerobic digestion with recuperative thickening.

    Science.gov (United States)

    Yang, Shufan; Phan, Hop V; Bustamante, Heriberto; Guo, Wenshan; Ngo, Hao H; Nghiem, Long D

    2017-06-01

    Recuperative thickening can intensify anaerobic digestion to produce more biogas and potentially reduce biosolids odour. This study elucidates the effects of sludge shearing during the thickening process on the microbial community structure and its effect on biogas production. Medium shearing resulted in approximately 15% increase in biogas production. By contrast, excessive or high shearing led to a marked decrease in biogas production, possibly due to sludge disintegration and cell lysis. Microbial analysis using 16S rRNA gene amplicon sequencing showed that medium shearing increased the evenness and diversity of the microbial community in the anaerobic digester, which is consistent with the observed improved biogas production. By contrast, microbial diversity decreased under either excessive shearing or high shearing condition. In good agreement with the observed decrease in biogas production, the abundance of Bacteroidales and Syntrophobaterales (which are responsible for hydrolysis and acetogenesis) decreased due to high shearing during recuperative thickening. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. CAT LIDAR wind shear studies

    Science.gov (United States)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  11. An analytic interface dynamo over a shear layer of finite depth

    OpenAIRE

    Petrovay, K.; Kerekes, A.; Erdélyi, R.

    2010-01-01

    Parker's analytic Cartesian interface dynamo is generalized to the case of a shear layer of finite thickness and low resistivity ("tachocline"), bounded by a perfect conductor ("radiative zone") on the one side, and by a highly diffusive medium ("convective zone") supporting an $\\alpha$-effect on the other side. In the limit of high diffusivity contrast between the shear layer and the diffusive medium, thought to be relevant for the Sun, a pair of exact dispersion relations for the growth rat...

  12. Shear-wave dynamic behavior using two different orientations

    International Nuclear Information System (INIS)

    Ghassem Alaskari, M. K.; Hashemi, S. J.

    2007-01-01

    For laterally complex media, it may be more suitable to take a different orientation of the displacement vector of Shear-waves. This may change the sign of several imaginary reflections and conversion coefficients to be used in reservoir characterization and Amplitude Versus Offset analysis or modeling. In this new convention the positive direction of the displacement vector of reflected Shear-waves is chosen to the left of ray tangent (in the direction of wave propagation). Therefore, the definition of the displacement vector of shear-waves can be used properly even for very complicated media. Finally the shear-wave dynamic behavior of a reservoir zone can be illustrated for laterally varying structures in terms of the amplitude variation and phase behavior using this new orientation

  13. Orogeny, shear zones, Continental break-Up And 3-D strain relationships. The tectonic history of the Almada sedimentary Basin, Bahia, Brazil; Relacoes entre orogenos, zonas de cisalhamento, quebra continental e deformacoes 3-D. A historia tectonica da Bacia Sedimentar de Almada, Bahia

    Energy Technology Data Exchange (ETDEWEB)

    Correa-Gomes, Luiz Cesar [Centro Federal de Educacao Tecnologica da Bahia, Salvador, BA (Brazil). Dept. de Ciencias Aplicadas; Universidade Federal da Bahia (UFBA), Salvador (Brazil). Inst. de Geociencias. Dept. de Geologia]. E-mails: gomes@cefetba.br, lccgomes@ufba.br; Dominguez, Jose Maria Landim; Barbosa, Johildo Salomao Figueiredo; Silva, Idney Cavalcanti da; Pinto, Moises Vieira [Universidade Federal da Bahia (UFBA), Campus de Ondina, Salvador (Brazil). Inst. de Geociencias. Dept. de Geologia]. E-mails: jose_landim@uol.com.br; johildo@cpgg.ufba.br; idney25@ig.com.br; geofisica.ufba@gmail.com

    2005-12-15

    The Almada Basin is a geometric out-pattern member in the group the onshore coastline sedimentary basins of the Bahia State and neighborhoods. This basin differs from the traditional elongated-shape trending Camamu and Reconcavo-Tucano-Jatoba basins, and shows a compact rhombohedral arrangement following N45 deg, N90 deg, N120 deg e N-S structural lineaments. This shape directly or indirectly reflects a specific geological history influenced by the paleoproterozoic and neo proterozoic orogeny, neo proterozoic shear zones and mesozoic super continent break-up. Several sets of fault and fractures were kinematically studied inside and around the basin, and the main stress tensors obtained using inversion methods. The structural study of the Almada Basin allowed to recognize that: the initial tectonic activity was controlled by normal faults, with orthorhombic-rhombohedral 3-D extensional strain pattern, followed by trans tensional ones characterizing the Almada Basin as a poly phasic tectonic basin, and during the transtensive phase this basin was affected by at least two almost orthogonal extensional events, indicating a possible {sigma}{sub 1} orientation inversion during its formation and tectonic evolution. These data are crucial for prospecting groundwater and hydrocarbon in the basin onshore and offshore areas. (author)

  14. Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy

    International Nuclear Information System (INIS)

    Wang Shuncai; Starink, Marco J.; Gao Nong; Qiao Xiaoguang; Xu Cheng; Langdon, Terence G.

    2008-01-01

    The evolution of texture was examined during equal-channel angular pressing (ECAP) of an Al-Zn-Mg-Cu alloy having a strong initial texture. An analysis of the local texture using electron backscatter diffraction demonstrates that shear occurs on two shear planes: the main shear plane (MSP) equivalent to the simple shear plane, and a secondary shear plane which is perpendicular to the MSP. Throughout most regions of the ECAP billet, the MSP is close to the intersection plane of the two channels but with a small (5 deg.) deviation. Only the {1 1 1} and {0 0 1} shear systems were activated and there was no experimental evidence for the existence of other shear systems. In a small region at the bottom edge of the billet that passed through the zone of intersection of the channels, the observed textures were fully consistent with the rolling textures of Copper and Goss

  15. Gelation under shear

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  16. Forflytning: shear og friktion

    DEFF Research Database (Denmark)

    2005-01-01

    friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...

  17. NotaMark industrial laser marking system: a new security marking technology

    Science.gov (United States)

    Moreau, Vincent G.

    2004-06-01

    Up until now, the only variable alphanumeric data which could be added to banknotes was the number, applied by means of impact typographical numbering boxes. As an additional process or an alternative to this mechanical method, a non-contact laser marking process can be used offering high quality and greater levels of flexibility. For this purpose KBA-GIORI propose an exclusive laser marking solution called NotaMark. The laser marking process NotaMark is the ideal solution for applying variable data and personalizing banknotes (or any other security documents) with a very high resolution, for extremely large production volumes. A completely integrated solution has been developed comprised of laser light sources, marking head units, and covers and extraction systems. NotaMark allows the marking of variable data by removing locally and selectively, specific printed materials leaving the substrate itself untouched. A wide range of materials has already been tested extensively. NotaMark is a new security feature which is easy to identify and difficult to counterfeit, and which complies with the standard mechanical and chemical resistance tests in the security printing industry as well as with other major soiling tests. The laser marking process opens up a whole new range of design possibilities and can be used to create a primary security feature such as numbering, or to enhance the value of existing features.

  18. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed . The

  19. Mapping Of The Hydrothermal Alteration Zones At Haimur Gold Mine Area, South Eastern Desert, Egypt, Using Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Madani, A.A.; Abdel Rahman, E.M.; FA WZY, Kh.M.; EMAM, A.

    2003-01-01

    The utilization of the Landsat-7 ETM+ imagery and scanned aerial photograph for mapping hydrothermal alteration zones at the Haimur gold mine area, south Eastern Desert, Egypt and the production of large scale geologic image map, scale 1 :20 000, using fusion technique are the main tasks of this article. The study area lies at the conjunction of two shear zones, namely the Allaqi shear zone (NW-SE) and the Haimur shear zone (NE-SW). The basement rocks covering Haimur gold mine area include ophiolitic blocks and sheets that were tectonically thrusted over and mixed within a matrix of island arc rocks. Principal Component Analysis, band ratios and data fusion are the main remote sensing techniques applied in the present work. The eigenvalue of the first principal component (PCl) includes 95.9% of the information content of the image whereas PC2 and PC5 mark 3.03% and 0.10%, respectively. The PC5 image was found to represent the highly altered rocks in the study area (serpentinites and carbonates), which display dark image signatures. The metagabbros and metapyroclastics can be easily discriminated on the PC1:R, PC2:G and PC5:B false color composite image in which they have dark red and blue image signatures, respectively. The talc carbonates and the serpentinites have bright image signatures on 5/7 band ratio image whereas metapyroxenites have dark image signatures. The talc carbonates are composed mainly of talc, magnesite and calcite with subordinate amounts of fibrous antigorite. These minerals have absorption features near 2.35 m which lead to increase 5/7 band ratio value. The false color composite ratio image 5/7:R, 4/5:G and 3/1:B was merged with scanned high spatial resolution aerial photograph using IHS transformation method. The resultant fused image was then used to delineate the hydrothermal alteration zones as well as listwaenite ridges exposed at the Haimur gold mine area

  20. Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble

    Science.gov (United States)

    Cheng, Yi; Wong, Louis Ngai Yuen

    2018-01-01

    Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.

  1. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....

  2. Shear-induced chaos

    International Nuclear Information System (INIS)

    Lin, Kevin K; Young, Lai-Sang

    2008-01-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed

  3. Shear-induced chaos

    Science.gov (United States)

    Lin, Kevin K.; Young, Lai-Sang

    2008-05-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed.

  4. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  5. Excited waves in shear layers

    Science.gov (United States)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  6. Designing shear-thinning

    Science.gov (United States)

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  7. Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rösner, Harald, E-mail: rosner@uni-muenster.de [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Peterlechner, Martin [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Kübel, Christian [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Schmidt, Vitalij [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Wilde, Gerhard [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2014-07-01

    Density changes between sheared zones and their surrounding amorphous matrix as a result of plastic deformation in a cold-rolled metallic glass (melt-spun Al{sub 88}Y{sub 7}Fe{sub 5}) were determined using high-angle annular dark-field (HAADF) detector intensities supplemented by electron-energy loss spectroscopy (EELS), energy-dispersive X-ray (EDX) and nano-beam diffraction analyses. Sheared zones or shear bands were observed as regions of bright or dark contrast arising from a higher or lower density relative to the matrix. Moreover, abrupt contrast changes from bright to dark and vice versa were found within individual shear bands. We associate the decrease in density mainly with an enhanced free volume in the shear bands and the increase in density with concomitant changes of the mass. This interpretation is further supported by changes in the zero loss and Plasmon signal originating from such sites. The limits of this new approach are discussed. - Highlights: • We describe a novel approach for measuring densities in shear bands of metallic glasses. • The linear relation of the dark-field intensity I/I{sub 0} and the mass thickness ρt was used. • Individual shear bands showed abrupt contrast changes from bright to dark and vice versa. • Density changes ranging from about −10% to +6% were found for such shear bands. • Mixtures of amorphous/medium range ordered domains were found within the shear bands.

  8. Inductive shearing of drilling pipe

    Science.gov (United States)

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  9. Civilsamfundets ABC: M for Marked

    DEFF Research Database (Denmark)

    Lund, Anker Brink; Meyer, Gitte

    2016-01-01

    Bogstaveligt talt: Hvad er civilsamfundet? Anker Brink Lund og Gitte Meyer fra CBS Center for Civil Society Studies gennemgår civilsamfundet bogstav for bogstav. Vi er nået til M for Marked.......Bogstaveligt talt: Hvad er civilsamfundet? Anker Brink Lund og Gitte Meyer fra CBS Center for Civil Society Studies gennemgår civilsamfundet bogstav for bogstav. Vi er nået til M for Marked....

  10. Marks on the petroleum fiscality

    International Nuclear Information System (INIS)

    2007-02-01

    This document offers some marks on the petroleum fiscality in France: the taxes as the 'accises' and the 'TVA', the part of the taxes in the sale price at the service station, the comparison with other countries of Europe, the tax revenues and the Government budget. It provides also marks on the fuels prices formation (margins), the world petroleum markets (supply and demand) and the part of the petroleum companies on the petroleum market. (A.L.B.)

  11. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  12. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  13. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  14. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions.In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding...

  15. BWR Mark I pressure suppression study: bench mark experiments

    International Nuclear Information System (INIS)

    Lai, W.; McCauley, E.W.

    1977-01-01

    Computer simulations representative of the wetwell of Mark I BWR's have predicted pressures and related phenomena. However, calculational predictions for purposes of engineering decision will be possible only if the code can be verified, i.e., shown to compute in accord with measured values. Described in the report is a set of single downcomer spherical flask bench mark experiments designed to produce quantitative data to validate various air-water dynamic computations; the experiments were performed since relevant bench mark data were not available from outside sources. Secondary purposes of the study were to provide a test bed for the instrumentation and post-experiment data processing techniques to be used in the Laboratory's reactor safety research program and to provide additional masurements for the air-water scaling study

  16. Study on reinforced lightweight coconut shell concrete beam behavior under shear

    International Nuclear Information System (INIS)

    Gunasekaran, K.; Annadurai, R.; Kumar, P.S.

    2013-01-01

    Highlights: • Coconut shell used as aggregate in concrete production. • Coconut shell concrete beam behavior studied under shear. • Coconut shell concrete beam behavior are compared with control concrete beams. - Abstract: Lightweight concrete has been produced using crushed coconut shell as coarse aggregate. The shear behavior of reinforced concrete beam made with coconut shell is analyzed and compared with the normal control concrete. Eight beams, four with coconut shell concrete and four with normal control concrete were fabricated and tested. Study includes the structural shear behavior, shear capacity, cracking behavior, deflection behavior, ductility, strains in concrete and in reinforcement. It was observed that the shear behavior of coconut shell concrete is comparable to that of other lightweight concretes. The results of concrete compression strain and steel tension strain showed that coconut shell concrete is able to achieve its full strain capacity under shear loadings. However, the failure zones of coconut shell concrete were larger than for control concrete beams

  17. Investigation of shear distance in Michelson interferometer-based shearography for mechanical characterization

    International Nuclear Information System (INIS)

    Lee, Jung-Ryul; Yoon, Dong-Jin; Kim, Jung-Seok; Vautrin, Alain

    2008-01-01

    Shearography is a growing industrial field in both quantitative mechanical characterization and relatively qualitative non-destructive testing. In shearography, shear distance is the most important parameter to control measurement performances. In this paper, the role of the shear distance is systematically investigated, focusing on the application of full-field mechanical characterization. A modified Michelson interferometer is considered as the shearing device, which is most commonly adopted for mechanical characterization applications because it enables easy and precise shearing and phase shifting. This paper also includes theoretical and experimental investigations of the relationship between shear distance and performance issues such as the immeasurable zone in the target with discontinuity, signal-to-noise ratio, sensitivity and shear distortion. In addition, this study is verified with actual shearographic results and a phase-shifting grid method capable of full-field displacement evaluation in the submicrometer regime

  18. Shear zone-related pseudotachylite occurences from the northern Transvaal

    International Nuclear Information System (INIS)

    Reimold, W.U.; Meyer, F.M.

    1990-01-01

    Pseudotachylite from the Sand River localities displays very variable composition when formed in Sand River Gneiss, but is less variable when originating from diabase. Comparison of individual pseudotachylite (granitic) host rock pairs shows consistent depletion and enrichment. Rather high LoI values indicate significant secondary alteration for some specimens. The chemical variations agree well with the theory that pseudotachylite in granitic-granodioritic environment is formed by preferential melting of hydrous ferromagnesian minerals plus varied proportions of feldspar components. 'Basaltic' pseudotachylite is characterised by increase of SiO 2 and K 2 O, which is also known from other occurences. With respect to most trace elements, pseudotachylite is generally enriched. Comparison of all pseudotachylite analyses with Sand River Gneiss data reveals that mixing on a dm scale cannot be completely excluded, but 'basaltic' pseudotachilyte obtained in granodioritic host rock has not assimilated more than approximately 5% of felsic material. The cataclastic breccias chemically compare well with undeformed Sand River Gneiss. These results agree well with current theory on pseudotachylite formation, but at the Geocongress a larger data base will be discussed. 1 fig., 6 refs

  19. Contrasting metamorphism across Cauvery Shear Zone, south India

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    would be instantaneous, whereas, the geothermal gradient approaches equilibrium after about 20 Ma. (Philpotts 1990) and the rate of heat flow by. Figure 7. P–T trajectories for three samples each from north and south of CSZ. The southern samples S37 and S39 have more or less parallel P–T trajectories, which may indi-.

  20. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)

    Department of Civil Engineering, University of Constantine 1, Constantine, Algeria e-mail: zergua.abdesselam@umc.edu.dz. MS received 24 April 2014; revised 14 July 2014; accepted 12 September 2014. Abstract. The failure of strengthened beams with fibre-reinforced polymer (FRP) materials is due to high stress ...

  1. Plankton dynamics associated with the convergence zone of a shear ...

    African Journals Online (AJOL)

    Multiple linear regression was used to determine the relationships between water quality variables and plankton abundances. Community analysis was also run on the data in order to determine community dynamics associated with frontal system convergence and downwelling. Key words: ichthyoplankton, phytoplankton, ...

  2. Mechanical properties of fracture zones

    International Nuclear Information System (INIS)

    Leijon, B.

    1993-05-01

    Available data on mechanical characteristics of fracture zones are compiled and discussed. The aim is to improve the basis for adequate representation of fracture zones in geomechanical models. The sources of data researched are primarily borehole investigations and case studies in rock engineering, involving observations of fracture zones subjected to artificial load change. Boreholes only yield local information about the components of fracture zones, i.e. intact rock, fractures and various low-strength materials. Difficulties are therefore encountered in evaluating morphological and mechanical properties of fracture zones from borehole data. Although often thought of as macroscopically planar features, available field data consistently show that fracture zones are characterized by geometrical irregularities such as thickness variations, surface undulation and jogs. These irregularities prevail on all scales. As a result, fracture zones are on all scales characterized by large, in-plane variation of strength- and deformational properties. This has important mechanical consequences in terms of non-uniform stress transfer and complex mechanisms of shear deformation. Field evidence for these findings, in particular results from the underground research laboratory in Canada and from studies of induced fault slip in deep mines, is summarized and discussed. 79 refs

  3. Using road markings as a continuous cue for speed choice.

    Science.gov (United States)

    Charlton, Samuel G; Starkey, Nicola J; Malhotra, Neha

    2018-08-01

    The potential for using road markings to indicate speed limits was investigated in a driving simulator over the course of two sessions. Two types of experimental road markings, an "Attentional" set designed to provide visually distinct cues to indicate speed limits of 60, 80 and 100 km/h, and a "Perceptual" set designed to also affect drivers' perception of speed, were compared to a standard undifferentiated set of markings. Participants (n = 20 per group) were assigned to one of four experimental groups (Attentional-Explicit, Attentional-Implicit, Perceptual-Explicit, Perceptual-Implicit) or a Control group (n = 22; standard road markings). The Explicit groups were instructed about the meaning of the road markings while those in the Implicit and Control groups did not receive any explanation. Participants drove five 10 km simulated roads containing three speed zones (60, 80 and 100 km/h) during the first session. The participants returned to the laboratory approximately 3 days later to drive five more trials including roads they had not seen before, a trial that included a secondary task, and a trial where speed signs were removed and only markings were present. The findings indicated that both types of road markings improved drivers' compliance with speed limits compared to the control group, but that explicit instruction as to the meaning of the markings was needed to realise their full benefit. Although previous research has indicated the benefit of road markings used as warnings to indicate speed reductions in advance of horizontal or vertical curves, the findings of the present experiment also suggest that systematically associating road markings with specific speed limits may be a useful way to improve speed limit compliance and increase speed homogeneity. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Mark Napier / Mark Napier ; interv. Tilman Baumgärtel

    Index Scriptorium Estoniae

    Napier, Mark

    2006-01-01

    Ameerika kunstnikust Mark Napierist (sünd. 1961) ja tema loomingust, 2001. a. tehtud meiliintervjuu kunstnikuga. Võrguteosest "The Digital Landfill" (1998), koos Andy Deckiga loodud tööst "GrafficJam" (1999), töödest "Shredder" (1998), "Feed", "Riot", "P-Soup" (2000), võrgukunstist ja muust

  5. Minimal Marking: A Success Story

    Directory of Open Access Journals (Sweden)

    Anne McNeilly

    2014-11-01

    Full Text Available The minimal-marking project conducted in Ryerson’s School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The “minimal-marking” concept (Haswell, 1983, which requires dramatically more student engagement, resulted in more successful learning outcomes for surface-level knowledge acquisition than the more traditional approach of “teacher-corrects-all.” Results suggest it would be effective, not just for grammar, punctuation, and word usage, the objective here, but for any material that requires rote-memory learning, such as the Associated Press or Canadian Press style rules used by news publications across North America.

  6. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  7. Percentage Retail Mark-Ups

    OpenAIRE

    Thomas von Ungern-Sternberg

    1999-01-01

    A common assumption in the literature on the double marginalization problem is that the retailer can set his mark-up only in the second stage of the game after the producer has moved. To the extent that the sequence of moves is designed to reflect the relative bargaining power of the two parties it is just as plausible to let the retailer move first. Furthermore, retailers frequently calculate their selling prices by adding a percentage mark-up to their wholesale prices. This allows a retaile...

  8. Comparative Laboratory and Numerical Simulations of Shearing Granular Fault Gouge: Micromechanical Processes

    Science.gov (United States)

    Morgan, J. K.; Marone, C. J.; Guo, Y.; Anthony, J. L.; Knuth, M. W.

    2004-12-01

    Laboratory studies of granular shear zones have provided significant insight into fault zone processes and the mechanics of earthquakes. The micromechanisms of granular deformation are more difficult to ascertain, but have been hypothesized based on known variations in boundary conditions, particle properties and geometries, and mechanical behavior. Numerical simulations using particle dynamics methods (PDM) can offer unique views into deforming granular shear zones, revealing the precise details of granular microstructures, particle interactions, and packings, which can be correlated with macroscopic mechanical behavior. Here, we describe a collaborative program of comparative laboratory and numerical experiments of granular shear using idealized materials, i.e., glass beads, glass rods or pasta, and angular sand. Both sets of experiments are carried out under similar initial and boundary conditions in a non-fracturing stress regime. Phenomenologically, the results of the two sets of experiments are very similar. Peak friction values vary as a function of particle dimensionality (1-D vs. 2-D vs. 3-D), particle angularity, particle size and size distributions, boundary roughness, and shear zone thickness. Fluctuations in shear strength during an experiment, i.e., stick-slip events, can be correlated with distinct changes in the nature, geometries, and durability of grain bridges that support the shear zone walls. Inclined grain bridges are observed to form, and to support increasing loads, during gradual increases in assemblage strength. Collapse of an individual grain bridge leads to distinct localization of strain, generating a rapidly propagating shear surface that cuts across multiple grain bridges, accounting for the sudden drop in strength. The distribution of particle sizes within an assemblage, along with boundary roughness and its periodicity, influence the rate of formation and dissipation of grain bridges, thereby controlling friction variations during

  9. Prosodic Focus Marking in Bai.

    NARCIS (Netherlands)

    Liu, Zenghui; Chen, A.; Van de Velde, Hans

    2014-01-01

    This study investigates prosodic marking of focus in Bai, a Sino-Tibetan language spoken in the Southwest of China, by adopting a semi-spontaneous experimental approach. Our data show that Bai speakers increase the duration of the focused constituent and reduce the duration of the post-focus

  10. Better marking means cheaper pruning.

    Science.gov (United States)

    Kenneth R. Eversole

    1953-01-01

    Careful selection of trees to be pruned can make the difference between profit and loss on the pruning investment, especially in stands where no thinning is contemplated. Expert marking is required to make sure that the pruned trees will grow rapidly. The most important variable influencing the cost of clear wood produced by pruning is growth rate. For example, at 3...

  11. Laser marking method and device

    International Nuclear Information System (INIS)

    Okazaki, Yuki; Aoki, Nobutada; Mukai, Narihiko; Sano, Yuji; Yamamoto, Seiji.

    1997-01-01

    An object is disposed in laser beam permeating liquid or gaseous medium. Laser beams such as CW laser or pulse laser oscillated from a laser device are emitted to the object to apply laser markings with less degradation of identification and excellent corrosion resistance on the surface of the object simply and easily. Upon applying the laser markings, a liquid or gas as a laser beam permeating medium is blown onto the surface of the object, or the liquid or gas in the vicinity of the object is sucked, the laser beam-irradiated portion on the surface can be cooled positively. Accordingly, the laser marking can be formed on the surface of the object with less heat affection to the object. In addition, if the content of a nitrogen gas in the laser beam permeating liquid medium is reduced by degassing to lower than a predetermined value, or the laser beam permeating gaseous medium is formed by an inert gas, a laser marking having high corrosion resistance and reliability can be formed on the surface of the objective member. (N.H.)

  12. Friction welding; Magnesium; Finite element; Shear test.

    Directory of Open Access Journals (Sweden)

    Leonardo Contri Campanelli

    2013-06-01

    Full Text Available Friction spot welding (FSpW is one of the most recently developed solid state joining technologies. In this work, based on former publications, a computer aided draft and engineering resource is used to model a FSpW joint on AZ31 magnesium alloy sheets and subsequently submit the assembly to a typical shear test loading, using a linear elastic model, in order to conceive mechanical tests results. Finite element analysis shows that the plastic flow is concentrated on the welded zone periphery where yield strength is reached. It is supposed that “through the weld” and “circumferential pull-out” variants should be the main failure behaviors, although mechanical testing may provide other types of fracture due to metallurgical features.

  13. Lattice shear distortions in fluorite structure oxides

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Mueller, M.H.; Hitterman, R.L.

    1979-01-01

    Crystallographic shear distortions have been observed in fluorite structure, single crystals of UO 2 and Zr(Ca)O 2 /sub-x/ by neutron-diffraction techniques. These distortions localize on the oxygen sublattice and do not require the presence of an external strain. The internal rearrangement mode in UO 2 is a transverse, zone boundary q vector = 2π/a (0.5, 0.0) deformation with amplitude 0.014 A. In Zr(Ca)O/sub 2-x/, the mode is a longitudinal, q vector = 2-/a (0,0,0.5) deformation with amplitude 0.23 A. Cation-anion elastic interactions dominate in selecting the nature of the internal distortion

  14. A new confined high pressure rotary shear apparatus: preliminary results

    Science.gov (United States)

    Faulkner, D.; Coughlan, G.; Bedford, J. D.

    2017-12-01

    The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.

  15. Hydrothermal alteration in the Matok Igneous Complex, Southern Marginal Zone of the Limpopo Belt, South Africa

    International Nuclear Information System (INIS)

    Sieber, T.; Van Reenen, D.D.; Barton, J.M.

    1991-01-01

    Ductile shear zones associated with the 2700 to 2650 Ma Limpopo Orogeny locally contained gold mineralization. Some of these shear zones were reactivated under brittle conditions and contain zones of hydrothermal alteration that are of potential economic significance. Within the approximately 2670 Ma Matok Complex, two examples of this shear zone controlled alteration are exposed, the Dwars River and Sand River alteration zones. The granitic rocks of this Complex experienced early selective sericitization of plagioclase and the subsequent development of perthitic porphyroblasts. This early regional alteration was overprinted along brittle shear zones by pervasive propylitization and vein controlled quartz-albite alteration. The setting, composition, and the age of the Matok Complex make it a possible source for Archaean gold mineralization. The Dwars River and Sand River alteration zones are characterized by the absence of significant gold mineralization. The pattern of wall-rock alteration indicates that the hydrothermal processes were different from typical Archaean lode gold deposits. P-T conditions during the shear-zone controlled alteration were less than 400 degrees C and 1,9 - 2,8 kb. The shear zone hosted alteration could have taken place anytime between emplacement of the Matok Complex and about 1315 Ma ago. 35 refs., 10 figs., 4 tabs

  16. Automated road marking recognition system

    Science.gov (United States)

    Ziyatdinov, R. R.; Shigabiev, R. R.; Talipov, D. N.

    2017-09-01

    Development of the automated road marking recognition systems in existing and future vehicles control systems is an urgent task. One way to implement such systems is the use of neural networks. To test the possibility of using neural network software has been developed with the use of a single-layer perceptron. The resulting system based on neural network has successfully coped with the task both when driving in the daytime and at night.

  17. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  18. Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media

    Directory of Open Access Journals (Sweden)

    Chris E. Finlayson

    2017-06-01

    Full Text Available We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid “gum-like” media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or “polymer opals” with intense tunable structural color. The further engineering of this shear-ordering using a controllable “roll-to-roll” process known as Bending Induced Oscillatory Shear (BIOS, together with the interchangeable nature of the base composite particles, opens potentially transformative possibilities for mass manufacture of nano-ordered materials, including advances in optical materials, photonics, and metamaterials/plasmonics.

  19. Size effects in shear interfaces

    OpenAIRE

    GARNIER, J

    2001-01-01

    In physical modelling (centrifuge tests, calibration chambers, laboratory tests), the size of the soil particles may not be negligible when compared to the dimensions of the models. Size effects may so disturb the response of the models and the experimental data obtained on these cannot be extended to true scale conditions. Different tests have been performed to study and quantify the size effects that may happen in shear interfaces between soils and structures : modified shear box tests, pul...

  20. Multifractal spectra in shear flows

    Science.gov (United States)

    Keefe, L. R.; Deane, Anil E.

    1989-01-01

    Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.

  1. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.

    1982-12-01

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  2. Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel

    Science.gov (United States)

    Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.

    2017-09-01

    The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.

  3. Mark Twain: inocente ou pecador? = Mark Twain: innocent or sinner?

    Directory of Open Access Journals (Sweden)

    Heloisa Helou Doca

    2009-01-01

    Full Text Available A leitura cuidadosa do texto do “Tratado de Paris”, em 1900, leva Mark Twain a concluir que a intenção política norte-americana era, claramente, a de subjugação. Declara-se, abertamente, antiimperialista, nesse momento, apesar das inúmeras críticasrecebidas por antagonistas políticos que defendiam o establishment dos Estados Unidos. Após viajar para a Europa e Oriente, em 1867, como correspondente do jornal Daily Alta Califórnia, Mark Twain publica, em 1869, seu relato de viagem, The Innocents Abroad or TheNew Pilgrim’s Progress. Nosso estudo demonstra que o autor, apesar das diversas máscaras usadas em seus relatos, narra histórias, culturas e tradições, tanto da Europa quanto do Oriente, já com os olhos bem abertos pelo viés antiimperialista. Faz uso da paródia, sátira, ironia e humor para dessacralizar impérios, monarcas e a Igreja que subjugavam os mais fracos, iluminando, desde então, os estudos sobre culturas. Nosso estudo, outrossim, faz uma reflexão sobre cultura, tradição e o olhar do viajante, justificando o “olhar inocente” do narrador em seu relato.After carefully reading the Treaty of Paris in 1900, Mark Twain concluded that the goal of U.S. policy was clearly one ofsubjugation. He openly declared himself an anti-imperialist at that time, in spite of the numerous criticisms he received from political opponents who supported the United States status quo. After traveling to Europe and the East in 1867 as a correspondent for The DailyAlta California newspaper, Mark Twain published his travel report, The Innocents Abroad or The New Pilgrim’s Progress in 1869. Our study demonstrates that the author, in spite of using different guises in his reports, narrated histories, cultures and traditions – from both Europe and the East – with a viewpoint already imbued by his anti-imperialistic ideals. Twain made use of parody, satire, irony and humor within his texts in order to desecrate empires,monarchs and

  4. Magma shearing and friction in the volcanic conduit: A crystal constraint

    Science.gov (United States)

    Wallace, P. A.; Kendrick, J. E.; Henton De Angelis, S.; Ashworth, J. D.; Coats, R.; Miwa, T.; Mariani, E.; Lavallée, Y.

    2017-12-01

    Magma shearing and friction processes in the shallow volcanic conduit are typical manifestations of strain localisation, which in turn can have an influential role on magma ascent dynamics. The thermal consequences of such events could drive the destabilisation of magma and thus dictate the style of activity at the surface. Shear heating and fault friction are prime candidates for the generation of significant quantities of heat. Here we use a combination of field and experimental evidence to investigate how crystals can act as sensitive recorders of both physical and chemical processes occurring in the shallow volcanic conduit. Spine extrusion during the closing of the 1991-95 eruption at Unzen volcano, Japan, provided the unique opportunity to investigate marginal shear zone formation, which preserves a relic of the deformation during magma ascent. Our results show that crystals can effectively act as a deformation marker during magma ascent through the viscous-brittle transition by accommodating strain in the form of crystal plasticity before fracturing (comminution). Electron backscatter diffraction (EBSD) reveals up to 40° lattice distortion of biotite phenocrysts in zones of high shear, with negligible plasticity further away. Plagioclase microlites display a systematic plastic response to an increase in shear intensity, as recorded by an increase in lattice distortion towards the spine margin of up to 9°. This localisation of strain within the shear zone is also accompanied by the destabilisation of hydrous mineral phases (i.e. amphibole), compaction of pores (23-13% Φ), glass devitrification and magnetic anomalies. The narrow zone of disequilibrium textures suggests the likely effect of a thermal input due to strain localisation being the contributing factor. These observations are complimented by high-temperature high-velocity rotary shear experiments which simulate the deformation evolution during shear. Hence, understanding these shallow volcanic

  5. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  6. Experimental Investigation of the Peak Shear Strength Criterion Based on Three-Dimensional Surface Description

    Science.gov (United States)

    Liu, Quansheng; Tian, Yongchao; Ji, Peiqi; Ma, Hao

    2018-04-01

    The three-dimensional (3D) morphology of joints is enormously important for the shear mechanical properties of rock. In this study, three-dimensional morphology scanning tests and direct shear tests are conducted to establish a new peak shear strength criterion. The test results show that (1) surface morphology and normal stress exert significant effects on peak shear strength and distribution of the damage area. (2) The damage area is located at the steepest zone facing the shear direction; as the normal stress increases, it extends from the steepest zone toward a less steep zone. Via mechanical analysis, a new formula for the apparent dip angle is developed. The influence of the apparent dip angle and the average joint height on the potential contact area is discussed, respectively. A new peak shear strength criterion, mainly applicable to specimens under compression, is established by using new roughness parameters and taking the effects of normal stress and the rock mechanical properties into account. A comparison of this newly established model with the JRC-JCS model and the Grasselli's model shows that the new one could apparently improve the fitting effect. Compared with earlier models, the new model is simpler and more precise. All the parameters in the new model have clear physical meanings and can be directly determined from the scanned data. In addition, the indexes used in the new model are more rational.

  7. Laser-assisted shearing: new application for high-power diode lasers

    Science.gov (United States)

    Emonts, Michael; Brecher, Christian

    2010-02-01

    Due to the growing ranges of applications for stamped parts in the electrical and electronics industry (e.g. switch cabinet cladding and transformer plates) as well as in the automotive industry (e.g. stamp, bent and drawn components), flexible sheet metal forming has become a more important process. The inner and outer contours as well as the forming operations needed to reinforce metal sheets can be carried out by punching machines without re-clamping the metal sheet. In contrast, the potential of conventional punching machines is now exhausted in terms of the material spectrum that can be processed, the tool life and the quality of the machined product. Particularly in view of the machining quality of the sheared edges, the achievable clear-cut surface rates are limited due to the limited plasticity of the sheet materials. When cracks form between the grain boundaries of the sheet material during the conventional shearing process, the cutting edge is divided into a clear-cut surface zone (approx. 30% of the plate thickness when shearing stainless steel plates: 1.4301) and a shearing zone with crack formation. This shearing zone can not be used as a functional surface. The shearing process is divided into the four phases (DIN 8588) "warping", "clear-cutting", "fracture" and "ejection of the piece punched out".

  8. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  9. Recent results for Mark III

    International Nuclear Information System (INIS)

    Brient, J.C.

    1987-12-01

    This paper presents recent results from the Mark III detector at SPEAR, in the open charm sector. The first topic discussed is the reanalysis of the direct measurement of the D hadronic branching fractions, where a detailed study has been made of the Cabibbo suppressed and multi-π 0 's D decays backgrounds in the double tag sample. Next, the Dalitz plot analysis of the D decays to Kππ is presented, leading to the relative fractions of three-body versus pseudoscalarvector decays. 7 refs., 5 figs

  10. The Mark III vertex chamber

    International Nuclear Information System (INIS)

    Adler, J.; Bolton, T.; Bunnell, K.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 μm at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 μm using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin

  11. 46 CFR 185.602 - Hull markings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull markings. 185.602 Section 185.602 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Markings Required § 185.602 Hull markings. (a) Each vessel must be marked as required by part 67...

  12. 27 CFR 28.193 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.193... Drawback Filing of Notice and Removal § 28.193 Export marks. In addition to the marks and brands required... chapter, the exporter shall mark the word “Export” on the Government side of each case or Government head...

  13. 27 CFR 28.103 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.103... Manufacturing Bonded Warehouse § 28.103 Export marks. (a) General. In addition to the marks and brands required... provisions of part 19 of this chapter, the proprietor shall mark the word “Export” on the Government side of...

  14. 27 CFR 28.144 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.144... § 28.144 Export marks. (a) General Requirement. In addition to the marks and brands required to be... brewer shall mark the word “Export” on each container or case of beer, or the words “Beer concentrate for...

  15. Finite element models of earthquake cycles in mature strike-slip fault zones

    Science.gov (United States)

    Lynch, John Charles

    The research presented in this dissertation is on the subject of strike-slip earthquakes and the stresses that build and release in the Earth's crust during earthquake cycles. Numerical models of these cycles in a layered elastic/viscoelastic crust are produced using the finite element method. A fault that alternately sticks and slips poses a particularly challenging problem for numerical implementation, and a new contact element dubbed the "Velcro" element was developed to address this problem (Appendix A). Additionally, the finite element code used in this study was bench-marked against analytical solutions for some simplified problems (Chapter 2), and the resolving power was tested for the fault region of the models (Appendix B). With the modeling method thus developed, there are two main questions posed. First, in Chapter 3, the effect of a finite-width shear zone is considered. By defining a viscoelastic shear zone beneath a periodically slipping fault, it is found that shear stress concentrates at the edges of the shear zone and thus causes the stress tensor to rotate into non-Andersonian orientations. Several methods are used to examine the stress patterns, including the plunge angles of the principal stresses and a new method that plots the stress tensor in a manner analogous to seismic focal mechanism diagrams. In Chapter 4, a simple San Andreas-like model is constructed, consisting of two great earthquake producing faults separated by a freely-slipping shorter fault. The model inputs of lower crustal viscosity, fault separation distance, and relative breaking strengths are examined for their effect on fault communication. It is found that with a lower crustal viscosity of 1018 Pa s (in the lower range of estimates for California), the two faults tend to synchronize their earthquake cycles, even in the cases where the faults have asymmetric breaking strengths. These models imply that postseismic stress transfer over hundreds of kilometers may play a

  16. Interview with Professor Mark Wilcox.

    Science.gov (United States)

    Wilcox, Mark

    2016-08-01

    Mark Wilcox speaks to Georgia Patey, Commissioning Editor: Professor Mark Wilcox is a Consultant Microbiologist and Head of Microbiology at the Leeds Teaching Hospitals (Leeds, UK), the Professor of Medical Microbiology at the University of Leeds (Leeds, UK), and is the Lead on Clostridium difficile and the Head of the UK C. difficile Reference Laboratory for Public Health England (PHE). He was the Director of Infection Prevention (4 years), Infection Control Doctor (8 years) and Clinical Director of Pathology (6 years) at the Leeds Teaching Hospitals. He is Chair of PHE's Rapid Review Panel (reviews utility of infection prevention and control products for National Health Service), Deputy Chair of the UK Department of Health's Antimicrobial Resistance and Healthcare Associated Infection Committee and a member of PHE's HCAI/AR Programme Board. He is a member of UK/European/US working groups on C. difficile infection. He has provided clinical advice as part of the FDA/EMA submissions for the approval of multiple novel antimicrobial agents. He heads a healthcare-associated infection research team at University of Leeds, comprising approximately 30 doctors, scientists and nurses; projects include multiple aspects of C. difficile infection, diagnostics, antimicrobial resistance and the clinical development of new antimicrobial agents. He has authored more than 400 publications, and is the coeditor of Antimicrobial Chemotherapy (5th/6th/7th Editions, 15 December 2007).

  17. The Effects of Shear Strain, Fabric, and Porosity Evolution on Elastic and Mechanical Properties of Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Marone, C.

    2017-12-01

    Ultrasonic/seismic waves are widely used for probing fault zone elastic and mechanical properties (gouge composition, frictional strength, density) and elastic properties (Vp, Vs, bulk and shear moduli), as it can provide insight into key processes and fault properties during shearing. These include fabric and force chain formation, porosity evolution, and fault zone stiffness, which are in turn factors in fault slip, damage, and healing. We report on a suite of direct shear experiments on synthetic fault gouge composed of 50% smectite /50% quartz at a normal stress of 25 MPa, in which we use ultrasonic wave transmission to continuously monitor compressional and shear wave velocities (Vp, Vs) up to shear strains of 25, while simultaneously measuring friction and monitoring the evolution of density and porosity. We find that wavespeeds vary with shear strain, due to fabric development and the evolution of density and porosity. The coefficient of friction peaks at μ .47 at a shear strain of .5 - 1, decreases to a steady state value of μ .43 by shear strains of 4.5- 6 and then remains rather constant to shear strains of 6 - 25, consistent with previous work. Density increases rapidly from 1.78 g/cm3 to 1.83 g/cm3 at shear strains from 0-2 (porosity decreases from 33% to 25% over that range), and then more gradually increases to a density of 2.08 g/cm3 (porosity of 21%) at a shear strain of 25. Vp increases from 2400 m/s to 2900 m/s during the onset of shear until a shear strain of 3, and then decreases to 2400-2500 by shear strain of 7-9. At shear strains above 9, Vp slowly increases as the layer becomes denser and less porous. We interpret the co-evolving changes in friction, porosity, and elastic moduli/wavespeed to reflect fabric development and alignment of clay particles as a function of shearing. More specifically, the decrease in Vp at a shear strain of 3 reflects the clay particles gradually aligning. Once the particles are aligned, the gradual increase of

  18. Post-Grampian top-to-WNW Caledonian ductile shear in the Grampian Highlands [abstract only

    OpenAIRE

    Leslie, Graham; Campbell, Seumas

    2008-01-01

    The Glendoe Hydro Scheme involves construction of an 4.6 m diameter bored tunnel, extending 8.6 km SSE-ward from Fort Augustus and the Great Glen, through mainly Grampian Group Dalradian rocks deformed in the Grampian orogeny. The great prize though is access to an 8 km long borehole driven perpendicular to regional strike through the footwall and hanging wall of the Eilrig Shear Zone. The Eilrig Shear Zone is unique in the geology of the Grampian Highland ‘terrane’ and is reve...

  19. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed in uncracked concrete.Proposals have been made on how the derived standard solutions may be applied to more complicated cases, such as continuous beams, beams......The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model...

  20. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  1. FEM Simulation of Incremental Shear

    International Nuclear Information System (INIS)

    Rosochowski, Andrzej; Olejnik, Lech

    2007-01-01

    A popular way of producing ultrafine grained metals on a laboratory scale is severe plastic deformation. This paper introduces a new severe plastic deformation process of incremental shear. A finite element method simulation is carried out for various tool geometries and process kinematics. It has been established that for the successful realisation of the process the inner radius of the channel as well as the feeding increment should be approximately 30% of the billet thickness. The angle at which the reciprocating die works the material can be 30 deg. . When compared to equal channel angular pressing, incremental shear shows basic similarities in the mode of material flow and a few technological advantages which make it an attractive alternative to the known severe plastic deformation processes. The most promising characteristic of incremental shear is the possibility of processing very long billets in a continuous way which makes the process more industrially relevant

  2. SHEAR ACCELERATION IN EXPANDING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, F. M. [ZAH, Institut für Theoretische Astrophysik, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie [University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-12-10

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).

  3. Effects of shear flow on phase nucleation and crystallization.

    Science.gov (United States)

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  4. Shear and shearless Lagrangian structures in compound channels

    Science.gov (United States)

    Enrile, F.; Besio, G.; Stocchino, A.

    2018-03-01

    Transport processes in a physical model of a natural stream with a composite cross-section (compound channel) are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimensional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers mark Shear Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling parameters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.

  5. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  6. Dialectica Interpretation with Marked Counterexamples

    Directory of Open Access Journals (Sweden)

    Trifon Trifonov

    2011-01-01

    Full Text Available Goedel's functional "Dialectica" interpretation can be used to extract functional programs from non-constructive proofs in arithmetic by employing two sorts of higher-order witnessing terms: positive realisers and negative counterexamples. In the original interpretation decidability of atoms is required to compute the correct counterexample from a set of candidates. When combined with recursion, this choice needs to be made for every step in the extracted program, however, in some special cases the decision on negative witnesses can be calculated only once. We present a variant of the interpretation in which the time complexity of extracted programs can be improved by marking the chosen witness and thus avoiding recomputation. The achieved effect is similar to using an abortive control operator to interpret computational content of non-constructive principles.

  7. Cavernous hemangioma presenting marked hyperostosis

    International Nuclear Information System (INIS)

    Kobata, Hitoshi; Miyake, Hiroji; Kitamura, Junji; Kajikawa, Hiroshi; Ohta, Tomio

    1988-01-01

    The authors report here a case of hemangioma of the left parietal bone which presented headache and papilledema. This patient is a 37-year-old female who had, prior to admission, complained of increasing headache for one year and blurred vision for three months. She had no history of head injury. Local physical examinations revealed a slight bulging in her left parietal region which was insensitive to palpation and not adherent to the overlying scalp. Neurological examinations revealed bilateral papilledema and an incongruous bitemporal upper quadrant defect in the visual field. All the other neurological and laboratory data were normal. A plain skull roentogenogram showed a 9 x 9 cm osteolytic and characteristic honeycomb lesion in the parietal region. Systemic bone survey revealed a similar lesion in the right tibia which was not histologically examined. A marked accumulation of isotopes was detected on the bone scintigrams at both lesions. Selective external carotid angiograms demonstrated a tumor stain fed by the superficial temporal, occipital, and middle meningial arteries. CT scans of the brain and skull clearly showed a local thickening of and structural changes in the skull bone and also a mass effect on the brain and lateral ventricle. The lesioned bone was removed en bloc and replaced by an artificial bone. It was highly vascular, but not adherent to the overlying dura. The post-operative course was uneventful, and the headache and papilledema disappeared. Hemangioma of the skull presenting marked hyperostosis, as reported above, seems to be rare. In addition, in this case, skeletal angioma without any clinical manifestation was detected. Clinical and radiological pictures of the hemangioma of the skull and other bones were briefly discussed. (author)

  8. Computerized lateral-shear interferometer

    Science.gov (United States)

    Hasegan, Sorin A.; Jianu, Angela; Vlad, Valentin I.

    1998-07-01

    A lateral-shear interferometer, coupled with a computer for laser wavefront analysis, is described. A CCD camera is used to transfer the fringe images through a frame-grabber into a PC. 3D phase maps are obtained by fringe pattern processing using a new algorithm for direct spatial reconstruction of the optical phase. The program describes phase maps by Zernike polynomials yielding an analytical description of the wavefront aberration. A compact lateral-shear interferometer has been built using a laser diode as light source, a CCD camera and a rechargeable battery supply, which allows measurements in-situ, if necessary.

  9. Grouted Connections with Shear Keys

    DEFF Research Database (Denmark)

    Pedersen, Ronnie; Jørgensen, M. B.; Damkilde, Lars

    2012-01-01

    This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so that dif...... that different structural problems can be reproduced successfully....

  10. Meniscal shear stress for punching.

    Science.gov (United States)

    Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek

    2009-01-01

    Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.

  11. Centrifuges and inertial shear forces

    NARCIS (Netherlands)

    Loon, van J.J.W.A.; Folgering, H.T.E.; Bouten, C.V.C.; Smit, T.H.

    2004-01-01

    Centrifuges are often used in biological studies for 1xg control samples in space flight microgravity experiments as well as in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the

  12. Cooperative Shark Mark Recapture Database (MRDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shark Mark Recapture Database is a Cooperative Research Program database system used to keep multispecies mark-recapture information in a common format for...

  13. On-road Bicycle Pavement Markings

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A mile by mile breakdown of the on-street bicycle pavement markings installed within the City of Pittsburgh. These include bike lanes, shared lane markings...

  14. Serviceable pavement marking retroreflectivity levels : technical report.

    Science.gov (United States)

    2009-03-01

    This research addressed an array of issues related to measuring pavement markings retroreflectivity, factors : related to pavement marking performance, subjective evaluation process, best practices for using mobile : retroreflectometers, sampling pav...

  15. [Marked hemosiderosis in myelodysplastic syndrome].

    Science.gov (United States)

    Klinz, C

    1999-01-29

    A 68-year-old man was admitted because of symptoms of lumbar pain. He was known to have chronic anemia with ring sideroblasts and diabetes melitus and to be in heart failure. Three months before he had been given 7 units of red cell concentrate. On admission the outstanding features were brown discoloration of the skin, absent body hair, tachycardia, hepatomegaly and small testicles. He had a normocytic anemia, hyperglycemia and raised transaminases, hypogonadism and vitamin D3 deficiency. The serum levels of iron, transferrin saturation and feritin were markedly elevated. Liver iron content/g dried liver was 4.2 g (by biomagnetometer). Radiology of the lumbar vertebrae showed osteoporosis and sonography confirmed hepatomegaly. The known myelodysplastic syndrome (MDS) had fed to secondary hemosiderosis with heart failure, liver involvement, diabetes mellitus, hypogonadism and osteoporosis. Symptomatic treatment was unsuccessfully complemented by desferoxamine (up to 4 g/12 h) to release iron. But very good iron excretion was then achieved with deferiprone (3 x 1 g/d). The patient later died of the sequelae of hemosiderosis. Even when they have not required transfusions, patients with long-standing MDS should be examined regularly for the possible development of secondary hemosiderosis so that iron-chelating agents can be administered as needed.

  16. EDMS - Reaching the Million Mark

    CERN Multimedia

    2009-01-01

    When Christophe Seith from the company Cegelec sat down to work on 14 May 2009 at 10:09 a.m. to create the EDMS document entitled "Rapport tournée PH semaine 20", little did he know that he would be the proud creator of the millionth EDMS document and the happy prize winner of a celebratory bottle of champagne to mark the occasion. In the run up to the creation of the millionth EDMS document the EDMS team had been closely monitoring the steady rise in the EDMS number generator, so as to ensure the switch from the six figured i.d. to seven figures would run smoothly and of course, to be able to congratulate the creator of the millionth EDMS document. From left to right: Stephan Petit (GS-ASE- EDS Section Leader), Christophe Delamare (GS- ASE Group Leader), Christophe Seith, creator of the millionth EDMS document, David Widegren, (GS-ASE- EPS Section Leader). The millionth EDMS document. For t...

  17. 46 CFR 122.602 - Hull markings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull markings. 122.602 Section 122.602 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150....602 Hull markings. (a) Each vessel must be marked as required by part 67, subpart I, of this chapter...

  18. 7 CFR 160.32 - Marking containers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Marking containers. 160.32 Section 160.32 Agriculture... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.32 Marking containers. The interested person shall provide any labor necessary for marking the containers, after the contents have been...

  19. 46 CFR 160.176-23 - Marking.

    Science.gov (United States)

    2010-10-01

    ... of the vessel. (2) The type of vessel. (3) Specific purpose or limitation approved by the Coast Guard...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Inflatable Lifejackets § 160.176-23 Marking. (a) General. Each inflatable lifejacket must be marked with the information required by this section. Each marking must be...

  20. 27 CFR 28.123 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.123..., or Transportation to a Manufacturing Bonded Warehouse § 28.123 Export marks. (a) General. In addition... filled under the provisions of part 24 of this chapter, the proprietor shall mark the word “Export” on...

  1. 27 CFR 28.223 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.223... Export marks. In addition to the marks and brands required to be placed on kegs, barrels, cases, crates... “Export” on each container or case before removal for export, for use on vessels or aircraft, or for...

  2. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    Science.gov (United States)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  3. Shear strength of a thermal barrier coating parallel to the bond coat

    International Nuclear Information System (INIS)

    Cruse, T.A.; Dommarco, R.C.; Bastias, P.C.

    1998-01-01

    The static and low cycle fatigue strength of an air plasma sprayed (APS) partially stabilized zirconia thermal barrier coating (TBC) is experimentally evaluated. The shear testing utilized the Iosipescu shear test arrangement. Testing was performed parallel to the TBC-substrate interface. The TBC testing required an innovative use of steel extensions with the TBC bonded between the steel extensions to form the standard Iosipescu specimen shape. The test method appears to have been successful. Fracture of the TBC was initiated in shear, although unconstrained specimen fractures propagated at the TBC-bond coat interface. The use of side grooves on the TBC was successful in keeping the failure in the gage section and did not appear to affect the shear strength values that were measured. Low cycle fatigue failures were obtained at high stress levels approaching the ultimate strength of the TBC. The static and fatigue strengths do not appear to be markedly different from tensile properties for comparable TBC material

  4. Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks

    Science.gov (United States)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-05-01

    We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ , inelasticity of collisions as measured by a parameter Q , and applied uniform shear strain rate γ ˙. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ ,Q ) plane for small γ ˙, we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q , we show that, upon increasing γ ˙, the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ ,γ ˙) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ ˙ at fixed ϕ , we find that discontinuous shear thickening can result if γ ˙ is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ ˙.

  5. Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements

    Science.gov (United States)

    Ngako, V.; Affaton, P.; Nnange, J. M.; Njanko, Th.

    2003-04-01

    Kinematic analysis of the central Cameroon shear zone (CCSZ) and its Sanaga fault relay, indicate early sinistral shear movement (phase D 2) that was later followed by a dextral shear movement (phase D 3) during the Pan-African orogeny. The correlation of tectonic events among the CCSZs, thrusting of the Yaounde Group and the deformation in the Lom Group indicate a diachronous deposition history of these groups, where the Yaounde Group is pre-kinematic while the sedimentary and magmatic rocks of the Lom basin are syn-kinematic. Sinistral shear movements along the CCSZ and Sanaga faults are correlated with metamorphism and thrusting of the Yaounde granulites onto the Congo craton, on one hand, and to the opening of the Lom pull-apart basin, oblique to the shear zone, on the other. Kinematic interactions between shear and thrust movements characterize transpression, whereas interactions between shear and oblique normal fault movements characterize transtension. Resulting kinematic indicators show that the Lom basin represents a sinistral transtensional relay of the Sanaga fault. Greenschist-facies metamorphism in the Lom Group rocks dominantly affected by a monophase tectonic evolution were achieved during the late dextral shear movements along the Sanaga fault.

  6. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  7. Shear instability of a gyroid diblock copolymer

    DEFF Research Database (Denmark)

    Eskimergen, Rüya; Mortensen, Kell; Vigild, Martin Etchells

    2005-01-01

    -induced destabilization is discussed in relation to analogous observations on shear-induced order-to-order and disorder-to-order transitions observed in related block copolymer systems and in microemulsions. It is discussed whether these phenomena originate in shear-reduced fluctuations or shear-induced dislocations....

  8. A new dedicated finite element for push-over analysis of reinforced concrete shear wall systems

    Directory of Open Access Journals (Sweden)

    Delal Doğru ORMANCI

    2016-06-01

    Full Text Available In this study, a finite element which has been analyzed based on anisotropic behavior of reinforced shear walls is developed. Element stiffness matrices were varied based on whether the element is in the tension or the compression zone of the cross-section. Nonlinear behavior of reinforced shear wall model is investigated under horizontal loads. This behavior is defined with a similar approach to plastic hinge assumption in frame structures that the finite element behaves lineer elastic between joints and plastic deformations are concentrated on joints as vertical plastic displacements. According to this acceptance, plastic behavior of reinforced shear wall occurs when the vertical strain reaches elastic strain limit. In the definition of finite element, displacement functions are chosen considering that the partition of shear walls just at floor levels, are enough for solution. Results of this study are compared with the solution obtained from a different computer programme and experimental results.

  9. Study on shear properties of coral sand under cyclic simple shear condition

    Science.gov (United States)

    Ji, Wendong; Zhang, Yuting; Jin, Yafei

    2018-05-01

    In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.

  10. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  11. Shear failure of granular materials

    Science.gov (United States)

    Degiuli, Eric; Balmforth, Neil; McElwaine, Jim; Schoof, Christian; Hewitt, Ian

    2012-02-01

    Connecting the macroscopic behavior of granular materials with the microstructure remains a great challenge. Recent work connects these scales with a discrete calculus [1]. In this work we generalize this formalism from monodisperse packings of disks to 2D assemblies of arbitrarily shaped grains. In particular, we derive Airy's expression for a symmetric, divergence-free stress tensor. Using these tools, we derive, from first-principles and in a mean-field approximation, the entropy of frictional force configurations in the Force Network Ensemble. As a macroscopic consequence of the Coulomb friction condition at contacts, we predict shear failure at a critical shear stress, in accordance with the Mohr-Coulomb failure condition well known in engineering. Results are compared with numerical simulations, and the dependence on the microscopic geometric configuration is discussed. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  12. Magnitude of shear stress on the san andreas fault: implications of a stress measurement profile at shallow depth.

    Science.gov (United States)

    Zoback, M D; Roller, J C

    1979-10-26

    A profile of measurements of shear stress perpendicular to the San Andreas fault near Palmdale, California, shows a marked increase in stress with distance from the fault. The pattern suggests that shear stress on the fault increases slowly with depth and reaches a value on the order of the average stress released during earthquakes. This result has important implications for both long- and shortterm prediction of large earthquakes.

  13. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  14. Integrated seismic interpretation of the Carlsberg Fault zone, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Nielsen, Lars; Thybo, Hans; Jørgensen, Mette Iwanouw

    2005-01-01

    the fault zone. The fault zone is a shadow zone to shots detonated outside the fault zone. Finite-difference wavefield modelling supports the interpretations of the fan recordings. Our fan recording approach facilitates cost-efficient mapping of fault zones in densely urbanized areas where seismic normal......We locate the concealed Carlsberg Fault zone along a 12-km-long trace in the Copenhagen city centre by seismic refraction, reflection and fan profiling. The Carlsberg Fault is located in a NNW-SSE striking fault system in the border zone between the Danish Basin and the Baltic Shield. Recent...... earthquakes indicate that this area is tectonically active. A seismic refraction study across the Carlsberg Fault shows that the fault zone is a low-velocity zone and marks a change in seismic velocity structure. A normal incidence reflection seismic section shows a coincident flower-like structure. We have...

  15. CFD simulation of estimating critical shear stress for cleaning flat ...

    Indian Academy of Sciences (India)

    Sumit Kawale

    2017-11-22

    Nov 22, 2017 ... Jet impingement; wall shear stress; cleaning of flat plate; turbulence model; critical shear stress; ... On comparing the theoretical predictions with wall shear ... distance and Reynolds number on peak value of local shear stress ...

  16. High contrast laser marking of alumina

    International Nuclear Information System (INIS)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; Val, J. del; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-01-01

    Highlights: • Laser marking of alumina using near infrared (NIR) lasers was experimentally analyzed. • Color change produced by NIR lasers is due to thermally induced oxygen vacancies. • Laser marking results obtained using NIR lasers and green laser are compared. • High contrast marks on alumina were achieved. - Abstract: Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks

  17. "Virtual shear box" experiments of stress and slip cycling within a subduction interface mélange

    Science.gov (United States)

    Webber, Sam; Ellis, Susan; Fagereng, Åke

    2018-04-01

    What role does the progressive geometric evolution of subduction-related mélange shear zones play in the development of strain transients? We use a "virtual shear box" experiment, based on outcrop-scale observations from an ancient exhumed subduction interface - the Chrystalls Beach Complex (CBC), New Zealand - to constrain numerical models of slip processes within a meters-thick shear zone. The CBC is dominated by large, competent clasts surrounded by interconnected weak matrix. Under constant slip velocity boundary conditions, models of the CBC produce stress cycling behavior, accompanied by mixed brittle-viscous deformation. This occurs as a consequence of the reorganization of competent clasts, and the progressive development and breakdown of stress bridges as clasts mutually obstruct one another. Under constant shear stress boundary conditions, the models show periods of relative inactivity punctuated by aseismic episodic slip at rapid rates (meters per year). Such a process may contribute to the development of strain transients such as slow slip.

  18. Shear localization in a mature mylonitic rock analog during fast slip

    Science.gov (United States)

    Takahashi, M.; van den Ende, M. P. A.; Niemeijer, A. R.; Spiers, C. J.

    2017-02-01

    Highly localized slip zones developed within ductile shear zones, such as pseudotachylyte bands occurring within mylonitic fabric rocks, are frequently interpreted as evidence for earthquake nucleation and/or propagation within the ductile regime. To understand brittle/frictional shear localization processes in ductile shear zones and to relate these to earthquake nucleation and propagation, we performed tests with large changes in velocity on a brine-saturated, 80:20 (wt %) mixture of halite and muscovite gouge after forming a mature mylonitic structure through frictional-viscous flow. The direct effect a on shear strength that occurs in response to an instantaneous upward velocity-step is an important parameter in determining the nature of seismic rupture nucleation and propagation. We obtained reproducible results regarding low-velocity mechanical behavior compared with previous work, but also obtained new insights into effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a critical velocity Vc (˜20 μm/s). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation is consistently localized in a narrow zone. This switch to localized deformation is controlled by the imposed velocity and becomes most apparent at velocities above Vc. In addition, the direct effect drops rapidly when the velocity exceeds Vc. This implies that slip can accelerate toward seismic velocities almost instantly and without much loss of fracture energy, once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance for understanding earthquake nucleation and propagation in the brittle-ductile transitional regime.

  19. Simulations of Granular Particles Under Cyclic Shear

    Science.gov (United States)

    Royer, John; Chaikin, Paul

    2012-02-01

    We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.

  20. Mark II magnetic detector for SPEAR

    International Nuclear Information System (INIS)

    Larsen, R.R.

    1975-01-01

    The Mark II Detector, presently in the design stage, is a SLAC/LBL detector project to replace the Mark I now in operation at SPEAR. While similar in concept to the Mark I it will have improved momentum resolution, shower detection, solid angle coverage for both triggering and tracking and a magnet design providing easier access to those particles transmitted through the aluminum coil

  1. An analysis of hospital brand mark clusters.

    Science.gov (United States)

    Vollmers, Stacy M; Miller, Darryl W; Kilic, Ozcan

    2010-07-01

    This study analyzed brand mark clusters (i.e., various types of brand marks displayed in combination) used by hospitals in the United States. The brand marks were assessed against several normative criteria for creating brand marks that are memorable and that elicit positive affect. Overall, results show a reasonably high level of adherence to many of these normative criteria. Many of the clusters exhibited pictorial elements that reflected benefits and that were conceptually consistent with the verbal content of the cluster. Also, many clusters featured icons that were balanced and moderately complex. However, only a few contained interactive imagery or taglines communicating benefits.

  2. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    Science.gov (United States)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    behaviors were also recognized during cooling-event tests. Shear stress fluctuations, which were obtained by 1 Hz data sampling, showed that shear behavior characteristically changed in response to temperature conditions. Stick-slip behavior prevailed under room temperature conditions, whereas shear behavior gradually changed into stable sliding behavior as temperature decreased. SEM (Scanning Electric Microscope) observation on shear surfaces indicated that silt- and sand-size asperities in the vicinity of the shear surface influence the occurrence of stick-slip behavior. It is also characteristically noted that rod-shaped smectitic clays, here called "roll", developed on shear surfaces and are arrayed densely perpendicular to the shearing direction in a micrometer scale. We assume that these rolls are probably rotating slowly within shear zone and acting as a lubricant which affects the temperature-dependent frictional properties of the shearing plane. These experimental results show that residual strength characteristics of smectite-rich soils are sensitive to temperature conditions. Our findings imply that if slip surface soils contain a high fraction of smectite, a decrease in ground temperature can lead to lowered shear resistance of the slip surface and triggering of slow landslide movement.

  3. Metamorphism and Shear Localization in the Oceanic and Continental Lithosphere: A Local or Lithospheric-Scale Effect?

    Science.gov (United States)

    Montesi, L.

    2017-12-01

    Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of

  4. Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins

    Science.gov (United States)

    Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.

    2017-12-01

    Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.

  5. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  6. The Numba ductile deformation zone (northwest Cameroon): A ...

    Indian Academy of Sciences (India)

    According to Ngako (1999), the Vallée des Roniers and the Demsa shear zones ..... istry of the Bayuda desert high-grade metamorphic base- ment (Sudan): An ... 1993 Données géochronologiques préliminaires (U–Pb et. Sm–Nd) sur la série ...

  7. REE Geochemistry of ore zones in the Archean auriferous schist ...

    Indian Academy of Sciences (India)

    R. Narasimhan, Krishtel eMaging Solutions

    the fluids could be of higher temperature origin. The initial Nd ... of mantle CO2 along shear zones in the lower crust led to the ..... tors such as permeability and composition of pro- ...... Shenberger D M and Barnes H L 1989 Solubility of gold in ...

  8. Three-Dimensional Geostatistical Analysis of Rock Fracture Roughness and Its Degradation with Shearing

    Directory of Open Access Journals (Sweden)

    Nima Babanouri

    2013-12-01

    Full Text Available Three-dimensional surface geometry of rock discontinuities and its evolution with shearing are of great importance in understanding the deformability and hydro-mechanical behavior of rock masses. In the present research, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variography analysis of the surfaces indicated a strong non-linear trend in the data. Therefore, the spatial variability of rock fracture surfaces was decomposed to one deterministic component characterized by a base polynomial function, and one stochastic component described by the variogram of residuals. By using an image-processing technique, 343 damaged zones with different sizes, shapes, initial roughness characteristics, local stress fields, and asperity strength values were spatially located and clustered. In order to characterize the overall spatial structure of the degraded zones, the concept of ‘pseudo-zonal variogram’ was introduced. The results showed that the spatial continuity at the damage locations increased due to asperity degradation. The increase in the variogram range was anisotropic and tended to be higher in the shear direction; thus, the direction of maximum continuity rotated towards the shear direction. Finally, the regression-kriging method was used to reconstruct the morphology of the intact surfaces and degraded areas. The cross-validation error of interpolation for the damaged zones was found smaller than that obtained for the intact surface.

  9. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)

    2015-08-15

    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  10. 49 CFR 1520.13 - Marking SSI.

    Science.gov (United States)

    2010-10-01

    ... SECURITY INFORMATION § 1520.13 Marking SSI. (a) Marking of paper records. In the case of paper records... back cover, including a binder cover or folder, if the document has a front and back cover; (2) Any.... 552 and 49 CFR parts 15 and 1520. (d) Other types of records. In the case of non-paper records that...

  11. Lessons learned : pavement marking warranty contract.

    Science.gov (United States)

    2013-12-01

    In 2012, UDOT implemented a performance-based warranty on a portion of an I-15 pavement marking : project. The awarded contract requested a contractor warranty on the implemented markings for a total : duration of six years. This is the first time th...

  12. 49 CFR 178.338-18 - Marking.

    Science.gov (United States)

    2010-10-01

    ... pounds. (7) Maximum design density of lading (Max. Lading density), in pounds per gallon. (8) Material... cryogenic liquid, in hours, and the name of that cryogenic liquid (MRHT __ hrs, name of cryogenic liquid). Marked rated holding marking for additional cryogenic liquids may be displayed on or adjacent to the...

  13. 25 CFR 141.16 - Price marking.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Price marking. 141.16 Section 141.16 Indians BUREAU OF... AND ZUNI RESERVATIONS General Business Practices § 141.16 Price marking. The price of each article... visible to the customer and that affords the customer a reasonable opportunity to learn the price of the...

  14. Do employers prefer Mark over Mohammed?

    NARCIS (Netherlands)

    Iris Andriessen; Eline Nievers; Laila Faulk; Jaco Dagevos

    2010-01-01

    Original title: Liever Mark dan Mohammed? Does Mohammed have less chance of succeeding on the Dutch labour market than Mark, even though they both have the same qualifications and work experience? And are employers less friendly towards Sonaya than Paula? This study investigates the

  15. 7 CFR 956.162 - Container markings.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Container markings. 956.162 Section 956.162... WALLA VALLEY OF SOUTHEAST WASHINGTON AND NORTHEAST OREGON Rules and Regulations § 956.162 Container markings. Effective April 15, 1997, no handler shall ship any container of Walla Walla Sweet Onions except...

  16. Zone separator for multiple zone vessels

    Science.gov (United States)

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  17. Anomalous uranium concentration in Archaean basement Shear at Dhani Basri and its significance on Southern Margin of Alwar sub-basin, Rajasthan

    International Nuclear Information System (INIS)

    Panigrahi, B.; Shaji, T.S.; Sharma, G.S.; Yadav, O.P.; Nanda, L.K.

    2008-01-01

    Prominent shear zones cutting through the basement and cover rocks of Delhi Supergroup have been recognized in Dhani Basri - Ramewala sector of Dausa district, Rajasthan. One such shear zone traversing the granite gneiss (Archaean basement) has been observed at Dhani Basri. The sheared rock is exposed in the form of a small hump and gives appearance of quartzite due to intense silicification. Grab samples collected from the shear zone rock analysed upto 93 ppm U 3 O 8 and <10 ppm ThO 2 , which is anomalous in comparison to unsheared rock which analysed 51 ppm eU 3 O 8 , upto 5 ppm U 3 O 8 and 80 ppm ThO 2 . Gamma-ray logging of boreholes drilled by GSI across this shear zone indicated uranium mineralization of the order of 0.030% eU 3 O 8 x 5.40 m and the primary radioactive mineral has been identified as uraninite. The extension of Dhani Basri shear zone inside the cover rocks of Meso-Proterozoic Delhi Supergroup of rocks of Alwar sub-basin is of paramount importance in locating unconformity related as well as hydrothermal vein type uranium mineralization. (author)

  18. Steady shear flow properties of Cordia myxa leaf gum as a function of concentration and temperature.

    Science.gov (United States)

    Chaharlang, Mahmood; Samavati, Vahid

    2015-08-01

    The steady shear flow properties of dispersions of Cordia myxa leaf gum (CMLG) were determined as a function of concentration (0.5-2.5%, w/w), and temperature (10-50 °C). The CMLG dispersions exhibited strong shear-thinning behavior at all concentrations and temperatures. The Power-law (Ostwald-Waele's) and Herschel-Bulkley models were employed to characterize flow behavior of CMLG solutions at 0.1-100 s(-1) shear rate. Non-Newtonian shear-thinning behavior was observed at all temperatures and concentrations. While increase in temperature decreased the viscosity and increased the flow behavior indices, adverse effect was obtained by increasing the concentration. The Power-law model was found the best model to describe steady shear flow behavior of CMLG. The pseudoplasticity of CMLG increased markedly with concentration. An Arrhenius-type model was also used to describe the effect of temperature. The activation energy (Ea) appeared in the range of 5.972-18.104 kJ/mol, as concentration increased from 0.5% to 2.5%, at a shear rate of 10 s(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Predicting Shear Transformation Events in Metallic Glasses

    Science.gov (United States)

    Xu, Bin; Falk, Michael L.; Li, J. F.; Kong, L. T.

    2018-03-01

    Shear transformation is the elementary process for plastic deformation of metallic glasses, the prediction of the occurrence of the shear transformation events is therefore of vital importance to understand the mechanical behavior of metallic glasses. In this Letter, from the view of the potential energy landscape, we find that the protocol-dependent behavior of shear transformation is governed by the stress gradient along its minimum energy path and we propose a framework as well as an atomistic approach to predict the triggering strains, locations, and structural transformations of the shear transformation events under different shear protocols in metallic glasses. Verification with a model Cu64 Zr36 metallic glass reveals that the prediction agrees well with athermal quasistatic shear simulations. The proposed framework is believed to provide an important tool for developing a quantitative understanding of the deformation processes that control mechanical behavior of metallic glasses.

  20. Shear wall ultimate drift limits

    International Nuclear Information System (INIS)

    Duffey, T.A.; Goldman, A.; Farrar, C.R.

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated

  1. Experimental study and FEM simulation of the simple shear test of cylindrical rods

    Science.gov (United States)

    Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.

    2018-05-01

    In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.

  2. Application and Analysis of Measurement Model for Calibrating Spatial Shear Surface in Triaxial Test

    Science.gov (United States)

    Zhang, Zhihua; Qiu, Hongsheng; Zhang, Xiedong; Zhang, Hang

    2017-12-01

    Discrete element method has great advantages in simulating the contacts, fractures, large displacement and deformation between particles. In order to analyze the spatial distribution of the shear surface in the three-dimensional triaxial test, a measurement model is inserted in the numerical triaxial model which is generated by weighted average assembling method. Due to the non-visibility of internal shear surface in laboratory, it is largely insufficient to judge the trend of internal shear surface only based on the superficial cracks of sheared sample, therefore, the measurement model is introduced. The trend of the internal shear zone is analyzed according to the variations of porosity, coordination number and volumetric strain in each layer. It shows that as a case study on confining stress of 0.8 MPa, the spatial shear surface is calibrated with the results of the rotated particle distribution and the theoretical value with the specific characteristics of the increase of porosity, the decrease of coordination number, and the increase of volumetric strain, which represents the measurement model used in three-dimensional model is applicable.

  3. Origins of Shear Jamming for Frictional Grains

    Science.gov (United States)

    Wang, Dong; Zheng, Hu; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2016-11-01

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the question we address here is: how does shear bring a system from a unjammed state to a jammed state, where the coordination number, Z, is no less than 3, the isotropic jamming point for frictional grains? Since Z can be used to distinguish jammed states from unjammed ones, it is vital to understand how shear increases Z. We here propose a set of three particles in contact, denoted as a trimer, as the basic unit to characterize the deformation of the system. Trimers, stabilized by inter-grain friction, fail under a certain amount of shear and bend to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In addition, the average change of O from one shear step to the next shows a good collapse when plotted against Z, indicating a universal behavior in the process of shear jamming. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G, the William M. Keck Foundation and a RT-MRSEC Fellowship.

  4. Low-rise shear wall failure modes

    International Nuclear Information System (INIS)

    Farrar, C.R.; Hashimoto, P.S.; Reed, J.W.

    1991-01-01

    A summary of the data that are available concerning the structural response of low-rise shear walls is presented. This data will be used to address two failure modes associated with the shear wall structures. First, data concerning the seismic capacity of the shear walls with emphasis on excessive deformations that can cause equipment failure are examined. Second, data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary to compute the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional. 23 refs

  5. How can we describe the entrainment processes in sheared convective boundary layers?: a large-eddy simulation and mixed-layer theory/model comparison study

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Kim, S.W.

    2006-01-01

    Dry convective boundary layers characterized by a significant wind shear on the surface and at the inversion zone are studied by means of the mixed layer theory. Two different representations of the entrainment zone, each of which has a different closure of the entrainment heat flux, are considered.

  6. Integrated Observations From Fixed and AUV Platforms in the Littoral Zone at the SFOMC Coastal Ocean Observatory

    Science.gov (United States)

    Dhanak, M. R.

    2001-12-01

    A 12-hour survey of the coastal waters off the east coast of Florida at the South Florida Ocean Measurement Center (SFOMC) coastal ocean observatory, during summer 1999, is described to illustrate the observatory's capabilities for ocean observation. The facility is located close to the Gulf Stream, the continental shelf break being only 3 miles from shore and is therefore influenced by the Gulf Stream meanders and the instability of the horizontal shear layer at its edge. As a result, both cross-shelf and along-shelf components of currents in the littoral zone can undergo dramatic +/- 0.5 m/s oscillations. Observations of surface currents from an OSCR, and of subsurface structure from an autonomous underwater vehicle (AUV) platform, a bottom-mounted ADCP and CT-chain arrays during the survey will be described and compared. The AUV on-board sensors included upward and downward looking 1200kHz ADCP, a CTD package and a small-scale turbulence package, consisting of two shear probes and a fast-response thermistor. Prevailing atmospheric conditions were recorded at an on-site buoy. The combined observations depict flows over a range of scales. Acknowledgements: The observations from the OSCR are due to Nick Shay and Tom Cook (University of Miami), and from the bottom-mounted ADCP, CT chain arrays and the surface buoy are due to Alex Soloviev (Nova Southeastern University) and Mark Luther and Bob Weisberg (University of South Florida).

  7. High contrast laser marking of alumina

    Science.gov (United States)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-05-01

    Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks.

  8. Court presentation of bite mark evidence.

    Science.gov (United States)

    Drinnan, A J; Melton, M J

    1985-12-01

    The uniqueness of an individual's bite mark is generally accepted. The use of bite mark analysis to identify or exclude those suspected of crimes is now a well established activity in forensic dentistry. Although the techniques for evaluating bite mark evidence are extremely sophisticated, it is important that the courtroom presentation of such evidence should be as simple as possible and be directed towards those who must judge it. Dentists likely to be involved in the courtroom presentation of bite mark evidence should: be certain that their local law enforcement personnel are frequently updated on the techniques to be used for producing the optimum evidence needed to evaluate bite marks; become acquainted with the current techniques of evaluating bite mark evidence and understand their difficulties and pitfalls; meet with the lawyers (prosecution or defence) before a courtroom appearance, briefing them on the significance of the particular findings; prepare clear and easily understandable visual aids to present to the court the techniques used in the analysis and the bases for the conclusion reached; and offer conclusions derived from the bite mark investigation.

  9. Changing Context of Trade Mark Protection in India: A Review of the Trade Marks Act, 1999

    OpenAIRE

    Pathak, Akhileshwar

    2004-01-01

    With liberalisation and globalisation of the Indian economy, it has become possible for anyone to get into production and services in most of the sectors. This has led to rampant misuse and appropriation of trade marks. In an insulated economy, with monopoly markets, law protecting trade marks had a limited role. In the changed context, however, trade mark law will be a field of much interest for academics and practitioners. Towards this, the paper explores the formation of trade mark law in ...

  10. Subsurface structure of the Nojima fault from dipole shear velocity/anisotropy and borehole Stoneley wave

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H [Geological Survey of Japan, Tsukuba (Japan); Yamamoto, H; Brie, A

    1996-10-01

    Fracture and permeability in the fault zone of the active fault drilling at the Nojima fault were evaluated from acoustic waveforms. There were several permeable intervals in the fault zone. There was strong Stoneley wave attenuation, very large S-Se below the fault and in the interval above the fault. In the fault zone, there were also several short intervals where S-Se was very large; 667 m-674 m and 706 m-710 m. In these intervals, the Stoneley attenuation was large, but there was no Stoneley reflection from within the interval. Reflections were observed at the upper and lower boundaries, going away from the bed up above, and down below. In this well, the shear wave was very strongly attenuated at and below the fault zone. The fast shear azimuth changed at the fault. The slowness anisotropy was fairly strong above the fault from 602 m to 612 m, but smaller below the fault. The changes in fast shear azimuth were much more pronounced near the fault, which suggested a strong influence of the fault. 6 refs., 5 figs.

  11. Elemental marking of arthropod pests in agricultural systems: single and multigenerational marking

    Science.gov (United States)

    Jane Leslie Hayes

    1991-01-01

    Use of elemental markers to study movement of arthropod pests of field crops is reviewed. Trace elements, rubidium (Rb) and cesium (Cs), have provided a nondisruptive method of marking natural adult populations via developmental stage consumption of treated host plants. Multigenerational marking occurs with the transfer of elemental markers from marked adults to...

  12. Shear thinning behaviors in magmas

    Science.gov (United States)

    Vetere, F. P.; Cassetta, M.; Perugini, D.

    2017-12-01

    Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour

  13. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan

    Science.gov (United States)

    Wang, G.; Suemine, A.; Schulz, W.H.

    2010-01-01

    A typhoon (Typhoon No. 10) attacked Shikoku Island and the Tyugoku area of Japan in 2004. This typhoon produced a new daily precipitation record of 1317 mm on Shikoku Island and triggered hundreds of landslides in Tokushima Prefecture. One catastrophic landslide was triggered in the Shiraishi area of Kisawa village, and destroyed more than 10 houses while also leaving an unstable block high on the slope. The unstable block kept moving after the event, showing accelerating and decelerating movement during and after rainfall and reaching a displacement of several meters before countermeasures were put into place. To examine the mechanism for this landsliding characteristic, samples (weathered serpentinite) were taken from the field, and their shear behaviours examined using ring shear tests. The test results revealed that the residual shear strength of the samples is positively dependent on the shear rate, which may provide an explanation for the continuous acceleratingdecelerating process of the landsliding. The roughness of the shear surface and the microstructure of the shear zone were measured and observed by laser microscope and SEM techniques in an attempt to clarify the mechanism of shear rate effect on the residual shear strength. Copyright ?? 2010 John Wiley & Sons, Ltd.

  14. Comparison of two test designs for evaluating the shear bond strength of resin composite cements.

    Science.gov (United States)

    Hu, M; Weiger, R; Fischer, J

    2016-02-01

    To compare a shear bond strength test for resin composite cements developed in order to better consider the shrinkage stress (here termed "Swiss shear test") with the shear test design according to ISO 29022. Four restorative materials (VITA Enamic (VE), VITA Suprinity (VS), Vitablocs Mark II (VM) and VITA YZ T (YZ)) served as substrate. VE, VS and VM were polished or etched. YZ was polished, sandblasted or etched. Specimens were either bonded according to the Swiss or the ISO shear test. RelyX Unicem 2 Automix, Maxcem Elite and PermaFlo DC were used as cements. Shear bond strength (SBS) was measured. Failure modes (adhesive, cohesive or mixed) were evaluated by means of SEM. Mean SBS values obtained with the Swiss shear test were significantly lower than those obtained with the ISO shear test. VE and VM exhibited similar SBS, values of VS were significantly higher. On etched surfaces VM and VE exhibited primarily cohesive failures, VS primarily adhesive failures. On polished substrates significantly lower bond strength values and exclusively adhesive failures were observed. YZ exhibited solely adhesive failures. Compared to polished YZ, SBS significantly increased after sandblasting and even more after etching. Only for adhesively failed specimens mean SBS values of Swiss and ISO shear test were strongly correlated. Both test designs showed the same ranking of test results. When adhesive failure occurred test results were strongly correlated. When cohesive failure was involved, both test designs did not provide reliable results. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang; Zekkos, Dimitrios

    2017-01-01

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between

  16. Turbulence suppression by E x B shear in JET optimized shear pulses

    International Nuclear Information System (INIS)

    Beer, M.A.; Budny, R.V.; Challis, C.D.; Conway, G.

    2000-01-01

    The authors calculate microinstability growth rates in JET optimized shear plasmas with a comprehensive gyrofluid model, including sheared E x B flows, trapped electrons, and all dominant ion species in realistic magnetic geometry. They find good correlation between E x B shear suppression of microinstabilities and both the formation and collapse of the internal transport barrier

  17. Comparison of shear-wave velocity measurements by crosshole, downhole and seismic cone penetration test methods

    Energy Technology Data Exchange (ETDEWEB)

    Suthaker, N.; Tweedie, R. [Thurber Engineering Ltd., Edmonton, AB (Canada)

    2009-07-01

    Shear wave velocity measurements are an integral part of geotechnical studies for major structures and are an important tool in their design for site specific conditions such as site-specific earthquake response. This paper reported on a study in which shear wave velocities were measured at a proposed petrochemical plant site near Edmonton, Alberta. The proposed site is underlain by lacustrine clay, glacial till and upper Cretaceous clay shale and sandstone bedrock. The most commonly used methods for determining shear wave velocity include crosshole seismic tests, downhole seismic tests, and seismic cone penetration tests (SCPT). This paper presented the results of all 3 methods used in this study and provided a comparison of the various test methods and their limitations. The crosshole test results demonstrated a common trend of increasing shear wave velocity with depth to about 15 m, below which the velocities remained relatively constant. An anomaly was noted at one site, where the shear wave velocity was reduced at a zone corresponding to clay till containing stiff high plastic clay layers. The field study demonstrated that reasonable agreement in shear wave velocity measurements can be made using crosshole, downhole and seismic tests in the same soil conditions. The National Building Code states that the shear wave velocity is the fundamental method for determining site classification, thus emphasizing the importance of obtaining shear wave velocity measurements for site classification. It was concluded that an SCPT program can be incorporated into the field program without much increase in cost and can be supplemented by downhole or crosshole techniques. 5 refs., 2 tabs., 10 figs.

  18. First results from Mark III at SPEAR

    International Nuclear Information System (INIS)

    Einsweiler, K.F.

    The paper presents data on meson decays obtained using the MARK III detector operating at SPEAR. Results on hadronic decays; decays of the etasub(e); and results on radiative decays; are all described. (U.K.)

  19. User's guide : pavement marking management system database.

    Science.gov (United States)

    2011-12-01

    Pavement markings play a critical role in maintaining a safe and efficient driving environment for road users, especially during nighttime conditions. The Texas Department of Transportation (TxDOT) spends millions of dollars each year for installatio...

  20. Mark Twain, Fenimore Cooper, and Batman.

    Science.gov (United States)

    Crick, Robert Alan

    1992-01-01

    Describes how Mark Twain's essay "Fenimore Cooper's Literary Offenses" helped students to get interested in writing and inspired them to write a similar essay critiquing the movie "Batman." Provides excerpts from students' essays. (PRA)

  1. 46 CFR 160.054-6 - Marking.

    Science.gov (United States)

    2010-10-01

    ... “To Close, Press Together Full Length”. The marking may be applied to the container by the silk screen process, using a suitable ink or paint, or may be applied by other means shown to be acceptable. (b...

  2. 49 CFR 180.213 - Requalification markings.

    Science.gov (United States)

    2010-10-01

    ... eddy current examination combined with a visual inspection, the marking is as illustrated in paragraph..., securely affixed in a manner prescribed by the cylinder manufacturer, near the original manufacturer's...

  3. Microscopic saw mark analysis: an empirical approach.

    Science.gov (United States)

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles

    2015-01-01

    Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.

  4. Enamel-based mark performance for marking Chinese mystery snail Bellamya chinensis

    Science.gov (United States)

    Wong, Alec; Allen, Craig R.; Hart, Noelle M.; Haak, Danielle M.; Pope, Kevin L.; Smeenk, Nicholas A.; Stephen, Bruce J.; Uden, Daniel R.

    2013-01-01

    The exoskeleton of gastropods provides a convenient surface for carrying marks, and i the interest of improving future marking methods our laboratory assessed the performance of an enamel paint. The endurance of the paint was also compared to other marking methods assessed in the past. We marked the shells of 30 adult Chinese mystery snails Bellamya chinensis and held them in an aquarium for 181 days. We observed no complete degradation of any enamel-paint mark during the 181 days. The enamel-paint mark was superior to a nai;-polish mark, which lasted a median of 100 days. Enamel-paint marks also have a lower rate of loss (0.00 month-1 181 days) than plastic bee tags (0.01 month-1, 57 days), gouache paint (0.07 month-1, 18.5 days), or car body paint from studies found in scientific literature. Legibility of enamel-paint marks had a median lifetime of 102 days. The use of enamel paint on the shells of gastropods is a viable option for studies lasting up to 6 months. Furthermore, visits to capture-mark-recapture site 1 year after application of enamel-paint marks on B. chinesnis shells produced several individuals on which the enamel paint was still visible, although further testing is required to clarify durability over longer periods.

  5. PREOPERATIVE ENDOSCOPIC MARKING OF UNPALPABLE COLONIC TUMORS

    Directory of Open Access Journals (Sweden)

    A. L. Goncharov

    2013-01-01

    Full Text Available The identification of small colon lesions is one of the major problems in laparoscopic colonic resection.Research objective: to develop a technique of visualization of small tumors of a colon by preoperative endoscopic marking of a tumor.Materials and methods. In one day prior to operation to the patient after bowel preparation the colonoscopy is carried out. In the planned point near tumor on antimesentery edge the submucous infiltration of marking solution (Micky Sharpz blue tattoo pigment, UK is made. The volume of entered solution of 1–3 ml. In only 5 months of use of a technique preoperative marking to 14 patients with small (the size of 1–3 cm malignant tumors of the left colon is performed.Results. The tattoo mark was well visualized by during operation at 13 of 14 patients. In all cases we recorded no complications. Time of operation with preoperative marking averaged 108 min, that is significantly less in comparison with average time of operation with an intra-operative colonoscopy – 155 min (р < 0.001.Conclusions. The first experience of preoperative endoscopic marking of non palpable small tumors of a colon is encouraging. Performance of a technique wasn't accompanied by complications and allowed to reduce significantly time of operation and to simplify conditions of performance of operation.

  6. Tensile and shear strength of adhesives

    Science.gov (United States)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  7. Crosswind Shear Gradient Affect on Wake Vortices

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  8. Shear stresses around circular cylindrical openings

    NARCIS (Netherlands)

    Hoogenboom, P.C.J.; Van Weelden, C.; Blom, C.M.B.

    2010-01-01

    In this paper stress concentrations are studied around circular cylindrical openings or voids in a linear elastic continuum. The loading is such that a uniform shear stress occurs in the continuum, which is disturbed by the opening. The shear stress is in the direction of the centre axis of the

  9. Simulations of biopolymer networks under shear

    NARCIS (Netherlands)

    Huisman, Elisabeth Margaretha

    2011-01-01

    In this thesis we present a new method to simulate realistic three-dimensional networks of biopolymers under shear. These biopolymer networks are important for the structural functions of cells and tissues. We use the method to analyze these networks under shear, and consider the elastic modulus,

  10. Rating precast prestressed concrete bridges for shear

    Science.gov (United States)

    2008-12-01

    Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...

  11. Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids

    Science.gov (United States)

    Stolz, Claude

    2010-12-01

    The equilibrium solution of a damaged zone in finite elasticity is given for a class of hyperelastic materials which does not suffer tension when a critical stretching value is reached. The study is made for a crack in anti-plane shear loading condition. The prescribed loading is that of linearized elastostatics conditions at infinity. The geometry of the damaged zone is found and the stationary propagation is discussed when the inertia terms can be neglected.

  12. Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

    Directory of Open Access Journals (Sweden)

    J. P. Lin

    2014-01-01

    Full Text Available Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

  13. Imaging Shear Strength Along Subduction Faults

    Science.gov (United States)

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-11-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  14. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  15. Experimental study on the adiabatic shear bands

    International Nuclear Information System (INIS)

    Affouard, J.

    1984-07-01

    Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr

  16. Imaging shear strength along subduction faults

    Science.gov (United States)

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-01-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  17. Imaging off-plane shear waves with a two-dimensional phononic crystal lens

    International Nuclear Information System (INIS)

    Chiang Chenyu; Luan Pigang

    2010-01-01

    A two-dimensional flat phononic crystal (PC) lens for focusing off-plane shear waves is proposed. The lens consists of a triangular lattice hole-array, embedded in a solid matrix. The self-collimation effect is employed to guide the shear waves propagating through the lens along specific directions. The Dirichlet-to-Neumann maps (DtN) method is employed to calculate the band structure of the PC, which can avoid the problems of bad convergence and fake bands automatically in the void-solid PC structure. When the lens is illuminated by the off-plane shear waves emanating from a point source, a subwavelength image appears in the far-field zone. The imaging characteristics are investigated by calculating the displacement fields explicitly using the multiple scattering method, and the results are in good agreement with the ray-trace predictions. Our results may provide insights for designing new phononic devices.

  18. Study on shear transfer analysis of reinforced concrete across a crack

    Energy Technology Data Exchange (ETDEWEB)

    Endoh, Takao; Katoh, Osamu

    1984-11-01

    It is a one of the most important problems in the reinforced concrete engineering to clarify the mechanism of shear transfer across cracked concrete planes crossed by reinforcement. By many experimental studies the mechanism of shear transfer across crack surfaces has gradually become clear. And based on those experimental studies, various analytical models of shear transfer have been developed. In this study, the mathematical model presented by M. N. Fardis is adopted and finite element formulation was carried out by the use of developed concrete constitutive law for cracked surface. The numerical result was compared with the experimental ones of Mattock-type push-off tests. Equating the effective range of the cracked bondless zone with the element area where special constitutive law is applied, a satisfying analytical result was obtained.

  19. A study on shear transfer analysis of reinforced concrete across a crack

    International Nuclear Information System (INIS)

    Endoh, Takao; Katoh, Osamu

    1984-01-01

    It is a one of the most important problems in the reinforced concrete engineering to clarify the mechanism of shear transfer across cracked concrete planes crossed by reinforcement. By many experimental studies the mechanism of shear transfer across crack surfaces has gradually become clear. And based on those experimental studies, various analytical models of shear transfer have been developed. In this study, the mathematical model presented by M. N. Fardis is adopted and finite element formulation was carried out by the use of developed concrete constitutive law for cracked surface. The numerical result was compared with the experimental ones of Mattock-type push-off tests. Equating the effective range of the cracked bondless zone with the element area where special constitutive law is applied, a satisfying analytical result was obtained. (author)

  20. Shear-induced Bubble Coalescence in Rhyolitic Melts with Low Vesicularity

    Science.gov (United States)

    Okumura, S.; Nakamura, M.; Tsuchiyama, A.

    2006-12-01

    Development of bubble structure during magma ascent controls the dynamics of volcanic eruption, because the bubble structure influences the magma rheology and permeability, and hence magma degassing. In the flowing magmas, the bubble structure is expected to be changed by shear, as pointed out by some previous studies based on geological observations. However, the development of bubble structure has been experimentally studied only in the isostatic magmas. We have experimentally demonstrated for the first time, the shear-induced development of number density, size and shape of bubbles in a rhyolitic melt. The deformation experiments were performed by using an externally heated, piston-cylinder type apparatus with a rotational piston. At 975°C, natural obsidian (initial water content of 0.5 wt%) having cylindrical shape (ca. 4.7 mm in diameter and 5 mm in length) was vesiculated in the graphite container (ca. 5 and 9 mm in the inner and the outer diameters, respectively, and 5 mm in length), and the vesiculated samples were twisted at various rotational speeds up to 1 rpm. The number density, size and shape of bubbles in the quenched samples were then measured by using the X-ray computed tomography. The size distribution of bubbles shows that the number of larger bubbles increases with the rotational speed and at the outer zone of the samples at which the shear rate is high. In the high shear rate zone, the magnitude of bubble deformation is large. The 3D images of large bubbles clearly indicate that they were formed by coalescence. These results indicate that the degree of bubble coalescence is enhanced with the shear rate. The experimental results also demonstrated that the coalescence of bubbles occur even at low vesicularity (ca. 20 vol.%). Because the shear rate induced in this study (in the order of 0.01 1/s) seems to be produced for magmas ascending in a volcanic conduit, we propose the possibility that the vesiculated magmas undergo bubble coalescence at a

  1. Mark 4A project training evaluation

    Science.gov (United States)

    Stephenson, S. N.

    1985-11-01

    A participant evaluation of a Deep Space Network (DSN) is described. The Mark IVA project is an implementation to upgrade the tracking and data acquisition systems of the dSN. Approximately six hundred DSN operations and engineering maintenance personnel were surveyed. The survey obtained a convenience sample including trained people within the population in order to learn what training had taken place and to what effect. The survey questionnaire used modifications of standard rating scales to evaluate over one hundred items in four training dimensions. The scope of the evaluation included Mark IVA vendor training, a systems familiarization training seminar, engineering training classes, a on-the-job training. Measures of central tendency were made from participant rating responses. Chi square tests of statistical significance were performed on the data. The evaluation results indicated that the effects of different Mark INA training methods could be measured according to certain ratings of technical training effectiveness, and that the Mark IVA technical training has exhibited positive effects on the abilities of DSN personnel to operate and maintain new Mark IVA equipment systems.

  2. Mark 4A project training evaluation

    Science.gov (United States)

    Stephenson, S. N.

    1985-01-01

    A participant evaluation of a Deep Space Network (DSN) is described. The Mark IVA project is an implementation to upgrade the tracking and data acquisition systems of the dSN. Approximately six hundred DSN operations and engineering maintenance personnel were surveyed. The survey obtained a convenience sample including trained people within the population in order to learn what training had taken place and to what effect. The survey questionnaire used modifications of standard rating scales to evaluate over one hundred items in four training dimensions. The scope of the evaluation included Mark IVA vendor training, a systems familiarization training seminar, engineering training classes, a on-the-job training. Measures of central tendency were made from participant rating responses. Chi square tests of statistical significance were performed on the data. The evaluation results indicated that the effects of different Mark INA training methods could be measured according to certain ratings of technical training effectiveness, and that the Mark IVA technical training has exhibited positive effects on the abilities of DSN personnel to operate and maintain new Mark IVA equipment systems.

  3. An Experimental Investigation of an Airfoil Traversing Across a Shear Flow

    Science.gov (United States)

    Hamedani, Borhan A.; Naguib, Ahmed; Koochesfahani, Manoochehr

    2017-11-01

    While the aerodynamics of an airfoil in a uniform approach flow is well understood, less attention has been paid to airfoils in non-uniform flows. An aircraft encounters such flow, for example, during landing through the air wake of an aircraft carrier. The present work is focused on investigating the fundamental aerodynamics of airfoils in such an environment using canonical flow experiments. To generate a shear approach flow, a shaped honeycomb block is employed in a wind tunnel setup. Direct force measurements are performed on a NACA 0012 airfoil, with an aspect ratio of 1.8, as the airfoil traverses steadily across the shear region. Measurements are conducted at a chord Reynolds number Rec 75k, based on the mean approach stream velocity at the center of the shear zone, for a range of airfoil traverse velocities and angles of attack (0 - 12 degree). The results are compared to those obtained for the same airfoil when placed statically at different points along the traverse path inside the shear zone. The comparison enables examination of the applicability of quasi-steady analysis in computing the forces on the moving airfoil. This work is supported by ONR Grant Number N00014-16-1-2760.

  4. IMAGE ANALYSIS FOR MODELLING SHEAR BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Philippe Lopez

    2011-05-01

    Full Text Available Through laboratory research performed over the past ten years, many of the critical links between fracture characteristics and hydromechanical and mechanical behaviour have been made for individual fractures. One of the remaining challenges at the laboratory scale is to directly link fracture morphology of shear behaviour with changes in stress and shear direction. A series of laboratory experiments were performed on cement mortar replicas of a granite sample with a natural fracture perpendicular to the axis of the core. Results show that there is a strong relationship between the fracture's geometry and its mechanical behaviour under shear stress and the resulting damage. Image analysis, geostatistical, stereological and directional data techniques are applied in combination to experimental data. The results highlight the role of geometric characteristics of the fracture surfaces (surface roughness, size, shape, locations and orientations of asperities to be damaged in shear behaviour. A notable improvement in shear understanding is that shear behaviour is controlled by the apparent dip in the shear direction of elementary facets forming the fracture.

  5. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization.

    Science.gov (United States)

    Guan, Pei-Pei; Yu, Xin; Guo, Jian-Jun; Wang, Yue; Wang, Tao; Li, Jia-Yi; Konstantopoulos, Konstantinos; Wang, Zhan-You; Wang, Pu

    2015-04-20

    Interstitial fluid flow and associated shear stress are relevant mechanical signals in cartilage and bone (patho)physiology. However, their effects on chondrosarcoma cell motility, invasion and metastasis have yet to be delineated. Using human SW1353, HS.819.T and CH2879 chondrosarcoma cell lines as model systems, we found that fluid shear stress induces the accumulation of cyclic AMP (cAMP) and interleukin-1β (IL-1β), which in turn markedly enhance chondrosarcoma cell motility and invasion via the induction of matrix metalloproteinase-7 (MMP-7). Specifically, shear-induced cAMP and IL-1β activate PI3-K, ERK1/2 and p38 signaling pathways, which lead to the synthesis of MMP-7 via transactivating NF-κB and c-Jun in human chondrosarcoma cells. Importantly, MMP-7 upregulation in response to shear stress exposure has the ability to promote lung colonization of chondrosarcomas in vivo. These findings offer a better understanding of the mechanisms underlying MMP-7 activation in shear-stimulated chondrosarcoma cells, and provide insights on designing new therapeutic strategies to interfere with chondrosarcoma invasion and metastasis.

  6. Steady shear characteristic and behavior of magneto-thermo-elasticity of isotropic MR elastomers

    International Nuclear Information System (INIS)

    Gao, Wei; Wang, Xingzhe

    2016-01-01

    The magneto-thermo-elastic steady shear behaviors of isotropic smart composites of silicon rubber matrix randomly filled with ferromagnetic particles, commonly referred to as magnetorheological (MR) elastomers, are investigated experimentally and theoretically in the present study. The strip specimens of the MR elastomer composite with different ferromagnetic particle concentrations are fabricated and implemented for lap-shear tests under both magnetic and thermal fields. It is illustrated that the magneto-thermo-elastic shear modulus of the MR elastomer is markedly enhanced with the volume fraction of ferromagnetic particles and the applied external magnetic field, while the shear modulus is decreased with the environment temperature. To qualitatively elucidate the magneto-thermo-elastic shear performance of this kind of magnetic smart composites, a modified constitutive of hyperelasticity is suggested taking into account the influence of magnetic field and temperature on the magnetic potential energy and strain energy. The theoretical modeling predictions on the stress–strain behaviors for different applied magnetic fields and environment temperatures are compared to experimental observations to demonstrate a good agreement. (paper)

  7. Anomalously low strength of serpentinite sheared against granite and implications for creep on the Hayward and Calaveras Faults

    Science.gov (United States)

    Moore, Diane E.; Lockner, David A.; Ponce, David A.

    2010-01-01

    Serpentinized ophiolitic rocks are juxtaposed against quartzofeldspathic rocks at depth across considerable portions of the Hayward and Calaveras Faults. The marked compositional contrast between these rock types may contribute to fault creep that has been observed along these faults. To investigate this possibility, we are conducting hydrothermal shearing experiments to look for changes in frictional properties resulting from the shear of ultramafic rock juxtaposed against quartzose rock units. In this paper we report the first results in this effort: shear of bare-rock surfaces of serpentinite and granite, and shear of antigorite-serpentinite gouge between forcing blocks of granitic rock. All experiments were conducted at 250°C. Serpentinite sheared against granite at 50 MPa pore-fluid pressure is weaker than either rock type separately, and the weakening is significantly more pronounced at lower shearing rates. In contrast, serpentinite gouge sheared dry between granite blocks is as strong as the bare granite surface. We propose that the weakening is the result of a solution-transfer process involving the dissolution of serpentine minerals at grain-to-grain contacts. Dissolution of serpentine is enhanced by modifications to pore-fluid chemistry caused by interaction of the fluid with the quartz-bearing rocks. The compositional differences between serpentinized ultramafic rocks of the Coast Range Ophiolite and quartzofeldspathic rock units such as those of the Franciscan Complex may provide the mechanism for aseismic slip (creep) in the shallow crust along the Hayward, Calaveras, and other creeping faults in central and northern California.

  8. The national hydrologic bench-mark network

    Science.gov (United States)

    Cobb, Ernest D.; Biesecker, J.E.

    1971-01-01

    The United States is undergoing a dramatic growth of population and demands on its natural resources. The effects are widespread and often produce significant alterations of the environment. The hydrologic bench-mark network was established to provide data on stream basins which are little affected by these changes. The network is made up of selected stream basins which are not expected to be significantly altered by man. Data obtained from these basins can be used to document natural changes in hydrologic characteristics with time, to provide a better understanding of the hydrologic structure of natural basins, and to provide a comparative base for studying the effects of man on the hydrologic environment. There are 57 bench-mark basins in 37 States. These basins are in areas having a wide variety of climate and topography. The bench-mark basins and the types of data collected in the basins are described.

  9. Problems pilots face involving wind shear

    Science.gov (United States)

    Melvin, W. W.

    1977-01-01

    Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.

  10. Shear viscosity of liquid mixtures: Mass dependence

    International Nuclear Information System (INIS)

    Kaushal, Rohan; Tankeshwar, K.

    2002-06-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)

  11. Shear Melting of a Colloidal Glass

    Science.gov (United States)

    Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David A.

    2010-01-01

    We use confocal microscopy to explore shear melting of colloidal glasses, which occurs at strains of ˜0.08, coinciding with a strongly non-Gaussian step size distribution. For larger strains, the particle mean square displacement increases linearly with strain and the step size distribution becomes Gaussian. The effective diffusion coefficient varies approximately linearly with shear rate, consistent with a modified Stokes-Einstein relationship in which thermal energy is replaced by shear energy and the length scale is set by the size of cooperatively moving regions consisting of ˜3 particles.

  12. Shear viscosity of liquid mixtures Mass dependence

    CERN Document Server

    Kaushal, R

    2002-01-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.

  13. The Mark II Vertex Drift Chamber

    International Nuclear Information System (INIS)

    Alexander, J.P.; Baggs, R.; Fujino, D.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 μm spatial resolution and 2 gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO 2 mixtures are presented. 10 refs., 12 figs., 1 tab

  14. THE MARK I BUSINESS SYSTEM SIMULATION MODEL

    Science.gov (United States)

    of a large-scale business simulation model as a vehicle for doing research in management controls. The major results of the program were the...development of the Mark I business simulation model and the Simulation Package (SIMPAC). SIMPAC is a method and set of programs facilitating the construction...of large simulation models. The object of this document is to describe the Mark I Corporation model, state why parts of the business were modeled as they were, and indicate the research applications of the model. (Author)

  15. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S.

    Science.gov (United States)

    Schulz, William H.; Wang, Gonghui

    2014-01-01

    Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.

  16. Can glacial shearing of sediment reset the signal used for luminescence dating?

    Science.gov (United States)

    Bateman, Mark D.; Swift, Darrel A.; Piotrowski, Jan A.; Rhodes, Edward J.; Damsgaard, Anders

    2018-04-01

    Understanding the geomorphology left by waxing and waning of former glaciers and ice sheets during the late Quaternary has been the focus of much research. This has been hampered by the difficulty in dating such features. Luminescence has the potential to be applied to glacial sediments but requires signal resetting prior to burial in order to provide accurate ages. This paper explores the possibility that, rather than relying on light to reset the luminescence signal, glacial processes underneath ice might cause resetting. Experiments were conducted on a ring-shear machine set up to replicate subglacial conditions and simulate the shearing that can occur within subglacial sediments. Luminescence measurement at the single grain level indicates that a number (albeit small) of zero-dosed grains were produced and that these increased in abundance with distance travelled within the shearing zone. Observed changes in grain shape characteristics with increasing shear distance indicate the presence of localised high pressure grain-to-grain stresses caused by grain bridges. This appears to explain why some grains became zeroed whilst others retained their palaeodose. Based on the observed experimental trend, it is thought that localised grain stress is a viable luminescence resetting mechanism. As such relatively short shearing distances might be sufficient to reset a small proportion of the luminescence signal within subglacial sediments. Dating of previously avoided subglacial sediments may therefore be possible.

  17. Deformation mechanisms in the San Andreas Fault zone - a comparison between natural and experimentally deformed microstructures

    Science.gov (United States)

    van Diggelen, Esther; Holdsworth, Robert; de Bresser, Hans; Spiers, Chris

    2010-05-01

    The San Andreas Fault (SAF) in California marks the boundary between the Pacific plate and the North American plate. The San Andreas Fault Observatory at Depth (SAFOD) is located 9 km northwest of the town of Parkfield, CA and provide an extensive set of samples through the SAF. The SAFOD drill hole encountered different lithologies, including arkosic sediments from the Salinian block (Pacific plate) and claystones and siltstones from the Great Valley block (North American plate). Fault deformation in the area is mainly by a combination of micro-earthquakes and fault creep. Deformation of the borehole casing indicated that the SAFOD drill hole cross cuts two actively deforming strands of the SAF. In order to determine the deformation mechanisms in the actively creeping fault segments, we have studied thin sections obtained from SAFOD phase 3 core material using optical and electron microscopy, and we have compared these natural SAFOD microstructures with microstructures developed in simulated fault gouges deformed in laboratory shear experiments. The phase 3 core material is divided in three different core intervals consisting of different lithologies. Core interval 1 consists of mildly deformed Salinian rocks that show evidence of cataclasis, pressure solution and reaction of feldspar to form phyllosilicates, all common processes in upper crustal rocks. Most of Core interval 3 (Great Valley) is also only mildly deformed and very similar to Core interval 1. Bedding and some sedimentary features are still visible, together with limited evidence for cataclasis and pressure solution, and reaction of feldspar to form phyllosilicates. However, in between the relatively undeformed rocks, Core interval 3 encountered a zone of foliated fault gouge, consisting mostly of phyllosilicates. This zone is correlated with one of the zones of localized deformation of the borehole casing, i.e. with an actively deforming strand of the SAF. The fault gouge zone shows a strong, chaotic

  18. Histoscanning and shear wave ultrasound elastography for prostate cancer diagnosis

    Directory of Open Access Journals (Sweden)

    A. V. Amosov

    2016-01-01

    Full Text Available Introduction. The shear wave ultrasound elastography is a recently developed ultrasound-based method in the clinical practice, which allows the qualitative visual and quantitative measurements of tissue stiffness. In the 2010 this technology of the shear wave was called Shear Wave Elastograhpy. Due to the front of the shear waves the qualitative and quantitative assessment of the tissue stiffness is possible.Objective is to examine the efficacy of the shear wave ultrasound elastography in the evaluation of the prevalence of the oncological disease in patients with the prostate cancer and to compare the obtained results with the routine method X-ray diagnostics.Materials and methods. From the april 2015 in the I.M. Sechenov First Moscow State Medical University Urology Clinic there were conducted 314 shear wave ultrasound elastography examinations of the prostate. The ultrasound system Aixplorer® by SuperSonic Imagine was used. This system provides information provided by B-mode and shear wave ultrasound elastography mode. The transrectal echograms were made in 6 dimensions, so called Q-boxes (3 demensions in the every lobe on the segments from the base to the apex, according to the biopsy zone. The unit of measurement was the mean value in the kilopaskals (kPa. All the patients were randomized into 3 groups. There were 146 men with the possible prostate cancer in the first group (prospective study, 120 men with the certain diagnosis of the prostate cancer in the second group (retrospective study and 48 healthy men in the third group (control study. In all the patients of the first and the second groups the routine complete examination, including the prostate specific antigen (PSA level examination, digital rectal examination (DRE, doppler transrectal ultrasonography (TRUS, histoscanning and ultrasound shear wave elastography (SWE, was conducted. In the 229 patients of the first and the second groups the prostatectomy with the

  19. Regionaalpoliitika ja arhitektuur / Ülar Mark

    Index Scriptorium Estoniae

    Mark, Ülar

    1999-01-01

    Kagu-Eesti Regionaalarengu Programmi raames Eesti Kunstiakadeemia arhitektuurikateedri IV kursuse eriala valikaines 1998/99 tehtud tööst "HyperMobiilne Reaalsus & Kagu Eesti" (juhendajad Ralf Tamm, Ülar Mark). Ühises töös osalesid Tartu Ülikooli geograafiatudengid (juhendaja Rein Ahas). 4 illustratsiooni

  20. Nekroloog turundusele / Mark Earls ; interv. Margo Kokerov

    Index Scriptorium Estoniae

    Earls, Mark

    2003-01-01

    Turunduskommunikatsioonifirma Ogilvy & Mather suunajuht Mark Earls leiab, et kuna turg on üle ujutatud võrdselt heade toodetega ja tarbija teab, et tegelikult pole oluline, millise toote ta valib, muutub turundusrevolutsiooni keskne idee - tarbijavajaduste kindlakstegemine ja rahuldamine - tähtsusetuks.

  1. 49 CFR 15.13 - Marking SSI.

    Science.gov (United States)

    2010-10-01

    ... SSI. (a) Marking of paper records. In the case of paper records containing SSI, a covered person must... limitation statement on the bottom, of— (1) The outside of any front and back cover, including a binder cover... types of records. In the case of non-paper records that contain SSI, including motion picture films...

  2. Monopoly, Pareto and Ramsey mark-ups

    NARCIS (Netherlands)

    Ten Raa, T.

    2009-01-01

    Monopoly prices are too high. It is a price level problem, in the sense that the relative mark-ups have Ramsey optimal proportions, at least for independent constant elasticity demands. I show that this feature of monopoly prices breaks down the moment one demand is replaced by the textbook linear

  3. Globaalne palavik ja Nord Stream / Mark Soosaar

    Index Scriptorium Estoniae

    Soosaar, Mark, 1946-

    2009-01-01

    Riigikogu keskkonnakomisjoni liikme Mark Soosaare sõnul peaks Eesti Taani eeskujul jõudma parlamentaarse otsuseni loobuda tuumajaamaehitusest, vähendada tuleks märgatavalt Eesti metsade raiumist. Vene-Saksa gaasitarneleppe vastu töötamise asemel tuleks otsida ühisosa nii Venemaa kui teiste Läänemeremaadega

  4. Teaching Mark through a postcolonial optic

    African Journals Online (AJOL)

    2015-07-16

    Jul 16, 2015 ... question, eliciting answers that range from Mark as in direct and open ... or armed response, especially in a context where such actions were unrealistic. (whether ..... identity; social memory; to name a few) of power. It implies ... an elite-driven enterprise in the simplistic sense of the word, although the elite's ...

  5. First results from Mark II at SPEAR

    International Nuclear Information System (INIS)

    Abrams, G.S.; Alam, M.S.; Blocker, C.A.

    1979-05-01

    First results from the SLAC-LBL Mark II magnetic detector at SPEAR are presented. The performance of the detector is discussed and preliminary results are given on inclusive baryon production R/sub p + anti p/, R/sub Λ + anti Λ/, on decay modes of the D mesons and on two-photon production of eta' mesons

  6. 15 CFR 1150.3 - Approved markings.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Approved markings. 1150.3 Section 1150.3 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... permanently affixed to the exterior surface of the barrel, covering the circumference of the barrel from the...

  7. 22 CFR 226.91 - Marking.

    Science.gov (United States)

    2010-04-01

    ... Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS Miscellaneous § 226.91 Marking. (a) USAID policy is that all programs, projects, activities... support of the American people through the United States Agency for International Development (USAID). The...

  8. Fingerprint Analysis with Marked Point Processes

    DEFF Research Database (Denmark)

    Forbes, Peter G. M.; Lauritzen, Steffen; Møller, Jesper

    We present a framework for fingerprint matching based on marked point process models. An efficient Monte Carlo algorithm is developed to calculate the marginal likelihood ratio for the hypothesis that two observed prints originate from the same finger against the hypothesis that they originate from...... different fingers. Our model achieves good performance on an NIST-FBI fingerprint database of 258 matched fingerprint pairs....

  9. A Collar for Marking Big Game Animals

    Science.gov (United States)

    Robert L. Phillips

    1970-01-01

    A Simple, inexpensive collar made of Armor-tite (a vinyl-coated nylon fabric) was designed for marking white-tailed deer (Odocoileus virginianus) and moose (Alces alces). Field tests showed that the material is easily seen and extrememly durable. It may be suitable for use on other large mammals. The collar can be quickly fitted to individual animals under field...

  10. The Four Marks of Holistic Kinesiology

    Science.gov (United States)

    Twietmeyer, Gregg

    2012-01-01

    What, to borrow a theological phrase, are the marks of a truly holistic kinesiology department? "In Kinesis and the Nature of the Human Person" (2010), I examined the theoretical impact of Aristotle's definition of "kinesis" and Polanyi's theory of "tacit knowledge" on kinesiology. The intention here, however, is practical rather than theoretical.…

  11. Marks & Spencer loob ELis maksupretsedenti / Sirje Rank

    Index Scriptorium Estoniae

    Rank, Sirje, 1966-

    2005-01-01

    Ilmunud ka: Delovõje Vedomosti 13. apr. lk. 6. Briti rõivakett Marks & Spencer kaebas, et Briti maksuseadused, mis ei lubanud emafirma Suurbritannias maksustavast tulust maha kanda Saksamaal, Prantsusmaal ja Belgias asunud tütarfirmade suuri kahjumeid üheksakümnendate aastate lõpus, on vastuolus EL-i ühisturu seadustega

  12. Do clinicians use more question marks?

    NARCIS (Netherlands)

    Zijlmans, Maeike; Otte, Willem M; Van't Klooster, Maryse A; van Diessen, Eric; Leijten, Frans Ss; Sander, Josemir W

    2015-01-01

    OBJECTIVE: To quantify the use of question marks in titles of published studies. DESIGN AND SETTING: Literature review. PARTICIPANTS: All Pubmed publications between 1 January 2013 and 31 December 2013 with an available abstract. Papers were classified as being clinical when the search terms clin*,

  13. 27 CFR 28.216 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.216 Section 28.216 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Exportation of Wine With Benefit of Drawback § 28.216...

  14. Primary Science Quality Mark--2016 Update

    Science.gov (United States)

    Turner, Jane

    2016-01-01

    Back in May 2011, an article in "Primary Science" described how the idea for a quality mark for primary science was developed from an initial conversation at an Association for Science Education annual conference (Turner, Marshall and Elsmore, 2011). Its intention then, as now, was to support and champion good practice and raise the…

  15. Shear strength of clay and silt embankments.

    Science.gov (United States)

    2009-09-01

    Highway embankment is one of the most common large-scale geotechnical facilities constructed in Ohio. In the past, the design of these embankments was largely based on soil shear strength properties that had been estimated from previously published e...

  16. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros

    2016-09-18

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  17. Recent progress in shear punch testing

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Toloczko, M.B.; Lucas, G.E.

    1994-09-01

    The shear punch test was developed in response to the needs of the materials development community for small-scale mechanical properties tests. Such tests will be of great importance when a fusion neutron simulation device is built, since such a device is expected to have a limited irradiation volume. The shear punch test blanks a circular disk from a fixed sheet metal specimen, specifically a TEM disk. Load-displacement data generated during the test can be related to uniaxial tensile properties such as yield and ultimate strength. Shear punch and tensile tests were performed at room temperature on a number of unirradiated aluminum, copper, vanadium, and stainless steel alloys and on several irradiated aluminum alloys. Recent results discussed here suggest that the relationship between shear punch strength and tensile strength varies with alloy class, although the relationship determined for the unirradiated condition remains valid for the irradiated aluminum alloys

  18. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.; Cheng, Xiang; Ong, Desmond C.; Liddell-Watson, Chekesha; Cohen, Itai

    2013-01-01

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced

  19. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  20. Shear-induced phase changes in mixtures

    International Nuclear Information System (INIS)

    Romig, K.D.; Hanley, H.J.M.

    1986-01-01

    A thermodynamic theory to account for the behavior of liquid mixtures exposed to a shear is developed. One consequence of the theory is that shear-induced phase changes are predicted. The theory is based on a thermodynamics that includes specifically the shear rate in the formalism and is applied to mixtures by a straightforward modification of the corresponding states, conformalsolution approach. The approach is general but is used here for a mixture of Lennard-Jones particles with a Lennard-Jones equation of state as a reference fluid. The results are discussed in the context of the Scott and Van Konynenberg phase classification. It is shown that the influence of a shear does affect substantially the type of the phase behavior. Results from the model mixture are equated loosely with those from real polymeric liquids

  1. Evaluating interfacial shear stresses in composite hollo

    Directory of Open Access Journals (Sweden)

    Aiham Adawi

    2016-09-01

    Full Text Available Analytical evaluation of the interfacial shear stresses for composite hollowcore slabs with concrete topping is rare in the literature. Adawi et al. (2014 estimated the interfacial shear stiffness coefficient (ks that governs the behavior of the interface between hollowcore slabs and the concrete topping using push-off tests. This parameter is utilized in this paper to provide closed form solutions for the differential equations governing the behavior of simply supported composite hollowcore slabs. An analytical solution based on the deformation compatibility of the composite section and elastic beam theory, is developed to evaluate the shear stresses along the interface. Linear finite element modeling of the full-scale tests presented in Adawi et al. (2015 is also conducted to validate the developed analytical solution. The proposed analytical solution was found to be adequate in estimating the magnitude of horizontal shear stress in the studied composite hollowcore slabs.

  2. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros; Lee, Min-Gi; Tzavaras, Athanasios

    2016-01-01

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  3. Acoustic waves in unbounded shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.; Rogava, A.D.

    1996-05-01

    The linear evolution of acoustic waves in fluid flow with constant density and uniform shear of velocity is investigated. The process of the mean flow energy extraction by the three-dimensional acoustic waves which is due to the non-normality of linear dynamics in shear flows is analyzed. The thorough examination of the dynamics of different physical quantities, specifying the wave evolution, is outlined. The revealing of the behaviour becomes possible owing to the nonmodal approach that has been extensively used in the study of the perturbations evolution in shear flows since the beginning of the nineties. In addition, a detailed analyses of the physics of shear energy gain by vortex and acoustic perturbations is presented. (author). 28 refs, 7 figs

  4. Stress analysis of shear/compression test

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.; Ueno, S.

    1997-01-01

    Stress analysis has been made on the glass fiber reinforced plastics (GFRP) subjected to the combined shear and compression stresses by means of finite element method. The two types of experimental set up were analyzed, that is parallel and series method where the specimen were compressed by tilted jigs which enable to apply the combined stresses, to the specimen. Modified Tsai-Hill criterion was employed to judge the failure under the combined stresses that is the shear strength under the compressive stress. The different failure envelopes were obtained between the two set ups. In the parallel system the shear strength once increased with compressive stress then decreased. On the contrary in the series system the shear strength decreased monotonicly with compressive stress. The difference is caused by the different stress distribution due to the different constraint conditions. The basic parameters which control the failure under the combined stresses will be discussed

  5. Distinguishing butchery cut marks from crocodile bite marks through machine learning methods.

    Science.gov (United States)

    Domínguez-Rodrigo, Manuel; Baquedano, Enrique

    2018-04-10

    All models of evolution of human behaviour depend on the correct identification and interpretation of bone surface modifications (BSM) on archaeofaunal assemblages. Crucial evolutionary features, such as the origin of stone tool use, meat-eating, food-sharing, cooperation and sociality can only be addressed through confident identification and interpretation of BSM, and more specifically, cut marks. Recently, it has been argued that linear marks with the same properties as cut marks can be created by crocodiles, thereby questioning whether secure cut mark identifications can be made in the Early Pleistocene fossil record. Powerful classification methods based on multivariate statistics and machine learning (ML) algorithms have previously successfully discriminated cut marks from most other potentially confounding BSM. However, crocodile-made marks were marginal to or played no role in these comparative analyses. Here, for the first time, we apply state-of-the-art ML methods on crocodile linear BSM and experimental butchery cut marks, showing that the combination of multivariate taphonomy and ML methods provides accurate identification of BSM, including cut and crocodile bite marks. This enables empirically-supported hominin behavioural modelling, provided that these methods are applied to fossil assemblages.

  6. 19 CFR 11.9 - Special marking on certain articles.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Special marking on certain articles. 11.9 Section... OF THE TREASURY PACKING AND STAMPING; MARKING Marking § 11.9 Special marking on certain articles. (a... of additional U.S. Note 4, Chapter 91. If any article so required to be marked is found not to be...

  7. 19 CFR 134.43 - Methods of marking specific articles.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Methods of marking specific articles. 134.43...; DEPARTMENT OF THE TREASURY COUNTRY OF ORIGIN MARKING Method and Location of Marking Imported Articles § 134.43 Methods of marking specific articles. (a) Marking previously required by certain provisions of the...

  8. Modeling and implementation of wind shear data

    Science.gov (United States)

    Frost, Walter

    1987-01-01

    The problems of implementing the JAWS wind shear data are discussed. The data sets are described from the view of utilizing them in an aircraft performance computer program. Then, some of the problems of nonstandard procedures are described in terms of programming the equations of aircraft motion when the effects of temporal and spatially variable winds are included. Finally, some of the computed effects of the various wind shear terms are shown.

  9. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.

    1999-11-01

    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  10. Line Crack Subject to Antiplane Shear.

    Science.gov (United States)

    1978-07-01

    shear is obtained for the initiation of fracture. If the concept of the surface tension is usedone is able to calculate the cohesive stress for brittle ...Expression of the Griffith -racture criterion for brittle fracture. We have arrived at this result via the maximum shear-stress hypothesis, rather than...Crescent Beach Road, Glen Cove Prof. G.S. Heller Long Island, New York 11542 Division of Engineering Brown University Prof. Daniel

  11. Experimental study of shear rate dependence in perpetually sheared granular matter

    Science.gov (United States)

    Liu, Sophie Yang; Guillard, François; Marks, Benjy; Rognon, Pierre; Einav, Itai

    2017-06-01

    We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called "3D Stadium Shear Device" which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm) and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10-6 to 10-2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  12. Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.

    1999-01-01

    The effect of velocity shear on ion temperature gradient (ITG) driven vortices in a nonuniform plasma in a curved, sheared magnetic field is investigated. In absence of parallel ion dynamics, vortex solutions for the ITG mode are studied analytically. It is shown that under certain conditions...... and ultimately lead to a dominating monopolar form. The effects of magnetic shear indicate it may destroy these structures. (C) 1999 American Institute of Physics....

  13. Experimental study of shear rate dependence in perpetually sheared granular matter

    Directory of Open Access Journals (Sweden)

    Liu Sophie Yang

    2017-01-01

    Full Text Available We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called “3D Stadium Shear Device” which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10−6 to 10−2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  14. Critical Velocity for Shear Localization in A Mature Mylonitic Rock Analogue

    Science.gov (United States)

    Takahashi, M.; van den Ende, M.; Niemeijer, A. R.; Spiers, C. J.

    2016-12-01

    Highly localized slip zones, seen within ductile shear zones developed in nature, such as pseudotachylite bands occurring within mylonites, are widely recognized as evidence for earthquake nucleation and/or propagation within and overprinting the ductile regime. To understand brittle/frictional localization processes in ductile shear zones and to connect these to earthquake nucleation and propagation processes, we performed large velocity step-change tests on a brine-saturated, 80:20 (wt. %) halite and muscovite gouge mixture, after forming a mature mylonitic structure through pressure solution creep at low-velocity. The sharp increase in sliding strength that occurs in response to an instantaneous upward velocity-step (direct effect) is an important parameter in determining the potential for and nature of seismic rupture nucleation. We obtained reproducible results regarding low velocity mechanical behavior compared with previous work of Niemeijer and Spiers, [2006], but also obtained new insights into the effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a specific critical velocity Vc ( 20 μm/sec). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation at high velocity (> Vc) is consistently localized in a narrow zone characterized by fine grains of halite aligned in arrays between foliated muscovite Due to this intense localization, structures presumably developed under low velocity conditions were still preserved in large parts of the gouge body. This switch to localized deformation is controlled by the imposed velocity, and becomes most apparent at velocities over Vc. In addition, the direct effect a decreases rapidly when the velocity exceeds Vc. This implies that slip can localize and accelerate towards seismic velocities more or less instantly once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance

  15. Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone.

    Science.gov (United States)

    Verberne, Berend A; Chen, Jianye; Niemeijer, André R; de Bresser, Johannes H P; Pennock, Gillian M; Drury, Martyn R; Spiers, Christopher J

    2017-11-21

    Major earthquakes frequently nucleate near the base of the seismogenic zone, close to the brittle-ductile transition. Fault zone rupture at greater depths is inhibited by ductile flow of rock. However, the microphysical mechanisms responsible for the transition from ductile flow to seismogenic brittle/frictional behaviour at shallower depths remain unclear. Here we show that the flow-to-friction transition in experimentally simulated calcite faults is characterized by a transition from dislocation and diffusion creep to dilatant deformation, involving incompletely accommodated grain boundary sliding. With increasing shear rate or decreasing temperature, dislocation and diffusion creep become too slow to accommodate the imposed shear strain rate, leading to intergranular cavitation, weakening, strain localization, and a switch from stable flow to runaway fault rupture. The observed shear instability, triggered by the onset of microscale cavitation, provides a key mechanism for bringing about the brittle-ductile transition and for nucleating earthquakes at the base of the seismogenic zone.

  16. Resolution of axial shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A; Ophir, Jonathan

    2006-01-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45 0 to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45 0 orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift

  17. Accurate shear measurement with faint sources

    International Nuclear Information System (INIS)

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys

  18. Behavior of Tilted Angle Shear Connectors

    Science.gov (United States)

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  19. Behavior of Tilted Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Koosha Khorramian

    Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  20. Cosmology with cosmic shear observations: a review.

    Science.gov (United States)

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  1. Edge Sheared Flows and Blob Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Myra, J.; D' Ippolito, D.; Russell, D., E-mail: jrmyra@lodestar.com [Lodestar Research Corporation, Boulder (United States); Davis, W. M.; Zweben, S. [Princeton Plasma Physics Laboratory, Princeton (United States); Terry, J.; LaBombard, B. [Massachusetts Institute of Technology, Cambridge (United States)

    2012-09-15

    Full text: A study of sheared flows in the edge and scrape-off layer (SOL) and their interaction with blob-filaments is presented. Edge sheared flows are believed to be important for the L-H, and H-L transitions. Blob generation and dynamics impacts both the (near-separatrix) scrape-off-layer (SOL) width critical for power handling in the divertor, and the interaction of plasma in the far SOL with plasma-facing components. These topics are critical for ITER and future devices. A fluid-based 2D curvature-interchange model embedded in the SOLT code is employed to study these issues. Sheared binormal flows both regulate the power flux crossing the separatrix and control the character of emitted turbulence structures such as blob-filaments. At a critical power level (depending on parameters) the laminar flows containing intermittent, but bound, structures give way to full-blown blob emissions signifying a transition from quasi-diffusive to convective transport. In order to diagnose sheared flows in experiments and assess their interaction with blobs, a blob-tracking algorithm has been developed and applied to both NSTX and Alcator C-Mod data. Blob motion and ellipticity can be affected by sheared flows, and are diagnosed and compared with seeded blob simulations. A picture of the interaction of blobs and sheared flows is emerging from advances in the theory and simulation of edge turbulence, combined with ever-improving capabilities for edge diagnostics and their analysis. (author)

  2. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  3. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  4. Dynamo action and magnetic buoyancy in convection simulations with vertical shear

    Science.gov (United States)

    Guerrero, G.; Käpylä, P.

    2011-10-01

    A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. In this work we present the results of direct numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number (Rm). Models with deeper and thicker shear layers allow longer storage and are more favorable for generating a mean magnetic field. Models with higher Rm grow faster but saturate at slightly lower levels. Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e., those with the largest amplitudes of the amplified field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure. The back-reaction of the magnetic field on the fluid is also

  5. Zoning Districts - Volusia County HUB Zones

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Historically Underutilized Business (HUB) Zones in Volusia County. Go to http://www.sba.gov/hubzone or contact the Department of Economic Development (386) 248-8048...

  6. Shear Stress Induces Phenotypic Modulation of Vascular Smooth Muscle Cells via AMPK/mTOR/ULK1-Mediated Autophagy.

    Science.gov (United States)

    Sun, Liqian; Zhao, Manman; Liu, Aihua; Lv, Ming; Zhang, Jingbo; Li, Youxiang; Yang, Xinjian; Wu, Zhongxue

    2018-03-01

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) is involved in the pathophysiological processes of the intracranial aneurysms (IAs). Although shear stress has been implicated in the proliferation, migration, and phenotypic conversion of VSMCs, the molecular mechanisms underlying these events are currently unknown. In this study, we investigated whether shear stress(SS)-induced VSMC phenotypic modulation was mediated by autophagy involved in adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway. The results show that shear stress could inhibit the expression of key VSMC contractile genes and induce pro-inflammatory/matrix-remodeling genes levels, contributing to VSMCs phenotypic switching from a contractile to a synthetic phenotype. More importantly, Shear stress also markedly increased the levels of the autophagy marker microtubule-associated protein light chain 3-II (LC3II), Beclin-1, and p62 degradation. The autophagy inhibitor 3-methyladenine (3-MA) significantly blocked shear-induced phenotypic modulation of VSMCs. To further explore the molecular mechanism involved in shear-induced autophagy, we found that shear stress could activate AMPK/mTOR/ULK1 signaling pathway in VSMCs. Compound C, a pharmacological inhibitor of AMPK, significantly reduced the levels of p-AMPK and p-ULK, enhanced p-mTOR level, and finally decreased LC3II and Beclin-1 level, which suggested that activated AMPK/mTOR/ULK1 signaling was related to shear-mediated autophagy. These results indicate that shear stress promotes VSMC phenotypic modulation through the induction of autophagy involved in activating the AMPK/mTOR/ULK1 pathway.

  7. LITHOSTRATIGRAPHY AND SHEAR-WAVE VELOCITY IN THE CRYSTALLIZED TOPOPAH SPRING TUFF, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    D. BUESCH; K.H. STOKOE; M. SCHUHEN

    2006-01-01

    Evaluation of the seismic response of the proposed spent nuclear fuel and high-level radioactive waste repository at Yucca Mountain, Nevada, is in part based on the seismic properties of the host rock, the 12.8-million-year-old Topopah Spring Tuff. Because of the processes that formed the tuff, the densely welded and crystallized part has three lithophysal and three nonlithophysal zones, and each zone has characteristic variations in lithostratigraphic features and structures of the rocks. Lithostratigraphic features include lithophysal cavities, rims on lithophysae and some fractures, spots (which are similar to rims but without an associated cavity or aperture), amounts of porosity resulting from welding, crystallization, and vapor-phase corrosion and mineralization, and fractures. Seismic properties, including shear-wave velocity (V s ), have been measured on 38 pieces of core, and there is a good ''first order'' correlation with the lithostratigraphic zones; for example, samples from nonlithophysal zones have larger V s values compared to samples from lithophysal zones. Some samples have V s values that are beyond the typical range for the lithostratigraphic zone; however, these samples typically have one or more fractures, ''large'' lithophysal cavities, or ''missing pieces'' relative to the sample size. Shear-wave velocity data measured in the tunnels have similar relations to lithophysal and nonlithophysal rocks; however, tunnel-based values are typically smaller than those measured in core resulting from increased lithophysae and fracturing effects. Variations in seismic properties such as V s data from small-scale samples (typical and ''flawed'' core) to larger scale traverses in the tunnels provide a basis for merging our understanding of the distributions of lithostratigraphic features (and zones) with a method to scale seismic properties

  8. Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling

    Directory of Open Access Journals (Sweden)

    L. Le Pourhiet

    2013-04-01

    Full Text Available We have designed a series of fully dynamic numerical simulations aimed at assessing how the orientation of mechanical layering in rocks controls the orientation of shear bands and the depth of penetration of strain in the footwall of detachment zones. Two parametric studies are presented. In the first one, the influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying initial dip of inherited layering in the footwall with regard to the orientation of simple shear applied at the rigid boundary simulating a rigid hanging wall, all scaling and rheological parameter kept constant. It appears that when Mohr–Coulomb plasticity is being used, shear bands are found to localise only when the layering is being stretched. This corresponds to early deformational stages for inital layering dipping in the same direction as the shear is applied, and to later stages for intial layering dipping towards the opposite direction of shear. In all the cases, localisation of the strain after only γ=1 requires plastic yielding to be activated in the strong layer. The second parametric study shows that results are length-scale independent and that orientation of shear bands is not sensitive to the viscosity contrast or the strain rate. However, decreasing or increasing strain rate is shown to reduce the capacity of the shear zone to localise strain. In the later case, the strain pattern resembles a mylonitic band but the rheology is shown to be effectively linear. Based on the results, a conceptual model for strain localisation under detachment faults is presented. In the early stages, strain localisation occurs at slow rates by viscous shear instabilities but as the layered media is exhumed, the temperature drops and the strong layers start yielding plastically, forming shear bands and localising strain at the top of the shear zone. Once strain localisation has occured, the deformation in the shear band becomes

  9. Shear-hosted base metal mineralisation at the Dana Peaks, Murchison Mountains, Fiordland, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.; Ashley, P.; Craw, D.

    2010-01-01

    Darran Suite dioritic, tonalitic and granodioritic plutonic rocks and schistose Loch Burn Formation volcaniclastic rocks in the central Murchison Mountains at the Dana Peaks have been affected by widespread biotite-sericite-chlorite-albite-quartz-pyrite ± carbonate ± epidote/clinozoisite ± titanite/rutile ± actinolite alteration. More intense, paler coloured sericite-albite-quartz-pyrite ± carbonate alteration is concentrated along orange weathered shear zones. Alteration assemblages are transitional between those commonly referred to as propylitic, potassic and phyllic. Altered rocks contain anomalous concentrations of copper, lead, zinc and silver over an area of c. 2.56 km. Metal concentrations 2-5 times those typical of Darran Suite plutonic rocks and the Loch Burn Formation are commonly associated with more extensive weak to moderate intensity alteration. Higher metal grades up to c. 0.5% copper, 1% zinc, 1.3% lead and 30 ppm silver are concentrated in or adjacent to the 1-5 m wide, more intensely altered shear zones which contain entrained lenses of pyritised country rock, breccias and quartz ± K-feldspar ± chlorite ± carbonate ± hematite ± tourmaline veins. Some mineralised rocks also contain traces of tungsten (2-7 ppm), arsenic (<5-35 ppm) and tellurium (0.2-5.4 ppm). Most samples lack detectable molybdenum (<3 ppm), gold (<0.004 ppm) or bismuth (<0.2 ppm), with atypical higher values (40, 0.03 and 50 ppm, respectively) generally restricted to the most intensely altered and/or deformed rocks. The mineralised rocks show a close spatial and temporal relationship with several narrow ductile shear zones that probably developed in the Early Cretaceous between c. 128 and 110 Ma. Mineralised shear zones form minor splays off larger shear zones that are part of a major intra-arc fault system, active along or near the boundary between inboard and outboard parts of the Median Batholith at this time. Traces of similar lead mineralisation are present at the

  10. Minnesota Local Agency Pavement Marking : Mining Existing Data

    Science.gov (United States)

    2017-11-01

    Pavement marking is important for safety. Maximizing pavement marking performance in terms of increased retroreflectivity, within limited budget constraints, allows agencies to make better decisions toward providing more effective pavement marking pe...

  11. Dynamic recrystallization mechanisms and their transition in the Daling Thrust (DT) zone, Darjeeling-Sikkim Himalaya

    Science.gov (United States)

    Ghosh, Subhajit; Bose, Santanu; Mandal, Nibir; Dasgupta, Sujoy

    2016-04-01

    The Daling Thrust (DT) delineates a zone of intense shear localization in the Lesser Himalayan Sequence (LHS) of the Darjeeling-Sikkim Himalaya. From microstructural studies of deformed quartzite samples, we show a transition in the dynamic recrystallization mechanism with increasing distance from the DT, dominated by grain boundary bulging (BLG) recrystallization closest to the DT, and progressively replaced by sub-grain rotation (SGR) recrystallization away from the thrust. The transition is marked by a characteristic variation in the fractal dimension (D) of grain boundaries, estimated from the area-perimeter method. For the BLG regime, D ≈ 1.046, which decreases significantly to a value as low as 1.025 for the SGR regime. Using the available thermal data for BLG and SGR recrystallization, we infer increasing deformation temperatures away from the DT in the hanging wall. Based on the quartz piezometer our estimates reveal strong variations in the flow stress (59.00 MPa to 16.00 MPa) over a distance of 1.2 km from the DT. Deformation mechanism maps constructed for different temperatures indicate that the strain rates (10- 12 S- 1 to 10- 14 S- 1) comply with the geologically possible range. Finally, we present a mechanical model to provide a possible explanation for the cause of stress intensification along the DT.

  12. Evolution of allowable stresses in shear for lumber

    Science.gov (United States)

    Robert L. Ethington; William L. Galligan; Henry M. Montrey; Alan D. Freas

    1979-01-01

    This paper surveys research leading to allowable shear stress parallel to grain for lumber. In early flexure tests of lumber, some pieces failed in shear. The estimated shear stress at time of failure was generally lower than shear strength measured on small, clear, straight-grained specimens. This and other engineering observations gave rise to adjustments that...

  13. Revised Mark 22 coolant temperature coefficients

    International Nuclear Information System (INIS)

    Graves, W.E.

    1987-01-01

    Coolant temperature coefficients for the Mark 22 charge published previously are non-conservative because of the neglect of a significant mechanism which has a positive contribution to reactivity. Even after correcting for this effect, dynamic tests made on a Mark VIB charge in the early 60's suggest the results are still non-conservative. This memorandum takes both of these sources of information into account in making a best estimate of the prompt (coolant plus metal) temperature coefficient. Although no safety issues arise from this work (the overall temperature coefficient still strongly contributes to reactor stability), it is obviously desirable to use best estimates for prompt coefficients in limits and other calculations

  14. EcoMark 2.0

    DEFF Research Database (Denmark)

    Guo, Chenjuan; Yang, Bin; Andersen, Ove

    2015-01-01

    Eco-routing is a simple yet effective approach to substantially reducing the environmental impact, e.g., fuel consumption and greenhouse gas (GHG) emissions, of vehicular transportation. Eco-routing relies on the ability to reliably quantify the environmental impact of vehicles as they travel...... in a spatial network. The procedure of quantifying such vehicular impact for road segments of a spatial network is called eco-weight assignment. EcoMark 2.0 proposes a general framework for eco-weight assignment to enable eco-routing. It studies the abilities of six instantaneous and five aggregated models......, and experiments for assessing the utility of the impact models in assigning eco-weights. The application of EcoMark 2.0 indicates that the instantaneous model EMIT and the aggregated model SIDRA-Running are suitable for assigning eco-weights under varying circumstances. In contrast, other instantaneous models...

  15. Geologic bench marks by terrestrial photography

    Science.gov (United States)

    Malde, Harold E.

    1973-01-01

    A photograph made with a level camera, if taken at a known height above a permanent mark on the ground, can be later repeated with exactness for measurement of changes in terrain. Such a photograph is one of several means for establishing a geologic bench mark and is especially useful for monitoring the subtle qualities of a landscape that are otherwise hard to map and describe, including the effects of man's use. Moreover, the geometry of such a photograph provides the same angular measurements between objects as can be made with a transit. A measurement of distance on a single photograph, however, requires control points. These can be surveyed at any convenient time, not necessarily when the initial photograph is made. Distances can also be determined by simple stereophotography from a base line of suitable length.

  16. Identification marking by means of laser peening

    Science.gov (United States)

    Hackel, Lloyd A.; Dane, C. Brent; Harris, Fritz

    2002-01-01

    The invention is a method and apparatus for marking components by inducing a shock wave on the surface that results in an indented (strained) layer and a residual compressive stress in the surface layer. One embodiment of the laser peenmarking system rapidly imprints, with single laser pulses, a complete identification code or three-dimensional pattern and leaves the surface in a state of deep residual compressive stress. A state of compressive stress in parts made of metal or other materials is highly desirable to make them resistant to fatigue failure and stress corrosion cracking. This process employs a laser peening system and beam spatial modulation hardware or imaging technology that can be setup to impress full three dimensional patterns into metal surfaces at the pulse rate of the laser, a rate that is at least an order of magnitude faster than competing marking technologies.

  17. The protogine zone. Geology and mobility during the last 1.5 Ga

    International Nuclear Information System (INIS)

    Andreasson, P.G.; Rodhe, A.

    1992-09-01

    This report treats the Protogine Zone (PZ) as the western boundary of the Southeastern Megablock (SEM), and summarizes scientific aspects of different geological and geophysical functions of the zone. A systematic inventory and a technical description of shear zones and faults in the type area of the 'Schistosity Zone' are presented. The report then reviews observed and infrared activity of the zone during the last 1500 million years. This calendar includes at least eight different periods of compression or extension, tilting, uplift, magmatism etc. along the zone, in harmony with the common experience that old zones of weakness in the crust seldom heal. The network of major structures of southern Sweden is described, and the function of the PZ within this network is discussed with particular attention to east-west running lineaments within the SEM, like the Noemmen-Oskarshamn and Hoernebo-Hoegsby fault and shear zones. Future work should inter alia investigate if these two zones are connected with the PZ, and if movements along the PZ can reactivate the zones. A bibliography comprising c. 100 titles is included as an appendix. (au)

  18. Monopoly, Pareto and Ramsey mark-ups

    OpenAIRE

    Ten Raa, T.

    2009-01-01

    Monopoly prices are too high. It is a price level problem, in the sense that the relative mark-ups have Ramsey optimal proportions, at least for independent constant elasticity demands. I show that this feature of monopoly prices breaks down the moment one demand is replaced by the textbook linear demand or, even within the constant elasticity framework, dependence is introduced. The analysis provides a single Generalized Inverse Elasticity Rule for the problems of monopoly, Pareto and Ramsey.

  19. Utilization of Slovenian TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Smodis, B.

    2010-01-01

    TRIGA Mark II research reactor at the Jozef Stefan Institute [JSI] is extensively used for various applications, such as: irradiation of various samples, training and education, verification and validation of nuclear data and computer codes, testing and development of experimental equipment used for core physics tests at a nuclear power plant. The paper briefly describes the aforementioned activities and shows that even such small reactors are still indispensable in nuclear science and technology. (author)

  20. Exponential Shear Flow of Linear, Entangled Polymeric Liquids

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Park, Kyungho; Venerus, David C.

    2000-01-01

    A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data......, and suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively...

  1. Kinematics and 40Ar/ 39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: Implications for early Oligocene tectonic extrusion of SE Asia

    Science.gov (United States)

    Wang, Yuejun; Fan, Weiming; Zhang, Yanhua; Peng, Touping; Chen, Xinyue; Xu, Yigang

    2006-06-01

    The Gaoligong and Chongshan shear systems (GLSS and CSSS) in western Yunnan, China, have similar tectonic significance to the Ailaoshan-Red River shear system (ASRRSS) during the Cenozoic tectonic development of the southeastern Tibetan syntaxis. To better understand their kinematics and the Cenozoic tectonic evolution of SE Asia, this paper presents new kinematic and 40Ar/ 39Ar geochronological data for these shear systems. All the structural and microstructural evidence indicate that the GLSS is a dextral strike-slip shear system while the CSSS is a sinistral strike-slip shear system, and both were developed under amphibolite- to greenschist-grade conditions. The 40Ar/ 39Ar dating of synkinematic minerals revealed that the strike-slip shearing on the GLSS and CSSS at least began at ˜ 32 Ma, possibly coeval with the onset of other major shear systems in SE Asia. The late-stage shearing on the GLSS and CSSS is dated at ˜ 27-29 Ma by the biotite 40Ar/ 39Ar ages, consistent with that of the Wang Chao shear zone (WCSZ), but ˜ 10 Ma earlier than that of the ASRRSS. The dextral Gaoligong shear zone within the GLSS may have separated the India plate from the Indochina Block during early Oligocene. Combined with other data in western Yunnan, we propose that the Baoshan/Southern Indochina Block escaped faster southeastward along the CSSS to the east and the GLSS to the west than the Northern Indochina Block along the ASRRSS, accompanying with the obliquely northward motion of the India plate during early Oligocene (28-36 Ma). During 28-17 Ma, the Northern Indochina Block was rotationally extruded along the ASRRSS relative to the South China Block as a result of continuously impinging of the India plate.

  2. High efficiency metal marking with CO2 laser and glass marking with excimer laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    with a thoroughly tested ray-tracing model is presented and compared with experimental results. Special emphasis is put on two different applications namely marking in metal with TEA-CO2 laser and marking in glass with excimer laser. The results are evaluated on the basis of the achievable energy enhancement......Today, mask based laser materials processing and especially marking is widely used. However, the energy efficiency in such processes is very low [1].This paper gives a review of the results, that may be obtained using the energy enhancing technique [1]. Results of simulations performed...

  3. Study of shear thickening behavior in colloidal suspensions

    Directory of Open Access Journals (Sweden)

    N Maleki Jirsaraee

    2015-01-01

    Full Text Available We studied the shear thickening behavior of the nano silica suspension (silica nanoparticles 12 nm in size suspended in ethylene glycol under steady shear. The critical shear rate for transition into shear thickening phase was determined at different concentrations and temperatures. The effect of temperature and concentration was studied on the shear thickening behavior. In silica suspension, it was observed that all the samples had a transition into shear thickening phase and also by increasing the temperature, critical shear rate increased and viscosity decreased. Our observations showed that movement in silica suspension was Brownian and temperature could cause a delay in transition into shear thickening phase. Yet, we observed that increasing the concentration would decrease critical shear rate and increase viscosity. Increasing temperature increased Brownian forces and increasing concentration increased hydrodynamic forces, confirming the contrast between these two forces for transition into shear thickening phase for the suspensions containing nano particles

  4. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang

    2017-10-25

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between the shear responses of MSW obtained from the two testing methods is lacking. In this study, a large-size shear device was used to test identical MSW specimens sampled in USA in DS and SS. Eight DS tests and 11 SS tests were conducted at vertical effective stresses of 50–500 kPa. The stress–displacement response of MSW in SS testing was hyperbolic and a maximum shear stress was reached, whereas a maximum shear stress was not reached in most DS tests. The τ, effective friction angle (ϕ ′) and cohesion (c ′) of MSW were obtained from DS and SS tests by using a displacement failure criterion of 40 mm. τ in SS testing was found to be equal to or lower than τ in DS testing with ratios of τ between 73 and 101%. SS testing resulted in higher ϕ ′ but lower c ′ than DS testing. The shear strength parameters were lower than those obtained in previous studies from DS tests at 55 mm displacement.

  5. Mark Raidpere näitused Pariisis ja Napolis / Mark Raidpere ; interv. Harry Liivrand

    Index Scriptorium Estoniae

    Raidpere, Mark

    2008-01-01

    Mark Raidpere videod "Vekovka", "Dedication / Pühendus", "Majestoso Mystico" näitusel Pariisis Michel Reini galeriis. Osaleb koos saksa fotograafi Sven Johnega näitusel Napolis. Kreekas Thessalonikis valminud filmist "1:1:1"

  6. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  7. Evaluation of shear mounted elastomeric damper

    Science.gov (United States)

    Zorzi, E.; Walton, J.

    1982-01-01

    Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.

  8. Ballooning mode stabilization by moderate sheared rotation

    International Nuclear Information System (INIS)

    Hameiri, E.

    1996-01-01

    Sheared toroidal plasma rotation has been known for some time to have a stabilizing effect on the ballooning modes. A recent calculation showed that a large flow shear, with dΩ/dq of the order of the Alfven toroidal frequency, can stabilize the ballooning modes. This latest result is, in fact, not so optimistic. For observed flows with Mach number of order unity one gets dΩ/dq smaller by a factor O(√β) from the required level (if the flow shear length is of the same order as the magnetic shear length). Moreover, the calculation does not take into account a possibly large transient growth of the mode amplitude due to its Floquet structures We show here that, in fact, there is a general tendency of the ballooning mode to stabilize as soon as the flow shear dΩ/dq exceeds the (O√β smaller) open-quotes slowclose quotes magnetosonic wave frequency. Our analysis is perturbative, where the small parameter is related to the small coupling between the slow and Alfven waves-as is the case in a high aspect-ratio tokamak. (In the perturbation it is important to take the Hamiltonian nature of the governing equations into account.) Moreover, our results apply to the relevant transient growth of the mode amplitude

  9. Delayed shear enhancement in mesoscale atmospheric dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Moran, M.D. [Atmospheric Environment Service, Ontario (Canada); Pielke, R.A. [Colorado State Univ., Fort Collins, CO (United States)

    1994-12-31

    Mesoscale atmospheric dispersion (MAD) is more complicated than smaller-scale dispersion because the mean wind field can no longer be considered steady or horizontally homogeneous over mesoscale time and space scales. Wind shear also plays a much more important role on the mesoscale: horizontal dispersion can be enhanced and often dominated by vertical wind shear on these scales through the interaction of horizontal differential advection and vertical mixing. Just over 30 years ago, Pasquill suggested that this interaction need not be simultaneous and that the combination of differential horizontal advection with delayed or subsequent vertical mixing could maintain effective horizontal diffusion in spite of temporal or spatial reductions in boundary-layer turbulence intensity. This two-step mechanism has not received much attention since then, but a recent analysis of observations from and numerical simulations of two mesoscale tracer experiments suggests that delayed shear enhancement can play an important role in MAD. This paper presents an overview of this analysis, with particular emphasis on the influence of resolvable vertical shear on MAD in these two case studies and the contributions made by delayed shear enhancement.

  10. Shear modulation experiments with ECCD on TCV

    International Nuclear Information System (INIS)

    Cirant, S.; Alberti, S.; Gandini, F.; Behn, R.; Goodman, T.P.; Nikkola, P.

    2006-01-01

    Anomalous electron transport is determined by turbulence, which in turn is affected by magnetic shear. A novel application of electron cyclotron current drive (ECCD), aiming at localized shear modulation, has been applied on the TCV tokamak for experiments on shear-dependent electron transport. Pairs of EC beams, absorbed at the same radius, with one oriented for co- and the other for counter-injection, are modulated out of phase in order to force a local modulation of current-density at constant input power. Off-axis deposition (ρ dep = 0.24) is performed to avoid the central region, where the low heat flux would make transport analysis difficult. In addition some sawteeth control is achieved in this way. A significant impact on local shear is achieved with I ECCD ∼ 0.1I OH , even when the modulation period is much shorter than the current diffusion time across the whole plasma radius. The main result is that although source (heat and particle) terms are constant, both electron density and temperature are modulated during alternated ECCD. Once equilibrium effects are taken into account for appropriate mapping of Thomson scattering measurements onto flux coordinates, modulation of T e and electron pressure, peaked on-axis, is confirmed at all radii internal to EC deposition. The best confinement occurs for co-injection, in which case a local decrease (∼55%) in the magnetic shear causes a decrease in the electron thermal diffusivity of a similar amount (∼65%)

  11. Local Turbulence Suppression and Shear Flow Dynamics During qmin-Triggered Internal Transport Barriers on DIII-D

    Science.gov (United States)

    Shafer, M. W.; McKee, G. R.; Schlossberg, D. J.; Austin, M. E.; Burrell, K. H.

    2008-11-01

    Long-wavelength turbulence (kρiITBs) may form. Application of off-axis ECH slows the q-profile evolution and increases ρqmin, both of which enhance turbulence measurements using a new high-sensitivity large-area (8x,8) 2D BES array. The measured transient turbulence suppression is localized to the low-order rational surface (qmin= 2, 5/2, 3, etc.). Measured poloidal flow shear transiently exceeds the turbulence decorrelation rate, which is consistent with shear suppression. The localized suppression zone propagates radially outward, nearly coincident with the low-order surface.

  12. Towards stacked zone plates

    International Nuclear Information System (INIS)

    Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G

    2009-01-01

    Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.

  13. ZoneLib

    DEFF Research Database (Denmark)

    Jessen, Jan Jacob; Schiøler, Henrik

    2006-01-01

    We present a dynamic model for climate in a livestock building divided into a number of zones, and a corresponding modular Simulink library (ZoneLib). While most literature in this area consider air flow as a control parameter we show how to model climate dynamics using actual control signals...... development of ZoneLib....

  14. Shear and extensional properties of kefiran.

    Science.gov (United States)

    Piermaría, Judith; Bengoechea, Carlos; Abraham, Analía Graciela; Guerrero, Antonio

    2016-11-05

    Kefiran is a neutral polysaccharide constituted by glucose and galactose produced by Lactobacillus kefiranofaciens. It is included into kefir grains and has several health promoting properties. In the present work, shear and extensional properties of different kefiran aqueous dispersions (0.5, 1 and 2% wt.) were assessed and compared to other neutral gums commonly used in food, cosmetic and pharmaceutics industries (methylcellulose, locust bean gum and guar gum). Kefiran showed shear flow characteristics similar to that displayed by other representative neutral gums, although it always yielded lower viscosities at a given concentration. For each gum system it was possible to find a correlation between dynamic and steady shear properties by a master curve including both the apparent and complex viscosities. When studying extensional properties of selected gums at 2% wt. by means of a capillary break-up rheometer, kefiran solutions did not show important extensional properties, displaying a behaviour close the Newtonian. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. On transformation shear of precipitated zirconia particles

    International Nuclear Information System (INIS)

    Zhang, J.M.; Lam, K.Y.

    1993-01-01

    A model is proposed to investigate the transformation shear of the precipitated zirconia particles which undergo a stress-induced lattice transformation from tetragonal to monoclinic symmetry. Kinematically admissible twinning planes and the corresponding twinning elements are determined according to the continuum theory of dispacive phase transformation. It is postulated that only one twinning mode prevails in each transformed particle and that the minimization of elastic strain energy change dictates the morphology of the transformed variants. The transformation shear is determined by the twinning mode and the volume fraction of the corresponding variant. Numerical calculations show that each of the six kinematically admissible twinning modes may be kinematically favorable and therefore operate in constrained particle. The actual transformation shear in a transformed particle is shown to be dependent on the transformation stress, on the particle shape as well as on the lattice orientation relative to the principal axes of the ellipsoidal particle

  16. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  17. Droplet breakup driven by shear thinning solutions in a microfluidic T-junction

    Science.gov (United States)

    Chiarello, Enrico; Gupta, Anupam; Mistura, Giampaolo; Sbragaglia, Mauro; Pierno, Matteo

    2017-12-01

    Droplet-based microfluidics turned out to be an efficient and adjustable platform for digital analysis, encapsulation of cells, drug formulation, and polymerase chain reaction. Typically, for most biomedical applications, the handling of complex, non-Newtonian fluids is involved, e.g., synovial and salivary fluids, collagen, and gel scaffolds. In this study, we investigate the problem of droplet formation occurring in a microfluidic T-shaped junction, when the continuous phase is made of shear thinning liquids. At first, we review in detail the breakup process, providing extensive, side-by-side comparisons between Newtonian and non-Newtonian liquids over unexplored ranges of flow conditions and viscous responses. The non-Newtonian liquid carrying the droplets is made of Xanthan solutions, a stiff, rodlike polysaccharide displaying a marked shear thinning rheology. By defining an effective Capillary number, a simple yet effective methodology is used to account for the shear-dependent viscous response occurring at the breakup. The droplet size can be predicted over a wide range of flow conditions simply by knowing the rheology of the bulk continuous phase. Experimental results are complemented with numerical simulations of purely shear thinning fluids using lattice Boltzmann models. The good agreement between the experimental and numerical data confirm the validity of the proposed rescaling with the effective Capillary number.

  18. Decontamination of TRIGA Mark II reactor, Indonesia

    International Nuclear Information System (INIS)

    Suseno, H.; Daryoko, M.; Goeritno, A.

    2002-01-01

    The TRIGA Mark II Reactor in the Centre for Research and Development Nuclear Technique Bandung has been partially decommissioned as part of an upgrading project. The upgrading project was carried out from 1995 to 2000 and is being commissioned in 2001. The decommissioning portion of the project included disassembly of some components of the reactor core, producing contaminated material. This contaminated material (grid plate, reflector, thermal column, heat exchanger and pipe) will be sent to the Decontamination Facility at the Radioactive Waste Management Development Centre. (author)

  19. The Mark II detector for the SLC

    International Nuclear Information System (INIS)

    Abrams, G.; Baden, A.R.; Boyer, J.; Butler, F.; Drell, P.S.; Fay, J.; Gidal, G.; Goldhaber, G.; Haggerty, J.; Harr, R.; Hearty, C.; Herrup, D.; Holmgren, S.O.; Jaffre, M.; Juricic, I.; Kadyk, J.A.; Kral, J.F.; Levi, M.E.; Lynch, G.R.; Richman, J.D.; Rouse, F.R.; Schaad, M.W.; Schmidke, W.B.; Schumm, B.A.; Trilling, G.H.; Wood, D.R.; Akerlof, C.; Bonvicini, G.; Chapman, J.; Chmeissani, M.; Frey, R.; Gero, E.; Hong, S.J.; Koska, W.; Nitz, D.; Petradza, M.; Thun, R.; Tschirhart, R.; Veltman, H.; Alexander, J.P.; Ballam, J.; Barklow, T.; Bartelt, J.; De Boer, W.; Boyarski, A.; Braune, K.; Bulos, F.; Burke, D.L.; Cords, D.; Coupal, D.P.; Destaebler, H.C.; Dorfan, J.M.; Feldman, G.J.; Fernandes, D.; Field, R.C.; Fordham, C.; Fujino, D.; Gan, K.K.; Glanzman, T.; Grosse-Wiesmann, P.; Hanson, G.; Hayes, K.; Himel, T.; Hutchinson, D.; Innes, W.R.; Jacobsen, R.G.; Jaros, J.A.; Jung, C.K.; Karlen, D.; Klein, S.R.; Koetke, D.; Komamiya, M.; Kowalski, L.A.; Kozanecki, W.; Lankford, A.J.; Larsen, R.R.; Lueth, V.; Mattison, T.; Moffeit, K.C.; Mueller, L.; Munger, C.T.; Nash, J.; Ong, R.A.; O'Shaughnessy, K.F.; Perl, J.; Perl, M.L.; Perrier, F.; Petersen, A.; Pitthan, R.; Riles, K.; Swartz, M.; Taylor, R.E.; Van Kooten, R.; Voruganti, P.; Weigend, A.; Woods, M.; Wormser, G.; Wright, R.; Alvarez, M.; Calvino, F.; Fernandez, E.; Ford, W.T.; Hinshaw, D.A.; Rankin, P.; Smith, J.G.; Wagner, S.R.; Weber, P.; White, S.L.; Averill, D.; Blockus, D.; Brabson, B.; Brom, J.M.; Murray, W.N.; Ogren, H.; Rust, D.R.; Snyder, A.; Yurko, M.; Barish, B.C.; Hawkes, C.M.; Hoenk, M.; Kuhlen, M.; Li, Z.; McKenna, J.A.; Milliken, B.D.; Nelson, M.E.; Peck, C.; Porter, F.C.; Soderstrom, E.; Stroynowski, R.; Weinstein, A.J.; Weir, A.J.; Wicklund, E.; Wolf, R.C.; Wu, D.Y.; Barnett, B.A.; Boswell, C.; Dauncey, P.; Drewer, D.C.; Harral, B.; Hylen, J.; Matthews, J.A.J.; Stoker, D.P.; Vejcik, S.; Breakstone, A.; Cence, R.J.; Gong, X.; Harris, F.A.; Koide, A.; Parker, S.I.; Green, A.; Lawrence Berkeley Lab., CA; California Univ., Berkeley

    1989-01-01

    The Mark II detector has been upgraded in preparation for its role as the first detector to take data at the Stanford Linear Collider. The new detector components include the central drift chamber, the time-of-flight system, the coil, the endcap electromagnetic calorimeters and the beam energy and luminosity measuring devices. There have also been improvements in detector hermeticity. All of the major components were installed for a test run at the PEP storage ring (√s=29 GeV) in 1985. This paper describes the upgraded detector, including its trigger and data acquisition systems, and gives performance figures for its components. Future improvements are also discussed. (orig.)

  20. Kuosheng Mark III containment analyses using GOTHIC

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ansheng, E-mail: samuellin1999@iner.gov.tw; Chen, Yen-Shu; Yuann, Yng-Ruey

    2013-10-15

    Highlights: • The Kuosheng Mark III containment model is established using GOTHIC. • Containment pressure and temperature responses due to LOCA are presented. • The calculated results are all below the design values and compared with the FSAR results. • The calculated results can be served as an analysis reference for an SPU project in the future. -- Abstract: Kuosheng nuclear power plant in Taiwan is a twin-unit BWR/6 plant, and both units utilize the Mark III containment. Currently, the plant is performing a stretch power uprate (SPU) project to increase the core thermal power to 103.7% OLTP (original licensed thermal power). However, the containment response in the Kuosheng Final Safety Analysis Report (FSAR) was completed more than twenty-five years ago. The purpose of this study is to establish a Kuosheng Mark III containment model using the containment program GOTHIC. The containment pressure and temperature responses under the design-basis accidents, which are the main steam line break (MSLB) and the recirculation line break (RCLB) accidents, are investigated. Short-term and long-term analyses are presented in this study. The short-term analysis is to calculate the drywell peak pressure and temperature which happen in the early stage of the LOCAs. The long-term analysis is to calculate the peak pressure and temperature of the reactor building space. In the short-term analysis, the calculated peak drywell to wetwell differential pressure is 140.6 kPa for the MSLB, which is below than the design value of 189.6 kPa. The calculated peak drywell temperature is 158 °C, which is still below the design value of 165.6 °C. In addition, in the long-term analysis, the calculated peak containment pressure is 47 kPa G, which is below the design value of 103.4 kPa G. The calculated peak values of containment temperatures are 74.7 °C, which is lower than the design value of 93.3 °C. Therefore, the Kuosheng Mark III containment can maintain the integrity after

  1. MARK II end cap calorimeter electronics

    International Nuclear Information System (INIS)

    Jared, R.C.; Haggerty, J.S.; Herrup, D.A.; Kirsten, F.A.; Lee, K.L.; Olson, S.R.; Wood, D.R.

    1985-10-01

    An end cap calorimeter system has been added to the MARK II detector in preparation for its use at the SLAC Linear Collider. The calorimeter uses 8744 rectangular proportional counter tubes. This paper describes the design features of the data acquisition electronics that has been installed on the calorimeter. The design and use of computer-based test stands for the amplification and signal-shaping components is also covered. A portion of the complete system has been tested in a beam at SLAC. In these initial tests, using only the calibration provided by the test stands, a resolution of 18%/√E was achieved

  2. Shear wave velocity structure of the Anatolian Plate and surrounding regions using Ambient Noise Tomography

    Science.gov (United States)

    Delph, J. R.; Beck, S. L.; Zandt, G.; Biryol, C. B.; Ward, K. M.

    2013-12-01

    The Anatolian Plate consists of various lithospheric terranes amalgamated during the closure of the Tethys Ocean, and is currently extruding to the west in response to a combination of the collision of the Arabian plate in the east and the roll back of the Aegean subduction zone in the west. We used Ambient Noise Tomography (ANT) at periods structure of the Anatolian Plate. We computed a total of 13,779 unique cross-correlations using one sample-per-second vertical component broadband seismic data from 215 stations from 8 different networks over a period of 7 years to compute fundamental-mode Rayleigh wave dispersion curves following the method of Benson et al. (2007). We then inverted the dispersion data to calculate phase velocity maps for 11 periods from 8 s - 40 s throughout Anatolia and the Aegean regions (Barmin et al. 2001). Using smoothed Moho values derived from Vanacore et al. (2013) in our starting models, we inverted our dispersion curves using a linear least-squares iterative inversion scheme (Herrmann & Ammon 2004) to produce a 3-D shear-wave velocity model of the crust and uppermost mantle throughout Anatolia and the Aegean. We find a good correlation between our seismic shear wave velocities and paleostructures (suture zones) and modern deformation (basin formation and fault deformation). The most prominent crustal velocity contrasts occur across intercontinental sutures zones, resulting from the juxtaposition of the compositionally different basements of the amalgamated terranes. At shallow depths, seismic velocity contrasts correspond closely with surficial features. The Thrace, Cankiri and Tuz Golu basins, and accretionary complexes related to the closure of the Neotethys are characterized by slow shear wave velocities, while the Menderes and Kirsehir Massifs, Pontides, and Istanbul Zone are characterized by fast velocities. We find that the East Anatolia Plateau has slow shear-wave velocities, as expected due to high heat flow and active

  3. Combined shearing interferometer and hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Hutchin, R. A.

    1985-01-01

    A sensitive wavefront sensor combining attributes of both a Hartmann type of wavefront sensor and an AC shearing interferometer type of wavefront sensor. An incident wavefront, the slope of which is to be detected, is focussed to first and second focal points at which first and second diffraction gratings are positioned to shear and modulate the wavefront, which then diverges therefrom. The diffraction patterns of the first and second gratings are positioned substantially orthogonal to each other to shear the wavefront in two directions to produce two dimensional wavefront slope data for the AC shearing interferometer portion of the wavefront sensor. First and second dividing optical systems are positioned in the two diverging wavefronts to divide the sheared wavefront into an array of subapertures and also to focus the wavefront in each subaperture to a focal point. A quadrant detector is provided for each subaperture to detect the position of the focal point therein, which provides a first indication, in the manner of a Hartmann wavefront sensor, of the local wavefront slope in each subaperture. The total radiation in each subaperture, as modulated by the diffraction grating, is also detected by the quadrant detector which produces a modulated output signal representative thereof, the phase of which relative to modulation by the diffraction grating provides a second indication of the local wavefront slope in each subaperture, in the manner of an AC shearing interferometer wavefront sensor. The data from both types of sensors is then combined by long term averaging thereof to provide an extremely sensitive wavefront sensor

  4. Improvement of Shear Strength of Sandy Soil by Cement Grout with Fly Ash

    Directory of Open Access Journals (Sweden)

    Haifaa Abdulrasool Ali

    2018-12-01

    Full Text Available The effects of the permeation cement grout with fly ash on the sandy soil skeleton were studied in the present work in two phase; first phase the shear strength parameters, and the second phase effect of these grouted materials on volume grouted zone by injection (51 cm³ of slurry in sandy soil placed in steel cylinder model with dimension 15 cm in diameter and 30 cm in height. The soil sample was obtained from Karbala city and it is classified as poorly graded sand (SP according to USCS. The soil samples were improved by cement grout with three percentages weight of water cement ratio (w:c; (0.1w:0.9c, 0.8w:0.2c, and 0.7w:0.3c, while the soil samples were dehydrated for one day curing time. Fly ash class (F was used with cement grout as filler material; it was added to the mixture as a replacement material for cement in weight percentages; 10%, 25% and 40%. According to the results of tests, both shear strength and approximate volume of the effective grouted zone for treated samples soil with cement grout was increased when the water cement ratio decreased. Fly ash with cement grout needs to increase the water demand for the grout mixing to give best results in both shear strength and filling the soil voids.

  5. 46 CFR 78.50-5 - Hull markings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Hull markings. 78.50-5 Section 78.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings on Vessels § 78.50-5 Hull markings. Vessels shall be marked as required by parts 67 and 69 of this chapter. [CGD 72...

  6. 46 CFR 196.40-5 - Hull markings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull markings. 196.40-5 Section 196.40-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Markings on Vessels § 196.40-5 Hull markings. Vessels shall be marked as required by parts 67 and 69 of this chapter...

  7. 46 CFR 97.40-5 - Hull markings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull markings. 97.40-5 Section 97.40-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings on Vessels § 97.40-5 Hull markings. Vessels shall be marked as required by parts 67 and 69 of this...

  8. Circulatory Markings at Double-Lane Traffic Roundabout.

    NARCIS (Netherlands)

    Bie, Jing; Lo, Hong K.; Wong, S.C.

    2008-01-01

    This paper compares two types of circulatory markings at a double-lane traffic roundabout: the concentric marking scheme and the Alberta marking scheme. The effects of these two marking schemes on drivers' lane choice behavior, delay, and safety, are compared based on data collected from before and

  9. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  10. Seismic behavior of reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.

    1989-01-01

    Reinforced concrete shear walls have an important contribution to building stiffness. So, it is necessary to know their behavior under seismic loads. The ultimate behavior study of shear walls subjected to dynamic loadings includes: - a description of the nonlinear global model based on cyclic static tests, - nonlinear time history calculations for various forcing functions. The comparison of linear and nonlinear results shows important margins related to the ductility when the bandwidth of the forcing function is narrow and centred on the wall natural frequency

  11. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat....... Codes for designing prefabricated reinforced components of aircrete structures have adopted these recently developed approaches.......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  12. 1L Mark-IV Target Design Review

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-16

    This presentation includes General Design Considerations; Current (Mark-III) Lower Tier; Mark-III Upper Tier; Performance Metrics; General Improvements for Material Science; General Improvements for Nuclear Science; Improving FOM for Nuclear Science; General Design Considerations Summary; Design Optimization Studies; Expected Mark-IV Performance: Material Science; Expected Mark-IV Performance: Nuclear Science (Disk); Mark IV Enables Much Wider Range of Nuclear-Science FOM Gains than Mark III; Mark-IV Performance Summary; Rod or Disk? Center or Real FOV?; and Project Cost and Schedule.

  13. Nuclear particle track-etched anti-bogus mark

    International Nuclear Information System (INIS)

    He Xiangming; Yan Yushun; Zhang Quanrong

    2003-01-01

    Nuclear particle track-etched anti-bogus mark is a new type of forgery-proof product after engraving gravure printing, thermocolour, fluorescence, laser hologram and metal concealed anti-bogus mark. The mark is manufactured by intricate high technology and the state strictly controlled sensitive nuclear facilities to ensure the mark not to be copied. The pattern of the mark is specially characterized by permeability of liquid to be discriminated from forgery. The genuine mark can be distinguished from sham one by transparent liquid (e.g. water), colorful pen and chemical reagent. The mark has passed the official examination of health safety. It is no danger of nuclear irradiation. (author)

  14. Degree of saturation effect on the grout-soil interface shear strength of soil nailing

    Directory of Open Access Journals (Sweden)

    Wang Qiong

    2016-01-01

    Full Text Available In the grouted soil nailing system, the bonding strength of cement grout-soil interface offers the required resistance to maintain the stability of whole structure. In practice, soil nailing applications are often placed at unsaturated conditions, such as soil slopes, shallow foundations, retaining walls and pavement structures. In these cases, the water content in the soil nail zone may increase or decrease due to rain water or dry weather, and even cannot become saturated during their design service life. In this study, the effect of water content (degree of saturation on the shear strength of interface between cement grout and sand are experimentally investigated by means of direct shear test. Meanwhile the water retention curve was determined and interface microstructure was observed. Experimental results show that the shear strength of interface changes non-monotonously with degree of saturation when the interface was prepared, due to the non-monotonousness of the cohesiveness between soil particles. The less the cohesiveness between sand particles, the more grout was observed been penetrated into the voids, and thus the larger the interface shear stress.

  15. Deformation and failure response of 304L stainless steel SMAW joint under dynamic shear loading

    International Nuclear Information System (INIS)

    Lee, Woei-Shyan; Cheng, J.-I.; Lin, C.-F.

    2004-01-01

    The dynamic shear deformation behavior and fracture characteristics of 304L stainless steel shielded metal arc welding (SMAW) joint are studied experimentally with regard to the relations between mechanical properties and strain rate. Thin-wall tubular specimens are deformed at room temperature under strain rates in the range of 8 x 10 2 to 2.8 x 10 3 s -1 using a torsional split-Hopkinson bar. The results indicate that the strain rate has a significant influence on the mechanical properties and fracture response of the tested SMAW joints. It is found that the flow stress, total shear strain to failure, work hardening rate and strain rate sensitivity all increase with increasing strain rate, but that the activation volume decreases. The observed dynamic shear deformation behavior is modeled using the Kobayashi-Dodd constitutive law, and it is shown that the predicted results are in good agreement with the experimental data. Fractographic analysis using scanning electron microscopy reveals that the tested specimens all fracture within their fusion zones, and that the primary failure mechanism is one of the extensive localized shearing. The fracture surfaces are characterized by the presence of many dimples. A higher strain rate tends to reduce the size of the dimples and to increase their density. The observed fracture features are closely related to the preceding flow behavior

  16. IR thermographic observation and shear bands plasticity analysis in Fe-based metallic glass

    International Nuclear Information System (INIS)

    Bouzakher, B.; Benameur, T.; Sidhom, H.

    2009-01-01

    Infrared thermography observation and in situ atomic force microscopy characterization were carried out to investigate the mechanical damage processes at the edge-notch region of large ribbons of Fe 78 Si 10 B 12 metallic glass. An obvious thermoelastic and inelastic degradation phenomenon was observed ahead at the notched region of the specimens, which probably result from free volume accumulation process and shear band activity during plane stress solicitations. Moreover, AFM topographic and frictional analysis of changes in the crack path during stable crack propagation regime revealed a periodic morphology evolution, formation of nanoscale damage cavity in the range of 20-140 nm and a maximum temperature rise ahead of the pre-crack tip was found in the order of 1.5 deg. C. The nanometer scaled shear offset, discreteness and shear bands density were determined. While these key parameters play a role in observing a large plastic zone in front of the crack, however they are unable to explain the distinct intrinsic ductility of some monolithic metallic glasses. A general Mohr-Coulomb-type constitutive description was used to deduce analytic expressions for prediction of the variation of hydrostatic component of the applied stress to the shear stress ratio as function of Poisson's ratio.

  17. Assessment of shear stress related parameters in the carotid bifurcation using mouse-specific FSI simulations.

    Science.gov (United States)

    De Wilde, David; Trachet, Bram; Debusschere, Nic; Iannaccone, Francesco; Swillens, Abigail; Degroote, Joris; Vierendeels, Jan; De Meyer, Guido R Y; Segers, Patrick

    2016-07-26

    The ApoE(-)(/)(-) mouse is a common small animal model to study atherosclerosis, an inflammatory disease of the large and medium sized arteries such as the carotid artery. It is generally accepted that the wall shear stress, induced by the blood flow, plays a key role in the onset of this disease. Wall shear stress, however, is difficult to derive from direct in vivo measurements, particularly in mice. In this study, we integrated in vivo imaging (micro-Computed Tomography-µCT and ultrasound) and fluid-structure interaction (FSI) modeling for the mouse-specific assessment of carotid hemodynamics and wall shear stress. Results were provided for 8 carotid bifurcations of 4 ApoE(-)(/)(-) mice. We demonstrated that accounting for the carotid elasticity leads to more realistic flow waveforms over the complete domain of the model due to volume buffering capacity in systole. The 8 simulated cases showed fairly consistent spatial distribution maps of time-averaged wall shear stress (TAWSS) and relative residence time (RRT). Zones with reduced TAWSS and elevated RRT, potential indicators of atherosclerosis-prone regions, were located mainly at the outer sinus of the external carotid artery. In contrast to human carotid hemodynamics, no flow recirculation could be observed in the carotid bifurcation region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Dilatant shear band formation and diagenesis in calcareous, arkosic sandstones, Vienna Basin (Austria)

    Science.gov (United States)

    Lommatzsch, Marco; Exner, Ulrike; Gier, Susanne; Grasemann, Bernhard

    2015-01-01

    The present study examines deformation bands in calcareous arkosic sands. The investigated units can be considered as an equivalent to the Matzen field in the Vienna Basin (Austria), which is one of the most productive oil reservoirs in central Europe. The outcrop exposes carbonate-free and carbonatic sediments of Badenian age separated by a normal fault. Carbonatic sediments in the hanging wall of the normal fault develop dilation bands with minor shear displacements (< 2 mm), whereas carbonate-free sediments in the footwall develop cataclastic shear bands with up to 70 cm displacement. The cataclastic shear bands show a permeability reduction up to 3 orders of magnitude and strong baffling effects in the vadose zone. Carbonatic dilation bands show a permeability reduction of 1-2 orders of magnitude and no baffling structures. We distinguished two types of deformation bands in the carbonatic units, which differ in deformation mechanisms, distribution and composition. Full-cemented bands form as dilation bands with an intense syn-kinematic calcite cementation, whereas the younger loose-cemented bands are dilatant shear bands cemented by patchy calcite and clay minerals. All analyzed bands are characterized by a porosity and permeability reduction caused by grain fracturing and cementation. The changed petrophysical properties and especially the porosity evolution are closely related to diagenetic processes driven by varying pore fluids in different diagenetic environments. The deformation band evolution and sealing capacity is controlled by the initial host rock composition. PMID:26300577

  19. Deposition in St. Mark's Basilica of Venice.

    Science.gov (United States)

    Morabito, E; Zendri, E; Piazza, R; Ganzerla, R; Montalbani, S; Marcoleoni, E; Bonetto, F; Scandella, A; Barbante, C; Gambaro, A

    2013-04-01

    Atmospheric pollutants may cause damage to monuments and historical buildings. Besides air contaminants, soluble salts are also responsible for stone deterioration and decay in outdoor and indoor monuments. The problem of how to conserve works of arts thus requires a deep knowledge of contaminants' concentration and distribution inside buildings. In this work, water-soluble ions inside St. Mark's Basilica in Venice were studied, with the aim of understanding their principal source and distribution inside the building. With the aid of Fourier transform infrared spectroscopy and scanning electron microscopy analysis, the interaction between ions and surface's material was also investigated. Ion chromatographic analysis of depositions highlighted a large amount of "deteriorating agents" such as sulphates and chlorides. A possible source in the innermost area of the basilica has been found for formates and nitrates. On the contrary, a decrease of chloride, from the entrance to the innermost area, has been found, which indicates that the source is outside the building. It is emphasized that different contaminants behave differently on different material, and the effect of pollution inside churches and monuments is not easy to predict. Wood and brick seem to react differently than stone and mortar to the damaging action of salts and pollutants. The present work should be considered a useful tool for the future preservation of St. Mark's Basilica in Venice.

  20. The Five Marks of the Mental

    Science.gov (United States)

    Pernu, Tuomas K.

    2017-01-01

    The mental realm seems different to the physical realm; the mental is thought to be dependent on, yet distinct from the physical. But how, exactly, are the two realms supposed to be different, and what, exactly, creates the seemingly insurmountable juxtaposition between the mental and the physical? This review identifies and discusses five marks of the mental, features that set characteristically mental phenomena apart from the characteristically physical phenomena. These five marks (intentionality, consciousness, free will, teleology, and normativity) are not presented as a set of features that define mentality. Rather, each of them is something we seem to associate with phenomena we consider mental, and each of them seems to be in tension with the physical view of reality in its own particular way. It is thus suggested how there is no single mind-body problem, but a set of distinct but interconnected problems. Each of these separate problems is analyzed, and their differences, similarities and connections are identified. This provides a useful basis for future theoretical work on psychology and philosophy of mind, that until now has too often suffered from unclarities, inadequacies, and conflations. PMID:28736537