Zhou, Bang-Guo; Wang, Dan; Ren, Wei-Wei; Li, Xiao-Long; He, Ya-Ping; Liu, Bo-Ji; Wang, Qiao; Chen, Shi-Gao; Alizad, Azra; Xu, Hui-Xiong
2017-08-01
To evaluate the diagnostic performance of shear wave arrival time contour (SWATC) display for the diagnosis of breast lesions and to identify factors associated with the quality of shear wave propagation (QSWP) in breast lesions. This study included 277 pathologically confirmed breast lesions. Conventional B-mode ultrasound characteristics and shear wave elastography parameters were computed. Using the SWATC display, the QSWP of each lesion was assigned to a two-point scale: score 1 (low quality) and score 2 (high quality). Binary logistic regression analysis was performed to identify factors associated with QSWP. The area under the receiver operating characteristic curve (AUROC) for QSWP to differentiate benign from malignant lesions was 0.913, with a sensitivity of 91.9%, a specificity of 90.7%, a positive predictive value (PPV) of 74.0%, and a negative predictive value (NPV) of 97.5%. Compared with using the standard deviation of shear wave speed (SWS SD ) alone, SWS SD combined with QSWP increased the sensitivity from 75.8% to 93.5%, but decreased the specificity from 95.8% to 89.3% (P breast lesions.
Nongeometrically converted shear waves in marine streamer data
Drijkoningen, G.G.; El Allouche, N.; Thorbecke, J.W.; Bada, G.
2012-01-01
Under certain circumstances, marine streamer data contain nongeometrical shear body wave arrivals that can be used for imaging. These shear waves are generated via an evanescent compressional wave in the water and convert to propagating shear waves at the water bottom. They are called
Opportunities for shear energy scaling in bulk acoustic wave resonators.
Jose, Sumy; Hueting, Raymond J E
2014-10-01
An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.
Shear Alfven waves in tokamaks
International Nuclear Information System (INIS)
Kieras, C.E.
1982-12-01
Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma
Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco
2018-01-01
Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.
Bechert, D. W.
1982-01-01
The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.
Acoustic waves in unbounded shear flows
International Nuclear Information System (INIS)
Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.; Rogava, A.D.
1996-05-01
The linear evolution of acoustic waves in fluid flow with constant density and uniform shear of velocity is investigated. The process of the mean flow energy extraction by the three-dimensional acoustic waves which is due to the non-normality of linear dynamics in shear flows is analyzed. The thorough examination of the dynamics of different physical quantities, specifying the wave evolution, is outlined. The revealing of the behaviour becomes possible owing to the nonmodal approach that has been extensively used in the study of the perturbations evolution in shear flows since the beginning of the nineties. In addition, a detailed analyses of the physics of shear energy gain by vortex and acoustic perturbations is presented. (author). 28 refs, 7 figs
The Measurement and Interpretation of Surface Wave Group Arrival Times
Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.
2005-12-01
We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.
Seismic shear waves as Foucault pendulum
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
Propagation of waves in shear flows
Fabrikant, A L
1998-01-01
The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside
Wave anisotropy of shear viscosity and elasticity
Rudenko, O. V.; Sarvazyan, A. P.
2014-11-01
The paper presents the theory of shear wave propagation in a "soft solid" material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.
Shear Wave Generation by Decoupled and Partially Coupled Explosions
National Research Council Canada - National Science Library
Stevens, Jeffry L; Xu, Heming; Baker, G. E
2008-01-01
The objective of this project is to investigate the sources of shear wave generation by decoupled and partially coupled explosions, and the differences in shear wave generation between tamped and decoupled explosions...
Determination of P – wave arrival time of acoustic events
Directory of Open Access Journals (Sweden)
Matěj Petružálek
2010-10-01
Full Text Available The new approach to the P-wave arrival time determination based on acoustic emission data from loading experiments is tested.The algorithm used in this paper is built on the STA/LTA function computed by a convolution that speeds up the computation processvery much. The picking process makes use of shifting of temporary onset until certain conditions are fulfill and as a main decisioncriterion on the threshold exceeding of the STA/LTA derivation function is used. The P-wave onset time is determined in a selectedinterval that corresponds to the theoretical propagation of elastic wave in the rock sample. Results obtained by our algorithm werecorrelated with data acquired manually and a high order statistic software as well.
Solitary drift waves in the presence of magnetic shear
International Nuclear Information System (INIS)
Meiss, J.D.; Horton, W.
1982-07-01
The two-component fluid equations describing electron drift and ion acoustic waves in a nonuniform magnetized plasma are shown to possess nonlinear two-dimensional solitary wave solutions. In the presence of magnetic shear, radiative shear damping is exponentially small in L/sub s//L/sub n/ for solitary drift waves, in contrast to linear waves
The phase mixing of shear Alfven waves
International Nuclear Information System (INIS)
Uberoi, C.
1993-04-01
The phase mixing of shear Alfven waves is discussed as a current sheets crossover phenomena by using the well-behaved time dependent solution of the Alfven wave equation. This method is a more direct approach than the initial value problem technique to find the collisionless damping time of the surface waves, which as it represents the coherency loss is argued to be the phase mixing time. The phase mixing time obtained by both the methods compares well. The direct method however, has an advantage that no particular profile for the magnetic field variation need to be chosen and secondly the phase mixing time and the time scale for which the resistivity effects become important can be expressed conveniently in terms of Alfven transit times before crossover. (author). 11 refs
Caenen, Annette; Pernot, Mathieu; Peirlinck, Mathias; Mertens, Luc; Swillens, Abigail; Segers, Patrick
2018-04-01
Shear wave elastography (SWE) is a potential tool to non-invasively assess cardiac muscle stiffness. This study focused on the effect of the orthotropic material properties and mechanical loading on the performance of cardiac SWE, as it is known that these factors contribute to complex 3D anisotropic shear wave propagation. To investigate the specific impact of these complexities, we constructed a finite element model with an orthotropic material law subjected to different uniaxial stretches to simulate SWE in the stressed cardiac wall. Group and phase speed were analyzed in function of tissue thickness and virtual probe rotation angle. Tissue stretching increased the group and phase speed of the simulated shear wave, especially in the direction of the muscle fiber. As the model provided access to the true fiber orientation and material properties, we assessed the accuracy of two fiber orientation extraction methods based on SWE. We found a higher accuracy (but lower robustness) when extracting fiber orientations based on the location of maximal shear wave speed instead of the angle of the major axis of the ellipsoidal group speed surface. Both methods had a comparable performance for the center region of the cardiac wall, and performed less well towards the edges. Lastly, we also assessed the (theoretical) impact of pathology on shear wave physics and characterization in the model. It was found that SWE was able to detect changes in fiber orientation and material characteristics, potentially associated with cardiac pathologies such as myocardial fibrosis. Furthermore, the model showed clearly altered shear wave patterns for the fibrotic myocardium compared to the healthy myocardium, which forms an initial but promising outcome of this modeling study.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Parametric excitation of drift waves in a sheared slab geometry
International Nuclear Information System (INIS)
Vranjes, J.; Weiland, J.
1992-01-01
The threshold for parametric excitation of drift waves in a sheared slab geometry is calculated for a pump wave that is a standing wave along the magnetic field, using the Hasegawa-Mima nonlinearity. The shear damping is counteracted by the parametric coupling and the eigenvalue problem is solved analytically using Taylor's strong coupling approximation. (au)
Opportunities for shear energy scaling in bulk acoustic wave resonators
Jose, Sumy; Hueting, Raymond Josephus Engelbart
2014-01-01
An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots
Shear wave elastography with a new reliability indicator
Directory of Open Access Journals (Sweden)
Christoph F. Dietrich
2016-09-01
Full Text Available Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s. The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed. The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France, point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France. More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.
Shear wave elastography with a new reliability indicator.
Dietrich, Christoph F; Dong, Yi
2016-09-01
Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.
Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.
2012-12-01
We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and
Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming
International Nuclear Information System (INIS)
Daniel, R.G.; Boore, D.M.
1982-01-01
To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/dΔ. Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation
Fluid Effects on Shear Waves in Finely Layered Porous Media
International Nuclear Information System (INIS)
Berryman, J G
2004-01-01
Although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus for the layered system contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude the shear energy stored by this modulus by a term that ranges from the smallest to the largest shear moduli of the VTI system. But, since there are five shear moduli in play, the increase in shear energy overall is reduced by a factor of about 5 in general. We can therefore give definite bounds on the maximum increase of shear modulus, being about 20% of the permitted range, when gas is fully replaced by liquid. An attendant increase of density (depending on porosity and fluid density) by approximately 5 to 10% partially offsets the effect of this shear modulus increase. Thus, an increase of shear wave speed on the order of 5 to 10% is shown to be possible when circumstances are favorable - i.e., when the shear modulus fluctuations are large (resulting in strong anisotropy), and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well-logging or laboratory experiments), short response times also produce the requisite undrained behavior and, therefore, fluids also affect shear waves at high frequencies by increasing rigidity
Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight
DEFF Research Database (Denmark)
Elyas, Eli; Grimwood, Alex; Erler, Janine Terra
2017-01-01
a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared......Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down...... of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves...
Automatic pickup of arrival time of channel wave based on multi-channel constraints
Wang, Bao-Li
2018-03-01
Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.
Nonlinear drift waves in a dusty plasma with sheared flows
Energy Technology Data Exchange (ETDEWEB)
Vranjes, J. [K.U. Leuven (Belgium). Center for Plasma Astrophysics; Shukla, R.K. [Ruhr-Univ. Bochum (Germany). Inst. fuer Theoretische Physik IV
2002-01-01
Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented.
Nonlinear drift waves in a dusty plasma with sheared flows
International Nuclear Information System (INIS)
Vranjes, J.; Shukla, R.K.
2002-01-01
Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented
Shear-wave dynamic behavior using two different orientations
International Nuclear Information System (INIS)
Ghassem Alaskari, M. K.; Hashemi, S. J.
2007-01-01
For laterally complex media, it may be more suitable to take a different orientation of the displacement vector of Shear-waves. This may change the sign of several imaginary reflections and conversion coefficients to be used in reservoir characterization and Amplitude Versus Offset analysis or modeling. In this new convention the positive direction of the displacement vector of reflected Shear-waves is chosen to the left of ray tangent (in the direction of wave propagation). Therefore, the definition of the displacement vector of shear-waves can be used properly even for very complicated media. Finally the shear-wave dynamic behavior of a reservoir zone can be illustrated for laterally varying structures in terms of the amplitude variation and phase behavior using this new orientation
Length and activation dependent variations in muscle shear wave speed
International Nuclear Information System (INIS)
Chernak, L A; DeWall, R J; Lee, K S; Thelen, D G
2013-01-01
Muscle stiffness is known to vary as a result of a variety of disease states, yet current clinical methods for quantifying muscle stiffness have limitations including cost and availability. We investigated the capability of shear wave elastography (SWE) to measure variations in gastrocnemius shear wave speed induced via active contraction and passive stretch. Ten healthy young adults were tested. Shear wave speeds were measured using a SWE transducer positioned over the medial gastrocnemius at ankle angles ranging from maximum dorsiflexion to maximum plantarflexion. Shear wave speeds were also measured during voluntary plantarflexor contractions at a fixed ankle angle. Average shear wave speed increased significantly from 2.6 to 5.6 m s –1 with passive dorsiflexion and the knee in an extended posture, but did not vary with dorsiflexion when the gastrocnemius was shortened in a flexed knee posture. During active contractions, shear wave speed monotonically varied with the net ankle moment generated, reaching 8.3 m s –1 in the maximally contracted condition. There was a linear correlation between shear wave speed and net ankle moment in both the active and passive conditions; however, the slope of this linear relationship was significantly steeper for the data collected during passive loading conditions. The results show that SWE is a promising approach for quantitatively assessing changes in mechanical muscle loading. However, the differential effect of active and passive loading on shear wave speed makes it important to carefully consider the relevant loading conditions in which to use SWE to characterize in vivo muscle properties. (paper)
Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique
International Nuclear Information System (INIS)
Aziman, M; Hazreek, Z A M; Azhar, A T S; Haimi, D S
2016-01-01
Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data. (paper)
Drift Wave Test Particle Transport in Reversed Shear Profile
International Nuclear Information System (INIS)
Horton, W.; Park, H.B.; Kwon, J.M.; Stronzzi, D.; Morrison, P.J.; Choi, D.I.
1998-01-01
Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves, are derived. The maps allow the integration of particle orbits on the long time scale needed to describe transport. Calculations using the drift wave maps show that dramatic improvement in the particle confinement, in the presence of a given level and spectrum of E x B turbulence, can occur for q(r)-profiles with reversed shear. A similar reduction in the transport, i.e. one that is independent of the turbulence, is observed in the presence of an equilibrium radial electric field with shear. The transport reduction, caused by the combined effects of radial electric field shear and both monotonic and reversed shear magnetic q-profiles, is also investigated
The coexistence of pressure waves in the operation of quartz-crystal shear-wave sensors
Reddy, SM; Jones, JP; Lewis, TJ
1998-01-01
It is demonstrated that an AT-cut quartz crystal driven in the thickness-shear-wave mode and typically used as a sensor to monitor the viscoelastic shear-wave properties of a fluid also produce longitudinal pressure waves. Unlike the shear wave, these waves are capable of long-range propagation through the fluid and of reflection at its boundaries, notably at an outer fluid–air interface. They introduce a component into the measured electrical impedance and resonance frequency shift of the cr...
Refracted arrival waves in a zone of silence from a finite thickness mixing layer.
Suzuki, Takao; Lele, Sanjiva K
2002-02-01
Refracted arrival waves which propagate in the zone of silence of a finite thickness mixing layer are analyzed using geometrical acoustics in two dimensions. Here, two simplifying assumptions are made: (i) the mean flow field is transversely sheared, and (ii) the mean velocity and temperature profiles approach the free-stream conditions exponentially. Under these assumptions, ray trajectories are analytically solved, and a formula for acoustic pressure amplitude in the far field is derived in the high-frequency limit. This formula is compared with the existing theory based on a vortex sheet corresponding to the low-frequency limit. The analysis covers the dependence on the Mach number as well as on the temperature ratio. The results show that both limits have some qualitative similarities, but the amplitude in the zone of silence at high frequencies is proportional to omega(-1/2), while that at low frequencies is proportional to omega(-3/2), omega being the angular frequency of the source.
Shear wave propagation in piezoelectric-piezoelectric composite layered structure
Directory of Open Access Journals (Sweden)
Anshu Mli Gaur
Full Text Available The propagation behavior of shear wave in piezoelectric composite structure is investigated by two layer model presented in this approach. The composite structure comprises of piezoelectric layers of two different materials bonded alternatively. Dispersion equations are derived for propagation along the direction normal to the layering and in direction of layering. It has been revealed that thickness and elastic constants have significant influence on propagation behavior of shear wave. The phase velocity and wave number is numerically calculated for alternative layer of Polyvinylidene Difluoride (PVDF and Lead Zirconate Titanate (PZT-5H in composite layered structure. The analysis carried out in this paper evaluates the effect of volume fraction on the phase velocity of shear wave.
Seismic shear waves as Foucault pendulum
Snieder, Roel; Sens-Schönfelder, C.; Ruigrok, E.; Shiomi, K.
2016-01-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal
Miao, Hongchen; Huan, Qiang; Wang, Qiangzhong; Li, Faxin
2017-02-01
The non-dispersive fundamental shear horizontal (SH 0 ) wave in plate-like structures is of practical importance in non-destructive testing (NDT) and structural health monitoring (SHM). Theoretically, an omnidirectional SH 0 transducer phased array system can be used to inspect defects in a large plate in the similar manner to the phased array transducers used in medical B-scan ultrasonics. However, very few omnidirectional SH 0 transducers have been proposed so far. In this work, an omnidirectional SH 0 wave piezoelectric transducer (OSH-PT) was proposed, which consists of a ring array of twelve face-shear (d 24 ) trapezoidal PZT elements. Each PZT element can produce face-shear deformation under applied voltage, resulting in circumferential shear deformation in the OSH-PT and omnidirectional SH 0 waves in the hosting plate. Both finite element simulations and experiments were conducted to examine the performance of the proposed OSH-PT. Experimental testing shows that the OSH-PT exhibits good omnidirectional properties, no matter it is used as a SH 0 wave transmitter or a SH 0 wave receiver. This work may greatly promote the applications of SH 0 waves in NDT and SHM. Copyright Â© 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Kamal, A; Giurgiutiu, V
2014-01-01
This article discusses shear horizontal (SH) guided-waves that can be excited with shear type piezoelectric wafer active sensor (SH-PWAS). The paper starts with a review of state of the art SH waves modelling and their importance in non-destructive evaluation (NDE) and structural health monitoring (SHM). The basic piezoelectric sensing and actuation equations for the case of shear horizontal piezoelectric wafer active sensor (SH-PWAS) with electro-mechanical coupling coefficient d 35 are reviewed. Multiphysics finite element modelling (MP-FEM) was performed on a free SH-PWAS to show its resonance modeshapes. The actuation mechanism of the SH-PWAS is predicted by MP-FEM, and modeshapes of excited structure are presented. The structural resonances are compared with experimental measurements and showed good agreement. Analytical prediction of SH waves was performed. SH wave propagation experimental study was conducted between different combinations of SH-PWAS and regular in-plane PWAS transducers. Experimental results were compared with analytical predictions for aluminium plates and showed good agreement. 2D wave propagation effects were studied by MP-FEM. An analytical model was developed for SH wave power and energy. The normal mode expansion (NME) method was used to account for superpositioning multimodal SH waves. Modal participation factors were presented to show the contribution of every mode. Power and energy transfer between SH-PWAS and the structure was analyzed. Finally, we present simulations of our developed wave power and energy analytical models. (paper)
Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion
International Nuclear Information System (INIS)
Borg, G.G.
1994-01-01
Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs
Theory of ion Bernstein wave induced shear suppression of turbulence
Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.
1994-06-01
The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.
A Hammer-Impact, Aluminum, Shear-Wave Seismic Source
Haines, Seth
2007-01-01
Near-surface seismic surveys often employ hammer impacts to create seismic energy. Shear-wave surveys using horizontally polarized waves require horizontal hammer impacts against a rigid object (the source) that is coupled to the ground surface. I have designed, built, and tested a source made out of aluminum and equipped with spikes to improve coupling. The source is effective in a variety of settings, and it is relatively simple and inexpensive to build.
Algorithm Indicating Moment of P-Wave Arrival Based on Second-Moment Characteristic
Directory of Open Access Journals (Sweden)
Jakub Sokolowski
2016-01-01
Full Text Available The moment of P-wave arrival can provide us with many information about the nature of a seismic event. Without adequate knowledge regarding the onset moment, many properties of the events related to location, polarization of P-wave, and so forth are impossible to receive. In order to save time required to indicate P-wave arrival moment manually, one can benefit from automatic picking algorithms. In this paper two algorithms based on a method finding a regime switch point are applied to seismic event data in order to find P-wave arrival time. The algorithms are based on signals transformed via a basic transform rather than on raw recordings. They involve partitioning the transformed signal into two separate series and fitting logarithm function to the first subset (which corresponds to pure noise and therefore it is considered stationary, exponent or power function to the second subset (which corresponds to nonstationary seismic event, and finding the point at which these functions best fit the statistic in terms of sum of squared errors. Effectiveness of the algorithms is tested on seismic data acquired from O/ZG “Rudna” underground copper ore mine with moments of P-wave arrival initially picked by broadly known STA/LTA algorithm and then corrected by seismic station specialists. The results of proposed algorithms are compared to those obtained using STA/LTA.
Directory of Open Access Journals (Sweden)
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
High-frequency shear-horizontal surface acoustic wave sensor
Branch, Darren W
2013-05-07
A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.
Topics in the Analysis of Shear-Wave Propagation in Oblique-Plate Impact Tests
National Research Council Canada - National Science Library
Scheidler, Mike
2007-01-01
This report addresses several topics in the theoretical analysis of shock waves, acceleration waves, and centered simple waves, with emphasis on the propagation of shear waves generated in oblique-plate impact tests...
Fracture detection in crystalline rock using ultrasonic shear waves
International Nuclear Information System (INIS)
Waters, K.H.; Palmer, S.P.; Farrell, W.E.
1978-12-01
An ultrasonic shear wave reflection profiling system for use in the detection of water-filled cracks occurring within a crystalline rock mass is being tested in a laboratory environment. Experiments were performed on an irregular tensile crack induced approximately 0.5 m below one circular face of a 1.0-m-dia, 1.8-m-long granite cylinder. Good reflection data were obtained from this irregular crack with the crack either air filled or water filled. Data were collected that suggest a frequency-dependent S/sub H/ wave reflection coefficient for a granite-water interface. Waves that propagate along the free surface of a rock mass (surface waves) can severely hinder the detection of reflected events. Two methods of reducing this surface wave noise were investigated. The first technique uses physical obstructions (such as a slit trench) to scatter the surface waves. The second technique uses a linear array of receivers located on the free surface to cancel waves that are propagating parallel to the array (e.g., surface waves), thus enhancing waves with propagation vectors orthogonal to the linear array (e.g., reflected events). Deconvolution processing was found to be another method useful in surface wave cancellation
Tschache, Saskia; Wadas, Sonja; Polom, Ulrich; Krawczyk, Charlotte M.
2017-04-01
Sinkholes pose a serious geohazard for humans and infrastructure in populated areas. The Junior Research Group Subrosion within the Leibniz Institute for Applied Geophysics and the joint project SIMULTAN work on the multi-scale investigation of subrosion processes in the subsurface, which cause natural sinkholes. In two case studies in sinkhole areas of Thuringia in Germany, we applied 2D shear wave reflection seismics using SH-waves with the aim to detect suitable parameters for the characterisation of critical zones. This method has the potential to image near-surface collapse and faulting structures in improved resolution compared to P-wave surveys resulting from the shorter wavelength of shear waves. Additionally, the shear wave velocity field derived by NMO velocity analysis is a basis to calculate further physical parameters, as e.g. the dynamic shear modulus. In both investigation areas, vertical seismic profiles (VSP) were acquired by generating P- and SH-waves (6 component VSP) directly next to a borehole equipped with a 3C downhole sensor. They provide shear and compressional wave velocity profiles, which are used to improve the 2D shear wave velocity field from surface seismics, to perform a depth calibration of the seismic image and to calculate the Vp/Vs ratio. The signals in the VSP data are analysed with respect to changes in polarisation and attenuation with depth and/or azimuth. The VSP data reveal low shear wave velocities of 200-300 m/s in rock layers known to be heavily affected by subrosion and confirm the low velocities calculated from the surface seismic data. A discrepancy of the shear wave velocities is observed in other intervals probably due to unsymmetrical travel paths in the surface seismics. In some VSP data dominant conversion of the direct SH-wave to P-wave is observed that is assumed to be caused by an increased presence of cavities. A potential fault distorting the vertical travel paths was detected by abnormal P-wave first
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
Shear-wave splitting measurements – Problems and solutions
Czech Academy of Sciences Publication Activity Database
Vecsey, Luděk; Plomerová, Jaroslava; Babuška, Vladislav
2008-01-01
Roč. 462, č. 1-4 (2008), s. 178-196 ISSN 0040-1951 R&D Projects: GA AV ČR(CZ) KJB300120605; GA AV ČR IAA3012405; GA AV ČR IAA300120709 Institutional research plan: CEZ:AV0Z30120515 Keywords : seismic anisotropy * shear-wave splitting * comparison of cross- correlation * eigenvalue * transverse minimization methods Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.677, year: 2008
Nonlinear reflection of shock shear waves in soft elastic media.
Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël
2010-02-01
For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.
Histoscanning and shear wave ultrasound elastography for prostate cancer diagnosis
Directory of Open Access Journals (Sweden)
A. V. Amosov
2016-01-01
Full Text Available Introduction. The shear wave ultrasound elastography is a recently developed ultrasound-based method in the clinical practice, which allows the qualitative visual and quantitative measurements of tissue stiffness. In the 2010 this technology of the shear wave was called Shear Wave Elastograhpy. Due to the front of the shear waves the qualitative and quantitative assessment of the tissue stiffness is possible.Objective is to examine the efficacy of the shear wave ultrasound elastography in the evaluation of the prevalence of the oncological disease in patients with the prostate cancer and to compare the obtained results with the routine method X-ray diagnostics.Materials and methods. From the april 2015 in the I.M. Sechenov First Moscow State Medical University Urology Clinic there were conducted 314 shear wave ultrasound elastography examinations of the prostate. The ultrasound system Aixplorer® by SuperSonic Imagine was used. This system provides information provided by B-mode and shear wave ultrasound elastography mode. The transrectal echograms were made in 6 dimensions, so called Q-boxes (3 demensions in the every lobe on the segments from the base to the apex, according to the biopsy zone. The unit of measurement was the mean value in the kilopaskals (kPa. All the patients were randomized into 3 groups. There were 146 men with the possible prostate cancer in the first group (prospective study, 120 men with the certain diagnosis of the prostate cancer in the second group (retrospective study and 48 healthy men in the third group (control study. In all the patients of the first and the second groups the routine complete examination, including the prostate specific antigen (PSA level examination, digital rectal examination (DRE, doppler transrectal ultrasonography (TRUS, histoscanning and ultrasound shear wave elastography (SWE, was conducted. In the 229 patients of the first and the second groups the prostatectomy with the
Energy Technology Data Exchange (ETDEWEB)
Cho, Seung Hyun; Kwon, Hyu Sang; Ahn, Bong Young; Lee, Seung Seok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)
2008-12-15
Guided wave technology is advantageous for fast inspection of pipe wall thinning since the guided wave propagates long distance. In this investigation, the method to evaluate gradual wall thinning in a pipe based on the arrival time delay with magnetostrictive patch transducers is presented. Low frequency A0 Lamb waves were generated and measured by the present transducer and it was applied to arrival time delay measurement experiments on a test pipe having gradual wall thinnings artificially manufactured. From experiments, consistent results that wall thinning increases the arrival time delay of A0 waves were obtained. Consequently, the feasibility of the magnetostrictive patch transducers to evaluate wall thinning was verified
International Nuclear Information System (INIS)
Cho, Seung Hyun; Kwon, Hyu Sang; Ahn, Bong Young; Lee, Seung Seok
2008-01-01
Guided wave technology is advantageous for fast inspection of pipe wall thinning since the guided wave propagates long distance. In this investigation, the method to evaluate gradual wall thinning in a pipe based on the arrival time delay with magnetostrictive patch transducers is presented. Low frequency A0 Lamb waves were generated and measured by the present transducer and it was applied to arrival time delay measurement experiments on a test pipe having gradual wall thinnings artificially manufactured. From experiments, consistent results that wall thinning increases the arrival time delay of A0 waves were obtained. Consequently, the feasibility of the magnetostrictive patch transducers to evaluate wall thinning was verified
Bennington, Ninfa L.; Thurber, Clifford; Peng, Zhigang; Zhang, Haijiang; Zhao, Peng
2013-03-01
We present a three-dimensional (3D) P wave velocity (Vp) model of the Parkfield region that utilizes existing P wave arrival time data, including fault zone head waves (FZHWs), and data from direct wave secondary arrivals (DWSAs). The first-arrival and DWSA travel times are obtained as the global- and local-minimum travel time paths, respectively. The inclusion of FZHWs and DWSAs results in as much as a 5% and a 10% increase in the across-fault velocity contrast, respectively, for the Vp model at Parkfield relative to that of Thurber et al. [2006]. Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield earthquake hypocenter and the other SE of the 2004 Parkfield earthquake hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. Following Ampuero and Ben-Zion (2008), the pattern of velocity contrasts is consistent with the observed bilateral rupture propagation for the 2004 Parkfield earthquake. Although the velocity contrasts also suggest bilateral rupture propagation for the 1966 Parkfield earthquake, the fault is creeping to the NW here, i.e., exhibiting velocity-strengthening behavior. Thus, it is not surprising that rupture propagated only SE during this event.
Spiral-shaped piezoelectric sensors for Lamb waves direction of arrival (DoA) estimation
De Marchi, L.; Testoni, N.; Marzani, A.
2018-04-01
A novel strategy to design piezoelectric sensors suited for direction of arrival (DoA) estimation of incoming Lamb waves is presented in this work. The designed sensor is composed by two piezoelectric patches (P1, P2) bonded on the structure to be inspected. In particular, by exploiting the Radon transform, the proposed procedure computes the shape of P2 given the shape of P1 so that the difference in time of arrival (DToA) of the Lamb waves at the two patches is linearly related to the DoA while being agnostic of the waveguide dispersion curves. With a dedicated processing procedure, the waveforms acquired from the two electrodes and digitized can be used to retrieve the DoA information. Numerical and experimental results show that DoA estimation performed by means of the proposed shaped transducers is extremely robust.
Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis
Park, Sunyoung; Ishii, Miaki
2018-06-01
A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.
Air gun near the sea floor as shear-wave source?
Drijkoningen, G.G.; Dieulangard, D.; Holicki, M.E.
2015-01-01
The feasibility of using an air gun near the sea floor as shear-wave source has been investigated. With an air gun near the sea floor, an evanescent P-wave in the water becomes a propagating S-wave in the sea floor, such that it seems that a pure shear-wave source has been used at the sea floor.
Surface waves on currents with arbitrary vertical shear
Smeltzer, Benjamin K.; Ellingsen, Simen Å.
2017-04-01
We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.
Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves
Hasanian, Mostafa; Lissenden, Cliff J.
2018-04-01
While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Ryuichi [Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561 (Japan)
2017-01-20
In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}( f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.
The effect of shear stress on solitary waves in arteries.
Demiray, H
1997-09-01
In the present work, we study the propagation of solitary waves in a prestressed thick walled elastic tube filled with an incompressible inviscid fluid. In order to include the geometric dispersion in the analysis the wall inertia and shear deformation effects are taken into account for the inner pressure-cross-sectional area relation. Using the reductive perturbation technique, the propagation of weakly non-linear waves in the long-wave approximation is examined. It is shown that, contrary to thin tube theories, the present approach makes it possible to have solitary waves even for a Mooney-Rivlin (M-R) material. Due to dependence of the coefficients of the governing Korteweg-deVries equation on initial deformation, the solution profile changes with inner pressure and the axial stretch. The variation of wave profiles for a class of elastic materials are depicted in graphic forms. As might be seen from these illustrations, with increasing thickness ratio, the profile of solitary wave is steepened for a M-R material but it is broadened for biological tissue.
Shear wave induced resonance elastography of spherical masses with polarized torsional waves
Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy
2012-03-01
Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.
Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave
Energy Technology Data Exchange (ETDEWEB)
Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)
1995-09-01
In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.
Bernard, Simon; Cloutier, Guy
2017-10-01
Inversion methods in shear wave elastography use simplifying assumptions to recover the mechanical properties of soft tissues. Consequently, these methods suffer from artifacts when applied to media containing strong stiffness contrasts, and do not provide a map of the viscosity. In this work, the shear wave field recorded inside and around an inclusion was used to estimate the viscoelastic properties of the inclusion and surrounding medium, based on an inverse problem approach assuming local homogeneity of both media. An efficient semi-analytical method was developed to model the scattering of an elastic wave by an irregular inclusion, based on a decomposition of the field by Bessel functions and on a decomposition of the boundaries as Fourier series. This model was validated against finite element modeling. Shear waves were experimentally induced by acoustic radiation force in soft tissue phantoms containing stiff and soft inclusions, and the displacement field was imaged at a high frame rate using plane wave imaging. A nonlinear least-squares algorithm compared the model to the experimental data and adjusted the geometrical and mechanical parameters. The estimated shear storage and loss moduli were in good agreement with reference measurements, as well as the estimated inclusion shape. This approach provides an accurate estimation of geometry and viscoelastic properties for a single inclusion in a homogeneous background in the context of radiation force elastography.
Explicit wave action conservation for water waves on vertically sheared flows
Quinn, Brenda; Toledo, Yaron; Shrira, Victor
2016-04-01
Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical
Nonlinear physics of shear Alfvén waves
International Nuclear Information System (INIS)
Zonca, Fulvio; Chen, Liu
2014-01-01
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results
Nonlinear physics of shear Alfvén waves
Zonca, Fulvio; Chen, Liu
2014-02-01
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These "nonlinear equilibria" or "phase-space zonal structures" dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.
Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F
2011-04-01
Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo
2009-01-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...
Coherent drift wave structures in sheared magnetic fields
International Nuclear Information System (INIS)
Morrison, P.J.; Horton, W.
1993-01-01
For the problem of calculating the coherent drift wave structures in sheared magnetic fields, the authors have found it useful to derive the governing nonlinear pde from a variational principle. The variational principle is based on the free energy functional F[var-phi] = ∫ V F(var-phi, ∇ var-phi, x)dx dy. The method is applied to the vortex with speed u derived in Su et al., given by ∇ 2 var-phi = (1 - v d /u) var-phi - S m 2 /u 2 (x - var-phi/u) (x - var-phi/2u) var-phi where space is measured in units of ρ s , var-phi = (eΦ/T e )(L n /ρ s ) and the magnetic shear parameter is S m . While the linearized problem (var-phi much-lt ux) describes the usual shear induced damping, nonlinear solutions with trapped flow (var-phi > ur 0 ) form nonlinear self-bound states, which are maxima of the free energy F. The authors discuss the analytic properties and the numerical procedures for solving these types of nonlinear pde's
Utility of Shear Wave Elastography for Diagnosing Chronic Autoimmune Thyroiditis
Directory of Open Access Journals (Sweden)
Takahiro Fukuhara
2015-01-01
Full Text Available The aims of this study were to evaluate the utility of shear wave elastography (SWE using acoustic radiation force impulse (ARFI for diagnosing chronic autoimmune thyroiditis (CAT and to verify the effect of fibrotic thyroid tissue on shear wave velocity (SWV. The subjects were 229 patients with 253 normal thyroid lobes (controls and 150 CAT lobes. The SWV for CAT (2.47 ± 0.57 m/s was significantly higher than that for controls (1.59 ± 0.41 m/s (P<0.001. The area under the receiver operating characteristics (ROC curve for CAT was 0.899, and the SWV cut-off value was 1.96 m/s. The sensitivity, specificity, and diagnostic accuracy were 87.4%, 78.7%, and 85.1%, respectively. Levels of anti-thyroperoxidase antibodies and thyroid isthmus thickness were correlated with tissue stiffness in CAT. However, there was no correlation between levels of anti-thyroglobulin antibodies and tissue stiffness. Quantitative SWE is useful for diagnosing CAT, and it is possible that SWE can be used to evaluate the degree of fibrosis in patients with CAT.
Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile
Directory of Open Access Journals (Sweden)
T.A. Sanny
2003-05-01
Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.
Quantitative shear wave ultrasound elastography: initial experience in solid breast masses
Evans, Andrew; Whelehan, Patsy; Thomson, Kim; McLean, Denis; Brauer, Katrin; Purdie, Colin; Jordan, Lee; Baker, Lee; Thompson, Alastair
2010-01-01
Introduction Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Methods Using the Aixplorer® ultrasound system (SuperSoni...
Towards a new technique to construct a 3D shear-wave velocity model based on converted waves
Hetényi, G.; Colavitti, L.
2017-12-01
A 3D model is essential in all branches of solid Earth sciences because geological structures can be heterogeneous and change significantly in their lateral dimension. The main target of this research is to build a crustal S-wave velocity structure in 3D. The currently popular methodologies to construct 3D shear-wave velocity models are Ambient Noise Tomography (ANT) and Local Earthquake Tomography (LET). Here we propose a new technique to map Earth discontinuities and velocities at depth based on the analysis of receiver functions. The 3D model is obtained by simultaneously inverting P-to-S converted waveforms recorded at a dense array. The individual velocity models corresponding to each trace are extracted from the 3D initial model along ray paths that are calculated using the shooting method, and the velocity model is updated during the inversion. We consider a spherical approximation of ray propagation using a global velocity model (iasp91, Kennett and Engdahl, 1991) for the teleseismic part, while we adopt Cartesian coordinates and a local velocity model for the crust. During the inversion process we work with a multi-layer crustal model for shear-wave velocity, with a flexible mesh for the depth of the interfaces. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter space. Depending on the studied area, this method can accommodate possible independent and complementary geophysical data (gravity, active seismics, LET, ANT, etc.), helping to reduce the non-linearity of the inversion. Our first focus of application is the Central Alps, where a 20-year long dataset of
Towards a new tool to develop a 3-D shear-wave velocity model from converted waves
Colavitti, Leonardo; Hetényi, György
2017-04-01
The main target of this work is to develop a new method in which we exploit converted waves to construct a fully 3-D shear-wave velocity model of the crust. A reliable 3-D model is very important in Earth sciences because geological structures may vary significantly in their lateral dimension. In particular, shear-waves provide valuable complementary information with respect to P-waves because they usually guarantee a much better correlation in terms of rock density and mechanical properties, reducing the interpretation ambiguities. Therefore, it is fundamental to develop a new technique to improve structural images and to describe different lithologies in the crust. In this study we start from the analysis of receiver functions (RF, Langston, 1977), which are nowadays largely used for structural investigations based on passive seismic experiments, to map Earth discontinuities at depth. The RF technique is also commonly used to invert for velocity structure beneath single stations. Here, we plan to combine two strengths of RF method: shear-wave velocity inversion and dense arrays. Starting from a simple 3-D forward model, synthetic RFs are obtained extracting the structure along a ray to match observed data. During the inversion, thanks to a dense stations network, we aim to build and develop a multi-layer crustal model for shear-wave velocity. The initial model should be chosen simple to make sure that the inversion process is not influenced by the constraints in terms of depth and velocity posed at the beginning. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999a, b), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter
DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS
Directory of Open Access Journals (Sweden)
S. A. Bornyakov
2016-01-01
Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of
Alternating currents and shear waves in viscous electronics
Semenyakin, M.; Falkovich, G.
2018-02-01
Strong interaction among charge carriers can make them move like viscous fluid. Here we explore alternating current (ac) effects in viscous electronics. In the Ohmic case, incompressible current distribution in a sample adjusts fast to a time-dependent voltage on the electrodes, while in the viscous case, momentum diffusion makes for retardation and for the possibility of propagating slow shear waves. We focus on specific geometries that showcase interesting aspects of such waves: current parallel to a one-dimensional defect and current applied across a long strip. We find that the phase velocity of the wave propagating along the strip respectively increases/decreases with the frequency for no-slip/no-stress boundary conditions. This is so because when the frequency or strip width goes to zero (alternatively, viscosity go to infinity), the wavelength of the current pattern tends to infinity in the no-stress case and to a finite value in a general case. We also show that for dc current across a strip with a no-stress boundary, there are only one pair of vortices, while there is an infinite vortex chain for all other types of boundary conditions.
Shear wave velocities of unconsolidated shallow sediments in the Gulf of Mexico
Lee, Myung W.
2013-01-01
Accurate shear-wave velocities for shallow sediments are important for a variety of seismic applications such as inver-sion and amplitude versus offset analysis. During the U.S. Department of Energy-sponsored Gas Hydrate Joint Industry Project Leg II, shear-wave velocities were measured at six wells in the Gulf of Mexico using the logging-while-drilling SonicScope acoustic tool. Because the tool measurement point was only 35 feet from the drill bit, the adverse effect of the borehole condition, which is severe for the shallow unconsolidated sediments in the Gulf of Mexico, was mini-mized and accurate shear-wave velocities of unconsolidated sediments were measured. Measured shear-wave velocities were compared with the shear-wave velocities predicted from the compressional-wave velocities using empirical formulas and the rock physics models based on the Biot-Gassmann theory, and the effectiveness of the two prediction methods was evaluated. Although the empirical equation derived from measured shear-wave data is accurate for predicting shear-wave velocities for depths greater than 500 feet in these wells, the three-phase Biot-Gassmann-theory -based theory appears to be optimum for predicting shear-wave velocities for shallow unconsolidated sediments in the Gulf of Mexico.
Current status of musculoskeletal application of shear wave elastography
Energy Technology Data Exchange (ETDEWEB)
Ryu, Jeong Ah [Dept. of Radiology, Hanyang University Guri Hospital, Hanyang University School of Medicine, Guri (Korea, Republic of); Jeong, Woo Kyoung [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)
2017-07-15
Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography.
Current status of musculoskeletal application of shear wave elastography
Directory of Open Access Journals (Sweden)
JeongAh Ryu
2017-07-01
Full Text Available Ultrasonography (US is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography.
Current status of musculoskeletal application of shear wave elastography
International Nuclear Information System (INIS)
Ryu, Jeong Ah; Jeong, Woo Kyoung
2017-01-01
Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography
Shear wave elastography for breast masses is highly reproducible.
Cosgrove, David O; Berg, Wendie A; Doré, Caroline J; Skyba, Danny M; Henry, Jean-Pierre; Gay, Joel; Cohen-Bacrie, Claude
2012-05-01
To evaluate intra- and interobserver reproducibility of shear wave elastography (SWE) for breast masses. For intraobserver reproducibility, each observer obtained three consecutive SWE images of 758 masses that were visible on ultrasound. 144 (19%) were malignant. Weighted kappa was used to assess the agreement of qualitative elastographic features; the reliability of quantitative measurements was assessed by intraclass correlation coefficients (ICC). For the interobserver reproducibility, a blinded observer reviewed images and agreement on features was determined. Mean age was 50 years; mean mass size was 13 mm. Qualitatively, SWE images were at least reasonably similar for 666/758 (87.9%). Intraclass correlation for SWE diameter, area and perimeter was almost perfect (ICC ≥ 0.94). Intraobserver reliability for maximum and mean elasticity was almost perfect (ICC = 0.84 and 0.87) and was substantial for the ratio of mass-to-fat elasticity (ICC = 0.77). Interobserver agreement was moderate for SWE homogeneity (κ = 0.57), substantial for qualitative colour assessment of maximum elasticity (κ = 0.66), fair for SWE shape (κ = 0.40), fair for B-mode mass margins (κ = 0.38), and moderate for B-mode mass shape (κ = 0.58), orientation (κ = 0.53) and BI-RADS assessment (κ = 0.59). SWE is highly reproducible for assessing elastographic features of breast masses within and across observers. SWE interpretation is at least as consistent as that of BI-RADS ultrasound B-mode features. • Shear wave ultrasound elastography can measure the stiffness of breast tissue • It provides a qualitatively and quantitatively interpretable colour-coded map of tissue stiffness • Intraobserver reproducibility of SWE is almost perfect while intraobserver reproducibility of SWE proved to be moderate to substantial • The most reproducible SWE features between observers were SWE image homogeneity and maximum elasticity.
Approximate Dispersion Relations for Waves on Arbitrary Shear Flows
Ellingsen, S. À.; Li, Y.
2017-12-01
An approximate dispersion relation is derived and presented for linear surface waves atop a shear current whose magnitude and direction can vary arbitrarily with depth. The approximation, derived to first order of deviation from potential flow, is shown to produce good approximations at all wavelengths for a wide range of naturally occuring shear flows as well as widely used model flows. The relation reduces in many cases to a 3-D generalization of the much used approximation by Skop (1987), developed further by Kirby and Chen (1989), but is shown to be more robust, succeeding in situations where the Kirby and Chen model fails. The two approximations incur the same numerical cost and difficulty. While the Kirby and Chen approximation is excellent for a wide range of currents, the exact criteria for its applicability have not been known. We explain the apparently serendipitous success of the latter and derive proper conditions of applicability for both approximate dispersion relations. Our new model has a greater range of applicability. A second order approximation is also derived. It greatly improves accuracy, which is shown to be important in difficult cases. It has an advantage over the corresponding second-order expression proposed by Kirby and Chen that its criterion of accuracy is explicitly known, which is not currently the case for the latter to our knowledge. Our second-order term is also arguably significantly simpler to implement, and more physically transparent, than its sibling due to Kirby and Chen.Plain Language SummaryIn order to answer key questions such as how the ocean surface affects the climate, erodes the coastline and transports nutrients, we must understand how waves move. This is not so easy when depth varying currents are present, as they often are in coastal waters. We have developed a modeling tool for accurately predicting wave properties in such situations, ready for use, for example, in the complex oceanographic computer models. Our
Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir
Energy Technology Data Exchange (ETDEWEB)
Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)
2016-04-18
Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.
Detection and monitoring of shear crack growth using S-P conversion of seismic waves
Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.
2017-12-01
A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress
On the interaction of deep water waves and exponential shear currents
Cheng, Jun; Cang, Jie; Liao, Shi-Jun
2009-05-01
A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil-Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.
International Nuclear Information System (INIS)
Boaga, J; Vignoli, G; Cassiani, G
2011-01-01
Inversion is a critical step in all geophysical techniques, and is generally fraught with ill-posedness. In the case of seismic surface wave studies, the inverse problem can lead to different equivalent subsoil models and consequently to different local seismic response analyses. This can have a large impact on an earthquake engineering design. In this paper, we discuss the consequences of non-uniqueness of surface wave inversion on seismic responses, with both numerical and experimental data. Our goal is to evaluate the consequences on common seismic response analysis in the case of different impedance contrast conditions. We verify the implications of inversion uncertainty, and consequently of data information content, on realistic local site responses. A stochastic process is used to generate a set of 1D shear wave velocity profiles from several specific subsurface models. All these profiles are characterized as being equivalent, i.e. their responses, in terms of a dispersion curve, are compatible with the uncertainty in the same surface wave data. The generated 1D shear velocity models are then subjected to a conventional one-dimensional seismic ground response analysis using a realistic input motion. While recent analyses claim that the consequences of surface wave inversion uncertainties are very limited, our test points out that a relationship exists between inversion confidence and seismic responses in different subsoils. In the case of regular and relatively smooth increase of shear wave velocities with depth, as is usual in sedimentary plains, our results show that the choice of a specific model among equivalent solutions strongly influences the seismic response. On the other hand, when the shallow subsoil is characterized by a strong impedance contrast (thus revealing a characteristic soil resonance period), as is common in the presence of a shallow bedrock, equivalent solutions provide practically the same seismic amplification, especially in the
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo
2009-06-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.
Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong-Ah
2014-01-01
To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.
Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa)
Energy Technology Data Exchange (ETDEWEB)
Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong Ah [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)
2014-03-15
To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.
Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa)
International Nuclear Information System (INIS)
Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong Ah
2014-01-01
To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.
Eccles, Jennifer D.; White, Robert S.; Christie, Philip A. F.
2011-07-01
Imaging challenges caused by highly attenuative flood basalt sequences have resulted in the understanding of volcanic rifted continental margins lagging behind that of non-volcanic rifted and convergent margins. Massive volcanism occurred during break-up at 70% of the passive margins bordering the Atlantic Ocean, the causes and dynamics of which are still debated. This paper shows results from traveltime tomography of compressional and converted shear wave arrivals recorded on 170 four-component ocean bottom seismometers along two North Atlantic continental margin profiles. This traveltime tomography was performed using two different approaches. The first, a flexible layer-based parameterisation, enables the quality control of traveltime picks and investigation of the crustal structure. The second, with a regularised grid-based parameterisation, requires correction of converted shear wave traveltimes to effective symmetric raypaths and allows exploration of the model space via Monte Carlo analyses. The velocity models indicate high lower-crustal velocities and sharp transitions in both velocity and Vp/Vs ratios across the continent-ocean transition. The velocities are consistent with established mixing trends between felsic continental crust and high magnesium mafic rock on both margins. Interpretation of the high quality seismic reflection profile on the Faroes margin confirms that this mixing is through crustal intrusion. Converted shear wave data also provide constraints on the sub-basalt lithology on the Faroes margin, which is interpreted as a pre-break-up Mesozoic to Paleocene sedimentary system intruded by sills.
Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves
International Nuclear Information System (INIS)
Biglari, H.; Ono, M.
1992-01-01
The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E x B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the pondermotive force. In either case, it is shown that modest amounts of absorbed power (∼ few 100 kW) are required to suppress turbulence in a region of several cm radial width
Estimation of viscoelastic parameters in Prony series from shear wave propagation
Energy Technology Data Exchange (ETDEWEB)
Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu [Department of Civil and Environmental Engineering, KAIST, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Hyoung-Ki; Choi, Kiwan [Health and Medical Equipment, Samsung Electronics, 1003 Daechi-dong, Gangnam-gu, Seoul 135-280 (Korea, Republic of)
2016-06-21
When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.
Zhu, Junxiao; Parvasi, Seyed Mohammad; Ho, Siu Chun Michael; Patil, Devendra; Ge, Maochen; Li, Hongnan; Song, Gangbing
2017-05-01
Lamb waves have great potential as a diagnostic tool in the application of structural health monitoring. Propagation properties of Lamb waves are affected by the state of the structure that the waves are traveling upon. Thus Lamb waves can carry information about the structure as they travel across a structure. However, the dispersive, multimodal and attenuation characteristics of Lamb waves make it difficult to determine the time of arrival of Lamb waves. To deal with these characteristics, an innovative method to automatically determine the time of arrival for impact-induced Lamb waves without human intervention is proposed in this paper. Lead zirconate titanate sensors mounted on the surface of an aluminum plate were used to measure the Lamb waves excited by an impact. The time of arrival was determined based on wavelet decomposition, Hilbert transform and statistics (Grubbs’ test and maximum likelihood estimation). Both of numerical analysis and physical measurements have verified the accuracy of this method for impacts on an aluminum plate.
High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)
Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.
2016-03-01
Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.
3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.
Orescanin, Marko; Wang, Yue; Insana, Michael
2011-02-01
The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.
Energy Technology Data Exchange (ETDEWEB)
Choi, Young Chul; Park, Tae Jin [KAERI, Daejeon (Korea, Republic of)
2016-05-15
Source localization in a dispersive medium has been carried out based on the time-of-arrival-differences (TOADs) method: a triangulation method and a circle intersection technique. Recent signal processing advances have led to calculation TOAD using a joint time-frequency analysis of the signal, where a short-time Fourier transform(STFT) and wavelet transform can be included as popular algorithms. The time-frequency analysis method is able to provide various information and more reliable results such as seismic-attenuation estimation, dispersive characteristics, a wave mode analysis, and temporal energy distribution of signals compared with previous methods. These algorithms, however, have their own limitations for signal processing. In this paper, the effective use of proposed algorithm in detecting crack wave arrival time and source localization in rock masses suggest that the evaluation and real-time monitoring on the intensity of damages related to the tunnels or other underground facilities is possible. Calculation of variances resulted from moving windows as a function of their size differentiates the signature from noise and from crack signal, which lead us to determine the crack wave arrival time. Then, the source localization is determined to be where the variance of crack wave velocities from real and virtual crack localization becomes a minimum. To validate our algorithm, we have performed experiments at the tunnel, which resulted in successful determination of the wave arrival time and crack localization.
Quantifying spasticity in individual muscles using shear wave elastography
Directory of Open Access Journals (Sweden)
Sarah F. Eby, BS
2017-06-01
Full Text Available Spasticity is common following stroke; however, high subject variability and unreliable measurement techniques limit research and treatment advances. Our objective was to investigate the use of shear wave elastography (SWE to characterize the spastic reflex in the biceps brachii during passive elbow extension in an individual with spasticity. The patient was a 42-year-old right-hand-dominant male with history of right middle cerebral artery-distribution ischemic infarction causing spastic left hemiparesis. We compared Fugl-Meyer scores (numerical evaluation of motor function, sensation, motion, and pain, Modified Ashworth scores (most commonly used clinical assessment of spasticity, and SWE measures of bilateral biceps brachii during passive elbow extension. We detected a catch that featured markedly increased stiffness of the brachialis muscle during several trials of the contralateral limb, especially at higher extension velocities. SWE was able to detect velocity-related increases in stiffness with extension of the contralateral limb, likely indicative of the spastic reflex. This study offers optimism that SWE can provide a rapid, real-time, quantitative technique that is readily accessible to clinicians for evaluating spasticity.
[Assessment of plantar fasciitis using shear wave elastography].
Zhang, Lining; Wan, Wenbo; Zhang, Lihai; Xiao, Hongyu; Luo, Yukun; Fei, Xiang; Zheng, Zhixin; Tang, Peifu
2014-02-01
To assess the stiffness and thickness of the plantar fascia using shear wave elastography (SWE) in healthy volunteers of different ages and in patients with plantar fasciitis. The bilateral feet of 30 healthy volunteers and 23 patients with plantar fasciitis were examined with SWE. The plantar fascia thickness and elasticity modulus value were measured at the insertion of the calcaneus and at 1 cm from the insertion. The elderly volunteers had a significantly greater plantar fascia thickness measured using conventional ultrasound (P=0.005) and a significantly lower elasticity modulus value than the young volunteers (P=0.000). The patients with fasciitis had a significantly greater plantar fascia thickness (P=0.001) and a lower elasticity modulus value than the elderly volunteers (P=0.000). The elasticity modulus value was significantly lower at the calcaneus insertion than at 1 cm from the insertion in patients with fasciitis (P=0.000) but showed no significantly difference between the two points in the elderly or young volunteers (P=0.172, P=0.126). SWE allows quantitative assessment of the stiffness of the plantar fascia, which decreases with aging and in patients with plantar fasciitis.
A Decade of Shear-Wave Splitting Observations in Alaska
Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.
2010-12-01
Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.
Gravitational, shear and matter waves in Kantowski-Sachs cosmologies
Energy Technology Data Exchange (ETDEWEB)
Keresztes, Zoltán; Gergely, László Á. [Department of Theoretical Physics, University of Szeged, Tisza Lajos krt 84-86, Szeged 6720 (Hungary); Forsberg, Mats; Bradley, Michael [Department of Physics, UmeåUniversity (Sweden); Dunsby, Peter K.S., E-mail: zkeresztes@titan.physx.u-szeged.hu, E-mail: forsberg.mats.a.b@gmail.com, E-mail: michael.bradley@physics.umu.se, E-mail: peter.dunsby@uct.ac.za, E-mail: gergely@physx.u-szeged.hu [Astrophysics, Cosmology and Gravity Centre (ACGC), University of Cape Town, Rondebosch 7701, Cape Town (South Africa)
2015-11-01
A general treatment of vorticity-free, perfect fluid perturbations of Kantowski-Sachs models with a positive cosmological constant are considered within the framework of the 1+1+2 covariant decomposition of spacetime. The dynamics is encompassed in six evolution equations for six harmonic coefficients, describing gravito-magnetic, kinematic and matter perturbations, while a set of algebraic expressions determine the rest of the variables. The six equations further decouple into a set of four equations sourced by the perfect fluid, representing forced oscillations and two uncoupled damped oscillator equations. The two gravitational degrees of freedom are represented by pairs of gravito-magnetic perturbations. In contrast with the Friedmann case one of them is coupled to the matter density perturbations, becoming decoupled only in the geometrical optics limit. In this approximation, the even and odd tensorial perturbations of the Weyl tensor evolve as gravitational waves on the anisotropic Kantowski-Sachs background, while the modes describing the shear and the matter density gradient are out of phase dephased by π /2 and share the same speed of sound.
Estimation of shear wave speed in the human uterine cervix.
Carlson, L C; Feltovich, H; Palmeri, M L; Dahl, J J; Munoz del Rio, A; Hall, T J
2014-04-01
To explore spatial variability within the cervix and the sensitivity of shear wave speed (SWS) to assess softness/stiffness differences in ripened (softened) vs unripened tissue. We obtained SWS estimates from hysterectomy specimens (n = 22), a subset of which were ripened (n = 13). Multiple measurements were made longitudinally along the cervical canal on both the anterior and posterior sides of the cervix. Statistical tests of differences in the proximal vs distal, anterior vs posterior and ripened vs unripened cervix were performed with individual two-sample t-tests and a linear mixed model. Estimates of SWS increase monotonically from distal to proximal longitudinally along the cervix, they vary in the anterior compared to the posterior cervix and they are significantly different in ripened vs unripened cervical tissue. Specifically, the mid position SWS estimates for the unripened group were 3.45 ± 0.95 m/s (anterior; mean ± SD) and 3.56 ± 0.92 m/s (posterior), and 2.11 ± 0.45 m/s (anterior) and 2.68 ± 0.57 m/s (posterior) for the ripened group (P < 0.001). We propose that SWS estimation may be a valuable research and, ultimately, diagnostic tool for objective quantification of cervical stiffness/softness. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.
Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao
2015-01-01
Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of...
Third harmonic generation of shear horizontal guided waves propagation in plate-like structures
Energy Technology Data Exchange (ETDEWEB)
Li, Wei Bin [School of Aerospace Engineering, Xiamen University, Xiamen (China); Xu, Chun Guang [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China); Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)
2016-04-15
The use of nonlinear ultrasonics wave has been accepted as a promising tool for monitoring material states related to microstructural changes, as it has improved sensitivity compared to conventional non-destructive testing approaches. In this paper, third harmonic generation of shear horizontal guided waves propagating in an isotropic plate is investigated using the perturbation method and modal analysis approach. An experimental procedure is proposed to detect the third harmonics of shear horizontal guided waves by electromagnetic transducers. The strongly nonlinear response of shear horizontal guided waves is measured. The accumulative growth of relative acoustic nonlinear response with an increase of propagation distance is detected in this investigation. The experimental results agree with the theoretical prediction, and thus providing another indication of the feasibility of using higher harmonic generation of electromagnetic shear horizontal guided waves for material characterization.
Directory of Open Access Journals (Sweden)
Z. Hashemiyan
2016-01-01
Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.
Nonlinear shear wave in a non Newtonian visco-elastic medium
Energy Technology Data Exchange (ETDEWEB)
Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)
2012-06-15
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.
International Nuclear Information System (INIS)
Grasland-Mongrain, Pol; Miller-Jolicoeur, Erika; Cloutier, Guy; Tang, An; Catheline, Stefan
2016-01-01
This study presents the first observation of shear waves induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitudes of 5 and 0.5 μm were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method. (paper)
Grasland-Mongrain, Pol; Miller-Jolicoeur, Erika; Tang, An; Catheline, Stefan; Cloutier, Guy
2016-03-01
This study presents the first observation of shear waves induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitudes of 5 and 0.5 μm were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.
Packo, P.; Staszewski, W. J.; Uhl, T.
2016-01-01
Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808
Upper Mantle Shear Wave Structure Beneath North America From Multi-mode Surface Wave Tomography
Yoshizawa, K.; Ekström, G.
2008-12-01
The upper mantle structure beneath the North American continent has been investigated from measurements of multi-mode phase speeds of Love and Rayleigh waves. To estimate fundamental-mode and higher-mode phase speeds of surface waves from a single seismogram at regional distances, we have employed a method of nonlinear waveform fitting based on a direct model-parameter search using the neighbourhood algorithm (Yoshizawa & Kennett, 2002). The method of the waveform analysis has been fully automated by employing empirical quantitative measures for evaluating the accuracy/reliability of estimated multi-mode phase dispersion curves, and thus it is helpful in processing the dramatically increasing numbers of seismic data from the latest regional networks such as USArray. As a first step toward modeling the regional anisotropic shear-wave velocity structure of the North American upper mantle with extended vertical resolution, we have applied the method to long-period three-component records of seismic stations in North America, which mostly comprise the GSN and US regional networks as well as the permanent and transportable USArray stations distributed by the IRIS DMC. Preliminary multi-mode phase-speed models show large-scale patterns of isotropic heterogeneity, such as a strong velocity contrast between the western and central/eastern United States, which are consistent with the recent global and regional models (e.g., Marone, et al. 2007; Nettles & Dziewonski, 2008). We will also discuss radial anisotropy of shear wave speed beneath North America from multi-mode dispersion measurements of Love and Rayleigh waves.
Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer
Messiter, A. F.
1995-01-01
For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.
Shear wave sonoelastography in infants with congenital muscular torticollis.
Park, Gi Young; Kwon, Dong Rak; Kwon, Dae Gil
2018-02-01
Congenital muscular torticollis (CMT) is characterized by shortening or excessive contraction of the sternocleidomastoid muscle (SCM). The main purpose of this study was to evaluate the feasibility of quantifying SCM stiffness using acoustic radiation force impulse (ARFI) sonoelastography in infants with CMT. Twenty infants with an SCM thickness greater than 10 mm with or without involvement of the entire SCM length (limitation of neck rotation passive range of motion [PROM]: group 1S >30°, group 1M = 15°-30°) and 12 infants with an SCM thickness smaller than 10 mm with or without involvement of any part of SCM (group 2) were included. The SCM thickness was measured using real time B-mode ultrasound, and the local SCM shear wave velocity (SWV) and subcutaneous fat layer using ARFI sonoelastography. The neck rotation PROM was significantly greater in group 1S (36.5° ± 5.3°) than in group 1M (18.8° ± 4.9°; P SCM in the affected side (2.96 ± 0.99 m/s) was significantly higher than that in the unaffected side (1.50 ± 0.30 m/s; P SCM was significantly higher in group 1S than in group 1M. There was significant correlation between the degree of PROM deficit of neck rotation and the SWV of the affected SCM (r = .75; P SCM in relationship to the limitation of neck rotation PROM in infants with CMT, if there was no difference in SCM thickness among infants.
Factors influencing the stiffness of fibroadenomas at shear wave elastography
International Nuclear Information System (INIS)
Elseedawy, M.; Whelehan, P.; Vinnicombe, S.; Thomson, K.; Evans, A.
2016-01-01
Aim: To identify which features of fibroadenomas are associated with false-positive findings at shear wave elastography (SWE). Materials and methods: A total of 151 patients with histologically confirmed fibroadenomata were identified from a prospective database, from a single breast unit. The following features were assessed by two observers who were unaware of the SWE findings: patient age, grey-scale ultrasound lesion diameter (<15 or ≥15 mm), distance from the lesion to skin, composition of surrounding tissue (fatty, mixed or dense), and source of referral (screening or symptomatic). Statistical analysis was carried out using the chi-square test. Results: A statistically significant positive association was found between grey-scale ultrasound lesion size and lesion stiffness. Twenty-nine of 70 (41%) lesions ≥15 mm were stiff, versus 10 of 81 (12%) <15 mm (p=0.001). Patient age, distance from the lesion to skin, make-up of surrounding tissue, and source were not significantly associated with stiffness. Conclusion: Fibroadenomas giving false-positive SWE results tend to be larger in size than those that do not. More compression of adjacent normal tissue is assumed to be the cause of the present findings. As previous studies have shown that large cancers tend to be stiffer than smaller cancers, it may be appropriate to vary the quantitative cut-off value used for benign/malignant differentiation in SWE according to lesion size. - Highlights: • Fibroadenomas giving false positive SWE results tend to be larger in size. • More compression of adjacent normal tissue is assumed to be the cause of our findings. • The age of the patient is not related to fibroadenoma stiffness.
Shear-wave splitting observations of mantle anisotropy beneath Alaska
Bellesiles, A. K.; Christensen, D. H.; Entwistle, E.; Litherland, M.; Abers, G. A.; Song, X.
2009-12-01
Observations of seismic anisotropy were obtained from three different PASSCAL broadband experiments throughout Alaska, using shear-wave splitting from teleseismic SKS phases. The MOOS (Multidisciplinary Observations Of Subduction), BEAAR (Broadband Experiment Across the Alaska Range), and ARCTIC (Alaska Receiving Cross-Transects for the Inner Core) networks were used along with selected permanent broadband stations operated by AEIC (Alaska Earthquake Information Center) to produce seismic anisotropy results for the state of Alaska along a north south transect from the active subduction zone in the south, through continental Alaska, to the passive margin in the north. The BEAAR network is in-between the ARCTIC and MOOS networks above the subducting Pacific Plate and mantle wedge and shows a tight ~90 degree rotation of anisotropy above the 70km contour of the subducting plate. The southern stations in BEAAR yield anisotropy results that are subparallel to the Pacific Plate motion as it subducts under North America. These stations have an average fast direction of -45 degrees and 1.03 seconds of delay on average. The MOOS network in south central Alaska yielded similar results with an average fast direction of -30 degrees and delay times of .9 seconds. In the north portion of the BEAAR network the anisotropy is along strike of the subduction zone and has an average fast direction of 27 degrees with an average delay time of 1.4 seconds, although the delay times above the mantle wedge range from 1 to 2.5 seconds and are directly correlated to the length of ray path in the mantle wedge. This general trend NE/SW is seen in the ARCTIC stations to the north although the furthest north stations are oriented more NNE compared to those in BEAAR. The average fast direction for the ARCTIC network is 40 degrees with an average delay time of 1.05 seconds. These results show two distinct orientations of anisotropy in Alaska separated by the subducting Pacific Plate.
Tripolar vortices of dust-drift waves in dusty plasma with shear flow
International Nuclear Information System (INIS)
Chen Yinhua; Wang Ge
2002-01-01
Nonlinear equations governing dust-drift waves in magnetized dusty plasma with transverse shear flow are derived. For the specific profiles of flow and the plasma equilibrium density, a new type of solution in the form of tripolar vortices is found. The results show that the peak magnitude of tripolar vortices increases with increasing shear intensity and dust content
Nonlinear inertial Alfven waves in plasmas with sheared magnetic field and flow
International Nuclear Information System (INIS)
Chen Yinhua; Wang Ge; Tan Liwei
2004-01-01
Nonlinear equations describing inertial Alfven waves in plasmas with sheared magnetic field and flow are derived. For some specific parameters chosen, authors have found a new type of electromagnetic coherent structures in the tripolar vortex-like form
Energy Technology Data Exchange (ETDEWEB)
Suthaker, N.; Tweedie, R. [Thurber Engineering Ltd., Edmonton, AB (Canada)
2009-07-01
Shear wave velocity measurements are an integral part of geotechnical studies for major structures and are an important tool in their design for site specific conditions such as site-specific earthquake response. This paper reported on a study in which shear wave velocities were measured at a proposed petrochemical plant site near Edmonton, Alberta. The proposed site is underlain by lacustrine clay, glacial till and upper Cretaceous clay shale and sandstone bedrock. The most commonly used methods for determining shear wave velocity include crosshole seismic tests, downhole seismic tests, and seismic cone penetration tests (SCPT). This paper presented the results of all 3 methods used in this study and provided a comparison of the various test methods and their limitations. The crosshole test results demonstrated a common trend of increasing shear wave velocity with depth to about 15 m, below which the velocities remained relatively constant. An anomaly was noted at one site, where the shear wave velocity was reduced at a zone corresponding to clay till containing stiff high plastic clay layers. The field study demonstrated that reasonable agreement in shear wave velocity measurements can be made using crosshole, downhole and seismic tests in the same soil conditions. The National Building Code states that the shear wave velocity is the fundamental method for determining site classification, thus emphasizing the importance of obtaining shear wave velocity measurements for site classification. It was concluded that an SCPT program can be incorporated into the field program without much increase in cost and can be supplemented by downhole or crosshole techniques. 5 refs., 2 tabs., 10 figs.
Sketches of a hammer-impact, spiked-base, shear-wave source
Hasbrouck, W.P.
1983-01-01
Generation of shear waves in shallow seismic investigations (those to depths usually less than 100 m) can be accomplished by horizontally striking with a hammer either the end of a wood plank or metal structure embedded at the ground surface. The dimensioned sketches of this report are of a steel, hammer-impact, spiked-base, shear-wave source. It has been used on outcrops and in a desert environment and for conducting experiments on the effect of rotating source direction.
Takata, Tomoaki; Koda, Masahiko; Sugihara, Takaaki; Sugihara, Shinobu; Okamoto, Toshiaki; Miyoshi, Kenichi; Matono, Tomomitsu; Hosho, Keiko; Mae, Yukari; Iyama, Takuji; Fukui, Takeaki; Fukuda, Satoko; Munemura, Chishio; Isomoto, Hajime
2016-12-01
Acoustic radiation force impulse is a noninvasive method for evaluating tissue elasticity on ultrasound. Renal shear wave velocity measured by this technique has not been fully investigated in patients with renal disease. The aim of the present study was to compare renal shear wave velocity in end-stage renal disease patients and that in patients without chronic kidney disease and to investigate influencing factors. Renal shear wave velocities were measured in 59 healthy young subjects (control group), 31 subjects without chronic kidney disease (non-CKD group), and 39 end-stage renal disease patients (ESRD group). Each measurement was performed 10 times at both kidneys, and the mean value of eight of 10 measurements, excluding the maximum and minimum values, was compared. Renal shear wave velocity could be measured in all subjects. Renal shear wave velocity in the control group was higher than in the non-CKD group and in the ESRD group, and no difference was found between the non-CKD group and the ESRD group. Age and depth were negatively correlated to the renal shear wave velocity. In multiple regression analysis, age and depth were independent factors for renal shear wave velocity, while renal impairment was not. There was no difference between the non-CKD group and the ESRD group, even when ages were matched and depth was adjusted. Renal shear wave velocity was not associated with advanced renal impairment. However, it reflected alteration of renal aging, and this technique may be useful to detect renal impairment in the earlier stages. © 2015 Asian Pacific Society of Nephrology.
Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao
2014-01-01
Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave
Li, Peng; Thurber, Clifford
2018-06-01
We derive new Rayleigh wave group velocity models and a 3-D shear wave velocity model of the upper crust in the San Francisco Bay region using an adaptive grid ambient noise tomography algorithm and 6 months of continuous seismic data from 174 seismic stations from multiple networks. The resolution of the group velocity models is 0.1°-0.2° for short periods (˜3 s) and 0.3°-0.4° for long periods (˜10 s). The new shear wave velocity model of the upper crust reveals a number of important structures. We find distinct velocity contrasts at the Golden Gate segment of the San Andreas Fault, the West Napa Fault, central part of the Hayward Fault and southern part of the Calaveras Fault. Low shear wave velocities are mainly located in Tertiary and Quaternary basins, for instance, La Honda Basin, Livermore Valley and the western and eastern edges of Santa Clara Valley. Low shear wave velocities are also observed at the Sonoma volcanic field. Areas of high shear wave velocity include the Santa Lucia Range, the Gabilan Range and Ben Lomond Plutons, and the Diablo Range, where Franciscan Complex or Silinian rocks are exposed.
Velocity shear generated Alfven waves in electron-positron plasmas
International Nuclear Information System (INIS)
Rogava, A.D.; Berezhiani, V.I.; Mahajan, S.M.
1996-01-01
Linear MHD modes in cold, nonrelativistic electron-positron plasma shear flow are considered. The general set of differential equations, describing the evolution of perturbations in the framework of the nonmodal approach is derived. It is found, that under certain circumstances, the compressional and shear Alfven perturbations may exhibit large transient growth fuelled by the mean kinetic energy of the shear flow. The velocity shear also induces mode coupling allowing the exchange of energy as well as the possibility of a strong mutual transformation of these modes into each other. The compressional Alfven mode may extract the energy of the mean flow and transfer it to the shear Alfven mode via this coupling. The relevance of these new physical effects to provide a better understanding of the laboratory e + e - plasma is emphasized. It is speculated that the shear-induced effects in the electron-positron plasmas could also help solve some astrophysical puzzles (e.g., the generation of pulsar radio emission). Since most astrophysical plasma are relativistic, it is shown that the major results of the study remain valid for weakly sheared relativistic plasmas. (author). 21 refs, 4 figs
Modelling shear wave splitting observations from Wellington, New Zealand
Marson-Pidgeon, Katrina; Savage, Martha K.
2004-05-01
Frequency-dependent anisotropy was previously observed at the permanent broad-band station SNZO, South Karori, Wellington, New Zealand. This has important implications for the interpretation of measurements in other subduction zones and hence for our understanding of mantle flow. This motivated us to make further splitting measurements using events recorded since the previous study and to develop a new modelling technique. Thus, in this study we have made 67 high-quality shear wave splitting measurements using events recorded at the SNZO station spanning a 10-yr period. This station is the only one operating in New Zealand for longer than 2 yr. Using a combination of teleseismic SKS and S phases and regional ScS phases provides good azimuthal coverage, allowing us to undertake detailed modelling. The splitting measurements indicate that in addition to the frequency dependence observed previously at this station, there are also variations with propagation and initial polarization directions. The fast polarization directions range between 2° and 103°, and the delay times range between 0.75 s and 3.05 s. These ranges are much larger than observed previously at SNZO or elsewhere in New Zealand. Because of the observed frequency dependence we measure the dominant frequency of the phase used to make the splitting measurement, and take this into account in the modelling. We fit the fast polarization directions fairly well with a two-layer anisotropic model with horizontal axes of symmetry. However, such a model does not fit the delay times or explain the frequency dependence. We have developed a new inversion method which allows for an inclined axis of symmetry in each of the two layers. However, applying this method to SNZO does not significantly improve the fit over a two-layer model with horizontal symmetry axes. We are therefore unable to explain the frequency dependence or large variation in delay time values with multiple horizontal layers of anisotropy, even
Shear wave elastography in medullary thyroid carcinoma diagnostics
Directory of Open Access Journals (Sweden)
Katarzyna Dobruch-Sobczak
2015-12-01
Full Text Available Shear wave elastography (SWE is a modern method for the assessment of tissue stiffness. There has been a growing interest in the use of this technique for characterizing thyroid focal lesions, including preoperative diagnostics. Aim: The aim of the study was to assess the clinical usefulness of SWE in medullary thyroid carcinoma (MTC diagnostics. Materials and methods: A total of 169 focal lesions were identifi ed in the study group (139 patients, including 6 MTCs in 4 patients (mean age: 45 years. B-mode ultrasound and SWE were performed using Aixplorer (SuperSonic, Aix-en-Provence, with a 4–15 MHz linear probe. The ultrasound was performed to assess the echogenicity and echostructure of the lesions, their margin, the halo sign, the height/width ratio (H/W ratio, the presence of calcifi cations and the vascularization pattern. This was followed by an analysis of maximum and mean Young’s (E modulus values for MTC (EmaxLR, EmeanLR and the surrounding thyroid tissues (EmaxSR, EmeanSR, as well as mean E-values (EmeanLRz for 2 mm region of interest in the stiffest zone of the lesion. The lesions were subject to pathological and/or cytological evaluation. Results: The B-mode assessment showed that all MTCs were hypoechogenic, with no halo sign, and they contained micro- and/ or macrocalcifi cations. Ill-defi ned lesion margin were found in 4 out of 6 cancers; 4 out of 6 cancers had a H/W ratio > 1. Heterogeneous echostructure and type III vascularity were found in 5 out of 6 lesions. In the SWE, the mean value of EmaxLR for all of the MTCs was 89.5 kPa and (the mean value of EmaxSR for all surrounding tissues was 39.7 kPa Mean values of EmeanLR and EmeanSR were 34.7 kPa and 24.4 kPa, respectively. The mean value of EmeanLRz was 49.2 kPa. Conclusions: SWE showed MTCs as stiffer lesions compared to the surrounding tissues. The lesions were qualifi ed for fi ne needle aspiration biopsy based on B-mode assessment. However, the diagnostic algorithm
Shear wave elastography in medullary thyroid carcinoma diagnostics.
Dobruch-Sobczak, Katarzyna; Gumińska, Anna; Bakuła-Zalewska, Elwira; Mlosek, Krzysztof; Słapa, Rafał Z; Wareluk, Paweł; Krauze, Agnieszka; Ziemiecka, Agnieszka; Migda, Bartosz; Jakubowski, Wiesław; Dedecjus, Marek
2015-12-01
Shear wave elastography (SWE) is a modern method for the assessment of tissue stiffness. There has been a growing interest in the use of this technique for characterizing thyroid focal lesions, including preoperative diagnostics. The aim of the study was to assess the clinical usefulness of SWE in medullary thyroid carcinoma (MTC) diagnostics. A total of 169 focal lesions were identified in the study group (139 patients), including 6 MTCs in 4 patients (mean age: 45 years). B-mode ultrasound and SWE were performed using Aixplorer (SuperSonic, Aix-en-Provence), with a 4-15 MHz linear probe. The ultrasound was performed to assess the echogenicity and echostructure of the lesions, their margin, the halo sign, the height/width ratio (H/W ratio), the presence of calcifications and the vascularization pattern. This was followed by an analysis of maximum and mean Young's (E) modulus values for MTC (EmaxLR, EmeanLR) and the surrounding thyroid tissues (EmaxSR, EmeanSR), as well as mean E-values (EmeanLRz) for 2 mm region of interest in the stiffest zone of the lesion. The lesions were subject to pathological and/or cytological evaluation. The B-mode assessment showed that all MTCs were hypoechogenic, with no halo sign, and they contained micro- and/ or macrocalcifications. Ill-defined lesion margin were found in 4 out of 6 cancers; 4 out of 6 cancers had a H/W ratio > 1. Heterogeneous echostructure and type III vascularity were found in 5 out of 6 lesions. In the SWE, the mean value of EmaxLR for all of the MTCs was 89.5 kPa and (the mean value of EmaxSR for all surrounding tissues was) 39.7 kPa Mean values of EmeanLR and EmeanSR were 34.7 kPa and 24.4 kPa, respectively. The mean value of EmeanLRz was 49.2 kPa. SWE showed MTCs as stiffer lesions compared to the surrounding tissues. The lesions were qualified for fine needle aspiration biopsy based on B-mode assessment. However, the diagnostic algorithm for MTC is based on the measurement of serum calcitonin levels, B
Anomalous transport due to shear-Alfven waves
International Nuclear Information System (INIS)
Lee, W.W.; Chance, M.S.; Okuda, H.
1980-10-01
The behavior of shear-Alfven eigenmodes and the accompanied anomalous transport have been investigated. In the particle simulation, equilibrium thermal fluctuations associated with the eigenmodes have been observed to nullify the zeroth-order shear near the rational surface through the induced second-order eddy current, and, in turn, give rise to the formation of magnetic islands which cause rapid electron energy transport in the region. The theoretical verification of the observed behavior is discussed
Lo, Kam W; Ferguson, Brian G
2012-11-01
The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.
Determination of Shear Properties in the Upper Seafloor Using Seismo-acoustic Interface Waves
Energy Technology Data Exchange (ETDEWEB)
Frivik, Svein Arne
1998-12-31
This thesis develops methods for recording and analysis of seismo-acoustic interface waves for determination of shear wave velocity as a function of depth and includes this in standard refraction seismic surveying. It investigates different techniques for estimation of dispersion characteristics of the interface waves and demonstrates that multi sensor spectral estimation techniques improve the dispersion estimates. The dispersion estimate of the fundamental interface wave mode is used as input to an object function for a model based linearized inversion. The inversion scheme provides an estimate of the shear wave velocity as a function of depth. Three field surveys were performed. Data were acquired with a standard bottom deployed refraction seismic hydrophone array containing 24 or 48 receivers, with a receiver spacing of 2.5 m. Explosive charges were used as sources. The recording time was increased from 0.5 to 8 s, compared to standard refraction seismic surveys. Shear wave velocity and shear modulus estimates were obtained from all the sites. At one of the sites, geotechnically obtained shear wave parameters were available, and a comparison between the two techniques were performed. the result of the comparison is promising and shows the potential of the technique. Although the result of applying the processing scheme to all three data sets is promising, it appears that survey parameters, like source-array spacing, receiver spacing and type of source might have been optimized for better performance. Based on this limitation, a new processing scheme and a new array configuration is proposed for surveys which integrates the recording and processing of both compressional waves and shear waves. 89 refs., 65 refs., 19 tabs.
Ianculescu, Victor; Ciolovan, Laura Maria; Dunant, Ariane; Vielh, Philippe; Mazouni, Chafika; Delaloge, Suzette; Dromain, Clarisse; Blidaru, Alexandru; Balleyguier, Corinne
2014-05-01
To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann-Whitney U test, pmasses, we reached overall levels of 92% sensitivity and 72.9% specificity. VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas
Mir, Zahid; Jamil, M.; Rasheed, A.; Asif, M.
2017-09-01
The dust shear Alfvén wave is studied in three species dusty quantum plasmas. The quantum effects are incorporated through the Fermi degenerate pressure, tunneling potential, and in particular the exchange-correlation potential. The significance of exchange-correlation potential is pointed out by a graphical description of the dispersion relation, which shows that the exchange potential magnifies the phase speed. The low-frequency shear Alfvén wave is studied while considering many variables. The shear Alfvén wave gains higher phase speed at the range of small angles for the upper end of the wave vector spectrum. The increasing dust charge and the external magnetic field reflect the increasing tendency of phase speed. This study may explain many natural mechanisms associated with long wavelength radiations given in the summary.
Directory of Open Access Journals (Sweden)
Philippe Schnurle
2006-01-01
Full Text Available A 2.5-D combined seismic reflection and refraction survey has been conducted in the accretionary complex offshore of southwestern Taiwan where BSRs (Bottom Simulating Reflectors are highly concentrated and geochemical signals for the presence of gas hydrate are strong. In this study, we perform velocity analysis of the 6 4-component OBS (Ocean-Bottom Seismometer records along the southernmost transect of this seismic experiment. We utilize 3 independent methods in order to accurately determine the acoustic and shear-wave velocities of the sediments: 1-D Root Mean Square (RMS analysis of the P-P and P-S reflected events on individual datumed components, 2-D inversion of the P-P and P-S reflected and refracted events along the in-line transect, and 3-D acoustic inversion of the first arrivals. The principal sources of bias in the determination of the velocities are the 3-dimentional nature of the topography and the complexity of the underlying structures. The three methods result in consistent velocity profiles. Rapid lateral and vertical variations of the velocities are observed. We then investigate the large scale gas hydrate content through rock physic modeling: at the vertical of each OBS, shear-waves velocities are utilized to estimate the water-filled porosities, and the acoustic velocities predicted for a set of gas hydrate, quartz and clay contents are compared to the observed profiles.
Prediction of shear wave velocity using empirical correlations and artificial intelligence methods
Maleki, Shahoo; Moradzadeh, Ali; Riabi, Reza Ghavami; Gholami, Raoof; Sadeghzadeh, Farhad
2014-06-01
Good understanding of mechanical properties of rock formations is essential during the development and production phases of a hydrocarbon reservoir. Conventionally, these properties are estimated from the petrophysical logs with compression and shear sonic data being the main input to the correlations. This is while in many cases the shear sonic data are not acquired during well logging, which may be for cost saving purposes. In this case, shear wave velocity is estimated using available empirical correlations or artificial intelligent methods proposed during the last few decades. In this paper, petrophysical logs corresponding to a well drilled in southern part of Iran were used to estimate the shear wave velocity using empirical correlations as well as two robust artificial intelligence methods knows as Support Vector Regression (SVR) and Back-Propagation Neural Network (BPNN). Although the results obtained by SVR seem to be reliable, the estimated values are not very precise and considering the importance of shear sonic data as the input into different models, this study suggests acquiring shear sonic data during well logging. It is important to note that the benefits of having reliable shear sonic data for estimation of rock formation mechanical properties will compensate the possible additional costs for acquiring a shear log.
Prediction of shear wave velocity using empirical correlations and artificial intelligence methods
Directory of Open Access Journals (Sweden)
Shahoo Maleki
2014-06-01
Full Text Available Good understanding of mechanical properties of rock formations is essential during the development and production phases of a hydrocarbon reservoir. Conventionally, these properties are estimated from the petrophysical logs with compression and shear sonic data being the main input to the correlations. This is while in many cases the shear sonic data are not acquired during well logging, which may be for cost saving purposes. In this case, shear wave velocity is estimated using available empirical correlations or artificial intelligent methods proposed during the last few decades. In this paper, petrophysical logs corresponding to a well drilled in southern part of Iran were used to estimate the shear wave velocity using empirical correlations as well as two robust artificial intelligence methods knows as Support Vector Regression (SVR and Back-Propagation Neural Network (BPNN. Although the results obtained by SVR seem to be reliable, the estimated values are not very precise and considering the importance of shear sonic data as the input into different models, this study suggests acquiring shear sonic data during well logging. It is important to note that the benefits of having reliable shear sonic data for estimation of rock formation mechanical properties will compensate the possible additional costs for acquiring a shear log.
Changes in shear-wave splitting before volcanic eruptions
Liu, Sha; Crampin, Stuart
2015-04-01
We have shown that observations of shear-wave splitting (SWS) monitor stress-accumulation and stress-relaxation before earthquakes which allows the time, magnitude, and in some circumstances fault-plane of impending earthquakes to be stress-forecast. (We call this procedure stress-forecasting rather than predicting or forecasting to emphasise the different formalism.) We have stress-forecast these parameters successfully three-days before a 1988 M5 earthquake in SW Iceland, and identified characteristic anomalies retrospectively before ~16 other earthquakes in Iceland and elsewhere. SWS monitors microcrack geometry and shows that microcracks are so closely spaced that they verge on fracturing and earthquakes. Phenomena verging on failure in this way are critical-systems with 'butterfly wings' sensitivity. Such critical-systems are very common. The Earth is an archetypal complex heterogeneous interactive phenomenon and must be expected to be a critical-system. We claim this critical system as a New Geophysics of a critically-microcracked rock mass. Such critical systems impose a range of fundamentally-new properties on conventional sub-critical physics/geophysics, one of which is universality. Consequently it is expected that we observe similar stress-accumulation and stress-relaxation before volcanic eruptions to those before earthquakes. There are three eruptions where appropriate changes in SWS have been observed similar to those observed before earthquakes. These are: the 1996 Gjálp fissure eruption, Vatnajökull, Iceland; a 2001 flank eruption on Mount Etna, Sicily (reported by Francesca Bianco, INGV, Naples); and the 2010 Eyjafjajökull ash-cloud eruption, SW Iceland. These will be presented in the same normalised format as is used before earthquakes. The 1996 Gjálp eruption showed a 2½-month stress-accumulation, and a ~1-year stress-relaxation (attributed to the North Atlantic Ridge adjusting to the magma injection beneath the Vatnajökull Ice Cap). The
High resolution 3-D shear wave velocity structure in South China from surface wave tomography
Ning, S.; Guo, Z.; Chen, Y. J.
2017-12-01
Using continuous data from a total of 638 seismic stations, including 484 from CEArray between 2008 and 2013 and 154 from SINOPROBE between 2014 and 2015, we perform both ambient noise and earthquake Rayleigh wave tomography across South China. Combining Rayleigh wave phase velocity between 6and 40s periods from ambient noise tomography and Rayleigh wave phase velocity between 20and 140s from teleseismic two-plane-wave tomography, we obtain phase velocity maps between 6 and140 s periods. We then invert Rayleigh wave phase velocity to construct a 3-D shear wave velocity structure of South China by Markov Chain Monte Carlo method. Similar to other inversion results, our results correspond topography well. Moreover, our results also reveal that velocity structure of the eastern South China in mantle depth is similar to eastern North China, the core of the western South China, Sichuan Block (SB),still exists thick lithosphere. However, owing to much more data employed and some data quality control techniques in this research, our results reveal more detailed structures. Along Qinling-Dabie Orogenic Belt (QDOB), North-South Gravity Lineament (NSGL) and the Sichuan-Yunnan Rhombic Block (SYRB), there are obvious high speed anomalies in depths of 10-20 km, which possibly imply ancient intrusions. Moreover, it seems that Tancheng-Lujiang Fault Zone (TLFZ) has already cut through QDOB, forming a deep fracture cutting through the crust of the whole China continent. Although SB still exists thick lithosphere, there are indications for thermal erosion. At the same time, the lithosphere of the central SYRB seems to be experiencing delamination process, obviously forming a barrier to prevent the hot Tibetan Plateau (TP) mantle material from flowing further southeast. Upwelling hot mantle material possibly triggered by this delamination process might be the cause of the Emeishan Large Igneous Province. There exists an intercontinental low velocity layer in the crust of the TP
Lower hybrid waves instability in a velocity–sheared inhomogenous ...
African Journals Online (AJOL)
An electrostatic linear kinetic analysis of velocity-sheared inhomogeneous charged dust streaming parallel to a magnetic field in plasma is presented. Excited mode and the growth rates are derived in the lower hybrid-like mode regime, with collisional effects included. In the case where the drift velocity u is very small the ...
Research on definition of hard rock shear wave velocity of site for nuclear power plant
International Nuclear Information System (INIS)
Ding Zhenkun; Xia Zufeng
2013-01-01
Background: The definition of hard rock shear wave velocity is one of the most critical issues in the work of site selection. Purpose: To make a definition of hard rock site on which the model can be assumed as fixed-base condition, a series of research had been done. Several possible hard rock site soil models were developed. Methods: Shear wave velocity of hard rock had been assumed from 1100 m/s to 3200 m/s. For each case, free field analysis and soil structure analysis had been performed. And responses in soil and key nodes of structure were compared. Results: In free field analysis, responses of models that shear wave velocity below 2400 m/s decreased a lot. In SSI analysis, structure responses didn't change much when shear wave velocity was above 2400 m/s. Conclusions: 2400 m/s was the lowest shear wave velocity for hard rock site for fixed-base assumption. (authors)
Xu, Yanlong
2015-09-01
Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting. © 2015.
Woelz, Susanne; Rabbel, Wolfgang; Mueller, Christof
2009-05-01
When investigating topographically irregular layers in the near surface with shear waves, it is of particular importance to consider the 3D-nature of wave propagation. Depending on the layer geometry and on the spatial arrangement of source- and receiver-points significant lateral ray bending can occur causing side-swipe traveltime effects and complicated polarisation patterns. As an example we present a study where 3D-shear wave refraction measurements were applied in order to reconstruct the geometry of a silted ancient harbour basin at the archaeological site of Miletus (West Turkey). Seismic signals were generated with a three-component vector force and recorded with three-component geophones arranged in 2D-arrays of 1 m grid spacing. Since a correct identification of refracted S-wave arrivals is a precondition to traveltime interpretation we investigated a method to decompose these wavefields with respect to their polarisation and azimuth of propagation. Taking advantage of the 2D-geophone arrangement we applied the following processing approach: In case of general lateral heterogeneity a decomposition can be performed by applying the curl and divergence operations to the vector wavefields recorded in 2D-arrays. The separated tangential and normal components to the wavefront in a plane are finally enhanced by combining the different force components in order to eliminate the radiation characteristics of the source. The decomposed wavefield was then the basis for 3D-refractor imaging through a newly formulated map migration of the refracted traveltime field. This technique was developed to map coherent basement structure on the meter-scale. Supplemental tomographic inversion using the refractor topography model as input provided a plausible velocity model, exhibiting characteristic anomalies such as a prominent low velocity zone overlain by a high velocity layer in the refractor. The seismic velocity structure suggests that the harbour basin was locally filled
The high resolution shear wave seismic reflection technique
International Nuclear Information System (INIS)
Johnson, W.J.; Clark, J.C.
1991-04-01
This report presents the state-of-the-art of the high resolution S-wave reflection technique. Published and unpublished literature has been reviewed and discussions have been held with experts. Result is to confirm that the proposed theoretical and practical basis for identifying aquifer systems using both P- and S-wave reflections is sound. Knowledge of S-wave velocity and P-wave velocity is a powerful tool for assessing the fluid characteristics of subsurface layers. Material properties and lateral changes in material properties such as change from clay to sand, can be inferred from careful dual evaluation of P and S-wave records. The high resolution S-wave reflection technique has seen its greatest application to date as part of geotechnical studies for building foundations in the Far East. Information from this type of study has been evaluated and will be incorporated in field studies. In particular, useful information regarding S-wave sources, noise suppression and recording procedures will be incorporated within the field studies. Case histories indicate that the best type of site for demonstrating the power of the high resolution S-wave technique will be in unconsolidated soil without excessive structural complexities. More complex sites can form the basis for subsequent research after the basic principles of the technique can be established under relatively uncomplicated conditions
Imaging off-plane shear waves with a two-dimensional phononic crystal lens
International Nuclear Information System (INIS)
Chiang Chenyu; Luan Pigang
2010-01-01
A two-dimensional flat phononic crystal (PC) lens for focusing off-plane shear waves is proposed. The lens consists of a triangular lattice hole-array, embedded in a solid matrix. The self-collimation effect is employed to guide the shear waves propagating through the lens along specific directions. The Dirichlet-to-Neumann maps (DtN) method is employed to calculate the band structure of the PC, which can avoid the problems of bad convergence and fake bands automatically in the void-solid PC structure. When the lens is illuminated by the off-plane shear waves emanating from a point source, a subwavelength image appears in the far-field zone. The imaging characteristics are investigated by calculating the displacement fields explicitly using the multiple scattering method, and the results are in good agreement with the ray-trace predictions. Our results may provide insights for designing new phononic devices.
Shear Wave Velocity for Evaluation of State of Cohesionless Soils with Fines
Lipiński, Mirosław J.; Wdowska, Małgorzata K.; Jaroń, Łukasz
2017-10-01
The paper concerns evaluation of cohesionless soils containing fines. In clean sands, state of soil is usually quantified by relative density DR with use of field techniques like static or dynamic probes. However, in cohesionless soils containing considerable amount of fines, relative density alone, which is based solely on void ratio values, is not representative. This results from the fact that in case of cohesionless soil there is no unique intrinsic compressibility line, like it is in case of cohesive soils. Thus state of soil depends not only on void ratio but also state of stress. For this reason it is necessary to look for an alternative means to quantify state of soils with fines. The paper concerns possibility of evaluation of state of soil containing various amount of fines on the basis of shear wave velocity measurement. The idea rests on the fact that void ratio and state of stress are the major factors which contribute to a state of soil and shear wave velocity as well. When measured shear wave velocities are normalised with respect to stresses the resulting values might be strictly correlated to void ratio. To validate this approach, an experimental test programme (based on series of sophisticated triaxial tests) was carried out on four kinds of sandy material containing various amount of fines up to 60%. The experimental data made possible to establish basic correlation between soil states and shear wave velocity for each kind of soil. Normalized shear wave velocity was compared with void ratio and state parameter as well. The obtained results revealed that determination of void ratio on the basis of shear wave velocity in a certain range of fines can be much more adequate than for clean sands. However, if the fines content exceeds certain value, the obtained correlation is no longer as good.
3D shear wave velocity structure revealed with ambient noise tomography on a DAS array
Zeng, X.; Thurber, C. H.; Wang, H. F.; Fratta, D.
2017-12-01
An 8700-m Distributed Acoustic Sensing (DAS) cable was deployed at Brady's Hot Springs, Nevada in March 2016 in a 1.5 by 0.5 km study area. The layout of the DAS array was designed with a zig-zag geometry to obtain relatively uniform areal and varied angular coverage, providing very dense coverage with a one-meter channel spacing. This array continuously recorded signals of a vibroseis truck, earthquakes, and traffic noise during the 15-day deployment. As shown in a previous study (Zeng et al., 2017), ambient noise tomography can be applied to DAS continuous records to image shear wave velocity structure in the near surface. To avoid effects of the vibroseis truck operation, only continuous data recorded during the nighttime was used to compute noise cross-correlation functions for channel pairs within a given linear segment. The frequency band of whitening was set at 5 to 15 Hz and the length of the cross-correlation time window was set to 60 second. The phase velocities were determined using the multichannel analysis of surface waves (MASW) methodology. The phase velocity dispersion curve was then used to invert for shear wave velocity profiles. A preliminarily velocity model at Brady's Hot Springs (Lawrence Livermore National Laboratory, 2015) was used as the starting model and the sensitivity kernels of Rayleigh wave group and phase velocities were computed with this model. As the sensitivity kernel shows, shear wave velocity in the top 200 m can be constrained with Rayleigh wave group and phase velocities in our frequency band. With the picked phase velocity data, the shear wave velocity structure can be obtained via Occam's inversion (Constable et al., 1987; Lai 1998). Shear wave velocity gradually increases with depth and it is generally faster than the Lawrence Livermore National Laboratory (2015) model. Furthermore, that model has limiting constraints at shallow depth. The strong spatial variation is interpreted to reflect the different sediments and
Models for short-wave instability in inviscid shear flows
Grimshaw, Roger
1999-11-01
The generation of instability in an invsicid fluid occurs by a resonance between two wave modes, where here the resonance occurs by a coincidence of phase speeds for a finite, non-zero wavenumber. We show that in the weakly nonlinear limit, the appropriate model consists of two coupled equations for the envelopes of the wave modes, in which the nonlinear terms are balanced with low-order cross-coupling linear dispersive terms rather than the more familiar high-order terms which arise in the nonlinear Schrodinger equation, for instance. We will show that this system may either contain gap solitons as solutions in the linearly stable case, or wave breakdown in the linearly unstable case. In this latter circumstance, the system either exhibits wave collapse in finite time, or disintegration into fine-scale structures.
The effect of convection and shear on the damping and propagation of pressure waves
Kiel, Barry Vincent
Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection
High resolution shear wave reflection surveying for hydrogeological investigations
International Nuclear Information System (INIS)
Johnson, W.J.; Clark, J.C.
1992-08-01
The high resolution S-wave method has been developed to be a powerful tool in mapping subsurface lithology and in conducting groundwater investigations. The research has demonstrated that the resolution obtainable using S-waves in a Coastal Plain environment is more than double than that obtained using conventional reflection, which already offers a higher resolution than any other surface method. Where the mapping of thin clay layers functioning as aquitards or thin sand layers functioning as aquifers are critical to the understanding of groundwater flow, S-wave reflections offer unparalleled possibilities for nondestructive exploration. The field experiment at Cooke Crossroads, South Carolina enabled the detection and mapping of beds in the thickness range of one to three feet. The S-wave reflection technique, in combination with conventional P-wave reflection, has potential to directly detect confined and unconfined aquifers. This is a breakthrough technology that still requires additional research before it can be applied on a commercial basis. Aquifer systems were interpreted from the test data at Cooke Crossroads consistent with theoretical model. Additional research is need in assessing the theoretical response of P- and S-waves to subsurface interfaces within unconsolidated sediments of varying moisture content and lithology. More theoretical modeling and in situ testing are needed to bring our knowledge of these phenomena to the level that oil and gas researchers have done for fluids in sandstones
Shear Wave Elastographic Alterations in the Kidney After Extracorporeal Shock Wave Lithotripsy.
Turkay, Rustu; Inci, Ercan; Bas, Derya; Atar, Arda
2018-03-01
Extracorporeal shock wave lithotripsy (ESWL) is a method used frequently for the treatment of renal stone disease. Although its safety is proven, there are still concerns about its unwanted effects on kidneys. In this prospective study, we aimed to evaluate renal tissue alterations with shear wave elastography (SWE) after ESWL. We also studied the correlation between SWE and resistive index (RI) changes. The study included 59 patients who underwent ESWL treatment for renal stone disease. We performed SWE and color Doppler ultrasonography to calculate SWE and RI values before, 1 hour after, and 1 week after lithotripsy treatment. A binary comparison was performed by the Bonferroni test. The correlation between SWE and RI values was evaluated by a Pearson correlation analysis. The patients included 26 women (44.1%) and 33 men (55.9%). Their ages ranged from 20 to 65 years (mean ± SD, 45.0 ± 1.1 years). Stone diameters ranged from 7 to 19 mm (mean, 13.0 ± 0.5 mm). There was a significant difference in SWE values before and 1 hour after lithotripsy treatment (P = .001; P .99; P > .05). Resistive index values increased significantly 1 hour after lithotripsy treatment and returned to prelithotripsy values 1 week after treatment. In the correlation analysis, SWE and RI values were not correlated. Measurements of alterations in SWE values after ESWL can provide useful information about renal tissue injury. © 2017 by the American Institute of Ultrasound in Medicine.
Second-harmonic generation in shear wave beams with different polarizations
Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-10-01
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
Second-harmonic generation in shear wave beams with different polarizations
Energy Technology Data Exchange (ETDEWEB)
Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)
2015-10-28
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
Second-harmonic generation in shear wave beams with different polarizations
International Nuclear Information System (INIS)
Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-01-01
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic
Transdimensional Bayesian tomography of the lowermost mantle from shear waves
Richardson, C.; Mousavi, S. S.; Tkalcic, H.; Masters, G.
2017-12-01
The lowermost layer of the mantle, known as D'', is a complex region that contains significant heterogeneities on different spatial scales and a wide range of physical and chemical features such as partial melting, seismic anisotropy, and variations in thermal and chemical composition. The most powerful tools we have to probe this region are seismic waves and corresponding imaging techniques such as tomography. Recently, we developed compressional velocity tomograms of D'' using a transdimensional Bayesian inversion, where the model parameterization is not explicit and regularization is not required. This has produced a far more nuanced P-wave velocity model of D'' than that from traditional S-wave tomography. We also note that P-wave models of D'' vary much more significantly among various research groups than the corresponding S-wave models. This study therefore seeks to develop a new S-wave velocity model of D'' underneath Australia by using predominantly ScS-S differential travel times measured through waveform correlation and Bayesian transdimensional inversion to further understand and characterize heterogeneities in D''. We used events at epicentral distances between 45 and 75 degrees from stations in Australia at depths of over 200 km and with magnitudes between 6.0 and 6.7. Because of globally incomplete coverage of station and earthquake locations, a major limitation of deep earth tomography has been the explicit parameterization of the region of interest. Explicit parameterization has been foundational in most studies, but faces inherent problems of either over-smoothing the data, or allowing for too much noise. To avoid this, we use spherical Voronoi polygons, which allow for a high level of flexibility as the polygons can grow, shrink, or be altogether deleted throughout a sequence of iterations. Our technique also yields highly desired model parameter uncertainties. While there is little doubt that D'' is heterogeneous, there is still much that is
Compensation of shear waves in photoacoustic tomography with layered acoustic media.
Schoonover, Robert W; Anastasio, Mark A
2011-10-01
An image reconstruction formula is presented for photoacoustic computed tomography that accounts for conversion between longitudinal and shear waves in a planar-layered acoustic medium. We assume the optical absorber that produces the photoacoustic wave field is embedded in a single fluid layer and any elastic solid layers present are separated by one or more fluid layers. The measurement aperture is assumed to be planar. Computer simulation studies are conducted to demonstrate and investigate the proposed reconstruction formula.
Energy Technology Data Exchange (ETDEWEB)
Ianculescu, Victor; Ciolovan, Laura Maria [Radiology Department, Gustave Roussy, Villejuif (France); Dunant, Ariane [Department of Statistics, Gustave Roussy, Villejuif (France); Vielh, Philippe [Department of Biopathology, Gustave Roussy, Villejuif (France); Mazouni, Chafika [Department of Surgery, Gustave Roussy, Villejuif (France); Delaloge, Suzette [Department of Oncology, Gustave Roussy, Villejuif (France); Dromain, Clarisse [Radiology Department, Gustave Roussy, Villejuif (France); Blidaru, Alexandru [Department of Surgery, Bucharest Institute of Oncology, Bucharest (Romania); Balleyguier, Corinne, E-mail: corinne.balleyguier@gustaveroussy.fr [Radiology Department, Gustave Roussy, Villejuif (France); UMR 8081, IR4M, Paris-Sud University, 91405 Orsay (France)
2014-05-15
Purpose: To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Materials and methods: Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. Results: BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann–Whitney U test, p < 0.0001). By selecting a lesion cut-off value of 3.31 m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. Conclusion: VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies.
International Nuclear Information System (INIS)
Ianculescu, Victor; Ciolovan, Laura Maria; Dunant, Ariane; Vielh, Philippe; Mazouni, Chafika; Delaloge, Suzette; Dromain, Clarisse; Blidaru, Alexandru; Balleyguier, Corinne
2014-01-01
Purpose: To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Materials and methods: Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. Results: BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann–Whitney U test, p < 0.0001). By selecting a lesion cut-off value of 3.31 m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. Conclusion: VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies
Strip waves in vibrated shear-thickening wormlike micellar solutions
Epstein, T.; Deegan, R. D.
2010-06-01
We present an instability in vertically vibrated dilute wormlike micellar solutions. Above a critical driving acceleration the fluid forms elongated solitary domains of high amplitude waves. We model this instability using a Mathieu equation modified to account for the non-Newtonian character of the fluid. We find that our model successfully reproduces the observed transitions.
Okamoto, R. J.; Clayton, E. H.; Bayly, P. V.
2011-10-01
Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G'' (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.
Palasantzas, G.
2008-01-01
In this work we study the quality factor associated with dissipation due to scattering of shear horizontal surface acoustic waves by random self-affine roughness. It is shown that the quality factor is strongly influenced by both the surface roughness exponent H and the roughness amplitude w to
Measurements of upper mantle shear wave anisotropy from a permanent network in southern Mexico
van Benthem, S.A.C.; Valenzuela, R.W.; Ponce, G.J.
2013-01-01
Upper mantle shear wave anisotropy under stations in southern Mexico was measured using records of SKS phases. Fast polarization directions where the Cocos plate subducts subhorizontally are oriented in the direction of the relative motion between the Cocos and North American plates, and are
A Shear-Wave Seismic System to Look Ahead of a Tunnel Boring Machine
Bharadwaj, Pawan; Drijkoningen, G.G.; Mulder, W.A.; Tscharner, Thomas; Jenneskens, Rob
2016-01-01
The Earth’s properties, composition and structure ahead of a tunnel boring machine (TBM) should be mapped for hazard assessment during excavation. We study the use of seismic-exploration techniques for this purpose. We focus on a seismic system for soft soils, where shear waves are better and easier
International Nuclear Information System (INIS)
Xu, Yanlong
2015-01-01
Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting. - Highlights: • Shear horizontal wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. • Calculations on band structure and transmission show that the graded layered media possess very large band gaps. • Finite element method confirms that waves in band gaps are spatially enhanced and stopped by the graded units. • The study suggests that the graded structure possesses the property of manipulating elastic waves spatially
Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.
2015-03-01
Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the
Energy Technology Data Exchange (ETDEWEB)
Goertz, Ruediger S., E-mail: ruediger.goertz@uk-erlangen.de; Schuderer, Johanna, E-mail: Johanna@schuderer-floss.de; Strobel, Deike, E-mail: deike.strobel@uk-erlangen.de; Pfeifer, Lukas, E-mail: Lukas.Pfeifer@uk-erlangen.de; Neurath, Markus F., E-mail: Markus.Neurath@uk-erlangen.de; Wildner, Dane, E-mail: Dane.Wildner@uk-erlangen.de
2016-12-15
Highlights: • ARFI elastography of the pancreas is feasible. • Shear wave velocities in patients with acute or chronic pancreatitis or carcinoma are higher than those occurring in normal tissue. • ARFI values considerable overlap between different pathologies. - Abstract: Introduction: Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. Material and methods: In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. Results: A total of 195 patients were included in the study. Healthy parenchyma (n = 21) and lipomatosis (n = 30) showed similar shear wave velocities of about 1.3 m/s. Acute pancreatitis (n = 35), chronic pancreatitis (n = 53) and adenocarcinoma (n = 52) showed consecutively increasing ARFI values, respectively. NET (n = 4) revealed the highest shear wave velocities amounting to 3.62 m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74 m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. Conclusion: ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities.
Shear-wave elastography of the testis in the healthy man - determination of standard values.
Trottmann, M; Marcon, J; D'Anastasi, M; Bruce, M F; Stief, C G; Reiser, M F; Buchner, A; Clevert, D A
2016-01-01
Real-time shear-wave elastography (SWE) is a newly developed technique for the sonographic quantification of tissue elasticity, which already is used in the assessment of breast and thyroid lesions. Due to limited overlying tissue, the testes are ideally suited for assessment using shear wave elastography. To our knowledge, no published data exist on real-time SWE of the testes. Sixty six male volunteers (mean age 51.86±18.82, range 20-86) with no known testicular pathology underwent normal B-mode sonography and multi-frame shear-wave elastography of both testes using the Aixplorer ® ultrasound system (SuperSonic Imagine, Aix en Provence, France). Three measurements were performed for each testis; one in the upper pole, in the middle portion and in the lower pole respectively. The results were statistically evaluated using multivariate analysis. Mean shear-wave velocity values were similar in the inferior and superior part of the testicle (1.15 m/s) and were significantly lower in the centre (0.90 m/s). These values were age-independent. Testicular stiffness was significantly lower in the upper pole than in the rest of the testis with increasing volume (p = 0.007). Real-time shear-wave elastography proved to be feasible in the assessment of testicular stiffness. It is important to consider the measurement region as standard values differ between the centre and the testicular periphery. Further studies with more subjects may be required to define the normal range of values for each age group. Useful clinical applications could include the diagnostic work-up of patients with scrotal masses or male infertility.
International Nuclear Information System (INIS)
Goertz, Ruediger S.; Schuderer, Johanna; Strobel, Deike; Pfeifer, Lukas; Neurath, Markus F.; Wildner, Dane
2016-01-01
Highlights: • ARFI elastography of the pancreas is feasible. • Shear wave velocities in patients with acute or chronic pancreatitis or carcinoma are higher than those occurring in normal tissue. • ARFI values considerable overlap between different pathologies. - Abstract: Introduction: Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. Material and methods: In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. Results: A total of 195 patients were included in the study. Healthy parenchyma (n = 21) and lipomatosis (n = 30) showed similar shear wave velocities of about 1.3 m/s. Acute pancreatitis (n = 35), chronic pancreatitis (n = 53) and adenocarcinoma (n = 52) showed consecutively increasing ARFI values, respectively. NET (n = 4) revealed the highest shear wave velocities amounting to 3.62 m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74 m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. Conclusion: ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities.
Approximation of wave action flux velocity in strongly sheared mean flows
Banihashemi, Saeideh; Kirby, James T.; Dong, Zhifei
2017-08-01
Spectral wave models based on the wave action equation typically use a theoretical framework based on depth uniform current to account for current effects on waves. In the real world, however, currents often have variations over depth. Several recent studies have made use of a depth-weighted current U˜ due to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, Coastal, and Ocean Eng. 113, 187-195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. 94, 1013-1027.] in order to account for the effect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or frequency and direction) has been further simplified in recent applications by only utilizing a weighted current based on the spectral peak wavenumber. These applications do not typically take into account the dependence of U˜ on wave number k, as well as erroneously identifying U˜ as the proper choice for current velocity in the wave action equation. Here, we derive a corrected expression for the current component of the group velocity. We demonstrate its consistency using analytic results for a current with constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the Columbia River. The effect of choosing a single value for current velocity based on the peak wave frequency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the peak frequency, which should significantly extend the range of accuracy of current estimates available to the wave model with minimal additional programming and data transfer.
Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.
2011-01-01
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.
Measurement and modelling of bed shear induced by solitary waves
Digital Repository Service at National Institute of Oceanography (India)
JayaKumar, S.
kleiner reibung. Z. Math. Phys., 56: 1- 37. Burbidge, D. and Cummins, P., 2007. Assessing the threat to western australia from tsunami generated by earthquakes along the sunda arc. Natural Hazards, 43(3): 319-331. Christian, J.T., Taylor, P.K., Yen, J....E. and Bernard, E.N., 2006. Tsunami science before and beyond boxing day 2004. Philosophical Transactions - A Math Physics Engineering Science, 364(1845): 2231-2265. Tadepalli, S. and Synolakis, C.E., 1994. The run-up of n-waves on sloping beaches...
Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy.
Mo, Jianqiang; Xu, Hao; Qiang, Bo; Giambini, Hugo; Kinnick, Randall; An, Kai-Nan; Chen, Shigao; Luo, Zongping
2016-01-01
Shear wave elastography (SWE) is an emerging technique for measuring biological tissue stiffness. However, the application of SWE in thin layer tissues is limited by bias due to the influence of geometry on measured shear wave speed. In this study, we investigated the bias of Young's modulus measured by SWE in thin layer gelatin-agar phantoms, and compared the result with finite element method and Lamb wave model simulation. The result indicated that the Young's modulus measured by SWE decreased continuously when the sample thickness decreased, and this effect was more significant for smaller thickness. We proposed a new empirical formula which can conveniently correct the bias without the need of using complicated mathematical modeling. In summary, we confirmed the nonlinear relation between thickness and Young's modulus measured by SWE in thin layer samples, and offered a simple and practical correction strategy which is convenient for clinicians to use.
TH-A-207B-00: Shear-Wave Imaging and a QIBA US Biomarker Update
International Nuclear Information System (INIS)
2016-01-01
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging
TH-A-207B-00: Shear-Wave Imaging and a QIBA US Biomarker Update
Energy Technology Data Exchange (ETDEWEB)
NONE
2016-06-15
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging
Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F
2012-03-07
Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.
Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.
McAleavey, Stephen
2011-01-01
We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.
Coupling of the Okuda-Dawson model with a shear current-driven wave and the associated instability
Masood, W.; Saleem, H.; Saleem
2013-12-01
It is pointed out that the Okuda-Dawson mode can couple with the newly proposed current-driven wave. It is also shown that the Shukla-Varma mode can couple with these waves if the density inhomogeneity is taken into account in a plasma containing stationary dust particles. A comparison of several low-frequency electrostatic waves and instabilities driven by shear current and shear plasma flow in an electron-ion plasma with and without stationary dust is also presented.
Kesden, Michael; Cooray, Asantha; Kamionkowski, Marc
2002-07-01
Inflationary gravitational waves (GW) contribute to the curl component in the polarization of the cosmic microwave background (CMB). Cosmic shear--gravitational lensing of the CMB--converts a fraction of the dominant gradient polarization to the curl component. Higher-order correlations can be used to map the cosmic shear and subtract this contribution to the curl. Arcminute resolution will be required to pursue GW amplitudes smaller than those accessible by the Planck surveyor mission. The blurring by lensing of small-scale CMB power leads with this reconstruction technique to a minimum detectable GW amplitude corresponding to an inflation energy near 10(15) GeV.
Ultrasound viscoelasticity assessment using an adaptive torsional shear wave propagation method
Energy Technology Data Exchange (ETDEWEB)
Ouared, Abderrahmane [Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9, Canada and Institute of Biomedical Engineering, University of Montréal, Montréal, Québec H3T 1J4 (Canada); Kazemirad, Siavash; Montagnon, Emmanuel [Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9 (Canada); Cloutier, Guy, E-mail: guy.cloutier@umontreal.ca [Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9 (Canada); Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montréal, Montréal, Québec H3T 1J4 (Canada); Institute of Biomedical Engineering, University of Montréal, Montréal, Québec H3T 1J4 (Canada)
2016-04-15
Purpose: Different approaches have been used in dynamic elastography to assess mechanical properties of biological tissues. Most techniques are based on a simple inversion based on the measurement of the shear wave speed to assess elasticity, whereas some recent strategies use more elaborated analytical or finite element method (FEM) models. In this study, a new method is proposed for the quantification of both shear storage and loss moduli of confined lesions, in the context of breast imaging, using adaptive torsional shear waves (ATSWs) generated remotely with radiation pressure. Methods: A FEM model was developed to solve the inverse wave propagation problem and obtain viscoelastic properties of interrogated media. The inverse problem was formulated and solved in the frequency domain and its robustness to noise and geometric constraints was evaluated. The proposed model was validated in vitro with two independent rheology methods on several homogeneous and heterogeneous breast tissue-mimicking phantoms over a broad range of frequencies (up to 400 Hz). Results: Viscoelastic properties matched benchmark rheology methods with discrepancies of 8%–38% for the shear modulus G′ and 9%–67% for the loss modulus G″. The robustness study indicated good estimations of storage and loss moduli (maximum mean errors of 19% on G′ and 32% on G″) for signal-to-noise ratios between 19.5 and 8.5 dB. Larger errors were noticed in the case of biases in lesion dimension and position. Conclusions: The ATSW method revealed that it is possible to estimate the viscoelasticity of biological tissues with torsional shear waves when small biases in lesion geometry exist.
The Formation of Laurentia: Evidence from Shear Wave Splitting and Seismic Tomography
Liddell, M. V.; Bastow, I. D.; Rawlinson, N.; Darbyshire, F. A.; Gilligan, A.
2017-12-01
The northern Hudson Bay region of Canada comprises several Archean cratonic nuclei, assembled by Paleoproterozoic orogenies including the 1.8 Ga Trans-Hudson Orogen (THO) and Rinkian-Nagssugtoqidian Orogen (NO). Questions remain about how similar in scale and nature these orogens were compared to modern orogens like the Himalayas. Also in question is whether the thick Laurentian cratonic root below Hudson Bay is stratified, with a seismically-fast Archean core underlain by a lower, younger, thermal layer. We investigate these problems via shear-wave splitting and teleseismic tomography using up to 25 years of data from 65 broadband seismic stations across northern Hudson Bay. The results of the complementary studies comprise the most comprehensive study to date of mantle seismic velocity and anisotropy in northern Laurentia. Splitting parameter patterns are used to interpret multiple layers, lithospheric boundaries, dipping anisotropy, and deformation zone limits for the THO and NO. Source-side waveguide effects from Japan and the Aleutian trench are observed despite the tomographic data being exclusively relative arrival time. Mitigating steps to ensure data quality are explained and enforced. In the Hudson Strait, anisotropic fast directions (φ) generally parallel the THO, which appears in tomographic images as a strong low velocity feature relative to the neighbouring Archean cratons. Several islands in northern Hudson Bay show short length-scale changes in φ coincident with strong velocity contrasts. These are interpreted as distinct lithospheric blocks with unique deformational histories, and point to a complex, rather than simple 2-plate, collisional history for the THO. Strong evidence is presented for multiple anisotropic layers beneath Archean zones, consistent with the episodic development model of cratonic keels (e.g., Yuan & Romanowicz 2010). We show via both tomographic inversion models and SKS splitting patterns that southern Baffin Island was
Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming
DEFF Research Database (Denmark)
Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf
2009-01-01
The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953......-dimensional simulations of standing waves have also been made by application of a general purpose Navier-Stokes solver. The results agree well with those obtained by the boundary layer analysis. Wave reflection from a plane sloping wall is also investigated by using the same numerical model and by physical laboratory...
Directory of Open Access Journals (Sweden)
Jingfei Xu
2018-04-01
Full Text Available Background: Until recently it has not been possible to isolate the mechanical behavior of individual muscles during passive stretching. Muscle shear modulus (an index of muscle stiffness measured using ultrasound shear wave elastography can be used to estimate changes in stiffness of an individual muscle. The aims of the present study were (1 to determine the shear modulus–knee angle relationship and the slack angle of the vastus medialis oblique (VMO, rectus femoris (RF, and vastus lateralis (VL muscles; (2 to determine whether this differs between the muscles. Methods: Nine male rowers took part in the study. The shear modulus of VMO, RF, and VL muscles was measured while the quadriceps was passively stretched at 3°/s. The relationship between the muscle shear modulus and knee angle was plotted as shear modulus–knee angle curve through which the slack angle of each muscle was determined. Results: The shear modulus of RF was higher than that of VMO and VL when the muscles were stretched over 54° (all p 0.05. The slack angle was similar among the muscles: 41.3° ± 10.6°, 44.3° ± 9.1°, and 44.3° ± 5.6° of knee flexion for VMO, RF, and VL, respectively (p = 0.626. Conclusion: This is the first study to experimentally determine the muscle mechanical behavior of individual heads of the quadriceps during passive stretching. Different pattern of passive tension was observed between mono- and bi-articular muscles. Further research is needed to determine whether changes in muscle stiffness are muscle-specific in pathological conditions or after interventions such as stretching protocols. Keywords: Muscle tension, Optimal length, Shear modulus, Slack angle, Stretch, Ultrasonography, Vastus lateralis, Vastus medialis
Internal inspection of reinforced concrete for nuclear structures using shear wave tomography
International Nuclear Information System (INIS)
Scott, David B.
2013-01-01
Highlights: • Aging of reinforced concrete used for worldwide nuclear structures is increasing and necessitating evaluation. • Nondestructive evaluation is a tool for assessing the condition of reinforced concrete of nuclear structures. • Ultrasonic shear wave tomography as a stress wave technique has begun to be utilized for investigation of concrete material. • A study using ultrasonic shear wave tomography indicates anomalies vital to the long-term operation of the structure. • The use of this technique has shown to successfully evaluate the internal state of reinforced concrete members. - Abstract: Reinforced concrete is important for nuclear related structures. Therefore, the integrity of structural members consisting of reinforced concrete is germane to the safe operation and longevity of these facilities. Many issues that reduce the likelihood of safe operation and longevity are not visible on the surface of reinforced concrete material. Therefore, an investigation of reinforced concrete material should include techniques which will allow peering into the concrete member and determining its internal state. The performance of nondestructive evaluations is pursuant to this goal. Some of the categories of nondestructive evaluations are electrochemical, magnetism, ground penetrating radar, and ultrasonic testing. A specific ultrasonic testing technique, namely ultrasonic shear wave tomography, is used to determine presence and extent of voids, honeycombs, cracks perpendicular to the surface, and/or delamination. This technique, and others similar to it, has been utilized in the nuclear industry to determine structural conditions
Estimation of in-situ stresses in concrete members using polarized ultrasonic shear waves
Chen, Andrew; Schumacher, Thomas
2014-02-01
Ultrasonic testing is commonly used to detect flaws, estimate geometries, and characterize properties of materials and structures. Acoustoelasticity refers to the dependency of stress wave velocity with applied stresses and is a phenomenon that has been known by geophysicists since the 1960s. A way to capitalize on this effect for concrete applications is by using ultrasonic shear waves which are particularly sensitive to applied stresses when polarized in the direction of the applied stress. The authors conducted an experiment on a 150 mm (6 in.) diameter concrete cylinder specimen with a length of 305 mm (12 in.) that was loaded in discrete load steps to failure. At each load step two ultrasonic shear waves were transmitted through the specimen, one with the polarization perpendicular and the other transverse to the applied stress. The velocity difference between the two sets of polarized shear waves was found to correlate with the applied stress in the specimen. Two potential applications for this methodology include estimation of stresses in pre-stressed concrete bridge girders and investigation of load redistribution in structural support elements after extreme events. This paper introduces the background of the methodology, presents an analysis of the collected data, and discusses the relationship between the recorded signals and the applied stress.
Sheared electric field-induced suppression of edge turbulence using externally driven R.F. waves
International Nuclear Information System (INIS)
Craddock, G.G.; Diamond, P.H.
1991-01-01
Here the authors propose a novel method for active control and suppression of edge turbulence by sheared ExB flows driven by externally launched RF waves. The theory developed addresses the problem of open-quotes flow driveclose quotes, which is somewhat analogous to the problem of plasma current drive. As originally demonstrated for the case of spontaneously driven flows, a net difference in the gradient of the fluid and magnetic Reynolds' stresses produced by radially propagating waves can drive the plasma flow. For the prototypical case of the Alfven wave flow drive considered here, ρ 0 r v θ > - r B θ > is proportional to k perpendicular 2 ρ s 2 in the case of the kinetic Alfven wave, and [(ηk perpendicular 2 -vk perpendicular 2 )/ω] 2 in the case of resistive MHD. Both results reflect the dependence of flow drive on the net stress imbalance. The shear layer width is determined by the waves evanescence length (determined by dissipation) that sets the stress gradient scale length, while the direction of the flow is determined by the poloidal orientation of the launched waves. In particular, it should be noted that both positive and negative E r may be driven, so that enhanced confinement need not be accompanied by impurity accumulation, as commonly encountered in spontaneous H-modes. The efficiency is determined by the criterion that the radial electric field shear be large enough to suppress turbulence. For typical TEXT parameters, and unity efficiency, 300 kW of absorbed power is needed to suppress turbulence over 3 cm radially. For DIII-D, 300 kW over 4 cm is needed. Also, direct transport losses induced by RF have been shown to be small. Extensions of the theory to ICRF are underway and are discussed. They also discuss the analogous problem of current drive using kinetic Alfven waves. 2 refs
Shear wave velocity structure of northern and North-Eastern Ethiopia
International Nuclear Information System (INIS)
Kebede, F.; Mammo, T.; Panza, G.F.; Vuan, A.; Costa, G.
1995-10-01
The non-linear inversion technique known as hedgehog is utilized to define the average crustal structure of North and North-Eastern Ethiopia. To accomplish the task a two dimensional frequency-time analysis is performed to obtain Rayleigh wave group velocity dispersion curves. Six earthquakes recorded by the broad-band digital seismograph installed at the Geophysical Observatory of Addis Ababa University are utilized. The crustal structure between the Gulf of Tadjura (western Gulf of Aden) and Addis Ababa crossing southern Afar (path I) can be approximated by a total thickness of about 22 km with average S-wave velocity in the range 2.3 - 3.9 km/s. The crust-mantle transition is poorly developed at greater depths and the shear wave velocity ranges from 4.0 km/s to 4.3 km/s. If the effect of the plateau part is taken into account the average total crustal thickness is found to be less than 18 km and the average S-wave velocity varies in the range 2.4 - 3.9 km/s. The low shear wave velocity under the Afar crust is consistent with the result of other geophysical studies. For path II, which passes through the border of the Western Ethiopian plateau, the average crustal structure is found to be approximated by a thickness of about 40 km and average S-wave velocity between 3.0 km/s and 3.9 km/s. The crust overlies a lithospheric mantle with a shear wave velocity in the range 4.1-4.4 km/s. (author). 37 refs, 11 figs, 4 tabs
Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves
International Nuclear Information System (INIS)
Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.
2008-01-01
The Doppler-shifted cyclotron resonance (ω-k z v z =Ω f ) between fast ions and shear Alfven waves is experimentally investigated (ω, wave frequency; k z , axial wavenumber; v z , fast-ion axial speed; Ω f , fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li + source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude δ B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8ω ci . Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.
On the possibility of wave-induced chaos in a sheared, stably stratified fluid layer
Directory of Open Access Journals (Sweden)
W. B. Zimmermann
1994-01-01
Full Text Available Shear flow in a stable stratification provides a waveguide for internal gravity waves. In the inviscid approximation, internal gravity waves are known to be unstable below a threshold in Richardson number. However, in a viscous fluid, at low enough Reynolds number, this threshold recedes to Ri = 0. Nevertheless, even the slightest viscosity strongly damps internal gravity waves when the Richardson number is small (shear forces dominate buoyant forces. In this paper we address the dynamics that approximately govern wave propagation when the Richardson number is small and the fluid is viscous. When Ri ξ = λ1A + λ2Aξξ + λ3Aξξξ + λ4AAξ + b(ξ where ξ is the coordinate of the rest frame of the passing temperature wave whose horizontal profile is b(ξ. The parameters λi are constants that depend on the Reynolds number. The above dynamical system is know to have limit cycle and chaotic attrators when forcing is sinusoidal and wave attenuation negligible.
Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity
Directory of Open Access Journals (Sweden)
Dae Woo Park
2016-01-01
Full Text Available Shear wave elasticity imaging (SWEI can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE- based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard tumor and surrounding tissue (soft. The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.
Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity.
Park, Dae Woo
2015-01-01
Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.
Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.
2011-12-01
A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program
Engel, Aaron J; Bashford, Gregory R
2015-08-01
Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.
Tripathi, B. B.; Espíndola, D.; Pinton, G. F.
2017-11-01
The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.
International Nuclear Information System (INIS)
Ecault, Romain; Touchard, Fabienne; Boustie, Michel; Berthe, Laurent; Lescoute, Emilien; Sollier, Arnaud; Voillaume, Hubert
2015-01-01
In this work, original shock experiments are presented. Laser-induced shock and shear wave propagations have been observed in an epoxy resin, in the case of femtosecond laser irradiation. A specific time-resolved shadowgraphy setup has been developed using the photoelasticimetry principle to enhance the shear wave observation. Shear waves have been observed in epoxy resin after laser irradiation. Their propagation has been quantified in comparison with the main shock propagation. A discussion, hinging on numerical results, is finally given to improve understanding of the phenomenon. (paper)
Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks
International Nuclear Information System (INIS)
Spong, D.A.; Carreras, B.A.; Hedrick, C.L.; Leboeuf, J.N.; Weller, A.
1994-01-01
An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE's in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles
Shear-wave velocity compilation for Northridge strong-motion recording sites
Borcherdt, Roger D.; Fumal, Thomas E.
2002-01-01
Borehole and other geotechnical information collected at the strong-motion recording sites of the Northridge earthquake of January 17, 1994 provide an important new basis for the characterization of local site conditions. These geotechnical data, when combined with analysis of strong-motion recordings, provide an empirical basis to evaluate site coefficients used in current versions of US building codes. Shear-wave-velocity estimates to a depth of 30 meters are derived for 176 strong-motion recording sites. The estimates are based on borehole shear-velocity logs, physical property logs, correlations with physical properties and digital geologic maps. Surface-wave velocity measurements and standard penetration data are compiled as additional constraints. These data as compiled from a variety of databases are presented via GIS maps and corresponding tables to facilitate use by other investigators.
Fedorov, M. V.; Sysoeva, A. A.; Vintskevich, S. V.; Grigoriev, D. A.
2018-03-01
The well-known Hong-Ou-Mandel effect is revisited. Two physical reasons are discussed for the effect to be less pronounced or even to disappear: differing polarizations of photons coming to the beamsplitter and delay time of photons in one of two channels. For the latter we use the concepts of biphoton frequency and temporal wave functions depending, correspondingly, on two frequency continuous variables of photons and on two time variables t 1 and t 2 interpreted as the arrival times of photons to the beamsplitter. Explicit expressions are found for the probability densities and total probabilities for photon pairs to be split between two channels after the beamsplitter and to be unsplit, when two photons appear together in one of two channels.
Nowacki, Andy; Wilks, Matthew; Kendall, J.-Michael; Biggs, Juliet; Ayele, Atalay
2018-05-01
Geothermal resources are frequently associated with silicic calderas which show evidence of geologically-recent activity. Hence development of geothermal sites requires both an understanding of the hydrothermal system of these volcanoes, as well as the deeper magmatic processes which drive them. Here we use shear wave splitting to investigate the hydrothermal system at the silicic peralkaline volcano Aluto in the Main Ethiopian Rift, which has experienced repeated uplift and subsidence since at least 2004. We make over 370 robust observations of splitting, showing that anisotropy is confined mainly to the top ∼3 km of the volcanic edifice. We find up to 10% shear wave anisotropy (SWA) is present with a maximum centred at the geothermal reservoir. Fast shear wave orientations away from the reservoir align NNE-SSW, parallel to the present-day minimum compressive stress. Orientations on the edifice, however, are rotated NE-SW in a manner we predict from field observations of faults at the surface, providing fluid pressures are sufficient to hold two fracture sets open. These fracture sets may be due to the repeated deformation experienced at Aluto and initiated in caldera formation. We therefore attribute the observed anisotropy to aligned cracks held open by over-pressurised gas-rich fluids within and above the reservoir. This study demonstrates that shear wave splitting can be used to map the extent and style of fracturing in volcanic hydrothermal systems. It also lends support to the hypothesis that deformation at Aluto arises from variations of fluid pressures in the hydrothermal system. These constraints will be crucial for future characterisation of other volcanic and geothermal systems, in rift systems and elsewhere.
Deviation of longitudinal and shear waves in austenitic stainless steel weld metal
International Nuclear Information System (INIS)
Kupperman, D.S.; Reimann, K.J.
1980-01-01
One of the difficulties associated with the ultrasonic inspection of stainless steel weld metal is the deviation of the ultrasonic beams. This can lead to errors in determining both the location and size of reflectors. The present paper compares experimental and theoretical data related to beam steering for longitudinal and shear waves in a sample of 308 SS weld metal. Agreement between predicted and measured beam deviations is generally good. Reasons for discrepancies are discussed
Xue, Nianyu; Xu, Youfeng; Huang, Pintong; Zhang, Shengmin; Wang, Hongwei; Yu, Fei
2016-01-01
The present study aimed to report the shear wave elastography (SWE) findings in a patient with the diffuse sclerosing variant of papillary thyroid carcinoma (DSVPTC). Since patients with DSVPTC may present with typical clinicopathological features and initially appear to have Hashimoto's thyroiditis, a thorough clinical evaluation and an early diagnosis are important. A 20-year-old female patient presented with a 1-month history of a neck mass and sore throat. Conventional ultrasound and SWE ...
EVALUATION OF IRIDOCILIARY AND LENTICULAR ELASTICITY USING SHEAR-WAVE ELASTOGRAPHY IN RABBIT EYES
Efstathios T. Detorakis; Eleni E. Drakonaki; Harilaos Ginis; Nikolaos Karyotakis; Ioannis G. Pallikaris
2014-01-01
Introduction: A previous study has employed shear-wave ultrasound elastographic imaging to assess corneal rigidity in an ex-vivo porcine eye model. This study employs the same modality in vivo in a rabbit eye model in order to assess lens, ciliary body and total ocular rigidity changes following the instillation of atropine and pilocarpine. Methods: Ten non-pigmented female rabbits were examined. Measurements of the lens, ciliary body and total ocular rigidity as well as lens thickness and an...
Evans, Andrew; Rauchhaus, Petra; Whelehan, Patsy; Thomson, Kim; Purdie, Colin A.; Jordan, Lee B.; Michie, Caroline O.; Thompson, Alastair; Vinnicombe, Sarah
2013-01-01
Shear wave elastography (SWE) shows promise as an adjunct to greyscale ultrasound examination in assessing breast masses. In breast cancer, higher lesion stiffness on SWE has been shown to be associated with features of poor prognosis. The purpose of this study was to assess whether lesion stiffness at SWE is an independent predictor of lymph node involvement. Patients with invasive breast cancer treated by primary surgery, who had undergone SWE examination were eligible. Data were retrospect...
International Nuclear Information System (INIS)
Aldridge, E.E.; Clare, A.B.; Shepherd, D.A.
1975-01-01
The manner in which holography would fit into the general scheme of pressure vessel inspection is discussed. Compared to conventional A, B and C presentations holography requires a different processing of the ultrasonic signal and a mechanical scan which may be more demanding than that normally provided for a C display. Preliminary results are presented of the examination of artificial defects in steel plate using shear wave holography. (author)
Self-sustained collisional drift-wave turbulence in a sheared magnetic field
International Nuclear Information System (INIS)
Scott, B.D.
1990-01-01
Although collisional drift waves in a sheared slab configuration are linearly damped, it is found that the corresponding turbulence is self-sustaining if initialized at nonlinear amplitude. The influence of the free-energy source represented by the temperature and density gradients on the turbulent system involving bidirectional spectral energy transfer is responsible for this change of regime. Several important features of tokamak edge fluctuations are reproduced by these single-rational-surface nonlinear dynamics. As a result, drift-wave turbulence must still be considered as an underlying dynamic of anomalous transport in tokamak edges
Three dimensional particle simulation of drift wave fluctuations in a sheared magnetic field
International Nuclear Information System (INIS)
Sydora, R.D.; Leboeuf, J.N.; Thayer, D.R.; Diamond, P.H.; Tajima, T.
1985-08-01
Three dimensional particle simulations of collisionless drift waves in sheared magnetic fields were performed in order to determine the nonlinear behavior of inverse electron resonance dynamics in the presence of thermal fluctuations. It is found that stochastic electron diffusion in the electron resonance overlap region can destabilize the drift wave eigenmodes. Numerical evaluations based on a nonlinear electron resonance broadening theory give predictions in accord with the frequency and growth rates found in the simulation of short wavelength modes (k/sub y/rho/sub s/ greater than or equal to1)
Observations of intense velocity shear and associated electrostatic waves near an auroral arc
International Nuclear Information System (INIS)
Kelley, M.C.; Carlson, C.W.
1977-01-01
An intense shear in plasma flow velocity of magnitude 20 (m/s)m -1 has been detected at the edge of an auroral arc. The region of shear appears to display structure with two characteristic scale sizes. The larger structures were of the order of a few kilometers in size and were identified by a deviation of the direction of the charge sheets crossed by the rocket from a direction parallel to the visible arc. As is shown in the companion paper (Carlson and Kelley, 1977), the average (undisturbed) charge sheet was parallel to the arc. These observations are consistent with television studies which often display such structures propagating along the edges of auroral forms. Additional intense irregularities were detected with characteristic wavelengths smaller than the scale size of the shear. The irregularities are discussed in light of the branches of a velocity shear driven instability suggested by several workers: the Kelvin-Helmholtz instability operating at the longest wavelengths and the drift shear instability at the shorter. Neither mode has wavelengths as short as those observed however. A velocity shear mechanism operating at wavelengths short in comparison with the shear scale length, such as those observed here, would be of significant geophysical importance. For example, it could be responsible for production of high-latitude irregularities which exist throughout the polar cap and for the short-wavelength waves responsible for intense 3-m backscatter during equatorial spread F conditions. Since the wavelengths produced by the short-wavelength mode are in the range of typical auroral E region radars, such data must be carefully checked for F region contamination
Real-space quasilinear theory of drift waves in a sheared magnetic field
International Nuclear Information System (INIS)
1977-02-01
A real-space quasilinear theory is developed for the collisional and the collisionless drift waves in a plasma with a sheared magnetic field of slab geometry. The equation obtained describes the interaction between many localized modes around different rational surfaces through the density modulation of the energy source region of each mode. The wave amplitudes approach to the stationary values through a relaxation oscillation process. When the width x sub(s) of the energy source region becomes comparable to the spacing Δx of the two adjacent rational surfaces, diffusion coefficient due to the wave is enhanced over the classical value, while the nonlocal heat transport due to the wave propagation is shown to be negligible compared to that associated with the diffusion process. (auth.)
Arterial waveguide model for shear wave elastography: implementation and in vitro validation
Vaziri Astaneh, Ali; Urban, Matthew W.; Aquino, Wilkins; Greenleaf, James F.; Guddati, Murthy N.
2017-07-01
Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.
Shear wave velocity versus quality factor: results from seismic noise recordings
Boxberger, Tobias; Pilz, Marco; Parolai, Stefano
2017-08-01
The assessment of the shear wave velocity (vs) and shear wave quality factor (Qs) for the shallow structure below a site is necessary to characterize its site response. In the past, methods based on the analysis of seismic noise have been shown to be very efficient for providing a sufficiently accurate estimation of the vs versus depth at reasonable costs for engineering seismology purposes. In addition, a slight modification of the same method has proved to be able to provide realistic Qs versus depth estimates. In this study, data sets of seismic noise recorded by microarrays of seismic stations in different geological environments of Europe and Central Asia are used to calculate both vs and Qs versus depth profiles. Analogous to the generally adopted approach in seismic hazard assessment for mapping the average shear wave velocity in the uppermost 30 m (vs30) as a proxy of the site response, this approach was also applied to the quality factor within the uppermost 30 m (Qs30). A slightly inverse correlation between both parameters is found based on a methodological consistent determination for different sites. Consequently, a combined assessment of vs and Qs by seismic noise analysis has the potential to provide a more comprehensive description of the geological structure below a site.
Frodsham, A. E.; Wen, L.
2006-12-01
A previous study [Wang and Wen, 2006] investigated the geometry and shear velocity structure of the "African Anomaly" along a great circle arc from the East Pacific Rise to the Japan Sea, and concluded the anomaly extends 1300 km above the core-mantle boundary, that the sides of the anomaly slope towards the apex and has velocity deviations of -5% in the base and -2% to -3% in the mid-lower mantle. Wang and Wen [2004] also reported on the very low velocity province that forms the base of the "African Anomaly" and its lateral extent, but the northern edge of the anomaly was poorly constrained because of the nature of the seismic data. In this presentation we focus on the nature of the anomaly in a cross-section of the mantle along a great arc, from New Zealand, to the Mid-Atlantic Ridge off the coast of Newfoundland, centered over the anomaly. In particular, we focus on the northern edge of the "African Anomaly" where a paucity of large, deep focus earthquakes makes seismic arrivals from the northwest difficult to analyze. We map the lateral extent, thickness, and shear velocity structures of the "African Anomaly" on the basis of forward travel time and waveform modeling of direct S, ScS, and SKS waves. Seismic data used in this study were collected from PASSCAL arrays: KAAPVAAL seismic array (operating years 1997-1999), Tanzania seismic array (1994- 1995), Ethiopia/Kenya seismic array (2000-2002), and the Global Seismographic Network (1994-2002). We minimize uncertainty from earthquake mislocation by relocation of the earthquakes using a global tomographic shear wave velocity model and also correct for heterogeneities outside the anomaly. We explore various methods of data processing, such as frequency filtration, low fold stacking, and cross correlation, to best interpret the arrival times of the various seismic phases and constrain the nature of the "African Anomaly" along a northwest to southeast cross-section.
Delph, J. R.; Beck, S. L.; Zandt, G.; Biryol, C. B.; Ward, K. M.
2013-12-01
The Anatolian Plate consists of various lithospheric terranes amalgamated during the closure of the Tethys Ocean, and is currently extruding to the west in response to a combination of the collision of the Arabian plate in the east and the roll back of the Aegean subduction zone in the west. We used Ambient Noise Tomography (ANT) at periods structure of the Anatolian Plate. We computed a total of 13,779 unique cross-correlations using one sample-per-second vertical component broadband seismic data from 215 stations from 8 different networks over a period of 7 years to compute fundamental-mode Rayleigh wave dispersion curves following the method of Benson et al. (2007). We then inverted the dispersion data to calculate phase velocity maps for 11 periods from 8 s - 40 s throughout Anatolia and the Aegean regions (Barmin et al. 2001). Using smoothed Moho values derived from Vanacore et al. (2013) in our starting models, we inverted our dispersion curves using a linear least-squares iterative inversion scheme (Herrmann & Ammon 2004) to produce a 3-D shear-wave velocity model of the crust and uppermost mantle throughout Anatolia and the Aegean. We find a good correlation between our seismic shear wave velocities and paleostructures (suture zones) and modern deformation (basin formation and fault deformation). The most prominent crustal velocity contrasts occur across intercontinental sutures zones, resulting from the juxtaposition of the compositionally different basements of the amalgamated terranes. At shallow depths, seismic velocity contrasts correspond closely with surficial features. The Thrace, Cankiri and Tuz Golu basins, and accretionary complexes related to the closure of the Neotethys are characterized by slow shear wave velocities, while the Menderes and Kirsehir Massifs, Pontides, and Istanbul Zone are characterized by fast velocities. We find that the East Anatolia Plateau has slow shear-wave velocities, as expected due to high heat flow and active
Shear wave splitting and crustal anisotropy in the Eastern Ladakh-Karakoram zone, northwest Himalaya
Paul, Arpita; Hazarika, Devajit; Wadhawan, Monika
2017-06-01
Seismic anisotropy of the crust beneath the eastern Ladakh-Karakoram zone has been studied by shear wave splitting analysis of S-waves of local earthquakes and P-to-S or Ps converted phases originated at the crust-mantle boundary. The splitting parameters (Φ and δt), derived from S-wave of local earthquakes with shallow focal depths, reveal complex nature of anisotropy with NW-SE and NE oriented Fast Polarization directions (FPD) in the upper ∼22 km of the crust. The observed anisotropy in the upper crust may be attributed to combined effects of existing tectonic features as well as regional tectonic stress. The maximum delay time of fast and slow waves in the upper crust is ∼0.3 s. The Ps splitting analysis shows more consistent FPDs compared to S-wave splitting. The FPDs are parallel or sub parallel to the Karakoram fault (KF) and other NW-SE trending tectonic features existing in the region. The strength of anisotropy estimated for the whole crust is higher (maximum delay time δt: 0.75 s) in comparison to the upper crust. This indicates that the dominant source of anisotropy in the trans-Himalayan crust is confined within the middle and lower crustal depths. The predominant NW-SE trending FPDs consistently observed in the upper crust as well as in the middle and lower crust near the KF zone support the fact that the KF is a crustal-scale fault which extends at least up to the lower crust. Dextral shearing of the KF creates shear fabric and preferential alignment of mineral grains along the strike of the fault, resulting in the observed FPDs. A Similar observation in the Indus Suture Zone (ISZ) also suggests crustal scale deformation owing to the India-Asia collision.
Quantitative shear wave ultrasound elastography: initial experience in solid breast masses.
Evans, Andrew; Whelehan, Patsy; Thomson, Kim; McLean, Denis; Brauer, Katrin; Purdie, Colin; Jordan, Lee; Baker, Lee; Thompson, Alastair
2010-01-01
Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear wave elastography versus
Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.; Wilkin, John L.
2013-01-01
Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Middle Atlantic Bight (MAB), off the U.S. East Coast, and identified a tidally-dominated shallow region with relatively high stress southeast of Massachusetts over Nantucket Shoals, where sediment mobility thresholds are exceeded over 50% of the time; a coastal band extending offshore to about 30 m water depth dominated by waves, where mobility occurs more than 20% of the time; and a quiescent low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the “Mud Patch”. The regional high in stress and mobility over Nantucket Shoals supports the hypothesis that fine grain sediment winnowed away in this region maintains the Mud Patch to the southwest. The analysis identified waves as the driving mechanism for stress throughout most of the MAB, excluding Nantucket Shoals and sheltered coastal bays where tides dominate; however, the relative dominance of low-frequency events varied regionally, and increased southward toward Cape Hatteras. The correlation between wave stress and local wind stress was lowest in the central MAB, indicating a relatively high contribution of swell to bottom stress in this area, rather than locally generated waves. Accurate prediction of the wave energy spectrum was critical to produce good estimates of bottom shear stress, which was sensitive to energy in the long period waves.
On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current
Directory of Open Access Journals (Sweden)
Dali Guo
2014-01-01
Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.
The Peano-series solution for modeling shear horizontal waves in piezoelectric plates
Directory of Open Access Journals (Sweden)
Ben Ghozlen M.H.
2012-06-01
Full Text Available The shear horizontal (SH wave devices have been widely used in electroacoustic. To improve their performance, the phase velocity dispersion and the electromechanical coupling coefficient of the Lamb wave should be calculated exactly in the design. Therefore, this work is to analyze exactly the Lamb waves polarized in the SH direction in homogeneous plate pie.zoelectric material (PZT-5H. An alternative method is proposed to solve the wave equation in such a structure without using the standard method based on the electromechanical partial waves. This method is based on an analytical solution, the matricant explicitly expressed under the Peano series expansion form. Two types of configuration have been addressed, namely the open circuited and the short circuited. Results confirm that the SH wave provides a number of attractive properties for use in sensing and signal processing applications. It has been found that the phase velocity remains nearly constant for all values of h/λ (h is the plate thickness, λ the acoustic wavelength. Secondly the SH0 wave mode can provide very high electromechanical coupling. Graphical representations of electrical and mechanical amounts function of depth are made, they are in agreement with the continuity rules. The developed Peano technique is in agreement with the classical approach, and can be suitable with cylindrical geometry.
Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates
International Nuclear Information System (INIS)
Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng
2015-01-01
Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)
Energy Technology Data Exchange (ETDEWEB)
Seo, Ho Geon; Song, Dong Gi; Jhang, Kyoung Young [Hanyang University, Seoul (Korea, Republic of)
2016-04-15
Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.
Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity
Kumari, Nirmala; Chattopadhyay, Amares; Singh, Abhishek K.; Sahu, Sanjeev A.
2017-03-01
The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker's asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot's gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.
International Nuclear Information System (INIS)
Seo, Ho Geon; Song, Dong Gi; Jhang, Kyoung Young
2016-01-01
Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data
Razani, Marjan; Luk, Timothy W.H.; Mariampillai, Adrian; Siegler, Peter; Kiehl, Tim-Rasmus; Kolios, Michael C.; Yang, Victor X.D.
2014-01-01
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus. PMID:24688822
Monitoring the lesion formation during histotripsy treatment using shear wave imaging
Arnal, Bastien; Lee, Wei-Ning; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael
2012-11-01
Monitoring the lesion formation induced by histotripsy has mainly relied on the quantitative change in backscatter intensity using ultrasound B-mode imaging. However, how the mechanical properties of the histotripsy-treated tissue region alter during the procedure is yet to be fully investigated. We thus proposed here to monitor such a therapeutic process based on shear modulus estimated by shear wave imaging (SWI). In the therapeutic procedure, a single-element piezo-composite focused transducer (Imasonic, Besançon, France) with a center frequency of 660 kHz, a focal length of 45 mm, and an fnumber of 1 was driven by a function generator (AFG 3101, Tektronix, Beaverton, OR) and a gated RF power amplifier (GA-2500A, RITEC Inc., USA) to generate ultrasound histotripsy pulses. Histotripsy pulses were delivered for 20 seconds and then followed by a 30-second pause and a rapid monitoring step. Such a treatment and monitoring scheme was repeated for 10 mins. Both the reference measurement and monitoring were realized by SWI, where plane shear waves were generated by an 8 MHz linear array probe connected to a prototype ultrasound scanner, and acquired at a frame rate of 10000 Hz. Shear modulus was estimated and mapped in 2D through a time-of-flight algorithm. Gelatin (8%)-agar (2%) phantoms and ex-vivo porcine liver samples were tested. Regions of interests (ROI's) of 2 mm-by-2 mm in both untreated and treated regions were selected to compute the contrast-to-noise ratio (CNR). In all three scenarios where different PD's and PRF's were implemented, during the first 100 seconds of the treatment, 50% decrease in the shear modulus within the histotripsy-targeted zone was already observed, and the CNR of the shear modulus increased by 18 dB. In contrast, the backscatter intensity began to reduce and the corresponding CNR was found to increase by 6 dB only after 120 seconds of treatment. The results demonstrated that SWI can map quantitatively the change of mechanical
Piezoelectricity induced defect modes for shear waves in a periodically stratified supperlattice
Piliposyan, Davit
2018-01-01
Properties of shear waves in a piezoelectric stratified periodic structure with a defect layer are studied for a superlattice with identical piezoelectric materials in a unit cell. Due to the electro-mechanical coupling in piezoelectric materials the structure exhibits defect modes in the superlattice with full transmission peaks both for full contact and electrically shorted interfaces. The results show an existence of one or two transmission peaks depending on the interfacial conditions. In the long wavelength region where coupling between electro-magnetic and elastic waves creates frequency band gaps the defect layer introduces one or two defect modes transmitting both electro-magnetic and elastic energies. Other parameters affecting the defect modes are the thickness of the defect layer, differences in refractive indexes and the magnitude of the angle of the incident wave. The results of the paper may be useful in the design of narrow band filters or multi-channel piezoelectric filters.
Towards routine determination of focal mechanisms obtained from first motion P-wave arrivals
Lentas, K.
2018-03-01
The Bulletin of the International Seismological Centre (ISC) contains information on earthquake mechanisms collected from many different sources including national and global agencies, resulting in a satisfactory coverage over a wide magnitude range (M ˜2-9). Nevertheless, there are still a vast number of earthquakes with no reported source mechanisms especially for magnitudes up to 5. This study investigates the possibility of calculating earthquake focal mechanisms in a routine and systematic way based on P-wave first motion polarities. Any available parametric data in the ISC database is being used, as well as auto-picked polarities from waveform data up to teleseismic epicentral distances (90°) for stations that are not reported to the ISC. The determination of the earthquake mechanisms is carried out with a modified version of the HASH algorithm that is compatible with a wide range of epicentral distances and takes into account the ellipsoids defined by the ISC location errors, and the Earth's structure uncertainties. Initially, benchmark tests for a set of ISC reviewed earthquakes (mb > 4.5) are carried out and the HASH mechanism classification scheme is used to define the mechanism quality. Focal mechanisms of quality A, B and C with an azimuthal gap up to 90° compare well to the benchmark mechanisms. Nevertheless, the majority of the obtained mechanisms fall into class D as a result of limited polarity data from stations in local/regional epicentral distances. Specifically, the computation of the minimum rotation angle between the obtained mechanisms and the benchmarks, reveals that 41 per cent of the examined earthquakes show rotation angles up to 35°. Finally, the current technique is applied to a small set of earthquakes from the reviewed ISC bulletin where 62 earthquakes, with no previously reported source mechanisms, are successfully obtained.
Shallow shear-wave reflection seismics in the tsunami struck Krueng Aceh River Basin, Sumatra
Directory of Open Access Journals (Sweden)
U. Polom
2008-01-01
Full Text Available As part of the project "Management of Georisk" (MANGEONAD of the Federal Institute for Geosciences and Natural Resources (BGR, Hanover, high resolution shallow shear-wave reflection seismics was applied in the Indonesian province Nanggroe Aceh Darussalam, North Sumatra in cooperation with the Government of Indonesia, local counterparts, and the Leibniz Institute for Applied Geosciences, Hanover. The investigations were expected to support classification of earthquake site effects for the reconstruction of buildings and infrastructure as well as for groundwater exploration. The study focussed on the city of Banda Aceh and the surroundings of Aceh Besar. The shear-wave seismic surveys were done parallel to standard geoengineering investigations like cone penetrometer tests to support subsequent site specific statistical calibration. They were also partly supplemented by shallow p-wave seismics for the identification of (a elastic subsurface parameters and (b zones with abundance of groundwater. Evaluation of seismic site effects based on shallow reflection seismics has in fact been found to be a highly useful method in Aceh province. In particular, use of a vibratory seismic source was essential for successful application of shear-wave seismics in the city of Banda Aceh and in areas with compacted ground like on farm tracks in the surroundings, presenting mostly agricultural land use areas. We thus were able to explore the mechanical stiffness of the subsurface down to 100 m depth, occasionally even deeper, with remarkably high resolution. The results were transferred into geotechnical site classification in terms of the International Building Code (IBC, 2003. The seismic images give also insights into the history of the basin sedimentation processes of the Krueng Aceh River delta, which is relevant for the exploration of new areas for construction of safe foundations of buildings and for identification of fresh water aquifers in the tsunami
Energy Technology Data Exchange (ETDEWEB)
Ito, H [Geological Survey of Japan, Tsukuba (Japan); Yamamoto, H; Brie, A
1996-10-01
Fracture and permeability in the fault zone of the active fault drilling at the Nojima fault were evaluated from acoustic waveforms. There were several permeable intervals in the fault zone. There was strong Stoneley wave attenuation, very large S-Se below the fault and in the interval above the fault. In the fault zone, there were also several short intervals where S-Se was very large; 667 m-674 m and 706 m-710 m. In these intervals, the Stoneley attenuation was large, but there was no Stoneley reflection from within the interval. Reflections were observed at the upper and lower boundaries, going away from the bed up above, and down below. In this well, the shear wave was very strongly attenuated at and below the fault zone. The fast shear azimuth changed at the fault. The slowness anisotropy was fairly strong above the fault from 602 m to 612 m, but smaller below the fault. The changes in fast shear azimuth were much more pronounced near the fault, which suggested a strong influence of the fault. 6 refs., 5 figs.
Detection of layup errors in prepreg laminates using shear ultrasonic waves
Hsu, David K.; Fischer, Brent A.
1996-11-01
The highly anisotropic elastic properties of the plies in a composite laminate manufactured from unidirectional prepregs interact strongly with the polarization direction of shear ultrasonic waves propagating through its thickness. The received signals in a 'crossed polarizer' transmission configuration are particularly sensitive to ply orientation and layup sequence in a laminate. Such measurements can therefore serve as an NDE tool for detecting layup errors. For example, it was shown experimentally recently that the sensitivity for detecting the presence of misoriented plies is better than one ply out of a 48-ply laminate of graphite epoxy. A physical model based on the decomposition and recombination of the shear polarization vector has been constructed and used in the interpretation and prediction of test results. Since errors should be detected early in the manufacturing process, this work also addresses the inspection of 'green' composite laminates using electromagnetic acoustic transducers (EMAT). Preliminary results for ply error detection obtained with EMAT probes are described.
Chi Durán, R. K.; Comte, D.; Diaz, M. A.; Silva, J. F.
2017-12-01
In this work, new strategies for automatic identification of P- and S-wave arrival times from digital recorded local seismograms are proposed and analyzed. The database of arrival times previously identified by a human reader was compared with automatic identification techniques based on the Fourier transformation in reduced time (spectrograms), fractal analysis, and the basic matching pursuit algorithm. The first two techniques were used to identify the P-wave arrival times, while the third was used for the identification of the S-wave. For validation, the results were compared with the short-time average over long-time average (STA/LTA) of Rietbrock et al., Geophys Res Lett 39(8), (2012) for the database of aftershocks of the 2010 Maule Mw = 8.8 earthquake. The identifiers proposed in this work exhibit good results that outperform the STA/LTA identifier in many scenarios. The average difference from the reference picks (times obtained by the human reader) in P- and S-wave arrival times is 1 s.
Potential use of point shear wave elastography for the pancreas: A single center prospective study
International Nuclear Information System (INIS)
Kawada, Natsuko; Tanaka, Sachiko; Uehara, Hiroyuki; Ohkawa, Kazuyoshi; Yamai, Takuo; Takada, Ryoji; Shiroeda, Hisakazu; Arisawa, Tomiyasu; Tomita, Yasuhiko
2014-01-01
Aim: Clinical use of point shear wave elastography for the liver has been established, however, few studies demonstrated its usefulness for the pancreas. A prospective study was conducted to clarify its feasibility for the pancreas and its usefulness for the identification of high risk group for pancreatic cancer. Patients and methods: Consecutive eighty-five patients underwent point shear wave elastography for the pancreas. The success rate of shear wave velocity (SWV) measurement, that is the number of successful measurements over total 10 measurements, was recorded. The SWV of the pancreas measured at non-tumorous area was compared between patients with and without pancreatic cancer. Factors associated with high SWV were determined by logistic regression model. Results: Sixty patients were included, of these 18 had pancreatic cancer. The success rate of 100% was achieved at the head, the body and the tail of the pancreas in 80%, 83%, and 68% of the patients, respectively. The success rate of ≥80% was achieved in 100%, 100%, and 96% of the patients, respectively. Although mean SWV of the pancreas harboring pancreatic cancer tended to be higher compared with that of the pancreas without cancer (1.51 ± 0.45 m/s vs 1.43 ± 0.28 m/s), they did not reach statistical significance. Multivariate analysis showed that increased amount of alcohol intake was associated with high SWV. Conclusion: The SWV of the pancreas was measured with excellent success rate. However, tendency of higher SWV obtained from the pancreas harboring pancreatic cancer needed to be further investigated
Rosado-Mendez, Ivan M.; Carlson, Lindsey C.; Woo, Kaitlin M.; Santoso, Andrew P.; Guerrero, Quinton W.; Palmeri, Mark L.; Feltovich, Helen; Hall, Timothy J.
2018-04-01
Abnormal parturition, e.g. pre- or post-term birth, is associated with maternal and neonatal morbidity and increased economic burden. This could potentially be prevented by accurate detection of abnormal softening of the uterine cervix. Shear wave elasticity imaging (SWEI) techniques that quantify tissue softness, such as shear wave speed (SWS) measurement, are promising for evaluation of the cervix. Still, interpretation of results can be complicated by biological variability (i.e. spatial variations of cervix stiffness, parity), as well as by experimental factors (i.e. type of transducer, posture during scanning). Here we investigated the ability of SWEI to detect cervical softening, as well as sources of SWS variability that can affect this task, in the pregnant and nonpregnant Rhesus macaque. Specifically, we evaluated SWS differences when imaging the cervix transabdominally with a typical linear array abdominal transducer, and transrectally with a prototype intracavitary linear array transducer. Linear mixed effects (LME) models were used to model SWS as a function of menstrual cycle day (in nonpregnant animals) and gestational age (in pregnant animals). Other variables included parity, shear wave direction, and cervix side (anterior versus posterior). In the nonpregnant cervix, the LME model indicated that SWS increased by 2% (95% confidence interval 0–3%) per day, starting eight days before menstruation. During pregnancy, SWS significantly decreased at a rate of 6% (95% CI 5–7%) per week (intracavitary approach) and 3% (95% CI 2–4%) per week (transabdominal approach), and interactions between the scanning approach and other fixed effects were also significant. These results suggest that, while absolute SWS values are influenced by factors such as scanning approach and SWEI implementation, these sources of variability do not compromise the sensitivity of SWEI to cervical softening. Our results also highlight the importance of standardizing SWEI
Real-time shear wave elastography may predict autoimmune thyroid disease.
Vlad, Mihaela; Golu, Ioana; Bota, Simona; Vlad, Adrian; Timar, Bogdan; Timar, Romulus; Sporea, Ioan
2015-05-01
To evaluate and compare the values of the elasticity index as measured by shear wave elastography in healthy subjects and in patients with autoimmune thyroid disease, in order to establish if this investigation can predict the occurrence of autoimmune thyroid disease. A total of 104 cases were included in the study group: 91 women (87.5%), out of which 52 (50%) with autoimmune thyroid disease diagnosed by specific tests and 52 (50%) healthy volunteers, matched for age and gender. For all the subjects, three measurements were performed on each thyroid lobe and a mean value was calculated. The data were expressed in kPa. The investigation was performed with an Aixplorer system (SuperSonic Imagine, France), using a linear high-resolution 15-4 MHz transducer. The mean value for the elasticity index was similar in the right and the left thyroid lobes, both in normal subjects and in patients with autoimmune thyroid disease: 19.6 ± 6.6 vs. 19.5 ± 6.8 kPa, p = 0.92, and 26.6 ± 10.0 vs. 25.8 ± 11.7 kPa, p = 0.71, respectively. This parameter was significantly higher in patients with autoimmune thyroid disease than in controls (p < 0.001). For a cut-off value of 22.3 kPa, which resulted in the highest sum of sensitivity and specificity, the elasticity index assessed by shear wave elastography had a sensitivity of 59.6% and a specificity of 76.9% (AUROC = 0.71; p < 0.001) for predicting the presence of autoimmune thyroid disease. Quantitative elasticity index measured by shear wave elastography was significantly higher in autoimmune thyroid disease than in normal thyroid parenchyma and may predict the presence of autoimmune thyroid disease.
Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity
International Nuclear Information System (INIS)
Ferraioli, Giovanna; Tinelli, Carmine; Zicchetti, Mabel; Above, Elisabetta; Poma, Gianluigi; Di Gregorio, Marta; Filice, Carlo
2012-01-01
Objective: To evaluate the reproducibility of real-time shear wave elastography in assessing liver elasticity in healthy volunteers. Methods: Forty-two volunteers were studied in day 1. Shear wave elastography studies were performed by using the ultrasound system Aixplorer™ (SuperSonic Imagine S.A., Aix-en-Provence, France) with a convex broadband probe. Measurements were carried by two operators, an expert (operator 1) and a novice (operator 2). Examinations were performed on the right lobe of the liver. Each operator performed 10 consecutive measurements in each volunteer. In a subset of volunteers (n = 18) measurements were performed twice on two different days (day 1 and day 2). Intraobserver and interobserver agreement were assessed by intraclass correlation coefficient. Results: Intraobserver agreement between measurements performed in the same subject in the same day (day 1 or day 2) showed intraclass correlation coefficient values of 0.95 (95% confidence interval, 0.93–0.98) and 0.93 (95% confidence interval, 0.90–0.96) for operator 1 and operator 2, respectively. Intraobserver agreement between measurements performed in the same subject in different days showed intraclass correlation coefficient values of 0.84 (95% confidence interval, 0.69–0.98) and 0.65 (95% confidence interval, 0.39–0.91) for operator 1 and operator 2, respectively. Interobserver agreement was 0.88 (95% confidence interval, 0.82–0.94). Conclusions: The results of this study show that shear wave elastography is a reliable and reproducible noninvasive method for the assessment of liver elasticity. Expert operator had higher reproducibility of measurements over time than novice operator.
Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping
2015-10-01
We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.
Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity
Energy Technology Data Exchange (ETDEWEB)
Ferraioli, Giovanna, E-mail: giovanna.ferraioli@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Tinelli, Carmine, E-mail: ctinelli@smatteo.pv.it [Clinical Epidemiology and Biometric Unit, IRCCS San Matteo Hospital Foundation, Viale Golgi 19, 27100 Pavia (Italy); Zicchetti, Mabel, E-mail: mabel.zicchetti@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Above, Elisabetta, E-mail: betta.above@gmail.com [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Poma, Gianluigi, E-mail: gigi.poma@libero.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Di Gregorio, Marta, E-mail: martadigregorio@virgilio.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Filice, Carlo, E-mail: carfil@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy)
2012-11-15
Objective: To evaluate the reproducibility of real-time shear wave elastography in assessing liver elasticity in healthy volunteers. Methods: Forty-two volunteers were studied in day 1. Shear wave elastography studies were performed by using the ultrasound system Aixplorer Trade-Mark-Sign (SuperSonic Imagine S.A., Aix-en-Provence, France) with a convex broadband probe. Measurements were carried by two operators, an expert (operator 1) and a novice (operator 2). Examinations were performed on the right lobe of the liver. Each operator performed 10 consecutive measurements in each volunteer. In a subset of volunteers (n = 18) measurements were performed twice on two different days (day 1 and day 2). Intraobserver and interobserver agreement were assessed by intraclass correlation coefficient. Results: Intraobserver agreement between measurements performed in the same subject in the same day (day 1 or day 2) showed intraclass correlation coefficient values of 0.95 (95% confidence interval, 0.93-0.98) and 0.93 (95% confidence interval, 0.90-0.96) for operator 1 and operator 2, respectively. Intraobserver agreement between measurements performed in the same subject in different days showed intraclass correlation coefficient values of 0.84 (95% confidence interval, 0.69-0.98) and 0.65 (95% confidence interval, 0.39-0.91) for operator 1 and operator 2, respectively. Interobserver agreement was 0.88 (95% confidence interval, 0.82-0.94). Conclusions: The results of this study show that shear wave elastography is a reliable and reproducible noninvasive method for the assessment of liver elasticity. Expert operator had higher reproducibility of measurements over time than novice operator.
Plasma turbulence driven by transversely large-scale standing shear Alfvén waves
International Nuclear Information System (INIS)
Singh, Nagendra; Rao, Sathyanarayan
2012-01-01
Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfvén and electrostatic waves when plasma is driven by a large-scale standing shear Alfvén wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k ⊥ ) lying in the range d e −1 -6d e −1 , d e being the electron inertial length, suggesting non-local parametric decay from small to large k ⊥ . The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k || ). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k ⊥ ) = |E ⊥ (k ⊥ )/|B ⊥ (k ⊥ )| ≪ V A for k ⊥ d e A is the Alfvén velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.
DEFF Research Database (Denmark)
Jansen, Christian; Bogs, Christopher; Verlinden, Wim
2017-01-01
BACKGROUND & AIMS: Clinically significant portal hypertension (CSPH) is associated with severe complications and decompensation of cirrhosis. Liver stiffness measured either by transient elastography (TE) or Shear-wave elastography (SWE) and spleen stiffness by TE might be helpful in the diagnosis...... correlate with portal pressure and can both be used as a non-invasive method to investigate CSPH. Even though external validation is still missing, these algorithms to rule-out and rule-in CSPH using sequential SWE of liver and spleen might change the clinical practice....
Shear-wave elastography in breast ultrasonography: the state of the art
Directory of Open Access Journals (Sweden)
Ji Hyun Youk
2017-10-01
Full Text Available Shear-wave elastography (SWE is a recently developed ultrasound technique that can visualize and measure tissue elasticity. In breast ultrasonography, SWE has been shown to be useful for differentiating benign breast lesions from malignant breast lesions, and it has been suggested that SWE enhances the diagnostic performance of ultrasonography, potentially improving the specificity of conventional ultrasonography using the Breast Imaging Reporting and Data System criteria. More recently, not only has SWE been proven useful for the diagnosis of breast cancer, but has also been shown to provide valuable information that can be used as a preoperative predictor of the prognosis or response to chemotherapy.
Shear-wave elastography in breast ultrasonography: the state of the art
Energy Technology Data Exchange (ETDEWEB)
Youk, Ji Hyun; Gweon, Hye Mi; Son, Eun Ju [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)
2017-10-15
Shear-wave elastography (SWE) is a recently developed ultrasound technique that can visualize and measure tissue elasticity. In breast ultrasonography, SWE has been shown to be useful for differentiating benign breast lesions from malignant breast lesions, and it has been suggested that SWE enhances the diagnostic performance of ultrasonography, potentially improving the specificity of conventional ultrasonography using the Breast Imaging Reporting and Data System criteria. More recently, not only has SWE been proven useful for the diagnosis of breast cancer, but has also been shown to provide valuable information that can be used as a preoperative predictor of the prognosis or response to chemotherapy.
Axisymmetric wave propagation in gas shear flow confined by a rigid-walled pipeline
International Nuclear Information System (INIS)
Chen Yong; Huang Yi-Yong; Chen Xiao-Qian; Bai Yu-Zhu; Tan Xiao-Dong
2015-01-01
The axisymmetric acoustic wave propagating in a perfect gas with a shear pipeline flow confined by a circular rigid wall is investigated. The governing equations of non-isentropic and isentropic acoustic assumptions are mathematically deduced while the constraint of Zwikker and Kosten is relaxed. An iterative method based on the Fourier–Bessel theory is proposed to semi-analytically solve the proposed models. A comparison of numerical results with literature contributions validates the present contribution. Meanwhile, the features of some high-order transverse modes, which cannot be analyzed based on the Zwikker and Kosten theory, are analyzed (paper)
The role of shear wave elastography in the assessment of placenta previa-accreta.
Alıcı Davutoglu, Ebru; Ariöz Habibi, Hatice; Ozel, Ayşegül; Yuksel, Mehmet Aytac; Adaletli, Ibrahim; Madazlı, Riza
2018-06-01
To evaluate the value of shear wave elastography (SWE) in the prediction of morbidly adherent placenta. Forty-three women with normal placental location and 26 women with anteriorly localized placenta previa were recruited for this case-control study. Placental elasticity values in both the groups were determined by SWE imaging. SWE values were higher in the placenta previa group in all regions than in normal localized placentas (p .05). Placental stiffness is significantly higher in placenta previa than normal localized placentas. However, we could not demonstrate any statistically significant difference in the elasticity values between the placenta previa with and without accreta.
A review of shear wave splitting in the crack-critical crust
Crampin, Stuart; Chastin, Sebastien
2003-10-01
Over the last 15 years, it has become established that crack-induced stress-aligned shear wave splitting, with azimuthal anisotropy, is an inherent characteristic of almost all rocks in the crust. This means that most in situ rocks are pervaded by fluid-saturated microcracks and consequently are highly compliant. The evolution of such stress-aligned fluid-saturated grain-boundary cracks and pore throats in response to changing conditions can be calculated, in some cases with great accuracy, using anisotropic poro-elasticity (APE). APE is tightly constrained with no free parameters, yet dynamic modelling with APE currently matches a wide range of phenomena concerning anisotropy, stress, shear waves and cracks. In particular, APE has allowed the anisotropic response of a reservoir to injection to be calculated (predicted with hindsight), and the time and magnitude of an earthquake to be correctly stress-forecast. The reason for this calculability and predictability is that the microcracks in the crust are so closely spaced that they form critical systems. This crack-critical crust leads to a new style of geophysics that has profound implications for almost all aspects of pre-fracturing deformation of the crust and for solid-earth geophysics and geology. We review past, present and speculate about the future of shear wave splitting in the crack-critical crust. Shear wave splitting is seen to be a dynamic measure of the deformation of the rock mass. There is some good news and some bad news for conventional geophysics. Many accepted phenomena are no longer valid at high spatial and temporal resolution. A major effect is that the detailed crack geometry changes with time and varies from place to place in response to very small previously negligible changes. However, at least in some circumstances, the behaviour of the rock in the highly complex inhomogeneous Earth may be calculated and the response predicted, opening the way to possible control by feedback. The need is
Yada, Norihisa; Tamaki, Nobuhura; Koizumi, Yohei; Hirooka, Masashi; Nakashima, Osamu; Hiasa, Yoichi; Izumi, Namiki; Kudo, Masatoshi
2017-01-01
Performing shear wave imaging is simple, but can be difficult when inflammation, jaundice, and congestion are present. Therefore, the correct diagnosis of liver fibrosis using shear wave imaging alone might be difficult in mild-to-moderate fibrosis cases. Strain imaging can diagnose liver fibrosis without the influence of inflammation. Therefore, the combined use of strain and shear wave imaging (combinational elastography) for cases without jaundice and congestion might be useful for evaluating fibrosis and inflammation. We enrolled consecutive patients with liver disease, without jaundice or liver congestion. Strain and shear wave imaging, blood tests, and liver biopsy were performed on the same day. The liver fibrosis index (LF index) was calculated by strain imaging; real-time tissue elastography, and the shear wave velocity (Vs) was calculated by shear wave imaging. Fibrosis index (F index) and activity index (A index) were calculated as a multiple regression equation for determining hepatic fibrosis and inflammation using histopathological diagnosis as the gold standard. The diagnostic ability of F index for fibrosis and A index for inflammation were compared using LF index and Vs. The total number of enrolled cases was 388. The area under the receiver operating characteristic (AUROC) was 0.87, 0.80, 0.83, and 0.80, at diagnosis of fibrosis stage with an F index of F1 or higher, F2 or higher, F3 or higher, and F4, respectively. The AUROC was 0.94, 0.74, and 0.76 at diagnosis of activity grade with an A index of A1 or higher, A2 or higher, and A3, respectively. The diagnostic ability of F index for liver fibrosis and A index for inflammation was higher than for other conventional diagnostic values. The combined use of strain and shear wave imaging (combinational elastography) might increase the positive diagnosis of liver fibrosis and inflammation. © 2017 S. Karger AG, Basel.
Wawerzinek, Britta; Buness, Hermann; Lüschen, Ewald; Thomas, Rüdiger
2017-04-01
To establish a dense area-wide network of geothermal facilities, the Stadtwerke München initiated the joint research project GRAME together with the Leibniz Institute for Applied Geophysics (GeoParaMoL*). As a database for the project, a 3D seismic survey was acquired from November 1015 to March 2016 and covers 170 km2 of the southern part of Munich. 3D seismic exploration is a well-established method to explore geothermal reservoirs, and its value for reservoir characterization of the Malm has been proven by several projects. A particular challenge often is the determination of geophysical parameters for facies interpretation without any borehole information, which is needed for calibration. A new approach to facilitate a reliable interpretation is to include shear waves in the interpretation workflow, which helps to tie down the range of lithological and petrophysical parameters. Shear wave measurements were conducted during the regular 3D seismic survey in Munich. In a passive experiment, the survey was additionally recorded on 467 single, 3-component (3C), digital receivers that were deployed along one main line (15 km length) and two crosslines (4 km length). In this way another 3D P-wave as well as a 3D shear wave dataset were acquired. In the active shear wave experiment the SHOVER technique (Edelmann, 1981) was applied to directly excite shear waves using standard vertical vibrators. The 3C recordings of both datasets show, in addition to the P-wave reflections on the vertical component, clear shear-wave signals on the horizontal components. The structural image of the P-waves recorded on the vertical component of the 3C receivers displays clear reflectors within the Molasse Basin down to the Malm and correlates well with the structural image of the regular survey. Taking into account a travel time ratio of 1.6 the reflection patterns of horizontal and vertical components approximately coincide. This indicates that Molasse sediments and the Malm can also
Tang, Zheng
2018-05-15
We investigate the crustal and upper-mantle shear-velocity structure of Saudi Arabia by fundamental-mode Rayleigh-wave group-velocity tomography and shear-wave velocity inversion. The seismic dataset is compiled using ∼140 stations of the Saudi National Seismic Network (SNSN) operated by the Saudi Geological Survey (SGS). We measure Rayleigh-wave group-velocities at periods of 8–40 s from regional earthquakes. After obtaining 1-D shear-wave velocity models by inverting group-velocities at each grid node, we construct a 3-D shear-velocity model for Saudi Arabia and adjacent regions by interpolating the 1-D models. Our 3-D model indicates significant lateral variations in crustal and lithospheric thickness, as well as in the shear-wave velocity over the study region. In particular, we identify zones of reduced shear-wave speed at crustal levels beneath the Cenozoic volcanic fields in the Arabian Shield. The inferred reductions of 2–5% in shear-wave speed may be interpreted as possibly indicating the presence of partial melts. However, their precise origin we can only speculate about. Our study also reveals an upper-mantle low velocity zone (LVZ) below the Arabian Shield, supporting the model of lateral mantle flow from the Afar plume. Further geophysical experiments are needed to confirm (or refute) the hypothesis that partial melts may exist below the Cenozoic volcanism in western Saudi Arabia, and to build a comprehensive geodynamic–geological model for the evolution and present state of the lithosphere of the Arabian Plate and the Red Sea.
Tang, Zheng; Mai, Paul Martin; Chang, Sung-Joon; Zahran, Hani
2018-01-01
We investigate the crustal and upper-mantle shear-velocity structure of Saudi Arabia by fundamental-mode Rayleigh-wave group-velocity tomography and shear-wave velocity inversion. The seismic dataset is compiled using ∼140 stations of the Saudi National Seismic Network (SNSN) operated by the Saudi Geological Survey (SGS). We measure Rayleigh-wave group-velocities at periods of 8–40 s from regional earthquakes. After obtaining 1-D shear-wave velocity models by inverting group-velocities at each grid node, we construct a 3-D shear-velocity model for Saudi Arabia and adjacent regions by interpolating the 1-D models. Our 3-D model indicates significant lateral variations in crustal and lithospheric thickness, as well as in the shear-wave velocity over the study region. In particular, we identify zones of reduced shear-wave speed at crustal levels beneath the Cenozoic volcanic fields in the Arabian Shield. The inferred reductions of 2–5% in shear-wave speed may be interpreted as possibly indicating the presence of partial melts. However, their precise origin we can only speculate about. Our study also reveals an upper-mantle low velocity zone (LVZ) below the Arabian Shield, supporting the model of lateral mantle flow from the Afar plume. Further geophysical experiments are needed to confirm (or refute) the hypothesis that partial melts may exist below the Cenozoic volcanism in western Saudi Arabia, and to build a comprehensive geodynamic–geological model for the evolution and present state of the lithosphere of the Arabian Plate and the Red Sea.
International Nuclear Information System (INIS)
Connor, J.W.; Hastie, R.J.; Webster, A.J.; Wilson, H.R.
2005-01-01
Tokamak discharges with internal transport barriers (ITBs) provide improved confinement, so it is important to understand their stability properties. The stability to an important class of modes with high wave-numbers perpendicular to the magnetic field, is usually studied with the standard ballooning transformation and eikonal approach. However, ITBs are often characterised by radial q profiles that have regions of negative or low magnetic shear and by radially sheared electric fields. Both these features affect the validity of the standard method. A new approach to calculating stability in these circumstances is developed and applied to ideal MHD ballooning modes and to micro-instabilities responsible for anomalous transport. (author)
Energy Technology Data Exchange (ETDEWEB)
Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh
2007-06-06
Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.
Energy Technology Data Exchange (ETDEWEB)
Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh
2007-06-06
Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.
Interface waves propagating along tensile fractures in dolomite
International Nuclear Information System (INIS)
Roy, S.; Pyrak-Nolte, L.J.
1995-01-01
Elastic interface waves have been observed in induced tensile fractures in dolomite rock cores. Multiscaling wavelet analysis distinguishes the interface wave from bulk shear waves, quantifies the interface wave spectral content, and determines the arrival time of peak energy. The dominant seismic energy is concentrated in the slow interface wave, with little or no detectable energy in the fast wave. As stress across the fracture increases, the slow interface wave velocity increases, and the frequency of the spectral peak shifts to higher frequencies. The shear dynamic specific stiffness of the fracture was calculated from the peak energy arrival time as a function of stress. 13 refs., 5 figs., 1 tab
Huan, Qiang; Miao, Hongchen; Li, Faxin
2018-02-01
Structural health monitoring (SHM) is of great importance for engineering structures as it may detect the early degradation and thus avoid life and financial loss. Guided wave based inspection is very useful in SHM due to its capability for long distance and wide range monitoring. The fundamental shear horizontal (SH0) wave based method should be most promising since SH0 is the unique non-dispersive wave mode in plate-like structures. In this work, a sparse array SHM system based on omnidirectional SH wave piezoelectric transducers (OSH-PT) was proposed and the multi data fusion method was used for defect inspection in a 2 mm thick aluminum plate. Firstly, the performances of three types OSH-PTs was comprehensively compared and the thickness-poled d15 mode OSH-PT used in this work was demonstrated obviously superior to the other two. Then, the signal processing method and imaging algorithm for this SHM system was presented. Finally, experiments were carried out to examine the performance of the proposed SHM system in defect localization and imaging. Results indicated that this SHM system can locate a through hole as small as 0.12λ (4 mm) in diameter (where λ is the wavelength corresponding to the central operation frequency) under frequencies from 90 to 150 kHz. It can also locate multiple defects accurately based on the baseline subtraction method. Obviously, this SHM system can detect larger areas with sparse sensors because of the adopted single mode, non-dispersive and low frequency SH0 wave which can propagate long distance with small attenuation. Considering its good performances, simple data processing and sparse array, this SH0 wave-based SHM system is expected to greatly promote the applications of guided wave inspection.
Three-Dimensional Shear Wave Velocity Structure of the Peru Flat Slab Subduction Segment
Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.
2012-12-01
Recent studies focused on flat slab subduction segments in central Chile (L. S. Wagner, 2006) and Alaska (B. R. Hacker and G. A. Aber, 2012) suggest significant differences in seismic velocity structures, and hence, composition in the mantle wedge between flat and normal "steep" subducting slabs. Instead of finding the low velocities and high Vp/Vs ratios common in normal subduction zones, these studies find low Vp, high Vs, and very low Vp/Vs above flat slabs. This may indicate the presence of dry, cold material in the mantle wedge. In order to investigate the seismic velocities of the upper mantle above the Peruvian flat segment, we have inverted for 2D Rayleigh wave phase velocity maps using data from the currently deployed 40 station PULSE seismic network and some adjacent stations from the CAUGHT seismic network. We then used the sensitivity of surface waves to shear wave velocity structure with depth to develop a 3D shear wave velocity model. This model will allow us to determine the nature of the mantle lithosphere above the flat slab, and how this may have influenced the development of local topography. For example, dry conditions (high Vs velocities) above the flat slab would imply greater strength of this material, possibly making it capable of causing further inland overthrusting, while wet conditions (low Vs) would imply weaker material. This could provide some insight into the ongoing debate over whether the Fitzcarrald arch (along the northern most flank of the Altiplano) could be a topographical response to the subducted Nazca ridge hundred kilometers away from the trench (N. Espurt, 2012, P. Baby, 2005, V. A. Ramos, 2012) or not (J. Martinod, 2005, M. Wipf, 2008, T. Gerya, 2008).
International Nuclear Information System (INIS)
Cardenas S, Diego Hernan
2005-01-01
The paper refers to the use of the alcohol like fuel inside the new era of bio-fuels in Colombia, for it will be used it the sugar cane. The produced alcohol will be added to the gasoline and this way to generate a mixture more cleans and ecological
Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel
2014-09-01
The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p shear wave elastography parameter was higher than that of ultrasound (p shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio
Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki
2017-07-01
The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (Pplanes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (Pplane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Yu, Jiao; Nie, Erwei; Zhu, Yanying; Hong, Yi
2018-03-01
Biodegradable elastomeric scaffolds for soft tissue repair represent a growing area of biomaterials research. Mechanical strength is one of the key factors to consider in the evaluation of candidate materials and the designs for tissue scaffolds. It is desirable to develop non-invasive evaluation methods of the mechanical property of scaffolds which would provide options for monitoring temporal mechanical property changes in situ. In this paper, we conduct in silico simulation and in vitro evaluation of an elastomeric scaffold using a novel ultrasonic shear wave imaging (USWI). The scaffold is fabricated from a biodegradable elastomer, poly(carbonate urethane) urea using salt leaching method. A numerical simulation is performed to test the robustness of the developed inversion algorithm for the elasticity map reconstruction which will be implemented in the phantom experiment. The generation and propagation of shear waves in a homogeneous tissue-mimicking medium with a circular scaffold inclusion is simulated and the elasticity map is well reconstructed. A PVA phantom experiment is performed to test the ability of USWI combined with the inversion algorithm to non-invasively characterize the mechanical property of a porous, biodegradable elastomeric scaffold. The elastic properties of the tested scaffold can be easily differentiated from the surrounding medium in the reconstructed image. The ability of the developed method to identify the edge of the scaffold and characterize the elasticity distribution is demonstrated. Preliminary results in this pilot study support the idea of applying the USWI based method for non-invasive elasticity characterization of tissue scaffolds.
Shear wave elastography for detection of prostate cancer: A preliminary study
International Nuclear Information System (INIS)
Woo, Sung Min; Kim, Sang Youn; Cho, Jeong Yeon; KIm, Seung Hyup
2014-01-01
To assess the diagnostic value of shear wave elastography (SWE) for prostate cancer detection. In this retrospective study, 87 patients with the suspicion of prostate cancer (prostate-specific antigen > 4 ng/mL and abnormal digital rectal examination) underwent a protocol-based systematic 12-core biopsy followed by targeted biopsy at hypoechoic areas on grey-scale ultrasound. Prior to biopsy, SWE was performed by placing two circular 5 mm-sized regions of interest (ROIs) along the estimated biopsy tract in each sector and one ROI for hypoechoic lesions. SWE parameters, S (mean stiffness) and R (mean stiffness ratio), were calculated and compared regarding different histopathologic tissues and their accuracy for diagnosing prostate cancer was analyzed. SWE parameters were correlated with Gleason score and were compared between indolent ( 43.9 kPa and 60.8%, 66.4%, and 0.653, respectively, for R > 3. Both, S and R showed a significant correlation with Gleason score (r ≥ 0.296, p ≤ 0.008) and were significantly different between indolent and aggressive prostate cancer (p ≤ 0.006). Shear wave elastographic parameters are significantly different between prostate cancer and benign prostate tissue and correlate with Gleason score.
Use of shear waves for diagnosis and ablation monitoring of prostate cancer: a feasibility study
International Nuclear Information System (INIS)
Gomez, A; Saffari, N; Rus, G
2016-01-01
Prostate cancer remains as a major healthcare issue. Limitations in current diagnosis and treatment monitoring techniques imply that there is still a need for improvements. The efficacy of prostate cancer diagnosis is still low, generating under and over diagnoses. High intensity focused ultrasound ablation is an emerging treatment modality, which enables the noninvasive ablation of pathogenic tissue. Clinical trials are being carried out to evaluate its longterm efficacy as a focal treatment for prostate cancer. Successful treatment of prostate cancer using non-invasive modalities is critically dependent on accurate diagnostic means and is greatly benefited by a real-time monitoring system. While magnetic resonance imaging remains the gold standard for prostate imaging, its wider implementation for prostate cancer diagnosis remains prohibitively expensive. Conventional ultrasound is currently limited to guiding biopsy. Elastography techniques are emerging as a promising real-time imaging method, as cancer nodules are usually stiffer than adjacent healthy prostatic tissue. In this paper, a new transurethral approach is proposed, using shear waves for diagnosis and ablation monitoring of prostate cancer. A finite-difference time domain model is developed for studying the feasibility of the method, and an inverse problem technique based on genetic algorithms is proposed for reconstructing the location, size and stiffness parameters of the tumour. Preliminary results indicate that the use of shear waves for diagnosis and monitoring ablation of prostate cancer is feasible. (paper)
Are transient and shear wave elastography useful tools in Gaucher disease?
Webb, Muriel; Zimran, Ari; Dinur, Tama; Shibolet, Oren; Levit, Stella; Steinberg, David M; Salomon, Ophira
2018-02-01
Up to now, there are no reliable biochemical markers or imaging that could reveal early tissue damage in Gaucher disease. Therefore, we addressed whether elastography technique can serve as a tool for evaluating patients with Gaucher disease. The study included 42 patients with Gaucher disease type I and 33 patients with liver cirrhosis as well as 22 healthy volunteers. Ultrasound and Doppler examination was performed on each participant prior to apply transient and 2D shear wave elastography. In Gaucher disease the median stiffness of the spleen as assessed by transient elastography (TE) and shear wave elastography (SWE) was 35KPa and 22KPa respectively in contrast to the median stiffness of healthy controls (16.95 and 17.5KPa, p=0.0028 and p=0.0002, respectively) and of patients with cirrhosis (45KPa and 34.5KPa, p=0.015 and pGaucher disease from healthy controls and among those with splenomegaly from cirrhotic patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of Vertically Propagating Shear Waves on Seismic Behavior of Circular Tunnels
Directory of Open Access Journals (Sweden)
Tohid Akhlaghi
2014-01-01
Full Text Available Seismic design loads for tunnels are characterized in terms of the deformations imposed on the structure by surrounding ground. The free-field ground deformations due to a seismic event are estimated, and the tunnel is designed to accommodate these deformations. Vertically propagating shear waves are the predominant form of earthquake loading that causes the ovaling deformations of circular tunnels to develop, resulting in a distortion of the cross sectional shape of the tunnel lining. In this paper, seismic behavior of circular tunnels has been investigated due to propagation of shear waves in the vertical direction using quasi-static analytical approaches as well as numerical methods. Analytical approaches are based on the closed-form solutions which compute the forces in the lining due to equivalent static ovaling deformations, while the numerical method carries out dynamic, nonlinear soil-structure interaction analysis. Based on comparisons made, the accuracy and reliability of the analytical solutions are evaluated and discussed. The results show that the axial forces determined using the analytical approaches are in acceptable agreement with numerical analysis results, while the computed bending moments are less comparable and show significant discrepancies. The differences between the analytical approaches are also investigated and addressed.
Ball, Justin S.; Sheehan, Anne F.; Stachnik, Joshua C.; Lin, Fan-Chi; Yeck, William L.; Collins, John A.
2016-05-01
We present a crust and mantle 3-D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath the South Island as well as the Campbell and Challenger Plateaus. Our model is constructed via linearized inversion of both teleseismic (18-70 s period) and ambient noise-based (8-25 s period) Rayleigh wave dispersion measurements. We augment an array of 4 land-based and 29 ocean bottom instruments deployed off the South Island's east and west coasts in 2009-2010 by the Marine Observations of Anisotropy Near Aotearoa experiment with 28 land-based seismometers from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs 50 km) beneath the central South Island exhibits strong spatial correlation with upper mantle earthquake hypocenters beneath the Alpine Fault. The ~400 km long low-velocity zone we image beneath eastern South Island and the inner Bounty Trough underlies Cenozoic volcanics and the locations of mantle-derived helium measurements, consistent with asthenospheric upwelling in the region.
Paul, Jonathan D.; Eakin, Caroline M.
2017-07-01
Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p / V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.
Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Der Kiureghian, A.; Tanaka, Y.; Tokimatsu, K.
2013-01-01
Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors.
EVALUATION OF IRIDOCILIARY AND LENTICULAR ELASTICITY USING SHEAR-WAVE ELASTOGRAPHY IN RABBIT EYES
Directory of Open Access Journals (Sweden)
Efstathios T. Detorakis
2014-01-01
Full Text Available Introduction: A previous study has employed shear-wave ultrasound elastographic imaging to assess corneal rigidity in an ex-vivo porcine eye model. This study employs the same modality in vivo in a rabbit eye model in order to assess lens, ciliary body and total ocular rigidity changes following the instillation of atropine and pilocarpine. Methods: Ten non-pigmented female rabbits were examined. Measurements of the lens, ciliary body and total ocular rigidity as well as lens thickness and anterior chamber depth were taken with the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France with the SuperLinear™ SL 15-4 transducer in both eyes at baseline as well as after pilocarpine and atropine instillation. The IOP was also measured with the TonoPen tonometer. Results: Changes in rigidity in the examined areas following atropine instillation were statistically not significant. Ciliary body rigidity was significantly increased whereas lens and total ocular rigidity were significantly reduced following pilocarpine instillation. The decrease in lens rigidity following pilocarpine was significantly associated with the respective increase in ciliary body rigidity. Conclusions: Shear-wave ultrasound elastography can detect in vivo rigidity changes in the anterior segment of the rabbit eye model and may potentially be applied in human eyes, providing useful clinical information on conditions in which rigidity changes play an important role, such as glaucoma, pseudoexfoliation syndrome or presbyopia.
Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes.
Detorakis, Efstathios T; Drakonaki, Eleni E; Ginis, Harilaos; Karyotakis, Nikolaos; Pallikaris, Ioannis G
2014-01-01
A previous study has employed shear-wave ultrasound elastographic imaging to assess corneal rigidity in an ex-vivo porcine eye model. This study employs the same modality in vivo in a rabbit eye model in order to assess lens, ciliary body and total ocular rigidity changes following the instillation of atropine and pilocarpine. Ten non-pigmented female rabbits were examined. Measurements of the lens, ciliary body and total ocular rigidity as well as lens thickness and anterior chamber depth were taken with the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France) with the SuperLinear™ SL 15-4 transducer in both eyes at baseline as well as after pilocarpine and atropine instillation. The IOP was also measured with the TonoPen tonometer. Changes in rigidity in the examined areas following atropine instillation were statistically not significant. Ciliary body rigidity was significantly increased whereas lens and total ocular rigidity were significantly reduced following pilocarpine instillation. The decrease in lens rigidity following pilocarpine was significantly associated with the respective increase in ciliary body rigidity. Shear-wave ultrasound elastography can detect in vivo rigidity changes in the anterior segment of the rabbit eye model and may potentially be applied in human eyes, providing useful clinical information on conditions in which rigidity changes play an important role, such as glaucoma, pseudoexfoliation syndrome or presbyopia.
Gao, Jing; Zheng, Xiao; Zheng, Yuan-Yi; Zuo, Guo-Qing; Ran, Hai-Tao; Auh, Yong Ho; Waldron, Levi; Chan, Tiffany; Wang, Zhi-Gang
2016-05-01
To assess the feasibility of splenic shear wave elastography in monitoring transjugular intrahepatic portosystemic shunt (TIPS) function. We measured splenic shear wave velocity (SWV), main portal vein velocity (PVV), and splenic vein velocity (SVV) in 33 patients 1 day before and 3 days to 12 months after TIPS placement. We also measured PVV, SVV, and SWV in 10 of 33 patients with TIPS dysfunction 1 day before and 3 to 6 days after TIPS revision. Analyses included differences in portosystemic pressure gradient (PPG), PVV, SVV, and mean SWV before and after TIPS procedures; comparison of median SWV before and after TIPS procedures; differences in PVV, SVV, and SWV before and at different times up to 12 months after TIPS placement; accuracy of PVV, SVV, and SWV in determining TIPS dysfunction; and correlation between PPG and SWV. During 12 months of follow-up, 23 of 33 patients had functioning TIPS, and 10 had TIPS dysfunction. The median SWV was significantly different before and after primary TIPS placement (3.60 versus 3.05 m/s; P = .005), as well as before and after revision (3.73 versus 3.06 m/s; P = .003). The PPG, PVV, and SVV were also significantly different before and after TIPS placement and revision (P function and determining TIPS dysfunction. © 2016 by the American Institute of Ultrasound in Medicine.
Diagnostic performance of shear wave elastography of the breast according to scanning orientation.
Kim, Solip; Choi, SeonHyeong; Choi, Yoonjung; Kook, Shin-Ho; Park, Hee Jin; Chung, Eun Chul
2014-10-01
To evaluate the influence of the scanning orientation on diagnostic performance measured by the mean elasticity, maximum elasticity, and fat-to-lesion elasticity ratio on ultrasound-based shear wave elastography in differentiating breast cancers from benign lesions. In this study, a total of 260 breast masses from 235 consecutive patients were observed from March 2012 to November 2012. For each lesion, the mean elasticity value, maximum elasticity value, and fat-to-lesion ratio were measured along two orthogonal directions, and all values were compared with pathologic results. There were 59 malignant and 201 benign lesions. Malignant masses showed higher mean elasticity, maximum elasticity, and fat-to-lesion ratio values than benign lesions (P masses; and mean elasticity, 0.392, for anterior mammary fat. Mean elasticity, maximum elasticity, and fat-to-lesion elasticity ratio values were helpful in differentiating benign and malignant breast masses. The scanning orientation did not significantly affect the diagnostic performance of shear wave elastography for breast masses. © 2014 by the American Institute of Ultrasound in Medicine.
Lee, Su Hyun; Moon, Woo Kyung; Cho, Nariya; Chang, Jung Min; Moon, Hyeong-Gon; Han, Wonshik; Noh, Dong-Young; Lee, Jung Chan; Kim, Hee Chan; Lee, Kyoung-Bun; Park, In-Ae
2014-03-01
The objective of this study was to compare the quantitative and qualitative shear-wave elastographic (SWE) features of breast cancers with mechanical elasticity and histopathologic characteristics. This prospective study was conducted with institutional review board approval, and written informed consent was obtained. Shear-wave elastography was performed for 30 invasive breast cancers in 30 women before surgery. The mechanical elasticity of a fresh breast tissue section, correlated with the ultrasound image, was measured using an indentation system. Quantitative (maximum, mean, minimum, and standard deviation of elasticity in kilopascals) and qualitative (color heterogeneity and presence of signal void areas in the mass) SWE features were compared with mechanical elasticity and histopathologic characteristics using the Pearson correlation coefficient and the Wilcoxon signed rank test. Maximum SWE values showed a moderate correlation with maximum mechanical elasticity (r = 0.530, P = 0.003). There were no significant differences between SWE values and mechanical elasticity in histologic grade I or II cancers (P = 0.268). However, SWE values were significantly higher than mechanical elasticity in histologic grade III cancers (P masses were present in 43% of breast cancers (13 of 30) and were correlated with dense collagen depositions (n = 11) or intratumoral necrosis (n = 2). Quantitative and qualitative SWE features reflect both the mechanical elasticity and histopathologic characteristics of breast cancers.
Czech Academy of Sciences Publication Activity Database
Kolínský, Petr; Málek, Jiří; Brokešová, J.
2011-01-01
Roč. 15, č. 1 (2011), s. 81-104 ISSN 1383-4649 R&D Projects: GA AV ČR IAA300460602; GA AV ČR IAA300460705; GA ČR(CZ) GA205/06/1780 Institutional research plan: CEZ:AV0Z30460519 Keywords : love waves * phase velocity dispersion * frequency-time analysis Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.326, year: 2011 www.springerlink.com/content/w3149233l60111t1/
Lyu, Chao; Pedersen, Helle A.; Paul, Anne; Zhao, Liang; Solarino, Stefano
2017-07-01
It remains challenging to obtain absolute shear wave velocities of heterogeneities of small lateral extension in the uppermost mantle. This study presents a cross-section of Vs across the strongly heterogeneous 3-D structure of the western European Alps, based on array analysis of data from 92 broad-band seismic stations from the CIFALPS experiment and from permanent networks in France and Italy. Half of the stations were located along a dense sublinear array. Using a combination of these stations and off-profile stations, fundamental-mode Rayleigh wave dispersion curves were calculated using a combined frequency-time beamforming approach. We calculated dispersion curves for seven arrays of approximately 100 km aperture and 14 arrays of approximately 50 km aperture, the latter with the aim of obtaining a 2-D vertical cross-section of Vs beneath the western Alps. The dispersion curves were inverted for Vs(z), with crustal interfaces imposed from a previous receiver function study. The array approach proved feasible, as Vs(z) from independent arrays vary smoothly across the profile length. Results from the seven large arrays show that the shear velocity of the upper mantle beneath the European plate is overall low compared to AK135 with the lowest velocities in the internal part of the western Alps, and higher velocities east of the Alps beneath the Po plain. The 2-D Vs model is coherent with (i) a ∼100 km thick eastward-dipping European lithosphere west of the Alps, (ii) very high velocities beneath the Po plain, coherent with the presence of the Alpine (European) slab and (iii) a narrow low-velocity anomaly beneath the core of the western Alps (from the Briançonnais to the Dora Maira massif), and approximately colocated with a similar anomaly observed in a recent teleseismic P-wave tomography. This intriguing anomaly is also supported by traveltime variations of subvertically propagating body waves from two teleseismic events that are approximately located on
Fan, Wenyuan; Shearer, Peter M.
2018-04-01
Teleseismic records of the 2012 Mw 7.2 Sumatra earthquake contain prominent phases in the P wave train, arriving about 50 to 100 s after the direct P arrival. Azimuthal variations in these arrivals, together with back-projection analysis, led Fan and Shearer (https://doi.org/10.1002/2016GL067785) to conclude that they originated from early aftershock(s), located ˜150 km northeast of the mainshock and landward of the trench. However, recently, Yue et al. (https://doi.org/10.1002/2017GL073254) argued that the anomalous arrivals are more likely water reverberations from the mainshock, based mostly on empirical Green's function analysis of a M6 earthquake near the mainshock and a water phase synthetic test. Here we present detailed back-projection and waveform analyses of three M6 earthquakes within 100 km of the Mw 7.2 earthquake, including the empirical Green's function event analyzed in Yue et al. (https://doi.org/10.1002/2017GL073254). In addition, we examine the waveforms of three M5.5 reverse-faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (https://doi.org/10.1002/2016GL067785). These results suggest that the reverberatory character of the anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this energy is more likely an early aftershock rather than delayed and displaced water reverberations from the mainshock.
Zhang, Yan; Mao, Da-Feng; Zhang, Mei-Wu; Fan, Xiao-Xiang
2017-12-07
To explore the relationship of liver and spleen shear wave velocity in patients with liver cirrhosis combined with portal hypertension, and assess the value of liver and spleen shear wave velocity in predicting the prognosis of patients with portal hypertension. All 67 patients with liver cirrhosis diagnosed as portal hypertension by hepatic venous pressure gradient in our hospital from June 2014 to December 2014 were enrolled into this study. The baseline information of these patients was recorded. Furthermore, 67 patients were followed-up at 20 mo after treatment, and liver and spleen shear wave velocity were measured by acoustic radiation force impulse at the 1 st week, 3 rd month and 9 th month after treatment. Patients with favorable prognosis were assigned into the favorable prognosis group, while patients with unfavorable prognosis were assigned into the unfavorable prognosis group. The variation and difference in liver and spleen shear wave velocity in these two groups were analyzed by repeated measurement analysis of variance. Meanwhile, in order to evaluate the effect of liver and spleen shear wave velocity on the prognosis of patients with portal hypertension, Cox's proportional hazard regression model analysis was applied. The ability of those factors in predicting the prognosis of patients with portal hypertension was calculated through receiver operating characteristic (ROC) curves. The liver and spleen shear wave velocity in the favorable prognosis group revealed a clear decline, while those in the unfavorable prognosis group revealed an increasing tendency at different time points. Furthermore, liver and spleen shear wave velocity was higher in the unfavorable prognosis group, compared with the favorable prognosis group; the differences were statistically significant ( P portal hypertension was significantly affected by spleen hardness at the 3 rd month after treatment [relative risk (RR) = 3.481]. At the 9 th month after treatment, the prognosis
Liou, M. S.; Adamson, T. C., Jr.
1980-01-01
Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.
Value of ultrasound shear wave elastography in the diagnosis of adenomyosis.
Acar, S; Millar, E; Mitkova, M; Mitkov, V
2016-11-01
The aim of the study was to assess the accuracy of ultrasound shear wave elastography in the diagnosis of adenomyosis. One hundred and fifty three patients were examined. Ninety-seven patients were with suspected adenomyosis and 56 patients were with unremarkable myometrium. Adenomyosis was confirmed in 39 cases (A subgroup) and excluded in 14 cases (B subgroup) in the main group based on morphological examination. All patients underwent ultrasound examination using an Aixplorer (Supersonic Imagine, France) scanner with application of shear wave elastography during transvaginal scanning. Retrospective analysis of the elastography criteria against the findings from morphological/histological examination was performed. The following values of Young's modulus were found in subgroup A (adenomyosis): Emean - 72.7 (22.6-274.2) kPa (median, 5-95th percentiles), Emax - 94.8 (29.3-300.0) kPa, SD - 9.9 (2.6-26.3) kPa; in subgroup B (non adenomyosis) - 28.3 (12.7-59.5) kPa, 33.6 (16.0-80.8) kPa, 3.0 (1.4-15.6) kPa; in the control group - 24.4 (17.9-32.4) kPa, 29.8 (21.6-40.8) kPa, 2.3 (1.3-6.1) kPa, respectively (P < 0.05 for all comparison with subgroup В and the control group). The Emean cut-off value for adenomyosis diagnosis was 34.6 kPa. The sensitivity, specificity, positive predictive value, negative predictive value and area under curve (AUC) were 89.7%, 92.9%, 97.2%, 76.5% and 0.908. The Emax cut-off value was 45.4 kPa (89.7%, 92.9%, 97.2%, 76.5% and 0.907, respectively). This study showed a significant increase of the myometrial stiffness estimated with shear wave elastography use in patients with adenomyosis.
Clinical acceptance testing and scanner comparison of ultrasound shear wave elastography.
Long, Zaiyang; Tradup, Donald J; Song, Pengfei; Stekel, Scott F; Chen, Shigao; Glazebrook, Katrina N; Hangiandreou, Nicholas J
2018-03-15
Because of the rapidly growing use of ultrasound shear wave elastography (SWE) in clinical practices, there is a significant need for development of clinical physics performance assessment methods for this technology. This study aims to report two clinical medical physicists' tasks: (a) acceptance testing (AT) of SWE function on ten commercial ultrasound systems for clinical liver application and (b) comparison of SWE measurements of targets across vendors for clinical musculoskeletal application. For AT, ten GE LOGIQ E9 XDclear 2.0 scanners with ten C1-6-D and ten 9L-D transducers were studied using two commercial homogenous phantoms. Five measurements were acquired at two depths for each scanner/transducer pair by two operators. Additional tests were performed to access effects of different coupling media, phantom locations and operators. System deviations were less than 5% of group mean or three times standard deviation; therefore, all systems passed AT. A test protocol was provided based on results that no statistically significant difference was observed between using ultrasound gel and salt water for coupling, among different phantom locations, and that interoperator and intraoperator coefficient of variation was less than 3%. For SWE target measurements, two systems were compared - a Supersonic Aixplorer scanner with a SL10-2 and a SL15-4 transducer, and an abovementioned GE scanner with 9L-D transducer. Two stepped cylinders with diameters of 4.05-10.40 mm were measured both longitudinally and transaxially. Target shear wave speed quantification was performed using an in-house MATLAB program. Using the target shear wave speed deduced from phantom specs as a reference, SL15-4 performed the best at the measured depth. However, it was challenging to reliably measure a 4.05 mm target for either system. The reported test methods and results could provide important information when dealing with SWE-related tasks in the clinical environment. © 2018 The Authors
Correlation of Point Shear Wave Velocity and Kidney Function in Chronic Kidney Disease.
Grosu, Iulia; Bob, Flaviu; Sporea, Ioan; Popescu, Alina; Şirli, Roxana; Schiller, Adalbert
2018-04-24
Point shear wave elastography is a quantitative ultrasound-based imaging method used in the assessment of renal disease. Among point shear wave elastographic options, 2 techniques have been studied considerably: Virtual Touch quantification (VTQ; Siemens AG, Erlangen, Germany) and ElastPQ (EPQ; Philips Healthcare, Bothell, WA). Both rely on the tissue response to an acoustic beam generated by the ultrasound transducer. The data on renal VTQ are more extensive, whereas EPQ has been used less thus far in the assessment of the kidneys. This study aimed to evaluate the performance of EPQ in the kidney and compare it with VTQ. We studied 124 participants using EPQ: 22 with no renal disease and 102 with chronic kidney disease (CKD). Ninety-one were studied with both the EPQ and VTQ methods. We obtained 5 valid measurements in each kidney, expressed in meters per second. The mean kidney stiffness measurements ± SD obtained with EPQ in the healthy control group were as follows: right kidney, 1.23 ± 0.33 m/s; and left kidney, 1.26 ± 0.32 m/s (P = .6). In the patients with CKD (all stages), the mean kidney stiffness measurements obtained were significantly lower: right kidney, 1.09 ± 0.39 m/s; and left kidney, 1.04 ± 0.38 m/s (P = .4). We observed that, similar to VTQ, EPQ values decreased with CKD progression, based on analysis of variance results using different CKD stages. From a receiver operating characteristic curve analysis, the cutoff value for an estimated glomerular filtration rate of less than 45 mL/min was 1.24 m/s, and the value for an estimated glomerular filtration rate of less than 30 mL/min was 1.07 m/s. When using EPQ, the kidney shear wave velocity is decreased in patients with CKD, an observation similar to that obtained by using the VTQ method. © 2018 by the American Institute of Ultrasound in Medicine.
Directory of Open Access Journals (Sweden)
Sungho Choi
2016-12-01
Full Text Available Harsh environments and confined spaces require that nondestructive inspections be conducted with robotic systems. Ultrasonic guided waves are well suited for robotic systems because they can provide efficient volumetric coverage when inspecting for various types of damage, including cracks and corrosion. Shear horizontal guided waves are especially well suited for robotic inspection because they are sensitive to cracks oriented perpendicular or parallel to the wave propagation direction and can be generated with electromagnetic acoustic transducers (EMATs and magnetostrictive transducers (MSTs. Both types of transducers are investigated for crack detection in a stainless steel plate. The MSTs require the robot to apply a compressive normal force that creates frictional force coupling. However, the coupling is observed to be very dependent upon surface roughness and surface debris. The EMATs are coupled through the Lorentz force and are thus noncontact, although they depend on the lift off between transducer and substrate. After comparing advantages and disadvantages of each transducer for robotic inspection the EMATs are selected for application to canisters that store used nuclear fuel.
International Nuclear Information System (INIS)
Aldea, A.; Albota, E.; Yamanaka, H.; Fukumoto, S.; Poiata, N.
2007-01-01
The estimation of subsurface shear-wave velocity is of major importance for understanding and modelling site-response and surface ground motion. The shear-wave velocity profile strongly influence the shear-wave part of the seismic motion that proved to be the most damaging one. The improvement of input seismic ground motion for design is one of the long-term objectives within the Japan International Cooperation Agency (JICA) Project in Romania. Two approaches were used: installation of a digital seismic network and soil investigations (in situ and in laboratory). National Center for Seismic Risk Reduction (NCSRR, Romania), the implementing agency of JICA Project, performed these activities in cooperation with Japanese partner institutions, and an efficient know-how transfer was achieved. Between the soil investigation activities, a special importance was given to the estimation of shear-wave velocity profile. The present paper presents results from PS logging tests at NCSRR seismic station sites, and from single-station and array microtremor measurements. Other results from PS logging tests, surface-wave method and in situ and laboratory geotechnical investigations are presented in other papers in these proceedings. In future, a joint-collaborative effort of Romanian institutions may allow an improved characterisation of the soil profile beneath Bucharest. (authors)
Mulazzani, L; Salvatore, V; Ravaioli, F; Allegretti, G; Matassoni, F; Granata, R; Ferrarini, A; Stefanescu, H; Piscaglia, Fabio
2017-09-01
Different shear wave elastography (SWE) machines able to quantify liver stiffness (LS) have been recently introduced by various companies. The aim of this study was to investigate the agreement between point SWE with Esaote MyLab Twice (pSWE.ESA) and 2D SWE with Aixplorer SuperSonic (2D SWE.SSI). Moreover, we assessed the correlation of these machines with Fibroscan in a subgroup of patients. A total of 81 liver disease patients and 27 subjects without liver disease accessing the ultrasound lab were considered. Exclusion criteria were liver nodules, BMI >35, and severe comorbidities. LS was sampled from the same intercostal space with both pSWE.ESA and 2D SWE.SSI and values were tested with Lin's analysis and Bland-Altman analysis (B&A). Agreement between each SWE machine and Fibroscan was assessed in 26 liver disease patients with Spearman correlation. Precision and accuracy between pSWE.ESA and 2D SWE.SSI were, respectively, 0.839 and 0.999. B&A showed a mean of only -0.2 kPa, with no systematic deviation between the techniques and limits of agreement at -11.6 and 11.3 kPa. Spearman's rho correlation versus Fibroscan was 0.849 for pSWE.ESA and 0.878 for 2D SWE.SSI. The relationship became less strict in the higher range of LS (≥15.2 kPa), corresponding to cirrhosis. The overall degree of concordance of pSWE.ESA and 2D SWE.SSI in measuring LS resulted remarkable, also when compared with Fibroscan. The less strict correlation for patients with LS in the higher range would not affect the staging of disease as such patients are anyhow classified as cirrhotic.
Seo, Mirinae; Ahn, Hye Shin; Park, Sung Hee; Lee, Jong Beum; Choi, Byung Ihn; Sohn, Yu-Mee; Shin, So Youn
2018-01-01
To compare the diagnostic performance of strain and shear wave elastography of breast masses for quantitative assessment in differentiating benign and malignant lesions and to evaluate the diagnostic accuracy of combined strain and shear wave elastography. Between January and February 2016, 37 women with 45 breast masses underwent both strain and shear wave ultrasound (US) elastographic examinations. The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) final assessment on B-mode US imaging was assessed. We calculated strain ratios for strain elastography and the mean elasticity value and elasticity ratio of the lesion to fat for shear wave elastography. Diagnostic performances were compared by using the area under the receiver operating characteristic curve (AUC). The 37 women had a mean age of 47.4 years (range, 20-79 years). Of the 45 lesions, 20 were malignant, and 25 were benign. The AUCs for elasticity values on strain and shear wave elastography showed no significant differences (strain ratio, 0.929; mean elasticity, 0.898; and elasticity ratio, 0.868; P > .05). After selectively downgrading BI-RADS category 4a lesions based on strain and shear wave elastographic cutoffs, the AUCs for the combined sets of B-mode US and elastography were improved (B-mode + strain, 0.940; B-mode + shear wave; 0.964; and B-mode, 0.724; P shear wave elastography showed significantly higher diagnostic accuracy than each individual elastographic modality (P = .031). These preliminary results showed that strain and shear wave elastography had similar diagnostic performance. The addition of strain and shear wave elastography to B-mode US improved diagnostic performance. The combination of strain and shear wave elastography results in a higher diagnostic yield than each individual elastographic modality. © 2017 by the American Institute of Ultrasound in Medicine.
Observations of neutral winds, wind shears, and wave structure during a sporadic-E/QP event
Directory of Open Access Journals (Sweden)
M. F. Larsen
2005-10-01
Full Text Available The second Sporadic E Experiment over Kyushu (SEEK-2 was carried out on 3 August 2002, during an active sporadic-E event that also showed quasi-periodic (QP echoes. Two rockets were launched into the event from Kagoshima Space Center in southern Japan 15 min apart. Both carried a suite of instruments, but the second rocket also released a trimethyl aluminum (TMA trail to measure the neutral winds and turbulence structure. In a number of earlier measurements in similar conditions, large winds and shears that were either unstable or close to instability were observed in the altitude range where the ionization layer occurred. The SEEK-2 wind measurements showed similar vertical structure, but unlike earlier experiments, there was a significant difference between the up-leg and down-leg wind profiles. In addition, wave or billow-like fluctuations were evident in the up-leg portion of the trail, while the lower portion of the down-leg trail was found to have extremely strong turbulence that led to a rapid break-up of the trail. The large east-west gradient in the winds and the strong turbulence have not been observed before. The wind profiles and shears, as well as the qualitative characteristics of the strong turbulence are presented, along with a discussion of the implications of the dynamical features. Keywords. Ionosphere (Mid-latitude ionosphere; Ionospheric irregularities; Electric field and currents
Asadollahi, Aziz; Khazanovich, Lev
2018-04-11
The emergence of ultrasonic dry point contact (DPC) transducers that emit horizontal shear waves has enabled efficient collection of high-quality data in the context of a nondestructive evaluation of concrete structures. This offers an opportunity to improve the quality of evaluation by adapting advanced imaging techniques. Reverse time migration (RTM) is a simulation-based reconstruction technique that offers advantages over conventional methods, such as the synthetic aperture focusing technique. RTM is capable of imaging boundaries and interfaces with steep slopes and the bottom boundaries of inclusions and defects. However, this imaging technique requires a massive amount of memory and its computation cost is high. In this study, both bottlenecks of the RTM are resolved when shear transducers are used for data acquisition. An analytical approach was developed to obtain the source and receiver wavefields needed for imaging using reverse time migration. It is shown that the proposed analytical approach not only eliminates the high memory demand, but also drastically reduces the computation time from days to minutes. Copyright © 2018 Elsevier B.V. All rights reserved.
Measurement of tissue-radiation dosage using a thermal steady-state elastic shear wave.
Chang, Sheng-Yi; Hsieh, Tung-Sheng; Chen, Wei-Ru; Chen, Jin-Chung; Chou, Chien
2017-08-01
A biodosimeter based on thermal-induced elastic shear wave (TIESW) in silicone acellular porcine dermis (SAPD) at thermal steady state has been proposed and demonstrated. A square slab SAPD treated with ionizing radiation was tested. The SAPD becomes a continuous homogeneous and isotropic viscoelastic medium due to the generation of randomly coiled collagen fibers formed from their bundle-like structure in the dermis. A harmonic TIESW then propagates on the surface of the SAPD as measured by a nanometer-scaled strain-stress response under thermal equilibrium conditions at room temperature. TIESW oscillation frequency was noninvasively measured in real time by monitoring the transverse displacement of the TIESW on the SAPD surface. Because the elastic shear modulus is highly sensitive to absorbed doses of ionizing radiation, this proposed biodosimeter can become a highly sensitive and noninvasive method for quantitatively determining tissue-absorbed dosage in terms of TIESW’s oscillation frequency. Detection sensitivity at 1 cGy and dynamic ranges covering 1 to 40 cGy and 80 to 500 cGy were demonstrated.
Effect of Calcifications on Breast Ultrasound Shear Wave Elastography: An Investigational Study.
Gregory, Adriana; Mehrmohammadi, Mohammad; Denis, Max; Bayat, Mahdi; Stan, Daniela L; Fatemi, Mostafa; Alizad, Azra
2015-01-01
To investigate the effects of macrocalcifications and clustered microcalcifications associated with benign breast masses on shear wave elastography (SWE). SuperSonic Imagine (SSI) and comb-push ultrasound shear elastography (CUSE) were performed on three sets of phantoms to investigate how calcifications of different sizes and distributions influence measured elasticity. To demonstrate the effect in vivo, three female patients with benign breast masses associated with mammographically-identified calcifications were evaluated by CUSE. Apparent maximum elasticity (Emax) estimates resulting from individual macrocalcifications (with diameters of 2mm, 3mm, 5mm, 6mm, 9mm, 11mm, and 15mm) showed values over 50 kPa for all cases, which represents more than 100% increase over background (~21kPa). We considered a 2cm-diameter circular region of interest for all phantom experiments. Mean elasticity (Emean) values varied from 26 kPa to 73 kPa, depending on the macrocalcification size. Highly dense clusters of microcalcifications showed higher Emax values than clusters of microcalcification with low concentrations, but the difference in Emean values was not significant. Our results demonstrate that the presence of large isolated macrocalcifications and highly concentrated clusters of microcalcifications can introduce areas with apparent high elasticity in SWE. Considering that benign breast masses normally have significantly lower elasticity values than malignant tumors, such areas with high elasticity appearing due to presence of calcification in benign breast masses may lead to misdiagnosis.
Effect of Calcifications on Breast Ultrasound Shear Wave Elastography: An Investigational Study.
Directory of Open Access Journals (Sweden)
Adriana Gregory
Full Text Available To investigate the effects of macrocalcifications and clustered microcalcifications associated with benign breast masses on shear wave elastography (SWE.SuperSonic Imagine (SSI and comb-push ultrasound shear elastography (CUSE were performed on three sets of phantoms to investigate how calcifications of different sizes and distributions influence measured elasticity. To demonstrate the effect in vivo, three female patients with benign breast masses associated with mammographically-identified calcifications were evaluated by CUSE.Apparent maximum elasticity (Emax estimates resulting from individual macrocalcifications (with diameters of 2mm, 3mm, 5mm, 6mm, 9mm, 11mm, and 15mm showed values over 50 kPa for all cases, which represents more than 100% increase over background (~21kPa. We considered a 2cm-diameter circular region of interest for all phantom experiments. Mean elasticity (Emean values varied from 26 kPa to 73 kPa, depending on the macrocalcification size. Highly dense clusters of microcalcifications showed higher Emax values than clusters of microcalcification with low concentrations, but the difference in Emean values was not significant.Our results demonstrate that the presence of large isolated macrocalcifications and highly concentrated clusters of microcalcifications can introduce areas with apparent high elasticity in SWE. Considering that benign breast masses normally have significantly lower elasticity values than malignant tumors, such areas with high elasticity appearing due to presence of calcification in benign breast masses may lead to misdiagnosis.
Directory of Open Access Journals (Sweden)
Brian Chin Wing Kot
Full Text Available Standardization on Shear wave ultrasound elastography (SWUE technical settings will not only ensure that the results are accurate, but also detect any differences over time that may be attributed to true physiological changes. The present study evaluated the variations of elastic modulus of muscle and tendon using SWUE when different technical aspects were altered. The results of this study indicated that variations of elastic modulus of muscle and tendon were found when different transducer's pressure and region of interest (ROI's size were applied. No significant differences in elastic modulus of the rectus femoris muscle and patellar tendon were found with different acquisition times of the SWUE sonogram. The SWUE on the muscle and tendon should be performed with the lightest transducer's pressure, a shorter acquisition time for the SWUE sonogram, while measuring the mean elastic modulus regardless the ROI's size.
Smooth muscle cells of penis in the rat: noninvasive quantification with shear wave elastography.
Zhang, Jia-Jie; Qiao, Xiao-Hui; Gao, Feng; Bai, Ming; Li, Fan; Du, Lian-Fang; Xing, Jin-Fang
2015-01-01
Smooth muscle cells (SMCs) of cavernosum play an important role in erection. It is of great significance to quantitatively analyze the level of SMCs in penis. In this study, we investigated the feasibility of shear wave elastography (SWE) on evaluating the level of SMCs in penis quantitatively. Twenty healthy male rats were selected. The SWE imaging of penis was carried out and then immunohistochemistry analysis of penis was performed to analyze the expression of alpha smooth muscle actin in penis. The measurement index of SWE examination was tissue stiffness (TS). The measurement index of immunohistochemistry analysis was positive area percentage of alpha smooth muscle actin (AP). Sixty sets of data of TS and AP were obtained. The results showed that TS was significantly correlated with AP and the correlation coefficient was -0.618 (p penis was successfully quantified in vivo with SWE. SWE can be used clinically for evaluating the level of SMCs in penis quantitatively.
Assessment of biopsy-proven liver fibrosis by two-dimensional shear wave elastography
DEFF Research Database (Denmark)
Herrmann, Eva; de Lédinghen, Victor; Cassinotto, Christophe
2018-01-01
sites, as well as on successful transient elastography (TE) in 665 patients. Most patients had chronic hepatitis C (HCV, n = 379), hepatitis B (HBV, n = 400) or non-alcoholic fatty liver disease (NAFLD, n = 156). AUROCs of 2D-SWE in patients with HCV, HBV and NAFLD were 86.3%, 90.6% and 85...... equipment were contacted to share their data. Retrospective statistical analysis used direct and paired receiver operating characteristic (ROC) and area under the ROC curve (AUROC) analysis accounting for random effects. RESULTS: Data on both 2D-SWE and liver biopsy was available in 1134 patients from 13......BACKGROUND AND AIMS: 2D shear wave elastography (2D-SWE) has proven to be efficient for the evaluation of liver fibrosis in small to moderate size clinical trials. We aimed at running a larger scale meta-analysis of individual data. METHODS: Centers which have worked with Aixplorer ultrasound...
The interaction between fishbone modes and shear Alfvén waves in tokamak plasmas
He, Hongda; Liu, Yueqiang; Dong, J. Q.; Hao, G. Z.; Wu, Tingting; He, Zhixiong; Zhao, K.
2016-05-01
The resonant interaction between the energetic particle triggered fishbone mode and the shear Alfvén waves is computationally investigated and firmly demonstrated based on a tokamak plasma equilibrium, using the self-consistent MHD-kinetic hybrid code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503). This type of continuum resonance, occurring critically due to the mode’s toroidal rotation in the plasma frame, significantly modifies the eigenmode structure of the fishbone instability, by introducing two large peaks of the perturbed parallel current density near but offside the q = 1 rational surface (q is the safety factor). The self-consistently computed radial plasma displacement substantially differs from that being assumed in the conventional fishbone theory.
Wave propagation to lower hybrid resonance in a magnetic field with shear
International Nuclear Information System (INIS)
Ohkubo, Kunizo; Ohasa, Kazumi; Matsuura, Kiyokata
1977-01-01
The ray trajectories of electrostatic wave to the lower hybrid (LH) resonance on the meridian plane of torus is significantly modified as compared with that without shear. The ray starting from the vicinity of the plasma surface rotates spirally around the magnetic axis. The ray reaching the layer S=0, where the perpendicular dielectric constant vanishes, is not terminated but reflected along the second characteristic curve towards another point on the layer S=0. After being reflected successively, rays finally converge on the node point of the layer S=0 on the equatorial plane. In the absence of the layer S=0 the rays infinitely reflect between the cutoff layers near the center and surface of plasma and cover all the region between the layers. (auth.)
Mantle Flow Implications across Easter and Southern Africa from Shear Wave Splitting Measurements
Ramirez, C.; Nyblade, A.; Bagley, B. C.; Mulibo, G. D.; Tugume, F.; Wysession, M. E.; Wiens, D.; van der Meijde, M.
2015-12-01
In this study, we present new shear wave splitting results from broadband seismic stations in Botswana and Namibia, and combine them with previous results from stations in Kenya, Uganda, Tanzania, Malawi, Zambia, South Africa, Mozambique, Zimbabwe, and Angola to further examine the pattern of seismic anisotropy across southern Africa. The new results come from stations in northern Namibia and Botswana, which help to fill in large gaps in data coverage. Our preliminary results show that fast polarization directions overall trend in a NE orientation. The most noticeable measurements that deviate from this pattern are located around the Archean Tanzania Craton in eastern Africa. The general NE pattern of fast polarization directions is attributed to mantle flow linked to the African superplume. Smaller scale variations from this general direction can be explained by shape anisotropy in the lithosphere in magmatic regions in the East African rift system and to fossil anisotropy in the Precambrian lithosphere.
Hong, Sun; Woo, Ok Hee; Shin, Hye Seon; Hwang, Soon-Young; Cho, Kyu Ran; Seo, Bo Kyoung
Shear wave elastography (SWE) was performed independently by two radiologists in 264 solid breast masses. The images were reviewed for color overlay pattern (COP) classification by the two radiologists, double blinded to any information. The interobserver agreement of the COP was almost perfect (κ=0.908) and high in E max (ICC=0.89). The AUC value of the COP (0.954) was significantly higher than that of E max (0.915) (p=0.002) but not significantly different from that of E max combined with COP (0.957) (p=0.098). The SWE color overlay pattern and E max of breast masses were highly reproducible. The COP had better diagnostic ability than E max , suggesting that COP may be a more reliable parameter for solid breast mass evaluation. Copyright © 2017 Elsevier Inc. All rights reserved.
Evans, Andrew; Sim, Yee Ting; Thomson, Kim; Jordan, Lee; Purdie, Colin; Vinnicombe, Sarah J
2016-04-01
To define the shear wave elastography (SWE) characteristics of breast cancer histological types by size in a large cohort. Consecutive patients with US visible masses underwent SWE. All those with confirmed invasive breast cancer were included in the study. Histologic type was ascertained from core biopsy and surgical resection specimens. For each type, mean and median values for Emean and Emax were ascertained. Commoner tumour types were further analysed by invasive size. The significance of differences was established using the Chi-square test. 1137 tumours constituted the study group. The proportion of tumours with Emean below 50 kPa was higher in tubular cancers (23%) compared to ductal carcinomas of no specific type (DNST) (6%) (p breast cancer histological types have similar SWE characteristics. The exception is tubular cancer which has significantly lower stiffness than other histologic types, accounted for largely by their small size. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhou, Yanguo; Sun, Zhengbo; Chen, Jie; Chen, Yunmin; Chen, Renpeng
2017-04-01
The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s)-void ratio ( e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s- e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.
Assessment of impact factors on shear wave based liver stiffness measurement
Energy Technology Data Exchange (ETDEWEB)
Ling, Wenwu, E-mail: lingwenwubing@163.com [Department of Ultrasound, West China Hospital of Sichuan University, Chengdu 610041 (China); Lu, Qiang, E-mail: wsluqiang@126.com [Department of Ultrasound, West China Hospital of Sichuan University, Chengdu 610041 (China); Quan, Jierong, E-mail: quanjierong@163.com [Department of Ultrasound, West China Hospital of Sichuan University, Chengdu 610041 (China); Ma, Lin, E-mail: malin2010US@163.com [Department of Ultrasound, West China Hospital of Sichuan University, Chengdu 610041 (China); Luo, Yan, E-mail: huaxiluoyan@gmail.com [Department of Ultrasound, West China Hospital of Sichuan University, Chengdu 610041 (China)
2013-02-15
Shear wave based ultrasound elastographies have been implemented as non-invasive methods for quantitative assessment of liver stiffness. Nonetheless, there are only a few studies that have investigated impact factors on liver stiffness measurement (LSM). Moreover, standard examination protocols for LSM are still lacking in clinical practice. Our study aimed to assess the impact factors on LSM to establish its standard examination protocols in clinical practice. We applied shear wave based elastography point quantification (ElastPQ) in 21 healthy individuals to determine the impact of liver location (segments I–VIII), breathing phase (end-inspiration and end-expiration), probe position (sub-costal and inter-costal position) and examiner on LSM. Additional studies in 175 healthy individuals were also performed to determine the influence of gender and age on liver stiffness. We found significant impact of liver location on LSM, while the liver segment V displayed the lowest coefficient of variation (CV 21%). The liver stiffness at the end-expiration was significantly higher than that at the end-inspiration (P = 2.1E−05). The liver stiffness was 8% higher in men than in women (3.8 ± 0.7 kPa vs. 3.5 ± 0.4 kPa, P = 0.0168). In contrast, the liver stiffness was comparable in the different probe positions, examiners and age groups (P > 0.05). In conclusion, this study reveals significant impact from liver location, breathing phase and gender on LSM, while furthermore strengthening the necessity for the development of standard examination protocols on LSM.
Effects of age and pathology on shear wave speed of the human rotator cuff.
Baumer, Timothy G; Dischler, Jack; Davis, Leah; Labyed, Yassin; Siegal, Daniel S; van Holsbeeck, Marnix; Moutzouros, Vasilios; Bey, Michael J
2018-01-01
Rotator cuff tears are common and often repaired surgically, but post-operative repair tissue healing, and shoulder function can be unpredictable. Tear chronicity is believed to influence clinical outcomes, but conventional clinical approaches for assessing tear chronicity are subjective. Shear wave elastography (SWE) is a promising technique for assessing soft tissue via estimates of shear wave speed (SWS), but this technique has not been used extensively on the rotator cuff. Specifically, the effects of age and pathology on rotator cuff SWS are not well known. The objectives of this study were to assess the association between SWS and age in healthy, asymptomatic subjects, and to compare measures of SWS between patients with a rotator cuff tear and healthy, asymptomatic subjects. SWE images of the supraspinatus muscle and intramuscular tendon were acquired from 19 asymptomatic subjects and 11 patients with a rotator cuff tear. Images were acquired with the supraspinatus under passive and active (i.e., minimal activation) conditions. Mean SWS was positively associated with age in the supraspinatus muscle and tendon under passive and active conditions (p ≤ 0.049). Compared to asymptomatic subjects, patients had a lower mean SWS in their muscle and tendon under active conditions (p ≤ 0.024), but no differences were detected under passive conditions (p ≥ 0.783). These findings identify the influences of age and pathology on SWS in the rotator cuff. These preliminary findings are an important step toward evaluating the clinical utility of SWE for assessing rotator cuff pathology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:282-288, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Dillman, Jonathan R; Smith, Ethan A; Davenport, Matthew S; DiPietro, Michael A; Sanchez, Ramon; Kraft, Kate H; Brown, Richard K J; Rubin, Jonathan M
2015-10-01
To determine if ultrasonographic (US) renal shear-wave speed (SWS) measurements obtained either before or after intravenous diuretic administration can be used to discriminate obstructive hydronephrosis from unobstructive hydronephrosis in children, with diuretic renal scintigraphy as the reference standard. Institutional review board approval and parental informed consent were obtained for this HIPAA-compliant prospective cross-sectional blind comparison with a reference standard. Between November 2012 and September 2014, 37 children (mean age, 4.1 years; age range, 1 month to 17 years) underwent shear-wave elastography of the kidneys immediately before and immediately after diuretic renal scintigraphy (reference standard for presence of urinary tract obstruction). Median SWS measurements (in meters per second), as well as change in median SWS (median SWS after diuretic administration minus median SWS before diuretic administration) were correlated with the amount of time required for kidney radiotracer activity to fall by 50% after intravenous administration of the diuretic (T1/2). Median SWS measurements were compared with degree of obstruction and degree of hydronephrosis with analysis of variance. Receiver operating characteristic (ROC) curves were created. Radiotracer T1/2 values after diuretic administration did not correlate with median SWS measurements obtained before (r = -0.08, P = .53) or after (r = -0.0004, P >.99) diuretic administration, nor did they correlate with intraindividual change in median SWS (r = 0.07, P = .56). There was no significant difference in pre- or postdiuretic median SWS measurements between kidneys with scintigraphic evidence of no, equivocal, or definite urinary tract obstruction (P > .5) or for median SWS measurements between kidneys with increasing degree of hydronephrosis (P > .5). ROC curves showed poor diagnostic performance of median SWS in discerning no, equivocal, or definite urinary tract obstruction (area under the
International Nuclear Information System (INIS)
D. BUESCH; K.H. STOKOE; M. SCHUHEN
2006-01-01
Evaluation of the seismic response of the proposed spent nuclear fuel and high-level radioactive waste repository at Yucca Mountain, Nevada, is in part based on the seismic properties of the host rock, the 12.8-million-year-old Topopah Spring Tuff. Because of the processes that formed the tuff, the densely welded and crystallized part has three lithophysal and three nonlithophysal zones, and each zone has characteristic variations in lithostratigraphic features and structures of the rocks. Lithostratigraphic features include lithophysal cavities, rims on lithophysae and some fractures, spots (which are similar to rims but without an associated cavity or aperture), amounts of porosity resulting from welding, crystallization, and vapor-phase corrosion and mineralization, and fractures. Seismic properties, including shear-wave velocity (V s ), have been measured on 38 pieces of core, and there is a good ''first order'' correlation with the lithostratigraphic zones; for example, samples from nonlithophysal zones have larger V s values compared to samples from lithophysal zones. Some samples have V s values that are beyond the typical range for the lithostratigraphic zone; however, these samples typically have one or more fractures, ''large'' lithophysal cavities, or ''missing pieces'' relative to the sample size. Shear-wave velocity data measured in the tunnels have similar relations to lithophysal and nonlithophysal rocks; however, tunnel-based values are typically smaller than those measured in core resulting from increased lithophysae and fracturing effects. Variations in seismic properties such as V s data from small-scale samples (typical and ''flawed'' core) to larger scale traverses in the tunnels provide a basis for merging our understanding of the distributions of lithostratigraphic features (and zones) with a method to scale seismic properties
Value of shear-wave elastography in the diagnosis of symptomatic invasive lobular breast cancer
International Nuclear Information System (INIS)
Sim, Y.T.; Vinnicombe, S.; Whelehan, P.; Thomson, K.; Evans, A.
2015-01-01
Aim: To investigate the contribution of shear-wave elastography (SWE) in diagnosing invasive lobular breast cancer (ILC) in symptomatic patients. Materials and methods: A retrospective case-controlled study of 52 patients with ILC and 52 patients with invasive ductal cancer (IDC), matched for age and tumour size, was performed. Breast density and mammographic and greyscale ultrasound features were graded using Breast Imaging-Reporting and Data System (BI-RADS) classification by two radiologists, blinded to SWE and pathology findings. Forty-four benign lesions were also included. The sensitivity of SWE was assessed, using a cut-off value of 50 kPa for mean elasticity. Statistical significance was evaluated using Chi-square and Chi-square for trend tests. Results: Mean age for both ILC and IDC groups was 67 years. Mean size for ILC was 44 mm and IDC was 37 mm. The sensitivity for detection of ILC and IDC for mammography, greyscale ultrasound, and SWE were 79% versus 87%, 87% versus 98%, 94% versus 100%, respectively. SWE had significantly higher sensitivities than mammography for the detection of both ILC and IDC (p = 0.012 and p = 0.001, respectively). SWE was not significantly more sensitive than greyscale ultrasound for the detection of either tumour type. Four (8%) lobular cancers were benign/normal at both mammography and greyscale ultrasound, but suspicious on SWE. The incremental gain in sensitivity by using SWE in ILC was statistically significant compared to IDC (p = 0.01). Conclusion: SWE can diagnose lobular cancers that have benign/normal findings on conventional imaging as suspicious. - Highlights: • Sensitivity of shear-wave elastography (SWE) for detecting lobular cancers is 94%. • Sensitivity of SWE for detecting invasive ductal cancers is 100%. • SWE is more sensitive than mammography for detecting ductal and lobular cancers. • SWE can diagnose ILC as suspicious, which are benign/normal on conventional imaging
Finite frequency shear wave splitting tomography: a model space search approach
Mondal, P.; Long, M. D.
2017-12-01
Observations of seismic anisotropy provide key constraints on past and present mantle deformation. A common method for upper mantle anisotropy is to measure shear wave splitting parameters (delay time and fast direction). However, the interpretation is not straightforward, because splitting measurements represent an integration of structure along the ray path. A tomographic approach that allows for localization of anisotropy is desirable; however, tomographic inversion for anisotropic structure is a daunting task, since 21 parameters are needed to describe general anisotropy. Such a large parameter space does not allow a straightforward application of tomographic inversion. Building on previous work on finite frequency shear wave splitting tomography, this study aims to develop a framework for SKS splitting tomography with a new parameterization of anisotropy and a model space search approach. We reparameterize the full elastic tensor, reducing the number of parameters to three (a measure of strength based on symmetry considerations for olivine, plus the dip and azimuth of the fast symmetry axis). We compute Born-approximation finite frequency sensitivity kernels relating model perturbations to splitting intensity observations. The strong dependence of the sensitivity kernels on the starting anisotropic model, and thus the strong non-linearity of the inverse problem, makes a linearized inversion infeasible. Therefore, we implement a Markov Chain Monte Carlo technique in the inversion procedure. We have performed tests with synthetic data sets to evaluate computational costs and infer the resolving power of our algorithm for synthetic models with multiple anisotropic layers. Our technique can resolve anisotropic parameters on length scales of ˜50 km for realistic station and event configurations for dense broadband experiments. We are proceeding towards applications to real data sets, with an initial focus on the High Lava Plains of Oregon.
Groundwater exploration in a Quaternary sediment body by shear-wave reflection seismics
Pirrung, M.; Polom, U.; Krawczyk, C. M.
2008-12-01
The detailed investigation of a shallow aquifer structure is the prerequisite for choosing a proper well location for groundwater exploration drilling for human drinking water supply and subsequent managing of the aquifer system. In the case of shallow aquifers of some 10 m in depth, this task is still a challenge for high-resolution geophysical methods, especially in populated areas. In areas of paved surfaces, shallow shear-wave reflection seismics is advantageous compared to conventional P-wave seismic methods. The sediment body of the Alfbach valley within the Vulkaneifel region in Germany, partly covered by the village Gillenfeld, was estimated to have a maximum thickness of nearly 60 m. It lies on top of a complicated basement structure, constituted by an incorporated lava flow near the basement. For the positioning of new well locations, a combination of a SH-wave land streamer receiver system and a small, wheelbarrow-mounted SH-wave source was used for the seismic investigations. This equipment can be easily applied also in residential areas without notable trouble for the inhabitants. The results of the 2.5D profiling show a clear image of the sediment body down to the bedrock with high resolution. Along a 1 km seismic profile, the sediment thickness varies between 20 to more than 60 m in the centre of the valley. The reflection behaviour from the bedrock surface corroborates the hypothesis of a basement structure with distinct topography, including strong dipping events from the flanks of the valley and strong diffractions from subsurface discontinuities. The reflection seismic imaging leads to an estimation of the former shape of the valley and a reconstruction of the flow conditions at the beginning of the sedimentation process.
Shear wave experiments at the US site at the Grimsel laboratory
International Nuclear Information System (INIS)
Majer, E.L.; Peterson, J.E. Jr.; Bluemling, P.; Sattel, G.
1990-07-01
As part of the United States Department of Energy (USDOE) cooperative project with the National Cooperative for the Storage of Radioactive Waste (Nagra) of Switzerland, there have been a series of studies carried out at the Nagra underground test facility at Grimsel. The Grimsel test facility is several 3.5 meter diameter tunnels excavated with a tunnel boring machine in the southern Swiss Alps. The rock type is granitic, although there is a large variation in the granitic fabric throughout the facility. The work described here was the first phase of a multiyear project to evaluate and develop seismic imaging techniques for fracture detection and characterization for the use in siting underground nuclear waste facilities. Data from a crosshole tomographic survey in the Underground Seismic (US) site at the Nagra Grimsel test facility in Switzerland and successfully reprocessed to enhance the S-wave arrivals. The results indicate that in a saturated granite Vp/Vs ratios approach 2.0 in the fractured rock. These results indicate that S-wave data would be very useful for fracture detection, especially in detecting thinner fractures
International Nuclear Information System (INIS)
Ware, A.S.; Diamond, P.H.
1993-01-01
The effects of a poloidally asymmetric ionization source on both dissipative toroidal drift wave stability and the generation of mean sheared parallel flow are examined. The first part of this work extends the development of a local model of ionization-driven drift wave turbulence [Phys. Fluids B 4, 877 (1992)] to include the effects of magnetic shear and poloidal source asymmetry, as well as poloidal mode coupling due to both magnetic drifts and the source asymmetry. Numerical and analytic investigation confirm that ionization effects can destabilize collisional toroidal drift waves. However, the mode structure is determined primarily by the magnetic drifts, and is not overly effected by the poloidal source asymmetry. The ionization source drives a purely inward particle flux, which can explain the anomalously rapid uptake of particles which occurs in response to gas puffing. In the second part of this work, the role poloidal asymmetries in both the source and turbulent particle diffusion play in the generation of sheared mean parallel flow is examined. Analysis indicates that predictions of sonic parallel shear flow [v parallel (r)∼c s ] are an unphysical result of the assumption of purely parallel flow (i.e., v perpendicular =0) and the neglect of turbulent parallel momentum transport. Results indicate that the flow produced is subcritical to the parallel shear flow instability when diamagnetic effects are properly considered
Horvath, P.; Latham, G. V.; Nakamura, Y.; Dorman, H. J.
1980-01-01
The horizontal-to-vertical amplitude ratios of the long-period seismograms are reexamined to determine the shear wave velocity distributions at the Apollo 12, 14, 15, and 16 lunar landing sites. Average spectral ratios, computed from a number of impact signals, were compared with spectral ratios calculated for the fundamental mode Rayleigh waves in media consisting of homogeneous, isotropic, horizontal layers. The shear velocities of the best fitting models at the different sites resemble each other and differ from the average for all sites by not more than 20% except for the bottom layer at station 14. The shear velocities increase from 40 m/s at the surface to about 400 m/s at depths between 95 and 160 m at the various sites. Within this depth range the velocity-depth functions are well represented by two piecewise linear segments, although the presence of first-order discontinuities cannot be ruled out.
Energy Technology Data Exchange (ETDEWEB)
Park, Jae Ha; Cho, Seung Hyun; Ahn, Bong Young; Kwon, Hyu Sang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)
2010-08-15
Recently, the results of many studies have clarified the successful performance of magnetostrictive transducers in which a ferromagnetic patch is used for the transduction of guided shear waves; this is because a thin ferromagnetic patch with strong magnetostriction is very useful for generating and detecting shear wave. This investigation deals with bulk shear wave transduction by means of magnetostriction; on the other hand, the existing studies have been focused on guided shear waves. A modular transducer was developed: this transducer comprised a coil, magnets, and a thin ferromagnetic patch that was made of Fe-Co alloy. Some experiments were conducted to verify the performance of the developed transducer. Radiation directivity pattern of the developed transducer was obtained, and a test to detect the damage on a side drill hole of a steel block specimen was carried out. From the results of these tests, the good performance of the transducer for nondestructive testing was verified on the basis of the signal-to-noise ratio and narrow beam directivity.
DEFF Research Database (Denmark)
Staugaard, Benjamin; Christensen, Peer Brehm; Mössner, Belinda
2016-01-01
BACKGROUND AND AIMS: Transient elastography (TE) is hampered in some patients by failures and unreliable results. We hypothesized that real time two-dimensional shear wave elastography (2D-SWE), the FibroScan XL probe, and repeated TE exams, could be used to obtain reliable liver stiffness...
DEFF Research Database (Denmark)
Thiele, Maja; Detlefsen, Sönke; Møller, Linda Maria Sevelsted
2016-01-01
clinics (in Southern Denmark). The second, lower-risk group, was recruited from municipal alcohol rehabilitation centers and the Danish national public health portal. All subjects underwent same-day transient elastography (FibroScan), 2-dimensional shear wave elastography (Supersonic Aixplorer), and liver...
Kim, Hyo Jin; Kim, Sun Mi; Kim, Bohyoung; La Yun, Bo; Jang, Mijung; Ko, Yousun; Lee, Soo Hyun; Jeong, Heeyeong; Chang, Jung Min; Cho, Nariya
2018-04-18
We investigated addition of strain and shear wave elastography to conventional ultrasonography for the qualitative and quantitative assessment of breast masses; cut-off points were determined for strain ratio, elasticity ratio, and visual score for differentiating between benign and malignant masses. In all, 108 masses from 94 patients were evaluated with strain and shear wave elastography and scored for suspicion of malignancy, visual score, strain ratio, and elasticity ratio. The diagnostic performance between ultrasonography alone and ultrasonography combined with either type of elastography was compared; cut-off points were determined for strain ratio, elasticity ratio, and visual score. Of the 108 masses, 44 were malignant and 64 were benign. The areas under the curves were significantly higher for strain and shear wave elastography-supplemented ultrasonography (0.839 and 0.826, respectively; P = 0.656) than for ultrasonography alone (0.764; P = 0.018 and 0.035, respectively). The diagnostic performances of strain and elasticity ratios were similar when differentiating benign from malignant masses. Cut-off values for strain ratio, elasticity ratio, and visual scores for strain and shear wave elastography were 2.93, 4, 3, and 2, respectively. Both forms of elastography similarly improved the diagnostic performance of conventional ultrasonography in the qualitative and quantitative assessment of breast masses.
Shear-Wave Splitting Within the Southeastern Carpathian Arc, Transylvanian Basin, Romania
Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; Munteanu, L.
2012-12-01
We present 75 new measurements of shear wave splitting at 4 temporary broadband seismic stations that we deployed in the Transylvanian Basin within the Carpathian Arc, Romania. The Tisza-Dacia terranes, which form the basement of this basin, were accommodated in the space between the thick, old, rigid and cold East European Platform and the Moesian Platform during the Miocene. This movement was driven by the subduction of a part of the Tethys Ocean, which led to the formation of Carpathian orogen system. In Romania, the mountains are divided into the Eastern Carpathians, at the limit of Transylvanian Basin and the East European Platform along the Tornquist-Teisseyre Suture Zone, and the Southern Carpathians, at the limit with Moesian Platform. They connect to the West of the Carpathian Bend Zone where a very active high velocity seismic body generates intermediate depth earthquakes between 70 and 200 km beneath the Vrancea seismogenic zone. We analyzed splitting of SKS and SKKS phases recorded at epicentral distances between 87 and 150 degrees using the method of Silver and Chan (1991). We estimated splitting parameters, fast shear polarization azimuth and delay time, using both weighted averages of individual splitting measurements (Helffrich et al., 1994) and simultaneous linearization of all clearly recorded SK(K)S waves (Wolfe and Silver, 1998). For COMD, located at the contact of the Carpathian Bend Zone and Transylvanian Basin, we obtained a fast shear polarization azimuth trending NE-SW, parallel to the contact and to the strike of the Vrancea seismic body. For 10 suitable events recorded at IACB, at the contact of the Neogene Volcanic zone with the Eastern Carpathians, we did not observe any splitting; we consider the station splitting to be null. The fast shear polarization azimuth for PMAR, at the limit between Tisza-Dacia block and Southern Carpathians thrust belt, and at CHDM, within the Transylvanian Basin, is NW-SE similar to a regional splitting
Exact scattering and diffraction of antiplane shear waves by a vertical edge crack
Tsaur, Deng-How
2010-06-01
Scattering and diffraction problems of a vertical edge crack connected to the surface of a half space are considered for antiplane shear wave incidence. The method of separation of variables is adopted to derive an exact series solution. The total displacement field is expressed as infinite series containing products of radial and angular Mathieu functions with unknown coefficients. An exact analytical determination of unknown coefficients is carried out by insuring the vanishing of normal stresses on crack faces. Frequency-domain results are given for extremely near, near, and far fields, whereas time-domain ones are for horizontal surface and subsurface motions. Comparisons with published data for the dynamic stress intensity factor show good agreement. The exact analytical nature of proposed solutions can be applied very conveniently and rapidly to high-frequency steady-state cases, enhancing the computation efficiency in transient cases when performing the fast Fourier transform. A sampled set of time slices for underground wave propagation benefits the interpretation of scattering and diffraction phenomena induced by a vertical edge crack.
The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield
Tang, Zheng
2016-05-11
We investigate the lithospheric shear-wave velocity structure of Saudi Arabia by conducting H-κ stacking analysis and jointly inverting teleseismic P-receiver functions and fundamental-mode Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). The study region, the Arabian plate, is traditionally divided into the western Arabian shield and the eastern Arabian platform: The Arabian shield itself is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (locally known as harrats). The Arabian platform is primarily covered by 8 to 10 km of Paleozoic, Mesozoic and Cenozoic sedimentary rocks. Our results reveal high Vp/Vs ratios in the region of Harrat Lunayyir, which are interpreted as solidified magma intrusions from old magmatic episodes in the shield. Our results also indicate slow velocities and large upper mantle lid temperatures below the southern and northern tips of the Arabian shield, when compared with the values obtained for the central shield. We argue that our inferred patterns of lid velocity and temperature are due to heating by thermal conduction from the Afar plume (and, possibly, the Jordan plume), and that volcanism in western Arabia may result from small-scale adiabatic ascent of magma diapirs.
Xu, Yanlong
2015-08-01
The coupled mode theory with coupling of diffraction modes and waveguide modes is usually used on the calculations of transmission and reflection coefficients for electromagnetic waves traveling through periodic sub-wavelength structures. In this paper, I extend this method to derive analytical solutions of high-order dispersion relations for shear horizontal (SH) wave propagation in elastic plates with periodic stubs. In the long wavelength regime, the explicit expression is obtained by this theory and derived specially by employing an effective medium. This indicates that the periodical stubs are equivalent to an effective homogenous layer in the long wavelength. Notably, in the short wavelength regime, high-order diffraction modes in the plate and high-order waveguide modes in the stubs are considered with modes coupling to compute the band structures. Numerical results of the coupled mode theory fit pretty well with the results of the finite element method (FEM). In addition, the band structures\\' evolution with the height of the stubs and the thickness of the plate shows clearly that the method can predict well the Bragg band gaps, locally resonant band gaps and high-order symmetric and anti-symmetric thickness-twist modes for the periodically structured plates. © 2015 Elsevier B.V.
Tozaki, Mitsuhiro; Saito, Masahiro; Benson, John; Fan, Liexiang; Isobe, Sachiko
2013-12-01
This study compared the diagnostic performance of two shear wave speed measurement techniques in 81 patients with 83 solid breast lesions. Virtual Touch Quantification, which provides single-point shear wave speed measurement capability (SP-SWS), was compared with Virtual Touch IQ, a new 2-D shear wave imaging technique with multi-point shear wave speed measurement capability (2D-SWS). With SP-SWS, shear wave velocity was measured within the lesion ("internal" value) and the marginal areas ("marginal" value). With 2D-SWS, the highest velocity was measured. The marginal values obtained with the SP-SWS and 2D-SWS methods were significantly higher for malignant lesions and benign lesions, respectively (p breast masses. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Improving the shear wave velocity structure beneath Bucharest (Romania) using ambient vibrations
Manea, Elena Florinela; Michel, Clotaire; Poggi, Valerio; Fäh, Donat; Radulian, Mircea; Balan, Florin Stefan
2016-11-01
Large earthquakes from the intermediate-depth Vrancea seismic zone are known to produce in Bucharest ground motion characterized by predominant long periods. This phenomenon has been interpreted as the combined effect of both seismic source properties and site response of the large sedimentary basin. The thickness of the unconsolidated Quaternary deposits beneath the city is more than 200 m, the total depth of sediments is more than 1000 m. Complex basin geometry and the low seismic wave velocities of the sediments are primarily responsible for the large amplification and long duration experienced during earthquakes. For a better understanding of the geological structure under Bucharest, a number of investigations using non-invasive methods have been carried out. With the goal to analyse and extract the polarization and dispersion characteristics of the surface waves, ambient vibrations and low-magnitude earthquakes have been investigated using single station and array techniques. Love and Rayleigh dispersion curves (including higher modes), Rayleigh waves ellipticity and SH-wave fundamental frequency of resonance (f0SH) have been inverted simultaneously to estimate the shear wave velocity structure under Bucharest down to a depth of about 8 km. Information from existing borehole logs was used as prior to reduce the non-uniqueness of the inversion and to constrain the shallow part of the velocity model (array (the URS experiment) installed by the National Institute for Earth Physics and by the Karlsruhe Institute of Technology during 10 months in the period 2003-2004. The array consisted of 32 three-component seismological stations, deployed in the urban area of Bucharest and adjacent zones. The large size of the array and the broad-band nature of the available sensors gave us the possibility to characterize the surface wave dispersion at very low frequencies (0.05-1 Hz) using frequency-wavenumber techniques. This is essential to explore and resolve the deeper
Shear-wave velocity of marine sediments offshore Taiwan using ambient seismic noise
Lin, Yu-Tse; Lin, Jing-Yi; Kuo-Chen, Hao; Yeh, Yi-Chin; Cheng, Win-Bin
2017-04-01
Seismic ambient noise technology has many advantages over the traditional two-station method. The most important one is that noise is happening all the time and it can be widely and evenly distributed. Thus, the Green's Function of any station pair can be obtained through the data cross-correlation process. Many related studies have been performed to estimate the velocity structures based on the inland area. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration. In this study, we applied the ambient noise technique to four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, on the continental margin rich in gas hydrate. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south part of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source direction, which could be caused by the abrupt change of bathymetry or the volcanic degassing effect frequently observed by the marine geophysical method in the area. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the
Liquefaction assessment based on combined use of CPT and shear wave velocity measurements
Bán, Zoltán; Mahler, András; Győri, Erzsébet
2017-04-01
Soil liquefaction is one of the most devastating secondary effects of earthquakes and can cause significant damage in built infrastructure. For this reason liquefaction hazard shall be considered in all regions where moderate-to-high seismic activity encounters with saturated, loose, granular soil deposits. Several approaches exist to take into account this hazard, from which the in-situ test based empirical methods are the most commonly used in practice. These methods are generally based on the results of CPT, SPT or shear wave velocity measurements. In more complex or high risk projects CPT and VS measurement are often performed at the same location commonly in the form of seismic CPT. Furthermore, VS profile determined by surface wave methods can also supplement the standard CPT measurement. However, combined use of both in-situ indices in one single empirical method is limited. For this reason, the goal of this research was to develop such an empirical method within the framework of simplified empirical procedures where the results of CPT and VS measurements are used in parallel and can supplement each other. The combination of two in-situ indices, a small strain property measurement with a large strain measurement, can reduce uncertainty of empirical methods. In the first step by careful reviewing of the already existing liquefaction case history databases, sites were selected where the records of both CPT and VS measurement are available. After implementing the necessary corrections on the gathered 98 case histories with respect to fines content, overburden pressure and magnitude, a logistic regression was performed to obtain the probability contours of liquefaction occurrence. Logistic regression is often used to explore the relationship between a binary response and a set of explanatory variables. The occurrence or absence of liquefaction can be considered as binary outcome and the equivalent clean sand value of normalized overburden corrected cone tip
Energy Technology Data Exchange (ETDEWEB)
Guidarelli, M; Zille, A; Sarao, A [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Natale, M; Nunziata, C [Dipartimento di Geofisica e Vulcanologia, Universita di Napoli ' Federico II' , Napoli (Italy); Panza, G F [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)
2006-12-15
This chapter summarizes a comparative study of shear-wave velocity models and seismic sources in the Campanian volcanic areas of Vesuvius and Phlegraean Fields. These velocity models were obtained through the nonlinear inversion of surface-wave tomography data, using as a priori constraints the relevant information available in the literature. Local group velocity data were obtained by means of the frequency-time analysis for the time period between 0.3 and 2 s and were combined with the group velocity data for the time period between 10 and 35 s from the regional events located in the Italian peninsula and bordering areas and two station phase velocity data corresponding to the time period between 25 and 100 s. In order to invert Rayleigh wave dispersion curves, we applied the nonlinear inversion method called hedgehog and retrieved average models for the first 30-35 km of the lithosphere, with the lower part of the upper mantle being kept fixed on the basis of existing regional models. A feature that is common to the two volcanic areas is a low shear velocity layer which is centered at the depth of about 10 km, while on the outside of the cone and along a path in the northeastern part of the Vesuvius area this layer is absent. This low velocity can be associated with the presence of partial melting and, therefore, may represent a quite diffused crustal magma reservoir which is fed by a deeper one that is regional in character and located in the uppermost mantle. The study of seismic source in terms of the moment tensor is suitable for an investigation of physical processes within a volcano; indeed, its components, double couple, compensated linear vector dipole, and volumetric, can be related to the movements of magma and fluids within the volcanic system. Although for many recent earthquake events the percentage of double couple component is high, our results also show the presence of significant non-double couple components in both volcanic areas. (author)
Roeloffs, E. A.
2016-12-01
A Gladwin Tensor Strainmeter (GTSM) is designed to measure changes of the horizontal strain tensor, derived as linear combinations of radial elongations or contractions of the strainmeter's cylindrical housing measured at four azimuths. Each radial measurement responds to changes in the areal, horizontal shear and vertical components of the strain tensor in the surrounding formation. The elastic response coefficients to these components depend on the relative elastic moduli of the housing, formation, and cement. These coefficients must be inferred for each strainmeter after it is cemented into its borehole by analyzing the instrument response to well-characterized strain signals such as earth tides. For some GTSMs of the Earthscope Plate Boundary Observatory (PBO), however, reconciling observed earth-tide signals with modeled tidal strains requires response coefficients that differ substantially between the instrument's four gauges, and/or orientation corrections of tens of degrees. GTSM response coefficients can also be estimated from high-resolution records of teleseismic Love waves from great earthquakes around the world. Such records can be used in conjunction with apparent propagation azimuths from nearby broadband seismic stations to determine the GTSM's orientation. Knowing the orientation allows the ratios between the shear strain response coefficients of a GTSM's four gauges to be estimated. Applying this analysis to 14 PBO GTSMs confirms that orientations of some instruments differ significantly from orientations measured during installation. Orientations inferred from earth-tide response tend to agree with those inferred from Love waves for GTSMs far from tidal water bodies, but to differ for GTSMs closer to coastlines. Orientations derived from teleseismic Love waves agree with those estimated by Grant and Langston (2010) using strains from a broadband seismic array near Anza, California. PBO GTSM recordings of teleseismic Love waves show differences of
International Nuclear Information System (INIS)
Chen, S.
2016-01-01
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging
Energy Technology Data Exchange (ETDEWEB)
Chen, S. [Mayo Clinic (United States)
2016-06-15
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging
Song, Yi-Jiang; Deng, Zhu-Jun; Gao, Jian; Xie, Yan; Yin, Tian-Sheng; Ying, Li; Tang, Kai-Fu
2013-01-01
Objectives To perform a meta-analysis assessing the ability of shear wave elastography (SWE) to identify malignant breast masses. Methods PubMed, the Cochrane Library, and the ISI Web of Knowledge were searched for studies evaluating the accuracy of SWE for identifying malignant breast masses. The diagnostic accuracy of SWE was evaluated according to sensitivity, specificity, and hierarchical summary receiver operating characteristic (HSROC) curves. An analysis was also performed according to the SWE mode used: supersonic shear imaging (SSI) and the acoustic radiation force impulse (ARFI) technique. The clinical utility of SWE for identifying malignant breast masses was evaluated using analysis of Fagan plot. Results A total of 9 studies, including 1888 women and 2000 breast masses, were analyzed. Summary sensitivities and specificities were 0.91 (95% confidence interval [CI], 0.88–0.94) and 0.82 (95% CI, 0.75–0.87) by SSI and 0.89 (95% CI, 0.81–0.94) and 0.91 (95% CI, 0.84–0.95) by ARFI, respectively. The HSROCs for SSI and ARFI were 0.92 (95% CI, 0.90–0.94) and 0.96 (95% CI, 0.93–0.97), respectively. SSI and ARFI were both very informative, with probabilities of 83% and 91%, respectively, for correctly differentiating between benign and malignant breast masses following a “positive” measurement (over the threshold value) and probabilities of disease as low as 10% and 11%, respectively, following a “negative” measurement (below the threshold value) when the pre-test probability was 50%. Conclusions SWE could be used as a good identification tool for the classification of breast masses. PMID:24204613
Directory of Open Access Journals (Sweden)
Guiling Li
Full Text Available OBJECTIVES: To perform a meta-analysis assessing the ability of shear wave elastography (SWE to identify malignant breast masses. METHODS: PubMed, the Cochrane Library, and the ISI Web of Knowledge were searched for studies evaluating the accuracy of SWE for identifying malignant breast masses. The diagnostic accuracy of SWE was evaluated according to sensitivity, specificity, and hierarchical summary receiver operating characteristic (HSROC curves. An analysis was also performed according to the SWE mode used: supersonic shear imaging (SSI and the acoustic radiation force impulse (ARFI technique. The clinical utility of SWE for identifying malignant breast masses was evaluated using analysis of Fagan plot. RESULTS: A total of 9 studies, including 1888 women and 2000 breast masses, were analyzed. Summary sensitivities and specificities were 0.91 (95% confidence interval [CI], 0.88-0.94 and 0.82 (95% CI, 0.75-0.87 by SSI and 0.89 (95% CI, 0.81-0.94 and 0.91 (95% CI, 0.84-0.95 by ARFI, respectively. The HSROCs for SSI and ARFI were 0.92 (95% CI, 0.90-0.94 and 0.96 (95% CI, 0.93-0.97, respectively. SSI and ARFI were both very informative, with probabilities of 83% and 91%, respectively, for correctly differentiating between benign and malignant breast masses following a "positive" measurement (over the threshold value and probabilities of disease as low as 10% and 11%, respectively, following a "negative" measurement (below the threshold value when the pre-test probability was 50%. CONCLUSIONS: SWE could be used as a good identification tool for the classification of breast masses.
Li, Guiling; Li, De-Wei; Fang, Yu-Xiao; Song, Yi-Jiang; Deng, Zhu-Jun; Gao, Jian; Xie, Yan; Yin, Tian-Sheng; Ying, Li; Tang, Kai-Fu
2013-01-01
To perform a meta-analysis assessing the ability of shear wave elastography (SWE) to identify malignant breast masses. PubMed, the Cochrane Library, and the ISI Web of Knowledge were searched for studies evaluating the accuracy of SWE for identifying malignant breast masses. The diagnostic accuracy of SWE was evaluated according to sensitivity, specificity, and hierarchical summary receiver operating characteristic (HSROC) curves. An analysis was also performed according to the SWE mode used: supersonic shear imaging (SSI) and the acoustic radiation force impulse (ARFI) technique. The clinical utility of SWE for identifying malignant breast masses was evaluated using analysis of Fagan plot. A total of 9 studies, including 1888 women and 2000 breast masses, were analyzed. Summary sensitivities and specificities were 0.91 (95% confidence interval [CI], 0.88-0.94) and 0.82 (95% CI, 0.75-0.87) by SSI and 0.89 (95% CI, 0.81-0.94) and 0.91 (95% CI, 0.84-0.95) by ARFI, respectively. The HSROCs for SSI and ARFI were 0.92 (95% CI, 0.90-0.94) and 0.96 (95% CI, 0.93-0.97), respectively. SSI and ARFI were both very informative, with probabilities of 83% and 91%, respectively, for correctly differentiating between benign and malignant breast masses following a "positive" measurement (over the threshold value) and probabilities of disease as low as 10% and 11%, respectively, following a "negative" measurement (below the threshold value) when the pre-test probability was 50%. SWE could be used as a good identification tool for the classification of breast masses.
Piscaglia, F; Salvatore, V; Mulazzani, L; Cantisani, V; Schiavone, C
2016-02-01
In the last 12 - 18 months nearly all ultrasound manufacturers have arrived to implement ultrasound shear wave elastography modality in their equipment for the assessment of chronic liver disease; the few remaining players are expected to follow in 2016.When all manufacturers rush to a new technology at the same time, it is evident that the clinical demand for this information is of utmost value. Around 1990, there was similar demand for color Doppler ultrasound; high demand for contrast-enhanced ultrasonography was evident at the beginning of this century, and around 2010 demand increased for strain elastography. However, some issues regarding the new shear wave ultrasound technologies must be noted to avoid misuse of the resulting information for clinical decisions. As new articles are expected to appear in 2016 reporting the findings of the new technologies from various companies, we felt that the beginning of this year was the right time to present an appraisal of these issues. We likewise expect that in the meantime EFSUMB will release a new update of the existing guidelines 1 2.The first ultrasound elastography method became available 13 years ago in the form of transient elastography with Fibroscan(®) 3. It was the first technique providing non-invasive quantitive information about the stiffness of the liver and hence regarding the amount of fibrosis in chronic liver disease 3. The innovation was enormous, since a non-invasive modality was finally available to provide findings otherwise achievable only by liver biopsy. In fact, prior to ultrasound elastography, a combination of conventional and Doppler ultrasound parameters were utilized to inform the physician about the presence of cirrhosis and portal hypertension 4. However, skilled operators were required, reproducibility and diagnostic accuracy were suboptimal, and it was not possible to differentiate the pre-cirrhotic stages of fibrosis. All these limitations were substantially improved by
International Nuclear Information System (INIS)
Robertson, J.A.
1986-12-01
Electron motion in a single electrostatic wave in a sheared magnetic field is shown to become stochastic in the presence of a second wave at an amplitude well below that obtained from the overlapping pendulum resonance approximation. The enhanced stochasticity occurs for low parallel velocity electrons for which the parallel trapping motion from eE/sub parallel//m interacts strongly with the E x B trapping motion due to the presence of magnetic shear. The guiding-center equations for single particle electron orbits in given fields are investigated using both analytical and numerical techniques. The model assumes a slab magnetic field geometry with shear and two electrostatic plane waves propagating at an angle with respect to each other. Collisions and the self-consistent effect of the electron motion upon the fields are ignored. The guiding-center motion in an inertial reference frame moving in phase with the two waves is given by a two degree-of-freedom, autonomous Hamiltonian system. The single wave particle motion may be reduced to a two parameter family of one degree-of-freedom Hamiltonians which bifurcate from a pendulum phase space to a topology with three chains of elliptic and hyperbolic fixed points separated in radius about the mode-rational surface. In the presence of a perturbing wave with a different helicity, electrons in the small parallel velocity regime become stochastic at an amplitude scaling as the fourth root of the wave potential. The results obtained for stochastic motion apply directly to the problem of electron diffusion in drift waves occurring in toroidal fusion confinement devices. The effect of an adiabatically changing radial electric field upon guiding-center orbits in tokamaks is also investigated. This perturbation causes a radial polarization drift of trapped particle tokamak orbits
Sherman, Christopher Scott
Naturally occurring geologic heterogeneity is an important, but often overlooked, aspect of seismic wave propagation. This dissertation presents a strategy for modeling the effects of heterogeneity using a combination of geostatistics and Finite Difference simulation. In the first chapter, I discuss my motivations for studying geologic heterogeneity and seis- mic wave propagation. Models based upon fractal statistics are powerful tools in geophysics for modeling heterogeneity. The important features of these fractal models are illustrated using borehole log data from an oil well and geomorphological observations from a site in Death Valley, California. A large part of the computational work presented in this disserta- tion was completed using the Finite Difference Code E3D. I discuss the Python-based user interface for E3D and the computational strategies for working with heterogeneous models developed over the course of this research. The second chapter explores a phenomenon observed for wave propagation in heteroge- neous media - the generation of unexpected shear wave phases in the near-source region. In spite of their popularity amongst seismic researchers, approximate methods for modeling wave propagation in these media, such as the Born and Rytov methods or Radiative Trans- fer Theory, are incapable of explaining these shear waves. This is primarily due to these method's assumptions regarding the coupling of near-source terms with the heterogeneities and mode conversion. To determine the source of these shear waves, I generate a suite of 3D synthetic heterogeneous fractal geologic models and use E3D to simulate the wave propaga- tion for a vertical point force on the surface of the models. I also present a methodology for calculating the effective source radiation patterns from the models. The numerical results show that, due to a combination of mode conversion and coupling with near-source hetero- geneity, shear wave energy on the order of 10% of the
You, Jun; Chen, Juan; Xiang, Feixiang; Song, Yue; Khamis, Simai; Lu, Chengfa; Lv, Qing; Zhang, Yanrong; Xie, Mingxing
2018-04-01
This study aimed at evaluating the diagnostic performance of quantitative shear wave elastography (SWE) in differentiating metastatic cervical lymph nodes from benign nodes in patients with thyroid nodules. One hundred and forty-one cervical lymph nodes from 39 patients with thyroid nodules that were diagnosed as papillary thyroid cancer had been imaged with SWE. The shear elasticity modulus, which indicates the stiffness of the lymph nodes, was measured in terms of maximum shear elasticity modulus (maxSM), minimum shear elasticity modulus (minSM), mean shear elasticity modulus (meanSM), and standard deviation (SD) of the shear elasticity modulus. All the patients underwent thyroid surgery, 50 of the suspicious lymph nodes were resected, and 91 lymph nodes were followed up for 6 months. The maxSM value, minSM value, meanSM value, and SD value of the metastatic lymph nodes were significantly higher than those of the benign nodes. The area under the curve of the maxSM value, minSM value, meanSM value, and SD value were 0.918, 0.606, 0.865, and 0.915, respectively. SWE can differentiate metastasis from benign cervical lymph nodes in patients with thyroid nodules, and the maxSM, meanSM, and SD may be valuable quantitative indicators for characterizing cervical lymph nodes.
Energy Technology Data Exchange (ETDEWEB)
Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh
2007-06-06
In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993
Directory of Open Access Journals (Sweden)
Hadi Fattahi
2016-12-01
Full Text Available Shear wave velocity (Vs data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodology to remove aforementioned problems by use of hybrid adaptive neuro fuzzy inference system (ANFIS with ant colony optimization algorithm (ACO based on fuzzy c–means clustering (FCM and subtractive clustering (SCM. The ACO is combined with two ANFIS models for determining the optimal value of its user–defined parameters. The optimization implementation by the ACO significantly improves the generalization ability of the ANFIS models. These models are used in this study to formulate conventional well log data into Vs in a quick, cheap, and accurate manner. A total of 3030 data points was used for model construction and 833 data points were employed for assessment of ANFIS models. Finally, a comparison among ANFIS models, and six well–known empirical correlations demonstrated ANFIS models outperformed other methods. This strategy was successfully applied in the Marun reservoir, Iran.
Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.
Energy Technology Data Exchange (ETDEWEB)
Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie; Edwards, Thayne L.
2008-10-01
The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.
Estimation of Shear Wave Speed in the Rhesus Macaques Uterine Cervix
Huang, Bin; Drehfal, Lindsey C.; Rosado-Mendez, Ivan M.; Guerrero, Quinton W.; Palmeri, Mark L.; Simmons, Heather A.; Feltovich, Helen; Hall, Timothy J.
2016-01-01
Cervical softness is a critical parameter in pregnancy. Clinically, preterm birth is associated with premature cervical softening and post-dates birth is associated with delayed cervical softening. In practice, the assessment of softness is subjective, based on digital examination. Fortunately, objective, quantitative techniques to assess softness and other parameters associated with microstructural cervical change are emerging. One of these is shear wave speed (SWS) estimation. In principle, this allows objective characterization of stiffness because waves travel more slowly in softer tissue. We are studying SWS in humans and rhesus macaques, the latter in order to accelerate translation from bench to bedside. For the current study, we estimated SWS in ex vivo cervices of rhesus macaques, n=24 nulliparous (never given birth) and n=9 multiparous (delivered at least 1 baby). Misoprostol (a prostaglandin used to soften human cervices prior to gynecological procedures) was administered to 13 macaques prior to necropsy (nulliparous: 7, multiparous: 6). SWS measurements were made at predetermined locations from the distal to proximal end of the cervix on both the anterior and posterior cervix, with 5 repeat measures at each location. The intent was to explore macaque cervical microstructure, including biological and spatial variability, to elucidate the similarities and differences between the macaque and the human cervix in order to facilitate future in vivo studies. We found that SWS is dependent on location in the normal nonpregnant macaque cervix, as in the human cervix. Unlike the human cervix, we detected no difference between ripened and unripened rhesus macaque cervix samples, nor nulliparous versus multiparous samples, although we observed a trend toward stiffer tissue in nulliparous samples. We found rhesus macaque cervix to be much stiffer than human, which is important for technique refinement. These findings are useful for guiding study of cervical
Yang, Yiqun; Urban, Matthew W; McGough, Robert J
2018-05-15
Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.
Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.
2018-05-01
Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.
Assessment of extent of skin involvement in scleroderma using shear wave elastography
Directory of Open Access Journals (Sweden)
Anupam Wakhlu
2017-01-01
Full Text Available Introduction: Scleroderma (systemic sclerosis [SSc] is a rare autoimmune disease which manifests as fibrosis in the skin and other internal organs. Conventionally, the modified Rodnan skin score (MRSS has been used to quantify the extent of skin fibrosis (resulting in skin tightness in SSc. This technique, although widely validated, is limited by the requirement of a trained, experienced assessor. Recent literature suggests that utilization of the objective ultrasound-based assessment of skin fibrosis utilizing shear wave elastography (SWE may be a more robust technique to detect early skin tightness in SSc. Methods: We evaluated the use of SWE (assessed by an experienced radiologist in 24 patients with SSc compared with 16 healthy controls. Results: Our patients were predominantly females, with median disease duration of 1.5 years and median MRSS of 17. There was minimal intraobserver variation in the assessment of SWE. Patients with SSc had higher SWE values (mean elasticity [Emean] compared to healthy controls at most assessed sites for the MRSS. The Emeancorrelated significantly at all sites with the MRSS scores. At the sites where MRSS was scored as 0 (normal, the Emeanin patients with SSc was higher when compared with similarly clinical normal skin in patients with SSc, suggesting potential early involvement of these areas of the skin with fibrosis. Conclusion: SWE is a promising tool to objectively assess skin fibrosis in SSc and may be useful in detecting early, subclinical skin involvement in this disease.
Point shear wave speed measurement in differentiating benign and malignant focal liver lesions.
Dong, Yi; Wang, Wen-Ping; Xu, Yadan; Cao, Jiaying; Mao, Feng; Dietrich, Cristoph F
2017-06-26
To investigate the value of ElastPQ measurement for differential diagnosis of benign and malignant focal liver lesions (FLLs) by using histologic results as a reference standard. A total of 154 patients were included. ElastPQ measurement was performed for each lesion in which the shear wave speed (SWS) was measured. The difference in SWS and SWS ratio of FLL to surrounding liver were evaluated, and the cut off value was investigated. Receiver operating characteristic (ROC) curve was plotted to evaluate the diagnostic performance. Histology as a gold standard was obtained by surgery in all patients. A total of 154 lesions including 129 (83.7 %) malignant FLLs and 25 (16.3 %) benign ones were analysed. The SWS of malignant and benign FLLs was significantly different, 2.77±0.68 m/s and 1.57±0.55 m/s (p<0.05). The SWS ratio of each FLL to surrounding liver parenchyma was 2.23±0.49 for malignant and 1.14±0.36 for benign FLLs (p<0.05). The cut off value for differential diagnosis was 2.06 m/s for SWS and 1.67 for SWS ratio. ElastPQ measurement provides reliable quantitative stiffness information of FLLs and may be helpful in the differential diagnosis between malignant and benign FLLs.
International Nuclear Information System (INIS)
Hong, Min Ji; Kim, Hak Hee
2017-01-01
To evaluate reproducibility of shear wave elastography (SWE) for breast lesions within and between observers and compare the reproducibility of SWE features. For intraobserver reproducibility, 225 masses with 208 patients were included; and two consecutive SWE images were acquired by each observer. For interobserver reproducibility, SWE images of the same mass were obtained by another observer before surgery in 40 patients. Intraclass correlation coefficients (ICC) were used to determine intra- and interobserver reproducibility. Intraobserver reliability for mean elasticity (Emean) and maximum elasticity (Emax) were excellent (ICC = 0.803, 0.799). ICC for SWE ratio and minimum elasticity (Emin) were fair to good (ICC = 0.703, 0.539). Emean showed excellent ICC regardless of histopathologic type and tumor size. Emax, SWE ratio and Emin represented excellent or fair to good reproducibility based on histopathologic type and tumor size. In interobserver study, ICC for Emean, Emax and SWE ratio were excellent. Emean, Emax and SWE ratio represented excellent ICC irrespective of histopathologic type. ICC for Emean was excellent regardless of tumor size. SWE ratio and Emax showed fair to good interobserver reproducibility based on tumor size. Emin represented poor interobserver reliability. Emean in SWE was highly reproducible within and between observers
Energy Technology Data Exchange (ETDEWEB)
Ucar, Ayse Kalyoncu, E-mail: Aysekucar@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Alis, Deniz, E-mail: denizalis@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Samanci, Cesur, E-mail: cesursamanci@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Aslan, Mine, E-mail: mineus_77@yahoo.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Habibi, Hatice Arioz, E-mail: arioz.hatice@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Dikici, Atilla Suleyman, E-mail: drsuleymandikici@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Namdar, Yesim, E-mail: namdaryesim@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Gultekin, Mehmet Hamza, E-mail: mhamzagultekin@hotmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Urology, KMPasa, Istanbul, 34098 (Turkey); Onal, Bulent, E-mail: bulonal@yahoo.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Urology, KMPasa, Istanbul, 34098 (Turkey); Adaletli, Ibrahim, E-mail: iadaletli@yahoo.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey)
2017-01-15
Highlights: • Testicular biopsy is no longer recommended in the management of undescended testes. • SWE yields valuable quantitative information about the histological properties tissues by assessing stiffness. • Mean stiffness values of undescended testes were significantly higher than those of the contralateral descended testes. • SWE seems to be a useful sonographic technique to assess damage to the undescended testis. • SWE might replace testicular biopsy in the management of undescended testes. - Abstract: Objectives: We sought to compare unilateral palpable undescended testes and contralateral descended testes using shear wave elastography (SWE) to show potential quantitative differences in elasticity patterns, which might reflect the histologic features. Methods: Approval for this prospective study was obtained from the local ethics committee. A total of 29 patients (mean age, 7.52 years; range, 1–18 years) with unilateral palpable undescended testes and contralateral descended testes were examined by greyscale ultrasonography and SWE between February 2015 and April 2016. The volume and the elasticity of each testicle were the main factors evaluated. Results: There was no difference between undescended testes and contralateral descended testes in terms of volume. However, a significant difference was evident in SWE-derived quantitative data. Conclusions: SWE seems to be a useful sonographic technique to predict histologic features of the undescended testicle, which might replace testicular biopsy in modern management of the undescended testis.
Pereira, Carina; Dighe, Manjiri; Alessio, Adam M.
2018-02-01
Various Computer Aided Diagnosis (CAD) systems have been developed that characterize thyroid nodules using the features extracted from the B-mode ultrasound images and Shear Wave Elastography images (SWE). These features, however, are not perfect predictors of malignancy. In other domains, deep learning techniques such as Convolutional Neural Networks (CNNs) have outperformed conventional feature extraction based machine learning approaches. In general, fully trained CNNs require substantial volumes of data, motivating several efforts to use transfer learning with pre-trained CNNs. In this context, we sought to compare the performance of conventional feature extraction, fully trained CNNs, and transfer learning based, pre-trained CNNs for the detection of thyroid malignancy from ultrasound images. We compared these approaches applied to a data set of 964 B-mode and SWE images from 165 patients. The data were divided into 80% training/validation and 20% testing data. The highest accuracies achieved on the testing data for the conventional feature extraction, fully trained CNN, and pre-trained CNN were 0.80, 0.75, and 0.83 respectively. In this application, classification using a pre-trained network yielded the best performance, potentially due to the relatively limited sample size and sub-optimal architecture for the fully trained CNN.
Deep learning based classification of breast tumors with shear-wave elastography.
Zhang, Qi; Xiao, Yang; Dai, Wei; Suo, Jingfeng; Wang, Congzhi; Shi, Jun; Zheng, Hairong
2016-12-01
This study aims to build a deep learning (DL) architecture for automated extraction of learned-from-data image features from the shear-wave elastography (SWE), and to evaluate the DL architecture in differentiation between benign and malignant breast tumors. We construct a two-layer DL architecture for SWE feature extraction, comprised of the point-wise gated Boltzmann machine (PGBM) and the restricted Boltzmann machine (RBM). The PGBM contains task-relevant and task-irrelevant hidden units, and the task-relevant units are connected to the RBM. Experimental evaluation was performed with five-fold cross validation on a set of 227 SWE images, 135 of benign tumors and 92 of malignant tumors, from 121 patients. The features learned with our DL architecture were compared with the statistical features quantifying image intensity and texture. Results showed that the DL features achieved better classification performance with an accuracy of 93.4%, a sensitivity of 88.6%, a specificity of 97.1%, and an area under the receiver operating characteristic curve of 0.947. The DL-based method integrates feature learning with feature selection on SWE. It may be potentially used in clinical computer-aided diagnosis of breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.
Xue, Nianyu; Xu, Youfeng; Huang, Pintong; Zhang, Shengmin; Wang, Hongwei; Yu, Fei
2016-08-01
The present study aimed to report the shear wave elastography (SWE) findings in a patient with the diffuse sclerosing variant of papillary thyroid carcinoma (DSVPTC). Since patients with DSVPTC may present with typical clinicopathological features and initially appear to have Hashimoto's thyroiditis, a thorough clinical evaluation and an early diagnosis are important. A 20-year-old female patient presented with a 1-month history of a neck mass and sore throat. Conventional ultrasound and SWE were performed using an AIXPLORER system with 14-5 MHz linear transducer. The patient had undergone total thyroidectomy and bilateral neck lymph node dissection, and an intraoperative pathology consultation to confirm the malignancy of lymph node metastasis. Pathological diagnosis was DSVPTC in both lobes, with lymph node metastases in the bilateral neck. The clinical presentation and serological findings were all indicative of Hashimoto's thyroiditis. Thyroid ultrasonography revealed diffuse enlargement of the both lobes, heterogenous echogenicity without mass formation, diffuse scattered microcalcifications and poor vascularization. SWE revealed stiff values of the thyroid: The mean stiffness was 99.7 kpa, the minimum stiffness was 59.1 kpa and the maximum stiffness was 180.1 kpa. The maximum stiffness of the DSVPTC (180.1 kpa) was higher compared with the diagnostic criteria of malignant thyroid nodules (65 kPa). SWE may be considered as a novel and valuable method to diagnose DSVPC.
Changes in ultrasound shear wave elastography properties of normal breast during menstrual cycle.
Rzymski, P; Skórzewska, A; Opala, T
2011-01-01
Elastography is a novel technique capable of noninvasively assessing the elastic properties of breast tissue. Because the risk factors for breast cancer include hormonal status and proliferation, the aim of our study was to estimate the intensity of sonoelastographic changes during the menstrual cycle. Eight women aged 20-23 years with regular menstrual cycles underwent B-mode sonography and sonoelastography (ShearWave on Aixplorer, France) on days 3, 10, 17 and 24. Mean values of glandular and fat tissue elasticity did not change statistically significantly during the menstrual cycle as well as glandular to fat tissue ratio. During almost the whole cycle differences between outer and inner quadrants in glandular and fat tissue were statistically significant. The lowest values of elasticity occurred on the 10th day and the highest on the 24th of the menstrual cycle. There were statistically significant differences in elasticity between inner and outer quadrants of both breasts close to day 3 and 17 of the menstrual cycle.
Yang, Pan; Peng, Yulan; Zhao, Haina; Luo, Honghao; Jin, Ya; He, Yushuang
2015-01-01
Static shear wave elastography (SWE) is used to detect breast lesions, but slice and plane selections result in discrepancies. To evaluate the intraobserver reproducibility of continuous SWE, and whether quantitative elasticities in orthogonal planes perform better in the differential diagnosis of breast lesions. One hundred and twenty-two breast lesions scheduled for ultrasound-guided biopsy were recruited. Continuous SWE scans were conducted in orthogonal planes separately. Quantitative elasticities and histopathology results were collected. Reproducibility in the same plane and diagnostic performance in different planes were evaluated. The maximum and mean elasticities of the hardest portion, and standard deviation of whole lesion, had high inter-class correlation coefficients (0.87 to 0.95) and large areas under receiver operation characteristic curve (0.887 to 0.899). Without loss of accuracy, sensitivities had increased in orthogonal planes compared with single plane (from 73.17% up to 82.93% at most). Mean elasticity of whole lesion and lesion-to-parenchyma ratio were significantly less reproducible and less accurate. Continuous SWE is highly reproducible for the same observer. The maximum and mean elasticities of the hardest portion and standard deviation of whole lesion are most reliable. Furthermore, the sensitivities of the three parameters are improved in orthogonal planes without loss of accuracies.
Shear wave elastography results correlate with liver fibrosis histology and liver function reserve.
Feng, Yan-Hong; Hu, Xiang-Dong; Zhai, Lin; Liu, Ji-Bin; Qiu, Lan-Yan; Zu, Yuan; Liang, Si; Gui, Yu; Qian, Lin-Xue
2016-05-07
To evaluate the correlation of shear wave elastography (SWE) results with liver fibrosis histology and quantitative function reserve. Weekly subcutaneous injection of 60% carbon tetrachloride (1.5 mL/kg) was given to 12 canines for 24 wk to induce experimental liver fibrosis, with olive oil given to 2 control canines. At 24 wk, liver condition was evaluated using clinical biochemistry assays, SWE imaging, lidocaine metabolite monoethylglycine-xylidide (MEGX) test, and histologic fibrosis grading. Clinical biochemistry assays were performed at the institutional central laboratory for routine liver function evaluation. Liver stiffness was measured in triplicate from three different intercostal spaces and expressed as mean liver stiffness modulus (LSM). Plasma concentrations of lidocaine and its metabolite MEGX were determined using high-performance liquid chromatography repeated in duplicate. Liver biopsy samples were fixed in 10% formaldehyde, and liver fibrosis was graded using the modified histological activity index Knodell score (F0-F4). Correlations among histologic grading, LSM, and MEGX measures were analyzed with the Pearson linear correlation coefficient. At 24 wk liver fibrosis histologic grading was as follows: F0, n = 2 (control); F1, n = 0; F2, n = 3; F3, n = 7; and F4, n = 2. SWE LSM was positively correlated with histologic grading (r = 0.835, P function reserve in experimental severe fibrosis and cirrhosis.
Yoon, Jung Hyun; Ko, Kyung Hee; Jung, Hae Kyoung; Lee, Jong Tae
2013-12-01
To determine the correlation of qualitative shear wave elastography (SWE) pattern classification to quantitative SWE measurements and whether it is representative of quantitative SWE values with similar performances. From October 2012 to January 2013, 267 breast masses of 236 women (mean age: 45.12 ± 10.54 years, range: 21-88 years) who had undergone ultrasonography (US), SWE, and subsequent biopsy were included. US BI-RADS final assessment and qualitative and quantitative SWE measurements were recorded. Correlation between pattern classification and mean elasticity, maximum elasticity, elasticity ratio and standard deviation were evaluated. Diagnostic performances of grayscale US, SWE parameters, and US combined to SWE values were calculated and compared. Of the 267 breast masses, 208 (77.9%) were benign and 59 (22.1%) were malignant. Pattern classifications significantly correlated with all quantitative SWE measurements, showing highest correlation with maximum elasticity, r = 0.721 (P0.05). Pattern classification shows high correlation to maximum stiffness and may be representative of quantitative SWE values. When combined to grayscale US, SWE improves specificity of US. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Park, Hye Young; Han, Kyung Hwa; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Min Jung; Kim, Eun-Kyung
2014-06-01
Our aim was to evaluate intra-observer reproducibility of shear-wave elastography (SWE) in Asian women. Sixty-four breast masses (24 malignant, 40 benign) were examined with SWE in 53 consecutive Asian women (mean age, 44.9 y old). Two SWE images were obtained for each of the lesions. The intra-observer reproducibility was assessed by intra-class correlation coefficients (ICC). We also evaluated various clinicoradiologic factors that can influence reproducibility in SWE. The ICC of intra-observer reproducibility was 0.789. In clinicoradiologic factor evaluation, masses surrounded by mixed fatty and glandular tissue (ICC: 0.619) showed lower intra-observer reproducibility compared with lesions that were surrounded by glandular tissue alone (ICC: 0.937; p breast SWE was excellent in Asian women. However, it may decrease when breast tissue is in a heterogeneous background. Therefore, SWE should be performed carefully in these cases. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Evans, Andrew; Rauchhaus, Petra; Whelehan, Patsy; Thomson, Kim; Purdie, Colin A; Jordan, Lee B; Michie, Caroline O; Thompson, Alastair; Vinnicombe, Sarah
2014-01-01
Shear wave elastography (SWE) shows promise as an adjunct to greyscale ultrasound examination in assessing breast masses. In breast cancer, higher lesion stiffness on SWE has been shown to be associated with features of poor prognosis. The purpose of this study was to assess whether lesion stiffness at SWE is an independent predictor of lymph node involvement. Patients with invasive breast cancer treated by primary surgery, who had undergone SWE examination were eligible. Data were retrospectively analysed from 396 consecutive patients. The mean stiffness values were obtained using the Aixplorer® ultrasound machine from SuperSonic Imagine Ltd. Measurements were taken from a region of interest positioned over the stiffest part of the abnormality. The average of the mean stiffness value obtained from each of two orthogonal image planes was used for analysis. Associations between lymph node involvement and mean lesion stiffness, invasive cancer size, histologic grade, tumour type, ER expression, HER-2 status and vascular invasion were assessed using univariate and multivariate logistic regression. At univariate analysis, invasive size, histologic grade, HER-2 status, vascular invasion, tumour type and mean stiffness were significantly associated with nodal involvement. Nodal involvement rates ranged from 7 % for tumours with mean stiffness 150 kPa. At multivariate analysis, invasive size, tumour type, vascular invasion, and mean stiffness maintained independent significance. Mean stiffness at SWE is an independent predictor of lymph node metastasis and thus can confer prognostic information additional to that provided by conventional preoperative tumour assessment and staging.
Use of shear wave elastography to differentiate benign and malignant breast lesions.
Çebi Olgun, Deniz; Korkmazer, Bora; Kılıç, Fahrettin; Dikici, Atilla Süleyman; Velidedeoğlu, Mehmet; Aydoğan, Fatih; Kantarcı, Fatih; Yılmaz, Mehmet Halit
2014-01-01
We aimed to determine the correlations between the elasticity values of solid breast masses and histopathological findings to define cutoff elasticity values differentiating malignant from benign lesions. A total of 115 solid breast lesions of 109 consecutive patients were evaluated prospectively using shear wave elastography (SWE). Two orthogonal elastographic images of each lesion were obtained. Minimum, mean, and maximum elasticity values were calculated in regions of interest placed over the stiffest areas on the two images; we also calculated mass/fat elasticity ratios. Correlation of elastographic measurements with histopathological results were studied. Eighty-three benign and thirty-two malignant lesions were histopathologically diagnosed. The minimum, mean, and maximum elasticity values, and the mass/fat elasticity ratios of malignant lesions, were significantly higher than those of benign lesions. The cutoff value was 45.7 kPa for mean elasticity (sensitivity, 96%; specificity, 95%), 54.3 kPa for maximum elasticity (sensitivity, 95%; specificity, 94%), 37.1 kPa for minimum elasticity (sensitivity, 96%; specificity, 95%), and 4.6 for the mass/fat elasticity ratio (sensitivity, 97%; specificity, 95%). SWE yields additional valuable quantitative data to ultrasonographic examination on solid breast lesions. SWE may serve as a complementary tool for diagnosis of breast lesions. Long-term clinical studies are required to accurately select lesions requiring biopsy.
Cong, Rui; Li, Jing; Guo, Song
2017-02-01
To examine the efficacy of qualitative shear wave elastography (SWE) in the classification and evaluation of solid breast masses, and to compare this method with conventional ultrasonograghy (US), quantitative SWE parameters and qualitative SWE classification proposed before. From April 2015 to March 2016, 314 consecutive females with 325 breast masses who decided to undergo core needle biopsy and/or surgical biopsy were enrolled. Conventional US and SWE were previously performed in all enrolled subjects. Each mass was classified by two different qualitative classifications. One was established in our study, herein named the Qual1. Qual1 could classify the SWE images into five color patterns by the visual evaluations: Color pattern 1 (homogeneous pattern); Color pattern 2 (comparative homogeneous pattern); Color pattern 3 (irregularly heterogeneous pattern); Color pattern 4 (intralesional echo pattern); and Color pattern 5 (the stiff rim sign pattern). The second qualitative classification was named Qual2 here, and included a four-color overlay pattern classification (Tozaki and Fukuma, Acta Radiologica, 2011). The Breast Imaging Reporting and Data System (BI-RADS) assessment and quantitative SWE parameters were recorded. Diagnostic performances of conventional US, SWE parameters, and combinations of US and SWE parameters were compared. With pathological results as the gold standard, of the 325 examined breast masses, 139 (42.77%) samples were malignant and 186 (57.23%) were benign. The Qual1 showed a higher Az value than the Qual2 and quantitative SWE parameters (all Pbreast mass diagnoses. Copyright © 2016. Published by Elsevier B.V.
International Nuclear Information System (INIS)
Yoon, Jung Hyun; Ko, Kyung Hee; Jung, Hae Kyoung; Lee, Jong Tae
2013-01-01
Objective: To determine the correlation of qualitative shear wave elastography (SWE) pattern classification to quantitative SWE measurements and whether it is representative of quantitative SWE values with similar performances. Methods: From October 2012 to January 2013, 267 breast masses of 236 women (mean age: 45.12 ± 10.54 years, range: 21–88 years) who had undergone ultrasonography (US), SWE, and subsequent biopsy were included. US BI-RADS final assessment and qualitative and quantitative SWE measurements were recorded. Correlation between pattern classification and mean elasticity, maximum elasticity, elasticity ratio and standard deviation were evaluated. Diagnostic performances of grayscale US, SWE parameters, and US combined to SWE values were calculated and compared. Results: Of the 267 breast masses, 208 (77.9%) were benign and 59 (22.1%) were malignant. Pattern classifications significantly correlated with all quantitative SWE measurements, showing highest correlation with maximum elasticity, r = 0.721 (P < 0.001). Sensitivity was significantly decreased in US combined to SWE measurements to grayscale US: 69.5–89.8% to 100.0%, while specificity was significantly improved: 62.5–81.7% to 13.9% (P < 0.001). Area under the ROC curve (A z ) did not show significant differences between grayscale US to US combined to SWE (P > 0.05). Conclusion: Pattern classification shows high correlation to maximum stiffness and may be representative of quantitative SWE values. When combined to grayscale US, SWE improves specificity of US
Chang, Jung Min; Moon, Woo Kyung; Cho, Nariya; Yi, Ann; Koo, Hye Ryoung; Han, Wonsik; Noh, Dong-Young; Moon, Hyeong-Gon; Kim, Seung Ja
2011-08-01
Shear wave elastography (SWE) is an emerging technique which can obtain quantitative elasticity values in breast disease. We therefore evaluated the diagnostic performance of SWE for the differentiation of breast masses compared with conventional ultrasound (US). Conventional US and SWE were performed by three experienced radiologists for 158 consecutive women who had been scheduled for US-guided core biopsy or surgical excision in 182 breast masses (89 malignancies and 93 benign; mean size, 1.76 cm). For each lesion, quantitative elasticity was measured in terms of the Young's modulus (in kilopascals, kPa) with SWE, and BI-RADS final categories were assessed with conventional US. The mean elasticity values were significantly higher in malignant masses (153.3 kPa ± 58.1) than in benign masses (46.1 kPa ± 42.9), (P masses as well as invasive and intraductal cancers with SWE. Our results suggest that SWE has the potential to aid in the differentiation of benign and malignant breast lesions.
Energy Technology Data Exchange (ETDEWEB)
Hong, Min Ji [Dept. of Radiology, Gil Hospital, Gachon University of Medicine and Science, Incheon (Korea, Republic of); Kim, Hak Hee [Dept. of Radiology, and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)
2017-03-15
To evaluate reproducibility of shear wave elastography (SWE) for breast lesions within and between observers and compare the reproducibility of SWE features. For intraobserver reproducibility, 225 masses with 208 patients were included; and two consecutive SWE images were acquired by each observer. For interobserver reproducibility, SWE images of the same mass were obtained by another observer before surgery in 40 patients. Intraclass correlation coefficients (ICC) were used to determine intra- and interobserver reproducibility. Intraobserver reliability for mean elasticity (Emean) and maximum elasticity (Emax) were excellent (ICC = 0.803, 0.799). ICC for SWE ratio and minimum elasticity (Emin) were fair to good (ICC = 0.703, 0.539). Emean showed excellent ICC regardless of histopathologic type and tumor size. Emax, SWE ratio and Emin represented excellent or fair to good reproducibility based on histopathologic type and tumor size. In interobserver study, ICC for Emean, Emax and SWE ratio were excellent. Emean, Emax and SWE ratio represented excellent ICC irrespective of histopathologic type. ICC for Emean was excellent regardless of tumor size. SWE ratio and Emax showed fair to good interobserver reproducibility based on tumor size. Emin represented poor interobserver reliability. Emean in SWE was highly reproducible within and between observers.
Clinical application of qualitative assessment for breast masses in shear-wave elastography.
Gweon, Hye Mi; Youk, Ji Hyun; Son, Eun Ju; Kim, Jeong-Ah
2013-11-01
To evaluate the interobserver agreement and the diagnostic performance of various qualitative features in shear-wave elastography (SWE) for breast masses. A total of 153 breast lesions in 152 women who underwent B-mode ultrasound and SWE before biopsy were included. Qualitative analysis in SWE was performed using two different classifications: E values (Ecol; 6-point color score, Ehomo; homogeneity score and Esha; shape score) and a four-color pattern classification. Two radiologists reviewed five data sets: B-mode ultrasound, SWE, and combination of both for E values and four-color pattern. The BI-RADS categories were assessed B-mode and combined sets. Interobserver agreement was assessed using weighted κ statistics. Areas under the receiver operating characteristic curve (AUC), sensitivity, and specificity were analyzed. Interobserver agreement was substantial for Ecol (κ=0.79), Ehomo (κ=0.77) and four-color pattern (κ=0.64), and moderate for Esha (κ=0.56). Better-performing qualitative features were Ecol and four-color pattern (AUCs, 0.932 and 0.925) compared with Ehomo and Esha (AUCs, 0.857 and 0.864; Pbreast masses. Adding qualitative SWE to B-mode ultrasound increased specificity in decision making for biopsy recommendation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Jung Hyun, E-mail: lvjenny0417@gmail.com [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of); Department of Radiology, Research Institute of Radiological Science, Yonsei University, College of Medicine (Korea, Republic of); Ko, Kyung Hee, E-mail: yourheeya@cha.ac.kr [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of); Jung, Hae Kyoung, E-mail: AA40501@cha.ac.kr [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of); Lee, Jong Tae, E-mail: jtlee@cha.ac.kr [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of)
2013-12-01
Objective: To determine the correlation of qualitative shear wave elastography (SWE) pattern classification to quantitative SWE measurements and whether it is representative of quantitative SWE values with similar performances. Methods: From October 2012 to January 2013, 267 breast masses of 236 women (mean age: 45.12 ± 10.54 years, range: 21–88 years) who had undergone ultrasonography (US), SWE, and subsequent biopsy were included. US BI-RADS final assessment and qualitative and quantitative SWE measurements were recorded. Correlation between pattern classification and mean elasticity, maximum elasticity, elasticity ratio and standard deviation were evaluated. Diagnostic performances of grayscale US, SWE parameters, and US combined to SWE values were calculated and compared. Results: Of the 267 breast masses, 208 (77.9%) were benign and 59 (22.1%) were malignant. Pattern classifications significantly correlated with all quantitative SWE measurements, showing highest correlation with maximum elasticity, r = 0.721 (P < 0.001). Sensitivity was significantly decreased in US combined to SWE measurements to grayscale US: 69.5–89.8% to 100.0%, while specificity was significantly improved: 62.5–81.7% to 13.9% (P < 0.001). Area under the ROC curve (A{sub z}) did not show significant differences between grayscale US to US combined to SWE (P > 0.05). Conclusion: Pattern classification shows high correlation to maximum stiffness and may be representative of quantitative SWE values. When combined to grayscale US, SWE improves specificity of US.
Anisotropy of Solid Breast Lesions in 2D Shear Wave Elastography is an Indicator of Malignancy.
Skerl, Katrin; Vinnicombe, Sarah; Thomson, Kim; McLean, Denis; Giannotti, Elisabetta; Evans, Andrew
2016-01-01
To investigate if anisotropy at two-dimensional shear wave elastography (SWE) suggests malignancy and whether it correlates with prognostic and predictive factors in breast cancer. Study group A of 244 solid breast lesions was imaged with SWE between April 2013 and May 2014. Each lesion was imaged in radial and in antiradial planes, and the maximum elasticity, mean elasticity, and standard deviation were recorded and correlated with benign/malignant status, and if malignant, correlated with conventional predictive and prognostic factors. The results were compared to a study group B of 968 solid breast lesions, which were imaged in sagittal and in axial planes between 2010 and 2013. Neither benign nor malignant lesion anisotropy is plane dependent. However, malignant lesions are more anisotropic than benign lesions (P ≤ 0.001). Anisotropy correlates with increasing elasticity parameters, breast imaging-reporting and data system categories, core biopsy result, and tumor grade. Large cancers are significantly more anisotropic than small cancers (P ≤ 0.001). The optimal anisotropy cutoff threshold for benign/malignant differentiation of 150 kPa(2) achieves the best sensitivity (74%) with a reasonable specificity (63%). Anisotropy may be useful during benign/malignant differentiation of solid breast masses using SWE. Anisotropy also correlates with some prognostic factors in breast cancer. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Temperature dependence of immunoreactions using shear horizontal surface acoustic wave immunosensors
Kogai, Takashi; Yatsuda, Hiromi; Kondoh, Jun
2017-07-01
In this paper, the temperature dependence of immunoreactions, which are antibody-antigen reactions, on a shear horizontal surface acoustic wave (SH-SAW) immunosensor is described. The immunosensor is based on a reflection-type delay line on a 36° Y-cut 90° X-propagation quartz substrate, where the delay line is composed of a floating electrode unidirectional transducer (FEUDT), a grating reflector, and a sensing area between them. In order to evaluate the temperature dependence of immunoreactions, human serum albumin (HSA) antigen-antibody reactions are investigated. The SH-SAW immunosensor chip is placed in a thermostatic chamber and the changes in the SH-SAW velocity resulting from the immunoreactions are measured at different temperatures. As a result, it is observed that the HSA immunoreactions are influenced by the ambient temperature and that higher temperatures provide more active reactions. In order to analyze the immunoreactions, an analytical approach using an exponential fitting method for changes in SH-SAW velocity is employed.
Dosso, S. E.; Molnar, S.; Cassidy, J.
2010-12-01
Bayesian inversion of microtremor array dispersion data is applied, with evaluation of data errors and model parameterization, to produce the most-probable shear-wave velocity (VS) profile together with quantitative uncertainty estimates. Generally, the most important property characterizing earthquake site response is the subsurface VS structure. The microtremor array method determines phase velocity dispersion of Rayleigh surface waves from multi-instrument recordings of urban noise. Inversion of dispersion curves for VS structure is a non-unique and nonlinear problem such that meaningful evaluation of confidence intervals is required. Quantitative uncertainty estimation requires not only a nonlinear inversion approach that samples models proportional to their probability, but also rigorous estimation of the data error statistics and an appropriate model parameterization. A Bayesian formulation represents the solution of the inverse problem in terms of the posterior probability density (PPD) of the geophysical model parameters. Markov-chain Monte Carlo methods are used with an efficient implementation of Metropolis-Hastings sampling to provide an unbiased sample from the PPD to compute parameter uncertainties and inter-relationships. Nonparametric estimation of a data error covariance matrix from residual analysis is applied with rigorous a posteriori statistical tests to validate the covariance estimate and the assumption of a Gaussian error distribution. The most appropriate model parameterization is determined using the Bayesian information criterion (BIC), which provides the simplest model consistent with the resolving power of the data. Parameter uncertainties are found to be under-estimated when data error correlations are neglected and when compressional-wave velocity and/or density (nuisance) parameters are fixed in the inversion. Bayesian inversion of microtremor array data is applied at two sites in British Columbia, the area of highest seismic risk in
[IMPORTANCE OF SHEAR WAVE ELASTOGRAPHY OF LIVERS IN PRACTICALLY HEALTHY PREGNANT WOMEN].
Sariyeva, E; Salahova, S; Bayramov, N
2017-01-01
.082, p=0.571), but a significant inverse correlation was found between the body mass index (BMI) and liver density (ρ=-0.317; p=0.025). Easy application, non-invasiveness, maximum exactness within the real time, repeatedly application of procedure and no risk to fetus by Shear Wave elastography of liver allow applying this method in pregnant women. Study of liver elasticity in pregnant women allows assessing the grades of hepatic fibrosis and differentiating liver disease.
Umehara, Jun; Ikezoe, Tome; Nishishita, Satoru; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Fujita, Kosuke; Ichihashi, Noriaki
2015-12-01
Decreased flexibility of the tensor fasciae latae is one factor that causes iliotibial band syndrome. Stretching has been used to improve flexibility or tightness of the muscle. However, no studies have investigated the effective stretching position for the tensor fasciae latae using an index to quantify muscle elongation in vivo. The aim of this study was to investigate the effects of hip rotation and knee angle on tensor fasciae latae elongation during stretching in vivo using ultrasonic shear wave elastography. Twenty healthy men participated in this study. The shear elastic modulus of the tensor fasciae latae was calculated using ultrasonic shear wave elastography. Stretching was performed at maximal hip adduction and maximal hip extension in 12 different positions with three hip rotation conditions (neutral, internal, and external rotations) and four knee angles (0°, 45°, 90°, and 135°). Two-way analysis of variance showed a significant main effect for knee angle, but not for hip rotation. The post-hoc test for knee angle indicated that the shear elastic modulus at 90° and 135° were significantly greater than those at 0° and 45°. Our results suggest that adding hip rotation to the stretching position with hip adduction and extension may have less effect on tensor fasciae latae elongation, and that stretching at >90° of knee flexion may effectively elongate the tensor fasciae latae. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inci, Ercan; Turkay, Rustu; Nalbant, Mustafa Orhan; Yenice, Mustafa Gurkan; Tugcu, Volkan
2017-04-01
The goal of this study was to measure corpus cavernosum (CC) penis rigidity with shear wave elastography (SWE) in healthy volunteers and to evaluate the change of rigidity with age. SWE was performed in 60 healthy volunteers (age range 20-71, mean 47±12,83 years). Volunteers were divided into 2 groups by age (Group 1 age penis (proximal, middle and glans penis) on both sides of CC. All values of SWE (in kilo Pascal) were noted along with volunteers' ages. The measurements were done both with transverse (T) and longitudinal (L) sections. We compared all SW values of penis parts and their alterations with age. The shear wave elastography values of CC penis increased with increasing age (ppenis (ppenis (ppenis rigidity and its alteration with age. These data may create a new approach in the evaluation process and treatment options for penile pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.
Generation and Radiation of Acoustic Waves from a 2-D Shear Layer using the CE/SE Method
Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
In the present work, the generation and radiation of acoustic waves from a 2-D shear layer problem is considered. An acoustic source inside of a 2-D jet excites an instability wave in the shear layer, resulting in sound Mach radiation. The numerical solution is obtained by solving the Euler equations using the space time conservation element and solution element (CE/SE) method. Linearization is achieved through choosing a small acoustic source amplitude. The Euler equations are nondimensionalized as instructed in the problem statement. All other conditions are the same except that the Crocco's relation has a slightly different form. In the following, after a brief sketch of the CE/SE method, the numerical results for this problem are presented.
Deng, Yufeng; Palmeri, Mark L; Rouze, Ned C; Rosenzweig, Stephen J; Abdelmalek, Manal F; Nightingale, Kathryn R
2015-07-01
Shear wave elasticity imaging (SWEI) has found success in liver fibrosis staging. This work evaluates hepatic SWEI measurement success as a function of push pulse energy using two mechanical index (MI) values (1.6 and 2.2) over a range of pulse durations. Shear wave speed (SWS) was measured in the livers of 26 study subjects with known or potential chronic liver diseases. Each measurement consisted of eight SWEI sequences, each with different push energy configurations. The rate of successful SWS estimation was linearly proportional to the push energy. SWEI measurements with higher push energy were successful in patients for whom standard push energy levels failed. The findings also suggest that liver capsule depth could be used prospectively to identify patients who would benefit from elevated output. We conclude that there is clinical benefit to using elevated acoustic output for hepatic SWS measurement in patients with deeper livers. Published by Elsevier Inc.
Destrade, M.
2010-12-08
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.
Destrade, M.; Goriely, A.; Saccomandi, G.
2010-01-01
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.
Jose, Sumy; Jansman, Andreas; Hueting, Raymond Josephus Engelbart
The quality factor of the traditional Solidly Mounted Resonator (SMR) is limited by substrate losses, as the traditionally employed acoustic mirror reflects longitudinal waves but not shear waves. Modern mirrors do reflect both waves, but design rules for such mirrors have not been published so far.
International Nuclear Information System (INIS)
Inci, Ercan; Turkay, Rustu; Nalbant, Mustafa Orhan; Yenice, Mustafa Gurkan; Tugcu, Volkan
2017-01-01
Highlights: • Shear wave elastography is a new method that can calculate tissue stiffness. • The structure of corpus cavernosum is mainly responsible for erectile function. • The corpus cavernosum rigidity can be used to evaluate tissue structure. • Shear wave elastography can provide information regarding penile structure. - Abstract: Objective: The goal of this study was to measure corpus cavernosum (CC) penis rigidity with shear wave elastography (SWE) in healthy volunteers and to evaluate the change of rigidity with age. Methods: SWE was performed in 60 healthy volunteers (age range 20–71, mean 47 ± 12,83 years). Volunteers were divided into 2 groups by age (Group 1 age <50, group 2 age ≥50). We assessed SWE in 3 parts of penis (proximal, middle and glans penis) on both sides of CC. All values of SWE (in kilo Pascal) were noted along with volunteers’ ages. The measurements were done both with transverse (T) and longitudinal (L) sections. We compared all SW values of penis parts and their alterations with age. Results: The shear wave elastography values of CC penis increased with increasing age (p < 0,01). There was no significant difference between both sides of CC penis (p < 0,05). We calculated no significant difference between T and L sections of all parts of penis (p < 0,05). Conclusions: SWE can provide noninvasive quantitative data of CC penis rigidity and its alteration with age. These data may create a new approach in the evaluation process and treatment options for penile pathologies.
Energy Technology Data Exchange (ETDEWEB)
Inci, Ercan, E-mail: ercan@inci.com [Radiology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey); Turkay, Rustu, E-mail: rustuturkay@hotmail.com [Radiology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey); Nalbant, Mustafa Orhan, E-mail: musnalbant88@hotmail.com [Radiology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey); Yenice, Mustafa Gurkan, E-mail: yenicegurkan@gmail.com [Urology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey); Tugcu, Volkan, E-mail: volkantugcu@yahoo.com [Urology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey)
2017-04-15
Highlights: • Shear wave elastography is a new method that can calculate tissue stiffness. • The structure of corpus cavernosum is mainly responsible for erectile function. • The corpus cavernosum rigidity can be used to evaluate tissue structure. • Shear wave elastography can provide information regarding penile structure. - Abstract: Objective: The goal of this study was to measure corpus cavernosum (CC) penis rigidity with shear wave elastography (SWE) in healthy volunteers and to evaluate the change of rigidity with age. Methods: SWE was performed in 60 healthy volunteers (age range 20–71, mean 47 ± 12,83 years). Volunteers were divided into 2 groups by age (Group 1 age <50, group 2 age ≥50). We assessed SWE in 3 parts of penis (proximal, middle and glans penis) on both sides of CC. All values of SWE (in kilo Pascal) were noted along with volunteers’ ages. The measurements were done both with transverse (T) and longitudinal (L) sections. We compared all SW values of penis parts and their alterations with age. Results: The shear wave elastography values of CC penis increased with increasing age (p < 0,01). There was no significant difference between both sides of CC penis (p < 0,05). We calculated no significant difference between T and L sections of all parts of penis (p < 0,05). Conclusions: SWE can provide noninvasive quantitative data of CC penis rigidity and its alteration with age. These data may create a new approach in the evaluation process and treatment options for penile pathologies.
X. Liu; X. Liu; J. Xu; H.-L. Liu; J. Yue; W. Yuan
2014-01-01
Using a fully nonlinear two-dimensional (2-D) numerical model, we simulated gravity waves (GWs) breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT). An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's app...
Destrade, Michel; Goriely, Alain; Saccomandi, Giuseppe
2011-01-01
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent, and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation c...
International Nuclear Information System (INIS)
Baker, K.L.
2005-01-01
This article details a multigrid algorithm that is suitable for least-squares wave-front reconstruction of Shack-Hartmann and shearing interferometer wave-front sensors. The algorithm detailed in this article is shown to scale with the number of subapertures in the same fashion as fast Fourier transform techniques, making it suitable for use in applications requiring a large number of subapertures and high Strehl ratio systems such as for high spatial frequency characterization of high-density plasmas, optics metrology, and multiconjugate and extreme adaptive optics systems
International Nuclear Information System (INIS)
Robinson, T.S.
1981-04-01
Interest in the potentialities of electromagnetic ultrasonic transducers for non-destructive testing was re-awakened about 1968 and since then a goodly number of articles have appeared concerning transducers design, performance and use. The aim of this report is to fill a gap by describing the relations between theoretical and actual performance of shear-wave transducers, used on magnetic and on non-magnetic specimens: in particular to trace the phenomena occuring as the temperature of a magnetic specimen (mild steel) is raised through the Curie point. At the transmitting transducer generation of ultrasonic wave is almost exclusively by Lorentz forces applied to the skin of the specimen; at the receiver transduction is via Faraday induction. Wave attenuation in mild steel above the curie point hampers the use of shear waves, but does not render unusable there. An anomaly in performance with mild steel specimens just above the Curie temperature is discussed, which necessitates a brief consideration of electromagnetic longitudinal wave transducers, where the need to invoke magnetostriction as a dominant phenomenon is expressed. (Auhtor)
Rouze, Ned C; Deng, Yufeng; Palmeri, Mark L; Nightingale, Kathryn R
2017-10-01
Recent measurements of shear wave propagation in viscoelastic materials have been analyzed by constructing the 2-D Fourier transform (2DFT) of the shear wave signal and measuring the phase velocity c(ω) and attenuation α(ω) from the peak location and full width at half-maximum (FWHM) of the 2DFT signal at discrete frequencies. However, when the shear wave is observed over a finite spatial range, the 2DFT signal is a convolution of the true signal and the observation window, and measurements using the FWHM can yield biased results. In this study, we describe a method to account for the size of the spatial observation window using a model of the 2DFT signal and a non-linear, least-squares fitting procedure to determine c(ω) and α(ω). Results from the analysis of finite-element simulation data agree with c(ω) and α(ω) calculated from the material parameters used in the simulation. Results obtained in a viscoelastic phantom indicate that the measured attenuation is independent of the observation window and agree with measurements of c(ω) and α(ω) obtained using the previously described progressive phase and exponential decay analysis. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu; Flaud, Patrice
2014-01-01
Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305–11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications. (paper)
Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Flaud, Patrice; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu
2014-11-01
Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305-11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications.
Chen, Johnson; O'Dell, Michael; He, Wen; Du, Li-Juan; Li, Pai-Chi; Gao, Jing
To assess differences in biceps brachii muscle (BBM) stiffness as evaluated by ultrasound shear wave elastography (SWE). The passive stiffness of the BBM was quantified with shear wave velocity (SWV) measurements obtained from 10 healthy volunteers (5 men and 5 women, mean age 50years, age range 42-63 years) with the elbow at full extension and 30° flexion in this IRB-approved study. Potential differences between two depths within the muscle, two elbow positions, the two arms, and sexes were assessed by using two-tailed t-test. The reproducibility of SWV measurements was tested by using intraclass correlation coefficient (ICC). Significantly higher passive BBM stiffness was found at full elbow extension compared to 30° of flexion (p≤0.00006 for both arms). Significantly higher passive stiffness in women was seen for the right arm (p=0.04 for both elbow positions). Good correlation of shear wave velocity measured at the different depths. The ICC for interobserver and intraobserver variation was high. SWE is a reliable quantitative tool for assessing BBM stiffness, with differences in stiffness based on elbow position demonstrated and based on sex suggested. Copyright © 2017 Elsevier Inc. All rights reserved.
Simanungkalit, R. H.; Anggono, T.; Syuhada; Amran, A.; Supriyanto
2018-03-01
Earthquake signal observations around the world allow seismologists to obtain the information of internal structure of the Earth especially the Earth’s crust. In this study, we used joint inversion of receiver functions and surface wave group velocities to investigate crustal structure beneath CBJI station in West Java, Indonesia. Receiver function were calculated from earthquakes with magnitude more than 5 and at distance 30°-90°. Surface wave group velocities were calculated using frequency time analysis from earthquakes at distance of 30°- 40°. We inverted shear wave velocity model beneath the station by conducting joint inversion from receiver functions and surface wave dispersions. We suggest that the crustal thickness beneath CBJI station, West Java, Indonesia is about 35 km.
Clinical application of qualitative assessment for breast masses in shear-wave elastography
International Nuclear Information System (INIS)
Gweon, Hye Mi; Youk, Ji Hyun; Son, Eun Ju; Kim, Jeong-Ah
2013-01-01
Purpose: To evaluate the interobserver agreement and the diagnostic performance of various qualitative features in shear-wave elastography (SWE) for breast masses. Materials and methods: A total of 153 breast lesions in 152 women who underwent B-mode ultrasound and SWE before biopsy were included. Qualitative analysis in SWE was performed using two different classifications: E values (Ecol; 6-point color score, Ehomo; homogeneity score and Esha; shape score) and a four-color pattern classification. Two radiologists reviewed five data sets: B-mode ultrasound, SWE, and combination of both for E values and four-color pattern. The BI-RADS categories were assessed B-mode and combined sets. Interobserver agreement was assessed using weighted κ statistics. Areas under the receiver operating characteristic curve (AUC), sensitivity, and specificity were analyzed. Results: Interobserver agreement was substantial for Ecol (κ = 0.79), Ehomo (κ = 0.77) and four-color pattern (κ = 0.64), and moderate for Esha (κ = 0.56). Better-performing qualitative features were Ecol and four-color pattern (AUCs, 0.932 and 0.925) compared with Ehomo and Esha (AUCs, 0.857 and 0.864; P < 0.05). The diagnostic performance of B-mode ultrasound (AUC, 0.950) was not significantly different from combined sets with E value and with four color pattern (AUCs, 0.962 and 0.954). When all qualitative values were negative, leading to downgrade the BI-RADS category, the specificity increased significantly from 16.5% to 56.1% (E value) and 57.0% (four-color pattern) (P < 0.001) without improvement in sensitivity. Conclusion: The qualitative SWE features were highly reproducible and showed good diagnostic performance in suspicious breast masses. Adding qualitative SWE to B-mode ultrasound increased specificity in decision making for biopsy recommendation
Burak Özkan, M; Bilgici, M C; Eren, E; Caltepe, G
2018-03-01
The purpose of this study was to determine the usefulness of point shear wave elastography (p-SWE) of the liver and spleen for the detection of portal hypertension in pediatric patients. The study consisted of 38 healthy children and 56 pediatric patients with biopsy-proven liver disease who underwent splenic and liver p-SWE. The diagnostic performance of p-SWE in detecting clinically significant portal hypertension was assessed using receiver operating characteristic (ROC) curves. Reliable measurements of splenic and liver stiffness with p-SWE were obtained in 76/94 (81%) and 80/94 patients (85%), respectively. The splenic stiffness was highest in the portal hypertension group (Pportal hypertension was lower for splenic p-SWE than for liver p-SWE (0.906 vs. 0.746; P=0.0239). The cut-off value of splenic p-SWE for portal hypertension was 3.14m/s, with a specificity of 98.59% and a sensitivity of 68.18%. The cut-off value of liver p-SWE for portal hypertension was 2.09m/s, with a specificity of 80.28% and a sensitivity of 77.27%. In pediatric patients, p-SWE is a reliable method for detecting portal hypertension. However, splenic p-SWE is less accurate than liver p-SWE for the diagnosis of portal hypertension. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Han, Hong, E-mail: han.hong@zs-hospital.sh.cn [Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032 (China); Hu, Hao; Xu, Ya Dan [Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180 Fenglin Road, Xuhui District, Shanghai 200032 (China); Wang, Wen Ping, E-mail: puguang61@126.com [Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032 (China); Ding, Hong; Lu, Qing [Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032 (China)
2017-01-15
Objective: To determine the efficacy of liver stiffness (LS) measurements utilizing the Shear Wave Elastography (SWE) technique for predicting post-hepatectomy liver failure (PHLF) among patients with hepatocellular carcinoma (HCC). Methods: Data from eighty consecutive patients who were undergoing hepatectomy for HCC were prospectively identified and evaluated with preoperative SWE. The SWE was measured with advanced ultrasound equipment (Philips EPIQ7; Philips Healthcare, Seattle, WA, USA). PHLF classification was defined according to the International Study Group of Liver Surgery Recommendations (ISGLS). Results: SWE was successfully performed in 77 patients. According to the ISGLS criteria, PHLF occurred in 35.1% of patients (27 patients), including 2/25 patients with Grade A/B, respectively. Elevated SWE values (P = 0.002) and histological cirrhosis (P = 0.003) were independent predictors of PHLF according to the multivariate analysis. Patients with SWE values higher than or equal to 6.9 kPa were identified at higher risk of PHLF (area under the curve: 0.843, sensitivity: 77.8% and specificity: 78.0%). Postoperative dynamic course of the median the Model For End-stage Liver Disease (MELD) score showed irregular changes among patients with an SWE >6.9 kPa. Patients with an SWE <6.9 kPa, postoperative dynamic course of the median MELD score gradually decreased. Conclusion: LS measured with SWE is a valid and reliable method for the prediction of PHLF grade A/B among patients with HCC. SWE could become a routine examination for the preoperative evaluation of PHLF.
M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting
Abgarmi, Bizhan; Ozacar, A. Arda
2017-04-01
Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for
Directory of Open Access Journals (Sweden)
Kibo Yoon
Full Text Available To evaluate the interobserver reproducibility of two-dimensional shear wave elastography (2D-SWE in measuring liver stiffness (LS and to investigate factors related to liver 2D-SWE.A prospective study was conducted between August 2011 and August 2012 in rheumatoid arthritis patients who had been treated with methotrexate. Interobserver reproducibility of 2D-SWE was evaluated, and the relationship between interobserver difference in LS and related factors was analyzed using linear regression analyses. We considered age, sex, alanine transaminase, cholesterol, body mass index (BMI, and waist circumference as clinical factors, and the mean value of standard deviation (SDM, its difference between two examiners, mean diameter of the regions of interest (ROIM, and its difference in the elasticity map as investigation factors. The cut-off value for significant factors to predict interobserver discrepancies in LS-based fibrosis stage was also inspected.In total, 176 patients were enrolled. The intraclass correlation coefficient between the two examiners was 0.784. In the univariate analysis, SDM and ROIM were independently associated with interobserver differences in LS as well as BMI, waist circumference, and the difference of ROI, but SDM and ROIM were the only ones significantly related in multivariate analysis (p<0.001 and p = 0.021, respectively. The best cut-off value for SDM in predicting interobserver discrepancy in LS-based fibrosis stage was 1.4.Interobserver reproducibility of 2D-SWE for measuring LS was good and SDM was the most significantly associated factor with interobserver differences in LS and interobserver discordance in LS-based fibrosis stage.
Value of shear-wave elastography in the diagnosis of symptomatic invasive lobular breast cancer.
Sim, Y T; Vinnicombe, S; Whelehan, P; Thomson, K; Evans, A
2015-06-01
To investigate the contribution of shear-wave elastography (SWE) in diagnosing invasive lobular breast cancer (ILC) in symptomatic patients. A retrospective case-controlled study of 52 patients with ILC and 52 patients with invasive ductal cancer (IDC), matched for age and tumour size, was performed. Breast density and mammographic and greyscale ultrasound features were graded using Breast Imaging-Reporting and Data System (BI-RADS) classification by two radiologists, blinded to SWE and pathology findings. Forty-four benign lesions were also included. The sensitivity of SWE was assessed, using a cut-off value of 50 kPa for mean elasticity. Statistical significance was evaluated using Chi-square and Chi-square for trend tests. Mean age for both ILC and IDC groups was 67 years. Mean size for ILC was 44 mm and IDC was 37 mm. The sensitivity for detection of ILC and IDC for mammography, greyscale ultrasound, and SWE were 79% versus 87%, 87% versus 98%, 94% versus 100%, respectively. SWE had significantly higher sensitivities than mammography for the detection of both ILC and IDC (p = 0.012 and p = 0.001, respectively). SWE was not significantly more sensitive than greyscale ultrasound for the detection of either tumour type. Four (8%) lobular cancers were benign/normal at both mammography and greyscale ultrasound, but suspicious on SWE. The incremental gain in sensitivity by using SWE in ILC was statistically significant compared to IDC (p = 0.01). SWE can diagnose lobular cancers that have benign/normal findings on conventional imaging as suspicious. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Analysis of Fan Waves in a Laboratory Model Simulating the Propagation of Shear Ruptures in Rocks
Tarasov, B. G.; Sadovskii, V. M.; Sadovskaya, O. V.
2017-12-01
The fan-shaped mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface, simulating the propagation of shear ruptures in super brittle rocks, is analyzed. Such ruptures appear in the Earth's crust at seismogenic depths. They propagate due to the nucleation of oblique tensile microcracks, leading to the formation of a fan domino-structure in the rupture head. A laboratory physical model was created which demonstrates the process of fan-structure wave propagation. Equations of the dynamics of rotational motion of slabs as a mechanical system with a finite number of degrees of freedom are obtained. Based on the Merson method of solving the Cauchy problem for systems of ordinary differential equations, the computational algorithm taking into account contact interaction of slabs is developed. Within the framework of a simplified mathematical model of dynamic behavior of a fan-shaped system in the approximation of a continuous medium, the approximate estimates of the length of a fan depending on the velocity of its motion are obtained. It is shown that in the absence of friction a fan can move with any velocity that does not exceed the critical value, which depends on the size, the moment of inertia of slabs, the initial angle and the elasticity coefficient of bonds. In the presence of friction a fan stops. On the basis of discrete and continuous models, the main qualitative features of the behavior of a fan-structure moving under the action of applied tangential forces, whose values in a laboratory physical model are regulated by a change in the inclination angle of the rupture plane, are analyzed. Comparison of computations and laboratory measurements and observations shows good correspondence between the results.
Role of shear wave sonoelastography in differentiation between focal breast lesions.
Dobruch-Sobczak, Katarzyna; Nowicki, Andrzej
2015-02-01
Our goal in this study was to evaluate the relevance of shear wave sonoelastography (SWE) in the differential diagnosis of masses in the breast with respect to ultrasound (US). US and SWE were performed (Aixplorer System, SuperSonic Imagine, Aix en Provence, France) in 76 women (aged 24 to 85) with 84 lesions (43 malignant, 41 benign). The study included BI-RADS-US (Breast Imaging Reporting and Data System for Ultrsound) category 3-5 lesions. In elastograms, the following values were calculated: mean elasticity in lesions (E(av.l)) and in fat tissue (E(av.f.)) and maximal (E(max.adj.)) and mean (E(av.adj.)) elasticity in lesions and adjacent tissues. The sensitivity and specificity of the BI-RADS category 4a/4b cutoff value were 97.7% and 90.2%. For an E(av.adj.) of 68.5 kPa, the cutoff sensitivity was 86.1% and the specificity was 87.8%, and for an E(max.adj.) of 124.1 kPa, 74.4% and 92.7%, respectively. For BI-RADS-US category 3 lesions, E(av.l), E(max.adj.) and E(av.adj.) were below cutoff levels. On the basis of our findings, E(av.adj.) had lower sensitivity and specificity compared with US. Emax.adj. improved the specificity of breast US with loss of sensitivity. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Coombes, B K; Tucker, K; Vicenzino, B; Vuvan, V; Mellor, R; Heales, L; Nordez, A; Hug, F
2018-03-01
To compare tendon elastic and structural properties of healthy individuals with those with Achilles or patellar tendinopathy. Sixty-seven participants (22 Achilles tendinopathy, 17 patellar tendinopathy, and 28 healthy controls) were recruited between March 2015 and March 2016. Shear wave velocity (SWV), an index of tissue elastic modulus, and tendon thickness were measured bilaterally at mid-tendon and insertional regions of Achilles and patellar tendons by an examiner blinded to group. Analysis of covariance, adjusted for age, body mass index, and sex was used to compare differences in tendon thickness and SWV between the two tendinopathy groups (relative to controls) and regions. Tendon thickness was included as a covariate for analysis of SWV. Compared to controls, participants with Achilles tendinopathy had lower SWV at the distal insertion (Mean difference MD; 95% CI: -1.56; -2.49 to -0.62 m/s; P < .001) and greater thickness at the mid-tendon (MD 0.19; 0.05-0.33 cm; P = .007). Compared to controls, participants with patellar tendinopathy had higher SWV at both regions (MD 1.25; 0.40-2.10 m/s; P = .005) and greater thickness proximally (MD 0.17; 0.06-0.29 cm; P = .003). Compared to controls, participants with Achilles and patellar tendinopathy displayed lower Achilles tendon elastic modulus and higher patellar tendon elastic modulus, respectively. More research is needed to explore whether maturation, aging, or chronic load underlie these findings and whether current management programs for Achilles and patellar tendinopathy need to be tailored to the tendon. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shear Wave Elastography--A New Quantitative Assessment of Post-Irradiation Neck Fibrosis.
Liu, K H; Bhatia, K; Chu, W; He, L T; Leung, S F; Ahuja, A T
2015-08-01
Shear wave elastography (SWE) is a new technique which provides quantitative assessment of soft tissue stiffness. The aim of this study was to assess the reliability of SWE stiffness measurements and its usefulness in evaluating post-irradiation neck fibrosis. 50 subjects (25 patients with previous radiotherapy to the neck and 25 sex and age-matched controls) were recruited for comparison of SWE stiffness measurements (Aixplorer, Supersonic Imagine). 30 subjects (16 healthy individuals and 14 post-irradiated patients) were recruited for a reliability study of SWE stiffness measurements. SWE stiffness measurements of the sternocleidomastoid muscle and the overlying subcutaneous tissues of the neck were made. The cross-sectional area and thickness of the sternocleidomastoid muscle and the overlying subcutaneous tissue thickness of the neck were also measured. The post-irradiation duration of the patients was recorded. The intraclass correlation coefficients for the intraoperator and interoperator reliability of deep and subcutaneous tissue SWE stiffness ranged from 0.90-0.99 and 0.77-0.94, respectively. The SWE stiffness measurements (mean +/- SD) of deep and subcutaneous tissues were significantly higher in the post-irradiated patients (64.6 ± 46.8 kPa and 63.9 ± 53.1 kPa, respectively) than the sex and age-matched controls (19.9 ± 7.8 kPa and 15.3 ± 8.37 respectively) (p < 0.001). The SWE stiffness increased with increasing post-irradiation therapy duration in the Kruskal Wallis test (p < 0.001) and correlated with muscle atrophy and subcutaneous tissue thinning (p < 0.01). SWE is a reliable technique and may potentially be an objective and specific tool in quantifying deep and subcutaneous tissue stiffness, which in turn reflects the severity of neck fibrosis. © Georg Thieme Verlag KG Stuttgart · New York.
Giannotti, Elisabetta; Vinnicombe, Sarah; Thomson, Kim; McLean, Dennis; Purdie, Colin; Jordan, Lee; Evans, Andy
2016-06-01
To establish if palpable breast masses with benign greyscale ultrasound features that are soft on shear-wave elastography (SWE) (mean stiffness masses at ultrasound. All underwent ultrasound, SWE and needle core biopsy. Static greyscale images were retrospectively assigned Breast Imaging Reporting and Data System (BI-RADS) scores by two readers blinded to the SWE and pathology findings, but aware of the patient's age. A mean stiffness of 50 kPa was used as the SWE cut-off for calling a lesion soft or stiff. Histological findings were used to establish ground truth. No cancer had benign characteristics on both modalities. 466 (99.8%) of the 467 cancers were classified BI-RADS 4a or above. The one malignant lesion classified as BI-RADS 3 was stiff on SWE. 446 (96%) of the 467 malignancies were stiff on SWE. No cancer in females under 40 years had benign SWE features. 74 (32.6%) of the 227 benign lesions were BI-RADS 3 and soft on SWE; so, biopsy could potentially have been avoided in this group. Lesions which appear benign on greyscale ultrasound and SWE do not require percutaneous biopsy or short-term follow-up, particularly in females under 40 years. None of the cancers had benign characteristics on both greyscale ultrasound and SWE, and 32% of benign lesions were BI-RADS 3 and soft on SWE; lesions that are benign on both ultrasound and SWE may not require percutaneous biopsy or short-term follow-up.
Clinical application of qualitative assessment for breast masses in shear-wave elastography
Energy Technology Data Exchange (ETDEWEB)
Gweon, Hye Mi; Youk, Ji Hyun, E-mail: jhyouk@yuhs.ac; Son, Eun Ju; Kim, Jeong-Ah
2013-11-01
Purpose: To evaluate the interobserver agreement and the diagnostic performance of various qualitative features in shear-wave elastography (SWE) for breast masses. Materials and methods: A total of 153 breast lesions in 152 women who underwent B-mode ultrasound and SWE before biopsy were included. Qualitative analysis in SWE was performed using two different classifications: E values (Ecol; 6-point color score, Ehomo; homogeneity score and Esha; shape score) and a four-color pattern classification. Two radiologists reviewed five data sets: B-mode ultrasound, SWE, and combination of both for E values and four-color pattern. The BI-RADS categories were assessed B-mode and combined sets. Interobserver agreement was assessed using weighted κ statistics. Areas under the receiver operating characteristic curve (AUC), sensitivity, and specificity were analyzed. Results: Interobserver agreement was substantial for Ecol (κ = 0.79), Ehomo (κ = 0.77) and four-color pattern (κ = 0.64), and moderate for Esha (κ = 0.56). Better-performing qualitative features were Ecol and four-color pattern (AUCs, 0.932 and 0.925) compared with Ehomo and Esha (AUCs, 0.857 and 0.864; P < 0.05). The diagnostic performance of B-mode ultrasound (AUC, 0.950) was not significantly different from combined sets with E value and with four color pattern (AUCs, 0.962 and 0.954). When all qualitative values were negative, leading to downgrade the BI-RADS category, the specificity increased significantly from 16.5% to 56.1% (E value) and 57.0% (four-color pattern) (P < 0.001) without improvement in sensitivity. Conclusion: The qualitative SWE features were highly reproducible and showed good diagnostic performance in suspicious breast masses. Adding qualitative SWE to B-mode ultrasound increased specificity in decision making for biopsy recommendation.
Vinnicombe, S J; Whelehan, P; Thomson, K; McLean, D; Purdie, C A; Jordan, L B; Hubbard, S; Evans, A J
2014-04-01
Shear wave elastography (SWE) is a promising adjunct to greyscale ultrasound in differentiating benign from malignant breast masses. The purpose of this study was to characterise breast cancers which are not stiff on quantitative SWE, to elucidate potential sources of error in clinical application of SWE to evaluation of breast masses. Three hundred and two consecutive patients examined by SWE who underwent immediate surgery for breast cancer were included. Characteristics of 280 lesions with suspicious SWE values (mean stiffness >50 kPa) were compared with 22 lesions with benign SWE values (masses were more often soft on SWE than masses representing invasive breast cancer. Invasive cancers that were soft were more frequently: histological grade 1, tubular subtype, ≤10 mm invasive size and detected at screening mammography. No significant differences were found with respect to the presence of invasive lobular cancer, vascular invasion, hormone and HER-2 receptor status. Lymph node positivity was less common in soft cancers. Malignant breast masses classified as benign by quantitative SWE tend to have better prognostic features than those correctly classified as malignant. • Over 90 % of cancers assessable with ultrasound have a mean stiffness >50 kPa. • 'Soft' invasive cancers are frequently small (≤10 mm), low grade and screen-detected. • Pure DCIS masses are more often soft than invasive cancers (>40 %). • Large symptomatic masses are better evaluated with SWE than small clinically occult lesions. • When assessing small lesions, 'softness' should not raise the threshold for biopsy.
Dillman, Jonathan R; Chen, Shigao; Davenport, Matthew S; Zhao, Heng; Urban, Matthew W; Song, Pengfei; Watcharotone, Kuanwong; Carson, Paul L
2015-03-01
There is a paucity of data available regarding the repeatability and reproducibility of superficial shear wave speed (SWS) measurements at imaging depths relevant to the pediatric population. To assess the repeatability and reproducibility of superficial shear wave speed measurements acquired from elasticity phantoms at varying imaging depths using three imaging methods, two US systems and multiple operators. Soft and hard elasticity phantoms manufactured by Computerized Imaging Reference Systems Inc. (Norfolk, VA) were utilized for our investigation. Institution No. 1 used an Acuson S3000 US system (Siemens Medical Solutions USA, Malvern, PA) and three shear wave imaging method/transducer combinations, while institution No. 2 used an Aixplorer US system (SuperSonic Imagine, Bothell, WA) and two different transducers. Ten stiffness measurements were acquired from each phantom at three depths (1.0 cm, 2.5 cm and 4.0 cm) by four operators at each institution. Student's t-test was used to compare SWS measurements between imaging techniques, while SWS measurement agreement was assessed with two-way random effects single-measure intra-class correlation coefficients (ICCs) and coefficients of variation. Mixed model regression analysis determined the effect of predictor variables on SWS measurements. For the soft phantom, the average of mean SWS measurements across the various imaging methods and depths was 0.84 ± 0.04 m/s (mean ± standard deviation) for the Acuson S3000 system and 0.90 ± 0.02 m/s for the Aixplorer system (P = 0.003). For the hard phantom, the average of mean SWS measurements across the various imaging methods and depths was 2.14 ± 0.08 m/s for the Acuson S3000 system and 2.07 ± 0.03 m/s Aixplorer system (P > 0.05). The coefficients of variation were low (0.5-6.8%), and interoperator agreement was near-perfect (ICCs ≥ 0.99). Shear wave imaging method and imaging depth significantly affected measured SWS (P
Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.
2017-12-01
We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.
Sawazaki, Kaoru; Snieder, Roel
2013-04-01
We detect time-lapse changes in P- and S-wave velocities (hereafter, VP and VS, respectively) and shear wave splitting parameters associated with the 2011 Tohoku earthquake, Japan, at depths between 0 and 504 m. We estimate not only medium parameters but also the 95 per cent confidence interval of the estimated velocity change by applying a new least squares inversion scheme to the deconvolution analysis of KiK-net vertical array records. Up to 6 per cent VS reduction is observed at more than half of the analysed KiK-net stations in northeastern Japan with over 95 per cent confidence in the first month after the main shock. There is a considerable correlation between the S-wave traveltime delay and the maximum horizontal dynamic strain (MDS) by the main shock motion when the strain exceeds 5 × 10- 4 on the ground surface. This correlation is not clearly observed for MDS at the borehole bottom. On the contrary, VP and shear wave splitting parameters do not show systematic changes after the Tohoku earthquake. These results indicate that the time-lapse change is concentrated near the ground surface, especially in loosely packed soil layers. We conclude that the behaviour of VP, VS and shear wave splitting parameters are explained by the generation of omnidirectional cracks near the ground surface and by the diffusion of water in the porous subsurface. Recovery of VS should be related to healing of the crack which is proportional to the logarithm of the lapse time after the main shock and/or to decompaction after shaking.
Ye, W; Bel-Brunon, A; Catheline, S; Combescure, A; Rochette, M
2018-01-01
In this study, visco-hyperelastic Landau's model, which is widely used in acoustical physic field, is introduced into a finite element formulation. It is designed to model the nonlinear behaviour of finite amplitude shear waves in soft solids, typically, in biological tissues. This law is used in finite element models based on elastography, experiments reported in Jacob et al, the simulations results show a good agreement with the experimental study: It is observed in both that a plane shear wave generates only odd harmonics and a nonplane wave generates both odd and even harmonics in the spectral domain. In the second part, a parametric study is performed to analyse the influence of different factors on the generation of odd harmonics of plane wave. A quantitative relation is fitted between the odd harmonic amplitudes and the non-linear elastic parameter of Landau's model, which provides a practical guideline to identify the non-linearity of homogeneous tissues using elastography experiment. Copyright © 2017 John Wiley & Sons, Ltd.
Quantification of Rock Damage from Small Explosions and Its Effect on Shear-Wave Generation
2009-06-15
Issues. Shot 1 Shot 2 Shot 3 Shot 4 Shot 5 NE10-Noise NE08-Car prior to shot arrival NE05-Noise, possibly from lawn mower NE05-Noise, possibly...from lawn mower NE02-Car prior to shot arrival SE03-Noise NE09-Car NE10-Noise SE05-Car? NE08-Car SE07-Noise SE05-Car SE10-Noise SE09-Car
Evans, A; Whelehan, P; Thomson, K; Brauer, K; Jordan, L; Purdie, C; McLean, D; Baker, L; Vinnicombe, S; Thompson, A
2012-07-10
The aim of this study was to assess the performance of shear wave elastography combined with BI-RADS classification of greyscale ultrasound images for benign/malignant differentiation in a large group of patients. One hundred and seventy-five consecutive patients with solid breast masses on routine ultrasonography undergoing percutaneous biopsy had the greyscale findings classified according to the American College of Radiology BI-RADS. The mean elasticity values from four shear wave images were obtained. For mean elasticity vs greyscale BI-RADS, the performance results against histology were sensitivity: 95% vs 95%, specificity: 77% vs 69%, Positive Predictive Value (PPV): 88% vs 84%, Negative Predictive Value (NPV): 90% vs 91%, and accuracy: 89% vs 86% (all P>0.05). The results for the combination (positive result from either modality counted as malignant) were sensitivity 100%, specificity 61%, PPV 82%, NPV 100%, and accuracy 86%. The combination of BI-RADS greyscale and shear wave elastography yielded superior sensitivity to BI-RADS alone (P=0.03) or shear wave alone (P=0.03). The NPV was superior in combination compared with either alone (BI-RADS P=0.01 and shear wave P=0.02). Together, BI-RADS assessment of greyscale ultrasound images and shear wave ultrasound elastography are extremely sensitive for detection of malignancy.
Energy Technology Data Exchange (ETDEWEB)
Kgaswane, E M; Nyblade, A A; Julia, J; Dirks, P H H M; Durrheim, R J; Pasyanos, M E
2008-11-11
Crustal structure in southern Africa has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations spanning much of the Precambrian shield of southern Africa. 1-D shear wave velocity profiles obtained from the inversion yield Moho depths that are similar to those reported in previous studies and show considerable variability in the shear wave velocity structure of the lower part of the crust between some terrains. For many of the Archaean and Proterozoic terrains in the shield, S velocities reach 4.0 km/s or higher over a substantial part of the lower crust. However, for most of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain, as well as for the western part of the Tokwe terrain, mean shear wave velocities of {le} 3.9 km/s characterize the lower part of the crust along with slightly ({approx}5 km) thinner crust. These findings indicate that the lower crust across much of the shield has a predominantly mafic composition, except for the southwest portion of the Kaapvaal Craton and western portion of the Zimbabwe Craton, where the lower crust is intermediate-to-felsic in composition. The parts of the Kaapvaal Craton underlain by intermediate-to-felsic lower crust coincide with regions where Ventersdorp rocks have been preserved, and thus we suggest that the intermediate-to-felsic composition of the lower crust and the shallower Moho may have resulted from crustal melting during the Ventersdorp tectonomagmatic event at c. 2.7 Ga and concomitant crustal thinning caused by rifting.
Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms
Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.
2011-01-01
Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828
Nakamura, Masatoshi; Hasegawa, Satoshi; Umegaki, Hiroki; Nishishita, Satoru; Kobayashi, Takuya; Fujita, Kosuke; Tanaka, Hiroki; Ibuki, Satoko; Ichihashi, Noriaki
2016-08-01
Hamstring muscle strain is one of the most common injuries in sports. Therefore, to investigate the factors influencing hamstring strain, the differences in passive tension applied to the hamstring muscles at the same knee and hip positions as during terminal swing phase would be useful information. In addition, passive tension applied to the hamstrings could change with anterior or posterior tilt of the pelvis. The aims of this study were to investigate the difference in passive tension applied to the individual muscles composing the hamstrings during passive elongation, and to investigate the effect of pelvic position on passive tension. Fifteen healthy men volunteered for this study. The subject lay supine with the angle of the trunk axis to the femur of their dominant leg at 70° and the knee angle of the dominant leg fixed at 30° flexion. In three pelvic positions ("Non-Tilt", "Anterior-Tilt" and "Posterior-Tilt"), the shear elastic modulus of each muscle composing the hamstrings (semitendinosus, semimembranosus, and biceps femoris) was measured using an ultrasound shear wave elastography. The shear elastic modulus of semimembranosus was significantly higher than the others. Shear elastic modulus of the hamstrings in Anterior-Tilt was significantly higher than in Posterior-Tilt. Passive tension applied to semimembranosus is higher than the other muscles when the hamstring muscle is passively elongated, and passive tension applied to the hamstrings increases with anterior tilt of the pelvis. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Di Stefano, C. A.; Kuranz, C. C.; Klein, S. R.; Drake, R. P.; Malamud, G.; Henry de Frahan, M. T.; Johnsen, E.; Shimony, A.; Shvarts, D.; Smalyuk, V. A.; Martinez, D.
2014-01-01
In this work, we examine the hydrodynamics of high-energy-density (HED) shear flows. Experiments, consisting of two materials of differing density, use the OMEGA-60 laser to drive a blast wave at a pressure of ∼50 Mbar into one of the media, creating a shear flow in the resulting shocked system. The interface between the two materials is Kelvin-Helmholtz unstable, and a mixing layer of growing width develops due to the shear. To theoretically analyze the instability's behavior, we rely on two sources of information. First, the interface spectrum is well-characterized, which allows us to identify how the shock front and the subsequent shear in the post-shock flow interact with the interface. These observations provide direct evidence that vortex merger dominates the evolution of the interface structure. Second, simulations calibrated to the experiment allow us to estimate the time-dependent evolution of the deposition of vorticity at the interface. The overall result is that we are able to choose a hydrodynamic model for the system, and consequently examine how well the flow in this HED system corresponds to a classical hydrodynamic description
Directory of Open Access Journals (Sweden)
Xiaona Liu
Full Text Available We aimed to observe the relationship between the pathological components of a deep venous thrombus (DVT, which was divided into three parts, and the findings on quantitative ultrasonic shear wave elastography (SWE to increase the accuracy of thrombus staging in a rabbit model.A flow stenosis-induced vein thrombosis model was used, and the thrombus was divided into three parts (head, body and tail, which were associated with corresponding observation points. Elasticity was quantified in vivo using SWE over a 2-week period. A quantitative pathologic image analysis (QPIA was performed to obtain the relative percentages of the components of the main clots.DVT maturity occurred at 2 weeks, and the elasticity of the whole thrombus and the three parts (head, body and tail showed an increasing trend, with the Young's modulus values varying from 2.36 ± 0.41 kPa to 13.24 ± 1.71 kPa; 2.01 ± 0.28 kPa to 13.29 ± 1.48 kPa; 3.27 ± 0.57 kPa to 15.91 ± 2.05 kPa; and 1.79 ± 0.36 kPa to 10.51 ± 1.61 kPa, respectively. Significant increases occurred on different days for the different parts: the head showed significant increases on days 4 and 6; the body showed significant increases on days 4 and 7; and the tail showed significant increases on days 3 and 6. The QPIA showed that the thrombus composition changed dynamically as the thrombus matured, with the fibrin and calcium salt deposition gradually increasing and the red blood cells (RBCs and platelet trabecula gradually decreasing. Significant changes were observed on days 4 and 7, which may represent the transition points for acute, sub-acute and chronic thrombi. Significant heterogeneity was observed between and within the thrombi.Variations in the thrombus components were generally consistent between the SWE and QPIA. Days 4 and 7 after thrombus induction may represent the transition points for acute, sub-acute and chronic thrombi in rabbit models. A dynamic examination of the same part of the thrombus
Liu, Xiaona; Li, Na; Wen, Chaoyang
2017-01-01
We aimed to observe the relationship between the pathological components of a deep venous thrombus (DVT), which was divided into three parts, and the findings on quantitative ultrasonic shear wave elastography (SWE) to increase the accuracy of thrombus staging in a rabbit model. A flow stenosis-induced vein thrombosis model was used, and the thrombus was divided into three parts (head, body and tail), which were associated with corresponding observation points. Elasticity was quantified in vivo using SWE over a 2-week period. A quantitative pathologic image analysis (QPIA) was performed to obtain the relative percentages of the components of the main clots. DVT maturity occurred at 2 weeks, and the elasticity of the whole thrombus and the three parts (head, body and tail) showed an increasing trend, with the Young's modulus values varying from 2.36 ± 0.41 kPa to 13.24 ± 1.71 kPa; 2.01 ± 0.28 kPa to 13.29 ± 1.48 kPa; 3.27 ± 0.57 kPa to 15.91 ± 2.05 kPa; and 1.79 ± 0.36 kPa to 10.51 ± 1.61 kPa, respectively. Significant increases occurred on different days for the different parts: the head showed significant increases on days 4 and 6; the body showed significant increases on days 4 and 7; and the tail showed significant increases on days 3 and 6. The QPIA showed that the thrombus composition changed dynamically as the thrombus matured, with the fibrin and calcium salt deposition gradually increasing and the red blood cells (RBCs) and platelet trabecula gradually decreasing. Significant changes were observed on days 4 and 7, which may represent the transition points for acute, sub-acute and chronic thrombi. Significant heterogeneity was observed between and within the thrombi. Variations in the thrombus components were generally consistent between the SWE and QPIA. Days 4 and 7 after thrombus induction may represent the transition points for acute, sub-acute and chronic thrombi in rabbit models. A dynamic examination of the same part of the thrombus may be
A new qualitative pattern classification of shear wave elastograghy for solid breast mass evaluation
Energy Technology Data Exchange (ETDEWEB)
Cong, Rui, E-mail: congrui2684@163.com; Li, Jing, E-mail: lijing@sj-hospital.org; Guo, Song, E-mail: 21751735@qq.com
2017-02-15
Highlights: • Qualitative SWE classification proposed here was significantly better than quantitative SWE parameters. • Qualitative classification proposed here was better than the classification proposed before. • Qualitative classification proposed here could obtain higher specificity without a loss of sensitivity. - Abstract: Objectives: To examine the efficacy of qualitative shear wave elastography (SWE) in the classification and evaluation of solid breast masses, and to compare this method with conventional ultrasonograghy (US), quantitative SWE parameters and qualitative SWE classification proposed before. Methods: From April 2015 to March 2016, 314 consecutive females with 325 breast masses who decided to undergo core needle biopsy and/or surgical biopsy were enrolled. Conventional US and SWE were previously performed in all enrolled subjects. Each mass was classified by two different qualitative classifications. One was established in our study, herein named the Qual1. Qual1 could classify the SWE images into five color patterns by the visual evaluations: Color pattern 1 (homogeneous pattern); Color pattern 2 (comparative homogeneous pattern); Color pattern 3 (irregularly heterogeneous pattern); Color pattern 4 (intralesional echo pattern); and Color pattern 5 (the stiff rim sign pattern). The second qualitative classification was named Qual2 here, and included a four-color overlay pattern classification (Tozaki and Fukuma, Acta Radiologica, 2011). The Breast Imaging Reporting and Data System (BI-RADS) assessment and quantitative SWE parameters were recorded. Diagnostic performances of conventional US, SWE parameters, and combinations of US and SWE parameters were compared. Results: With pathological results as the gold standard, of the 325 examined breast masses, 139 (42.77%) samples were malignant and 186 (57.23%) were benign. The Qual1 showed a higher Az value than the Qual2 and quantitative SWE parameters (all P < 0.05). When applying Qual1
Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study
Energy Technology Data Exchange (ETDEWEB)
Park, Ah Young; Son, Eun Ju [Department of Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of); Han, Kyunghwa [Biostatistics Collaboration Unit, Gangnam Medical Research Center, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of); Youk, Ji Hyun [Department of Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of); Kim, Jeong-Ah, E-mail: chrismd@hanmail.net [Department of Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of); Park, Cheong Soo [Department of Surgery, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of)
2015-03-15
Highlights: •Elasticity indices of malignant thyroid nodules were higher than those of benign. •High elasticity indices were the independent predictors of thyroid malignancy. •SWE evaluation could be useful as adjunctive tool for thyroid cancer diagnosis. -- Abstract: Objectives: The purpose of this study is to validate the usefulness of shear wave elastography (SWE) in predicting thyroid malignancy with a large-scale quantitative SWE data. Methods: This restrospective study included 476 thyroid nodules in 453 patients who underwent gray-scale US and SWE before US-guided fine-needle aspiration biopsy (US-FNA) or surgical excision were included. Gray-scale findings and SWE elasticity indices (EIs) were retrospectively reviewed and compared between benign and malignant thyroid nodules. The optimal cut-off values of EIs for predicting malignancy were determined. The diagnostic performances of gray-scale US and SWE for predicting malignancy were analyzed. The diagnostic performance was compared between the gray-scale US findings only and the combined use of gray-scale US findings with SWEs. Results: All EIs of malignant thyroid nodules were significantly higher than those of benign nodules (p ≤ .001). The optimal cut-off value of each EI for predicting malignancy was 85.2 kPa of E{sub mean}, 94.0 kPa of E{sub max}, 54.0 kPa of E{sub min}. E{sub mean} (OR 3.071, p = .005) and E{sub max} (OR 3.015, p = .003) were the independent predictors of thyroid malignancy. Combined use of gray-scale US findings and each EI showed elevated sensitivity (95.0–95.5% vs 92.9%, p ≤ .005) and AUC (0.820–0.834 vs 0.769, p ≤ .005) for predicting malignancy, compared with the use of only gray-scale US findings. Conclusions: Quantitative parameters of SWE were the independent predictors of thyroid malignancy and SWE evaluation combined with gray-scale US was adjunctive to the diagnostic performance of gray-scale US for predicting thyroid malignancy.
Wang, Liyun; Yan, Feng; Yang, Yujia; Xiang, Xi; Qiu, Li
2017-07-01
The purpose of this study was to evaluate the usefulness of ultrasound shear-wave elastography (US-SWE) in characterization of localized scleroderma (LS), as well as in the disease staging. A total of 21 patients with 37 LS lesions were enrolled in this study. The pathologic stage (edema, sclerosis or atrophy) of the lesions was characterized by pathologic examination. The skin elastic modulus (E-values including E mean , E min , E max and E sd ) and thickness (h) was evaluated both in LS lesions and site-matched unaffected skin (normal controls) using US-SWE. The relative difference of E-values (E RD ) was calculated between each pair of lesions and its normal control for comparison among different pathologic stages. Of the 37 LS lesions, 2 were in edema, 22 were in sclerosis and 13 were in atrophy. US-SWE results showed a significant increase of skin elastic modulus and thickness in all lesions (p < 0.001 in sclerosis and p < 0.05 in atrophy) compared with the normal controls. The measured skin elastic modulus and thickness were greater in sclerosis than in atrophy. However, once normalized by skin thickness, the atrophic lesions, which were on average thinner, appeared significantly stiffer than those of the sclerosis (normalized E RD : an increase of 316.3% in atrophy vs. 50.6% in sclerosis compared with the controls, p = 0.007). These findings suggest that US-SWE allows for quantitative evaluation of the skin stiffness of LS lesions in different stages; however, the E-values directly provided by the US-SWE system alone do not distinguish between the stages, and the normalization by skin thickness is necessary. This non-invasive, real-time imaging technique is an ideal tool for assessing and monitoring LS disease severity and progression. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study
International Nuclear Information System (INIS)
Park, Ah Young; Son, Eun Ju; Han, Kyunghwa; Youk, Ji Hyun; Kim, Jeong-Ah; Park, Cheong Soo
2015-01-01
Highlights: •Elasticity indices of malignant thyroid nodules were higher than those of benign. •High elasticity indices were the independent predictors of thyroid malignancy. •SWE evaluation could be useful as adjunctive tool for thyroid cancer diagnosis. -- Abstract: Objectives: The purpose of this study is to validate the usefulness of shear wave elastography (SWE) in predicting thyroid malignancy with a large-scale quantitative SWE data. Methods: This restrospective study included 476 thyroid nodules in 453 patients who underwent gray-scale US and SWE before US-guided fine-needle aspiration biopsy (US-FNA) or surgical excision were included. Gray-scale findings and SWE elasticity indices (EIs) were retrospectively reviewed and compared between benign and malignant thyroid nodules. The optimal cut-off values of EIs for predicting malignancy were determined. The diagnostic performances of gray-scale US and SWE for predicting malignancy were analyzed. The diagnostic performance was compared between the gray-scale US findings only and the combined use of gray-scale US findings with SWEs. Results: All EIs of malignant thyroid nodules were significantly higher than those of benign nodules (p ≤ .001). The optimal cut-off value of each EI for predicting malignancy was 85.2 kPa of E mean , 94.0 kPa of E max , 54.0 kPa of E min . E mean (OR 3.071, p = .005) and E max (OR 3.015, p = .003) were the independent predictors of thyroid malignancy. Combined use of gray-scale US findings and each EI showed elevated sensitivity (95.0–95.5% vs 92.9%, p ≤ .005) and AUC (0.820–0.834 vs 0.769, p ≤ .005) for predicting malignancy, compared with the use of only gray-scale US findings. Conclusions: Quantitative parameters of SWE were the independent predictors of thyroid malignancy and SWE evaluation combined with gray-scale US was adjunctive to the diagnostic performance of gray-scale US for predicting thyroid malignancy
Evaluation of 2D- Shear Wave Elastography for Characterisation of Focal Liver Lesions.
Gerber, Ludmila; Fitting, Daniel; Srikantharajah, Kajana; Weiler, Nina; Kyriakidou, Georgia; Bojunga, Joerg; Schulze, Falko; Bon, Dimitra; Zeuzem, Stefan; Friedrich-Rust, Mireen
2017-09-01
This is a prospective study for evaluation of 2D-shear wave elastography (2D-SWE) for characterisation and differentiation of benign und malignant focal liver lesions (FLLs). The patients referred to our ultrasound unit were prospectively included. B-mode ultrasound and 2D-SWE (Aixplorer® France) were performed for one FLL in each patient. Liver histology and/or contrast-enhanced imaging were used as a reference method. 140 patients with FLL were included. SWE acquisitions failed in 24% of them. Therefore, 106 patients with FLL could be analysed, 42/106 with benign and 64/106 with malignant FLLs. The median stiffness for benign FLLs was 16.4 (2.1-71.9) kPa: 16.55 kPa for 18 focal nodular hyperplasia (FNH), 16.35 kPa for 18 hemangioma, 9.8 kPa for 3 focal fatty sparings (FFS), 8.9 kPa for 1 adenoma, 20 kPa for one regenerative node and 29 kPa for one cholangiofibroma, and for the malignant FLLs 36 (4.1-142.9) kPa: 44.8 kPa for 16 hepatocellular carcinoma (HCC), 70.7 kPa for 7 cholangiocarcinoma (CCC) and 29.5 kPa for the 41 metastasis (p<0.001). Malignant FLLs were significantly stiffer than benign FLLs (p<0.0001). Cholangiocarcinomas were the stiffest malignant FFLs with significantly higher values as compared to HCCs and metastases (p=0.033 and p=0.0079, respectively). No significant difference in stiffness could be observed between the different benign FLL entities. No significant difference was observed whether 2D-SWE included the whole FLL, the periphery or only the hardest area of the FLL. 2D-SWE provides further characterising information for interpretation of FLLs and may be useful at least in differentiation of CCCs and HCCs.
Shear wave anisotropy in the Eastern Himalaya, Burmese arc and adjoining regions
Mangalampally, R. K.; Saikia, D.; Singh, A.; Roy, S.; Panuganti, S. R.; Lyngdoh, A. C.
2017-12-01
This study presents new results of 231 shear wave splitting and 395 "Null" measurements at 58 broadband seismic stations installed in the hitherto less investigated eastern Himalaya, Burmese arc and adjoining regions. The analysis reveals complex patterns of anisotropy, with significant variations in delay times. The fast polarisation directions (FPD) at stations within the Himalaya, Burmese Arc and the foredeep are coherent, parallel to the strike of the orogens. Measurements within the eastern and central Arunachal Himalaya are predominantly "Null''. However, in the western and central parts, these are relatively small, centered at 0.7s. The FPDs follow the trends of major tectonic features like the Main Boundary Thrust and the Main Central Thrust in the central segment of Arunachal Himalaya. In the Burmese arc region, the delay times show a large variability (0.4-2.1s). The Assam foredeep exhibits splitting delays in the range 0.5 to 1.2 s, with the FPDs trending nearly EW to NE. The FPDs parallel to the strike of the mountain belts can be best explained in terms of a coherently deformed lithospheric mantle under the compressional effects ensuing from the collision between India and Asia. Null measurements in regions like the Siang window may be due to a complex anisotropic pattern due to Indian plate interaction with Eurasia and Burma plates, causing different layers of anisotropic fabric with completely different orientations. Another possibility is the coincidence of source polarisation direction with the fast axis, since most of the waveforms analysed are from a narrow back azimuthal range of 100-125°. E-W oriented FPDs may coincide with the backazimuth of the source, resulting in smaller delays. Null measurements in eastern Himalaya may reflect cancellation of anisotropy caused by APM related flow (NE) and compressional effects of the Himalaya (EW). In the Bengal Basin, the Nulls could be due to two different mechanisms, namely, frozen anisotropic fabric
A new qualitative pattern classification of shear wave elastograghy for solid breast mass evaluation
International Nuclear Information System (INIS)
Cong, Rui; Li, Jing; Guo, Song
2017-01-01
Highlights: • Qualitative SWE classification proposed here was significantly better than quantitative SWE parameters. • Qualitative classification proposed here was better than the classification proposed before. • Qualitative classification proposed here could obtain higher specificity without a loss of sensitivity. - Abstract: Objectives: To examine the efficacy of qualitative shear wave elastography (SWE) in the classification and evaluation of solid breast masses, and to compare this method with conventional ultrasonograghy (US), quantitative SWE parameters and qualitative SWE classification proposed before. Methods: From April 2015 to March 2016, 314 consecutive females with 325 breast masses who decided to undergo core needle biopsy and/or surgical biopsy were enrolled. Conventional US and SWE were previously performed in all enrolled subjects. Each mass was classified by two different qualitative classifications. One was established in our study, herein named the Qual1. Qual1 could classify the SWE images into five color patterns by the visual evaluations: Color pattern 1 (homogeneous pattern); Color pattern 2 (comparative homogeneous pattern); Color pattern 3 (irregularly heterogeneous pattern); Color pattern 4 (intralesional echo pattern); and Color pattern 5 (the stiff rim sign pattern). The second qualitative classification was named Qual2 here, and included a four-color overlay pattern classification (Tozaki and Fukuma, Acta Radiologica, 2011). The Breast Imaging Reporting and Data System (BI-RADS) assessment and quantitative SWE parameters were recorded. Diagnostic performances of conventional US, SWE parameters, and combinations of US and SWE parameters were compared. Results: With pathological results as the gold standard, of the 325 examined breast masses, 139 (42.77%) samples were malignant and 186 (57.23%) were benign. The Qual1 showed a higher Az value than the Qual2 and quantitative SWE parameters (all P < 0.05). When applying Qual1
Berg, Wendie A; Mendelson, Ellen B; Cosgrove, David O; Doré, Caroline J; Gay, Joel; Henry, Jean-Pierre; Cohen-Bacrie, Claude
2015-08-01
The objective of our study was to compare quantitative maximum breast mass stiffness on shear-wave elastography (SWE) with histopathologic outcome. From September 2008 through September 2010, at 16 centers in the United States and Europe, 1647 women with a sonographically visible breast mass consented to undergo quantitative SWE in this prospective protocol; 1562 masses in 1562 women had an acceptable reference standard. The quantitative maximum stiffness (termed "Emax") on three acquisitions was recorded for each mass with the range set from 0 (very soft) to 180 kPa (very stiff). The median Emax and interquartile ranges (IQRs) were determined as a function of histopathologic diagnosis and were compared using the Mann-Whitney U test. We considered the impact of mass size on maximum stiffness by performing the same comparisons for masses 9 mm or smaller and those larger than 9 mm in diameter. The median patient age was 50 years (mean, 51.8 years; SD, 14.5 years; range, 21-94 years), and the median lesion diameter was 12 mm (mean, 14 mm; SD, 7.9 mm; range, 1-53 mm). The median Emax of the 1562 masses (32.1% malignant) was 71 kPa (mean, 90 kPa; SD, 65 kPa; IQR, 31-170 kPa). Of 502 malignancies, 23 (4.6%) ductal carcinoma in situ (DCIS) masses had a median Emax of 126 kPa (IQR, 71-180 kPa) and were less stiff than 468 invasive carcinomas (median Emax, 180 kPa [IQR, 138-180 kPa]; p = 0.002). Benign lesions were much softer than malignancies (median Emax, 43 kPa [IQR, 24-83 kPa] vs 180 kPa [IQR, 129-180 kPa]; p masses. Despite overlap in Emax values, maximum stiffness measured by SWE is a highly effective predictor of the histopathologic severity of sonographically depicted breast masses.
International Nuclear Information System (INIS)
Mullen, R.; Thompson, J.M.; Moussa, O.; Vinnicombe, S.; Evans, A.
2014-01-01
Aim: To assess whether the size of peritumoural stiffness (PTS) on shear-wave elastography (SWE) for small primary breast cancers (≤15 mm) was associated with size discrepancies between grey-scale ultrasound (GSUS) and final histological size and whether the addition of PTS size to GSUS size might result in more accurate tumour size estimation when compared to final histological size. Materials and methods: A retrospective analysis of 86 consecutive patients between August 2011 and February 2013 who underwent breast-conserving surgery for tumours of size ≤15 mm at ultrasound was carried out. The size of PTS stiffness was compared to mean GSUS size, mean histological size, and the extent of size discrepancy between GSUS and histology. PTS size and GSUS were combined and compared to the final histological size. Results: PTS of >3 mm was associated with a larger mean final histological size (16 versus 11.3 mm, p < 0.001). PTS size of >3 mm was associated with a higher frequency of underestimation of final histological size by GSUS of >5 mm (63% versus 18%, p < 0.001). The combination of PTS and GSUS size led to accurate estimation of the final histological size (p = 0.03). The size of PTS was not associated with margin involvement (p = 0.27). Conclusion: PTS extending beyond 3 mm from the grey-scale abnormality is significantly associated with underestimation of tumour size of >5 mm for small invasive breast cancers. Taking into account the size of PTS also led to accurate estimation of the final histological size. Further studies are required to assess the relationship of the extent of SWE stiffness and margin status. - Highlights: • Peritumoural stiffness of greater than 3 mm was associated with larger tumour size. • Underestimation of tumour size by ultrasound was associated with peri-tumoural stiffness size. • Combining peri-tumoural stiffness size to ultrasound produced accurate tumour size estimation
Combined estimation of kappa and shear-wave velocity profile of the Japanese rock reference
Poggi, Valerio; Edwards, Benjamin; Fäh, Donat
2013-04-01
The definition of a common soil or rock reference is a key issue in probabilistic seismic hazard analysis (PSHA), microzonation studies, local site-response analysis and, more generally, when predicted or observed ground motion is compared for sites of different characteristics. A scaling procedure, which accounts for a common reference, is then necessary to avoid bias induced by the differences in the local geology. Nowadays methods requiring the definition of a reference condition generally prescribe the characteristic of a rock reference, calibrated using indirect estimation methods based on geology or on surface proxies. In most cases, a unique average shear-wave velocity value is prescribed (e.g. Vs30 = 800m/s as for class A of the EUROCODE8). Some attempts at defining the whole shape of a reference rock velocity profile have been described, often without a clear physical justification of how such a selection was performed. Moreover, in spite of its relevance in affecting the high-frequency part of the spectrum, the definition of the associated reference attenuation is in most cases missing or, when present, still remains quite uncertain. In this study we propose an approach that is based on the comparison between empirical anelastic amplification functions from spectral modeling of earthquakes and average S-wave velocities computed using the quarter-wavelength approach. The method is an extension of the approach originally proposed by Poggi et al. (2011) for Switzerland, and is here applied to Japan. For the analysis we make use of a selection of 36 stiff-soil and rock sites from the Japanese KiK-net network, for which a measured velocity profile is available. With respect to the previous study, however, we now analyze separately the elastic and anelastic contributions of the estimated empirical amplification. In a first step - which is consistent with the original work - only the elastic part of the amplification spectrum is considered. This procedure allows
Kopnichev, Yu. F.; Sokolova, I. N.
2012-02-01
The shear wave attenuation field in the lithosphere of Eastern Tien Shan has been mapped. The method based on analysis of the ratio between amplitudes of Sn and Pn waves was used. On aggregate, about 120 seismograms made at the Makanchi station (MKAR), mainly in the period of 2003-2009, at epicentral distances of about 350-1200 km were analyzed. It was found that shear wave attenuation in the lithosphere of Eastern Tien Shan is weaker than that in the region of Central Tien Shan. This agrees with the fact that the rate of deformation of the Earth's crust in Eastern Tien Shan is lower (based on GPS data), as is the seismicity level, in comparison to Central Tien Shan. The zones of high attenuation, where strong earthquakes with M > 7.0 have not occurred for the last 200 years, have been identified: first of all, these are the area west of Urumqi and that of the Lop Nur test site. It is suggested that in the first zone, where an annular seismicity structure has formed over the last 30 years, a strong earthquake may be being prepared. The second zone is most probably related to the uplift of mantle fluids resulting from a long-term intensive technogenic effect, analogous to what has occurred in areas of other nuclear test sites (Nevada and Semipalatinsk).
Asano, Kenichiro; Ogata, Ai; Tanaka, Keiko; Ide, Yoko; Sankoda, Akiko; Kawakita, Chieko; Nishikawa, Mana; Ohmori, Kazuyoshi; Kinomura, Masaru; Shimada, Noriaki; Fukushima, Masaki
2014-05-01
The aim of this study was to identify the main influencing factor of the shear wave velocity (SWV) of the kidneys measured by acoustic radiation force impulse elastography. The SWV was measured in the kidneys of 14 healthy volunteers and 319 patients with chronic kidney disease. The estimated glomerular filtration rate was calculated by the serum creatinine concentration and age. As an indicator of arteriosclerosis of large vessels, the brachial-ankle pulse wave velocity was measured in 183 patients. Compared to the degree of interobserver and intraobserver deviation, a large variance of SWV values was observed in the kidneys of the patients with chronic kidney disease. Shear wave velocity values in the right and left kidneys of each patient correlated well, with high correlation coefficients (r = 0.580-0.732). The SWV decreased concurrently with a decline in the estimated glomerular filtration rate. A low SWV was obtained in patients with a high brachial-ankle pulse wave velocity. Despite progression of renal fibrosis in the advanced stages of chronic kidney disease, these results were in contrast to findings for chronic liver disease, in which progression of hepatic fibrosis results in an increase in the SWV. Considering that a high brachial-ankle pulse wave velocity represents the progression of arteriosclerosis in the large vessels, the reduction of elasticity succeeding diminution of blood flow was suspected to be the main influencing factor of the SWV in the kidneys. This study indicates that diminution of blood flow may affect SWV values in the kidneys more than the progression of tissue fibrosis. Future studies for reducing data variance are needed for effective use of acoustic radiation force impulse elastography in patients with chronic kidney disease.
Jadamec, M. A.; MacDougall, J.; Fischer, K. M.
2017-12-01
The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear-wave
Ren, Wei-Wei; Li, Xiao-Long; Wang, Dan; Liu, Bo-Ji; Zhao, Chong-Ke; Xu, Hui-Xiong
2018-04-13
To evaluate a special kind of ultrasound (US) shear wave elastography for differential diagnosis of breast lesions, using a new qualitative analysis (i.e. the elasticity score in the travel time map) compared with conventional quantitative analysis. From June 2014 to July 2015, 266 pathologically proven breast lesions were enrolled in this study. The maximum, mean, median, minimum, and standard deviation of shear wave speed (SWS) values (m/s) were assessed. The elasticity score, a new qualitative feature, was evaluated in the travel time map. The area under the receiver operating characteristic (AUROC) curves were plotted to evaluate the diagnostic performance of both qualitative and quantitative analyses for differentiation of breast lesions. Among all quantitative parameters, SWS-max showed the highest AUROC (0.805; 95% CI: 0.752, 0.851) compared with SWS-mean (0.786; 95% CI:0.732, 0.834; P = 0.094), SWS-median (0.775; 95% CI:0.720, 0.824; P = 0.046), SWS-min (0.675; 95% CI:0.615, 0.731; P = 0.000), and SWS-SD (0.768; 95% CI:0.712, 0.817; P = 0.074). The AUROC of qualitative analysis in this study obtained the best diagnostic performance (0.871; 95% CI: 0.825, 0.909, compared with the best parameter of SWS-max in quantitative analysis, P = 0.011). The new qualitative analysis of shear wave travel time showed the superior diagnostic performance in the differentiation of breast lesions in comparison with conventional quantitative analysis.
Reiss, Miriam Christina; Rümpker, Georg
2017-04-01
We present a semi-automatic, graphical user interface tool for the analysis and interpretation of teleseismic shear-wave splitting in MATLAB. Shear wave splitting analysis is a standard tool to infer seismic anisotropy, which is often interpreted as due to lattice-preferred orientation of e.g. mantle minerals or shape-preferred orientation caused by cracks or alternating layers in the lithosphere and hence provides a direct link to the earth's kinematic processes. The increasing number of permanent stations and temporary experiments result in comprehensive studies of seismic anisotropy world-wide. Their successive comparison with a growing number of global models of mantle flow further advances our understanding the earth's interior. However, increasingly large data sets pose the inevitable question as to how to process them. Well-established routines and programs are accurate but often slow and impractical for analyzing a large amount of data. Additionally, shear wave splitting results are seldom evaluated using the same quality criteria which complicates a straight-forward comparison. SplitRacer consists of several processing steps: i) download of data per FDSNWS, ii) direct reading of miniSEED-files and an initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold. iii) an analysis of the particle motion of selected phases and successive correction of the sensor miss-alignment based on the long-axis of the particle motion. iv) splitting analysis of selected events: seismograms are first rotated into radial and transverse components, then the energy-minimization method is applied, which provides the polarization and delay time of the phase. To estimate errors, the analysis is done for different randomly-chosen time windows. v) joint-splitting analysis for all events for one station, where the energy content of all phases is inverted simultaneously. This allows to decrease the influence of noise and to increase robustness of the measurement
Ma, Maggie Km; Law, Helen Kw; Tse, Kin Sun; Chan, Kwok Wah; Chan, Gary Cw; Yap, Desmond Yh; Mok, Maggie My; Kwan, Lorraine Py; Tang, Sydney Cw; Choy, Bo Ying; Chan, Tak Mao
2018-02-14
To evaluate the use of shear wave elastography in assessment of kidney allograft tubulointerstitial fibrosis. Shear wave elastography assessment was carried out by two independent operators in kidney transplant recipients who underwent allograft biopsy for clinical indications (i.e. rising creatinine >15% or proteinuria >1 g/day). Allograft biopsies were interpreted by the same pathologist according to the 2013 Banff Classification. A total of 40 elastography scans were carried out (median creatinine 172.5 μmol/L [interquartile range 133.8-281.8 μmol/L]). Median tissue stiffness at the cortex (22.6 kPa [interquartile range 18.8-25.7 kPa] vs 22.3 kPa [interquartile range 19.0-26.5 kPa], P = 0.70) and medulla (15.0 kPa [interquartile range 13.7-18.0 kPa] vs 15.6 kPa [interquartile range 14.4-18.2 kPa]) showed no significant differences between the two observers. Interobserver agreement was satisfactory (intraclass correlation coefficient of the cortex 0.84, 95% CI 0.70-0.92 and intraclass correlation coefficient of the medulla 0.88, 95% CI 0.78-0.94). The areas under the receiver operating characteristic curves for detection of tubulointerstitial fibrosis were estimated to be 0.75 (95% CI 0.61-0.89), 0.85 (95% CI 0.75-0.95) and 0.65 (95% CI 0.53-0.78) for cortical, medullary tissue stiffness and serum creatinine, respectively. Shear wave elastography can be used as a non-invasive tool to evaluate kidney allograft fibrosis with reasonable interobserver agreement and superior test performance to serum creatinine in detecting early tubulointerstitial fibrosis. © 2018 The Japanese Urological Association.
Xu, Yanlong
2015-01-01
structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges
DEFF Research Database (Denmark)
Kammann, Janina; Hübscher, Christian; Nielsen, Lars
Fault zone. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below....... In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise normal block faults and one reverse block fault showing the complexity of the fault zone. The observed faults appear to affect both the Danian...
Dillman, Jonathan R.; Chen, Shigao; Davenport, Matthew S.; Zhao, Heng; Urban, Matthew W.; Song, Pengfei; Watcharotone, Kuanwong; Carson, Paul L.
2014-01-01
Background There is a paucity of data available regarding the repeatability and reproducibility of superficial shear wave speed (SWS) measurements at imaging depths relevant to the pediatric population. Purpose To assess the repeatability and reproducibility of superficial shear wave speed (SWS) measurements acquired from elasticity phantoms at varying imaging depths using three different imaging methods, two different ultrasound systems, and multiple operators. Methods and Materials Soft and hard elasticity phantoms manufactured by Computerized Imaging Reference Systems, Inc. (Norfolk, VA) were utilized for our investigation. Institution #1 used an Acuson S3000 ultrasound system (Siemens Medical Solutions USA, Inc.) and three different shear wave imaging method/transducer combinations, while institution #2 used an Aixplorer ultrasound system (Supersonic Imagine) and two different transducers. Ten stiffness measurements were acquired from each phantom at three depths (1.0, 2.5, and 4.0 cm) by four operators at each institution. Student’s t-test was used to compare SWS measurements between imaging techniques, while SWS measurement agreement was assessed with two-way random effects single measure intra-class correlation coefficients and coefficients of variation. Mixed model regression analysis determined the effect of predictor variables on SWS measurements. Results For the soft phantom, the average of mean SWS measurements across the various imaging methods and depths was 0.84 ± 0.04 m/s (mean ± standard deviation) for the Acuson S3000 system and 0.90 ± 0.02 m/s for the Aixplorer system (p=0.003). For the hard phantom, the average of mean SWS measurements across the various imaging methods and depths was 2.14 ± 0.08 m/s for the Acuson S3000 system and 2.07 ± 0.03 m/s Aixplorer system (p>0.05). The coefficients of variation were low (0.5–6.8%), and inter-operator agreement was near-perfect (ICCs ≥0.99). Shear wave imaging method and imaging depth
Song, Xiaochun; Qiu, Gongzhe
2017-11-24
Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.
Directory of Open Access Journals (Sweden)
Xiaochun Song
2017-11-01
Full Text Available Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs, two shear (SH waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.
Hu, Jiangtao; Cao, Junxing; Wang, Huazhong; Wang, Xingjian; Jiang, Xudong
2017-12-01
First-arrival traveltime computation for quasi-P waves in transversely isotropic (TI) media is the key component of tomography and depth migration. It is appealing to use the fast marching method in isotropic media as it efficiently computes traveltime along an expanding wavefront. It uses the finite difference method to solve the eikonal equation. However, applying the fast marching method in anisotropic media faces challenges because the anisotropy introduces additional nonlinearity in the eikonal equation and solving this nonlinear eikonal equation with the finite difference method is challenging. To address this problem, we present a Fermat’s principle-based fast marching method to compute traveltime in two-dimensional TI media. This method is applicable in both vertical and tilted TI (VTI and TTI) media. It computes traveltime along an expanding wavefront using Fermat’s principle instead of the eikonal equation. Thus, it does not suffer from the nonlinearity of the eikonal equation in TI media. To compute traveltime using Fermat’s principle, the explicit expression of group velocity in TI media is required to describe the ray propagation. The moveout approximation is adopted to obtain the explicit expression of group velocity. Numerical examples on both VTI and TTI models show that the traveltime contour obtained by the proposed method matches well with the wavefront from the wave equation. This shows that the proposed method could be used in depth migration and tomography.
Pressure-induced forces and shear stresses on rubble mound breakwater armour layers in regular waves
DEFF Research Database (Denmark)
Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu
2014-01-01
This paper presents the results from an experimental investigation of the pressure-induced forces in the core material below the main armour layer and shear stresses on the armour layer for a porous breakwater structure. Two parallel experiments were performed which both involved pore pressure...... structure i.e. no additional filter layers were applied. For both experiments, high-speed video recordings were synchronised with the pressure measurements for a detailed investigation of the coupling between the run-up and run-down flow processes and the measured pressure variations. Outward directed...... and turbulence measurements showed that the large outward directed pressure gradients in general coincide, both in time and space, with the maximum bed-shear stresses on the armour layer based on the Reynolds-stresses. The bed-shear stresses were found to result in a Shields parameter in the same order...
Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.
2018-03-01
An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.
International Nuclear Information System (INIS)
Mirza, Arshad M.; Hasan, Asma; Azeem, M.; Saleem, H.
2003-01-01
It is found that the low-frequency ion acoustic and electrostatic drift waves can become unstable in uniform electron-ion and electron-positron-ion plasmas due to the ion shear flow. In a collisional plasma a drift-dissipative instability can also take place. In the presence of collisions the temporal behavior of nonlinear drift-dissipative mode can be represented in the form of well-known Lorenz and Stenflo type equations that admit chaotic trajectories. On the other hand, a quasi-stationary solution of the mode coupling equations can be represented in the form of monopolar vortex. The results of the present investigation can be helpful in understanding electrostatic turbulence and wave phenomena in laboratory and astrophysical plasmas
Dias, N. A.; Matias, L.; Tellez, J.; Senos, L.; Gaspar, J. L.
2003-04-01
The Azores Islands, located at a tectonic triple Junction, geodynamically are a highly active place. The seismicity in this region occurs mainly in the form of two types of seismic swarms with tectonic and/or volcanic origins, lasting from hours to years. In some cases the swarm follows a main stronger shock, while in others the more energetic event occurs sometime after the beginning of the swarm. In order to understand the complex phenomena of this region, a multidisciplinary approach is needed, involving geophysical, geological and geochemical studies such as the one being carried under the MASHA project (POCTI/CTA/39158/2001), On July 9th 1998 an Mw=6.2 earthquake stroked the island of Faial, in the central group of the Azores archipelago, followed by a seismic swarm still active today. We will present some preliminary results of the shear-wave polarization analysis of a selected dataset of events of this swarm. These correspond to the 112 best- constrained events, record during the first 2 weeks by the seismic network deployed on the 3 islands surrounding the area of the main shock. The objective was to analyse the behaviour of the S wave polarization and the eventual relationship with the presence of seismic anisotropy under the seismic stations, and to correlate this with the regional structure and origin of the Azores plateau. Two main tectonic features are observable on the islands, one primarily orientated SE-NW and the other crossing it roughly with the WNW-ESE direction. The polarization direction observed in the majority of the seismic stations is not stable, varying from SE-NW to WSW-ENE, and showing also the presence in same cases of shear-wave splitting, indicating the presence of anisotropy. Part of the polarization seems to be coherent with the direction of the local tectonic features, but its instability suggest a more complex seismic anisotropy than that proposed by the model EDA of Crampin. Furthermore, the dataset revealed some limitations to
Glybochko, P V; Alyaev, Yu G; Amosov, A V; Krupinov, G E; Ganzha, T M; Vorobev, A V; Lumpov, I S; Semendyaev, R I
2016-08-01
Early detection of prostate cancer (PCa) remains a challenging issue. There are studies underway aimed to develop and implement new methods for prostate cancer screening by tumor imaging and obtaining tissue samples from suspicious areas for morphological examination. One of these new methods is shear wave ultrasound elastography (SWUE). The current literature is lacking sufficient coverage of informativeness and specificity of SWUE in the prostate cancer detection, there is no clear criteria for assessing tissue stiffness at different values of PSA and tumor grade, and in prostate hyperplasia and prostatitis. To evaluate the informativeness and specificity of SWUE compared with other diagnostic methods. SWUE has been used in the Clinic of Urology of Sechenov First MSMU since October 2015. During this period, 302 patients were examined using SWUE. SWUE was performed with Aixplorer ultrasound system (Super Sonic Imagine), which provides a single-stage SWUE imaging with both B-mode and real-time mode. The first group (prospective study) included 134 men aged 47 to 81 years with suspected prostate cancer scheduled to either initial or repeat prostate biopsy. PSA levels ranged from 4 to 24 ng/ml. The second group (retrospective study) comprised 120 men with confirmed prostate cancer and PSA levels between 4 and 90 ng/ml. The third group (the control group), comprised 48 healthy men whose PSA level did not exceed 3 ng/ml. All patients of the groups 1 and 2 underwent a standard comprehensive examination. Patients in group 1 were subsequently subjected to transrectal prostate biopsy guided by localization of areas with abnormal tissue stiffness. PCa was detected in 100 of 134 patients. 217 patients of groups 1 and 2 underwent radical prostatectomy. In 28 of them, the match between the cancer location and differentiation in the removed prostate and SWUE findings before surgery was examined. Contrast-enhanced magnetic resonance imaging of pelvic organs was performed in 63
Two-dimensional shear wave elastography of breast lesions: Comparison of two different systems.
Ren, Wei-Wei; Li, Xiao-Long; He, Ya-Ping; Li, Dan-Dan; Wang, Dan; Zhao, Chong-Ke; Bo, Xiao-Wan; Liu, Bo-Ji; Yue, Wen-Wen; Xu, Hui-Xiong
2017-01-01
To evaluate the diagnostic performance of two different shear wave elastography (SWE) techniques in distinguishing malignant breast lesions from benign ones. From March 2016 to May 2016, a total of 153 breast lesions (mean diameter, 16.8 mm±10.5; range 4.1-90.0 mm) in 153 patients (mean age, 46.4 years±15.1; age range 20-86 years) were separately performed by two different SWE techniques (i.e. T-SWE, Aplio500, Toshiba Medical System, Tochigi, Japan; and S-SWE, the Aixplorer US system, SuperSonic Imagine, Provence, France). The maximum (Emax), mean (Emean) and standard deviation (ESD) of elasticity modulus values in T-SWE and S-SWE were analyzed. All the lesions were confirmed by ultrasound (US)-guided core needle biopsy (n = 26), surgery (n = 122), or both (n = 5), with pathological results as the gold standard. The areas under the receiver operating characteristic curves (AUROCs) were calculated. Sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV) were calculated to assess the diagnostic performance between T-SWE and S-SWE. Operator consistency was also evaluated. Among the 153 lesions, 41 (26.8%) were malignant and 112 (73.2%) were benign. Emax (T-SWE: 40.10±37.14 kPa vs. 118.78±34.41 kPa; S-SWE: 41.22±22.54 kPa vs. 134.77±60.51 kPa), Emean (T-SWE: 19.75±16.31 kPa vs. 52.93±25.75 kPa; S-SWE: 20.95±10.98 kPa vs. 55.95±22.42 kPa) and ESD (T-SWE: 9.00±8.55 kPa vs. 38.44±12.30 kPa; S-SWE: 8.17±6.14 kPa vs. 29.34±13.88 kPa) showed statistical differences in distinguishing malignant lesions from benign ones both in T-SWE and S-SWE (all p 0.05 in comparison with Emax) and Emean (AUROC = 0.930, p = 0.034 in comparison with Emax). AUROC-max (T-SWE: 0.909 vs. 0.967), AUROC-mean (T-SWE: 0.892 vs. 0.930) and AUROC-SD (T-SWE: 0.958 vs. 0.962) showed no significant difference between T-SWE and S-SWE (all p > 0.05). The intra-class correlation coefficients
Effects of flow shear and Alfven waves on two-dimensional magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Douglas, Jamie; Kim, Eun-jin; Thyagaraja, A.
2008-01-01
The suppression of turbulent transport by large scale mean shear flows and uniform magnetic fields is investigated in two-dimensional magnetohydrodynamic turbulence driven by a small-scale forcing with finite correlation time. By numerical integration the turbulent magnetic diffusivity D T is shown to be significantly quenched, with a scaling D T ∝B -2 Ω 0 -5/4 , which is much more severe than in the case of a short or delta correlated forcing typified by white noise, studied in E. Kim and B. Dubrulle [Phys. Plasmas 8, 813 (2001)]. Here B and Ω 0 are magnetic field strength and flow shear rate, respectively. The forcing with finite correlation time also leads to much stronger suppression of momentum transport through the cancellation of the Reynolds stress by the Maxwell stress with a positive small value of turbulent viscosity, ν T >0. While fluctuating kinetic and magnetic energies are unaffected by the magnetic field just as in the case of a delta correlated forcing, they are much more severely quenched by flow shear than in that of a delta correlated forcing. Underlying physical mechanisms for the reduction of turbulent transport and turbulence level by flow shear and magnetic field are discussed
Chino, Kentaro; Takahashi, Hideyuki
2016-04-01
Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.
Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing
2011-04-11
Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America
Pfahler, Matthias Hermann Christian; Kratzer, Wolfgang; Leichsenring, Michael; Graeter, Tilmann; Schmidt, Stefan Andreas; Wendlik, Inka; Lormes, Elisabeth; Schmidberger, Julian; Fabricius, Dorit
2018-02-19
Manifestations of cystic fibrosis in the pancreas are gaining in clinical importance as patients live longer. Conventional ultrasonography and point shear wave elastography (pSWE) imaging are non-invasive and readily available diagnostic methods that are easy to perform. The aim of this study was to perform conventional ultrasonography and obtain pSWE values in the pancreases of patients with cystic fibrosis and to compare the findings with those of healthy controls. 27 patients with cystic fibrosis (13 women/14 men; mean age 27.7 ± 13.7 years; range 9-58 years) and 60 healthy control subjects (30 women/30 men; mean age 30.3 ± 10.0 years; range 22-55 years) underwent examinations of the pancreas with conventional ultrasound and pSWE imaging. Patients with cystic fibrosis have an echogenic pancreatic parenchyma. We found cystic lesions of the pancreas in six patients. pSWE imaging of the pancreatic parenchyma gave significantly lower shear wave velocities in patients with cystic fibrosis than in the control group (1.01 m/s vs 1.30 m/s; p cystic fibrosis than in a healthy control population.
Hartzell, S.; Carver, D.; Williams, R.A.
2001-01-01
Aftershock records of the 1989 Loma Prieta earthquake are used to calculate site response in the frequency band of 0.5-10 Hz at 24 locations in Los Gatos, California, on the edge of the Santa Clara Valley. Two different methods are used: spectral ratios relative to a reference site on rock and a source/site spectral inversion method. These two methods complement each other and give consistent results. Site amplification factors are compared with surficial geology, thickness of alluvium, shallow shear-wave velocity measurements, and ground deformation and structural damage resulting from the Loma Prieta earthquake. Higher values of site amplification are seen on Quaternary alluvium compared with older Miocene and Cretaceous units of Monterey and Franciscan Formation. However, other more detailed correlations with surficial geology are not evident. A complex pattern of alluvial sediment thickness, caused by crosscutting thrust faults, is interpreted as contributing to the variability in site response and the presence of spectral resonance peaks between 2 and 7 Hz at some sites. Within the range of our field measurements, there is a correlation between lower average shear-wave velocity of the top 30 m and 50% higher values of site amplification. An area of residential homes thrown from their foundations correlates with high site response. This damage may also have been aggravated by local ground deformation. Severe damage to commercial buildings in the business district, however, is attributed to poor masonry construction.
A study on crustal shear wave splitting in the western part of the Banda arc-continent collision
Energy Technology Data Exchange (ETDEWEB)
Syuhada, E-mail: hadda9@gmail.com [Graduate Research on Earthquake and Active Tectonics-ITB, Jl. Ganesha 10, Bandung 40132 (Indonesia); Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Puspiptek Serpong 15314,Indonesia (Indonesia); Hananto, Nugroho D. [Research Centre for Geotechnology -LIPI, Jl. Sangkuriang (Kompleks LIPI) Bandung 40135 (Indonesia); Puspito, Nanang T.; Yudistira, Tedi [Faculty of Mining and Petroleum Engineering ITB, Jalan Ganesha 10, Bandung 40132 (Indonesia); Anggono, Titi [Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Puspiptek Serpong 15314,Indonesia (Indonesia)
2016-03-11
We analyzed shear wave splitting parameters from local shallow (< 30 km) earthquakes recorded at six seismic stations in the western part of the Banda arc-continent collision. We determined fast polarization and delay time for 195 event-stations pairs calculated from good signal-to-noise ratio waveforms. We observed that there is evidence for shear wave splitting at all stations with dominant fast polarization directions oriented about NE-SW, which are parallel to the collision direction of the Australian plate. However, minor fast polarization directions are oriented around NW-SE being perpendicular to the strike of Timor through. Furthermore, the changes in fast azimuths with the earthquake-station back azimuth suggest that the crustal anisotropy in the study area is not uniform. Splitting delay times are within the range of 0.05 s to 0.8 s, with a mean value of 0.29±0.18 s. Major seismic stations exhibit a weak tendency increasing of delay times with increasing hypocentral distance suggesting the main anisotropy contribution of the shallow crust. In addition, these variations in fast azimuths and delay times indicate that the crustal anisotropy in this region might not only be caused by extensive dilatancy anisotropy (EDA), but also by heterogeneity shallow structure such as the presence of foliations in the rock fabric and the fracture zones associated with active faults.
Hudson, John M; Milot, Laurent; Parry, Craig; Williams, Ross; Burns, Peter N
2013-06-01
This study assessed the reproducibility of shear wave elastography (SWE) in the liver of healthy volunteers. Intra- and inter-operator reliability and repeatability were quantified in three different liver segments in a sample of 15 subjects, scanned during four independent sessions (two scans on day 1, two scans 1 wk later) by two operators. A total of 1440 measurements were made. Reproducibility was assessed using the intra-class correlation coefficient (ICC) and a repeated measures analysis of variance. The shear wave speed was measured and used to estimate Young's modulus using the Supersonics Imagine Aixplorer. The median Young's modulus measured through the inter-costal space was 5.55 ± 0.74 kPa. The intra-operator reliability was better for same-day evaluations (ICC = 0.91) than the inter-operator reliability (ICC = 0.78). Intra-observer agreement decreased when scans were repeated on a different day. Inter-session repeatability was between 3.3% and 9.9% for intra-day repeated scans, compared with to 6.5%-12% for inter-day repeated scans. No significant difference was observed in subjects with a body mass index greater or less than 25 kg/m(2). Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Youk, Ji Hyun; Son, Eun Ju; Han, Kyunghwa; Gweon, Hye Mi; Kim, Jeong-Ah
2018-07-01
Background Various size and shape of region of interest (ROI) can be applied for shear-wave elastography (SWE). Purpose To investigate the diagnostic performance of SWE according to ROI settings for breast masses. Material and Methods To measure elasticity for 142 lesions, ROIs were set as follows: circular ROIs 1 mm (ROI-1), 2 mm (ROI-2), and 3 mm (ROI-3) in diameter placed over the stiffest part of the mass; freehand ROIs drawn by tracing the border of mass (ROI-M) and the area of peritumoral increased stiffness (ROI-MR); and circular ROIs placed within the mass (ROI-C) and to encompass the area of peritumoral increased stiffness (ROI-CR). Mean (E mean ), maximum (E max ), and standard deviation (E SD ) of elasticity values and their areas under the receiver operating characteristic (ROC) curve (AUCs) for diagnostic performance were compared. Results Means of E mean and E SD significantly differed between ROI-1, ROI-2, and ROI-3 ( P Shear-wave elasticity values and their diagnostic performance vary based on ROI settings and elasticity indices. E max is recommended for the ROIs over the stiffest part of mass and an ROI encompassing the peritumoral area of increased stiffness is recommended for elastic heterogeneity of mass.
Pollitz, F.F.; Snoke, J. Arthur
2010-01-01
We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the ﬁrst step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by deﬁning a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local ﬁts to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images conﬁrm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat ﬂow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high
International Nuclear Information System (INIS)
Bhatnagar, V.P.; Start, D.F.H.; Jacquinot, J.; Chaland, F.; Cherubini, A.; Porcelli, F.
1994-01-01
When an ion cyclotron resonance heating (ICRH) antenna array is phased (Δ Φ ≠ 0 or π), the excited asymmetric k parallel spectrum can drive non-inductive currents by interaction of fast waves both with electrons (transit time magnetic pumping (e-TTMP) and Landau damping (e-LD)) and with ions at minority (fundamental) or harmonic cyclotron resonances, depending upon the scenario. On the basis of earlier theories, a simplified description is presented that includes the minority ion and electron current drive effects simultaneously in a 3-D ray tracing calculation in the tokamak geometry. The experimental results of sawtooth stabilization or destabilization in JET using the minority ion current drive scheme are presented. This scheme allows a modification of the local current density gradient (or the magnetic shear) at the q = 1 surface resulting in a control of a sawteeth. The predictions of the above model of current drive and its effects on sawtooth period calculated in conjunction with a model of stability of internal resistive kink modes, that encompasses the effects of both the fast particle pressure and the local (q = 1) magnetic shear, are found to be qualitatively in good agreement with the experimental results. Further, the results are discussed of our model of fast wave current drive scenarios of magnetic shear reversal with a view to achieving long duration high confinement regimes in the forthcoming experimental campaign on JET. Finally, the results are presented of minority current drive for sawtooth control in next step devices such as the International Thermonuclear Experimental Reactor (ITER). (author). 44 refs, 23 figs, 3 tabs
Ravenna, Matteo; Lebedev, Sergei
2018-04-01
Seismic anisotropy provides important information on the deformation history of the Earth's interior. Rayleigh and Love surface-waves are sensitive to and can be used to determine both radial and azimuthal shear-wave anisotropies at depth, but parameter trade-offs give rise to substantial model non-uniqueness. Here, we explore the trade-offs between isotropic and anisotropic structure parameters and present a suite of methods for the inversion of surface-wave, phase-velocity curves for radial and azimuthal anisotropies. One Markov chain Monte Carlo (McMC) implementation inverts Rayleigh and Love dispersion curves for a radially anisotropic shear velocity profile of the crust and upper mantle. Another McMC implementation inverts Rayleigh phase velocities and their azimuthal anisotropy for profiles of vertically polarized shear velocity and its depth-dependent azimuthal anisotropy. The azimuthal anisotropy inversion is fully non-linear, with the forward problem solved numerically at different azimuths for every model realization, which ensures that any linearization biases are avoided. The computations are performed in parallel, in order to reduce the computing time. The often challenging issue of data noise estimation is addressed by means of a Hierarchical Bayesian approach, with the variance of the noise treated as an unknown during the radial anisotropy inversion. In addition to the McMC inversions, we also present faster, non-linear gradient-search inversions for the same anisotropic structure. The results of the two approaches are mutually consistent; the advantage of the McMC inversions is that they provide a measure of uncertainty of the models. Applying the method to broad-band data from the Baikal-central Mongolia region, we determine radial anisotropy from the crust down to the transition-zone depths. Robust negative anisotropy (Vsh < Vsv) in the asthenosphere, at 100-300 km depths, presents strong new evidence for a vertical component of asthenospheric
Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability
Directory of Open Access Journals (Sweden)
C. Krafft
Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.
Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions
Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability
Directory of Open Access Journals (Sweden)
C. Krafft
2003-07-01
Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions
Design of piezoelectric probe for measurement of longitudinal and shear components of elastic wave
Aoyanagi, Masafumi; Wakatsuki, Naoto; Mizutani, Koichi; Ebihara, Tadashi
2017-07-01
We focus on ultrasonic probes for nondestructive tests and evaluation. Transient characteristics of probes are important for nondestructive tests such as the pulse echo method. We previously reported the principle of measurement using a piezoelectric probe with triaxial sensitivities. In the results, it was calculated that the probe could transmit and receive particle displacement which contains normal and tangential components. It was confirmed that the probe had sensitivities in triaxial directions. However, its performance in terms of frequency and transient characteristics has not been evaluated. The purpose of this study is to design a probe by changing its shape to obtain better performance. The transient characteristics of probes in longitudinal and shear driving were evaluated by the inverse Fourier transformation of frequency responses of longitudinal and shear components, using the two-dimensional finite element method. As a result, the sensitivities at the dips of frequency characteristics increased when using our probe compared with those measured using conventional probes in longitudinal and shear driving. Hence, the performance in terms of the frequency response was improved by more than 3 dB under the conditions in this simulation. Also, the pulse width of impulse response was decreased by half compared with that of probes with conventional shapes.
Marcon, J; Trottmann, M; Rübenthaler, J; D'Anastasi, M; Stief, C G; Reiser, M F; Clevert, D A
2016-01-01
Shear wave elastography (SWE) and its derivative Supersonic Shear Imaging (SSI) are newer techniques for the determination of tissue elasticity by measuring the velocity of generated shear waves (SWV), which correlates positively with tissue stiffness.The techniques are integrated into many modern ultrasound systems and have been examined in the evaluation of viscoelastic properties of different organ systems. Two-dimensional shear wave elastography (2D SWE) of the testes has been found to be a useful tool in recent studies which included the determination of standard values in healthy volunteers. Three-dimensional shear wave elastography (3D SWE) is the latest development in elastography and is made possible by generation of a multiplanar three-dimensional map via volumetric acquisition with a special ultrasound transducer. This technique allows the assessment of tissue elasticity in a three-dimensional, fully accessible organ map.The aim of this preliminary study was to both evaluate the feasibility of 3D SWE and to compare 2D and 3D SWE standard values in the testes of healthy subjects. We examined the testes of healthy male volunteers (n = 32) with a mean age of 51.06±17.75 years (range 25-77 years) by B-mode ultrasound, 2D and 3D SWE techniques in September of 2016. Volunteers with a history of testicular pathologies were excluded. For all imaging procedures the SL15-4 linear transducer (bandwidth 4-15 MHz) as well as the SLV16-4 volumetric probe (bandwidth 4-16 MHz) of the Aixplorer® ultrasound device (SuperSonic Imagine, Aix-en-Provence, France) were used. Seven regions of interest (ROI, Q-Box®) within the testes were evaluated for SWV using both procedures. SWV values were described in m/s. Results were statistically evaluated using univariateanalysis. Mean SWV values were 1.05 m/s for the 2D SWE and 1.12 m/s for the 3D SWE.Comparisons of local areas delivered no statistically significant differences (p = 0.11 to p = 0.66), except for
Schutt, D.; Breidt, J.; Corbalan Castejon, A.; Witt, D. R.
2017-12-01
Shear wave splitting is a commonly used and powerful method for constraining such phenomena as lithospheric strain history or asthenospheric flow. However, a number of challenges with the statistics of shear wave splitting have been noted. This creates difficulties in assessing whether two separate measurements are statistically similar or are indicating real differences in anisotropic structure, as well as for created proper station averaged sets of parameters for more complex situations such as multiple or dipping layers of anisotropy. We present a new method for calculating the most likely splitting parameters using the Menke and Levin [2003] method of cross-convolution. The Menke and Levin method is used because it can more readily be applied to a wider range of anisotropic scenarios than the commonly used Silver and Chan [1991] technique. In our approach, we derive a formula for the spectral density of a function of the microseismic noise and the impulse response of the correct anisotropic model that holds for the true anisotropic model parameters. This is compared to the spectral density of the observed signal convolved with the impulse response for an estimated set of anisotropic parameters. The most likely parameters are found when the former and latter spectral densities are the same. By using the Whittle likelihood to compare the two spectral densities, a likelihood grid for all possible anisotropic parameter values is generated. Using bootstrapping, the uncertainty and covariance between the various anisotropic parameters can be evaluated. We will show this works with a single layer of anisotropy and a vertically incident ray, and discuss the usefulness for a more complex case. The method shows great promise for calculating multiple layer anisotropy parameters with proper assessment of uncertainty. References: Menke, W., and Levin, V. 2003. The cross-convolution method for interpreting SKS splitting observations, with application to one and two
SplitRacer - a new Semi-Automatic Tool to Quantify And Interpret Teleseismic Shear-Wave Splitting
Reiss, M. C.; Rumpker, G.
2017-12-01
We have developed a semi-automatic, MATLAB-based GUI to combine standard seismological tasks such as the analysis and interpretation of teleseismic shear-wave splitting. Shear-wave splitting analysis is widely used to infer seismic anisotropy, which can be interpreted in terms of lattice-preferred orientation of mantle minerals, shape-preferred orientation caused by fluid-filled cracks or alternating layers. Seismic anisotropy provides a unique link between directly observable surface structures and the more elusive dynamic processes in the mantle below. Thus, resolving the seismic anisotropy of the lithosphere/asthenosphere is of particular importance for geodynamic modeling and interpretations. The increasing number of seismic stations from temporary experiments and permanent installations creates a new basis for comprehensive studies of seismic anisotropy world-wide. However, the increasingly large data sets pose new challenges for the rapid and reliably analysis of teleseismic waveforms and for the interpretation of the measurements. Well-established routines and programs are available but are often impractical for analyzing large data sets from hundreds of stations. Additionally, shear wave splitting results are seldom evaluated using the same well-defined quality criteria which may complicate comparison with results from different studies. SplitRacer has been designed to overcome these challenges by incorporation of the following processing steps: i) downloading of waveform data from multiple stations in mseed-format using FDSNWS tools; ii) automated initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold; iii) particle-motion analysis of selected phases at longer periods to detect and correct for sensor misalignment; iv) splitting analysis of selected phases based on transverse-energy minimization for multiple, randomly-selected, relevant time windows; v) one and two-layer joint-splitting analysis for all phases at one station by
Simon, Emmanuel G; Callé, Samuel; Perrotin, Franck; Remenieras, Jean-Pierre
2018-01-01
Placental elasticity may be modified in women with placental insufficiency. Shear wave elastography (SWE) can measure this, using acoustic radiation force, but the safety of its use in pregnant women has not yet been demonstrated. Transient elastography (TE) is a safer alternative, but has not yet been applied to the placenta. Moreover, the dispersion of shear wave speed (SWS) as a function of frequency has received relatively little study for placental tissue, although it might improve the accuracy of biomechanical assessment. To explore the feasibility and reproducibility of TE for placental analysis, to compare the values of SWS and Young's modulus (YM) from TE and SWE, and to analyze SWS dispersion as a function of frequency ex vivo in normal placentas. Ten normal placentas were analyzed ex vivo by an Aixplorer ultrasound system as shear waves were generated by a vibrating plate and by using an Aixplorer system. The frequency analysis provided the value of the exponent n from a fractional rheological model applied to the TE method. We calculated intra- and interobserver agreement for SWS and YM with 95% prediction intervals, created Bland-Altman plots with 95% limits of agreement, and estimated the intraclass correlation coefficient (ICC). The mean SWS was 1.80 m/s +/- 0.28 (standard deviation) with the TE method at 50 Hz and 1.82 m/s +/-0.13 with SWE (P = 0.912). No differences were observed between the central and peripheral regions of placentas with either TE or SWE. With TE, the intraobserver ICC for SWS was 0.68 (0.50-0.82), and the interobserver ICC for SWS 0.65 (0.37-0.85). The mean parameter n obtained from the fractional rheological model was 1.21 +/- 0.12, with variable values of n for any given SWS. TE is feasible and reproducible on placentas ex vivo. The frequency analysis of SWS provides additional information about placental elasticity and appears to be able to distinguish differences between placental structures.
Thiele, Maja; Detlefsen, Sönke; Sevelsted Møller, Linda; Madsen, Bjørn Stæhr; Fuglsang Hansen, Janne; Fialla, Annette Dam; Trebicka, Jonel; Krag, Aleksander
2016-01-01
Alcohol abuse causes half of all deaths from cirrhosis in the West, but few tools are available for noninvasive diagnosis of alcoholic liver disease. We evaluated 2 elastography techniques for diagnosis of alcoholic fibrosis and cirrhosis; liver biopsy with Ishak score and collagen-proportionate area were used as reference. We performed a prospective study of 199 consecutive patients with ongoing or prior alcohol abuse, but without known liver disease. One group of patients had a high pretest probability of cirrhosis because they were identified at hospital liver clinics (in Southern Denmark). The second, lower-risk group, was recruited from municipal alcohol rehabilitation centers and the Danish national public health portal. All subjects underwent same-day transient elastography (FibroScan), 2-dimensional shear wave elastography (Supersonic Aixplorer), and liver biopsy after an overnight fast. Transient elastography and 2-dimensional shear wave elastography identified subjects in each group with significant fibrosis (Ishak score ≥3) and cirrhosis (Ishak score ≥5) with high accuracy (area under the curve ≥0.92). There was no difference in diagnostic accuracy between techniques. The cutoff values for optimal identification of significant fibrosis by transient elastography and 2-dimensional shear wave elastography were 9.6 kPa and 10.2 kPa, and for cirrhosis 19.7 kPa and 16.4 kPa. Negative predictive values were high for both groups, but the positive predictive value for cirrhosis was >66% in the high-risk group vs approximately 50% in the low-risk group. Evidence of alcohol-induced damage to cholangiocytes, but not ongoing alcohol abuse, affected liver stiffness. The collagen-proportionate area correlated with Ishak grades and accurately identified individuals with significant fibrosis and cirrhosis. In a prospective study of individuals at risk for liver fibrosis due to alcohol consumption, we found elastography to be an excellent tool for diagnosing liver
Kandemirli, Sedat Giray; Bayramoglu, Zuhal; Caliskan, Emine; Sari, Zeynep Nur Akyol; Adaletli, Ibrahim
2018-01-18
Hashimoto's thyroiditis is the most common autoimmune thyroid disorder in the pediatric age range. Measurement of thyroid gland size is an essential component in evaluation and follow-up of thyroid pathologies. Along with size, tissue elasticity is becoming a more commonly used parameter in evaluation of parenchyma in inflammatory diseases. The aim of the current study was to assess thyroid parenchyma elasticity by shear-wave elastography in pediatric patients with Hashimoto's thyroiditis; and compare the elasticity values to a normal control group. In this study; thyroid glands of 59 patients with a diagnosis of Hashimoto's thyroiditis based on ultrasonographic and biochemical features, and 26 healthy volunteers without autoimmune thyroid disease and thyroid function disorders, were evaluated with shear-wave elastography. Patients with Hashimoto thyroiditis were further subdivided into three categories based on gray-scale ultrasonography findings as focal thyroiditis (grade 1), diffuse thyroiditis (grade 2), and fibrotic thyroid gland (grade 3). Patients with Hashimoto's thyroiditis (n = 59) had significantly higher elasticity values (14. 9 kPa; IQR 12.9-17.8 kPa) than control subjects (10.6 kPa; IQR 9.0-11.3 kPa) (p thyroiditis, 23 patients had focal thyroiditis involving less than 50% of the gland categorized as grade 1, 24 patients had diffuse involvement of the thyroid gland categorized as grade 2, and 12 patients had marked hyperechoic septations and pseudonodular appearance categorized as grade 3 on gray-scale ultrasound. Based on elastography, grade 3 patients had significantly higher elasticity values (19.7 kPa; IQR 17.8-21.5 kPa) than patients with grade 2 (15.5 kPa; IQR 14.5-17.8 kPa) and grade 1 thyroiditis (12.8 kPa; IQR 11.9-13.1 kPa) (p thyroiditis had significantly higher elasticity values than those with grade 1 thyroiditis (p thyroiditis. Our results indicate that shear-wave elastography could be used to evaluate the degree of
Asoodeh, Mojtaba; Bagheripour, Parisa
2012-01-01
Measurement of compressional, shear, and Stoneley wave velocities, carried out by dipole sonic imager (DSI) logs, provides invaluable data in geophysical interpretation, geomechanical studies and hydrocarbon reservoir characterization. The presented study proposes an improved methodology for making a quantitative formulation between conventional well logs and sonic wave velocities. First, sonic wave velocities were predicted from conventional well logs using artificial neural network, fuzzy logic, and neuro-fuzzy algorithms. Subsequently, a committee machine with intelligent systems was constructed by virtue of hybrid genetic algorithm-pattern search technique while outputs of artificial neural network, fuzzy logic and neuro-fuzzy models were used as inputs of the committee machine. It is capable of improving the accuracy of final prediction through integrating the outputs of aforementioned intelligent systems. The hybrid genetic algorithm-pattern search tool, embodied in the structure of committee machine, assigns a weight factor to each individual intelligent system, indicating its involvement in overall prediction of DSI parameters. This methodology was implemented in Asmari formation, which is the major carbonate reservoir rock of Iranian oil field. A group of 1,640 data points was used to construct the intelligent model, and a group of 800 data points was employed to assess the reliability of the proposed model. The results showed that the committee machine with intelligent systems performed more effectively compared with individual intelligent systems performing alone.
Kayen, Robert E; Tao, Xiaxin; Shi, Lijing; Shi, Hailiang
2008-01-01
An initial investigation of soil liquefaction sites from the July, 28 1976 Tangshan M7.8 earthquake was conducted between 1976 and 1978 by the National Ministry of Railways, China. These data are the basis of the ‘Chinese Method’ for assessment of liquefaction potential of silty-sand deposits, and are an important component of the worldwide data set for modern probabilistic methods for assessment of soil liquefaction using Bayesian updating and system reliability tools. We revisited 26 sites identified in the maps and published 198 report of the Ministry of Railways in order to investigate these locations with a suite of active- and passive-array surface wave methods. These sites are clustered along the north coast of the Bo Hai Sea in three areas: Lutai, Tianjin; Tangshan City and outlying village, Hebei; and Luannan county, Hebei. First, we gathered and evaluated the Rayleigh wave dispersion characteristics of the ground by comparing dispersion curves from the active source harmonic wave-spectral analysis of surface waves (SASW) method and the passive array Spatial Auto-Correlation method (SPAC). The dispersive properties of the liquefied ground as measured by these two methods were found to be almost identical. These tests were hybridized and the data sets merged in order to invert of shear wave velocities for analysis of liquefaction potential using a probabilistic framework. The data from high-values of seismic intensity near Tangshan city to low-intensities distant of the event in Luannan County segregate out into clusters of liquefied and non liquefied points clearly separated by liquefaction boundary curves developed from a large global data set of 310 sites
Directory of Open Access Journals (Sweden)
Chueh-Hung Wu
2018-05-01
Full Text Available Background/Purpose: To compare shear modulus of heel pad microchamber and macrochamber layers between young and elderly people using shear wave ultrasound elastography (SWUE, with the intent to clarify age-related changes. Methods: This single-center prospective cross-sectional study was conducted between March, 2014 and March, 2016. Shear modulus of entire heel pad (Gentire, macrochamber layer (Gmac, and microchamber layer (Gmic were measured with SWUE. Results: Elderly participants (15 men, 15 women; age = 66.9 ± 6.2 years had significantly higher Gmic (103.8 ± 20.7 vs. 60.1 ± 9.8 kPa; p < 0.001 and Gentire (39.4 ± 10.5 vs. 34.1 ± 5.4 kPa; p = 0.005, but a significantly lower Gmac (21.7 ± 7.5 vs. 27.9 ± 4.9 kPa; p < 0.001 compared with those of young participants (15 men, 15 women; age = 26.4 ± 2.9 years. Positive correlations were observed between age and Gmic (r = 0.79, p < 0.001 and between age and Gentire (r = 0.28, p = 0.03, and negative correlation between age and Gmac (r = −0.46, p = 0.001. Conclusion: SWUE revealed that the heel pad macrochamber layer was slightly softer but the microchamber layer was exaggeratedly stiffer, making the entire heel pad stiffer in the elderly group than in the younger group, implying age-related compensation in heel pad layers to retain foot function. Keywords: Age, Elastography, Heel pad, Ultrasound
Directory of Open Access Journals (Sweden)
Kelly Mônica Marinho e Lima
2018-01-01
Full Text Available This review aimed to describe the state of the art in muscle-tendon unit (MTU assessment by supersonic shear wave imaging (SSI elastography in states of muscle contraction and stretching, during aging, and in response to injury and therapeutic interventions. A consensus exists that MTU elasticity increases during passive stretching or contraction, and decreases after static stretching, electrostimulation, massage, and dry needling. There is currently no agreement regarding changes in the MTU due to aging and injury. Currently, the application of SSI for the purpose of diagnosis, rehabilitation, and physical training remains limited by a number of issues, including the lack of normative value ranges, the lack of consensus regarding the appropriate terminology, and an inadequate understanding of the main technical limitations of this novel technology.
DEFF Research Database (Denmark)
Pedersen, Malene Roland; Møller, Henrik; Osther, Palle Jørn Sloth
2017-01-01
Objectives: To compare elastography measurements in men with normal testicular tissue, testicular microlithiasis and testicular cancer. Methods: A total of 248 consecutive patients were included. All men provided written informed consent. Testicular stiffness was assessed using shear wave...... elastography (SWE). Three SWE velocity measurements were assessed in each testicle. The patients were divided into three groups; men with normal testicular tissue (n=130), men with testicular microlithiasis (n=99) and men with testicular cancer (n=19). Results: We found a higher mean velocity in the group...... of patients with testicular cancer (1.92 m/s (95% CI 1.82-2.03)) compared to both the group with normal tissue (0.76 m/s (95% CI: 0.75-0.78)) (ptesticular microlithiasis 0.79 m/s (95% CI: 0.77-0.81) (ptesticular microlithiasis increased stiffness...
Ball, J. S.; Sheehan, A. F.; Stachnik, J. C.; Lin, F. C.; Collins, J. A.
2015-12-01