Czech Academy of Sciences Publication Activity Database
Bubáková, Petra; Pivokonský, Martin; Pivokonský, Radek; Filip, Petr
2013-01-01
Roč. 62, č. 5 (2013), s. 288-295 ISSN 0003-7214 R&D Projects: GA ČR GAP105/11/0247 Institutional support: RVO:67985874 Keywords : aggregate size distribution * aggregation * flocculation * fractal dimension * shear rate Subject RIV: BK - Fluid Dynamics Impact factor: 0.521, year: 2013
Energy Technology Data Exchange (ETDEWEB)
Parida, S. K.; Pradhan, A. K. [Indian Institute of Technology, Bhubaneswar (India)
2014-02-15
The rate of propagation of embedded delamination in the strap adherend of lap shear joint (LSJ) made of carbon/epoxy composites has been evaluated employing three-dimensional non-linear finite elements. The delamination has been presumed to pre-exist in the thin resin layer between the first and second plies of the strap adherend. The inter-laminar peel and shear stress distributions have been studied in details and are seen to be predominantly three-dimensional in nature. The components of strain energy release rate (SERR) corresponding to the opening, sliding and cross sliding modes of delamination are significantly different at the two fronts of the embedded delamination. The sequential release of multi-point constraint (MPC) finite elements in the vicinity of the delamination fronts enables to simulate the growth of the delamination at either ends. This simulation procedure can be utilized effectively for evaluation of the status of the structural integrity of the bonded joints.
Thrombus Formation at High Shear Rates.
Casa, Lauren D C; Ku, David N
2017-06-21
The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.
Localization in inelastic rate dependent shearing deformations
Katsaounis, Theodoros
2016-09-18
Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd
Localization in inelastic rate dependent shearing deformations
Katsaounis, Theodoros; Lee, Min-Gi; Tzavaras, Athanasios
2016-01-01
Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd
Energy Technology Data Exchange (ETDEWEB)
Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)
2015-08-15
We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.
Gas leakage rate through reinforced concrete shear walls: Numerical study
International Nuclear Information System (INIS)
Wang Ting; Hutchinson, Tara C.
2005-01-01
Unlined reinforced concrete shear walls are often used as 'tertiary boundaries' in the United States Department of Energy (DOE) to house dangerous gases. An unanticipated event, such as an earthquake, may cause gases stored inside the walls to disperse into the environment resulting in excess pollution. To address this concern, in this paper, a methodology to numerically predict the gas leakage rate through these shear walls under lateral loading conditions is proposed. This methodology involves finite element and flow rate analysis. Strain distributions are obtained from the finite element analysis, and then used to simulate the crack characteristics on the concrete specimen. The flow rate through the damaged concrete specimen is then estimated using flow rate formulas available from the literature. Results from an experimental specimen are used to evaluate the methodology, and particularly its robustness in the flow rate estimation
Rating precast prestressed concrete bridges for shear
2008-12-01
Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...
Experimental study of shear rate dependence in perpetually sheared granular matter
Liu, Sophie Yang; Guillard, François; Marks, Benjy; Rognon, Pierre; Einav, Itai
2017-06-01
We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called "3D Stadium Shear Device" which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm) and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10-6 to 10-2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.
Experimental study of shear rate dependence in perpetually sheared granular matter
Directory of Open Access Journals (Sweden)
Liu Sophie Yang
2017-01-01
Full Text Available We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called “3D Stadium Shear Device” which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10−6 to 10−2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.
E x B shearing rate in quasi-symmetric plasmas
International Nuclear Information System (INIS)
Hahm, T.S.
1997-01-01
The suppression of turbulence by the E x B shear is studied in systems with quasi-symmetry using the nonlinear analysis of eddy decorrelation previously utilized in finite aspect ratio tokamak plasmas. The analytically derived E x B shearing rate which contains the relevant geometric dependence can be used for quantitative assessment of the fluctuation suppression in stellarators with quasi-symmetry
Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses.
Directory of Open Access Journals (Sweden)
Melissa Li
Full Text Available The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s(-1 and therapy concentrations (0-2.4 µM for eptifibatide, 0-2 mM for acetyl-salicylic acid (ASA, 3.5-40 Units/L for heparin using a microfluidic device. We also measured complete blood counts (CBC and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose. Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment.
Study of magnetorheological fluids at high shear rates
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiaojie; Gordaninejad, Faramarz [University of Nevada, Department of Mechanical Engineering, Reno, NV (United States)
2006-08-15
The tunable rheological properties of magnetorheological (MR) materials at high shear rates are studied using a piston-driven flow-mode-type rheometer. The proposed method provides measurement of the apparent viscosity and yield stress of MR fluids for a shear rate range of 50 to 40,000 s{sup -1}. The rheological properties of a commercial MR fluid, as well as a newly developed MR polymeric gel, and a ferrofluid-based MR fluid are investigated. The results for apparent viscosity and dynamic and static shear stresses under different applied magnetic fields are reported. (orig.)
High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates
Becnel, Andrew C.
This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter
Measurement of viscosity of slush at high shear rates
小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru
1988-01-01
Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.
To determine the slow shearing rate for consolidation drained shear box tests
Jamalludin, Damanhuri; Ahmad, Azura; Nordin, Mohd Mustaqim Mohd; Hashim, Mohamad Zain; Ibrahim, Anas; Ahmad, Fauziah
2017-08-01
Slope failures always occur in Malaysia especially during the rainy seasons. They cause damage to properties and fatalities. In this study, a total of 24 one dimensional consolidation tests were carried out on soil samples taken from 16 slope failures in Penang Island and in Baling, Kedah. The slope failures in Penang Island are within the granitic residual soil while in Baling, Kedah they are situated within the sedimentary residual soil. Most of the disturbed soil samples were taken at 100mm depth from the existing soil surface while some soil samples were also taken at 400, 700 and 1000mm depths from the existing soil surface. They were immediately placed in 2 layers of plastic bag to prevent moisture loss. Field bulk density tests were also carried out at all the locations where soil samples were taken. The field bulk density results were later used to re-compact the soil samples for the consolidation tests. The objective of the research is to determine the slow shearing rate to be used in consolidated drained shear box for residual soils taken from slope failures so that the effective shear strength parameters can be determined. One dimensional consolidation tests were used to determine the slow shearing rate. The slow shearing rate found in this study to be used in the consolidated drained shear box tests especially for Northern Malaysian residual soils was 0.286mm/minute.
Steady shear rate rheology of suspensions, as described by the gaint floc model
Stein, H.N.; Laven, J.
2001-01-01
The break-down of a particle network by shear is described as the development of shear planes: a region able to withstand low shear stresses may break down under a larger stress; thus with increasing shear stress and shear rate, the mutual distance (A) between successive shear planes decreases
Dynamical analysis of electrochemical wall shear rate measurements
Steenhoven, van A.A.; Beucken, van den F.J.H.M.
1991-01-01
The performance of a circular electrochemical wall shear rate probe under unsteady flow conditions is analysed through a combined ezxperimental, numerical and analytical approach. The experiments are performed with a ferri- and ferrocyanide redox couple and compared to finite element analysis of the
High-Strain Rate Failure Modeling Incorporating Shear Banding and Fracture
2017-11-22
High Strain Rate Failure Modeling Incorporating Shear Banding and Fracture The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS...Report as of 05-Dec-2017 Agreement Number: W911NF-13-1-0238 Organization: Columbia University Title: High Strain Rate Failure Modeling Incorporating
International Nuclear Information System (INIS)
Khonik, Vitaly A.; Kobelev, N. P.
2008-01-01
It has been shown that first-order irreversible structural relaxation with distributed activation energies must lead to a linear decrease of the logarithm of Newtonian shear viscosity with the logarithm of heating rate upon linear heating of glass. Such a behavior is indeed observed in the experiments on metallic glasses. Structural relaxation-induced viscous flow leads to infra-low-frequency Maxwell viscoelastic internal friction, which is predicted to increase with the heating rate
Evaluation of total energy-rate feedback for glidescope tracking in wind shear
Belcastro, C. M.; Ostroff, A. J.
1986-01-01
Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.
Bed shear stress distribution in straight channels with arbitrary cross section
DEFF Research Database (Denmark)
Christensen, Henrik Bo; Fredsøe, Jørgen
1998-01-01
The bed shear stress distribution in straight open channels is affected by mechanisms as bed curvature of the cross section profile, shear diffusion, and secondary currents. This paper compares some analytical and numerical methods to estimate the bed shear stress distribution. The methods...
Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands
1980-05-01
X14A. It has been found that when bainitic and martensitic steels are sheared adiabatically, a layer of material within ths shear zone is altezed and...Sooiety for Metals, Metals Park, Ohio, 1978, pp. 148-0. 21 TABLE II SOLID-STATE TRANSFORMATIONS IN BAINITIC STEEL TRANSFORMATION TRANSFORMATION...shear, thermoplastic, plasticity, plastic deformation, armor, steel IL AnSRACT ( -=nba asoa.tm a naeoesM iN faity by bleak n bet/2972 Experiments
Shear-Rate-Dependent Behavior of Clayey Bimaterial Interfaces at Landslide Stress Levels
Scaringi, Gianvito; Hu, Wei; Xu, Qiang; Huang, Runqiu
2018-01-01
The behavior of reactivated and first-failure landslides after large displacements is controlled by the available shear resistance in a shear zone and/or along slip surfaces, such as a soil-bedrock interface. Among the factors influencing the resistance parameter, the dependence on the shear rate can trigger catastrophic evolution (rate-weakening) or exert a slow-down feedback (rate-strengthening) upon stress perturbation. We present ring-shear test results, performed under various normal stresses and shear rates, on clayey soils from a landslide shear zone, on its parent lithology and other lithologies, and on clay-rock interface samples. We find that depending on the materials in contact, the normal stress, and the stress history, the shear-rate-dependent behaviors differ. We discuss possible models and underlying mechanisms for the time-dependent behavior of landslides in clay soils.
May, Eric F; Lim, Vincent W; Metaxas, Peter J; Du, Jianwei; Stanwix, Paul L; Rowland, Darren; Johns, Michael L; Haandrikman, Gert; Crosby, Daniel; Aman, Zachary M
2018-03-13
Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min -1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.
Temperature and shear rate characteristics of electrorheological gel applied to a clutch
International Nuclear Information System (INIS)
Koyanagi, K; Takata, Y; Motoyoshi, T; Oshima, T; Kakinuma, Y; Anzai, H; Sakurai, K
2013-01-01
This investigation reports the physical characteristics of electrorheological (ER) gels, which are a type of functional material having controlled surface friction. We previously developed slip clutches using ER gels sandwiched between electrodes, and verified their responses and controllability. We newly report the temperature and shear rate characteristics of ER gel in this study because the input and output electrodes of the clutch continuously slip past each other. While the temperature of ER gels increased when energized, the shear stress hardly changed. Instead, wearing and adaptation to the electrode affect the property. The shear rate hardly affected the shear stress in the high-shear-rate region. Conversely, the shear stress depended on the shear rate in the lower region.
Flow behavior at different shear rates for dry powders
Singh, A.; Singh, A.; Luding, Stefan; Nürnberg Messe GmbH,
2010-01-01
Using Discrete Element Simulations (DEM), an effort is made to study the so called “Split bottom ring shear cell” where a slow, quasi-static deformation leads to wide shear bands. Density, velocity and deformation gradients as well as structure and stress tensors, can be computed by a single
Blood viscosity during coagulation at different shear rates
Ranucci, Marco; Laddomada, Tommaso; Ranucci, Matteo; Baryshnikova, Ekaterina
2014-01-01
Abstract During the coagulation process, blood changes from a liquid to a solid gel phase. These changes are reflected by changes in blood viscosity; however, blood viscosity at different shear rates (SR) has not been previously explored during the coagulation process. In this study, we investigated the viscosity changes of whole blood in 10 subjects with a normal coagulation profile, using a cone‐on‐plate viscosimeter. For each subject, three consecutive measurements were performed, at a SR of 20, 40, 80 sec−1. On the basis of the time‐dependent changes in blood viscosity, we identified the gel point (GP), the time‐to‐gel point (TGP), the maximum clot viscosity (MCV), and the clot lysis half‐time (CLH). The TGP significantly (P = 0.0023) shortened for increasing SR, and was significantly associated with the activated partial thromboplastin time at a SR of 20 sec−1 (P = 0.038) and 80 sec−1 (P = 0.019). The MCV was significantly lower at a SR of 80 sec−1 versus 40 sec−1 (P = 0.027) and the CLH significantly (P = 0.048) increased for increasing SR. These results demonstrate that measurement of blood viscosity during the coagulation process offers a number of potentially useful parameters. In particular, the association between the TGP and the activated partial thromboplastin time is an expression of the clotting time (intrinsic and common pathway), and its shortening for increasing SR may be interpreted the well‐known activating effects of SR on platelet activation and thrombin generation. Further studies focused on the TGP under conditions of hypo‐ or hypercoagulability are required to confirm its role in the clinical practice. PMID:24994896
Ren, Zhiqiang; Harshe, Yogesh M; Lattuada, Marco
2015-06-02
In this work we build on our previous paper (Harshe, Y. M.; Lattuada, M. Langmuir 2012, 28, 283-292) and compute the breakage rate of colloidal aggregates under the effect of shear forces by means of Stokesian dynamics simulations. A library of clusters made of identical spherical particles covering a broad range of masses and fractal dimension values (from 1.8 to 3.0) was generated by means of a combination of several Monte Carlo methods. DLVO theory has been used to describe the interparticle interactions, and contact forces have been introduced by means of the discrete element method. The aggregate breakage process was investigated by exposing them to well-defined shear forces, generated under both simple shear and uniaxial extensional flow conditions, and by recording the time required to reach the first breakage event. It has been found that the breakage rate of clusters was controlled by the potential well between particles as described by DLVO theory. A semiempirical Arrhenius-type exponential equation that relates the potential well to the breakage rate has been used to fit the simulation results. The dependence of the breakage process on the radius of gyration, on the external shear strength, and on the fractal dimension has been obtained, providing a very general relationship for the breakage rate of clusters. It was also found that the fragment mass distribution is insensitive to the presence of electrostatic repulsive interactions. We also clarify the physical reason for the large difference in the breakage rate of clusters between simple shear and the uniaxial extensional flow using a criterion based on the energy dissipation rate. Finally, in order to answer the question of the minimum cluster size that can break under simple shear conditions, a critical rotation number has been introduced, expressing the maximum number of rotations that a cluster exposed to simple shear could sustain before breakage.
Implementation of a Refined Shear Rating Methodology for Prestressed Concrete Girder Bridges
2017-12-01
Lower than desirable shear ratings at the ends of prestressed concrete beams have been the topic of ongoing research between MnDOT and the University of Minnesota. A recent study by the University of Minnesota entitled Investigation of Shear Distribu...
Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows
International Nuclear Information System (INIS)
Farjoud, Alireza; Ahmadian, Mehdi; Craft, Michael; Mahmoodi, Nima; Zhang, Xinjie
2011-01-01
A novel analytical investigation of magneto-rheological (MR) fluids in squeezing flows is performed and the results are validated with experimental test data. The squeeze flow of MR fluids has recently been of great interest to researchers. This is due to the large force capacity of MR fluids in squeeze mode compared to other modes (valve and shear modes), which makes the squeeze mode appropriate for a wide variety of applications such as impact dampers and engine mounts. Tested MR fluids were capable of providing a large range of controllable force along a short stroke in squeeze mode. A mathematical model was developed using perturbation techniques to predict closed-form solutions for velocity field, shear rate distribution, pressure distribution and squeeze force. Therefore, the obtained solutions greatly help with the design process of intelligent devices that use MR fluids in squeeze mode. The mathematical model also reduces the need for complicated and computationally expensive numerical simulations. The analytical results are validated by performing experimental tests on a novel MR device called an 'MR pouch' in an MR squeeze mode rheometer, both designed and built at CVeSS
Directory of Open Access Journals (Sweden)
Ying Meng
2018-03-01
Full Text Available Dynamic shear properties under high strain rate are an important basis for studying the dynamic mechanical properties and microscopic mechanisms of materials. Dynamic impact shear tests of aerial aluminum alloy 7050-T7451 in rolling direction (RD, transverse direction (TD and normal direction (ND were performed at a range of strain rates from 2.5 × 104 s−1 to 4.5 × 104 s−1 by High Split Hopkinson Pressure Bar (SHPB. The influence of different forming directions and strain rates on the dynamic shear properties of material and the microstructure evolution under dynamic shear were emphatically analyzed. The results showed that aluminum alloy 7050-T7451 had a certain strain rate sensitivity and positive strain rate strengthening effect, and also the material had no obvious strain strengthening effect. Different forming directions had a great influence on dynamic shear properties. The shear stress in ND was the largest, followed by that in RD, and the lowest was that in TD. The microstructure observation showed that the size and orientation of the grain structure were different in three directions, which led to the preferred orientation of the material. All of those were the main reasons for the difference of dynamic shear properties of the material.
Frictional processes in smectite-rich gouges sheared at slow to high slip rates
Aretusini, Stefano; Mittempergher, Silvia; Gualtieri, Alessandro; Di Toro, Giulio
2015-04-01
.02 (slip-strengthening behavior), (2) for V = 0.1 m/s velocity and slip neutral (μi = μss = 0.77±0.02) and (3) for V ≥ 0.3 m/s the friction coefficient was velocity and slip weakening with μss = 0.32±0.02 for V = 1.5 m/s. The Rietveld analysis of the smectite-rich standard endmember showed (1) the insensitivity of the amount of the amorphous fraction with frictional work and (2) the shift and broadening of both the (001) and (110) peaks of Ca-montmorillonite with increasing frictional work (i.e., product of shear stress with slip, here from 5.2 Jm-2 to 11.8 Jm-2). Instead, mineralogical and lattice changes were unrelated to the frictional work rate (i.e., product of shear stress with slip rate). Strain localization in the gouge layer was observed for V ≥ 0.3 m/s (SEM investigations); for V < 0.3 m/s, strain was distributed and the gouge layer pervasively foliated. We conclude that the degree of amorphization of the sheared gouges was not responsible of the measured frictional weakening; instead, weakening was concomitant to strain localization.
Oskin, Michael; Perg, Lesley; Blumentritt, Dylan; Mukhopadhyay, Sujoy; Iriondo, Alexander
2007-03-01
Long-term (105 years) fault slip rates test the scale of discrepancy between infrequent paleoseismicity and relatively rapid geodetic rates of dextral shear in the Eastern California Shear Zone (ECSZ). The Calico fault is one of a family of dextral faults that traverse the Mojave Desert portion of the ECSZ. Its slip rate is determined from matching and dating incised Pleistocene alluvial fan deposits and surfaces displaced by fault slip. A high-resolution topographic base acquired via airborne laser swath mapping aids in identification and mapping of deformed geomorphic features. The oldest geomorphically preserved alluvial fan, unit B, is displaced 900 ± 200 m from its source at Sheep Springs Wash in the northern Rodman Mountains. This fan deposit contains the first preserved occurrence of basalt clasts derived from the Pipkin lava field and overlies Quaternary conglomerate deposits lacking these clasts. The 40Ar/39Ar dating of two flows from this field yields consistent ages of 770 ± 40 ka and 735 ± 9 ka. An age of 650 ± 100 ka is assigned to this fan deposit based on these ages and on the oldest cosmogenic 3He exposure date of 653 ± 20 ka on a basalt boulder from the surface of unit B. This assigned age and offset together yield a mid-Pleistocene to present average slip rate of 1.4 ± 0.4 mm/yr. A younger fan surface, unit K, records 100 ± 10 m of dextral displacement and preserves original depositional morphology of its surface. Granitic boulders and pavement samples from this surface yield an average age of 56.4 ± 7.7 ka after taking into account minimal cosmogenic inheritance of granitic clasts. The displaced and dated K fans yield a slip rate of 1.8 ± 0.3 mm/yr. Distributed deformation of the region surrounding the fault trace, if active, could increase the overall displacement rate to 2.1 ± 0.5 mm/yr. Acceleration of slip rate from an average of 1.4 mm/yr prior to ˜50 ka to 1.8 mm/yr since ˜50 ka is possible, though a single time-averaged slip
Measuring Local Strain Rates In Ductile Shear Zones: A New Approach From Deformed Syntectonic Dykes
Sassier, C.; Leloup, P.; Rubatto, D.; Galland, O.; Yue, Y.; Ding, L.
2006-12-01
At the Earth surface, deformation is mostly localized in fault zones in between tectonic plates. In the upper crust, the deformation is brittle and the faults are narrow and produce earthquakes. In contrast, deformation in the lower ductile crust results in larger shear zones. While it is relatively easy to measure in situ deformation rates at the surface using for example GPS data, it is more difficult to determinate in situ values of strain rate in the ductile crust. Such strain rates can only be estimated in paleo-shear zones. Various methods have been used to assess paleo-strain rates in paleo-shear zones. For instance, cooling and/or decompression rates associated with assumptions on geothermic gradients and shear zone geometry can lead to such estimates. Another way to estimate strain rates is the integration of paleo-stress measurements in a power flow law. But these methods are indirect and imply strong assumptions. Dating of helicitic garnets or syntectonic fibres are more direct estimates. However these last techniques have been only applied in zones of low deformation and not in major shear zones. We propose a new direct method to measure local strain rates in major ductile shear zones from syntectonic dykes by coupling quantification of deformation and geochronology. We test our method in a major shear zone in a well constrained tectonic setting: the Ailao-Shan - Red River Shear Zone (ASRRsz) located in SE Asia. For this 10 km wide shear zone, large-scale fault rates, determined in three independent ways, imply strain rates between 1.17×10^{-13 s-1 and 1.52×10^{-13 s-1 between 35 and 16 Ma. Our study focused on one outcrop where different generations of syntectonic dykes are observed. First, we quantified the minimum shear strain γ for each dyke using several methods: (1) by measuring the stretching of dykes with a surface restoration method (2) by measuring the final angle of the dykes with respect to the shear direction and (3) by combining the two
International Nuclear Information System (INIS)
Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian
2012-01-01
The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100–300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: ► The microstructural evolution of ASB is studied by electron backscatter diffraction. ► Twinning can occur in ASB while the contribution to shear localization is slight. ► Elongated ultrafine grains are observed during the evolution process of ASB. ► A possible mechanism is proposed to explain the microstructure evolution of ASB.
A dilatometer to measure the influence of cooling rate and melt shearing on specific volume
van der Beek, M.H.E.; Peters, G.W.M.; Meijer, H.E.H.
2005-01-01
We developed a dilatometer to investigate the specific volume of polymers as a function of pressure (to 100 MPa), temperature (to 260 oC), cooling rate (to 80 C/s), and shear rate (to 77 1/s). The dilatometeris based on the principle of con¯ned compression and comprises of a pressure cell used in
Directory of Open Access Journals (Sweden)
Yoshiaki Zaizen
2016-05-01
Full Text Available The influence of the shearing process on the iron loss of non-oriented electrical steels with grain sizes of 10 μm-150 μm was investigated. The deterioration ratio of iron loss was clearly smaller in sample with small grain sizes. The droop height, reflecting the amount of plastic deformation, displayed a good relationship with the deterioration of iron loss under the effect of the material grain size. To clarify the strain distribution around the sheared edge, the elastic strain in a sheet sample with the thickness of 0.30 mm and grain size of 10 μm was evaluated by using synchrotron radiation. The width of the region of elastic strain due to shearing was two or three times of the material thickness. The results of the plastic strain distribution obtained by the measurements were then used to estimate the iron loss deterioration rate in 5 mm width sheared samples. The estimated loss deteriotation coincided with the actual measured iron loss.
Energy Technology Data Exchange (ETDEWEB)
Zaizen, Yoshiaki, E-mail: y-zaizen@jfe-steel.co.jp; Omura, Takeshi; Senda, Kunihiro [Steel Research Laboratory, JFE Steel Corporation, Kawasakidori 1,Mizushima, Kurashiki,712-8511 (Japan); Fukumura, Masaru [Steel Research Laboratory, JFE Steel Corporation, Kawasaki, Kanagawa 210-0855 (Japan); Toda, Hiroaki [Steel Business Planning Dept, JFE Steel Corporation, Tokyo 100-0011 (Japan)
2016-05-15
The influence of the shearing process on the iron loss of non-oriented electrical steels with grain sizes of 10 μm-150 μm was investigated. The deterioration ratio of iron loss was clearly smaller in sample with small grain sizes. The droop height, reflecting the amount of plastic deformation, displayed a good relationship with the deterioration of iron loss under the effect of the material grain size. To clarify the strain distribution around the sheared edge, the elastic strain in a sheet sample with the thickness of 0.30 mm and grain size of 10 μm was evaluated by using synchrotron radiation. The width of the region of elastic strain due to shearing was two or three times of the material thickness. The results of the plastic strain distribution obtained by the measurements were then used to estimate the iron loss deterioration rate in 5 mm width sheared samples. The estimated loss deteriotation coincided with the actual measured iron loss.
Shear rate analysis of water dynamic in the continuous stirred tank
Tulus; Mardiningsih; Sawaluddin; Sitompul, O. S.; Ihsan, A. K. A. M.
2018-02-01
Analysis of mixture in a continuous stirred tank reactor (CSTR) is an important part in some process of biogas production. This paper is a preliminary study of fluid dynamic phenomenon in a continuous stirred tank numerically. The tank is designed in the form of cylindrical tank equipped with a stirrer. In this study, it is considered that the tank is filled with water. Stirring is done with a stirring speed of 10rpm, 15rpm, 20rpm, and 25rpm. Mathematical modeling of stirred tank is derived. The model is calculated by using the finite element method that are calculated using CFD software. The result shows that the shear rate is high on the front end portion of the stirrer. The maximum shear rate tend to a stable behaviour after the stirring time of 2 second. The relation between the speed and the maximum shear rate is in the form of linear equation.
Adiabatic shear bands as predictors of strain rate in high speed machining of ramax-2
International Nuclear Information System (INIS)
Zeb, M.A.; Irfan, M.A.; Velduis, A.C.
2008-01-01
Shear band formation was studied in the chips obtained by turning of stainless steel- Ramax-2 (AISI 420F). The machining was performed on a CNC lathe using a PVD (Physical Vapor Deposition) cutting tool insert. The cutting speeds ranged from 50 m/ min to 250 m/min. Dry cutting conditions were employed. At cutting speeds higher than 30 m/mill, the chip did not remain intact with the workpiece using quick stop device. It was difficult to get the chip root SEM (Scanning Electron Microscope) micrographs at further higher speeds. Therefore, the width of the shear bands was used as the predictor of the strain rates involved at various cutting speeds. The results showed that the strain rates are quite in agreement with the amount of strain rate found during machining of such types of stainless steels. It was also observed that shear band density increased with increasing cutting speed. (author)
Flow rate dependency of critical wall shear stress in a radial-flow cell
DEFF Research Database (Denmark)
Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.
2009-01-01
In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the change...
Ma, X.; Elbanna, A. E.; Kothari, K.
2017-12-01
Fault zone dynamics hold the key to resolving many outstanding geophysical problems including the heat flow paradox, discrepancy between fault static and dynamic strength, and energy partitioning. Most fault zones that generate tectonic events are gouge filled and fluid saturated posing the need for formulating gouge-specific constitutive models that capture spatially heterogeneous compaction and dilation, non-monotonic rate dependence, and transition between localized and distributed deformation. In this presentation, we focus primarily on elucidating microscopic underpinnings for shear banding and stick-slip instabilities in sheared saturated granular materials and explore their implications for earthquake dynamics. We use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in the presence and absence of pore fluids. We also consider the possible influence of self-induced mechanical vibrations as well as the role of external acoustic vibrations as analogue for triggering by a distant event. For the dry case, our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for rough grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. The presence of pore fluids modifies the stick slip pattern and may lead to both loss and development of slip instability depending on the value of the confining pressure, imposed strain rate and hydraulic parameters. We analyze these observations in terms of possible transitions between rate
Influence of static pressure and shear rate on hemolysis of red blood cells.
Yasuda, T; Funakubo, A; Miyawaki, F; Kawamura, T; Higami, T; Fukui, Y
2001-01-01
The purpose of this study was to investigate the effect of multiple mechanical forces in hemolysis. Specific attention is focused on the effects of shear and pressure. An experimental apparatus consisting of a rotational viscometer, compression chamber, and heat exchanger was prepared to apply multiple mechanical forces to a blood sample. The rotational viscometer, in which bovine blood was subjected to shear rates of 0, 500, 1,000, and 1,500 s(-1), was set in the compression chamber and pressurized with an air compressor at 0, 200, 400, and 600 mm Hg. The blood temperature was maintained at 21 degrees C and 28 degrees C. Free hemoglobin at 600 mm Hg was observed to be approximately four times higher than at 0 mm Hg for a shear rate of 1,500 s(-1) (p dynamics analysis, flow visualization, and computational fluid dynamics.
Multiple-parameter bifurcation analysis in a Kuramoto model with time delay and distributed shear
Niu, Ben; Zhang, Jiaming; Wei, Junjie
2018-05-01
In this paper, time delay effect and distributed shear are considered in the Kuramoto model. On the Ott-Antonsen's manifold, through analyzing the associated characteristic equation of the reduced functional differential equation, the stability boundary of the incoherent state is derived in multiple-parameter space. Moreover, very rich dynamical behavior such as stability switches inducing synchronization switches can occur in this equation. With the loss of stability, Hopf bifurcating coherent states arise, and the criticality of Hopf bifurcations is determined by applying the normal form theory and the center manifold theorem. On one hand, theoretical analysis indicates that the width of shear distribution and time delay can both eliminate the synchronization then lead the Kuramoto model to incoherence. On the other, time delay can induce several coexisting coherent states. Finally, some numerical simulations are given to support the obtained results where several bifurcation diagrams are drawn, and the effect of time delay and shear is discussed.
International Nuclear Information System (INIS)
Yang, Y.; Tan, G.Y.; Chen, P.X.; Zhang, Q.M.
2012-01-01
The adiabatic shear susceptibility of 2195 aluminum–lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress–true strain curves and true stress–time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum–lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.
Energy Technology Data Exchange (ETDEWEB)
Yang, Y. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China); Tan, G.Y., E-mail: yangyanggroup@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Chen, P.X. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Zhang, Q.M. [State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China)
2012-06-01
The adiabatic shear susceptibility of 2195 aluminum-lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress-true strain curves and true stress-time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum-lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.
Yield shear stress model of magnetorheological fluids based on exponential distribution
International Nuclear Information System (INIS)
Guo, Chu-wen; Chen, Fei; Meng, Qing-rui; Dong, Zi-xin
2014-01-01
The magnetic chain model that considers the interaction between particles and the external magnetic field in a magnetorheological fluid has been widely accepted. Based on the chain model, a yield shear stress model of magnetorheological fluids was proposed by introducing the exponential distribution to describe the distribution of angles between the direction of magnetic field and the chain formed by magnetic particles. The main influencing factors were considered in the model, such as magnetic flux density, intensity of magnetic field, particle size, volume fraction of particles, the angle of magnetic chain, and so on. The effect of magnetic flux density on the yield shear stress was discussed. The yield stress of aqueous Fe 3 O 4 magnetreological fluids with volume fraction of 7.6% and 16.2% were measured by a device designed by ourselves. The results indicate that the proposed model can be used for calculation of yield shear stress with acceptable errors. - Highlights: • A yield shear stress model of magnetorheological fluids was proposed. • Use exponential distribution to describe the distribution of magnetic chain angles. • Experimental and predicted results were in good agreement for 2 types of MR
Influence of Sewer Sediments on Flow Friction and Shear Stress Distribution
DEFF Research Database (Denmark)
Perrusquia, G.; Petersen, O.; Larsen, Torben
1995-01-01
Most sewers contain more or less deposited sediments. The paper discusses the distribution of the boundary shear stresses and the hydraulic resistance in part-full sewer pipes with such deposited sediments. The discussion is based on a series of numerical experiments using a validated numerical...
Rheokinetics and effect of shear rate on the kinetics of linear polyurethane formation
Navarchian, AH; Picchioni, F; Janssen, LPBM
In this article, the rheokinetics of polyurethane formation and the influence of shear rate on its kinetics have been studied. Two different linear polyurethane systems with 0% and 100% hard segments are examined in a cone and plate rheometer. The isothermal increase of viscosity during polyurethane
Effects of the shear layer growth rate on the supersonic jet noise
Ozawa, Yuta; Nonomura, Taku; Oyama, Akira; Mamori, Hiroya; Fukushima, Naoya; Yamamoto, Makoto
2017-11-01
Strong acoustic waves emitted from rocket plume might damage to rocket payloads because their payloads consist of fragile structure. Therefore, understanding and prediction of acoustic wave generation are of importance not only in science, but also in engineering. The present study makes experiments of a supersonic jet flow at the Mach number of 2.0 and investigates a relationship between growth rate of a shear layer and noise generation of the supersonic jet. We conducted particle image velocimetry (PIV) and acoustic measurements for three different shaped nozzles. These nozzles were employed to control the condition of a shear layer of the supersonic jet flow. We applied single-pixel ensemble correlation method (Westerweel et al., 2004) for the PIV images to obtain high-resolution averaged velocity profiles. This correlation method enabled us to obtain detailed data of the shear layer. For all cases, acoustic measurements clearly shows the noise source position at the end of a potential core of the jet. In the case where laminar to turbulent transition occurred in the shear layer, the sound pressure level increased by 4 dB at the maximum. This research is partially supported by Presto, JST (JPMJPR1678) and KAKENHI (25709009 and 17H03473).
Modeling of the reactant conversion rate in a turbulent shear flow
Frankel, S. H.; Madnia, C. K.; Givi, P.
1992-01-01
Results are presented of direct numerical simulations (DNS) of spatially developing shear flows under the influence of infinitely fast chemical reactions of the type A + B yields Products. The simulation results are used to construct the compositional structure of the scalar field in a statistical manner. The results of this statistical analysis indicate that the use of a Beta density for the probability density function (PDF) of an appropriate Shvab-Zeldovich mixture fraction provides a very good estimate of the limiting bounds of the reactant conversion rate within the shear layer. This provides a strong justification for the implementation of this density in practical modeling of non-homogeneous turbulent reacting flows. However, the validity of the model cannot be generalized for predictions of higher order statistical quantities. A closed form analytical expression is presented for predicting the maximum rate of reactant conversion in non-homogeneous reacting turbulence.
Al Ashhab, Ashraf; Gillor, Osnat; Herzberg, Moshe
2014-12-15
We investigated the influence of feed-water shear rate during reverse-osmosis (RO) desalination on biofouling with respect to microbial community composition developed on the membrane surface. The RO membrane biofilm's microbial community profile was elucidated during desalination of tertiary wastewater effluent in a flat-sheet lab-scale system operated under high (555.6 s(-1)), medium (370.4 s(-1)), or low (185.2 s(-1)) shear rates, corresponding to average velocities of 27.8, 18.5, and 9.3 cm s(-1), respectively. Bacterial diversity was highest when medium shear was applied (Shannon-Weaver diversity index H' = 4.30 ± 0.04) compared to RO-membrane biofilm developed under lower and higher shear rates (H' = 3.80 ± 0.26 and H' = 3.42 ± 0.38, respectively). At the medium shear rate, RO-membrane biofilms were dominated by Betaproteobacteria, whereas under lower and higher shear rates, the biofilms were dominated by Alpha- and Gamma- Proteobacteria, and the latter biofilms also contained Deltaproteobacteria. Bacterial abundance on the RO membrane was higher at low and medium shear rates compared to the high shear rate: 8.97 × 10(8) ± 1.03 × 10(3), 4.70 × 10(8) ± 1.70 × 10(3) and 5.72 × 10(6) ± 2.09 × 10(3) copy number per cm(2), respectively. Interestingly, at the high shear rate, the RO-membrane biofilm's bacterial community consisted mainly of populations known to excrete high amounts of extracellular polymeric substances. Our results suggest that the RO-membrane biofilm's community composition, structure and abundance differ in accordance with applied shear rate. These results shed new light on the biofouling phenomenon and are important for further development of antibiofouling strategies for RO membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shear elastic modulus of magnetic gels with random distribution of magnetizable particles
Iskakova, L. Yu; Zubarev, A. Yu
2017-04-01
Magnetic gels present new type of composite materials with rich set of uniquie physical properties, which find active applications in many industrial and bio-medical technologies. We present results of mathematically strict theoretical study of elastic modulus of these systems with randomly distributed magnetizable particles in an elastic medium. The results show that an external magnetic field can pronouncedly increase the shear modulus of these composites.
Characterization of commercial magnetorheological fluids at high shear rate: influence of the gap
Golinelli, Nicola; Spaggiari, Andrea
2018-07-01
This paper reports the experimental tests on the behaviour of a commercial MR fluid at high shear rates and the effect of the gap. Three gaps were considered at multiple magnetic fields and shear rates. From an extended set of almost two hundred experimental flow curves, a set of parameters for the apparent viscosity are retrieved by using the Ostwald de Waele model for non-Newtonian fluids. It is possible to simplify the parameter correlation by making the following considerations: the consistency of the model depends only on the magnetic field, the flow index depends on the fluid type and the gap shows an important effect only at null or very low magnetic fields. This lead to a simple and useful model, especially in the design phase of a MR based product. During the off state, with no applied field, it is possible to use a standard viscous model. During the active state, with high magnetic field, a strong non-Newtonian nature becomes prevalent over the viscous one even at very high shear rate; the magnetic field dominates the apparent viscosity change, while the gap does not play any relevant role on the system behaviour. This simple assumption allows the designer to dimension the gap only considering the non-active state, as in standard viscous systems, and taking into account only the magnetic effect in the active state, where the gap does not change the proposed fluid model.
Influence of grain size distribution on dynamic shear modulus of sands
Directory of Open Access Journals (Sweden)
Dyka Ireneusz
2017-11-01
Full Text Available The paper presents the results of laboratory tests, that verify the correlation between the grain-size characteristics of non-cohesive soils and the value of the dynamic shear modulus. The problem is a continuation of the research performed at the Institute of Soil Mechanics and Rock Mechanics in Karlsruhe, by T. Wichtmann and T. Triantafyllidis, who derived the extension of the applicability of the Hardin’s equation describing the explicite dependence between the grain size distribution of sands and the values of dynamic shear modulus. For this purpose, piezo-ceramic bender elements generating elastic waves were used to investigate the mechanical properties of the specimens with artificially generated particle distribution. The obtained results confirmed the hypothesis that grain size distribution of non-cohesive soils has a significant influence on the dynamic shear modulus, but at the same time they have shown that obtaining unambiguous results from bender element tests is a difficult task in practical applications.
Scholten, R.R.; Spaanderman, M.E.A.; Green, D.J.; Hopman, M.T.E.; Thijssen, D.H.J.
2014-01-01
Blood flow patterns in conduit arteries characterized by high levels of retrograde shear stress can be detrimental for vascular health. In this study we examined whether retrograde shear rate and endothelial function are related in healthy and formerly preeclamptic (PE) women and whether this
Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows
Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan
2017-11-01
Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.
Statistics on Near Wall Structures and Shear Stress Distribution from 3D Holographic Measurement.
Sheng, J.; Malkiel, E.; Katz, J.
2007-11-01
Digital Holographic Microscopy performs 3D velocity measurement in the near-wall region of a turbulent boundary layer in a square channel over a smooth wall at Reτ=1,400. Resolution of ˜1μm over a sample volume of 1.5x2x1.5mm (x^+=50, y^+=60, z^+=50) is sufficient for resolving buffer layer and lower log layer structures, and for measuring instantaneous wall shear stress distributions from velocity gradients in the viscous sublayer. Results, based on 700 instantaneous realizations, provide detailed statistics on the spatial distribution of both wall stress components along with characteristic flow structures. Conditional sampling based on maxima and minima of wall shear stresses, as well as examination of instantaneous flow structures, lead to development of a conceptual model for a characteristic flow phenomenon that seems to generating extreme stress events. This structure develops as an initially spanwise vortex element rises away from the surface, due to local disturbance, causing a local stress minimum. Due to increasing velocity with elevation, this element bends downstream, forming a pair of inclined streamwise vortices, aligned at 45^0 to freestream, with ejection-like flow between them. Entrainment of high streamwise momentum on the outer sides of this vortex pair generates streamwise shear stress maxima, 70 δν downstream, which are displaced laterally by 35 δν from the local minimum.
The Effect of Shear Wall Distribution on the Dynamics of Reinforced Concrete Structures
Helou, S. H.; Touqan, A. R.
2008-07-01
The inclusion of a soft storey in multistory concrete buildings is a feature gaining popularity in urban areas where land is of exorbitant cost. In earthquake prone zones, this feature has been observed in post earthquake investigations. Although engineers are prepared to accept the notion that a soft storey poses a weak link in Seismic Design, yet the idea demands better understanding. The following study illustrates the importance of the judicious distribution of shear walls. The selected building is analyzed through nine numerical models which address the behavior of framed structures. The parameters discussed include, inter alias, the fundamental period of vibration, lateral displacements, axial and shear forces. It is noticed that an abrupt change in stiffness between the soft storey and the level above is responsible for increasing the strength demand on first storey columns. Extending the elevator shafts throughout the soft storey is strongly recommended.
The Effect of Shear Wall Distribution on the Dynamics of Reinforced Concrete Structures
International Nuclear Information System (INIS)
Helou, S. H.; Touqan, A. R.
2008-01-01
The inclusion of a soft storey in multistory concrete buildings is a feature gaining popularity in urban areas where land is of exorbitant cost. In earthquake prone zones, this feature has been observed in post earthquake investigations. Although engineers are prepared to accept the notion that a soft storey poses a weak link in Seismic Design, yet the idea demands better understanding. The following study illustrates the importance of the judicious distribution of shear walls. The selected building is analyzed through nine numerical models which address the behavior of framed structures. The parameters discussed include, inter alias, the fundamental period of vibration, lateral displacements, axial and shear forces. It is noticed that an abrupt change in stiffness between the soft storey and the level above is responsible for increasing the strength demand on first storey columns. Extending the elevator shafts throughout the soft storey is strongly recommended
On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli
Energy Technology Data Exchange (ETDEWEB)
Kjellstroem, B; Hedberg, S
1966-08-15
It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less.
Imaging shear stress distribution and evaluating the stress concentration factor of the human eye
Joseph Antony, S.
2015-03-01
Healthy eyes are vital for a better quality of human life. Historically, for man-made materials, scientists and engineers use stress concentration factors to characterise the effects of structural non-homogeneities on their mechanical strength. However, such information is scarce for the human eye. Here we present the shear stress distribution profiles of a healthy human cornea surface in vivo using photo-stress analysis tomography, which is a non-intrusive and non-X-ray based method. The corneal birefringent retardation measured here is comparable to that of previous studies. Using this, we derive eye stress concentration factors and the directional alignment of major principal stress on the surface of the cornea. Similar to thermometers being used for monitoring the general health in humans, this report provides a foundation to characterise the shear stress carrying capacity of the cornea, and a potential bench mark for validating theoretical modelling of stresses in the human eye in future.
On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli
International Nuclear Information System (INIS)
Kjellstroem, B.; Hedberg, S.
1966-08-01
It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less
Aretusini, S.; Mittempergher, S.; Spagnuolo, E.; Di Toro, G.; Gualtieri, A.; Plümper, O.
2015-12-01
Slipping zones in shallow sections of megathrusts and large landslides are often made of smectite and quartz gouge mixtures. Experiments aimed at investigating the frictional processes operating at high slip rates (>1 m/s) may unravel the mechanics of these natural phenomena. Here we present a new dataset obtained with two rotary shear apparatus (ROSA, Padua University; SHIVA, INGV-Rome). Experiments were performed at room humidity and temperature on four mixtures of smectite (Ca-Montmorillonite) and quartz with 68, 50, 25, 0 wt% of smectite. The gouges were slid for 3 m at normal stress of 5 MPa and slip rate V from 300 µm/s to 1.5 m/s. Temperature during the experiments was monitored with four thermocouples and modeled with COMSOL Multiphysics. In smectite-rich mixtures, the friction coefficient µ evolved with slip according to three slip rate regimes: in regime 1 (V0.3 m/s) µ had strong slip-weakening behavior. Instead, in quartz-rich mixtures the gouge had a monotonic slip-weakening behavior, independently of V. Temperature modelling showed that the fraction of work rate converted into heat decreased with increasing smectite content and slip rate. Quantitative X-ray powder diffraction (Rietveld method) indicates that the production of amorphous material from smectite breakdown increased with frictional work but was independent of work rate. Scanning Electron Microscopy investigation evidenced strain localization and presence of dehydrated clays for V≥0.3 m/s; instead, for V<0.3 m/s, strain was distributed and the gouge layer pervasively foliated. In conclusion, amorphization of the sheared gouges was not responsible of the measured frictional weakening. Instead, slip-weakening was concomitant to strain localization and possible vaporization of water adsorbed on smectite grain surfaces.
Wang, G.; Suemine, A.; Schulz, W.H.
2010-01-01
A typhoon (Typhoon No. 10) attacked Shikoku Island and the Tyugoku area of Japan in 2004. This typhoon produced a new daily precipitation record of 1317 mm on Shikoku Island and triggered hundreds of landslides in Tokushima Prefecture. One catastrophic landslide was triggered in the Shiraishi area of Kisawa village, and destroyed more than 10 houses while also leaving an unstable block high on the slope. The unstable block kept moving after the event, showing accelerating and decelerating movement during and after rainfall and reaching a displacement of several meters before countermeasures were put into place. To examine the mechanism for this landsliding characteristic, samples (weathered serpentinite) were taken from the field, and their shear behaviours examined using ring shear tests. The test results revealed that the residual shear strength of the samples is positively dependent on the shear rate, which may provide an explanation for the continuous acceleratingdecelerating process of the landsliding. The roughness of the shear surface and the microstructure of the shear zone were measured and observed by laser microscope and SEM techniques in an attempt to clarify the mechanism of shear rate effect on the residual shear strength. Copyright ?? 2010 John Wiley & Sons, Ltd.
Directory of Open Access Journals (Sweden)
Mohammad M. Maneshi
2018-03-01
Full Text Available Mechanical perturbations increase intracellular Ca2+ in cells, but the coupling of mechanical forces to the Ca2+ influx is not well understood. We used a microfluidic chamber driven with a high-speed pressure servo to generate defined fluid shear stress to cultured astrocytes, and simultaneously measured cytoskeletal forces using a force sensitive actinin optical sensor and intracellular Ca2+. Fluid shear generated non-uniform forces in actinin that critically depended on the stimulus rise time emphasizing the presence of viscoelasticity in the activating sequence. A short (ms shear pulse with fast rise time (2 ms produced an immediate increase in actinin tension at the upstream end of the cell with minimal changes at the downstream end. The onset of Ca2+ rise began at highly strained areas. In contrast to stimulus steps, slow ramp stimuli produced uniform forces throughout the cells and only a small Ca2+ response. The heterogeneity of force distribution is exaggerated in cells having fewer stress fibers and lower pre-tension in actinin. Disruption of cytoskeleton with cytochalasin-D (Cyt-D eliminated force gradients, and in those cells Ca2+ elevation started from the soma. Thus, Ca2+ influx with a mechanical stimulus depends on local stress within the cell and that is time dependent due to viscoelastic mechanics.
On the spatial distribution of small heavy particles in homogeneous shear turbulence
Nicolai, C.; Jacob, B.; Piva, R.
2013-08-01
We report on a novel experiment aimed at investigating the effects induced by a large-scale velocity gradient on the turbulent transport of small heavy particles. To this purpose, a homogeneous shear flow at Reλ = 540 and shear parameter S* = 4.5 is set-up and laden with glass spheres whose size d is comparable with the Kolmogorov lengthscale η of the flow (d/η ≈ 1). The particle Stokes number is approximately 0.3. The analysis of the instantaneous particle fields by means of Voronoï diagrams confirms the occurrence of intense turbulent clustering at small scales, as observed in homogeneous isotropic flows. It also indicates that the anisotropy of the velocity fluctuations induces a preferential orientation of the particle clusters. In order to characterize the fine-scale features of the dispersed phase, spatial correlations of the particle field are employed in conjunction with statistical tools recently developed for anisotropic turbulence. The scale-by-scale analysis of the particle field clarifies that isotropy of the particle distribution is tendentially recovered at small separations, even though the signatures of the mean shear persist down to smaller scales as compared to the fluid velocity field.
Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity
Czech Academy of Sciences Publication Activity Database
Hirn, A.; Lanzendörfer, Martin; Stebel, Jan
2012-01-01
Roč. 32, č. 4 (2012), s. 1604-1634 ISSN 0272-4979 R&D Projects: GA ČR GA201/09/0917; GA AV ČR IAA100300802; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * shear-rate- and pressure-dependent viscosity * finite element method * error analysis Subject RIV: BK - Fluid Dynamics Impact factor: 1.326, year: 2012
Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.
2003-01-01
Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.
Directory of Open Access Journals (Sweden)
Azéma Emilien
2017-01-01
Full Text Available By means of two dimensional contact dynamics simulations, we analyzed the effect of the particle size distribution (PSD on the shear strength of granular materials composed of un-breakable disks. We modelled PSDs with a normalized beta function, which allows for building S-shaped gradation curves, such as those that typically occur in soils. We systematically controlled and varied the size span and the shape of the PSD, and found that the shear strength is independent both characteristics. This implies that PSD modification procedures such as material scalping (i.e., removing the smallest and/or largest particles in the sample should not affect significantly the shear strength of the material composed of unbreakable discs. In order to explore the origins of the invariance of the shear strength with PSD, we analyzed the connectivity, force transmission, and friction mobilization in terms of anisotropies, finding that the constant shear strength is due to a subtle compensation of anisotropies.
P-T data from central Bhutan imply distributed extensional shear at the Black Mountain "klippe"
Corrie, S. L.; Kohn, M. J.; Long, S. P.; McQuarrie, N.; Tobgay, T.
2011-12-01
The Southern Tibetan Detachment system (STDS) occurs along the entire length of the Himalayan orogen, and extensionally emplaces low-grade to unmetamorphosed Tethyan Himalayan (TH) rocks over highly metamorphosed Greater Himalayan sequence (GH) rocks. The base of TH remnants preserved in northern Bhutan all have top-to-the-north shear sense indicators (C'-type shear bands, asymmetric folds, and boudinaged leucogranite dikes) that are interpreted to reflect a discrete shear zone. In contrast, the GH-TH contact in the southernmost TH remnant (the Black Mountain region, central Bhutan) has been interpreted as depositional. A depositional contact limits the magnitude of displacement along the early STDS to 10's of km. If the GH-TH contact in the Black Mountain region is instead a discrete shear zone, as observed farther north, displacement on the STDS could be as high as 100's of km. To discriminate between these two interpretations, we determined peak metamorphic P-T conditions through the GH and TH sections, reasoning that a discrete shear zone would produce a distinct jump in metamorphic temperature, pressure or both. Thin section-scale kinematic indicators reveal pervasive top-to-the-north shear from 2-3 km structurally above the Main Central thrust (MCT) through the rest of the 11 km thick GH and TH sections. P-T conditions were determined from immediately above the MCT to 4 km above the GH-TH contact, with 19 samples from the GH, 6 from the overlying Chekha Fm (TH), and 9 from the overlying Maneting Fm (TH). We applied standard Fe-Mg exchange thermometers and Ca net-transfer barometers involving garnet. P-T conditions range from 700 °C and 11 kbar in migmatitic GHS to 600 °C and 8 kbar at the GH-Chekha contact, and 500 °C and 5 kbar at the top of the Maneting. We found no jumps in either temperature or pressure at any level, but a steeper than lithostatic pressure gradient, which we interpret to result from distributed extensional shear. The average thermal
Directory of Open Access Journals (Sweden)
Johnson Blair D
2012-08-01
Full Text Available Abstract Background Acute doses of elevated retrograde shear rate (SR appear to be detrimental to endothelial function in resting humans. However, retrograde shear increases during moderate intensity exercise which also enhances post-exercise endothelial function. Since SR patterns differ with the modality of exercise, it is important to determine if augmented retrograde SR during exercise influences post-exercise endothelial function. This study tested the hypothesis that (1 increased doses of retrograde SR in the brachial artery during lower body supine cycle ergometer exercise would attenuate post-exercise flow-mediated dilation (FMD in a dose-dependent manner, and (2 antioxidant vitamin C supplementation would prevent the attenuated post-exercise FMD response. Methods Twelve men participated in four randomized exercise sessions (90 W for 20 minutes on separate days. During three of the sessions, one arm was subjected to increased oscillatory and retrograde SR using three different forearm cuff pressures (20, 40, 60 mmHg (contralateral arm served as the control and subjects ingested placebo capsules prior to exercise. A fourth session with 60 mmHg cuff pressure was performed with 1 g of vitamin C ingested prior to the session. Results Post-exercise FMD following the placebo conditions were lower in the cuffed arm versus the control arm (arm main effect: P P > 0.05. Following vitamin C treatment, post-exercise FMD in the cuffed and control arm increased from baseline (P P > 0.05. Conclusions These results indicate that augmented oscillatory and retrograde SR in non-working limbs during lower body exercise attenuates post-exercise FMD without an evident dose–response in the range of cuff pressures evaluated. Vitamin C supplementation prevented the attenuation of FMD following exercise with augmented oscillatory and retrograde SR suggesting that oxidative stress contributes to the adverse effects of oscillatory and
DEFF Research Database (Denmark)
Zhou, H. W.; Mishnaevsky, Leon; Yi, H. Y.
2016-01-01
The strength and fracture behavior of carbon fiber reinforced polymer composites with carbon nanotube (CNT) secondary reinforcement are investigated experimentally and numerically. Short Beam Shearing tests have been carried out, with SEM observations of the damage evolution in the composites. 3D...... CNT nanoreinforcement into the matrix and/or the sizing of carbon fiber/reinforced composites ensures strong increase of the composite strength. The effect of secondary CNTs reinforcement is strongest when some small addition of CNTs in the polymer matrix is complemented by the fiber sizing with high...... multiscale computational (FE) models of the carbon/polymer composite with varied CNT distributions have been developed and employed to study the effect of the secondary CNT reinforcement, its distribution and content on the strength and fracture behavior of the composites. It is shown that adding secondary...
Bazant, Zdenek P; Caner, Ferhun C
2013-11-26
Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.
Energy Technology Data Exchange (ETDEWEB)
Zhan, Hongyi, E-mail: h.zhan@uq.edu.au [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Zeng, Weidong [State Key Laboratory of Solidification Processing, School of Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Gui [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia); Kent, Damon [School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4575 (Australia); Dargusch, Matthew [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia)
2015-04-15
The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.
International Nuclear Information System (INIS)
Satoh, Akira; Hayasaka, Ryo; Majima, Tamotsu
2008-01-01
We have treated a dilute dispersion composed of ferromagnetic rodlike particles with a magnetic moment normal to the particle axis, such as hematites, to investigate the influences of the magnetic field strength, shear rate, and random forces on the orientational distribution of rodlike particles and also on transport coefficients, such as viscosity and diffusion coefficient. In the present analysis, these rodlike particles are assumed to conduct the rotational Brownian motion in a simple shear flow as well as an external magnetic field. The results obtained here are summarized as follows. In the case of a strong magnetic field and a smaller shear rate, the rodlike particle can freely rotate in the xy-plane with the magnetic moment continuing to point the magnetic field direction. On the other hand, for a strong shear flow, the particle has a tendency to incline in the flow direction with the magnetic moment pointing to the magnetic field direction. In the case of the magnetic field applied normal to the direction of the sedimentation, the diffusion coefficient gives rise to smaller values than expected, since the rodlike particle sediments with the particle axis inclining toward directions normal to the movement direction and, of course, toward the direction along that direction
Dagan, Yuval; Ghoniem, Ahmed
2017-11-01
Recent experimental observations show that the dynamic response of a reactive flow is strongly impacted by the fuel chemistry. In order to gain insight into some of the underlying mechanisms we formulate a new linear stability model that incorporates the impact of finite rate chemistry on the hydrodynamic stability of shear flows. Contrary to previous studies which typically assume that the velocity field is independent of the kinetic rates, the velocity field in our study is coupled with the temperature field. Using this formulation, we reproduce previous results, e.g., most unstable global modes, obtained for non-reacting shear flow. Moreover, we show that these modes are significantly altered in frequency and gain by the presence of a reaction region within the shear layer. This qualitatively agrees with results of our recent experimental and numerical studies, which show that the flame surface location relative to the shear layer influences the stability characteristics in combustion tunnels. This study suggests a physical explanation for the observed impact of finite rate chemistry on shear flow stability.
International Nuclear Information System (INIS)
Lee, Jounghun; Choi, Yun-Young
2015-01-01
We report a detection of the effect of the large-scale velocity shear on the spatial distributions of the galactic satellites around the isolated hosts. Identifying the isolated galactic systems, each of which consists of a single host galaxy and its satellites, from the Seventh Data Release of the Sloan Digital Sky Survey and reconstructing linearly the velocity shear field in the local universe, we measure the alignments between the relative positions of the satellites from their isolated hosts and the principal axes of the local velocity shear tensors projected onto the plane of sky. We find a clear signal that the galactic satellites in isolated systems are located preferentially along the directions of the minor principal axes of the large-scale velocity shear field. Those galactic satellites that are spirals, are brighter, are located at distances larger than the projected virial radii of the hosts, and belong to the spiral hosts yield stronger alignment signals, which implies that the alignment strength depends on the formation and accretion epochs of the galactic satellites. It is also shown that the alignment strength is quite insensitive to the cosmic web environment, as well as the size and luminosity of the isolated hosts. Although this result is consistent with the numerical finding of Libeskind et al. based on an N-body experiment, owing to the very low significance of the observed signals, it remains inconclusive whether or not the velocity shear effect on the satellite distribution is truly universal
Lee, Jounghun; Choi, Yun-Young
2015-02-01
We report a detection of the effect of the large-scale velocity shear on the spatial distributions of the galactic satellites around the isolated hosts. Identifying the isolated galactic systems, each of which consists of a single host galaxy and its satellites, from the Seventh Data Release of the Sloan Digital Sky Survey and reconstructing linearly the velocity shear field in the local universe, we measure the alignments between the relative positions of the satellites from their isolated hosts and the principal axes of the local velocity shear tensors projected onto the plane of sky. We find a clear signal that the galactic satellites in isolated systems are located preferentially along the directions of the minor principal axes of the large-scale velocity shear field. Those galactic satellites that are spirals, are brighter, are located at distances larger than the projected virial radii of the hosts, and belong to the spiral hosts yield stronger alignment signals, which implies that the alignment strength depends on the formation and accretion epochs of the galactic satellites. It is also shown that the alignment strength is quite insensitive to the cosmic web environment, as well as the size and luminosity of the isolated hosts. Although this result is consistent with the numerical finding of Libeskind et al. based on an N-body experiment, owing to the very low significance of the observed signals, it remains inconclusive whether or not the velocity shear effect on the satellite distribution is truly universal.
Czech Academy of Sciences Publication Activity Database
Bubáková, Petra; Pivokonský, Martin; Filip, Petr
2013-01-01
Roč. 235, February (2013), s. 540-549 ISSN 0032-5910 R&D Projects: GA ČR GAP105/11/0247 Institutional support: RVO:67985874 Keywords : aggregation * aggregate size * fractal dimension * shear rate * steady state * time evolution Subject RIV: BK - Fluid Dynamics Impact factor: 2.269, year: 2013
Wafai, Husam
2016-09-20
Fiber-reinforced composites with improved dissipation of energy during impact loading have recently been developed based on a polypropylene copolymer commonly called impact polypropylene (IPP). Composites made of IPP reinforced with glass fibers (GF) are particularly attractive to the automotive industry due to their low cost and good impact resistance. In such composites, the cooling rate varies depending on processing techniques and manufacturing choices. Here, we study the effects of the cooling rate of GF-IPP composites on shear behavior, which is critical in impact applications, using [±45]s monotonic and cyclic (load/unload) tensile specimens. The specimens were manufactured under a wide range of cooling rates (3 °C/min, 22 °C/min, 500–1000 °C/min). Mainly dominated by the properties of the matrix, the global shear behavior of GF-IPP composites differed considerably with respect to the cooling rate. However, the performance of the fiber-matrix interface (chemically modified) appeared to be unaffected by the range of cooling rates used in this study. We found that the cooling rate has a minor effect on the rate of damage accumulation, while it strongly modifies the shear-activated rate-dependant viscoelastic behavior. © 2016 Elsevier Ltd
Badve, Mandar P; Alpar, Tibor; Pandit, Aniruddha B; Gogate, Parag R; Csoka, Levente
2015-01-01
A mathematical model describing the shear rate and pressure variation in a complex flow field created in a hydrodynamic cavitation reactor (stator and rotor assembly) has been depicted in the present study. The design of the reactor is such that the rotor is provided with surface indentations and cavitational events are expected to occur on the surface of the rotor as well as within the indentations. The flow characteristics of the fluid have been investigated on the basis of high accuracy compact difference schemes and Navier-Stokes method. The evolution of streamlining structures during rotation, pressure field and shear rate of a Newtonian fluid flow have been numerically established. The simulation results suggest that the characteristics of shear rate and pressure area are quite different based on the magnitude of the rotation velocity of the rotor. It was observed that area of the high shear zone at the indentation leading edge shrinks with an increase in the rotational speed of the rotor, although the magnitude of the shear rate increases linearly. It is therefore concluded that higher rotational speeds of the rotor, tends to stabilize the flow, which in turn results into less cavitational activity compared to that observed around 2200-2500RPM. Experiments were carried out with initial concentration of KI as 2000ppm. Maximum of 50ppm of iodine liberation was observed at 2200RPM. Experimental as well as simulation results indicate that the maximum cavitational activity can be seen when rotation speed is around 2200-2500RPM. Copyright © 2014 Elsevier B.V. All rights reserved.
Gold, Ryan D.; Briggs, Richard; Personius, Stephen; Crone, Anthony J.; Mahan, Shannon; Angster, Stephen
2014-01-01
The dextral-slip Mohawk Valley fault zone (MVFZ) strikes northwestward along the eastern margin of the Sierra Nevada in the northern Walker Lane. Geodetic block modeling indicates that the MVFZ may accommodate ~3 mm/yr of regional dextral strain, implying that it is the highest slip-rate strike-slip fault in the region; however, only limited geologic data are available to constrain the system’s slip rate and earthquake history. We mapped the MVFZ using airborne lidar data and field observations and identified a site near Sulphur Creek for paleoseismic investigation. At this site, oblique dextral-normal faulting on the steep valley margin has created a closed depression that floods annually during spring snowmelt to form an ephemeral pond. We excavated three fault-perpendicular trenches at the site and exposed pond sediment that interfingers with multiple colluvial packages eroded from the scarp that bounds the eastern side of the pond. We documented evidence for four surface-rupturing earthquakes on this strand of the MVFZ. OxCal modeling of radiocarbon and luminescence ages indicates that these earthquakes occurred at 14.0 ka, 12.8 ka, 5.7 ka, and 1.9 ka. The mean ~4 kyr recurrence interval is inconsistent with slip rates of ~3 mm/yr; these rates imply surface ruptures of more than 10 m per event, which is geologically implausible for the subdued geomorphic expression and 60 km length of the MVFZ. We propose that unidentified structures not yet incorporated into geodetic models may accommodate significant dextral shear across the northern Walker Lane, highlighting the role of distributed deformation in this region.
Amininasab, S.; Sadighi-Bonabi, R.; Khodadadi Azadboni, F.
2018-02-01
Shear stress effect has been often neglected in calculation of the Weibel instability growth rate in laser-plasma interactions. In the present work, the role of the shear stress in the Weibel instability growth rate in the dense plasma with density gradient is explored. By increasing the density gradient, the shear stress threshold is increasing and the range of the propagation angles of growing modes is limited. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam-emitting region, the Weibel instability occurs at a higher stress flow. Calculations show that the minimum value of the stress rate threshold for linear polarization is greater than that of circular polarization. The Wiebel instability growth rate for linear polarization is 18.3 times circular polarization. One sees that for increasing stress and density gradient effects, there are smaller maximal growth rates for the range of the propagation angles of growing modes /π 2 propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma.
The distribution of wall shear stress downstream of a change in roughness
International Nuclear Information System (INIS)
Loureiro, J.B.R.; Sousa, F.B.C.C.; Zotin, J.L.Z.; Silva Freire, A.P.
2010-01-01
In the present work, six different experimental techniques are used to characterize the non-equilibrium flow downstream of a rough-to-smooth step change in surface roughness. Over the rough surface, wall shear stress results obtained through the form drag and the Reynolds stress methods are shown to be mutually consistent. Over the smooth surface, reference wall shear stress data is obtained through two optical methods: linear velocity profiles obtained through laser-Doppler anemometry and a sensor surface, the diverging fringe Doppler sensor. The work shows that the two most commonly used methods to determine the wall shear stress, the log-law gradient method and the Reynolds shear stress method, are completely inappropriate in the developing flow region. Preston tubes, on the other hand, are shown to perform well in the region of a non-equilibrium flow.
Directory of Open Access Journals (Sweden)
A. Bolchoun
2016-10-01
Full Text Available Fatigue life tests under constant and variable amplitude loadings were performed on the tube-tube thin-walled welded specimens made of magnesium (AZ31 and AZ61 alloys. The tests included pure axial, pure torsional and combined in-phase and out-of-phase loadings with the load ratio RR " ", " " 1 . For the tests with variable amplitude loads a Gaußdistributed loading spectrum with S L 4 5 10 cycles was used. Since magnesium welds show a fatigue life reduction under out-of-phase loads, a stress-based method, which takes this behavior into account, is proposed. The out-of-phase loading results in rotating shear stress vectors in the section planes, which are not orthogonal to the surface. This fact is used in order to provide an out-of-phase measure of the load. This measure is computed as an area covered by the shear stress vectors in all planes over a certain time interval, its computation involves the shear stress and the shear stress rate vectors in the individual planes. Fatigue life evaluation for the variable amplitudes loadings is performed using the Palmgren-Miner linear damage accumulation, whereas the total damage of every cycle is split up into two components: the amplitude component and the out-of-phase component. In order to compute the two components a modification of the rainflow counting method, which keeps track of the time intervals, where the cycles occur, must be used. The proposed method also takes into account different slopes of the pure axial and the pure torsional Wöhler-line by means of a Wöhler-line interpolation for combined loadings
Velocity and shear stress distribution downstream of mechanical heart valves in pulsatile flow.
Giersiepen, M; Krause, U; Knott, E; Reul, H; Rau, G
1989-04-01
Ten mechanical valves (TAD 27 mm): Starr-Edwards Silastic Ball, Björk-Shiley Standard, Björk-Shiley Concave-Convex, Björk-Shiley Monostrut, Hall-Kaster (Medtronic-Hall), OmniCarbon, Bicer Val, Sorin, Saint-Jude Medical and Hemex (Duromedics) are investigated in a comparative in vitro study. The velocity and turbulent shear stress profiles of the valves were determined by Laser Doppler anemometry in two different downstream axes within a model aortic root. Depending on the individual valve design, velocity peaks up to 1.5 m/s and turbulent shear stress peaks up to 150 N/m2 were measured during the systolic phase. These shear stress peaks mainly occurred in areas of flow separation and intense momentum exchange. Directly downstream of the valves (measuring axis 0.55.dAorta) turbulent shear stress peaks occurred at peak systole and during the deceleration phase, while in the second measuring axis (1.5.dAorta) turbulence levels were lower. Shear stress levels were high at the borders of the fluid jets. The results are discussed from a fluid-dynamic point of view.
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Lazarov, Boyan Stefanov
2003-01-01
frame. A suitable number of the lower floors has been considered to represent the soil both as a filter of a white noise base rock excitation and as a simplified model for soil structure interaction. In the present paper the Slepian model is applied to obtain plastic displacement distributions...... frame with partial or full feed back from the movement of the top mass to the second and the first mass (top soil layer mass and base rock mass, respectively). Keywords: Clough-Penzien filtered white noise excitation, elasto-plastic shear frame oscillator, plastic displacement distributions, simplified...
International Nuclear Information System (INIS)
Rehbein, D.K.
1980-08-01
The critical resolved shear stress and strain rate sensitivity were measured over the temperature range from 77 to 400 0 K for vanadium-nitrogen alloys containing from 0.0004 to 0.184 atom percent nitrogen. These properties were found to be strongly dependent on both the nitrogen concentration and temperature. The following observations were seen in this investigation: the overall behavior of the alloys for the temperature and concentration range studied follows a form similar to that predicted; the concentration dependence of the critical resolved shear stress after subtracting the hardening due to the pure vanadium lattice obeys Labusch's c/sup 2/3/ relationship above 200 0 K and Fleischer's c/sup 1/2/ relationship below 200 0 K; the theoretical predictions of Fleischer's model for the temperature dependence of the critical resolved shear stress are in marked disagreement with the behavior found; and the strain rate sensitivity, par. delta tau/par. deltaln γ, exhibits a peak at approximately 100 0 K that decreases in height as the nitrogen concentration increases. A similar peak has been observed in niobium by other investigators but the effect of concentration on the peak height is quite different
International Nuclear Information System (INIS)
Fujisawa, N; Oguma, Y; Nakano, T
2009-01-01
Measurements of wall-shear-stress distributions along curved surfaces are carried out using non-intrusive experimental methods, such as liquid-crystal coating and near-wall particle image velocimetry (PIV). The former method relies on the color change of the liquid-crystal coating sensitive to the wall shear stress, while the latter is based on the direct evaluation of shear stresses through the near-wall PIV measurement in combination with the image deformation technique. These experimental methods are applied to the measurement of wall-shear-stress distributions of air flow at a free-stream velocity of 15 m s −1 on a flat plate and an NACA0018 airfoil. The experiments are carried out at zero angle of attack for the flat plate and at 0° and ±6° angles of attack for the airfoil, and then the variations of shear-stress distribution along these surfaces are studied. These measurements in wall shear stresses agree with each other within their experimental uncertainties, suggesting the validity of experimental methods for non-intrusive shear-stress measurements. It is found that the wall-shear-stress distribution shows a small negative value upstream of the reattachment point on the NACA0018 airfoil, which is followed by an increase in shear stresses downstream due to laminar–turbulent transition of boundary layers. Such behavior of wall-shear-stress distribution is well correlated with the mean flow and turbulence characteristics along the airfoil surfaces, which are measured by PIV
7 CFR 1717.307 - Distribution members' rates.
2010-01-01
... affairs of the power supply borrower and over the rates of its distribution members: Provided, however, that the state regulatory authority shall treat any RUS approved rate for the power supply borrower as... Federal Pre-emption in Rate Making in Connection With Power Supply Borrowers § 1717.307 Distribution...
McDonald Generalized Linear Failure Rate Distribution
Directory of Open Access Journals (Sweden)
Ibrahim Elbatal
2014-10-01
Full Text Available We introduce in this paper a new six-parameters generalized version of the generalized linear failure rate (GLFR distribution which is called McDonald Generalized Linear failure rate (McGLFR distribution. The new distribution is quite flexible and can be used effectively in modeling survival data and reliability problems. It can have a constant, decreasing, increasing, and upside down bathtub-and bathtub shaped failure rate function depending on its parameters. It includes some well-known lifetime distributions as special sub-models. Some structural properties of the new distribution are studied. Moreover we discuss maximum likelihood estimation of the unknown parameters of the new model.
Energy Technology Data Exchange (ETDEWEB)
Lee, Inchul; Kim, Dohun; Koo, Jaye [Korea Aerospace Univ., Goyang (Korea, Republic of)
2013-07-15
To verify the effect of inner- and outer-stage gas jets, a shear coaxial injector was designed to analyze the axial velocity profile and breakup phenomenon with an increase in the measurement distance. When the measurement position was increased to Z/d=100, the axial flow showed a fully developed shape due to the momentum transfer, aerodynamic drag effect, and viscous mixing. An inner gas injection, which induces a higher momentum flux ratio near the nozzle, produces the greater shear force on atomization than an outer gas injection. Inner- and Outer-stage gas injection do not affect the mixing between the inner and outer gas flow below Z/d=5. The experiment results showed that the main effect of liquid jet breakup was governed by the gas jet of an inner stage. As the nozzle exit of the outer-stage was located far from the liquid column, shear force and turbulence breaking up of the liquid jets do not fully affect the liquid column. In the case of an inner-stage gas injection momentum flux ratio within 0.84, with the increase in the outer gas momentum flux ratio, the Smd decreases. However, at an inner-stage gas jet momentum flux ratio over 1.38, the Smd shows the similar distribution.
Tan, Bernice Mei Jin; Loh, Zhi Hui; Soh, Josephine Lay Peng; Liew, Celine Valeria; Heng, Paul Wan Sia
2014-01-02
Binder distribution in the powder mass during high shear granulation is especially critical with the use of viscous liquid binders and with short processing times. A viscous liquid binder was delivered into the powder mass at two flow rates using three methods: pouring, pumping and spraying from a pressure pot. Binder content analyses at the scale of individual granules were conducted to investigate the impact of different delivery conditions on the homogeneity of binder distribution. There was clear evidence of non-uniformity of binder content among individual granules across all delivery conditions, particularly for the fast rates of delivery. Poorer reproducibility values of tablet thickness and disintegration time were observed when binder was poured but this may be overcome by pumping or spraying from the pressure pot. Greater homogeneity of binder distribution occurred with the slow rates of delivery and led to the earlier onset of granule growth and a consequent increase in granule size. Larger granule size and lower proportion of fines were in turn associated with increased granule bulk density and improvement of granule flow. In conclusion, delivery of a viscous binder at a slow rate either by pumping or via a pressure pot was most desirable during granulation. Copyright © 2013 Elsevier B.V. All rights reserved.
GROWTH RATE DISTRIBUTION OF BORAX SINGLE CRYSTALS ON THE (001 FACE UNDER VARIOUS FLOW RATES
Directory of Open Access Journals (Sweden)
Suharso Suharso
2010-06-01
Full Text Available The growth rates of borax single crystals from aqueous solutions at various flow rates in the (001 direction were measured using in situ cell method. From the growth rate data obtained, the growth rate distribution of borax crystals was investigated using Minitab Software and SPSS Software at relative supersaturation of 0807 and temperature of 25 °C. The result shows that normal, gamma, and log-normal distribution give a reasonably good fit to GRD. However, there is no correlation between growth rate distribution and flow rate of solution. Keywords: growth rate dispersion (GRD, borax, flow rate
The limiting distribution of extremal exchange rate yields
M.C.A.B. Hols (Martien); C.G. de Vries (Casper)
1991-01-01
textabstractSeveral nonnested fat-tailed distributions have been advocated for modelling exchange rate returns. Instead of directly estimating these nonnested distributions we investigate the extremal distribution of the returns. The advantage is that the parameter which characterizes the amount of
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Ditlevsen, Ove Dalager
2003-01-01
The object of study is a stationary Gaussian white noise excited MDOF linear elastic, ideal plastic, linearly damped, statically determinate oscillator with several potential elements of ideal plastic yielding. Specifically the study is exemplified for a plane multistory shear frame with rigid...... traverses where all the connecting columns except the columns in one or more of the bottom floors have finite symmetrical yield limits. The white noise excitation acts on the mass of the first floor making the movement of the elastic bottom floors simulate a ground motion that interacts with the structure...
Santos, Jorge André Piedade Pinhal dos
2009-01-01
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Biomédica. A presente dissertação foi desenvolvida no Erasmus Medical Center em Roterdão, Holanda Background: Atherosclerosis is the main cause of death in the Western society. It is a geometrically focal disease, affecting preferentially vessel areas of low wall shear stress (SS), which induces the expression of atherogenic genes. To predict wall ...
Hána, T.; Eliášová, M.; Machalická, K.; Vokáč, M.
2017-10-01
Noticing the current architecture, there are many examples of glass bearing members such as beams, panes, ribs stairs or even columns. Most of these elements are made of laminated glass from panes bonded by polymer interlayer so the task of transferring shear forces between the glass panes needs to be investigated due to the lack of knowledge. This transfer depends on stiffness of polymer material, which is affected by temperature and load duration. It is essential to catch the safe side with limit cases when designing these members if the exact material behaviour is not specified. There are lots of interlayers for structural laminated glass applications available on a market. Most of them exhibit different properties, which need to be experimentally verified. This paper is focused on tangent shear modulus of PVB (polyvinyl-buthyral) interlayer and its effect on the stress distribution in glass panes when loaded. This distribution may be determined experimentally or numerically, respectively. This enables to design structural laminated glass members more effectively regarding price and safety. Furthermore, this is the way, how to extend the use of laminated glass in architectural design.
A Numerical Study of Water Loss Rate Distributions in MDCT-based Human Airway Models
Wu, Dan; Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long
2015-01-01
Both three-dimensional (3D) and one-dimensional (1D) computational fluid dynamics (CFD) methods are applied to study regional water loss in three multi-detector row computed-tomography (MDCT)-based human airway models at the minute ventilations of 6, 15 and 30 L/min. The overall water losses predicted by both 3D and 1D models in the entire respiratory tract agree with available experimental measurements. However, 3D and 1D models reveal different regional water loss rate distributions due to the 3D secondary flows formed at bifurcations. The secondary flows cause local skewed temperature and humidity distributions on inspiration acting to elevate the local water loss rate; and the secondary flow at the carina tends to distribute more cold air to the lower lobes. As a result, the 3D model predicts that the water loss rate first increases with increasing airway generation, and then decreases as the air approaches saturation, while the 1D model predicts a monotonic decrease of water loss rate with increasing airway generation. Moreover, the 3D (or 1D) model predicts relatively higher water loss rates in lower (or upper) lobes. The regional water loss rate can be related to the non-dimensional wall shear stress (τ*) by the non-dimensional mass transfer coefficient (h0*) as h0* = 1.15 τ*0.272, R = 0.842. PMID:25869455
Energy Technology Data Exchange (ETDEWEB)
Yan, Zhifeng [Institute of Surface-Earth System Science, Tianjin University, Tianjin China; Pacific Northwest National Laboratory, Richland WA USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland WA USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen China; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland WA USA; School of Earth Science and Engineering, Nanjing University, Nanjing China; Bailey, Vanessa L. [Pacific Northwest National Laboratory, Richland WA USA
2017-11-01
Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models, and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.
Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li
2014-11-01
Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically
Shear Melting of a Colloidal Glass
Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David A.
2010-01-01
We use confocal microscopy to explore shear melting of colloidal glasses, which occurs at strains of ˜0.08, coinciding with a strongly non-Gaussian step size distribution. For larger strains, the particle mean square displacement increases linearly with strain and the step size distribution becomes Gaussian. The effective diffusion coefficient varies approximately linearly with shear rate, consistent with a modified Stokes-Einstein relationship in which thermal energy is replaced by shear energy and the length scale is set by the size of cooperatively moving regions consisting of ˜3 particles.
Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming
DEFF Research Database (Denmark)
Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf
2009-01-01
The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953......-dimensional simulations of standing waves have also been made by application of a general purpose Navier-Stokes solver. The results agree well with those obtained by the boundary layer analysis. Wave reflection from a plane sloping wall is also investigated by using the same numerical model and by physical laboratory...
Energy Technology Data Exchange (ETDEWEB)
Bonnett, C.; Troxel, M. A.; Hartley, W.; Amara, A.; Leistedt, B.; Becker, M. R.; Bernstein, G. M.; Bridle, S. L.; Bruderer, C.; Busha, M. T.; Carrasco Kind, M.; Childress, M. J.; Castander, F. J.; Chang, C.; Crocce, M.; Davis, T. M.; Eifler, T. F.; Frieman, J.; Gangkofner, C.; Gaztanaga, E.; Glazebrook, K.; Gruen, D.; Kacprzak, T.; King, A.; Kwan, J.; Lahav, O.; Lewis, G.; Lidman, C.; Lin, H.; MacCrann, N.; Miquel, R.; O’Neill, C. R.; Palmese, A.; Peiris, H. V.; Refregier, A.; Rozo, E.; Rykoff, E. S.; Sadeh, I.; Sánchez, C.; Sheldon, E.; Uddin, S.; Wechsler, R. H.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Fausti Neto, A.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Gruendl, R. A.; Honscheid, K.; Jain, B.; James, D. J.; Jarvis, M.; Kim, A. G.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.
2016-08-01
We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties δ_{z} ≲ 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ_{8} of approx. 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, Σ_{crit}, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.
Distributions of component failure rates estimated from LER data
International Nuclear Information System (INIS)
Atwood, C.L.
1985-01-01
Past analyses of Licensee Event Report (LER) data have noted that component failure rates vary from plant to plant, and have estimated the distributions by two-parameter gamma distributions. In this study, a more complicated distributional form is considered, a mixture of gammas. This could arise if the plants' failure rates cluster into distinct groups. The method was applied to selected published LER data for diesel generators, pumps, valves, and instrumentation and control assemblies. The improved fits from using a mixture rather than a single gamma distribution were minimal, and not statistically significant. There seem to be two possibilities: either explanatory variables affect the failure rates only in a gradual way, not a qualitative way; or, for estimating individual component failure rates, the published LER data have been analyzed to the limit of resolution. 9 refs
Distributions of component failure rates, estimated from LER data
International Nuclear Information System (INIS)
Atwood, C.L.
1985-01-01
Past analyses of Licensee Event Report (LER) data have noted that component failure rates vary from plant to plant, and have estimated the distributions by two-parameter γ distributions. In this study, a more complicated distributional form is considered, a mixture of γs. This could arise if the plants' failure rates cluster into distinct groups. The method was applied to selected published LER data for diesel generators, pumps, valves, and instrumentation and control assemblies. The improved fits from using a mixture rather than a single γ distribution were minimal, and not statistically significant. There seem to be two possibilities: either explanatory variables affect the failure rates only in a gradual way, not a qualitative way; or, for estimating individual component failure rates, the published LER data have been analyzed to the limit of resolution
Experimental Research on Boundary Shear Stress in Typical Meandering Channel
Chen, Kai-hua; Xia, Yun-feng; Zhang, Shi-zhao; Wen, Yun-cheng; Xu, Hua
2018-06-01
A novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio, or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.
Humer, K.; Raff, S.; Prokopec, R.; Weber, H. W.
2008-03-01
A glass fiber reinforced plastic laminate, which consists of half-overlapped wrapped Kapton/R-glass-fiber reinforcing tapes vacuum-pressure impregnated in a cyanate ester/epoxy blend, is proposed as the insulation system for the ITER Toroidal Field coils. In order to assess its mechanical performance under the actual operating conditions, cryogenic (77 K) tensile and interlaminar shear tests were done after irradiation to the ITER design fluence of 1×1022 m-2 (E>0.1 MeV). The data were then used for a Finite Element Method (FEM) stress analysis. We find that the mechanical strength and the fracture behavior as well as the stress distribution and the failure criteria are strongly influenced by the winding direction and the wrapping technique of the reinforcing tapes.
Gayen, Bishakhdatta; Alam, Meheboob
2011-08-01
From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.
Scale dependence of the alignment between strain rate and rotation in turbulent shear flow
Fiscaletti, D.; Elsinga, G. E.; Attili, Antonio; Bisetti, Fabrizio; Buxton, O. R. H.
2016-01-01
The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.
Scale dependence of the alignment between strain rate and rotation in turbulent shear flow
Fiscaletti, D.
2016-10-24
The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.
Kim, J. H.; Choi, J. H.; Chauhan, N.; Lee, S.; Hirose, T.; Ree, J. H.
2014-12-01
Recent studies on natural and experimental seismic faults have revealed that frictional heating plays an important role in earthquake dynamics as well as in producing mineralogical and microstructural signatures of seismic faulting. Here, we report changes in OSL signals in quartz by frictional heating in experimental fault gouges. The gouges (80% of quartz and 20% of bentonite by weight) with a thickness of 1 mm were sheared between sandstone cylinders (diameter: 25 mm) at a normal stress of 1 MPa and slip rate of 1.31 m/s. The quartz grains from a sand dune on the western coast of South Korea were sieved to select size fractions between 90 and 250 μm. The equivalent dose (De) of the undeformed quartz grains was 8.0 ± 0.3 Gy. Upon displacement, the friction abruptly increases to the 1st peak (with friction coefficient μ ≈ 0.75) followed by slip weakening. Then the fault zones show two more peak frictions (μ ≈ 0.53~0.75) and finally reach a steady-state friction (μ ≈ 0.2~0.35). The fault can be divided into three zones based grain size (thus slip rate); slip localization (SLZ), intermediate slip-rate (ISZ) and low slip-rate (LSZ) zones. SLZ develops adjacent to the moving side of the sandstone cylinder with P-foliation and shear band. The size of quartz (Dq) in ISZ and LSZ is 5-30 μm and 50-250 μm, respectively. SEM and TEM analyses indicate that the fault gouge of SLZ consists of subangular quartz clasts (Dq ≈ 3 μm) and matrix of nano-scale quartz, unidentified silicate minerals and amorphous material. The fault zones were sectioned into six layers (~160 µm thick for each layer) parallel to the fault zone boundary for OSL analyses. Quartz grains from all the layers except the one immediately adjacent to the stationary side of the sandstone cylinder show De of 'effectively' 0 Gy indicating a full resetting of OSL signals. The partial resetting of OSL signal in the layer adjacent to the stationary side of the cylinder indicates the temperature (T
Lumley's energy cascade dissipation rate model for boundary-free turbulent shear flows
Duncan, B. S.
1992-01-01
True dissipation occurs mainly at the highest wavenumbers where the eddy sizes are comparatively small. These high wavenumbers receive their energy through the spectral cascade of energy starting with the largest eddies spilling energy into the smaller eddies, passing through each wavenumber until it is dissipated at the microscopic scale. However, a small percentage of the energy does not spill continuously through the cascade but is instantly passed to the higher wavenumbers. Consequently, the smallest eddies receive a certain amount of energy almost immediately. As the spectral energy cascade continues, the highest wavenumber needs a certain time to receive all the energy which has been transferred from the largest eddies. As such, there is a time delay, of the order of tau, between the generation of energy by the largest eddies and the eventual dissipation of this energy. For equilibrium turbulence at high Reynolds numbers, there is a wide range where energy is neither produced by the large eddies nor dissipated by viscosity, but is conserved and passed from wavenumber to higher wavenumbers. The rate at which energy cascades from one wavenumber to another is proportional to the energy contained within that wavenumber. This rate is constant and has been used in the past as a dissipation rate of turbulent kinetic energy. However, this is true only in steady, equilibrium turbulence. Most dissipation models contend that the production of dissipation is proportional to the production of energy and that the destruction of dissipation is proportional to the destruction of energy. In essence, these models state that the change in the dissipation rate is proportional to the change in the kinetic energy. This assumption is obviously incorrect for the case where there is no production of turbulent energy, yet energy continues to cascade from large to small eddies. If the time lag between the onset on the energy cascade to the destruction of energy at the microscale can be
Pawar, Sanjay B
2018-01-01
The biomass productivity of microalgae cells mainly depends on the hydrodynamics of airlift bioreactor (ABR). Thus, the hydrodynamics of concentric tube ABR was initially studied using two-phase three-dimensional CFD simulations with the Eulerian-Lagrangian approach. The performance of ABR (17 L) was examined for different configurations of the draft tube using various drag models such as Grace, Ishii-Zuber, and Schiller-Naumann. The gas holdups in the riser and the downcomer were well predicted using E-L approach. This work was further extended to study the dispersion of microalgae cells in the ABR using three-phase CFD simulations. In this model (combined E-E and E-L), the solid phase (microalgae cells) was dispersed into the continuous liquid phase (water), while the gas phase (air bubbles) was modeled as a particle transport fluid. The effect of non-drag forces such as virtual mass and lift forces was also considered. Flow regimes were explained on the basis of the relative gas holdup distribution in the riser and the downcomer. The microalgae cells were found in suspension for the superficial gas velocities of 0.02-0.04 m s -1 experiencing an average shear of 23.52-44.56 s -1 which is far below the critical limit of cell damage.
International Nuclear Information System (INIS)
Astill, M.; Sunderland, A.; Waine, M.G.
1980-01-01
A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)
Coolant rate distribution in horizontal steam generator under natural circulation
International Nuclear Information System (INIS)
Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A.
1997-01-01
In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered
Determination of the void nucleation rate from void size distributions
International Nuclear Information System (INIS)
Brailsford, A.D.
1977-01-01
A method of estimating the void nucleation rate from one void size distribution and from observation of the maximum void radius at prior times is proposed. Implicit in the method are the assumptions that both variations in the critical radius with dose and vacancy thermal emission processes during post-nucleation quasi-steady-state growth may be neglected. (Auth.)
Coolant rate distribution in horizontal steam generator under natural circulation
Energy Technology Data Exchange (ETDEWEB)
Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A. [St. Petersburg State Technical Univ. (Russian Federation)
1997-12-31
In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.
Coolant rate distribution in horizontal steam generator under natural circulation
Energy Technology Data Exchange (ETDEWEB)
Blagovechtchenski, A; Leontieva, V; Mitrioukhin, A [St. Petersburg State Technical Univ. (Russian Federation)
1998-12-31
In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.
Rate-adaptive BCH codes for distributed source coding
DEFF Research Database (Denmark)
Salmistraro, Matteo; Larsen, Knud J.; Forchhammer, Søren
2013-01-01
This paper considers Bose-Chaudhuri-Hocquenghem (BCH) codes for distributed source coding. A feedback channel is employed to adapt the rate of the code during the decoding process. The focus is on codes with short block lengths for independently coding a binary source X and decoding it given its...... strategies for improving the reliability of the decoded result are analyzed, and methods for estimating the performance are proposed. In the analysis, noiseless feedback and noiseless communication are assumed. Simulation results show that rate-adaptive BCH codes achieve better performance than low...... correlated side information Y. The proposed codes have been analyzed in a high-correlation scenario, where the marginal probability of each symbol, Xi in X, given Y is highly skewed (unbalanced). Rate-adaptive BCH codes are presented and applied to distributed source coding. Adaptive and fixed checking...
Directory of Open Access Journals (Sweden)
Pedro Henrique Santos
Full Text Available Summary The aim of this study was to evaluate the rheological behavior of malay apple, a traditional Amazonian fruit with high bioactive properties, at different temperatures and soluble solids concentrations. The experiments were carried out in a Brookfield R/S Plus rheometer with concentric cylinders geometry. Power Law, Herschel-Bulkley, Mizrahi-Berk, and Sisko rheological models were fitted to the experimental data. The malay apple juice (pulp and skin showed a pseudoplastic behavior for all temperatures and concentrations with flow behavior indexes lower than 1. The temperature effect on the samples’ apparent viscosity was analyzed by the Arrhenius equation. The activation energy increased with a decrease in the soluble solids concentration, showing that the lower the concentration, the greater the temperature influence on the apparent viscosity. The soluble solids effect was described by the exponential equation. The exponential factor increased with the temperature increasing, showing that the higher the temperature, the greater the effect of the soluble solids concentration on samples’ apparent viscosity. Finally, a triparametric mathematical model combining temperature, concentration, and shear rate was proposed aiming to evaluate its effects on the samples’ apparent viscosity and has accurately adjusted to the data with high correlation index R2.
Energy Technology Data Exchange (ETDEWEB)
Davis, W. Jr.; West, G.A.; Stacy, R.G.
1979-03-22
Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO/sub 2/ or 96 to 97% ThO/sub 2/--3 to 4% UO/sub 2/. Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO/sub 2/ or ThO/sub 2/--UO/sub 2/ sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared into lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO/sub 2/ from BWRs and of Zircaloy-4-clad UO/sub 2/ from PWRs. Median particle sizes of UO/sub 2/ from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 ..mu..m; particle sizes of ThO/sub 2/--UO/sub 2/, under these same conditions, ranged from 137 to 202 ..mu..m. Similarly, median particle sizes of UO/sub 2/ from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 ..mu..m. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels; however, unirradiated fuel from vendors was not available for performing comparative shearing experiments. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution estimates can be made of fractions of dislodged fuel having
International Nuclear Information System (INIS)
Zou, D.L.; Luan, B.F.; Liu, Q.; Chai, L.J.; Chen, J.W.
2012-01-01
The adiabatic shear bands formed in the zirconium alloy impacted by split Hopkinson pressure bar at a strain rate of about 6000 s −1 were characterized systemically by means of a high resolution field emission scanning electron microscope equipped with electron backscatter diffraction probe. The results show that the transformed bands were distinguished on the cross-section view of the impacted specimens, and the ultrafine and equiaxed grains formed in the transformed bands were confirmed. The gradient variation of the grains across the transformed bands from the boundary to the center of the bands was observed, and the grains at the center of the transformed bands were finer than other zones. Based on the characterization of the deformed microstructure adjacent to the transformed bands, the formation mechanism of the ultrafine and equiaxed grains in the transformed bands was revealed, and the rotational dynamic recrystallization mechanism should be responsible for the formation of the ultrafine and equiaxed grains in the transformed bands. According to the collection of the cumulative misorientation at different strain levels, the formation and evolution process of the ultrafine and equiaxed grains in the transformed bands were speculated. The microhardness measurements show that high microhardness value in the transformed bands was obtained because of the grain refining, and the large standard deviation of the microhardness at the center of the transformed bands was confirmed due to the gradient microstructural distribution in the bands.
Adiabatic shear localization in ultrafine grained 6061 aluminum alloy
Energy Technology Data Exchange (ETDEWEB)
Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083 (China); Ma, Rui; Zhou, Jindian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zezhou; Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Huang, Xiaoxia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)
2016-10-15
Localized shear is an important mode of deformation; it leads to catastrophic failure with low ductility, and occurs frequently during high strain-rate deformation. The hat-shaped specimen has been successfully used to generate shear bands under controlled shock-loading tests. The microstructure in the forced shear band was characterized by optical microscopy, microhardness, and transmission electron microscopy. The true flow stress in the shear region can reach 800 MPa where the strain is about 2.2. The whole shear localization process lasts for about 100 μs. The shear band is a long and straight band distinguished from the matrix by boundaries. It can be seen that the grains in the boundary of the shear band are highly elongated along the shear direction and form the elongated cell structures (0.2 µm in width), and the core of the shear band consists of a number of recrystallized equiaxed grains with 0.2−0.3 µm in diameters, and the second phase particles distribute in the boundary of the ultrafine equiaxed new grains. The calculated temperature in the shear band can reach about 667 K. Finally, the formation of the shear band in the ultrafine grained 6061 aluminum alloy and its microstructural evolution are proposed.
International Nuclear Information System (INIS)
Davis, W. Jr.; West, G.A.; Stacy, R.G.
1979-01-01
Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO 2 or 96 to 97% ThO 2 --3 to 4% UO 2 . Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO 2 or ThO 2 --UO 2 sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared into lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO 2 from BWRs and of Zircaloy-4-clad UO 2 from PWRs. Median particle sizes of UO 2 from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 μm; particle sizes of ThO 2 --UO 2 , under these same conditions, ranged from 137 to 202 μm. Similarly, median particle sizes of UO 2 from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 μm. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution deduced from experimental data, realistic estimates can be made of fractions of dislodged fuel having dimensions less than specified values
Incidence Rate and Distribution of Common Cancers among Iranian Children
Directory of Open Access Journals (Sweden)
Salman Khazaei
2017-01-01
Full Text Available Background: Geographic differences in the incidence of cancers may suggest unique genetic or environmental exposures that impact the risk of acquiring cancer. This research aims to determine the incidence rate and geographical distribution of common cancers among Iranian children. Methods: In this ecological study, we extracted data that pertained to the incidence rate of common cancers among children from reports by the National Registry of Cancer and Disease Control and Prevention in 2008. A map of the cancer incidence rates was designed by using geographic information system. Results:The most common cancer sites among children were the hematology system, brain and central nervous system, and lymph nodes. The central provinces had the lowest cancer incidences. Conclusion: The considerable variation in incidence of childhood cancers in Iran suggests a possible potential environmental risk factor or genetic background related to this increased risk among children.
Optimized dose distribution of a high dose rate vaginal cylinder
International Nuclear Information System (INIS)
Li Zuofeng; Liu, Chihray; Palta, Jatinder R.
1998-01-01
Purpose: To present a comparison of optimized dose distributions for a set of high-dose-rate (HDR) vaginal cylinders calculated by a commercial treatment-planning system with benchmark calculations using Monte-Carlo-calculated dosimetry data. Methods and Materials: Optimized dose distributions using both an isotropic and an anisotropic dose calculation model were obtained for a set of HDR vaginal cylinders. Mathematical optimization techniques available in the computer treatment-planning system were used to calculate dwell times and positions. These dose distributions were compared with benchmark calculations with TG43 formalism and using Monte-Carlo-calculated data. The same dwell times and positions were used for a quantitative comparison of dose calculated with three dose models. Results: The isotropic dose calculation model can result in discrepancies as high as 50%. The anisotropic dose calculation model compared better with benchmark calculations. The differences were more significant at the apex of the vaginal cylinder, which is typically used as the prescription point. Conclusion: Dose calculation models available in a computer treatment-planning system must be evaluated carefully to ensure their correct application. It should also be noted that when optimized dose distribution at a distance from the cylinder surface is calculated using an accurate dose calculation model, the vaginal mucosa dose becomes significantly higher, and therefore should be carefully monitored
Secret key rates in quantum key distribution using Renyi entropies
Energy Technology Data Exchange (ETDEWEB)
Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus; Bratzik, Sylvia; Bruss, Dagmar [Institut fuer Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)
2010-07-01
The secret key rate r of a quantum key distribution protocol depends on the involved number of signals and the accepted ''failure probability''. We reconsider a method to calculate r focusing on the analysis of the privacy amplification given by R. Renner and R. Koenig (2005). This approach involves an optimization problem with an objective function depending on the Renyi entropy of the density operator describing the classical outcomes and the eavesdropper system. This problem is analyzed for a generic class of QKD protocols and the current research status is presented.
Directory of Open Access Journals (Sweden)
Abdelhalim Mohamed Anwar K
2011-10-01
Full Text Available Abstract Background Blood viscosity appears to be independent predictor of stroke, carotid intima-media thickening, atherosclerosis and most cardiovascular diseases. In an attempt to understand the toxicity and the potential threat of GNPs therapeutic and diagnostic use, an array of rheological parameters were performed to quantify the blood plasma response to different sizes and administration periods of GNPs over a wide range of shear rates. Methods Healthy, thirty male Wistar-Kyoto rats, 8-12 weeks old (approximately 250 g body weight were divided into control group (NG: n = 10, group 1 (G1A: intraperitoneal infusion of 10 nm GNPs for 3 days, n = 5 and G1B: intraperitoneal infusion of 10 nm GNPs for 7 days, n = 5, group 2 (G2A: intraperitoneal infusion of 50 nm GNPs for 3 days, n = 5 and G2B: intraperitoneal infusion of 50 nm GNPs for 7 days, n = 5. Dose of 100 μl of GNPs was administered to the animals via intraperitoneal injection. Blood samples of nearly 1 ml were obtained from each rat. Various rheological parameters such as torque, shear stress, shear rate, viscosity, plastic velocity, yield stress, consistency index (k and flow index (n were measured in the blood plasma of rats after the intraperitoneal administration of 10 and 50 nm GNP for 3 and 7 days using Brookfield LVDV-III Programmable rheometer. Results The relationship between shear stress and shear rate for control, G1A, G1B, G2A and G2B was linearly related. The plastic viscosity and the yield stress values for G1A, G1B, G2A and G2B significantly (p Conclusions At these particular shear rates, the estimated rheological parameters are not influenced by GNPs size and shape, number of NPs, surface area and administration period of GNPs. This study demonstrates that the highly decrease in blood plasma viscosity was accompanied with the smaller 10 nm GNPs compared with the 50 nm GNPs. The decrease in blood plasma viscosity induced with 10 and 50 nm GNPs may be attributed to
Shear Elasticity and Shear Viscosity Imaging in Soft Tissue
Yang, Yiqun
In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all
Hendrikson, Wim J; Deegan, Anthony J; Yang, Ying; van Blitterswijk, Clemens A; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen
2017-01-01
Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress-strain distributions throughout the scaffold depend on the scaffold's internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve
Results of shear studies with 241-AY-101 sludge
International Nuclear Information System (INIS)
WARRANT, R.W.
2001-01-01
The Department of Energy's Tanks Focus Area (TFA) authorized a project to study the effect of shear on the settling properties of high-level waste sludge to support retrieval programs. A series of settling studies was conducted on a composite sample of tank 241-AY-101 (AY-101) material. Comparisons were made with duplicate samples that were sheared with a tissue homogenizer and allowed to settle. Aliquots of sheared and unsheared settled solids were submitted for chemical and radiological analyses. There are five major conclusions from the study that apply to AY-101 sludge: (1) Sludge settling rates are detectably decreased after shearing of particles by means of a tissue homogenizer. A significant decrease in the settling rates was measured after 2 minutes of shearing. A smaller additional decrease in the settling rates was observed after an additional 10 minutes of shearing. (2) Sodium and Cesium appear to be present in both the liquid and solid phases of the composite sample. (3) The shearing of the solids does not appear to significantly change the distribution of the radionuclides, ( 241 Am, 90 Sr, Total Alpha, or other radionuclides), within the solids. (4) The mean particle diameter decreases after shearing with the tissue homogenizer and affects the settling rate in proportion to the square of the particle diameter. (5) The sonication of the unsheared particles produces a similar particle size reduction to that of shearing with a tissue homogenizer. It is difficult to quantitatively compare the shear produced by a mixer pump installed in a double-shell tank with that produced by the tissue homogenizer in the laboratory. On a qualitative basis, the mixing pump would be expected to have less mechanical and more hydraulic shearing effect than the tissue homogenizer. Since the particle size distribution studies indicate that (for the AY-101 solids) the breaking up of particle aggregates is the main means of particle size reduction, then the hydraulic shearing
The spatial distribution and birth-rate of pulsars
International Nuclear Information System (INIS)
Guseinov, O.H.; Kasumov, F.K.
1978-01-01
The distribution of pulsars in the wide range of observed luminosities has been obtained. It is shown that the function of luminosity (FL) within 3 x 10 26 30 erg s -1 conforms to the power law dN/dL - c 1 Lsup(-γ), where γ = 1.76 +- 0.06. For L 26 erg s -1 , FL changes its inclination and may be approximated as dN/dL approximately Lsup(-γ 1 ), where γ 1 = 0.7 +- 0.2. On the basis of statistical selection, including all pulsars with L > 3 x 10 28 erg s -1 , the distribution of pulsars has been investigated as a function of the distance to the centre R and galactic plane Z. The obtained laws of the radial and Z-distribution of pulsars and galactic supernova remnants and also the radial distribution of types I and II supernovae in the models Sb and Sc support the hypothesis of their origin from the objects of the flat subsystem of Population I. Since there are some arguments in favour of a possible connection between supernovae I and the objects of the intermediate component of the Galaxy, one cannot exclude the possibility of supernovae explosions at the end of the evolution of stars with masses of 1.5-2 Msub(sun). It is also shown that pulsars and supernovae are evidently objects that are connected genetically, and, within the limits of statistical error, they have a similar birth-rate. The empirical law of the evolution of a pulsar's luminosity as a function of its true age has been obtained, according to which L = c 2 tsup(-β), where c 2 = (3.69+- 3.4) x 10 35 ,β = 1.32 +- 0.11. (Auth.)
Radiation shielding and dose rate distribution for the building of the high dose rate accelerator
International Nuclear Information System (INIS)
Matsuda, Koji; Takagaki, Torao; Nakase, Yoshiaki; Nakai, Yohta.
1984-03-01
A high dose rate electron accelerator was established at Osaka Laboratory for Radiation Chemistry, Takasaki Establishment, JAERI in the fiscal year of 1975. This report shows the fundamental concept for the radiation shielding of the accelerator building and the results of their calculations which were evaluated through the model experiments. After the construction of the building, the leak radiation was measured in order to evaluate the calculating method of radiation shielding. Dose rate distribution of X-rays was also measured in the whole area of the irradiation room as a data base. (author)
Distribution of photon absorption rates across the rat retina.
Williams, T P; Webbers, J P; Giordano, L; Henderson, R P
1998-04-15
1. An investigation into the distribution of light intensity across the rat retina was carried out on excised, intact rat eyes exposed to Ganzfeld illumination from a helium-neon laser (543 nm). 2. Some of the light entering the eyes exits through the sclera where its intensity can be monitored with an optical 'pick-up' that samples the intensity coming from a small region of external sclera and underlying retina. The spatial resolution of the pick-up is such that it samples light that has passed through ca 2 % of the rods in the rat eye. 3. Some of the laser light is absorbed by the rod pigment, rhodopsin, which gradually bleaches. Bleaching in the retina, in turn, causes an exponential increase in intensity emanating from the sclera. By monitoring this intensity increase, we are able to measure two important parameters in a single bleaching run: the local rhodopsin concentration and the local intensity falling on the rods. 4. With an ocular transmission photometer, we have measured both the local intensity and the local rhodopsin concentration across wide regions of rat retina. Both pigmented and albino rats were studied. 5. The distributions of rhodopsin and intensity were both nearly uniform; consequently, the product, (rhodopsin concentration) x (intensity), was similarly nearly equal across the retina. This means that the initial rate of photon absorption is about the same at all retinal locations. 6. Interpreted in terms of photostasis (the regulation of daily photon catch), this means that the rate of photon absorption is about the same in each rod, viz. 14 400 photons absorbed per rod per second. Since this rate of absorption is sufficient to saturate the rod, one possible purpose of photostasis is to maintain the rod system in a saturated state during daylight hours.
Facility optimization to improve activation rate distributions during IVNAA
International Nuclear Information System (INIS)
Ebrahimi Khankook, Atiyeh; Rafat Motavalli, Laleh; Miri Hakimabad, Hashem
2013-01-01
Currently, determination of body composition is the most useful method for distinguishing between certain diseases. The prompt-gamma in vivo neutron activation analysis (IVNAA) facility for non-destructive elemental analysis of the human body is the gold standard method for this type of analysis. In order to obtain accurate measurements using the IVNAA system, the activation probability in the body must be uniform. This can be difficult to achieve, as body shape and body composition affect the rate of activation. The aim of this study was to determine the optimum pre-moderator, in terms of material for attaining uniform activation probability with a CV value of about 10% and changing the collimator role to increase activation rate within the body. Such uniformity was obtained with a high thickness of paraffin pre-moderator, however, because of increasing secondary photon flux received by the detectors it was not an appropriate choice. Our final calculations indicated that using two paraffin slabs with a thickness of 3 cm as a pre-moderator, in the presence of 2 cm Bi on the collimator, achieves a satisfactory distribution of activation rate in the body. (author)
Inflation, Exchange Rates and Interest Rates in Ghana: an Autoregressive Distributed Lag Model
Directory of Open Access Journals (Sweden)
Dennis Nchor
2015-01-01
Full Text Available This paper investigates the impact of exchange rate movement and the nominal interest rate on inflation in Ghana. It also looks at the presence of the Fisher Effect and the International Fisher Effect scenarios. It makes use of an autoregressive distributed lag model and an unrestricted error correction model. Ordinary Least Squares regression methods were also employed to determine the presence of the Fischer Effect and the International Fisher Effect. The results from the study show that in the short run a percentage point increase in the level of depreciation of the Ghana cedi leads to an increase in the rate of inflation by 0.20%. A percentage point increase in the level of nominal interest rates however results in a decrease in inflation by 0.98%. Inflation increases by 1.33% for every percentage point increase in the nominal interest rate in the long run. An increase in inflation on the other hand increases the nominal interest rate by 0.51% which demonstrates the partial Fisher effect. A 1% increase in the interest rate differential leads to a depreciation of the Ghana cedi by approximately 1% which indicates the full International Fisher effect.
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Ditlevsen, Ove
2005-01-01
The object of study is a stationary Gaussian white noise excited plane multistory shear frame with a large number of rigid traverses. All the traverse-connecting columns have finite symmetrical yield limits except the columns in one or more of the bottom floors. The columns behave linearly elasti...
Mahan, Kevin H.; Schulte-Pelkum, Vera; Condit, Cailey; Leydier, Thomas; Goncalves, Philippe; Raju, Anissha; Brownlee, Sarah; Orlandini, Omero F.
2017-04-01
Modern methods for detecting seismic anisotropy offer an array of promising tools for imaging deep crustal deformation but also present challenges, especially with respect to potential biases in both the detection methods themselves as well as in competing processes for localized versus distributed deformation. We address some of these issues from the geophysical perspective by employing azimuthally dependent amplitude and polarity variations in teleseismic receiver functions combined with a compilation of published rock elasticity tensors from middle and deep crustal rocks, and from the geological perspective through studies of shear zone deformation processes. Examples are highlighted at regional and outcrop scales from western North America and the European Alps. First, in regional patterns, strikes of seismically detected fabric from receiver functions in California show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition suggesting these faults have deep ductile roots. In contrast, despite NE-striking shear zones being the most prominent features portrayed on Proterozoic tectonic maps of the southwestern USA, receiver function anisotropy from the central Rocky Mountain region appears to more prominently reflect broadly distributed Proterozoic fabric domains that preceded late-stage localized shear zones. Possible causes for the discrepancy fall into two categories: those that involve a) bias in seismic sampling and/or b) deformation processes that lead to either weaker anisotropy in the shear zones compared to adjacent domains or to a symmetry that is different from that conventionally assumed. Most of these explanations imply that the seismically sampled domains contain important structural information that is distinct from the shear zones. The second set of examples stem from studies of outcrop-scale shear zones in upper
International Nuclear Information System (INIS)
Zhang, R.L.; Liu, Y.; Huang, Y.D.; Liu, L.
2013-01-01
Effect of particle size and distribution of the sizing agent on the performance of carbon fiber and carbon fiber composites has been investigated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize carbon fiber surface topographies. At the same time, the single fiber strength and Weibull distribution were also studied in order to investigate the effect of coatings on the fibers. The interfacial shear strength and hygrothermal aging of the carbon fiber/epoxy resin composites were also measured. The results indicated that the particle size and distribution is important for improving the surface of carbon fibers and its composites performance. Different particle size and distribution of sizing agent has different contribution to the wetting performance of carbon fibers. The fibers sized with P-2 had higher value of IFSS and better hygrothermal aging resistant properties.
Suryanarayanan, Saikishan; Narasimha, Roddam
2017-02-01
Although the free-shear or mixing layer has been a subject of extensive research over nearly a century, there are certain fundamental issues that remain controversial. These include the influence of initial and downstream conditions on the flow, the effect of velocity ratio across the layer, and the nature of any possible coupling between small scale dynamics and the large scale evolution of layer thickness. In the spirit of the temporal vortex-gas simulations of Suryanarayanan et al. ["Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics," Phys. Rev. E 89, 013009 (2014)], we revisit the simple 2D inviscid vortex-gas model with extensive computations and detailed analysis, in order to gain insights into some of the above issues. Simulations of the spatially evolving vortex-gas shear layer are carried out at different velocity ratios using a computational model based on the work of Basu et al. ["Vortex sheet simulation of a plane canonical mixing layer," Comput. Fluids 21, 1-30 (1992) and "Modelling plane mixing layers using vortex points and sheets," Appl. Math. Modell. 19, 66-75 (1995)], but with a crucial improvement that ensures conservation of global circulation. The simulations show that the conditions imposed at the origin of the free shear layer and at the exit to the computational domain can affect flow evolution in their respective downstream and upstream neighbourhoods, the latter being particularly strong in the single stream limit. In between these neighbourhoods at the ends is a regime of universal self-preserving growth rate given by a universal function of velocity ratio. The computed growth rates are generally located within the scatter of experimental data on plane mixing layers and closely agree with recent high Reynolds number experiments and 3D large eddy simulation studies. These findings support the view that observed free-shear layer growth can be largely explained by the 2D vortex dynamics of
Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves
2017-11-01
We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.
Growth rate distribution in the forming lateral root of arabidopsis.
Szymanowska-Pułka, Joanna; Lipowczan, Marcin
2014-10-01
Microscopic observations of lateral roots (LRs) in Arabidopsis thaliana reveal that the cross-sectional shape of the organ changes from its basal to its apical region. The founder cells for LRs are elongated along the parent root axis, and thus from the site of initiation the base of LRs resemble an ellipse. The circumference of the apical part of LRs is usually a circle. The objective of this study was to analyse the characteristics of changes in the growth ﬁeld of LRs possessing various shapes in their basal regions. The LRs of the wild type (Col-0) and two transgenic arabidopsis lines were analysed. On the basis of measurements of the long and short diameters (DL and DS, respectively) of the ellipse-like ﬁgure representing the bases of particular LRs, their asymmetry ratios (DL/DS) were determined. Possible differences between accessions were analysed by applying statistical methods. No significant differences between accessions were detected. Comparisons were therefore made of the maximal, minimal and mean value of the ratio of all the LRs analysed. Taking into consideration the lack of circular symmetry of the basal part, rates of growth were determined at selected points on the surface of LRs by the application of the growth tensor method, a mathematical tool previously applied only to describe organs with rotational symmetry. Maps showing the distribution of growth rates were developed for surfaces of LRs of various asymmetry ratios. The maps of growth rates on the surfaces of LRs having various shapes of the basal part show differences in both the geometry and the manner of growth, thus indicating that the manner of growth of the LR primordium is correlated to its shape. This is the ﬁrst report of a description of growth of an asymmetric plant organ using the growth tensor method. The mathematical modelling adopted in the study provides new insights into plant organ formation and shape. © The Author 2014. Published by Oxford University Press on
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Ditlevsen, Ove
2005-01-01
The object of study is a stationary Gaussian white noise excited plane multistory shear frame with a large number of rigid traverses. All the traverse-connecting columns have finite symmetrical yield limits except the columns in one or more of the bottom floors. The columns behave linearly elastic...... within the yield limits and ideally plastic outside these without accumulating eigenstresses. Within the elastic domain the frame is modeled as a linearly damped oscillator. The white noise excitation acts on the mass of the first floor making the movement of the elastic bottom floors simulate a ground...
Wang, H. F.; Fratta, D.; Lancelle, C.; Ak, E. Ms; Lord, N. E.
2017-12-01
Monitoring traffic is important for many technical reasons. It allows for better design of future roads and assessment of the state of current roads. The number, size, weight, and speed of vehicles control deterioration rate. Also, real-time information supplies data to intelligent information systems to help control traffic. Recently there have been studies looking at monitoring traffic seismically as vibrations from traffic are not sensitive to weather and poor visibility. Furthermore, traffic noise can be used to image S-wave velocity distribution in the near surface by capturing and interpreting Rayleigh and Love waves (Nakata, 2016; Zeng et al. 2016). The capability of DAS for high spatial sampling (1 m), temporal sampling (up to 10 kHz), and distributed nature (tens of kilometers) allows for a closer look at the traffic as it passes and how the speed of the vehicle may change over the length of the array. The potential and difficulties of using DAS for these objectives were studied using two DAS arrays. One at Garner Valley in Southern California (a 700-meter array adjacent to CA Highway 74) and another in Brady Hot Springs, Nevada (an 8700-meter array adjacent to Interstate 80). These studies experimentally evaluated the use of DAS data for monitoring traffic and assessing the use of traffic vibration as non-localized sources for seismic imaging. DAS arrays should also be resilient to issues with lighting conditions that are problematic for video monitoring and it may be sensitive to the weight of a vehicle. This study along a major interstate provides a basis for examining DAS' potential and limitations as a key component of intelligent highway systems.
International Nuclear Information System (INIS)
Walton, O.R.; Braun, R.L.
1986-01-01
Employing nonequilibrium molecular-dynamics methods the effects of two energy loss mechanisms on viscosity, stress, and granular-temperature in assemblies of nearly rigid, inelastic frictional disks undergoing steady-state shearing are calculated. Energy introduced into the system through forced shearing is dissipated by inelastic normal forces or through frictional sliding during collisions resulting in a natural steady-state kinetic energy density (granular-temperature) that depends on the density and shear rate of the assembly and on the friction and inelasticity properties of the disks. The calculations show that both the mean deviatoric particle velocity and the effective viscosity of a system of particles with fixed friction and restitution coefficients increase almost linearly with strain rate. Particles with a velocity-dependent coefficient of restitution show a less rapid increase in both deviatoric velocity and viscosity as strain rate increases. Particles with highly dissipative interactions result in anisotropic pressure and velocity distributions in the assembly, particularly at low densities. At very high densities the pressure also becomes anisotropic due to high contact forces perpendicular to the shearing direction. The mean rotational velocity of the frictional disks is nearly equal to one-half the shear rate. The calculated ratio of shear stress to normal stress varies significantly with density while the ratio of shear stress to total pressure shows much less variation. The inclusion of surface friction (and thus particle rotation) decreases shear stress at low density but increases shear stress under steady shearing at higher densities
Wafai, Husam; Lubineau, Gilles; Yudhanto, Arief; Mulle, Matthieu; Schijve, W.; Verghese, N.
2016-01-01
) are particularly attractive to the automotive industry due to their low cost and good impact resistance. In such composites, the cooling rate varies depending on processing techniques and manufacturing choices. Here, we study the effects of the cooling rate of GF
Sales, Allan R K; Fernandes, Igor A; Rocha, Natália G; Costa, Lucas S; Rocha, Helena N M; Mattos, João D M; Vianna, Lauro C; Silva, Bruno M; Nóbrega, Antonio C L
2014-04-01
Mental stress induces transient endothelial dysfunction, which is an important finding for subjects at cardiometabolic risk. Thus, we tested whether aerobic exercise prevents this dysfunction among subjects with metabolic syndrome (MetS) and whether an increase in shear rate during exercise plays a role in this phenomenon. Subjects with MetS participated in two protocols. In protocol 1 (n = 16), endothelial function was assessed using brachial artery flow-mediated dilation (FMD). Subjects then underwent a mental stress test followed by either 40 min of leg cycling or rest across two randomized sessions. FMD was assessed again at 30 and 60 min after exercise or rest, with a second mental stress test in between. Mental stress reduced FMD at 30 and 60 min after the rest session (baseline: 7.7 ± 0.4%, 30 min: 5.4 ± 0.5%, and 60 min: 3.9 ± 0.5%, P exercise prevented this reduction (baseline: 7.5 ± 0.4%, 30 min: 7.2 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline). Protocol 2 (n = 5) was similar to protocol 1 except that the first period of mental stress was followed by either exercise in which the brachial artery shear rate was attenuated via forearm cuff inflation or exercise without a cuff. Noncuffed exercise prevented the reduction in FMD (baseline: 7.5 ± 0.7%, 30 min: 7.0 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline), whereas cuffed exercise failed to prevent this reduction (baseline: 7.5 ± 0.6%, 30 min: 5.4 ± 0.8%, and 60 min: 4.1 ± 0.9%, P exercise prevented mental stress-induced endothelial dysfunction among subjects with MetS, and an increase in shear rate during exercise mediated this effect.
International Nuclear Information System (INIS)
EI-Shanshoury, G.I.
2011-01-01
Several statistical distributions are used to model various reliability and maintainability parameters. The applied distribution depends on the' nature of the data being analyzed. The presented paper deals with analysis of some statistical distributions used in reliability to reach the best fit of distribution analysis. The calculations rely on circuit quantity parameters obtained by using Relex 2009 computer program. The statistical analysis of ten different distributions indicated that Weibull distribution gives the best fit distribution for modeling the reliability of the data set of Temperature Alarm Circuit (TAC). However, the Exponential distribution is found to be the best fit distribution for modeling the failure rate
Distribution of cancer mortality rates by province in South Africa.
Made, Felix; Wilson, Kerry; Jina, Ruxana; Tlotleng, Nonhlanhla; Jack, Samantha; Ntlebi, Vusi; Kootbodien, Tahira
2017-12-01
Cancer mortality rates are expected to increase in developing countries. Cancer mortality rates by province remain largely unreported in South Africa. This study described the 2014 age standardised cancer mortality rates by province in South Africa, to provide insight for strategic interventions and advocacy. 2014 deaths data were retrieved from Statistics South Africa. Deaths from cancer were extracted using 10th International Classification of Diseases (ICD) codes for cancer (C00-C97). Adjusted 2013 mid-year population estimates were used as a standard population. All rates were calculated per 100 000 individuals. Nearly 38 000 (8%) of the total deaths in South Africa in 2014 were attributed to cancer. Western Cape Province had the highest age standardised cancer mortality rate in South Africa (118, 95% CI: 115-121 deaths per 100 000 individuals), followed by the Northern Cape (113, 95% CI: 107-119 per 100 000 individuals), with the lowest rate in Limpopo Province (47, 95% CI: 45-49 per 100 000). The age standardised cancer mortality rate for men (71, 95% CI: 70-72 per 100 000 individuals) was similar to women (69, 95% CI: 68-70 per 100 000). Lung cancer was a major driver of cancer death in men (13, 95% CI: 12.6-13.4 per 100 000). In women, cervical cancer was the leading cause of cancer death (13, 95% CI: 12.6-13.4 per 100 000 individuals). There is a need to further investigate the factors related to the differences in cancer mortality by province in South Africa. Raising awareness of risk factors and screening for cancer in the population along with improved access and quality of health care are also important. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Influence of Bi Rate to the Distribution of Working Capital Loans
Directory of Open Access Journals (Sweden)
Dian Kurnianingrum
2015-11-01
Full Text Available This research “The influence of BI rate to the distribution of working capital loans" is conducted at Indonesian commercial bank during the month of January 2005 until May 2009. The purpose of this research is to determine the effect of BI rate toward the distribution of working capital loans. To test the research hypotheses, the data were analyzed by using Pearson correlate and simple linear regression. Based on research, BI rate significantly influence the distribution of working capital loans. BI rate gives a negative impact to the distribution of working capital loans. It means, the increase in BI rate will decrease the distribution of working capital loans, and vice versa, the decrease in BI rate will increase the distribution of working capital loans.
Faff, R.; Kremmer, M.; Hodgson, A.
2004-01-01
This paper extends the existing literature by analysing the dual impact of changes in the interest rate and interest rate volatility on the distribution of Australian financial sector stock returns. In addition, a multivariate GARCH-M model is used to analyse the impact of deregulation on the
Broadening failure rate distributions in PRA uncertainty analyses
International Nuclear Information System (INIS)
Martz, H.F.
1984-01-01
Several recent nuclear power plant probabilistic risk assessments (PRAs) have utilized broadened Reactor Safety Study (RSS) component failure rate population variability curves to compensate for such things as expert overvaluation bias in the estimates upon which the curves are based. A simple two-components of variation empirical Bayes model is proposed for use in estimating the between-expert variability curve in the presence of such biases. Under certain conditions this curve is a population variability curve. Comparisons are made with the existing method. The popular procedure appears to be generally much more conservative than the empirical Bayes method in removing such biases. In one case the broadened curve based on the popular method is more than two orders of magnitude broader than the empirical Bayes curve. In another case it is found that the maximum justifiable degree of broadening of the RSS curve is to increase α from 5% to 12%, which is significantly less than 20% value recommended in the popular approach. 15 references, 1 figure, 5 tables
Guelker, M R; Haneklaus, A N; Brooks, J C; Carr, C C; Delmore, R J; Griffin, D B; Hale, D S; Harris, K B; Mafi, G G; Johnson, D D; Lorenzen, C L; Maddock, R J; Martin, J N; Miller, R K; Raines, C R; VanOverbeke, D L; Vedral, L L; Wasser, B E; Savell, J W
2013-02-01
The tenderness and palatability of retail and food service beef steaks from across the United States (12 cities for retail, 5 cities for food service) were evaluated using Warner-Bratzler shear (WBS) and consumer sensory panels. Subprimal postfabrication storage or aging times at retail establishments averaged 20.5 d with a range of 1 to 358 d, whereas postfabrication times at the food service level revealed an average time of 28.1 d with a range of 9 to 67 d. Approximately 64% of retail steaks were labeled with a packer/processor or store brand. For retail, top blade had among the lowest (P 0.05) in WBS values between moist-heat and dry-heat cookery methods for the top round and bottom round steaks or between enhanced (contained salt or phosphate solution) or nonenhanced steaks. Food service top loin and rib eye steaks had the lowest (P food service top loin steaks received among the greatest (P food service rib eye steaks received the greatest ratings (P food service steaks were greater (P Choice, and Low Choice groups. The WBS values and sensory ratings were comparable to the last survey, signifying that no recent or substantive changes in tenderness have occurred.
Kar, Soummya; Moura, José M. F.
2011-08-01
The paper considers gossip distributed estimation of a (static) distributed random field (a.k.a., large scale unknown parameter vector) observed by sparsely interconnected sensors, each of which only observes a small fraction of the field. We consider linear distributed estimators whose structure combines the information \\emph{flow} among sensors (the \\emph{consensus} term resulting from the local gossiping exchange among sensors when they are able to communicate) and the information \\emph{gathering} measured by the sensors (the \\emph{sensing} or \\emph{innovations} term.) This leads to mixed time scale algorithms--one time scale associated with the consensus and the other with the innovations. The paper establishes a distributed observability condition (global observability plus mean connectedness) under which the distributed estimates are consistent and asymptotically normal. We introduce the distributed notion equivalent to the (centralized) Fisher information rate, which is a bound on the mean square error reduction rate of any distributed estimator; we show that under the appropriate modeling and structural network communication conditions (gossip protocol) the distributed gossip estimator attains this distributed Fisher information rate, asymptotically achieving the performance of the optimal centralized estimator. Finally, we study the behavior of the distributed gossip estimator when the measurements fade (noise variance grows) with time; in particular, we consider the maximum rate at which the noise variance can grow and still the distributed estimator being consistent, by showing that, as long as the centralized estimator is consistent, the distributed estimator remains consistent.
International Nuclear Information System (INIS)
Atkinson, Greg
2014-01-01
A ratio index (FMD%) is used ubiquitously to scale (by simple division) brachial artery flow-mediated dilation (D diff ) in direct proportion to baseline diameter (D base ). It is now known that D diff is inversely proportional to D base rendering FMD% wholly inappropriate. Consequently, FMD% is still substantially dependent on D base . Although this problem is grounded in statistics, normalization of FMD% for the change in arterial shear rate (ΔSR) has been proposed to remove this D base -dependency. It was hypothesized that, if the flow-mediated response is scaled properly to D base in the first place, shear rate normalization would not be needed to remove D base -dependency. Dedicated software (Digitizelt) was employed to extract the data from a seminal study on FMD% normalization. The underlying allometric relationship between D base and peak diameter (D peak ) was described. The re-analyses revealed that the absolute change in arterial diameter was strongly inversely proportional to D base (r= − 0.7, P < 0.0005). The allometric exponent for the D base –D peak relationship was 0.82 (95% CI: 0.78–0.86) rather than the value of 1 needed for appropriate use of FMD%. The allometric approach completely eliminated the originally reported dependency on D base without any need for ΔSR normalization (r=0.0, P=0.96). The correlation between ΔSR and FMD% reduced from 0.69 to 0.37, when adjusted for D base . In conclusion, this new re-analysis of data from an influential study demonstrates that the FMD%–D base correlation is caused by the inappropriate size-scaling properties of FMD% itself. Removal of D base -dependency via FMD%/ΔSR normalization is not essential at all if allometric scaling is applied to isolate the flow-mediated response in the first place. Consequently, the influence of ΔSR on this properly scaled response can also be isolated and quantified accurately without the confounding influence of D base . (paper)
DEFF Research Database (Denmark)
Nielsen, Thor Pajhede
2017-01-01
We consider an observation driven, conditionally Beta distributed model for variables restricted to the unit interval. The model includes both explanatory variables and autoregressive dependence in the mean and precision parameters using the mean-precision parametrization of the beta distribution...... the monthly default rate. (3) There is evidence for volatility clustering beyond what is accounted for by the inherent mean-precision relationship of the Beta distribution in the default rate data....
Yan, Zhifeng; Liu, Chongxuan; Liu, Yuanyuan; Bailey, Vanessa L.
2017-11-01
Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.
SEDflume - High Shear Stress Flume
Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...
Modeling Shear Induced Von Willebrand Factor Binding to Collagen
Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong
2017-11-01
Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).
Investigation of sheared liquids by neutron backscattering and reflectivity
Wolff, M; Hock, R; Frick, B; Zabel, H
2002-01-01
We have investigated by neutron scattering structural and dynamical properties of water solutions of the triblock copolymer P85 under shear. To this end a shear cell that suits the requirements for neutron backscattering and another for reflectivity experiments have been built. In reflectivity measurements we find the polymer concentration (nominal concentration of 33% by weight) to vary right at the surface between 12% and 52% for hydrophilic or hydrophobic coated silicon wavers, for temperatures between 18 C and 73 C and for shear rates up to 2500 s sup - sup 1. Additional structural changes deeper in the bulk are also observed. On the backscattering instrument (IN10 at ILL) we find that the liquid appears to stick to the plates of the shear cell, implying an unusual macroscopic velocity distribution that differs from that found earlier for lubrication oils. We report further on changes of the quasielastic line width in the direction of the shear gradient for different temperatures and shear rates. (orig.)
Effect of a generalized particle momentum distribution on plasma nuclear fusion rates
International Nuclear Information System (INIS)
Kim, Yeong E.; Zubarev, Alexander L.
2006-01-01
We investigate the effect of a generalized particle momentum distribution derived by Galitskii and Yakimets (GY) on nuclear reaction rates in plasma. We derive an approximate semi-analytical formula for nuclear fusion reaction rate between nuclei in a plasma (quantum plasma nuclear fusion; or QPNF). The QPNF formula is applied to calculate deuteron-deuteron fusion rate in a plasma, and the results are compared with the results calculated with the conventional Maxwell-Boltzmann velocity distribution. As an application, we investigate the deuteron-deuteron fusion rate for mobile deuterons in a deuterated metal/alloy. The calculated deuteron-deuteron fusion rates at low energies are enormously enhanced due to the modified tail of the GY's generalized momentum distribution. Our preliminary estimates indicate also that the deuteron-lithium (D+Li) fusion rate and the proton-lithium (p+Li) fusion rate in a metal/alloy at ambient temperatures are also substantially enhanced. (author)
Wagner, Peter J
2012-02-23
Rate distributions are important considerations when testing hypotheses about morphological evolution or phylogeny. They also have implications about general processes underlying character evolution. Molecular systematists often assume that rates are Poisson processes with gamma distributions. However, morphological change is the product of multiple probabilistic processes and should theoretically be affected by hierarchical integration of characters. Both factors predict lognormal rate distributions. Here, a simple inverse modelling approach assesses the best single-rate, gamma and lognormal models given observed character compatibility for 115 invertebrate groups. Tests reject the single-rate model for nearly all cases. Moreover, the lognormal outperforms the gamma for character change rates and (especially) state derivation rates. The latter in particular is consistent with integration affecting morphological character evolution.
Shear of ordinary and elongated granular mixtures
Hensley, Alexander; Kern, Matthew; Marschall, Theodore; Teitel, Stephen; Franklin, Scott
2015-03-01
We present an experimental and computational study of a mixture of discs and moderate aspect-ratio ellipses under two-dimensional annular planar Couette shear. Experimental particles are cut from acrylic sheet, are essentially incompressible, and constrained in the thin gap between two concentric cylinders. The annular radius of curvature is much larger than the particles, and so the experiment is quasi-2d and allows for arbitrarily large pure-shear strains. Synchronized video cameras and software identify all particles and track them as they move from the field of view of one camera to another. We are particularly interested in the global and local properties as the mixture ratio of discs to ellipses varies. Global quantities include average shear rate and distribution of particle species as functions of height, while locally we investigate the orientation of the ellipses and non-affine events that can be characterized as shear transformational zones or possess a quadrupole signature observed previously in systems of purely circular particles. Discrete Element Method simulations on mixtures of circles and spherocylinders extend the study to the dynamics of the force network and energy dissipated as the system evolves. Supported by NSF CBET #1243571 and PRF #51438-UR10.
The Influence of Bi Rate to the Distribution of Working Capital Loans
Dian Kurnianingrum
2015-01-01
This research “The influence of BI rate to the distribution of working capital loans" is conducted at Indonesian commercial bank during the month of January 2005 until May 2009. The purpose of this research is to determine the effect of BI rate toward the distribution of working capital loans. To test the research hypotheses, the data were analyzed by using Pearson correlate and simple linear regression. Based on research, BI rate significantly influence the distribution of working capital lo...
Model shear tests of canisters with smectite clay envelopes in deposition holes
International Nuclear Information System (INIS)
Boergesson, L.
1986-01-01
The consequences of rock displacement across a deposition hole has been investigated by some model tests. The model was scaled 1:10 to a real deposition hole. It was filled with a canister made of solid copper surrounded by highly compacted water saturated MX-80 bentonite. Before shear the swelling pressure was measured by six transducers in order to follow the water uptake process. During shear, pressure, strain, force and deformation were measured in altogether 18 points. The shearing was made at different rates in the various tests. An extensive sampling after shear was made through which the density, water content, degree of saturation, homogenization and the effect of shear on the bentonite and canister could be studied. One important conlusion from these tests was that the rate dependence is about 10% increased shear resistance per decade increased rate of shear. This resulted also in a very clear increase in strain in the canister with increased rate. The results also showed that the saturated bentonite has excellent stress distributing properties and that there is no risk of destroying the canister if the rock displacement is smaller than the thickness of the bentonite cover. The high density of the clay makes the bentonite produce such a high swelling pressure that the material will be very stiff. In the case of a larger shear deformation corresponding to ≅ 50% of the bentonite thickness the result will be a rather large deformation of the canister. A lower density would be preferable if it can be accepted with respect to other required isolating properties. The results also showed that three-dimensional FEM calculation using non-linear material properties is necessary to simulate the shear process. The rate dependence may be taken into account by adapting the properties to the actual rate of shear but might in a later stage be included in the model by giving the material viscous properties. (orig./HP)
Variation in angler distribution and catch rates of stocked rainbow trout in a small reservoir
Harmon, Brian S.; Martin, Dustin R.; Chizinski, Christopher J.; Pope, Kevin L.
2018-01-01
We investigated the spatial and temporal relationship of catch rates and angler party location for two days following a publicly announced put-and-take stocking of rainbow trout (Oncorhynchus mykiss). Catch rates declined with time since stocking and distance from stocking. We hypothesized that opportunity for high catch rates would cause anglers to fish near the stocking location and disperse with time, however distance between angler parties and stocking was highly variable at any given time. Spatially explicit differences in catch rates can affect fishing quality. Further research could investigate the variation between angler distribution and fish distribution within a waterbody.
Distribution of the Determinant of the Sample Correlation Matrix: Monte Carlo Type One Error Rates.
Reddon, John R.; And Others
1985-01-01
Computer sampling from a multivariate normal spherical population was used to evaluate the type one error rates for a test of sphericity based on the distribution of the determinant of the sample correlation matrix. (Author/LMO)
Sakamoto, Y
2002-01-01
In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...
High-Rate Field Demonstration of Large-Alphabet Quantum Key Distribution
2016-10-12
count rate of Bob’s detectors. In this detector-limited regime , it is advantageous to increase M to encode as much information as possible in each...High- rate field demonstration of large-alphabet quantum key distribution Catherine Lee,1, 2 Darius Bunandar,1 Zheshen Zhang,1 Gregory R. Steinbrecher...October 12, 2016) 2 Quantum key distribution (QKD) enables secure symmetric key exchange for information-theoretically secure com- munication via one-time
Estimation of rates-across-sites distributions in phylogenetic substitution models.
Susko, Edward; Field, Chris; Blouin, Christian; Roger, Andrew J
2003-10-01
Previous work has shown that it is often essential to account for the variation in rates at different sites in phylogenetic models in order to avoid phylogenetic artifacts such as long branch attraction. In most current models, the gamma distribution is used for the rates-across-sites distributions and is implemented as an equal-probability discrete gamma. In this article, we introduce discrete distribution estimates with large numbers of equally spaced rate categories allowing us to investigate the appropriateness of the gamma model. With large numbers of rate categories, these discrete estimates are flexible enough to approximate the shape of almost any distribution. Likelihood ratio statistical tests and a nonparametric bootstrap confidence-bound estimation procedure based on the discrete estimates are presented that can be used to test the fit of a parametric family. We applied the methodology to several different protein data sets, and found that although the gamma model often provides a good parametric model for this type of data, rate estimates from an equal-probability discrete gamma model with a small number of categories will tend to underestimate the largest rates. In cases when the gamma model assumption is in doubt, rate estimates coming from the discrete rate distribution estimate with a large number of rate categories provide a robust alternative to gamma estimates. An alternative implementation of the gamma distribution is proposed that, for equal numbers of rate categories, is computationally more efficient during optimization than the standard gamma implementation and can provide more accurate estimates of site rates.
Information concerning the occurrence and distribution of cyst nematodes (Heterodera spp.) in Samsun, Turkey is needed to assess their potential to cause economic damage on many crop plants. Surveys on the distribution and infestation rates of cyst nematodes in cabbage fields in Samsun were conducte...
Directory of Open Access Journals (Sweden)
Shuai Zeng
2013-01-01
Full Text Available With the development of wireless technologies, mobile communication applies more and more extensively in the various walks of life. The social network of both fixed and mobile users can be seen as networked agent system. At present, kinds of devices and access network technology are widely used. Different users in this networked agent system may need different coding rates multimedia data due to their heterogeneous demand. This paper proposes a distributed flow rate control algorithm to optimize multimedia data transmission of the networked agent system with the coexisting various coding rates. In this proposed algorithm, transmission path and upload bandwidth of different coding rate data between source node, fixed and mobile nodes are appropriately arranged and controlled. On the one hand, this algorithm can provide user nodes with differentiated coding rate data and corresponding flow rate. On the other hand, it makes the different coding rate data and user nodes networked, which realizes the sharing of upload bandwidth of user nodes which require different coding rate data. The study conducts mathematical modeling on the proposed algorithm and compares the system that adopts the proposed algorithm with the existing system based on the simulation experiment and mathematical analysis. The results show that the system that adopts the proposed algorithm achieves higher upload bandwidth utilization of user nodes and lower upload bandwidth consumption of source node.
Swimming efficiency in a shear-thinning fluid
Nganguia, Herve; Pietrzyk, Kyle; Pak, On Shun
2017-12-01
Micro-organisms expend energy moving through complex media. While propulsion speed is an important property of locomotion, efficiency is another factor that may determine the swimming gait adopted by a micro-organism in order to locomote in an energetically favorable manner. The efficiency of swimming in a Newtonian fluid is well characterized for different biological and artificial swimmers. However, these swimmers often encounter biological fluids displaying shear-thinning viscosities. Little is known about how this nonlinear rheology influences the efficiency of locomotion. Does the shear-thinning rheology render swimming more efficient or less? How does the swimming efficiency depend on the propulsion mechanism of a swimmer and rheological properties of the surrounding shear-thinning fluid? In this work, we address these fundamental questions on the efficiency of locomotion in a shear-thinning fluid by considering the squirmer model as a general locomotion model to represent different types of swimmers. Our analysis reveals how the choice of surface velocity distribution on a squirmer may reduce or enhance the swimming efficiency. We determine optimal shear rates at which the swimming efficiency can be substantially enhanced compared with the Newtonian case. The nontrivial variations of swimming efficiency prompt questions on how micro-organisms may tune their swimming gaits to exploit the shear-thinning rheology. The findings also provide insights into how artificial swimmers should be designed to move through complex media efficiently.
David CASHIN; UNAYAMA Takashi
2012-01-01
Households will purchase more items than usual prior to a value added tax (VAT) rate increase in order to avoid taxation. Since this type of arbitrage requires resources such as shopping time and storage space, the impacts of tax increases vary across households, which has brought distributional effects in the short-run. Using the case of a consumption tax rate increase in Japan in 1997, we show that households who are non-working, with non-working spouses and residing in larger houses, benef...
Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate
Tormann, Theresa; Wiemer, Stefan; Metzger, Sabrina; Michael, Andrew J.; Hardebeck, Jeanne L.
2013-01-01
The nucleation area of the series of M6 events in Parkfield has been shown to be characterized by low b-values throughout the seismic cycle. Since low b-values represent high differential stresses, the asperity structure seems to be always stably stressed and even unaffected by the latest main shock in 2004. However, because fault loading rates and applied shear stress vary with time, some degree of temporal variability of the b-value within stable blocks is to be expected. We discuss in this study adequate techniques and uncertainty treatment for a detailed analysis of the temporal evolution of b-values. We show that the derived signal for the Parkfield asperity correlates with changes in surface creep, suggesting a sensitive time resolution of the b-value stress meter, and confirming near-critical loading conditions within the Parkfield asperity.
DEFF Research Database (Denmark)
Li, Jinzhao; Qi, Meilan; Fuhrman, David R.
2018-01-01
-normal distribution for uniform channel-open flows. The comparisons of sediment transport rates where turbulent fluctuations in the bed shear stress are, or are not, taken into account show that the sediment transport rates calculated by the mean bed shear stress are under-predicted. Furthermore, a new sediment......This study concerns the flow and associated sediment transport in front of a cylinder in steady currents. The study comprises (i) flow characteristics induced by the turbulent horseshoe vortex (THV), (ii) bed shear stress within the THV region, and (iii) predicted sediment transport rates...
SPINS OF LARGE ASTEROIDS: A HINT OF A PRIMORDIAL DISTRIBUTION IN THEIR SPIN RATES
Energy Technology Data Exchange (ETDEWEB)
Steinberg, Elad; Sari, Re’em [The Hebrew University of Jerusalem, Jerusalem (Israel)
2015-04-15
The Asteroid Belt and the Kuiper Belt are relics from the formation of our solar system. Understanding the size and spin distribution of the two belts is crucial for a deeper understanding of the formation of our solar system and the dynamical processes that govern it. In this paper, we investigate the effect of collisions on the evolution of the spin distribution of asteroids and KBOs. We find that the power law nature of the impactors’ size distribution leads to a Lévy distribution of the spin rates. This results in a power law tail in the spin distribution, in stark contrast to the usually quoted Maxwellian distribution. We show that for bodies larger than 10 km, collisions alone lead to spin rates peaking at 0.15–0.5 revolutions per day. Comparing that to the observed spin rates of large asteroids (R > 50 km), we find that the spins of large asteroids, peaking at ∼1–2 revolutions per day, are dominated by a primordial component that reflects the formation mechanism of the asteroids. Similarly, the Kuiper Belt has undergone virtually no collisional spin evolution, assuming current densities. Collisions contribute a spin rate of ∼0.01 revolutions per day, thus the observed fast spin rates of KBOs are also primordial in nature.
High speed and adaptable error correction for megabit/s rate quantum key distribution.
Dixon, A R; Sato, H
2014-12-02
Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.
Variable Frame Rate and Length Analysis for Data Compression in Distributed Speech Recognition
DEFF Research Database (Denmark)
Kraljevski, Ivan; Tan, Zheng-Hua
2014-01-01
This paper addresses the issue of data compression in distributed speech recognition on the basis of a variable frame rate and length analysis method. The method first conducts frame selection by using a posteriori signal-to-noise ratio weighted energy distance to find the right time resolution...... length for steady regions. The method is applied to scalable source coding in distributed speech recognition where the target bitrate is met by adjusting the frame rate. Speech recognition results show that the proposed approach outperforms other compression methods in terms of recognition accuracy...... for noisy speech while achieving higher compression rates....
Connection between the growth rate distribution and the size dependent crystal growth
Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.
2002-07-01
The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.
In-core flow rate distribution measurement test of the JOYO irradiation core
International Nuclear Information System (INIS)
Suzuki, Toshihiro; Isozaki, Kazunori; Suzuki, Soju
1996-01-01
A flow rate distribution measurement test was carried out for the JOYO irradiation core (the MK-II core) after the 29th duty cycle operation. The main object of the test is to confirm the proper flow rate distribution at the final phase of the MK-II core. The each flow rate at the outlet of subassemblies was measured by the permanent magnetic flowmeter inserted avail of fuel exchange hole in the rotating plug. This is third test in the MK-II core, after 10 years absence from the final test (1985). Total of 550 subassemblies were exchanged and accumulated reactor operation time reached up to 38,000 hours from the previous test. As a conclusion, it confirmed that the flow rate distribution has been kept suitable in the final phase of the MK-II core. (author)
Exchange rate pass-through and the role of international distribution channels
Desiraju, Ramarao; Shrikhande, Milind
1996-01-01
Manufacturers selling in foreign markets often do not completely pass on the effects of fluctuations in exchange rates to the prices of their products. Our paper addresses this puzzle and studies the effects of the international distribution channel on exchange rate pass-through. We develop an exchange rate pass-through model that takes into account the role of an intermediary between a domestic manufacturer and its consumers in a foreign market. We find that the magnitude of the pass-through...
Turbulence suppression by E x B shear in JET optimized shear pulses
International Nuclear Information System (INIS)
Beer, M.A.; Budny, R.V.; Challis, C.D.; Conway, G.
2000-01-01
The authors calculate microinstability growth rates in JET optimized shear plasmas with a comprehensive gyrofluid model, including sheared E x B flows, trapped electrons, and all dominant ion species in realistic magnetic geometry. They find good correlation between E x B shear suppression of microinstabilities and both the formation and collapse of the internal transport barrier
Study of shear thickening behavior in colloidal suspensions
Directory of Open Access Journals (Sweden)
N Maleki Jirsaraee
2015-01-01
Full Text Available We studied the shear thickening behavior of the nano silica suspension (silica nanoparticles 12 nm in size suspended in ethylene glycol under steady shear. The critical shear rate for transition into shear thickening phase was determined at different concentrations and temperatures. The effect of temperature and concentration was studied on the shear thickening behavior. In silica suspension, it was observed that all the samples had a transition into shear thickening phase and also by increasing the temperature, critical shear rate increased and viscosity decreased. Our observations showed that movement in silica suspension was Brownian and temperature could cause a delay in transition into shear thickening phase. Yet, we observed that increasing the concentration would decrease critical shear rate and increase viscosity. Increasing temperature increased Brownian forces and increasing concentration increased hydrodynamic forces, confirming the contrast between these two forces for transition into shear thickening phase for the suspensions containing nano particles
Impact of measurement uncertainty from experimental load distribution factors on bridge load rating
Gangone, Michael V.; Whelan, Matthew J.
2018-03-01
Load rating and testing of highway bridges is important in determining the capacity of the structure. Experimental load rating utilizes strain transducers placed at critical locations of the superstructure to measure normal strains. These strains are then used in computing diagnostic performance measures (neutral axis of bending, load distribution factor) and ultimately a load rating. However, it has been shown that experimentally obtained strain measurements contain uncertainties associated with the accuracy and precision of the sensor and sensing system. These uncertainties propagate through to the diagnostic indicators that in turn transmit into the load rating calculation. This paper will analyze the effect that measurement uncertainties have on the experimental load rating results of a 3 span multi-girder/stringer steel and concrete bridge. The focus of this paper will be limited to the uncertainty associated with the experimental distribution factor estimate. For the testing discussed, strain readings were gathered at the midspan of each span of both exterior girders and the center girder. Test vehicles of known weight were positioned at specified locations on each span to generate maximum strain response for each of the five girders. The strain uncertainties were used in conjunction with a propagation formula developed by the authors to determine the standard uncertainty in the distribution factor estimates. This distribution factor uncertainty is then introduced into the load rating computation to determine the possible range of the load rating. The results show the importance of understanding measurement uncertainty in experimental load testing.
Charged-particle thermonuclear reaction rates: I. Monte Carlo method and statistical distributions
International Nuclear Information System (INIS)
Longland, R.; Iliadis, C.; Champagne, A.E.; Newton, J.R.; Ugalde, C.; Coc, A.; Fitzgerald, R.
2010-01-01
A method based on Monte Carlo techniques is presented for evaluating thermonuclear reaction rates. We begin by reviewing commonly applied procedures and point out that reaction rates that have been reported up to now in the literature have no rigorous statistical meaning. Subsequently, we associate each nuclear physics quantity entering in the calculation of reaction rates with a specific probability density function, including Gaussian, lognormal and chi-squared distributions. Based on these probability density functions the total reaction rate is randomly sampled many times until the required statistical precision is achieved. This procedure results in a median (Monte Carlo) rate which agrees under certain conditions with the commonly reported recommended 'classical' rate. In addition, we present at each temperature a low rate and a high rate, corresponding to the 0.16 and 0.84 quantiles of the cumulative reaction rate distribution. These quantities are in general different from the statistically meaningless 'minimum' (or 'lower limit') and 'maximum' (or 'upper limit') reaction rates which are commonly reported. Furthermore, we approximate the output reaction rate probability density function by a lognormal distribution and present, at each temperature, the lognormal parameters μ and σ. The values of these quantities will be crucial for future Monte Carlo nucleosynthesis studies. Our new reaction rates, appropriate for bare nuclei in the laboratory, are tabulated in the second paper of this issue (Paper II). The nuclear physics input used to derive our reaction rates is presented in the third paper of this issue (Paper III). In the fourth paper of this issue (Paper IV) we compare our new reaction rates to previous results.
The rate coefficients of unimolecular reactions in the systems with power-law distributions
Yin, Cangtao; Guo, Ran; Du, Jiulin
2014-08-01
The rate coefficient formulae of unimolecular reactions are generalized to the systems with the power-law distributions based on nonextensive statistics, and the power-law rate coefficients are derived in the high and low pressure limits, respectively. The numerical analyses are made of the rate coefficients as functions of the ν-parameter, the threshold energy, the temperature and the number of degrees of freedom. We show that the new rate coefficients depend strongly on the ν-parameter different from one (thus from a Boltzmann-Gibbs distribution). Two unimolecular reactions, CH3CO→CH3+CO and CH3NC→CH3CN, are taken as application examples to calculate their power-law rate coefficients, which obtained with the ν-parameters slightly different from one can be exactly in agreement with all the experimental studies on these two reactions in the given temperature ranges.
Variable synaptic strengths controls the firing rate distribution in feedforward neural networks.
Ly, Cheng; Marsat, Gary
2018-02-01
Heterogeneity of firing rate statistics is known to have severe consequences on neural coding. Recent experimental recordings in weakly electric fish indicate that the distribution-width of superficial pyramidal cell firing rates (trial- and time-averaged) in the electrosensory lateral line lobe (ELL) depends on the stimulus, and also that network inputs can mediate changes in the firing rate distribution across the population. We previously developed theoretical methods to understand how two attributes (synaptic and intrinsic heterogeneity) interact and alter the firing rate distribution in a population of integrate-and-fire neurons with random recurrent coupling. Inspired by our experimental data, we extend these theoretical results to a delayed feedforward spiking network that qualitatively capture the changes of firing rate heterogeneity observed in in-vivo recordings. We demonstrate how heterogeneous neural attributes alter firing rate heterogeneity, accounting for the effect with various sensory stimuli. The model predicts how the strength of the effective network connectivity is related to intrinsic heterogeneity in such delayed feedforward networks: the strength of the feedforward input is positively correlated with excitability (threshold value for spiking) when firing rate heterogeneity is low and is negatively correlated with excitability with high firing rate heterogeneity. We also show how our theory can be used to predict effective neural architecture. We demonstrate that neural attributes do not interact in a simple manner but rather in a complex stimulus-dependent fashion to control neural heterogeneity and discuss how it can ultimately shape population codes.
International Nuclear Information System (INIS)
Xie, M.; Goh, T.N.; Tang, Y.
2004-01-01
The failure rate function and mean residual life function are two important characteristics in reliability analysis. Although many papers have studied distributions with bathtub-shaped failure rate and their properties, few have focused on the underlying associations between the mean residual life and failure rate function of these distributions, especially with respect to their changing points. It is known that the change point for mean residual life can be much earlier than that of failure rate function. In fact, the failure rate function should be flat for a long period of time for a distribution to be useful in practice. When the difference between the change points is large, the flat portion tends to be longer. This paper investigates the change points and focuses on the difference of the changing points. The exponentiated Weibull, a modified Weibull, and an extended Weibull distribution, all with bathtub-shaped failure rate function will be used. Some other issues related to the flatness of the bathtub curve are discussed
International Nuclear Information System (INIS)
Caleyo, F.; Velazquez, J.C.; Valor, A.; Hallen, J.M.
2009-01-01
The probability distributions of external-corrosion pit depth and pit growth rate were investigated in underground pipelines using Monte Carlo simulations. The study combines a predictive pit growth model developed by the authors with the observed distributions of the model variables in a range of soils. Depending on the pipeline age, any of the three maximal extreme value distributions, i.e. Weibull, Frechet or Gumbel, can arise as the best fit to the pitting depth and rate data. The Frechet distribution best fits the corrosion data for long exposure periods. This can be explained by considering the long-term stabilization of the diffusion-controlled pit growth. The findings of the study provide reliability analysts with accurate information regarding the stochastic characteristics of the pitting damage in underground pipelines.
Energy Technology Data Exchange (ETDEWEB)
Caleyo, F. [Departamento de Ingenieria Metalurgica, ESIQIE, IPN, UPALM Edif. 7, Zacatenco, 07738 Mexico, D.F. (Mexico)], E-mail: fcaleyo@gmail.com; Velazquez, J.C. [Departamento de Ingenieria Metalurgica, ESIQIE, IPN, UPALM Edif. 7, Zacatenco, 07738 Mexico, D.F. (Mexico); Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado, 10400, La Habana (Cuba); Hallen, J.M. [Departamento de Ingenieria Metalurgica, ESIQIE, IPN, UPALM Edif. 7, Zacatenco, 07738 Mexico, D.F. (Mexico)
2009-09-15
The probability distributions of external-corrosion pit depth and pit growth rate were investigated in underground pipelines using Monte Carlo simulations. The study combines a predictive pit growth model developed by the authors with the observed distributions of the model variables in a range of soils. Depending on the pipeline age, any of the three maximal extreme value distributions, i.e. Weibull, Frechet or Gumbel, can arise as the best fit to the pitting depth and rate data. The Frechet distribution best fits the corrosion data for long exposure periods. This can be explained by considering the long-term stabilization of the diffusion-controlled pit growth. The findings of the study provide reliability analysts with accurate information regarding the stochastic characteristics of the pitting damage in underground pipelines.
Dose rate distribution for products irradiated in a semi-industrial irradiation plant. 1st stage
International Nuclear Information System (INIS)
Mangussi, J.
2005-01-01
The model of the bulk product absorbed dose rate distribution in a semi industrial irradiation plant is presented. In this plant the products are subject to a dynamic irradiation process: single-plaque, single-direction, four-passes. The additional two passes, also one on each side of the plaque, serve to minimize the lateral dose variation as well as the depth-dose non-uniformity. The first stage of this model takes only into account the direct absorbed dose rate; the model outputs are the depth-dose distribution and the lateral-dose distribution. The calculated absorbed dose in the bulk product and its uniformity-ratio after the dynamic irradiation process for different products is compared. The model results are in good agreement with the experimental measurements in a bulk of irradiated product; and the air absorbed dose rate in the irradiation chamber behind the product subject to the dynamic irradiation process. (author) [es
Measurement of angular distribution of cosmic-ray muon fluence rate
International Nuclear Information System (INIS)
Lin, Jeng-Wei; Chen, Yen-Fu; Sheu, Rong-Jiun; Jiang, Shiang-Huei
2010-01-01
In this work a Berkeley Lab cosmic ray detector was used to measure the angular distribution of the cosmic-ray muon fluence rate. Angular response functions of the detector at each measurement orientation were calculated by using the FLUKA Monte Carlo code, where no energy attenuation was taken into account. Coincidence counting rates were measured at ten orientations with equiangular intervals. The muon angular fluence rate spectrum was unfolded from the measured counting rates associated with the angular response functions using both the MAXED code and the parameter adjusting method.
On the symmetric α-stable distribution with application to symbol error rate calculations
Soury, Hamza
2016-12-24
The probability density function (PDF) of the symmetric α-stable distribution is investigated using the inverse Fourier transform of its characteristic function. For general values of the stable parameter α, it is shown that the PDF and the cumulative distribution function of the symmetric stable distribution can be expressed in terms of the Fox H function as closed-form. As an application, the probability of error of single input single output communication systems using different modulation schemes with an α-stable perturbation is studied. In more details, a generic formula is derived for generalized fading distribution, such as the extended generalized-k distribution. Later, simpler expressions of these error rates are deduced for some selected special cases and compact approximations are derived using asymptotic expansions.
International Nuclear Information System (INIS)
Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.; Glushkov, E. S.; Kompaniets, G. V.; Moroz, N. P.; Nevinitsa, V. A.; Nosov, V. I.; Smirnov, O. N.; Fomichenko, P. A.; Zimin, A. A.
2012-01-01
Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of 235 U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of 235 U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)
Measurement of spatial dose-rate distribution using a position sensitive detector
International Nuclear Information System (INIS)
Emoto, T.; Torii, T.; Nozaki, T.; Ando, H.
1994-01-01
Recently, the radiation detectors using plastic scintillation fibers (PSF) have been developed to measure the positions exposed to radiation such as neutrons and high energy charged particles. In particular, the time of flight (TOF) method for measuring the difference of time that two directional signals of scintillation light reach both ends of a PSF is a rather simple method for the measurement of the spatial distribution of fast neutron fluence rate. It is possible to use the PSF in nuclear facility working areas because of its flexibility, small diameter and long length. In order to apply TOF method to measure spatial gamma dose rate distribution, the characteristic tests of a detector using PSFs were carried out. First, the resolution of irradiated positions and the counting efficiency were measured with collimated gamma ray. The sensitivity to unit dose rate was also obtained. The measurement of spatial dose rate distribution was also carried out. The sensor is made of ten bundled PSFs, and the experimental setup is described. The experiment and the results are reported. It was found that the PSF detector has the good performance to measure spatial gamma dose rate distribution. (K.I.)
Key rate of quantum key distribution with hashed two-way classical communication
International Nuclear Information System (INIS)
Watanabe, Shun; Matsumoto, Ryutaroh; Uyematsu, Tomohiko; Kawano, Yasuhito
2007-01-01
We propose an information reconciliation protocol that uses two-way classical communication. The key rates of quantum key distribution (QKD) protocols that use our protocol are higher than those using previously known protocols for a wide range of error rates for the Bennett-Brassard 1984 and six-state protocols. We also clarify the relation between the proposed and known QKD protocols, and the relation between the proposed protocol and entanglement distillation protocols
Quantum key distribution with finite resources: Secret key rates via Renyi entropies
Energy Technology Data Exchange (ETDEWEB)
Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus; Bruss, Dagmar [Institute for Theoretical Physics III, Heinrich-Heine-universitaet Duesseldorf, D-40225 Duesseldorf (Germany)
2011-09-15
A realistic quantum key distribution (QKD) protocol necessarily deals with finite resources, such as the number of signals exchanged by the two parties. We derive a bound on the secret key rate which is expressed as an optimization problem over Renyi entropies. Under the assumption of collective attacks by an eavesdropper, a computable estimate of our bound for the six-state protocol is provided. This bound leads to improved key rates in comparison to previous results.
Quantum key distribution with finite resources: Secret key rates via Renyi entropies
International Nuclear Information System (INIS)
Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus; Bruss, Dagmar
2011-01-01
A realistic quantum key distribution (QKD) protocol necessarily deals with finite resources, such as the number of signals exchanged by the two parties. We derive a bound on the secret key rate which is expressed as an optimization problem over Renyi entropies. Under the assumption of collective attacks by an eavesdropper, a computable estimate of our bound for the six-state protocol is provided. This bound leads to improved key rates in comparison to previous results.
Impact of Alternative Rate Structures on Distributed Solar Customer Electricity Bills
Energy Technology Data Exchange (ETDEWEB)
McLaren, Joyce A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-03-02
Electric utilities are increasingly proposing changes to residential rate structures, in order to address concerns about their inability to recover fixed system costs from customers with grid connected distributed generation. The most common proposals have been to increase fixed charges, set minimum bills or instigate residential demand charges. This presentation provides results of an analysis to explore how these rate design alternatives impact electricity bills for PV and non-PV customers.
Hopkins, D L; Toohey, E S; Lamb, T A; Kerr, M J; van de Ven, R; Refshauge, G
2011-08-01
The temperature when the pH=6.0 (temp@pH6) impacts on the tenderness and eating quality of sheep meat. Due to the expense, sarcomere length is not routinely measured as a variable to explain variation in shear force, but whether measures such as temp@pH6 are as useful a parameter needs to be established. Measures of rigor onset in 261 carcases, including the temp@pH6, were evaluated in this study for their ability to explain some of the variation in shear force. The results show that for 1 day aged product combinations of the temp@pH6, the pH at 18 °C and the pH at 24 h provided a larger reduction (almost double) in total shear force variation than sarcomere length alone, with pH at 24 h being the single best measure. For 5 day aged product, pH at 18 °C was the single best measure. Inclusion of sarcomere length did represent some improvement, but the marginal increase would not be cost effective. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Volatility modeling for IDR exchange rate through APARCH model with student-t distribution
Nugroho, Didit Budi; Susanto, Bambang
2017-08-01
The aim of this study is to empirically investigate the performance of APARCH(1,1) volatility model with the Student-t error distribution on five foreign currency selling rates to Indonesian rupiah (IDR), including the Swiss franc (CHF), the Euro (EUR), the British pound (GBP), Japanese yen (JPY), and the US dollar (USD). Six years daily closing rates over the period of January 2010 to December 2016 for a total number of 1722 observations have analysed. The Bayesian inference using the efficient independence chain Metropolis-Hastings and adaptive random walk Metropolis methods in the Markov chain Monte Carlo (MCMC) scheme has been applied to estimate the parameters of model. According to the DIC criterion, this study has found that the APARCH(1,1) model under Student-t distribution is a better fit than the model under normal distribution for any observed rate return series. The 95% highest posterior density interval suggested the APARCH models to model the IDR/JPY and IDR/USD volatilities. In particular, the IDR/JPY and IDR/USD data, respectively, have significant negative and positive leverage effect in the rate returns. Meanwhile, the optimal power coefficient of volatility has been found to be statistically different from 2 in adopting all rate return series, save the IDR/EUR rate return series.
Modeling of shear wall buildings
Energy Technology Data Exchange (ETDEWEB)
Gupta, A K [North Carolina State Univ., Raleigh (USA). Dept. of Civil Engineering
1984-05-01
Many nuclear power plant buildings, for example, the auxiliary building, have reinforced concrete shear walls as the primary lateral load resisting system. Typically, these walls have low height to length ratio, often less than unity. Such walls exhibit marked shear lag phenomenon which would affect their bending stiffness and the overall stress distribution in the building. The deformation and the stress distribution in walls have been studied which is applicable to both the short and the tall buildings. The behavior of the wall is divided into two parts: the symmetric flange action and the antisymmetry web action. The latter has two parts: the web shear and the web bending. Appropriate stiffness equations have been derived for all the three actions. These actions can be synthesized to solve any nonlinear cross-section. Two specific problems, that of lateral and torsional loadings of a rectangular box, have been studied. It is found that in short buildings shear lag plays a very important role. Any beam type formulation which either ignores shear lag or includes it in an idealized form is likely to lead to erroneous results. On the other hand a rigidity type approach with some modifications to the standard procedures would yield nearly accurate answers.
Exponential Shear Flow of Linear, Entangled Polymeric Liquids
DEFF Research Database (Denmark)
Neergaard, Jesper; Park, Kyungho; Venerus, David C.
2000-01-01
A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data......, and suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively...
Energy Technology Data Exchange (ETDEWEB)
Weise, K.
2004-06-01
Recent metrological developments concerning measurement uncertainty, founded on Bayesian statistics, give rise to a revision of several parts of the DIN 25482 and ISO 11929 standard series. These series stipulate detection limits and decision thresholds for ionizing-radiation measurements. Part 3 and, respectively, part 4 of them deal with measurements by use of linear-scale analogue ratemeters. A normal frequency distribution of the momentary ratemeter indication for a fixed count rate value is assumed. The actual distribution, which is first calculated numerically by solving an integral equation, differs, however, considerably from the normal distribution although this one represents an approximation of it for sufficiently large values of the count rate to be measured. As is shown, this similarly holds true for the Bayesian probability distribution of the count rate for sufficiently large given measured values indicated by the ratemeter. This distribution follows from the first one mentioned by means of the Bayes theorem. Its expectation value and variance are needed for the standards to be revised on the basis of Bayesian statistics. Simple expressions are given by the present standards for estimating these parameters and for calculating the detection limit and the decision threshold. As is also shown, the same expressions can similarly be used as sufficient approximations by the revised standards if, roughly, the present indicated value exceeds the reciprocal ratemeter relaxation time constant. (orig.)
2011-01-05
... $150 filing fee, must be addressed to: Copyright Royalty Board, P.O. Box 70977, Washington, DC 20024... LIBRARY OF CONGRESS Copyright Royalty Board [Docket No. 2011-3 CRB Phonorecords II] Adjustment or Determination of Compulsory License Rates for Making and Distributing Phonorecords AGENCY: Copyright Royalty...
Mallards feed longer to maintain intake rate under competition on a natural food distribution
Van Dijk, J.G.B.; Duijns, S.; Gyimesi, A.; De Boer, W.F.; Nolet, B.A.
2012-01-01
Animals foraging in groups may benefit from a faster detection of food and predators, but competition by conspecifics may reduce intake rate. Competition may also alter the foraging behaviour of individuals, which can be influenced by dominance status and the way food is distributed over the
Particle size distribution effect on burn rate of ammonium nitrate based propellant
Miedema, J.R.; Klein, A.J.J.; Zee, F.W.M.
1995-01-01
Burn rate control of a Phase Stabilised Ammonium Nitrate (PSAN) propellant by specific surface area (SSA) tuning of the PSAN oxidiser resulted in unexpected effects of applying a new batch of PSAN having a different particle size distribution. Analysis of the deviations and consultation of
Mallards Feed Longer to Maintain Intake Rate under Competition on a Natural Food Distribution
van Dijk, J.G.B.; Duijns, S.; Gyimesi, A.; de Boer, W.F.; Nolet, B.A.
2012-01-01
Animals foraging in groups may benefit from a faster detection of food and predators, but competition by conspecifics may reduce intake rate. Competition may also alter the foraging behaviour of individuals, which can be influenced by dominance status and the way food is distributed over the
Gamow-Teller strength distributions and electron capture rates for 55Co and 56Ni
International Nuclear Information System (INIS)
Nabi, Jameel-Un; Rahman, Muneeb-Ur
2005-01-01
The Gamow-Teller strength (GT) distributions and electron capture rates on 55 Co and 56 Ni have been calculated using the proton-neutron quasiparticle random phase approximation theory. We calculate these weak interaction mediated rates over a wide temperature (0.01x10 9 -30x10 9 K) and density (10-10 11 gcm -3 ) domain. Electron capture process is one of the essential ingredients involved in the complex dynamics of supernova explosion. Our calculations of electron capture rates show differences with the reported shell model diagonalization approach calculations and are comparatively enhanced at presupernova temperatures. We note that the GT strength is fragmented over many final states
The importance of strain localisation in shear zones
Bons, Paul D.; Finch, Melanie; Gomez-Rivas, Enrique; Griera, Albert; Llorens, Maria-Gema; Steinbach, Florian; Weikusat, Ilka
2016-04-01
The occurrence of various types of shear bands (C, C', C'') in shear zones indicate that heterogeneity of strain is common in strongly deformed rocks. However, the importance of strain localisation is difficult to ascertain if suitable strain markers are lacking, which is usually the case. Numerical modelling with the finite-element method has so far not given much insight in the development of shear bands. We suggest that this is not only because the modelled strains are often not high enough, but also because this technique (that usually assumes isotropic material properties within elements) does not properly incorporate mineral deformation behaviour. We simulated high-strain, simple-shear deformation in single- and polyphase materials with a full-field theory (FFT) model coupled to the Elle modelling platform (www.elle.ws; Lebensohn 2001; Bons et al. 2008). The FFT-approach simulates visco-plastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses in relations to the applied stresses. Griera et al. (2011; 2013) have shown that this approach is particularly well suited for strongly anisotropic minerals, such as mica and ice Ih (Llorens 2015). We modelled single- and polyphase composites of minerals with different anisotropies and strengths, roughly equivalent to minerals such as ice Ih, mica, quartz and feldspar. Single-phase polycrystalline aggregates show distinct heterogeneity of strain rate, especially in case of ice Ih, which is mechanically close to mica (see also Griera et al. 2015). Finite strain distributions are heterogeneous as well, but the patterns may differ from that of the strain rate distribution. Dynamic recrystallisation, however, usually masks any strain and strain rate localisation (Llorens 2015). In case of polyphase aggregates, equivalent to e.g. a granite, we observe extensive localisation in both syn- and antithetic shear bands. The antithetic shear bands
Directory of Open Access Journals (Sweden)
Massoud Tabesh
2011-07-01
Full Text Available Optimum operation of water distribution networks is one of the priorities of sustainable development of water resources, considering the issues of increasing efficiency and decreasing the water losses. One of the key subjects in optimum operational management of water distribution systems is preparing rehabilitation and replacement schemes, prediction of pipes break rate and evaluation of their reliability. Several approaches have been presented in recent years regarding prediction of pipe failure rates which each one requires especial data sets. Deterministic models based on age and deterministic multi variables and stochastic group modeling are examples of the solutions which relate pipe break rates to parameters like age, material and diameters. In this paper besides the mentioned parameters, more factors such as pipe depth and hydraulic pressures are considered as well. Then using multi variable regression method, intelligent approaches (Artificial neural network and neuro fuzzy models and Evolutionary polynomial Regression method (EPR pipe burst rate are predicted. To evaluate the results of different approaches, a case study is carried out in a part ofMashhadwater distribution network. The results show the capability and advantages of ANN and EPR methods to predict pipe break rates, in comparison with neuro fuzzy and multi-variable regression methods.
Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks.
Directory of Open Access Journals (Sweden)
Saket Navlakha
2015-07-01
Full Text Available Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains.
Directory of Open Access Journals (Sweden)
B. Verheggen
2006-01-01
Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.
Shear layer flame stabilization sensitivities in a swirling flow
Directory of Open Access Journals (Sweden)
Christopher Foley
2017-03-01
Full Text Available A variety of different flame configurations and heat release distributions exist in high swirl, annular flows, due to the existence of inner and outer shear layers as well a vortex breakdown bubble. Each of these different configurations, in turn, has different thermoacoustic sensitivities and influences on combustor emissions, nozzle durability, and liner heating. This paper presents findings on the sensitivities of the outer shear layer- stabilized flames to a range of parameters, including equivalence ratio, bulkhead temperature, flow velocity, and preheat temperature. There is significant hysteresis for flame attachment/detachment from the outer shear layer and this hysteresis is also described. Results are also correlated with extinction stretch rate calculations based on detailed kinetic simulations. In addition, we show that the bulkhead temperature near the flame attachment point has significant impact on outer shear layer detachment. This indicates that understanding the heat transfer between the edge flame stabilized in the shear layer and the nozzle hardware is needed in order to predict shear layer flame stabilization limits. Moreover, it shows that simulations cannot simply assume adiabatic boundary conditions if they are to capture these transitions. We also show that the reference temperature for correlating these transitions is quite different for attachment and local blow off. Finally, these results highlight the deficiencies in current understanding of the influence of fluid mechanic parameters (e.g. velocity, swirl number on shear layer flame attachment. For example, they show that the seemingly simple matter of scaling flame transition points with changes in flow velocities is not understood.
Directory of Open Access Journals (Sweden)
Purczyńskiz Jan
2014-07-01
Full Text Available This paper examines the application of the so called generalized Student’s t-distribution in modeling the distribution of empirical return rates on selected Warsaw stock exchange indexes. It deals with distribution parameters by means of the method of logarithmic moments, the maximum likelihood method and the method of moments. Generalized Student’s t-distribution ensures better fitting to empirical data than the classical Student’s t-distribution.
Directory of Open Access Journals (Sweden)
Mahesh Varpe
2013-01-01
Full Text Available This paper explores the effect of inlet shear flow on the tip leakage flow in an axial flow compressor cascade. A flow with a high shear rate is generated in the test section of an open circuit cascade wind tunnel by using a combination of screens with a prescribed solidity. It is observed that a stable shear flow of shear rate 1.33 is possible and has a gradual decay rate until 15 times the height of the shear flow generator downstream. The computational results obtained agree well with the available experimental data on the baseline configuration. The detailed numerical analysis shows that the tip clearance improves the blade loading near the tip through the promotion of favorable incidence by the tip leakage flow. The tip clearance shifts the centre of pressure on the blade surface towards the tip. It, however, has no effect on the distribution of end wall loss and deviation angle along the span up to 60% from the hub. In the presence of a shear inflow, the end wall effects are considerable. On the other hand, with a shear inflow, the effects of tip leakage flow are observed to be partly suppressed. The shear flow reduces the tip leakage losses substantially in terms of kinetic energy associated with it.
Gamma prior distribution selection for Bayesian analysis of failure rate and reliability
International Nuclear Information System (INIS)
Waler, R.A.; Johnson, M.M.; Waterman, M.S.; Martz, H.F. Jr.
1977-01-01
It is assumed that the phenomenon under study is such that the time-to-failure may be modeled by an exponential distribution with failure-rate parameter, lambda. For Bayesian analyses of the assumed model, the family of gamma distributions provides conjugate prior models for lambda. Thus, an experimenter needs to select a particular gamma model to conduct a Bayesian reliability analysis. The purpose of this paper is to present a methodology which can be used to translate engineering information, experience, and judgment into a choice of a gamma prior distribution. The proposed methodology assumes that the practicing engineer can provide percentile data relating to either the failure rate or the reliability of the phenomenon being investigated. For example, the methodology will select the gamma prior distribution which conveys an engineer's belief that the failure rate, lambda, simultaneously satisfies the probability statements, P(lambda less than 1.0 x 10 -3 ) = 0.50 and P(lambda less than 1.0 x 10 -5 ) = 0.05. That is, two percentiles provided by an engineer are used to determine a gamma prior model which agrees with the specified percentiles. For those engineers who prefer to specify reliability percentiles rather than the failure-rate percentiles illustrated above, one can use the induced negative-log gamma prior distribution which satisfies the probability statements, P(R(t 0 ) less than 0.99) = 0.50 and P(R(t 0 ) less than 0.99999) = 0.95 for some operating time t 0 . Also, the paper includes graphs for selected percentiles which assist an engineer in applying the methodology
Gamma prior distribution selection for Bayesian analysis of failure rate and reliability
International Nuclear Information System (INIS)
Waller, R.A.; Johnson, M.M.; Waterman, M.S.; Martz, H.F. Jr.
1976-07-01
It is assumed that the phenomenon under study is such that the time-to-failure may be modeled by an exponential distribution with failure rate lambda. For Bayesian analyses of the assumed model, the family of gamma distributions provides conjugate prior models for lambda. Thus, an experimenter needs to select a particular gamma model to conduct a Bayesian reliability analysis. The purpose of this report is to present a methodology that can be used to translate engineering information, experience, and judgment into a choice of a gamma prior distribution. The proposed methodology assumes that the practicing engineer can provide percentile data relating to either the failure rate or the reliability of the phenomenon being investigated. For example, the methodology will select the gamma prior distribution which conveys an engineer's belief that the failure rate lambda simultaneously satisfies the probability statements, P(lambda less than 1.0 x 10 -3 ) equals 0.50 and P(lambda less than 1.0 x 10 -5 ) equals 0.05. That is, two percentiles provided by an engineer are used to determine a gamma prior model which agrees with the specified percentiles. For those engineers who prefer to specify reliability percentiles rather than the failure rate percentiles illustrated above, it is possible to use the induced negative-log gamma prior distribution which satisfies the probability statements, P(R(t 0 ) less than 0.99) equals 0.50 and P(R(t 0 ) less than 0.99999) equals 0.95, for some operating time t 0 . The report also includes graphs for selected percentiles which assist an engineer in applying the procedure. 28 figures, 16 tables
Distributed Fair Auto Rate Medium Access Control for IEEE 802.11 Based WLANs
Zhu, Yanfeng; Niu, Zhisheng
Much research has shown that a carefully designed auto rate medium access control can utilize the underlying physical multi-rate capability to exploit the time-variation of the channel. In this paper, we develop a simple analytical model to elucidate the rule that maximizes the throughput of RTS/CTS based multi-rate wireless local area networks. Based on the discovered rule, we propose two distributed fair auto rate medium access control schemes called FARM and FARM+ from the view-point of throughput fairness and time-share fairness, respectively. With the proposed schemes, after receiving a RTS frame, the receiver selectively returns the CTS frame to inform the transmitter the maximum feasible rate probed by the signal-to-noise ratio of the received RTS frame. The key feature of the proposed schemes is that they are capable of maintaining throughput/time-share fairness in asymmetric situation where the distribution of SNR varies with stations. Extensive simulation results show that the proposed schemes outperform the existing throughput/time-share fair auto rate schemes in time-varying channel conditions.
International Nuclear Information System (INIS)
Banks, H T; Davis, Jimena L; Ernstberger, Stacey L; Hu, Shuhua; Artimovich, Elena; Dhar, Arun K
2009-01-01
We discuss inverse problem results for problems involving the estimation of probability distributions using aggregate data for growth in populations. We begin with a mathematical model describing variability in the early growth process of size-structured shrimp populations and discuss a computational methodology for the design of experiments to validate the model and estimate the growth-rate distributions in shrimp populations. Parameter-estimation findings using experimental data from experiments so designed for shrimp populations cultivated at Advanced BioNutrition Corporation are presented, illustrating the usefulness of mathematical and statistical modeling in understanding the uncertainty in the growth dynamics of such populations
Distributed Fair Access Point Selection for Multi-Rate IEEE 802.11 WLANs
Gong, Huazhi; Nahm, Kitae; Kim, Jongwon
In IEEE 802.11 networks, the access point (AP) selection based on the strongest signal strength often results in the extremely unfair bandwidth allocation among mobile users (MUs). In this paper, we propose a distributed AP selection algorithm to achieve a fair bandwidth allocation for MUs. The proposed algorithm gradually balances the AP loads based on max-min fairness for the available multiple bit rate choices in a distributed manner. We analyze the stability and overhead of the proposed algorithm, and show the improvement of the fairness via computer simulation.
Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco
2018-01-01
Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.
Directory of Open Access Journals (Sweden)
Oreiro José Luis
2013-01-01
Full Text Available This article analyzes the relationship between economic growth, income distribution and real exchange rate within the neo-Kaleckian literature, through the construction of a nonlinear macrodynamic model for an open economy in which investment in fixed capital is assumed to be a quadratic function of the real exchange rate. The model demonstrates that the prevailing regime of accumulation in a given economy depends on the type of currency misalignment, so if the real exchange rate is overvalued, then the regime of accumulation will be profit-led, but if the exchange rate is undervalued, then the accumulation regime is wage-led. Subsequently, the adherence of the theoretical model to data is tested for Brazil in the period 1994/Q3-2008/Q4. The econometric results are consistent with the theoretical non-linear specification of the investment function used in the model, so that we can define the existence of a real exchange rate that maximizes the rate of capital accumulation for the Brazilian economy. From the estimate of this optimal rate we show that the real exchange rate is overvalued in 1994/Q3- 2001/Q1 and 2005/Q4-2008/Q4 and undervalued in the period 2001/Q2-2005/Q3. As a direct corollary of this result, it follows that the prevailing regime of accumulation in the Brazilian economy after the last quarter of 2005 is profit-led.
Influence of water relations and growth rate on plant element uptake and distribution
Energy Technology Data Exchange (ETDEWEB)
Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany
2006-02-15
Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution.
Influence of water relations and growth rate on plant element uptake and distribution
International Nuclear Information System (INIS)
Greger, Maria
2006-02-01
Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution
Distribution and characteristics of gamma and cosmic ray dose rate in living environment
International Nuclear Information System (INIS)
Nagaoka, Toshi; Moriuchi, Shigeru
1991-01-01
A series of environmental radiation surveys was carried out from the viewpoint of characterizing the natural radiation dose rate distribution in the living environment, including natural and artificial ones. Through the analysis of the data obtained at numbers of places, several aspects of the radiation field in living environments were clarified. That is the gamma ray dose rate varies due to the following three dominant causes: 1) the radionuclide concentration of surrounding materials acting as gamma ray sources, 2) the spatial distribution of surrounding materials, and 3) the geometrical and shielding conditions between the natural gamma ray sources and the measured point; whereas, the cosmic ray dose rate varies due to the thickness of upper shielding materials. It was also suggested that the gamma ray dose rate generally shows an upward tendency, and the cosmic ray dose rate a downward one in artificial environment. This kind of knowledge is expected to serve as fundamental information for accurate and realistic evaluation of the collective dose in the living environment. (author)
Energy Technology Data Exchange (ETDEWEB)
Usami, S.; Suzuoki, Z.; Deshimaru, T. [Monju Construction Office, Japan Nuclear Cycle Development Institute, Fukui-ken (Japan); Nakashima, F. [Tsuruga head Office, Japan Nuclear Cycle Development Institute, Fukui-ken (Japan)
2001-07-01
Monju is a prototype fast breeder reactor designed to have an output of 280 MW (714 MWt), fueled with mixed oxides of plutonium and uranium and cooled by liquid sodium. The principal data on plant design and performance are shown in Table 1. Monju attained initial criticality in April 1994 and the reactor physics tests were carried out from May through November 1994. The reaction rate distribution measurement by the foil activation method was one of these tests and was carried out in order to verify the core performance and to contribute to the development of the core design methods. On the basis of the reaction rate measurement data, the Monju initial core breeding ratio and the power distribution were evaluated. (author)
Asymmetric power device rating selection for even temperature distribution in NPC inverter
DEFF Research Database (Denmark)
Choi, Uimin; Blaabjerg, Frede
2017-01-01
the power rating and lifetime of the NPC inverter are limited by the most stressed devices. In this paper, an asymmetric power device rating selection method for the NPC inverter is proposed in order to balance the lifetimes of the power devices. The thermal distribution of the power devices is analyzed......A major drawback of the NPC inverter is an unequal power loss distribution among the power devices which leads to unequal temperature stress among them. Therefore, certain power devices experience higher temperature stress, which is the main cause of power device module failure and thus both...... based on 30 kW NPC inverter as a case study. Analytical power loss and thermal impedance models depending on the chip size are derived. Finally, using these models, the junction temperatures of the power devices depending on the chip size is discussed and a proper chip size for an even temperature...
International Nuclear Information System (INIS)
Usami, S.; Suzuoki, Z.; Deshimaru, T.; Nakashima, F.
2001-01-01
Monju is a prototype fast breeder reactor designed to have an output of 280 MW (714 MWt), fueled with mixed oxides of plutonium and uranium and cooled by liquid sodium. The principal data on plant design and performance are shown in Table 1. Monju attained initial criticality in April 1994 and the reactor physics tests were carried out from May through November 1994. The reaction rate distribution measurement by the foil activation method was one of these tests and was carried out in order to verify the core performance and to contribute to the development of the core design methods. On the basis of the reaction rate measurement data, the Monju initial core breeding ratio and the power distribution were evaluated. (author)
The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters
Li, Xue; Hjorth, Jens; Richard, Johan
2012-11-01
Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector and determine cosmological parameters. We here present an analysis of the time-delay distribution of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability distribution functions are well represented by P(log Δt) = 5.3 × 10-4Δttilde beta/M2502tilde beta, with tilde beta = 0.77, where M250 is the projected cluster mass inside 250 kpc (in 1014M⊙), and tilde beta is the power-law slope of the distribution. The resultant probability distribution function enables us to estimate the time-delay distribution in a lensing cluster of known mass. For a cluster with M250 = 2 × 1014M⊙, the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an example, its dark halo and brightest galaxies, with central velocity dispersions σ>=500kms-1, mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating smaller time delays. We estimate the probability of observing multiple images of a supernova in the known images of Abell 1689. A two-component model of estimating the supernova rate is applied in this work. For a magnitude threshold of mAB = 26.5, the yearly rate of Type Ia (core-collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the magnitude threshold is lowered to mAB ~ 27.0, the rate of core-collapse supernovae suitable for time delay observation is 0.044±0.015 per year.
Wang, Yongli; Wang, Gang; Zuo, Yi; Fan, Lisha; Wei, Jiaxiang
2017-03-01
On March 15, 2015, the central office issued the "Opinions on Further Deepening the Reform of Electric Power System" (in the 2015 No. 9). This policy marks the central government officially opened a new round of electricity reform. As a programmatic document under the new situation to comprehensively promote the reform of the power system, No. 9 document will be approved as a separate transmission and distribution of electricity prices, which is the first task of promoting the reform of the power system. Grid tariff reform is not only the transmission and distribution price of a separate approval, more of the grid company input-output relationship and many other aspects of deep-level adjustments. Under the background of the reform of the transmission and distribution price, the main factors affecting the input-output relationship, such as the main business, electricity pricing, and investment approval, financial accounting and so on, have changed significantly. The paper designed the comprehensive evaluation index system of power grid enterprises' credit rating under the reform of transmission and distribution price to reduce the impact of the reform on the company's international rating results and the ability to raise funds.
Experimental Investigation of Adiabatic Shear Banding at Different Impact Velocities
1993-01-01
plasticity and ASB’s is the Double-notch Shear specimen, it has been decided to use this concept in shear testing at medium and high strain rates...is the Double-notch Shear specimen. it has been decided to use this concept in shear testing at medium and high strain rates. Originally, Campbell...7] C. Fressengeas, Analyse dynamique 61asto-viscoplastique de l’h6tdrogdndit6 de la ddforma- tion plastique de cisalllement, Proc. Int. Conf. on
A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface.
Hamdy, Omnia; El-Azab, Jala; Al-Saeed, Tarek A; Hassan, Mahmoud F; Solouma, Nahed H
2017-09-20
Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters' values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis.
A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface
Directory of Open Access Journals (Sweden)
Omnia Hamdy
2017-09-01
Full Text Available Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters’ values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis.
Semiconductor laser shearing interferometer
International Nuclear Information System (INIS)
Ming Hai; Li Ming; Chen Nong; Xie Jiaping
1988-03-01
The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs
International Nuclear Information System (INIS)
Ebadian, M.A.; Dua, S.K.; Hillol Guha
2001-01-01
During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 microm) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 micro
Comparison of measured and calculated reaction rate distributions in an scwr-like test lattice
Energy Technology Data Exchange (ETDEWEB)
Raetz, Dominik, E-mail: dominik.raetz@psi.ch [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Jordan, Kelly A., E-mail: kelly.jordan@psi.ch [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Murphy, Michael F., E-mail: mike.murphy@psi.ch [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Perret, Gregory, E-mail: gregory.perret@psi.ch [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Chawla, Rakesh, E-mail: rakesh.chawla@psi.ch [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, EPFL (Switzerland)
2011-04-15
High resolution gamma-ray spectroscopy measurements were performed on 61 rods of an SCWR-like fuel lattice, after irradiation in the central test zone of the PROTEUS zero-power research reactor at the Paul Scherrer Institute in Switzerland. The derived reaction rates are the capture rate in {sup 238}U (C{sub 8}) and the total fission rate (F{sub tot}), and also the reaction rate ratio C{sub 8}/F{sub tot}. Each of these has been mapped rod-wise on the lattice and compared to calculated results from whole-reactor Monte Carlo simulations with MCNPX. Ratios of calculated to experimental values (C/E's) have been assessed for the C{sub 8}, F{sub tot} and C{sub 8}/F{sub tot} distributions across the lattice. These C/E's show excellent agreement between the calculations and the measurements. For the {sup 238}U capture rate distribution, the 1{sigma} level in the comparisons corresponds to an uncertainty of {+-}0.8%, while for the total fission rate the corresponding value is {+-}0.4%. The uncertainty for C{sub 8}/F{sub tot}, assessed as a reaction rate ratio characterizing each individual rod position in the test lattice, is significantly higher at {+-}2.2%. To determine the reproducibility of these results, the measurements were performed twice, once in 2006 and again in 2009. The agreement between these two measurement sets is within the respective statistical uncertainties.
Directory of Open Access Journals (Sweden)
J. Szilagyi
2009-05-01
Full Text Available Under simplifying conditions catchment-scale vapor pressure at the drying land surface can be calculated as a function of its watershed-representative temperature (<T_{s}> by the wet-surface equation (WSE, similar to the wet-bulb equation in meteorology for calculating the dry-bulb thermometer vapor pressure of the Complementary Relationship of evaporation. The corresponding watershed ET rate,
Directory of Open Access Journals (Sweden)
Gilvanete Maria Ferreira
2008-06-01
Full Text Available O comportamento reológico da polpa de cupuaçu integral foi determinado na faixa de temperatura de 10 a 60ºC. Os efeitos da temperatura e da taxa de deformação foram avaliados por meio de testes em cisalhamento estacionário. As análises reológicas foram conduzidas num reômetro Thermo Haake RheoStress 1. Os reogramas foram descritos pelos modelos reológicos de Ostwald-de-Waelle e o de Herschel-Bulkley. As curvas de escoamento mais bem ajustadas pelo modelo de Ostwald-de-Waelle. O produto apresentou comportamento pseudoplástico, e o índice de comportamento de fluxo (n decresceu com o aumento da temperatura. O efeito da temperatura sobre a viscosidade aparente foi descrita por uma equação tipo Arrhenius e discutida em termos de energia de ativação. Essa energia aumentou com o aumento da taxa de deformação, sendo obtidos valores na faixa de 1 a 2 kcal/gmol.The rheological behavior of the entire cupuassu pulp was determined in the temperature range 10 - 60ºC. The effects of temperature and deformation rate were evaluated by means of shear flow tests. Rheometry analyses were conducted with a Thermo Haake RheoStress 1 system. Rheograms were described by models by Ostwald-of-Waelle and Herschel-Bulkley. The Ostwald-of-Waelle model successfully represented pulp flow behavior. The product presented shear-thinning behavior and the flow behavior index (n decreased with the increase of temperature. The effect of temperature on the apparent viscosity in cupuassu pulp was described by an Arrhenius equation and discussed in terms of activation energy. The increase in shear rate caused an energy increase, and values were obtained in the range of a line from 1 to 2 kcal/gmol.
International Nuclear Information System (INIS)
Bistouni, Fathollah; Jahanshahi, Mohsen
2015-01-01
Fault-tolerant multistage interconnection networks (MINs) play a vital role in the performance of multiprocessor systems where reliability evaluation becomes one of the main concerns in analyzing these networks properly. In many cases, the primary objective in system reliability analysis is to compute a failure distribution of the entire system according to that of its components. However, since the problem is known to be NP-hard, in none of the previous efforts, the precise evaluation of the system failure rate has been performed. Therefore, our goal is to investigate this parameter for different fault-tolerant MINs using Weibull life distribution that is one of the most commonly used distributions in reliability. In this paper, four important groups of fault-tolerant MINs will be examined to find the best fault-tolerance techniques in terms of failure rate; (1) Extra-stage MINs, (2) Parallel MINs, (3) Rearrangeable non-blocking MINs, and (4) Replicated MINs. This paper comprehensively analyzes all perspectives of the reliability (terminal, broadcast, and network reliability). Moreover, in this study, all reliability equations are calculated for different network sizes. - Highlights: • The failure rate of different MINs is analyzed by using Weibull life distribution. • This article tries to find the best fault-tolerance technique in the field of MINs. • Complex series-parallel RBDs are used to determine the reliability of the MINs. • All aspects of the reliability (i.e. terminal, broadcast, and network) are analyzed. • All reliability equations will be calculated for different size N×N.
Evaluation of induced activity, decay heat and dose rate distribution after shutdown in ITER
Energy Technology Data Exchange (ETDEWEB)
Maki, Koichi [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Satoh, Satoshi; Hayashi, Katsumi; Yamada, Koubun; Takatsu, Hideyuki; Iida, Hiromasa
1997-03-01
Induced activity, decay heat and dose rate distributions after shutdown were estimated for 1MWa/m{sup 2} operation in ITER. The activity in the inboard blanket one day after shutdown is 1.5x10{sup 11}Bq/cm{sup 3}, and the average decay heating rate 0.01w/cm{sup 3}. The dose rate outside the 120cm thick concrete biological shield is two order higher than the design criterion of 5{mu}Sv/h. This indicates that the biological shield thickness should be enhanced by 50cm in concrete, that is, total thickness 170cm for workers to enter the reactor room and to perform maintenance. (author)
Infrared Tomography: Data Distribution System for Real-time Mass Flow Rate Measurement
Directory of Open Access Journals (Sweden)
Ruzairi Abdul Rahim
2007-06-01
Full Text Available The system developed in this research has the objective of measuring mass flow rate in an online mode. If a single computer is used as data processing unit, a longer time is needed to produce a measurement result. In the research carried out by previous researcher shows about 11.2 seconds is needed to obtain one mass flow rate result in the offline mode (using offline data. This insufficient real-time result will cause problems in a feedback control process when applying the system on industrial plants. To increase the refreshing rate of the measurement result, an investigation on a data distribution system is performed to replace the existing data processing unit.
Chung, W S; Yu, M J; Lee, H D
2004-01-01
The drinking water network serving Korea has been used for almost 100 years. Therefore, pipelines have suffered various degrees of deterioration due to aggressive environments. The pipe breaks were caused by in-external corrosion, water hammer, surface loading, etc. In this paper, we focused on describing corrosion status in water distribution pipes in Korea and reviewing some methods to predict corrosion rates. Results indicate that corrosive water of lakes was more aggressive than river water and the winter was more aggressive compared to other seasons. The roughness growth rates of Dongbok lake showed 0.23 mm/year. The high variation of corrosion rates is controlled by the aging pipes and smaller diameter. Also the phenolphthalein test on a cementitious core of cement mortar lined ductile cast iron pipe indicated the pipes over 15 years old had lost 50-100% of their lime active cross sectional area.
Effects of music on work-rate distribution during a cycling time trial.
Atkinson, G; Wilson, D; Eubank, M
2004-11-01
Previous research work on the ergogenic effects of music has mainly involved constant power tests to exhaustion as dependent variables. Time trials are more externally valid than constant power tests, may be more reliable and allow the distribution of self-selected work-rate to be explored. We examined whether music improved starting, finishing and/or overall power during a 10-km cycling time trial, and whether heart rate and subjective responses to this time trial were altered by music. Sixteen participants performed two 10-km time trials on a Cybex cycle ergometer with, and without, the presence of a form of dance music known as "trance" (tempo = 142 beats x min (-1), volume at ear = 87 dB). Participants also completed the Brunel music rating inventory (BMRI) after each time trial in the music condition. The mean +/- SD time to complete the time trial was 1030 +/- 79 s in the music condition compared to 1052 +/- 77 s without music (95 % CI of difference = 10 to 34 s, p = 0.001). Nevertheless, ratings of perceived exertion were consistently (0.8 units) higher throughout the time trial with music (p music-induced increases in cycling speed and heart rate were observed in the first 3 km of the time trial. After completion of the BMRI, participants rated the "tempo" and "rhythm" of the music as more motivating than the "harmony" and "melody" aspects. These results suggest that music improves cycling speed mostly in the first few minutes of a 10-km time trial. In contrast to the findings of previous research, which suggested that music lowers perceived exertion at a constant work-rate, the participants in our time trials selected higher work-rates with music, whilst at the same time perceived these work-rates as being harder than without music.
Diversification Rates and the Evolution of Species Range Size Frequency Distribution
Directory of Open Access Journals (Sweden)
Silvia Castiglione
2017-11-01
Full Text Available The geographic range sizes frequency distribution (RFD within clades is typically right-skewed with untransformed data, and bell-shaped or slightly left-skewed under the log-transformation. This means that most species within clades occupy diminutive ranges, whereas just a few species are truly widespread. A number of ecological and evolutionary explanations have been proposed to account for this pattern. Among the latter, much attention has been given to the issue of how extinction and speciation probabilities influence RFD. Numerous accounts now convincingly demonstrate that extinction rate decreases with range size, both in living and extinct taxa. The relationship between range size and speciation rate, though, is much less obvious, with either small or large ranged species being proposed to originate more daughter taxa. Herein, we used a large fossil database including 21 animal clades and more than 80,000 fossil occurrences distributed over more than 400 million years of marine metazoans (exclusive of vertebrates evolution, to test the relationship between extinction rate, speciation rate, and range size. As expected, we found that extinction rate almost linearly decreases with range size. In contrast, speciation rate peaks at the large (but not the largest end of the range size spectrum. This is consistent with the peripheral isolation mode of allopatric speciation being the main mechanism of species origination. The huge variation in phylogeny, fossilization potential, time of fossilization, and the overarching effect of mass extinctions suggest caution must be posed at generalizing our results, as individual clades may deviate significantly from the general pattern.
A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter
International Nuclear Information System (INIS)
Mazzanti, G.; Guthrie, S.; Marangoni, A.; Idziak, S.
2007-01-01
We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 o C under shear rates from 45 to 1440 s -1 and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process. As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material
Chen, Rongda; Wang, Ze
2013-01-01
Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management.
Directory of Open Access Journals (Sweden)
Rongda Chen
Full Text Available Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management.
Chen, Rongda; Wang, Ze
2013-01-01
Recovery rate is essential to the estimation of the portfolio’s loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody’s. However, it has a fatal defect that it can’t fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody’s new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558
Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.
1980-01-01
An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.
Anti-islanding Protection of Distributed Generation Using Rate of Change of Impedance
Shah, Pragnesh; Bhalja, Bhavesh
2013-08-01
Distributed Generation (DG), which is interlinked with distribution system, has inevitable effect on distribution system. Integrating DG with the utility network demands an anti-islanding scheme to protect the system. Failure to trip islanded generators can lead to problems such as threats to personnel safety, out-of-phase reclosing, and degradation of power quality. In this article, a new method for anti-islanding protection based on impedance monitoring of distribution network is carried out in presence of DG. The impedance measured between two phases is used to derive the rate of change of impedance (dz/dt), and its peak values are used for final trip decision. Test data are generated using PSCAD/EMTDC software package and the performance of the proposed method is evaluated in MatLab software. The simulation results show the effectiveness of the proposed scheme as it is capable to detect islanding condition accurately. Subsequently, it is also observed that the proposed scheme does not mal-operate during other disturbances such as short circuit and switching event.
Liu, Wei; Kulin, Merima; Kazaz, Tarik; Shahid, Adnan; Moerman, Ingrid; De Poorter, Eli
2017-09-12
Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals' modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI's probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access.
Imaging Shear Strength Along Subduction Faults
Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.
2017-11-01
Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.
Imaging shear strength along subduction faults
Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.
2017-01-01
Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.
Dopkins, Stephen; Varner, Kaitlin; Hoyer, Darin
2017-10-01
In word recognition semantic priming of test words increased the false-alarm rate and the mean of confidence ratings to lures. Such priming also increased the standard deviation of confidence ratings to lures and the slope of the z-ROC function, suggesting that the priming increased the standard deviation of the lure evidence distribution. The Unequal Variance Signal Detection (UVSD) model interpreted the priming as increasing the standard deviation of the lure evidence distribution. Without additional parameters the Dual Process Signal Detection (DPSD) model could only accommodate the results by fitting the data for related and unrelated primes separately, interpreting the priming, implausibly, as decreasing the probability of target recollection (DPSD). With an additional parameter, for the probability of false (lure) recollection the model could fit the data for related and unrelated primes together, interpreting the priming as increasing the probability of false recollection. These results suggest that DPSD estimates of target recollection probability will decrease with increases in the lure confidence/evidence standard deviation unless a parameter is included for false recollection. Unfortunately the size of a given lure confidence/evidence standard deviation relative to other possible lure confidence/evidence standard deviations is often unspecified by context. Hence the model often has no way of estimating false recollection probability and thereby correcting its estimates of target recollection probability.
Measurement of tritium production rate distribution for a fusion-fission hybrid conceptual reactor
International Nuclear Information System (INIS)
Wang Xinhua; Guo Haiping; Mou Yunfeng; Zheng Pu; Liu Rong; Yang Xiaofei; Yang Jian
2013-01-01
A fusion-fission hybrid conceptual reactor is established. It consists of a DT neutron source and a spherical shell of depleted uranium and hydrogen lithium. The tritium production rate (TPR) distribution in the conceptual reactor was measured by DT neutrons using two sets of lithium glass detectors with different thicknesses in the hole in the vertical direction with respect to the D + beam of the Cockcroft-Walton neutron generator in direct current mode. The measured TPR distribution is compared with the calculated results obtained by the three-dimensional Monte Carlo code MCNP5 and the ENDF/B-Ⅵ data file. The discrepancy between the measured and calculated values can be attributed to the neutron data library of the hydrogen lithium lack S(α, β) thermal scattering model, so we show that a special database of low-energy and thermal neutrons should be established in the physics design of fusion-fission hybrid reactors. (authors)
A mathematical model for fluid shear-sensitive 3D tissue construct development.
Liu, Dan; Chua, Chee-Kai; Leong, Kah-Fai
2013-01-01
This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low as 0.002 cm/s, can support much better mass exchange, higher cell number, and more even cell and nutrient distribution compared to static culture. Higher flow rate can further improve nutrient supply and mass exchange in the construct, promoting better nutritious environment and cell proliferation compared to lower flow rate. In addition, consideration of flow shear stress predicts much higher cell number in the construct compared to that without shear consideration. While the nutrient can dominate shear stress in influencing cell proliferation, the shear effect increases with flow rate. The proposed model helps tissue engineers better understand the cell-flow relationship at the molecular level during dynamic culture.
Spatial distribution of soda straws growth rates of the Coufin Cave (Vercors, France
Directory of Open Access Journals (Sweden)
Perrette Yves
2010-07-01
Full Text Available The Choranche Cave system (Vercors, France is an excellent locality for measuring the growth rates of large numbers soda straws. This is especially the case for the Coufin Cave, as enlargement of the cave entrance in 1875 led to a change in stalactite color from brown to white, thus providing a reliable chronomarker. The date of this brown-to-white calcite transition has been confirmed by lamina counting. We measured and georeferenced the growth-lengths of 306 soda straws in a 1m2 area of the roof of the Coufin Cave entrance chamber. Because of the very slow and sometimes inexistent water feeding of those stalactites, hydrochemistry analysis were not achieved and drop rate effect on growth were neglected; this study is based on a geomorphological and geostatistical work. By measuring a large number of soda straws in a very small area for which most of the parameters affecting stalactite growth could be considered uniform, and because flow rates are very slow (frequencies are always superior to 1 drop per half hour, we could ascribe differences in growth rates to variations in the global increase of water flow through the unsaturated matrix. Statistical and geostatistical analyses of the measurements showed that this set of similarly shaped stalactites actually consisted of three Gaussian populations with different mean growth rates: fast growth rate (FGR- mean of 0.92 mm.y-1, medium growth rate (MGR- mean of 0.47 mm.y-1 and low growth rate (LGR- 0.09 mm.y-1. Plotting the lengths and spatial distribution of the 20 longest FGR soda straws revealed that there is a rough pattern to the water flow through the cave roof. Even if no direction is statisticaly different from others, the observed directional pattern is consistent with local and regional tectonic observations. Plots of the spatial distribution of the soda straws show that FGR soda straws follow lines of regional geological stress, whereas MGR and LGR soda straws are more dispersed.
DEFF Research Database (Denmark)
Petersen, Peter C.; Berg, Rune W.
2016-01-01
fraction that operates within either a ‘mean-driven’ or a ‘fluctuation–driven’ regime. Fluctuation-driven neurons have a ‘supralinear’ input-output curve, which enhances sensitivity, whereas the mean-driven regime reduces sensitivity. We find a rich diversity of firing rates across the neuronal population...... as reflected in a lognormal distribution and demonstrate that half of the neurons spend at least 50 %% of the time in the ‘fluctuation–driven’ regime regardless of behavior. Because of the disparity in input–output properties for these two regimes, this fraction may reflect a fine trade–off between stability...
On continuous lifetime distributions with polynomial failure rate with an application in reliability
International Nuclear Information System (INIS)
Csenki, Attila
2011-01-01
It is shown that the Laplace transform of a continuous lifetime random variable with a polynomial failure rate function satisfies a certain differential equation. This generates a set of differential equations which can be used to express the polynomial coefficients in terms of the derivatives of the Laplace transform at the origin. The technique described here establishes a procedure for estimating the polynomial coefficients from the sample moments of the distribution. Some special cases are worked through symbolically using computer algebra. Real data from the literature recording bus motor failures is used to compare the proposed approach with results based on the least squares procedure.
Kolbe, T.; De Dreuzy, J. R.; Abbott, B. W.; Aquilina, L.; Babey, T.; Green, C. T.; Fleckenstein, J. H.; Labasque, T.; Laverman, A.; Marçais, J.; Peiffer, S.; Thomas, Z.; Pinay, G.
2017-12-01
Widespread fertilizer application over the last 70 years has caused serious ecological and socioeconomic problems in aquatic and estuarine ecosystems. When surplus nitrogen leaches as nitrate (a major groundwater pollutant) to the aquifer, complex flow dynamics and naturally occurring degradation processes control its transport. Under the conditions of depleted oxygen and abundant electron donors, microorganisms reduce NO3- to N2 (denitrification). Denitrification rates vary over orders of magnitude among sites within the same aquifer, complicating estimation of denitrification capacity at the catchment scale. Because it is impractical or impossible to access the subsurface to directly quantify denitrification rates, reactivity is often assumed to occur continuous along flowlines, potentially resulting in substantial over- or underestimation of denitrification. Here we investigated denitrification in an unconfined crystalline aquifer in western France using a combination of common tracers (chlorofluorocarbons, O2, NO3-, and N2) measured in 16 wells to inform a time-based modeling approach. We found that spatially variable denitrification rates arise from the intersection of nitrate rich water with reactive zones defined by the abundance of electron donors (primarily pyrite). Furthermore, based on observed reaction rates of the sequential reduction of oxygen and nitrate, we present a general framework to estimate the location and intensity of the reactive zone in aquifers. Accounting for the vertical distribution of reaction rates results in large differences in estimations of net denitrification rates that assume homogeneous reactivity. This new framework provides a tractable approach for quantifying catchment and regional groundwater denitrification rates that could be used to improve estimation of groundwater resilience to nitrate pollution and develop more realistic management strategies.
Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system
Shebalin, P.; Narteau, C.; Vorobieva, I.
2017-12-01
Crustal faults accommodate slip either by a succession of earthquakes or continuous slip, andin most instances, both these seismic and aseismic processes coexist. Recorded seismicity and geodeticmeasurements are therefore two complementary data sets that together document ongoing deformationalong active tectonic structures. Here we study the influence of stable sliding on earthquake statistics.We show that creep along the San Andreas Fault is responsible for a break of slope in the earthquake sizedistribution. This slope increases with an increasing creep rate for larger magnitude ranges, whereas itshows no systematic dependence on creep rate for smaller magnitude ranges. This is interpreted as a deficitof large events under conditions of faster creep where seismic ruptures are less likely to propagate. Theseresults suggest that the earthquake size distribution does not only depend on the level of stress but also onthe type of deformation.
Measurement and analysis of reaction rate distributions of cores with spectrum shifter region
International Nuclear Information System (INIS)
Matsuura, Shigekazu; Shiroya, Seiji; Unesaki, Hironobu; Takeda, Toshikazu; Aizawa, Otohiko; Kanda, Keiji.
1995-01-01
A study for the neutronic characteristics of the spectrum-controlled neutron irradiation fields using various reflector materials was performed. Spectrum shifter regions were constructed in the upper reflector region of the solid moderated core (B-Core) of the Kyoto University Critical Assembly (KUCA). Beryllium, graphite and aluminum were selected as the loading materials for the spectrum shifter. Two tight-pitch lattice cores with different moderator-to-fuel volume ratio (V m /V f ) of 0.97 and 0.65 have been used. Axial reaction rate distributions of gold, nickel and indium wires were measured, and the spectrum index was defined as the Cd ratio of the gold wire and the ratio of gold reaction rate to nickel reaction rate. Using the conventional design calculation procedure, the experimental and calculated reaction rate and spectrum index show several disagreements. Detailed treatment of the neutron streaming effect, heterogeneous cell structure and depression factor are shown to be necessary for improving the agreement between experimental and calculated values. (author)
The separation distribution and merger rate of double white dwarfs: improved constraints
Maoz, Dan; Hallakoun, Na'ama; Badenes, Carles
2018-05-01
We obtain new and precise information on the double white dwarf (DWD) population and on its gravitational-wave-driven merger rate by combining the constraints on the DWD population from two previous studies on radial velocity variation. One of the studies is based on a sample of white dwarfs (WDs) from the Sloan Digital Sky Survey (SDSS, which with its low spectral resolution probes systems at separations a distribution of initial WD separations (at the start of solely gravitational-wave-driven binary evolution), N(a)da ∝ aαda, is α = -1.30 ± 0.15 (1σ) +0.05 (systematic). The Galactic WD merger rate per WD is Rmerge = (9.7 ± 1.1) × 10-12 yr-1. Integrated over the Galaxy lifetime, this implies that 8.5-11 per cent of all WDs ever formed have merged with another WD. If most DWD mergers end as more-massive WDs, then some 10 per cent of WDs are DWD-merger products, consistent with the observed fraction of WDs in a `high-mass bump' in the WD mass function. The DWD merger rate is 4.5-7 times the Milky Way's specific Type Ia supernova (SN Ia) rate. If most SN Ia explosions stem from the mergers of some DWDs (say, those with massive-enough binary components) then ˜15 per cent of all WD mergers must lead to a SN Ia.
Evidence of A Bimodal US GDP Growth Rate Distribution: A Wavelet Approach
Directory of Open Access Journals (Sweden)
Sandro Claudio Lera
2017-04-01
Full Text Available We present a quantitative characterisation of the fluctuations of the annualized growth rate of the real US GDP per capita at many scales, using a wavelet transform analysis of two data sets, quarterly data from 1947 to 2015 and annual data from 1800 to 2010. The chosen mother wavelet (first derivative of the Gaussian function applied to the logarithm of the real US GDP per capita provides a robust estimation of the instantaneous growth rate at different scales. Our main finding is that business cycles appear at all scales and the distribution of GDP growth rates can be well approximated by a bimodal function associated to a series of switches between regimes of strong growth rate $\\rho_\\text{high}$ and regimes of low growth rate $\\rho_\\text{low}$. The succession of such two regimes compounds to produce a remarkably stable long term average real annualized growth rate of 1.6% from 1800 to 2010 and $\\approx 2.0\\%$ since 1950, which is the result of a subtle compensation between the high and low growth regimes that alternate continuously. Thus, the overall growth dynamics of the US economy is punctuated, with phases of strong growth that are intrinsically unsustainable, followed by corrections or consolidation until the next boom starts. We interpret these findings within the theory of "social bubbles" and argue as a consequence that estimations of the cost of the 2008 crisis may be misleading. We also interpret the absence of strong recovery since 2008 as a protracted low growth regime $\\rho_\\text{low}$ associated with the exceptional nature of the preceding large growth regime.
Overcoming the rate-distance limit of quantum key distribution without quantum repeaters.
Lucamarini, M; Yuan, Z L; Dynes, J F; Shields, A J
2018-05-01
Quantum key distribution (QKD) 1,2 allows two distant parties to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via optical means, achieving key rates of 1.26 megabits per second over 50 kilometres of standard optical fibre 3 and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent configuration 4 . Increasing the bit rate and range of QKD is a formidable, but important, challenge. A related target, which is currently considered to be unfeasible without quantum repeaters 5-7 , is overcoming the fundamental rate-distance limit of QKD 8 . This limit defines the maximum possible secret key rate that two parties can distil at a given distance using QKD and is quantified by the secret-key capacity of the quantum channel 9 that connects the parties. Here we introduce an alternative scheme for QKD whereby pairs of phase-randomized optical fields are first generated at two distant locations and then combined at a central measuring station. Fields imparted with the same random phase are 'twins' and can be used to distil a quantum key. The key rate of this twin-field QKD exhibits the same dependence on distance as does a quantum repeater, scaling with the square-root of the channel transmittance, irrespective of who (malicious or otherwise) is in control of the measuring station. However, unlike schemes that involve quantum repeaters, ours is feasible with current technology and presents manageable levels of noise even on 550 kilometres of standard optical fibre. This scheme is a promising step towards overcoming the rate-distance limit of QKD and greatly extending the range of secure quantum communications.
International Nuclear Information System (INIS)
Polizzi, P.S.; Chiodi Boudet, L.N.; Romero, M.B.; Denuncio, P.E.; Rodríguez, D.H.
2013-01-01
Highlights: • Fine scale distribution of two Argentine stocks constrains the Cd accumulation rates. • Cadmium levels and accumulation patterns were different between geographic groups. • Marine diet has a major influence than the impact degree of origin environment. • Engraulis anchoita is the main Cd vector species in Argentine shelf for Franciscana. • Information is valuable for the conservation of Franciscana, a vulnerable species. -- Abstract: Franciscana dolphin is an endemic cetacean in the southwestern Atlantic Ocean and is classified as Vulnerable A3d by the International Union for Conservation of Nature. Cadmium accumulation was assessed in two geographic groups from Argentina; one inhabits the La Plata River estuary, a high anthropogenic impacted environment, and the other is distributed in marine coastal, with negligible pollution. Despite the environment, marine dolphins showed an increase of renal Cd concentrations since trophic independence; while in estuarine dolphins was from 6 years. This is associated with dietary Argentine anchovy which was absent in the diet of estuarine dolphins, being a trophic vector of cadmium in shelf waters of Argentina. Cluster analysis also showed high levels of cd in association with the presence of anchovy in the stomach. The difference in the fine scale distribution of species influences dietary exposure to Cd and, along with other data, indicates two stocks in Argentina
Das, Saurabh; Maitra, Animesh
2018-04-01
Characterization of precipitation is important for proper interpretation of rain information from remotely sensed data. Rain attenuation and radar reflectivity (Z) depend directly on the drop size distribution (DSD). The relation between radar reflectivity/rain attenuation and rain rate (R) varies widely depending upon the origin, topography, and drop evolution mechanism and needs further understanding of the precipitation characteristics. The present work utilizes 2 years of concurrent measurements of DSD using a ground-based disdrometer at five diverse climatic conditions in Indian subcontinent and explores the possibility of rain classification based on microphysical characteristics of precipitation. It is observed that both gamma and lognormal distributions are performing almost similar for Indian region with a marginally better performance by one model than other depending upon the locations. It has also been found that shape-slope relationship of gamma distribution can be a good indicator of rain type. The Z-R relation, Z = ARb, is found to vary widely for different precipitation systems, with convective rain that has higher values of A than the stratiform rain for two locations, whereas the reverse is observed for the rest of the three locations. Further, the results indicate that the majority of rainfall (>50%) in Indian region is due to the convective rain although the occurrence time of convective rain is low (<10%).
Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis
2013-05-01
Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.
The Influence of Cultivation System on Distribution Profile Of 137cs and Erosion / Deposition Rate
Directory of Open Access Journals (Sweden)
Nita Suhartini
2016-05-01
Full Text Available 137Cs radiogenic content in the soil can be used to estimate the rate of erosion and deposition in an area occurring since 1950’s, by comparing the content of the 137Cs in observed site with those in a stable reference site. This experiment aimed to investigate the influence of cultivation type on distribution profile of 137Cs and distribution of erosion and deposition rate in cultivated area. A study site was small cultivated area with slope steepness <10o and length 2 km located in Bojong – Ciawi. For this purpose, the top of a slope was chosen for reference site and three plot sites were selected namely Land Use I that using simple cultivation, Land Use II that using simple cultivation with ridge and furrow, and Land Use III using machine cultivation. The results showed that cultivation could make a movement of 137Cs to the deeper layer and ridges and furrows cultivation system could minimized an erosion process. The net erosion and deposition for land Use I, II and III were -25 t/ha/yr , 24 t/ha/yr and -58 t/ha/yr, respectively.
Distortion-Rate Bounds for Distributed Estimation Using Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Nihar Jindal
2008-03-01
Full Text Available We deal with centralized and distributed rate-constrained estimation of random signal vectors performed using a network of wireless sensors (encoders communicating with a fusion center (decoder. For this context, we determine lower and upper bounds on the corresponding distortion-rate (D-R function. The nonachievable lower bound is obtained by considering centralized estimation with a single-sensor which has all observation data available, and by determining the associated D-R function in closed-form. Interestingly, this D-R function can be achieved using an estimate first compress afterwards (EC approach, where the sensor (i forms the minimum mean-square error (MMSE estimate for the signal of interest; and (ii optimally (in the MSE sense compresses and transmits it to the FC that reconstructs it. We further derive a novel alternating scheme to numerically determine an achievable upper bound of the D-R function for general distributed estimation using multiple sensors. The proposed algorithm tackles an analytically intractable minimization problem, while it accounts for sensor data correlations. The obtained upper bound is tighter than the one determined by having each sensor performing MSE optimal encoding independently of the others. Numerical examples indicate that the algorithm performs well and yields D-R upper bounds which are relatively tight with respect to analytical alternatives obtained without taking into account the cross-correlations among sensor data.
Morgan, J. K.; Marone, C. J.; Guo, Y.; Anthony, J. L.; Knuth, M. W.
2004-12-01
Laboratory studies of granular shear zones have provided significant insight into fault zone processes and the mechanics of earthquakes. The micromechanisms of granular deformation are more difficult to ascertain, but have been hypothesized based on known variations in boundary conditions, particle properties and geometries, and mechanical behavior. Numerical simulations using particle dynamics methods (PDM) can offer unique views into deforming granular shear zones, revealing the precise details of granular microstructures, particle interactions, and packings, which can be correlated with macroscopic mechanical behavior. Here, we describe a collaborative program of comparative laboratory and numerical experiments of granular shear using idealized materials, i.e., glass beads, glass rods or pasta, and angular sand. Both sets of experiments are carried out under similar initial and boundary conditions in a non-fracturing stress regime. Phenomenologically, the results of the two sets of experiments are very similar. Peak friction values vary as a function of particle dimensionality (1-D vs. 2-D vs. 3-D), particle angularity, particle size and size distributions, boundary roughness, and shear zone thickness. Fluctuations in shear strength during an experiment, i.e., stick-slip events, can be correlated with distinct changes in the nature, geometries, and durability of grain bridges that support the shear zone walls. Inclined grain bridges are observed to form, and to support increasing loads, during gradual increases in assemblage strength. Collapse of an individual grain bridge leads to distinct localization of strain, generating a rapidly propagating shear surface that cuts across multiple grain bridges, accounting for the sudden drop in strength. The distribution of particle sizes within an assemblage, along with boundary roughness and its periodicity, influence the rate of formation and dissipation of grain bridges, thereby controlling friction variations during
Using the raindrop size distribution to quantify the soil detachment rate at the laboratory scale
Jomaa, S.; Jaffrain, J.; Barry, D. A.; Berne, A.; Sander, G. C.
2010-05-01
Rainfall simulators are beneficial tools for studying soil erosion processes and sediment transport for different circumstances and scales. They are useful to better understand soil erosion mechanisms and, therefore, to develop and validate process-based erosion models. Simulators permit experimental replicates for both simple and complex configurations. The 2 m × 6 m EPFL erosion flume is equipped with a hydraulic slope control and a sprinkling system located on oscillating bars 3 m above the surface. It provides a near-uniform spatial rainfall distribution. The intensity of the precipitation can be adjusted by changing the oscillation interval. The flume is filled to a depth of 0.32 m with an agricultural loamy soil. Raindrop detachment is an important process in interrill erosion, the latter varying with the soil properties as well as the raindrop size distribution and drop velocity. Since the soil detachment varies with the kinetic energy of raindrops, an accurate characterization of drop size distribution (DSD, measured, e.g., using a laser disdrometer) can potentially support erosion calculations. Here, a laser disdrometer was used at different rainfall intensities in the EPFL flume to quantify the rainfall event in terms of number of drops, diameter and velocity. At the same time, soil particle motion was measured locally using splash cups. These cups measured the detached material rates into upslope and downslope compartments. In contrast to previously reported splash cup experiments, the cups used in this study were equipped at the top with upside-down funnels, the upper part having the same diameter as the soil sampled at the bottom. This ensured that the soil detached and captured by the device was not re-exposed to rainfall. The experimental data were used to quantify the relationship between the raindrop distribution and the splash-driven sediment transport.
Non-homogeneous flow profiles in sheared bacterial suspensions
Samanta, Devranjan; Cheng, Xiang
Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.
The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone
Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf
2014-05-01
microcracks and nearly absent in matrix grains in the well developed C bands. The chemical variation between primary and secondary new-formed micas was clearly identified by the Mg-Ti-Na content. The microstructural analysis documents a progressive decrease in quartz grain size and increasing interconnectivity of K-feldspar and white mica towards more mature shear bands. The contact-frequency analysis demonstrates that the phase distribution in shear bands tends to evolve from quartz aggregate distribution via randomization to K-feldspar aggregate distribution. The boundary preferred orientation is absent in quartz-quartz contacts either inside of outside the C bands, while it changes from random to parallel to the C band for the K-feldspar and and K-feldspar-quartz boundaries. The lack of crystallographic preferred orientation of the individual phases in the mixed matrix of the C planes suggests a dominant diffusion-assisted grain boundary sliding deformation mechanism. In the later stages of shear band development, the deformation is accommodated by crystal plasticity of white mica in micaceous bands. The crystallographic and microstructural data thus indicate two important switches in deformation mechanisms, from (i) brittle to Newtonian viscous behavior in the initial stages of shear band evolution and from (ii) Newtonian viscous to power law in the later evolutionary stages. The evolution of shear bands in the South Armorican Shear Zone thus document the interplay between deformation mechanisms and chemical reactions in deformed granitoids.
Crosswind Shear Gradient Affect on Wake Vortices
Proctor, Fred H.; Ahmad, Nashat N.
2011-01-01
Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.
Energy Technology Data Exchange (ETDEWEB)
Kjellstroem, B
1968-12-15
Experiments with rough surface friction and heat transfer are often made in an annulus with rough inner surface and smooth outer surface. Utilization of data from such experiments for calculation of rough rod bundle fuel elements requires a transformation of the data. For this purpose the method of WB Hall is frequently used. The errors introduced by two of the assumptions on which this method is based, namely the assumptions of zero shear at the radius of maximum velocity and the assumption of no turbulence exchange between the subchannels, are discussed, and the magnitude of the errors is estimated on basis of experiments in a partially rough annulus. It is found that the necessary corrections does not amount to more than about + 10 % for the friction factor and + 15 % for the Reynolds number and the equivalent diameter. The correction for the turbulence exchange alone is of the order of 2-3 %. A comparison of friction factors measured in a rough 48-rod bundle and predicted from measurements in a partially rough annulus was also made. The prediction was 5 % high instead of about 10 % low which could have been expected from the considerations earlier in the report. Explanations for this can be found in the effect of the channel shape or inaccuracies in the rod bundle experiment. Annulus experiments which will allow comparisons with other rod bundle experiments will be run to clarify this.
Directory of Open Access Journals (Sweden)
Chris Bambey Guure
2012-01-01
Full Text Available The survival function of the Weibull distribution determines the probability that a unit or an individual will survive beyond a certain specified time while the failure rate is the rate at which a randomly selected individual known to be alive at time will die at time (. The classical approach for estimating the survival function and the failure rate is the maximum likelihood method. In this study, we strive to determine the best method, by comparing the classical maximum likelihood against the Bayesian estimators using an informative prior and a proposed data-dependent prior known as generalised noninformative prior. The Bayesian estimation is considered under three loss functions. Due to the complexity in dealing with the integrals using the Bayesian estimator, Lindley’s approximation procedure is employed to reduce the ratio of the integrals. For the purpose of comparison, the mean squared error (MSE and the absolute bias are obtained. This study is conducted via simulation by utilising different sample sizes. We observed from the study that the generalised prior we assumed performed better than the others under linear exponential loss function with respect to MSE and under general entropy loss function with respect to absolute bias.
DOSKMF2, Dose Rate Distribution in Co60 Gamma Irradiation Plants
International Nuclear Information System (INIS)
Remer, M.
1988-01-01
1 - Description of program or function: The DOSKMF2 code calculates dose rate distributions in gamma irradiation facilities with 60 Co sources. It has been developed as a tool for the evaluation of research units for the characterization, modification and optimization as well as for the simulation, planning design and evaluation of pilot and industrial facilities. 2 - Method of solution: The basic model of DOSKMF2 contains the computation of the exposure rate, which is dependent on a system of radiation sources (line and/or point sources) at one point of the radiation field. The geometric conditions are described by two coordinate systems. The first is used to arrange the radiation sources and tubes; the second is used to describe the shielding layers in the form of concentric circles. The build-up factor is approximated by Taylor coefficients, also in the case of multi-layer configurations. Calculations of radiation fields in complex irradiation facilities are made by many organizational variants based on the basic model. The interpretation of the results is supported by some statistical calculations. It is possible to store the calculated dose rate values for further processing. 3 - Restrictions on the complexity of the problem: The DOSKMF2 code is presently limited to 40 irradiation tubes and 10 crossed shielding layers. This can be increased by changing dimension statements and input organization
Widyawan, A.; Pasaribu, U. S.; Henintyas, Permana, D.
2015-12-01
Nowadays some firms, including insurer firms, think that customer-centric services are better than product-centric ones in terms of marketing. Insurance firms will try to attract as many new customer as possible while maintaining existing customer. This causes the Customer Lifetime Value (CLV) becomes a very important thing. CLV are able to put customer into different segments and calculate the present value of a firm's relationship with its customer. Insurance customer will depend on the last service he or she can get. So if the service is bad now, then customer will not renew his contract though the service is very good at an erlier time. Because of this situation one suitable mathematical model for modeling customer's relationships and calculating their lifetime value is Markov Chain. In addition, the advantages of using Markov Chain Modeling is its high degree of flexibility. In 2000, Pfeifer and Carraway states that Markov Chain Modeling can be used for customer retention situation. In this situation, Markov Chain Modeling requires only two states, which are present customer and former ones. This paper calculates customer lifetime value in an insurance firm with two distinctive interest rates; the constant interest rate and uniform distribution of interest rates. The result shows that loyal customer and the customer who increase their contract value have the highest CLV.
Paliwal, Bhasker
brittle materials. The model incorporates pre-existing defect distributions and a crack growth law. The damage is defined as a scalar parameter which is a function of the micro-crack density, the evolution of which is a function of the existing defect distribution and the crack growth dynamics. A specific case of a uniaxial compressive loading under constant strain-rate has been studied to predict the effects of the strain-rate, defect distribution and the crack growth dynamics on the constitutive response and failure behavior of brittle materials. Finally, the effects of crack growth dynamics on the strain-rate sensitivity of brittle materials are studied with the help of the micro-mechanical damage model. The results are compared with the experimentally observed damage evolution and the rate-sensitive behavior of the compressive strength of several engineering ceramics. The dynamic failure of armor-grade hot-pressed boron carbide (B 4C) under loading rates of ˜ 5X10-6 to 200 MPa/mus is also discussed.
The mechanical behavior of metal alloys with grain size distribution in a wide range of strain rates
Skripnyak, V. A.; Skripnyak, V. V.; Skripnyak, E. G.
2017-12-01
The paper discusses a multiscale simulation approach for the construction of grain structure of metals and alloys, providing high tensile strength with ductility. This work compares the mechanical behavior of light alloys and the influence of the grain size distribution in a wide range of strain rates. The influence of the grain size distribution on the inelastic deformation and fracture of aluminium and magnesium alloys is investigated by computer simulations in a wide range of strain rates. It is shown that the yield stress depends on the logarithm of the normalized strain rate for light alloys with a bimodal grain distribution and coarse-grained structure.
Shear localization and microstructure in coarse grained beta titanium alloy
Energy Technology Data Exchange (ETDEWEB)
Wang, Bingfeng, E-mail: biw009@ucsd.edu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha, Hunan (China); Wang, Xiaoyan [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Li, Zezhou [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Ma, Rui [School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Xie, Fangyu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhang, Xiaoyong [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China)
2016-01-15
Adiabatic shear localization plays an important role in the deformation and failure of the coarse grained beta titanium alloy Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe with grain size about 1 mm at high strain rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of shear bands under the controlled shock-loading experiments. The true stress in the specimens can reach about 1040 MPa where the strain is about 1.83. The whole shear localization process lasts about 35 μs. The microstructures within the shear band are investigated by optical microscopy, scanning electron microscopy / electron backscatter diffraction, and transmission electron microscopy. The results show that the width of the shear bands decreases with increasing nominal shear strain, and the grains in the transition region near the shear band are elongated along the shear band, and the core of the shear band consists of the ultrafine deformed grains with width of 0.1 μm and heavy dislocations. With the aims of accommodating the imposed shear strain and maintaining neighboring grain compatibility, the grain subdivision continues to take place within the band. A fiber texture is formed in the core of the shear band. The calculated temperature rise in the shear band can reach about 722 K. Dynamic recovery is responsible for the formation of the microstructure in coarse grained beta titanium alloy.
International Nuclear Information System (INIS)
Leeds, J.M.
1986-01-01
A rapid nuclear isolation technique was adapted in order to examine the question of DNA precursor compartmentation in mammalian cells. By using this method a reproducible proportion of the cellular nucleotides remained associated with the isolated nuclei. Examination, at several different cell densities, of exponentially growing HeLa cells showed that the nuclei contained a constant but distinct proportion of each dNTP. The nuclear dATP and dTTP concentrations were equal at all densities examined even though the dTTP pool was 150% of the dATP whole-cell pool. The nuclear portion of the whole-cell pools was roughly equal to the volume occupied by the nucleus. The nuclear-cytoplasmic dNTP pool distribution did not change throughout the cell cycle of synchronized Chinese hamster ovary (CHO) cells. The rates at which either radiolabeled cytidine or deoxycytidine equilibrated with the nuclear and whole-cell dCTP pools of G1 and S phase CHO cells were compared. Experiments comparing the labeling kinetics of 3 H-thymidine in G1, S phase, and exponentially growing cells revealed that the S phase dTTP pool equilibrated with exogenously added thymidine faster than the G1 phase pool. The rate of equilibration in exponentially growing cells appeared to be a combination of that seen in G1 and S phases. A linear rate of 3 H-thymidine incorporation into DNA occurred at the same rate in S phase and exponentially growing cells
Impact of New Gadolinium Cross Sections on Reaction Rate Distributions in 10 * 10 BWR Assemblies
Energy Technology Data Exchange (ETDEWEB)
Perret, G.; Murphy, M.F.; Jatuff, F.; Chawla, R. [Paul Scherrer Inst, CH-5232 Villigen, (Switzerland); Sublet, J.Ch.; Bouland, O. [DEN, Commissariat Energie Atom, F-13108 St Paul Les Durance, (France); Chawla, R. [Ecole Polytech Fed Lausanne, CH-1015 Lausanne, (Switzerland)
2009-07-01
Radial distributions of the total fission rate and the {sup 238}U-capture-to-total-fission (C{sub 8}/F{sub tot}) ratio were measured in SVEA-96+ and SVEA-96 Optima2 assemblies during the LWR-PROTEUS program. Fission rates predicted using MCNPX with JEFF-3.1 cross sections underestimated the measured values in the gadolinium-poisoned pins of the SVEA-96 Optima2 assembly; similarly, C{sub 8}/F{sub tot} ratios were overestimated in some gadolinium-poisoned pins of the SVEA-96+ assembly. A considerable effort was invested at the Paul Scherrer Institut to explain the discrepancies in gadolinium pins, without success. Recently, gadolinium cross sections were measured at the Rensselaer Polytechnic Institute by Leinweber et al. and differed significantly from current library values. ENDF/B-VII.0 gadolinium cross sections have currently been modified to include the new measurements, and these data have been processed with NJOY to yield files usable by MCNPX. Fission rates in the gadolinium-poisoned fuel pins of the SVEA-96 Optima2 pins were increased by 1.4 to 2.0% using the newly produced cross sections, yielding to a better agreement with the experimental values. Predicted C{sub 8}/F{sub tot} ratios were decreased on average by 1.7% in both clustered and un-clustered groups of gadolinium-poisoned fuel pins of the SVEA-96+ assembly correcting the over predictions previously reported in the clustered gadolinium pins. Earlier reported discrepancies observed in PROTEUS integral experiments, between measured and calculated reaction rates in the gadolinium-poisoned pins, might thus be due to inaccurate gadolinium cross sections. The PROTEUS results support the new thermal and epithermal gadolinium data measured by Leinweber et al. (authors)
Effect of kappa distribution on the damping rate of the obliquely propagating magnetosonic mode
Imran, Ali KHAN; G, MURTAZA
2018-03-01
Data from spacecrafts suggest that space plasma has an abundance of suprathermal particles which are controlled by the spectral index κ when modeled on kappa particle velocity distribution. In this paper, considering homogeneous plasma, the effect of integer values of κ on the damping rate of an obliquely propagating magnetosonic (MS) wave is studied. The frequency of the MS wave is assumed to be less than ion cyclotron frequency, i.e., ω \\ll {ω }{{i}}. Under this assumption, the dispersion relation is investigated both numerically and analytically, and it is found that the real frequency of the wave is not a sensitive function of κ, but the imaginary part of the frequency is. It is also shown that for those values of κ where a large number of resonant particles participate in wave-particle interaction, the wave is heavily damped, as expected. The possible application of the results to the solar wind is discussed.
Electron energy distributions and excitation rates in high-frequency argon discharges
International Nuclear Information System (INIS)
Ferreira, C.M.; Loureiro, J.
1983-06-01
The electron energy distribution functions and rate coefficients for excitation and ionisation in argon under the action of an uniform high-frequency electric field were calculated by numerically solving the homogeneous Boltzmann equation. Analytic calculations in the limiting cases ω>>νsub(c) and ω<<νsub(c), where ω is the wave angular frequency and νsub(c) is the electron-neutral collision frequency for momentum transfer, are also presented and shown to be in very good agreement with the numerical computations. The results reported here are relevant for the modelling of high-frequency discharges in argon and, in particular, for improving recent theoretical descriptions of a plasma column sustained by surface microwaves. The properties of surface wave produced plasmas make them interesting as possible substitutes for other more conventional plasma sources for such important applications as plasma chemistry laser excitation, plasma etching spectroscopic sources etc...
Reaction Rate Distributions and Ratios in FR0 Assemblies 1, 2 and 3
Energy Technology Data Exchange (ETDEWEB)
Andersson, T L
1966-06-15
The spatial distribution of different reaction rates and reaction ratios in Assemblies 1, 2 and 3 of the fast reactor FR0 was measured by fission chamber scans and foil activation technique. Assemblies 1 and 2 had cores of undiluted fuel (uranium metal enriched to 20 % U{sup 235}) while the core of Assembly 3 was diluted with about 30 vol. % graphite. All the systems had a thick copper reflector, The experimental results were compared with calculated values obtained from DSN and TDC multigroup spectra and group cross-section sets for the reactions. Good agreement between experiment and calculations is generally obtained in the core region but in the reflector the neutron spectrum is calculated too hard.
One-way quantum key distribution: Simple upper bound on the secret key rate
International Nuclear Information System (INIS)
Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos
2006-01-01
We present a simple method to obtain an upper bound on the achievable secret key rate in quantum key distribution (QKD) protocols that use only unidirectional classical communication during the public-discussion phase. This method is based on a necessary precondition for one-way secret key distillation; the legitimate users need to prove that there exists no quantum state having a symmetric extension that is compatible with the available measurements results. The main advantage of the obtained upper bound is that it can be formulated as a semidefinite program, which can be efficiently solved. We illustrate our results by analyzing two well-known qubit-based QKD protocols: the four-state protocol and the six-state protocol
Dose rate distribution of the GammaBeam: 127 irradiator using MCNPX code
International Nuclear Information System (INIS)
Gual, Maritza Rodriguez; Batista, Adriana de Souza Medeiros; Pereira, Claubia; Faria, Luiz O. de; Grossi, Pablo Andrade
2013-01-01
The GammaBeam - 127 Irradiator is widely used for biological, chemical and medical applications of the gamma irradiation technology using Cobalt 60 radioactive at the Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil. The source has maximum activity of 60.000Ci, which is composed by 16 double encapsulated radioactive pencils placed in a rack. The facility is classified by the IAEA as Category II (dry storage facility). The aim of this work is to present a modelling developed to evaluate the dose rates at the irradiation room and the dose distribution at the irradiated products. In addition, the simulations could be used as a predictive tool of dose evaluation in the irradiation facility helping benchmark experiments in new similar facilities. The MCNPX simulated results were compared and validated with radiometric measurements using Fricke and TLDs dosimeters along several positions inside the irradiation room. (author)
Directory of Open Access Journals (Sweden)
Sonia Aïssa
2008-05-01
Full Text Available This paper investigates the effects of channel estimation error at the receiver on the achievable rate of distributed space-time block coded transmission. We consider that multiple transmitters cooperate to send the signal to the receiver and derive lower and upper bounds on the mutual information of distributed space-time block codes (D-STBCs when the channel gains and channel estimation error variances pertaining to different transmitter-receiver links are unequal. Then, assessing the gap between these two bounds, we provide a limiting value that upper bounds the latter at any input transmit powers, and also show that the gap is minimum if the receiver can estimate the channels of different transmitters with the same accuracy. We further investigate positioning the receiving node such that the mutual information bounds of D-STBCs and their robustness to the variations of the subchannel gains are maximum, as long as the summation of these gains is constant. Furthermore, we derive the optimum power transmission strategy to achieve the outage capacity lower bound of D-STBCs under arbitrary numbers of transmit and receive antennas, and provide closed-form expressions for this capacity metric. Numerical simulations are conducted to corroborate our analysis and quantify the effects of imperfect channel estimation.
Co-gradient variation in growth rate and development time of a broadly distributed butterfly.
Directory of Open Access Journals (Sweden)
Madeleine Barton
Full Text Available Widespread species often show geographic variation in thermally-sensitive traits, providing insight into how species respond to shifts in temperature through time. Such patterns may arise from phenotypic plasticity, genetic adaptation, or their interaction. In some cases, the effects of genotype and temperature may act together to reduce, or to exacerbate, phenotypic variation in fitness-related traits across varying thermal environments. We find evidence for such interactions in life-history traits of Heteronympha merope, a butterfly distributed across a broad latitudinal gradient in south-eastern Australia. We show that body size in this butterfly is negatively related to developmental temperature in the laboratory, in accordance with the temperature-size rule, but not in the field, despite very strong temperature gradients. A common garden experiment on larval thermal responses, spanning the environmental extremes of H. merope's distribution, revealed that butterflies from low latitude (warmer climate populations have relatively fast intrinsic growth and development rates compared to those from cooler climates. These synergistic effects of genotype and temperature across the landscape (co-gradient variation are likely to accentuate phenotypic variation in these traits, and this interaction must be accounted for when predicting how H. merope will respond to temperature change through time. These results highlight the importance of understanding how variation in life-history traits may arise in response to environmental change. Without this knowledge, we may fail to detect whether organisms are tracking environmental change, and if they are, whether it is by plasticity, adaptation or both.
Wind speed and direction shears with associated vertical motion during strong surface winds
Alexander, M. B.; Camp, D. W.
1984-01-01
Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.
Vâgberg, Daniel; Olsson, Peter; Teitel, S.
2017-05-01
We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ , inelasticity of collisions as measured by a parameter Q , and applied uniform shear strain rate γ ˙. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ ,Q ) plane for small γ ˙, we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q , we show that, upon increasing γ ˙, the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ ,γ ˙) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ ˙ at fixed ϕ , we find that discontinuous shear thickening can result if γ ˙ is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ ˙.
Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro
2015-01-01
The air dose rate in an environment contaminated with 134Cs and 137Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima D...
Directory of Open Access Journals (Sweden)
Pelumi E. Oguntunde
2017-01-01
Full Text Available Developing new compound distributions which are more flexible than the existing distributions have become the new trend in distribution theory. In this present study, the Lomax distribution was extended using the Gompertz family of distribution, its resulting densities and statistical properties were carefully derived, and the method of maximum likelihood estimation was proposed in estimating the model parameters. A simulation study to assess the performance of the parameters of Gompertz Lomax distribution was provided and an application to real life data was provided to assess the potentials of the newly derived distribution. Excerpt from the analysis indicates that the Gompertz Lomax distribution performed better than the Beta Lomax distribution, Weibull Lomax distribution, and Kumaraswamy Lomax distribution.
International Nuclear Information System (INIS)
Seeto, Dewey; Woo, C.K.; Horowitz, Ira
1997-01-01
Recent proposals to restructure the electricity industry in North America may effect the disintegration of a vertically integrated company into several smaller entities, including distribution companies (DISCOs) We explore whether time-of-use (TOU) pricing or a Hopkinson tariff would be more suitable for a regulated DISCO. Focusing on the economic efficiency of these alternative rate structures, we argue that a Hopkinson tariff with demand subscription is superior to TOU rates, as it can better handle the limited load diversity of local transmission and distribution (TD) demands made on the contemporary DISCO, while finessing the problem of endogenous marginal costs of local TD capacity. (Author)
Hydrodynamical fluctuations in smooth shear flows
International Nuclear Information System (INIS)
Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.
1999-11-01
Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic
Stress analysis of shear/compression test
International Nuclear Information System (INIS)
Nishijima, S.; Okada, T.; Ueno, S.
1997-01-01
Stress analysis has been made on the glass fiber reinforced plastics (GFRP) subjected to the combined shear and compression stresses by means of finite element method. The two types of experimental set up were analyzed, that is parallel and series method where the specimen were compressed by tilted jigs which enable to apply the combined stresses, to the specimen. Modified Tsai-Hill criterion was employed to judge the failure under the combined stresses that is the shear strength under the compressive stress. The different failure envelopes were obtained between the two set ups. In the parallel system the shear strength once increased with compressive stress then decreased. On the contrary in the series system the shear strength decreased monotonicly with compressive stress. The difference is caused by the different stress distribution due to the different constraint conditions. The basic parameters which control the failure under the combined stresses will be discussed
Directory of Open Access Journals (Sweden)
Parsa M.
2014-01-01
Full Text Available Mean residual life and failure rate functions are ubiquitously employed in reliability analysis. The term of useful period of lifetime distributions of bathtub-shaped failure rate functions is referred to the flat rigion of this function and has attracted authors and researchers in reliability, actuary, and survival analysis. In recent years, considering the change points of mean residual life and failure rate functions has been extensively utelized in determining the optimum burn-in time. In this paper we investigate the difference between the change points of failure rate and mean residual life functions of some generalized gamma type distributions due to the capability of these distributions in modeling various bathtub-shaped failure rate functions.
Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan
2018-03-01
While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.
The effect of shear flow on the rotational diffusivity of a single axisymmetric particle
Leahy, Brian; Koch, Donald; Cohen, Itai
2014-11-01
Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.
International Nuclear Information System (INIS)
Xu Jianjun; Chen Bingde; Wang Xiaojun
2008-01-01
Flow and heat transfer in the narrow rectangular multi-channel is widely en- countered in the engineering application, hydrodynamic mixing in the narrow rectangular multi-channel is one of the important concerns. With the help of the Computational Fluid Dynamics code CFX, the effect of flow rate distribution of the main channel at the inlet on hydrodynamic mixing in the narrow rectangular multi-channel is numerical simulated. The results show that the flow rate distributions at the inlet have a great effect on hydrodynamics mixing in multi-channel, the flow rate in the main channel doesn't change with increasing the axial mixing section when the average flow rate at the inlet is set. Hydrodynamic mixing will arise in the mixing section when the different ratio of the flow rate distribution at the inlet is set, and hydrodynamic mixing increases with the difference of the flow rate distribution at the inlet increase. The trend of the flow rate distribution of the main channel is consistent during the whole axial mixing section, and hydrodynamic mixing in former 4 mixing section is obvious. (authors)
Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.
2015-12-01
In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.
International Nuclear Information System (INIS)
Zeng, Hongtao; Lan, Tian; Chen, Qiming
2016-01-01
Two lifetime distributions derived from Perks' mortality rate function, one with 4 parameters and the other with 5 parameters, for the modeling of bathtub-shaped failure rates are proposed in this paper. The Perks' mortality/failure rate functions have historically been used for human life modeling in life insurance industry. Although this distribution is no longer used in insurance industry, considering many nice and some unique features of this function, it is necessary to revisit it and introduce it to the reliability community. The parameters of the distributions can control the scale, shape, and location of the PDF. The 4-parameter distribution can be used to model the bathtub failure rate. This model is applied to three previously published groups of lifetime data. This study shows they fit very well. The 5-parameter version can potentially model constant hazard rates of the later life of some devices in addition to the good features of 4-parameter version. Both the 4 and 5-parameter versions have closed form PDF and CDF. The truncated distributions of both versions stay within the original distribution family with simple parameter transformation. This nice feature is normally considered to be only possessed by the simple exponential distribution - Highlights: • Two new distributions are proposed to model bathtub shaped hazard rate. • Derive the close-form PDF, CDF and feature of scalability and truncatability. • Perks4 is verified to be good to model common bathtub shapes through comparison. • Perks5 has the potential to model the stabilization of hazard rate at later life.
Braun, Jean; Gemignani, Lorenzo; van der Beek, Peter
2018-03-01
One of the main purposes of detrital thermochronology is to provide constraints on the regional-scale exhumation rate and its spatial variability in actively eroding mountain ranges. Procedures that use cooling age distributions coupled with hypsometry and thermal models have been developed in order to extract quantitative estimates of erosion rate and its spatial distribution, assuming steady state between tectonic uplift and erosion. This hypothesis precludes the use of these procedures to assess the likely transient response of mountain belts to changes in tectonic or climatic forcing. Other methods are based on an a priori knowledge of the in situ distribution of ages to interpret the detrital age distributions. In this paper, we describe a simple method that, using the observed detrital mineral age distributions collected along a river, allows us to extract information about the relative distribution of erosion rates in an eroding catchment without relying on a steady-state assumption, the value of thermal parameters or an a priori knowledge of in situ age distributions. The model is based on a relatively low number of parameters describing lithological variability among the various sub-catchments and their sizes and only uses the raw ages. The method we propose is tested against synthetic age distributions to demonstrate its accuracy and the optimum conditions for it use. In order to illustrate the method, we invert age distributions collected along the main trunk of the Tsangpo-Siang-Brahmaputra river system in the eastern Himalaya. From the inversion of the cooling age distributions we predict present-day erosion rates of the catchments along the Tsangpo-Siang-Brahmaputra river system, as well as some of its tributaries. We show that detrital age distributions contain dual information about present-day erosion rate, i.e., from the predicted distribution of surface ages within each catchment and from the relative contribution of any given catchment to the
Directory of Open Access Journals (Sweden)
J. Braun
2018-03-01
Full Text Available One of the main purposes of detrital thermochronology is to provide constraints on the regional-scale exhumation rate and its spatial variability in actively eroding mountain ranges. Procedures that use cooling age distributions coupled with hypsometry and thermal models have been developed in order to extract quantitative estimates of erosion rate and its spatial distribution, assuming steady state between tectonic uplift and erosion. This hypothesis precludes the use of these procedures to assess the likely transient response of mountain belts to changes in tectonic or climatic forcing. Other methods are based on an a priori knowledge of the in situ distribution of ages to interpret the detrital age distributions. In this paper, we describe a simple method that, using the observed detrital mineral age distributions collected along a river, allows us to extract information about the relative distribution of erosion rates in an eroding catchment without relying on a steady-state assumption, the value of thermal parameters or an a priori knowledge of in situ age distributions. The model is based on a relatively low number of parameters describing lithological variability among the various sub-catchments and their sizes and only uses the raw ages. The method we propose is tested against synthetic age distributions to demonstrate its accuracy and the optimum conditions for it use. In order to illustrate the method, we invert age distributions collected along the main trunk of the Tsangpo–Siang–Brahmaputra river system in the eastern Himalaya. From the inversion of the cooling age distributions we predict present-day erosion rates of the catchments along the Tsangpo–Siang–Brahmaputra river system, as well as some of its tributaries. We show that detrital age distributions contain dual information about present-day erosion rate, i.e., from the predicted distribution of surface ages within each catchment and from the relative contribution of
Energy Technology Data Exchange (ETDEWEB)
Reiter, H.L.; Cook, C.
1999-09-01
Regulators need to take a hard look at stranded cost policies that make it difficult for municipalities to replace incumbent distributors, and also reconsider whether distributors should be allowed to roll expansion costs into systemwide rates. This article focuses on the importance of efficient electric distribution in the post-restructuring era and how regulators can promote that efficiency by (1) protecting and encouraging franchise competition, (2) employing regulatory yardsticks, and (3) designing rate structures that send proper price signals about the relative costs of expanding distribution plant and substituting distributed generation, conservation services, or other alternatives.
Cataract surgery in Southern Ethiopia: distribution, rates and determinants of service provision.
Habtamu, Esmael; Eshete, Zebiba; Burton, Matthew J
2013-11-19
Cataract is the leading cause of blindness worldwide, with the greatest burden found in low-income countries. Cataract surgery is a curative and cost-effective intervention. Despite major non-governmental organization (NGO) support, the cataract surgery performed in Southern Region, Ethiopia is currently insufficient to address the need. We analyzed the distribution, productivity, cost and determinants of cataract surgery services. Confidential interviews were conducted with all eye surgeons (Ophthalmologists & Non-Physician Cataract Surgeons [NPCS]) in Southern Region using semi-structured questionnaires. Eye care project managers were interviewed using open-ended qualitative questionnaires. All eye units were visited. Information on resources, costs, and the rates and determinants of surgical output were collected. Cataract surgery provision is uneven across Southern Region: 66% of the units are within 200 km of the regional capital. Surgeon to population ratios varied widely from 1:70,000 in the capital to no service provision in areas containing 7 million people. The Cataract Surgical Rate (CSR) in 2010 was 406 operations/million/year with zonal CSRs ranging between 204 and 1349. Average number of surgeries performed was 374 operations/surgeon/year. Ophthalmologists and NPCS performed a mean of 682 and 280 cataract operations/surgeon/year, respectively (p = 0.03). Resources are underutilized, at 56% of capacity. Community awareness programs were associated with increased activity (p = 0.009). Several factors were associated with increased surgeon productivity (p 2 years, working in a NGO/private clinic, working in an urban unit, having a unit manger, conducting outreach programs and a satisfactory work environment. The average cost of cataract surgery in 2010 was US$141.6 (Range: US$37.6-312.6). Units received >70% of their consumables from NGOs. Mangers identified poor staff motivation, community awareness and limited government support as major
Haptic Edge Detection Through Shear
Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent
2016-03-01
Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.
Influence of shielding gas on fume formation rate and particle size distribution for optimised GMAW
International Nuclear Information System (INIS)
Carpenter, K.R.; Monaghan, B.J.; Nicholson, A.; Cuiuri, D.; Norrish, J.
2010-01-01
The influence of shielding gas on fume formation rate (FFR) and particle size distribution has been investigated by using a technique developed for automatic control of the welding voltage in gas metal arc welding (GMAW). The results for automatic control are compared with the use of a fixed voltage. Significant reductions in FFR and a general decrease in average particle size were observed using the automatic control technique. This reduction in FFR was attributed to improved metal transfer stability, via a reduction in the occurrence of repelled globular transfer, by promoting the 'drop-spray' transfer condition, together with a reduction in the arc length. FFR and particle size were strongly related to the C O2 content of the shielding gas, where FFR increased as percent C 02 increased, due mainly to the dominant influence of C O2 on weld transfer and arc characteristics. The results indicate that FFR for GMAW in the spray regime should be determined by using optimised welding conditions for each shielding gas composition.
Aksoy, Alper; Gungor, Melike; Sir, Emin
2017-01-01
The purpose of this study was to compare the results of fingertip replantations without (artery anastomosis only replantations) and with venous anastomosis (replantations in which both arterial and palmar venous anastomoses were performed). Also, distribution of the veins used for anastomosis was analyzed retrospectively. First 53 digits (47 patients) received only arterial anastomosis (group 1). For relieving venous congestion, external bleeding method was used. Last 41 digits (38 patients) received both arterial and palmar venous anastomoses without external bleeding (group 2). There was statistical significance of the survival rate between group 1 [77.3% (41/53)] and group 2 [92.6% (38/41)] (P = 0.039). Venous congestion was encountered at 10 digits in group 1 (all underwent necrosis totally) and at 3 digits in group 2 (both were moderate and could be salvaged partially) (P = 0.094, no statistical significance). There was statistical significance of the mean operation time for single-fingertip replantation between group 1 (80 ± 7.8 minutes) and group 2 (105 ± 14.5 minutes) (P replantations with palmar venous anastomosis have simpler postoperative care and lower drawbacks as compared with artery anastomosis-only replantations.
Kolbe, T.; Abbott, B. W.; Thomas, Z.; Labasque, T.; Aquilina, L.; Laverman, A.; Babey, T.; Marçais, J.; Fleckenstein, J. H.; Peiffer, S.; De Dreuzy, J. R.; Pinay, G.
2016-12-01
Groundwater contamination by nitrate is nearly ubiquitous in agricultural regions. Nitrate is highly mobile in groundwater and though it can be denitrified in the aquifer (reduced to inert N2 gas), this process requires the simultaneous occurrence of anoxia, an electron donor (e.g. organic carbon, pyrite), nitrate, and microorganisms capable of denitrification. In addition to this the ratio of the time groundwater spent in a denitrifying environment (exposure time) to the characteristic denitrification reaction time plays an important role, because denitrification can only occur if the exposure time is longer than the characteristic reaction time. Despite a long history of field studies and numerical models, it remains exceedingly difficult to measure or model exposure times in the subsurface at the catchment scale. To approach this problem, we developed a unified modelling approach combining measured environmental proxies with an exposure time based reactive transport model. We measured groundwater age, nitrogen and sulfur isotopes, and water chemistry from agricultural wells in an unconfined aquifer in Brittany, France, to quantify changes in nitrate concentration due to dilution and denitrification. Field data showed large differences in nitrate concentrations among wells, associated with differences in the exposure time distributions. By constraining a catchment-scale characteristic reaction time for denitrification with water chemistry proxies and exposure times, we were able to assess rates of denitrification along groundwater flow paths. This unified modeling approach is transferable to other catchments and could be further used to investigate how catchment structure and flow dynamics interact with biogeochemical processes such as denitrification.
Shear thinning and shear thickening of a confined suspension of vesicles
Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.
2018-01-01
Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.
Shear strength of the ASDEX upgrade TF coil insulation: Rupture, fatigue and creep behaviour
International Nuclear Information System (INIS)
Streibl, B.; Maier, E.A.; Perchermeier, J.; Cimbrico, P.L.; Varni, G.; Pisani, D.; Deska, R.; Endreat, J.
1987-03-01
This report is concerned with the interlaminar shear strength of the insulation system for the 16 toroidal field (TF) coils of ASDEX upgrade. The interlaminar shear properties of the glass-epoxy insulation are primarily determined by the resin system (ARALDIT-F, HT 907, DZ 40) and its curing procedure. The pure resin was therefore tested first in tension. The results were taken into account for setting up the method of curing the TF coils. Shear tests of the complete glass-epopxy system were then conducted with tubular torque specimens providing a nearly homogeneous stress distribution. In particular, the influence of the amount of flexibilizer (5, 10, 15 parts of resin weight = PoW) on the rupture and fatigue strengths was assessed at a temperature T=60 C, as also was the temperature dependence of the creep rate (40 C, 60 C, 80 C). The results obtained are not based on safe statistics. Nevertheless, they show clear trends. (orig.)
International Nuclear Information System (INIS)
Johnson, Sarah J; Ong, Lawrence; Shirvanimoghaddam, Mahyar; Lance, Andrew M; Symul, Thomas; Ralph, T C
2017-01-01
The maximum operational range of continuous variable quantum key distribution protocols has shown to be improved by employing high-efficiency forward error correction codes. Typically, the secret key rate model for such protocols is modified to account for the non-zero word error rate of such codes. In this paper, we demonstrate that this model is incorrect: firstly, we show by example that fixed-rate error correction codes, as currently defined, can exhibit efficiencies greater than unity. Secondly, we show that using this secret key model combined with greater than unity efficiency codes, implies that it is possible to achieve a positive secret key over an entanglement breaking channel—an impossible scenario. We then consider the secret key model from a post-selection perspective, and examine the implications for key rate if we constrain the forward error correction codes to operate at low word error rates. (paper)
Shear-induced phase changes in mixtures
International Nuclear Information System (INIS)
Romig, K.D.; Hanley, H.J.M.
1986-01-01
A thermodynamic theory to account for the behavior of liquid mixtures exposed to a shear is developed. One consequence of the theory is that shear-induced phase changes are predicted. The theory is based on a thermodynamics that includes specifically the shear rate in the formalism and is applied to mixtures by a straightforward modification of the corresponding states, conformalsolution approach. The approach is general but is used here for a mixture of Lennard-Jones particles with a Lennard-Jones equation of state as a reference fluid. The results are discussed in the context of the Scott and Van Konynenberg phase classification. It is shown that the influence of a shear does affect substantially the type of the phase behavior. Results from the model mixture are equated loosely with those from real polymeric liquids
Shear induced structures in crystallizing cocoa butter
Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.
2004-03-01
Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.
Shear rheological properties of fresh human faeces with different ...
African Journals Online (AJOL)
Samples were further tested for moisture content, total solids, volatile content, and ash content. Faecal samples were found to have a yield stress; there was a decrease in apparent viscosity with increasing shear rate. For any given shear rate, higher apparent viscosities are associated with lower moisture contents. Across a ...
Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong
2018-05-19
In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.
Energy Technology Data Exchange (ETDEWEB)
Nordon, R.; Lutz, D.; Genzel, R.; Berta, S.; Wuyts, S.; Magnelli, B.; Foerster Schreiber, N. M.; Poglitsch, A.; Popesso, P. [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, 85741 Garching (Germany); Altieri, B. [Herschel Science Centre, European Space Astronomy Centre, ESA, Villanueva de al Canada, 28691 Madrid (Spain); Andreani, P. [ESO, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Aussel, H.; Daddi, E. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, Bat.709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Bongiovanni, A.; Cepa, J.; Perez Garcia, A. M. [Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife (Spain); Cimatti, A. [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, 40127 Bologna (Italy); Fadda, D. [IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Lagache, G. [Institut d' Astrophysique Spatiale (IAS), Bat 121, Universite de Paris XI, 91450 Orsay Cedex (France); Maiolino, R., E-mail: nordon@mpe.mpg.de [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monte Porzio Catone (Italy); and others
2012-02-01
We combine Herschel-Photodetector Array Camera and Spectrometer (PACS) data from the PACS Evolutionary Probe (PEP) program with Spitzer 24 {mu}m and 16 {mu}m photometry and ultra deep Infrared Spectrograph (IRS) mid-infrared spectra to measure the mid- to far-infrared spectral energy distribution (SED) of 0.7 < z < 2.5 normal star-forming galaxies (SFGs) around the main sequence (the redshift-dependent relation of star formation rate (SFR) and stellar mass). Our very deep data confirm from individual far-infrared detections that z {approx} 2 SFRs are overestimated if based on 24 {mu}m fluxes and SED templates that are calibrated via local trends with luminosity. Galaxies with similar ratios of rest-frame {nu}L{sub {nu}}(8) to 8-1000 {mu}m infrared luminosity (LIR) tend to lie along lines of constant offset from the main sequence. We explore the relation between SED shape and offset in specific star formation rate (SSFR) from the redshift-dependent main sequence. Main-sequence galaxies tend to have a similar {nu}L{sub {nu}}(8)/LIR regardless of LIR and redshift, up to z {approx} 2.5, and {nu}L{sub {nu}}(8)/LIR decreases with increasing offset above the main sequence in a consistent way at the studied redshifts. We provide a redshift-independent calibration of SED templates in the range of 8-60 {mu}m as a function of {Delta}log(SSFR) offset from the main sequence. Redshift dependency enters only through the evolution of the main sequence with time. Ultra deep IRS spectra match these SED trends well and verify that they are mostly due to a change in ratio of polycyclic aromatic hydrocarbon (PAH) to LIR rather than continua of hidden active galactic nuclei (AGNs). Alternatively, we discuss the dependence of {nu}L{sub {nu}}(8)/LIR on LIR. The same {nu}L{sub {nu}}(8)/LIR is reached at increasingly higher LIR at higher redshift, with shifts relative to local by 0.5 and 0.8 dex in log(LIR) at redshifts z {approx} 1 and z {approx} 2. Corresponding SED template calibrations
Directory of Open Access Journals (Sweden)
Eugenia BABILONI
2012-01-01
Full Text Available The fill rate is usually computed by using the traditional approach, which calculates it as the complement of the quotient between the expected unfulfilled demand and the expected demand per replenishment cycle, instead of directly the expected fraction of fulfilled demand. Furthermore the available methods to estimate the fill rate apply only under specific demand conditions. This paper shows the research gap regarding the estimation procedures to compute the fill rate and suggests: (i a new exact procedure to compute the traditional approximation for any discrete demand distribution; and (ii a new method to compute the fill rate directly as the fraction of fulfilled demand for any discrete demand distribution. Simulation results show that the latter methods outperform the traditional approach, which underestimates the simulated fill rate, over different demand patterns. This paper focuses on the traditional periodic review, base stock system when backlogged demands are allowed.
Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.
2012-04-01
On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.
Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro
2016-01-01
The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Probabilistic Cosmological Mass Mapping from Weak Lensing Shear
Energy Technology Data Exchange (ETDEWEB)
Schneider, M. D.; Dawson, W. A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Ng, K. Y. [University of California, Davis, Davis, CA 95616 (United States); Marshall, P. J. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94035 (United States); Meyers, J. E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Bard, D. J., E-mail: schneider42@llnl.gov, E-mail: dstn@cmu.edu, E-mail: boutigny@in2p3.fr, E-mail: djbard@slac.stanford.edu, E-mail: jmeyers314@stanford.edu [National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720-8150 (United States)
2017-04-10
We infer gravitational lensing shear and convergence fields from galaxy ellipticity catalogs under a spatial process prior for the lensing potential. We demonstrate the performance of our algorithm with simulated Gaussian-distributed cosmological lensing shear maps and a reconstruction of the mass distribution of the merging galaxy cluster Abell 781 using galaxy ellipticities measured with the Deep Lens Survey. Given interim posterior samples of lensing shear or convergence fields on the sky, we describe an algorithm to infer cosmological parameters via lens field marginalization. In the most general formulation of our algorithm we make no assumptions about weak shear or Gaussian-distributed shape noise or shears. Because we require solutions and matrix determinants of a linear system of dimension that scales with the number of galaxies, we expect our algorithm to require parallel high-performance computing resources for application to ongoing wide field lensing surveys.
International Nuclear Information System (INIS)
Homan, S. M.
2003-01-01
Crystal size distribution in metamorphic rocks provide fundamental information about crystal nucleation and growth rate, growth time and the degree of overstepping. Crystal size distribution data for garnet, saluretil, keynote, and and alusite crystals from the aureole demonstrate that the earliest formed of this minerals, garnet, has the highest population density and the shortest growth time. The last formed mineral, and alusite, has the lowest population density and longest growth time. keynote and saluretil have the similar population density and growth times intermediate between those of overstepping on the nucleation and growth rates of minerals during metamorphism
DEFF Research Database (Denmark)
Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan
2014-01-01
-state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy......We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV...
Statistical Model of Extreme Shear
DEFF Research Database (Denmark)
Hansen, Kurt Schaldemose; Larsen, Gunner Chr.
2005-01-01
In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...
Modeling combined tension-shear failure of ductile materials
International Nuclear Information System (INIS)
Partom, Y
2014-01-01
Failure of ductile materials is usually expressed in terms of effective plastic strain. Ductile materials can fail by two different failure modes, shear failure and tensile failure. Under dynamic loading shear failure has to do with shear localization and formation of adiabatic shear bands. In these bands plastic strain rate is very high, dissipative heating is extensive, and shear strength is lost. Shear localization starts at a certain value of effective plastic strain, when thermal softening overcomes strain hardening. Shear failure is therefore represented in terms of effective plastic strain. On the other hand, tensile failure comes about by void growth under tension. For voids in a tension field there is a threshold state of the remote field for which voids grow spontaneously (cavitation), and the material there fails. Cavitation depends on the remote field stress components and on the flow stress. In this way failure in tension is related to shear strength and to failure in shear. Here we first evaluate the cavitation threshold for different remote field situations, using 2D numerical simulations with a hydro code. We then use the results to compute examples of rate dependent tension-shear failure of a ductile material.
Shear crack formation and propagation in reinforced Engineered Cementitious Composites
DEFF Research Database (Denmark)
Paegle, Ieva; Fischer, Gregor
2011-01-01
capacity of beams loaded primarily in shear. The experimental program consists of ECC with short randomly distributed polyvinyl alcohol (PVA) fiber beams with different stirrup arrangements and conventional reinforced concrete (R/C) counterparts for comparison. The shear crack formation mechanism of ECC......This paper describes an experimental investigation of the shear behaviour of beams consisting of steel reinforced Engineered Cementitious Composites (R/ECC). Based on the strain hardening and multiple cracking behaviour of ECC, this study investigates the extent to which ECC influences the shear...
López-Collado, José; Isabel López-Arroyo, J; Robles-García, Pedro L; Márquez-Santos, Magdalena
2013-01-01
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is an introduced pest in Mexico and a vector of huanglongbing, a lethal citrus disease. Estimations of the habitat distribution and population growth rates of D. citri are required to establish regional and areawide management strategies and can be used as a pest risk analysis tools. In this study, the habitat distribution of D. citri in Mexico was computed with MaxEnt, an inductive, machine-learning program that uses bioclimatic layers and point location data. Geographic distributions of development and population growth rates were determined by fitting a temperature-dependent, nonlinear model and projecting the rates over the target area, using the annual mean temperature as the predictor variable. The results showed that the most suitable regions for habitat of D. citri comprise the Gulf of Mexico states, Yucatán Peninsula, and areas scattered throughout the Pacific coastal states. Less suitable areas occurred in northern and central states. The most important predictor variables were related to temperature. Development and growth rates had a distribution wider than habitat, reaching some of the northern states of México. Habitat, development, and population growth rates were correlated to each other and with the citrus producing area. These relationships indicated that citrus producing states are within the most suitable regions for the occurrence, development, and population growth of D. citri, therefore increasing the risk of huanglongbing dispersion.
Wall Shear Rates in Taylor Vortex Flow
Czech Academy of Sciences Publication Activity Database
Sobolík, V.; Jirout, T.; Havlica, Jaromír; Kristiawan, M.
2011-01-01
Roč. 4, č. 3 (2011), s. 25-31 ISSN 1735-3572 Grant - others:ANR:(FR) ANR-08-BLAN-0184-01 Institutional research plan: CEZ:AV0Z40720504 Keywords : taylor-couette flow * electrodiffusion diagnostics * membrane reactors Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.jafmonline.net/modules/journal/journal_browse.php?EJjid=13
Kirk Cochran, J.; Hirschberg, David J.; Livingston, Hugh D.; Buesseler, Ken O.; Key, Robert M.
Determination of the naturally occurring radionuclides 232Th, 230Th, 228 Th and 210Pb, and the anthropogenic radionuclides 241Am, 239,240Pu, 134Cs and 137Cs in water samples collected across the Nansen Basin from the Barents Sea slope to the Gakkel Ridge provides tracers with which to characterize both scavenging rates and circulation timescales in this portion of the Arctic Ocean. Large volume water samples (˜ 15001) were filtered in situ to separate particulate (> 0.5 μm) and dissolved Th isotopes and 241Am. Thorium-230 displays increases in both particulate and dissolved activities with depth, with dissolved 230Th greater and particulate 230Th lower in the deep central Nansen Basin than at the Barents Sea slope. Dissolved 228Th activities also are greater relative to 228Ra, in the central basin. Residence times for Th relative to removal from solution onto particles are ˜1 year in surface water, ˜10 years in deep water adjacent to the Barents Sea slope, and ˜20 years in the Eurasian Basin Deep Water. Lead-210 in the central basin deep water also has a residence time of ˜20 years with respect to its removal from the water column. This texture of scavenging is reflected in distributions of the particle-reactive anthropogenic radionuclide 241Am, which shows higher activities relative to Pu in the central Nansen Basin than at the Barents Sea slope. Distributions Of 137Cs show more rapid mixing at the basin margins (Barents Sea slope in the south, Gakkel Ridge in the north) than in the basin interior. Cesium-137 is mixed throughout the water column adjacent to the Barents Sea slope and is present in low but detectable activities in the Eurasian Basin Deep Water in the central basin. At the time of sampling (1987) the surface water at all stations had been labeled with 134Cs released in the 1986 accident at the Chernobyl nuclear power station. In the ˜1 year since the introduction of Chernobyl 134Cs to the Nansen Basin, it had been mixed to depths of ˜800 m at
Vesicle dynamics in shear and capillary flows
International Nuclear Information System (INIS)
Noguchi, Hiroshi; Gompper, Gerhard
2005-01-01
The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape
Wysocki, Daniel
We are living through the dawn of the era of gravitational wave astronomy. Our first glances through this new window upon the sky has revealed a new population of objects. Since it first began observing in late 2015, the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) has detected gravitational waves three times, along with an additional strong candidate - and there shall be orders of magnitude more in the years to come. In all four cases, the waveform's signature is consistent with general relativity's predictions for the merging of two black holes. Through parameter estimation studies, estimates on features such as the black holes' masses and spins have been determined. At least two of the black hole pairs lie above the mass range spanned by comparable black holes observed through traditional means. This suggests they constitute a separate population, either too elusive or rare to be found with traditional telescopes. The most natural questions to ask about these black holes - how did they form, how many of them are there, and how can they be categorized - remain open ended. We know black holes can form when massive stars die, so it's most natural to claim stars as their progenitors. Since we now know black holes merge into larger black holes, could it be the case that they formed from previous mergers? Were the two black holes part of a binary from their birth, or did they become coupled later on in life? The measurements provided by LIGO can help answer these questions and more. Throughout this thesis, I will describe and demonstrate results from a number of novel methods whose purpose is to better understand these black holes and their progenitors. At their heart, these methods give answers to a few, critical questions. a) What is the overall rate at which these objects merge? b) What is the range of values these objects' properties can take, and how are they distributed? c) Given a number of physical models, how can we evaluate the
International finance, Lévy distributions, and the econophysics of exchange rates
Da Silva, Sergio; Matsushita, Raul; Gleria, Iram; Figueiredo, Annibal; Rathie, Pushpa
2005-06-01
This paper surveys the developments in the field of international finance, in particular the research of economists on foreign exchange rates. That might be of interest to physicists working on the econophysics of exchange rates. We show how the econophysics agenda might follow naturally from the economists' research. We also present our own work on the econophysics of exchange rates.
Energy Technology Data Exchange (ETDEWEB)
Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard [Fakultaet Physik, Technische Universitaet Dortmund, D 44221 Dortmund (Germany); Klinische Strahlenphysik, Universitaetsklinikum Essen, D 45122 Essen (Germany); Fakultaet Physik, Technische Universitaet Dortmund, D 44221 Dortmund (Germany)
2009-10-15
Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate
Eichmann, Marion; Flühs, Dirk; Spaan, Bernhard
2009-10-01
The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for
Estimation of shear stress in counter-current gas-liquid annular two-phase flow
International Nuclear Information System (INIS)
Abe, Yutaka; Akimoto, Hajime; Murao, Yoshio
1991-01-01
The accuracy of the correlations of the friction factor is important for the counter-current flow (CCF) analysis with two-fluid model. However, existing two fluid model codes use the correlations of friction factors for co-current flow or correlation developed based on the assumption of no wall shear stress. The assessment calculation for two fluid model code with those existing correlations of friction factors shows the falling water flow rate is overestimated. Analytical model is developed to calculate the shear stress distribution in water film at CCF in order to get the information on the shear stress at the interface and the wall. The analytical results with the analysis model and Bharathan's CCF data shows that the wall shear stress acting on the falling water film is almost same order as the interfacial shear stress and the correlations for co-current flow cannot be applied to the counter-current flow. Tentative correlations of the interfacial and the wall friction factors are developed based on the results of the present study. (author)
International Nuclear Information System (INIS)
Sakata, Suoh; Sato, Sigehiro; Nakano, Masao; Iida, Koyo; Yui, Nobuharu
1979-01-01
A remotely controlled afterloading device for high dose rate intracavitary radiation, the remote afterloader Shimadzu Ralstron MTSW-20, was installed at Chiba Cancer Center Hospital in 1973 and put into clinical use for the treatment of carcinoma of the uterine cervix. Before the clinical use, isodose distributions and treatment schedules were investigated, compared with the low dose rate intracavitary radiation by linear sources of 137 Cs used hitherto. The isodose distributions, calculated by using an electronic computer, for various combinations of the length of uterine canal and the separation of vaginal applicators, were the same as those obtained with linear sources. As for the treatment schedules, by using PT (partial tolerance) which was derived from NSD concept of Ellis, a number of fractional radiation regimes with high dose rate, equivalent to continuous low dose rate radiation, was calculated. From these, a dose of 600 rad per fraction to point A every week has been chosen as the standard radiation schedule. The number of fractions has been varied with the clinical stages. Furthermore, some changes of total dose or small modification of dose distribution have been made for individual lesions. According to the preliminary results, three-year cumulative survival rate was 68.7% and complication rate was 15.2%. Comparing these results with those of the treatment at low dose rate, the former is nearly equal, while the latter is lower. The reduction of complication rate is probably due to the improvement of therapeutic techniques such as continuous observation by fractionated intracavitary radiation, variety of isodose distributions and accuracy of source placement by a short treatment time. (author)
Microalga propels along vorticity direction in a shear flow
Chengala, Anwar; Hondzo, Miki; Sheng, Jian
2013-05-01
Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.
On the symmetric α-stable distribution with application to symbol error rate calculations
Soury, Hamza; Alouini, Mohamed-Slim
2016-01-01
The probability density function (PDF) of the symmetric α-stable distribution is investigated using the inverse Fourier transform of its characteristic function. For general values of the stable parameter α, it is shown that the PDF
Mudalip, S. K. Abdul; Adam, F.; Parveen, J.; Abu Bakar, M. R.; Amran, N.; Sulaiman, S. Z.; Che Man, R.; Arshad, Z. I. Mohd; Shaarani, S. Md.
2017-06-01
This study investigate the effect of cooling rates on mefenamic acid crystallisation in ethyl acetate. The cooling rate was varied from 0.2 to 5 °C/min. The in-line conductivity system and turbidity system were employed to detect the onset of the crystallization process. The crystals produced were analysed using optical microscopy and Fourier transform infrared spectroscopy (FTIR). It was found that the crystals produced at different cooling rates were needle-like and exhibit polymorphic form type I. However, the aspect ratio and crystal size distributions were varied with the increased of cooling rate. A high crystals aspect ratio and narrower CSD (100-900 μm) was obtained at cooling rate of 0.5 °C/min. Thus, can be suggested as the most suitable cooling rate for crystallization of mefenamic acid in ethyl acetate.
Energy Technology Data Exchange (ETDEWEB)
Cho, Hyuksu; Yi, Kunwoo; Choe, Yoonjae; Jang, Hocheol; Yune, Seokjeong; Park, Seongchan [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)
2016-10-15
In this study, a computational analysis is performed to predict the deviation in the temperature distribution in the hot leg pipe according to the flow rate variation in RCS. In the hot leg pipes of Reactor Coolant System (RCS) of APR1400, four Resistance Temperature Detectors (RTDs), to obtain the average hot leg temperature, are installed at each hot leg pipe (two in the upper region and the other two in the lower region around the wall of the hot leg pipe). There is a deviation in temperature distribution in the hot leg pipe due to the sudden changes in the flow direction and area from the reactor core exit to the hot leg pipe. The non-uniform temperature distribution in the hot leg pipe can affect the measurement of the plant parameters such as the reactor power and the reactor coolant flow rate. The following conclusions are reached 1) The non-uniform temperature distribution in the core exit is sustained to some extent through the entire region of hot leg pipe. 2) The temperature ranges having a uniform pattern are 45 - 120° and 240 - 315°. The sensor positions of RTDs are located in this interval (45 - 120° and 240 - 315°) and this sensor positions of RTDs show the appropriate temperature measurement. Also, the temperature distribution shows the similar pattern without reference to the flow rate variation in RCS.
Rugulies, Reiner; Aust, Birgit; Siegrist, Johannes; von dem Knesebeck, Olaf; Bultmann, Ute; Bjorner, Jakob B.; Burr, Hermann
Objective: To analyze the distribution of effort-reward imbalance (ERI) and to investigate its impact on self-rated health in a representative sample of the Danish workforce. Methods: We studied 4977 employees who responded to a questionnaire in 2000, of which 3470 responded to a follow-up survey in
International Nuclear Information System (INIS)
Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Salewski, Mirko; Leipold, Frank; Kusano, Yukihiro
2014-01-01
We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV emission of the gliding arc were investigated by optical methods. High-speed photography was utilized to reveal flow-rate dependent dynamics such as ignitions, propagation, short-cutting events, extinctions and conversions of the discharge from glowtype to spark-type. Short-cutting events and ignitions occur more frequently at higher flow rates. The anchor points of the gliding arc are mostly steady at the top of the electrodes at lower flow rates whereas at higher flow rates they glide up along the electrodes most of the time. The afterglow of fully developed gliding arcs is observed to decay over hundreds of microseconds after being electronically short-cut by a newly ignited arc. The extinction time decreases with the increase of the flow rate. The frequency of the conversion of a discharge from glow-type to spark-type increases with the flow rate. Additionally, spatial distributions of ground-state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy and it is found that the emission intensity of NO γ (A-X), OH (A-X) and N 2 (C-B) increase with the flow rates showing more characteristics of spark-type arcs. The observed phenomena indicate the significance of the interaction between local turbulence and the gliding arc. (paper)
Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Salewski, Mirko; Leipold, Frank; Kusano, Yukihiro
2014-07-01
We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV emission of the gliding arc were investigated by optical methods. High-speed photography was utilized to reveal flow-rate dependent dynamics such as ignitions, propagation, short-cutting events, extinctions and conversions of the discharge from glowtype to spark-type. Short-cutting events and ignitions occur more frequently at higher flow rates. The anchor points of the gliding arc are mostly steady at the top of the electrodes at lower flow rates whereas at higher flow rates they glide up along the electrodes most of the time. The afterglow of fully developed gliding arcs is observed to decay over hundreds of microseconds after being electronically short-cut by a newly ignited arc. The extinction time decreases with the increase of the flow rate. The frequency of the conversion of a discharge from glow-type to spark-type increases with the flow rate. Additionally, spatial distributions of ground-state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy and it is found that the emission intensity of NO γ (A-X), OH (A-X) and N2 (C-B) increase with the flow rates showing more characteristics of spark-type arcs. The observed phenomena indicate the significance of the interaction between local turbulence and the gliding arc.
Distribution of dose rates due to fallout from the Fukushima Daiichi reactor accident
International Nuclear Information System (INIS)
Minato, Susumu
2011-01-01
A number of dose rate data taken after the Fukushima Daiichi reactor accident occurred have been collected through official websites of prefectural governments. Subtracting natural background dose rates from these data, contributions due to fallout alone were evaluated. A train-borne survey was carried out to verify the accuracy of the contour map. The dose rate variation pattern obtained by the survey coincided fairly well with that of the map. (author)
International Nuclear Information System (INIS)
Cooper, A.T.; Woodruff, R.K.
1993-09-01
Studies have been conducted to investigate exposure rates, and radionuclide and trace metal distributions along the Columbia River where it borders the Hanford Site. The last major field study was conducted in 1979. With recently renewed interest in various land use and resource protection alternatives, it is important to have data that represent current conditions. Radionuclides and trace metals were surveyed in Columbia River shoreline soils along the Hanford Site (Hanford Reach). The work was conducted as part of the Surface Environmental Surveillance Project, Pacific Northwest Laboratory. The survey consisted of taking exposure rate measurements and soil samples primarily at locations known or expected to have elevated exposure rates
DEFF Research Database (Denmark)
Hansen, Klaus
This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...
Sheared Electroconvective Instability
Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon
2012-11-01
Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.
International Nuclear Information System (INIS)
Biver, E.; Sims, J.
1997-01-01
This paper, originally presented at the WM'96 Conference in Tucson Arizona, describes a concept of a specialised decommissioning tool designed to operate underwater and to reduce the volume of radioactive components by shearing and compacting. The shear compactor was originally conceived to manage the size reduction of a variety of decommissioned stainless steel tubes stored within a reactor fuel cooling pond and which were consuming a substantial volume of the pond. The main objective of this tool was to cut the long tubes into shorter lengths and to compact them into a flat rectangular form which could be stacked on the pond floor, thus saving valuable space. The development programme, undertaken on this project, investigated a wide range of factors which could contribute to an extended cutting blade performance, ie: materials of construction, cutting blade shape and cutting loads required, shock effects, etc. The second phase was to review other aspects of the design, such as radiological protection, cutting blade replacement, maintenance, pond installation and resultant wall loads, water hydraulics, collection of products of shearing/compacting operations, corrosion of the equipment, control system, operational safety and the ability of the equipment to operate in dry environments. The paper summarises the extended work programme involved with this shear compactor tool. (author)
Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution
Energy Technology Data Exchange (ETDEWEB)
Dr. Chenn Zhou
2012-08-15
The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.
Czech Academy of Sciences Publication Activity Database
Dušek, Libor; Kalíšková, Klára; Münich, Daniel
2013-01-01
Roč. 63, č. 6 (2013), s. 474-504 ISSN 0015-1920 R&D Projects: GA TA ČR(CZ) TD010033 Institutional support: RVO:67985998 Keywords : TAXBEN models * average tax rates * marginal tax rates Subject RIV: AH - Economics Impact factor: 0.358, year: 2013 http://journal.fsv.cuni.cz/storage/1287_dusek.pdf
Philippe, A M; Baravian, C; Imperor-Clerc, M; De Silva, J; Paineau, E; Bihannic, I; Davidson, P; Meneau, F; Levitz, P; Michot, L J
2011-05-18
Aqueous suspensions of swelling clay minerals exhibit a rich and complex rheological behaviour. In particular, these repulsive systems display strong shear-thinning at very low volume fractions in both the isotropic and gel states. In this paper, we investigate the evolution with shear of the orientational distribution of aqueous clay suspensions by synchrotron-based rheo-SAXS experiments using a Couette device. Measurements in radial and tangential configurations were carried out for two swelling clay minerals of similar morphology and size, Wyoming montmorillonite and Idaho beidellite. The shear evolution of the small angle x-ray scattering (SAXS) patterns displays significantly different features for these two minerals. The detailed analysis of the angular dependence of the SAXS patterns in both directions provides the average Euler angles of the statistical effective particle in the shear plane. We show that for both samples, the average orientation is fully controlled by the local shear stress around the particle. We then apply an effective approach to take into account multiple hydrodynamic interactions in the system. Using such an approach, it is possible to calculate the evolution of viscosity as a function of shear rate from the knowledge of the average orientation of the particles. The viscosity thus recalculated almost perfectly matches the measured values as long as collective effects are not too important in the system.
International Nuclear Information System (INIS)
Philippe, A M; Baravian, C; Imperor-Clerc, M; De Silva, J; Davidson, P; Paineau, E; Bihannic, I; Michot, L J; Meneau, F; Levitz, P
2011-01-01
Aqueous suspensions of swelling clay minerals exhibit a rich and complex rheological behaviour. In particular, these repulsive systems display strong shear-thinning at very low volume fractions in both the isotropic and gel states. In this paper, we investigate the evolution with shear of the orientational distribution of aqueous clay suspensions by synchrotron-based rheo-SAXS experiments using a Couette device. Measurements in radial and tangential configurations were carried out for two swelling clay minerals of similar morphology and size, Wyoming montmorillonite and Idaho beidellite. The shear evolution of the small angle x-ray scattering (SAXS) patterns displays significantly different features for these two minerals. The detailed analysis of the angular dependence of the SAXS patterns in both directions provides the average Euler angles of the statistical effective particle in the shear plane. We show that for both samples, the average orientation is fully controlled by the local shear stress around the particle. We then apply an effective approach to take into account multiple hydrodynamic interactions in the system. Using such an approach, it is possible to calculate the evolution of viscosity as a function of shear rate from the knowledge of the average orientation of the particles. The viscosity thus recalculated almost perfectly matches the measured values as long as collective effects are not too important in the system.
Directory of Open Access Journals (Sweden)
Hu Yang
Full Text Available A Soil-Plant Analysis Development (SPAD chlorophyll meter can be used as a simple tool for evaluating N concentration of the leaf and investigating the combined effects of nitrogen rate and leaf age on N distribution. We conducted experiments in a paddy field over two consecutive years (2008-2009 using rice plants treated with six different N application levels. N distribution pattern was determined by SPAD readings based on the temporal dynamics of N concentrations in individual leaves. At 62 days after transplantation (DAT in 2008 and DAT 60 in 2009, leaf SPAD readings increased from the upper to lower in the rice canopy that received N levels of 150 to 375 kg ha(-1The differences in SPAD readings between the upper and lower leaf were larger under higher N application rates. However, as plants grew, this atypical distribution of SPAD readings in canopy leaf quickly reversed to the general order. In addition, temporal dynamics of the leaf SPAD readings (N concentrations were fitted to a piecewise function. In our model, changes in leaf SPAD readings were divided into three stages: growth, functioning, and senescence periods. The leaf growth period lasted approximately 6 days, and cumulative growing days were not affected by N application rates. The leaf functioning period was represented with a relatively stable SPAD reading related to N application rate, and cumulative growing days were extended with increasing N application rates. A quadratic equation was utilized to describe the relationship between SPAD readings and leaf age during the leaf senescence period. The rate of decrease in SPAD readings increased with the age of leaves, but the rate was slowed by N application. As leaves in the lower canopy were physiologically older than leaves in the upper canopy, the rate of decrease in SPAD readings was faster in the lower leaves.
Constitutive Curve and Velocity Profile in Entangled Polymers during Start-Up of Steady Shear Flow
Hayes, Keesha A.; Buckley, Mark R.; Qi, Haibo; Cohen, Itai; Archer, Lynden A.
2010-01-01
-4]. Surprisingly, we find that even polymer systems which exhibit transient, nonmonotonic shear stress-shear rate relationships in bulk rheology experiments manifest time-dependent velocity profiles that are decidedly linear and show no evidence of unstable flow
Shear wall ultimate drift limits
International Nuclear Information System (INIS)
Duffey, T.A.; Goldman, A.; Farrar, C.R.
1994-04-01
Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated
Shear strength of non-shear reinforced concrete elements
DEFF Research Database (Denmark)
Hoang, Cao linh
1997-01-01
The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...
Size Distribution and Rate of Dust Generated During Grain Elevator Handling
Dust generated during grain handling is an air pollutant that produces safety and health hazards. This study was conducted to characterize the particle size distribution (PSD) of dust generated during handling of wheat and shelled corn in the research elevator of the USDA Grain Marketing and Product...
Distribution and rate of microbial processes in ammonia-loaded air filter biofilm
DEFF Research Database (Denmark)
Juhler, Susanne; Nielsen, Lars Peter; Schramm, Andreas
2009-01-01
The in situ activity and distribution of heterotrophic and nitrifying bacteria and their potential interactions were investigated in a full-scale, two-section, trickling filter designed for biological degradation of volatile organics and NH3 in ventilation air from pig farms. The filter biofilm...
Significant effect of grain size distribution on compaction rates in granular aggregates
Niemeijer, André|info:eu-repo/dai/nl/370832132; Elsworth, Derek; Marone, Chris
2009-01-01
We investigate the role of pressure solution in deformation of upper- to mid-crustal rocks using aggregates of halite as a room temperature analog for fluid-assisted deformation processes in the Earth's crust. Experiments evaluate the effects of initial grain size distribution on macroscopic
Energy Technology Data Exchange (ETDEWEB)
Mütze, Annekathrin, E-mail: muetzea@ethz.ch; Heunemann, Peggy; Fischer, Peter [ETH Zürich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich (Switzerland)
2014-11-01
Wormlike micellar salt/surfactant solutions (X-salicylate, cetylpyridinium chloride) are studied with respect to the applied shear stress, concentration, temperature, and composition of the counterions (X = lithium, sodium, potassium, magnesium, and calcium) of the salicylate salt solute to determine vorticity and gradient shear bands. A combination of rheological measurements, laser technique, video analysis, and rheo-small-angle neutron scattering allow for a detailed exploration of number and types of shear bands. Typical flow curves of the solutions show Newtonian, shear-thinning, and shear-thickening flow behavior. In the shear-thickening regime, the solutions show vorticity and gradient shear bands simultaneously, in which vorticity shear bands dominate the visual effect, while gradient shear bands always coexist and predominate the rheological response. It is shown that gradient shear bands change their phases (turbid, clear) with the same frequency as the shear rate oscillates, whereas vorticity shear bands change their phases with half the frequency of the shear rate. Furthermore, we show that with increasing molecular mass of the counterions the number of gradient shear bands increases, while the number of vorticity shear bands remains constant. The variation of temperature, shear stress, concentration, and counterions results in a predictable change in the rheological behavior and therefore allows adjustment of the number of vorticity shear bands in the shear band regime.
A fast simulation method for the Log-normal sum distribution using a hazard rate twisting technique
Rached, Nadhir B.
2015-06-08
The probability density function of the sum of Log-normally distributed random variables (RVs) is a well-known challenging problem. For instance, an analytical closed-form expression of the Log-normal sum distribution does not exist and is still an open problem. A crude Monte Carlo (MC) simulation is of course an alternative approach. However, this technique is computationally expensive especially when dealing with rare events (i.e. events with very small probabilities). Importance Sampling (IS) is a method that improves the computational efficiency of MC simulations. In this paper, we develop an efficient IS method for the estimation of the Complementary Cumulative Distribution Function (CCDF) of the sum of independent and not identically distributed Log-normal RVs. This technique is based on constructing a sampling distribution via twisting the hazard rate of the original probability measure. Our main result is that the estimation of the CCDF is asymptotically optimal using the proposed IS hazard rate twisting technique. We also offer some selected simulation results illustrating the considerable computational gain of the IS method compared to the naive MC simulation approach.
A fast simulation method for the Log-normal sum distribution using a hazard rate twisting technique
Rached, Nadhir B.; Benkhelifa, Fatma; Alouini, Mohamed-Slim; Tempone, Raul
2015-01-01
The probability density function of the sum of Log-normally distributed random variables (RVs) is a well-known challenging problem. For instance, an analytical closed-form expression of the Log-normal sum distribution does not exist and is still an open problem. A crude Monte Carlo (MC) simulation is of course an alternative approach. However, this technique is computationally expensive especially when dealing with rare events (i.e. events with very small probabilities). Importance Sampling (IS) is a method that improves the computational efficiency of MC simulations. In this paper, we develop an efficient IS method for the estimation of the Complementary Cumulative Distribution Function (CCDF) of the sum of independent and not identically distributed Log-normal RVs. This technique is based on constructing a sampling distribution via twisting the hazard rate of the original probability measure. Our main result is that the estimation of the CCDF is asymptotically optimal using the proposed IS hazard rate twisting technique. We also offer some selected simulation results illustrating the considerable computational gain of the IS method compared to the naive MC simulation approach.
Oki, Kensuke; Ma, Bei; Ishitani, Yoshihiro
2017-11-01
Population distributions and transition fluxes of the A exciton in bulk GaN are theoretically analyzed using rate equations of states of the principal quantum number n up to 5 and the continuum. These rate equations consist of the terms of radiative, electron-collisional, and phononic processes. The dependence of the rate coefficients on temperature is revealed on the basis of the collisional-radiative model of hydrogen plasma for the electron-collisional processes and theoretical formulation using Fermi's "golden rule" for the phononic processes. The respective effects of the variations in electron, exciton, and lattice temperatures are exhibited. This analysis is a base of the discussion on nonthermal equilibrium states of carrier-exciton-phonon dynamics. It is found that the exciton dissociation is enhanced even below 150 K mainly by the increase in the lattice temperature. When the thermal-equilibrium temperature increases, the population fluxes between the states of n >1 and the continuum become more dominant. Below 20 K, the severe deviation from the Saha-Boltzmann distribution occurs owing to the interband excitation flux being higher than the excitation flux from the 1 S state. The population decay time of the 1 S state at 300 K is more than ten times longer than the recombination lifetime of excitons with kinetic energy but without the upper levels (n >1 and the continuum). This phenomenon is caused by a shift of population distribution to the upper levels. This phonon-exciton-radiation model gives insights into the limitations of conventional analyses such as the ABC model, the Arrhenius plot, the two-level model (n =1 and the continuum), and the neglect of the upper levels.
Simulation of shear thickening in attractive colloidal suspensions.
Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F
2017-03-01
The influence of attractive forces between particles under conditions of large particle volume fraction, ϕ, is addressed using numerical simulations which account for hydrodynamic, Brownian, conservative and frictional contact forces. The focus is on conditions for which a significant increase in the apparent viscosity at small shear rates, and possibly the development of a yield stress, is observed. The high shear rate behavior for Brownian suspensions has been shown in recent work [R. Mari, R. Seto, J. F. Morris and M. M. Denn PNAS, 2015, 112, 15326-15330] to be captured by the inclusion of pairwise forces of two forms, one a contact frictional interaction and the second a repulsive force often found in stabilized colloidal dispersions. Under such conditions, shear thickening is observed when shear stress is comparable to the sum of the Brownian stress, kT/a 3 , and a characteristic stress based on the combination of interparticle force, i.e. σ ∼ F 0 /a 2 with kT the thermal energy, F 0 the repulsive force scale and a the particle radius. At sufficiently large ϕ, this shear thickening can be very abrupt. Here it is shown that when attractive interactions are present with the noted forces, the shear thickening is obscured, as the viscosity shear thins with increasing shear rate, eventually descending from an infinite value (yield stress conditions) to a plateau at large stress; this plateau is at the same level as the large-shear rate viscosity found in the shear thickened state without attractive forces. It is shown that this behavior is consistent with prior observations in shear thickening suspensions modified to be attractive through depletion flocculation [V. Gopalakrishnan and C. F. Zukoski J. Rheol., 2004, 48, 1321-1344]. The contributions of the contact, attractive, and hydrodynamics forces to the bulk stress are presented, as are the contact networks found at different attractive strengths.
Infection rate of toxoplasma gondii and age distribution in female patients with sterility
International Nuclear Information System (INIS)
Li Shuhong; Dai Pei; Cui Liming; Zong Shan; Zuo Wenjing
2006-01-01
Objective: To discuss the relationship between the infection of Toxoplasma gondii and female sterility. Methods: Toxoplasma gondii serum antibody were determined in 882 women with sterility (experimental group) and 107 normal bearing women (control group) by using ELISA. At the same time the differences of the infection with Toxoplasma gondii between the ages of the sterility women were analyzed. Results: The positive rate in experimental group was 15.87% (140/882), the positive rate in control group was 5.61% (6/107), remarkable difference was found between two groups (P<0.01). The infection rate in the different age groups (20-24, 25-29, 30-34, 35-39 and ≥40) is 5.63%, 15.24%, 17.91%, 19.44% and 15.38%. Conclusion: Toxoplasma gondii infection may be one of the factors which can cause sterility, and the infection rates at different ages have no instinct differences. (authors)
High Resolution Shear Profile Measurements in Entangled Polymers
Hayes, Keesha A.; Buckley, Mark R.; Cohen, Itai; Archer, Lynden A.
2008-01-01
spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response
Czech Academy of Sciences Publication Activity Database
Dušek, Libor; Kalíšková, Klára; Münich, Daniel
2013-01-01
Roč. 63, č. 6 (2013), s. 474-504 ISSN 0015-1920 R&D Projects: GA MŠk(CZ) SVV 267801/2013 Institutional support: PRVOUK-P23 Keywords : TAXBEN models * average tax rates * marginal tax rates Subject RIV: AH - Economics Impact factor: 0.358, year: 2013 http://journal.fsv.cuni.cz/storage/1287_dusek.pdf
Control rod effects on reaction rate distributions in tight pitched PuO2-UO2 fuel assembly
International Nuclear Information System (INIS)
Gil, Choong-Sup; Okumura, Keisuke; Ishiguro, Yukio
1991-11-01
Investigations were made for the heterogeneity effects caused by insertion or withdrawal of a B 4 C control rod on fine structure of reaction rates distributions in a tight pitched PuO 2 -UO 2 fuel assembly. Analysis was carried out by using the VIM and SRAC codes with the libraries based on JENDL-2 for the hexagonal fuel assembly basically corresponding to the PROTEUS-LWHCR experimental core. The reaction rates are affected more remarkably by the withdrawal of the control rod rather than its insertion. The changes of the reaction rates were decomposed into three terms of spectrum shifts, the changes of effective cross sections with fine groups, and their higher order components. From the analysis, it is concluded that most changes of reaction rates are caused by spectral shifts. The SRAC code with fine group constants can predict the distribution of reaction rates and their ratios with the accuracy of about 5 % except for the values related to Pu-242 capture rate, as compared with the VIM results. To increase the accuracy, it is necessary to generate the effective cross sections of the fuel near control rods with consideration of the heterogeneities in the fuel assembly. (author)
Onuma, Takashi; Otani, Yukitoshi
2014-03-01
A two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz is proposed. A polarization image sensor is developed as core device of the system. It is composed of a pixelated polarizer array made from photonic crystal and a parallel read out circuit with a multi-channel analog to digital converter specialized for two-dimensional polarization detection. By applying phase shifting algorism with circularly-polarized incident light, birefringence phase difference and azimuthal angle can be measured. The performance of the system is demonstrated experimentally by measuring actual birefringence distribution and polarization device such as Babinet-Soleil compensator.
Energy Technology Data Exchange (ETDEWEB)
Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ino, Takashi; Kawai, Masayoshi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Jerde, Eric; Glasgow, David [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2000-02-01
A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the {sup 115}In(n,n'){sup 115m}In, {sup 93}Nb(n,2n){sup 92m}Nb, and {sup 209}Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured {sup 115}In(n,n'){sup 115m}In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)
International Nuclear Information System (INIS)
Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.
1984-01-01
Our system consists of a LeCroy 3500 data acquisition system with a built-in CAMAC crate and eight bismuth-germanate detectors 7.62 cm in diameter and 7.62 cm long. Gamma-ray pulse-height distributions are acquired simultaneously for up to eight positions. The system was very carefully calibrated and characterized from 0.1 to 8.3 MeV using gamma-ray spectra from a variety of radioactive sources. By fitting the pulse-height distributions from the sources with a function containing 17 parameters, we determined theoretical repsonse functions. We use these response functions to unfold the distributions to obtain flux spectra. A flux-to-dose-rate conversion curve based on the work of Dimbylow and Francis is then used to obtain dose rates. Direct use of measured spectra and flux-to-dose-rate curves to obtain dose rates avoids the errors that can arise from spectrum dependence in simple gamma-ray dosimeter instruments. We present some gamma-ray doses for the Little Boy assembly operated at low power. These results can be used to determine the exposures of the Hiroshima survivors and thus aid in the establishment of radation exposure limits for the nuclear industry
International Nuclear Information System (INIS)
Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro; Jerde, Eric; Glasgow, David
2000-02-01
A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the 115 In(n,n') 115m In, 93 Nb(n,2n) 92m Nb, and 209 Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured 115 In(n,n') 115m In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)
Size and structure of Chlorella zofingiensis /FeCl _{3} flocs in a shear flow: Algae Floc Structure
Energy Technology Data Exchange (ETDEWEB)
Wyatt, Nicholas B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Hern, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shelden, Bion [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hughes, Lindsey G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mondy, Lisa A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2013-07-26
Flocculation is a promising method to overcome the economic hurdle to separation of algae from its growth medium in large scale operations. But, understanding of the floc structure and the effects of shear on the floc structure are crucial to the large scale implementation of this technique. The floc structure is important because it determines, in large part, the density and settling behavior of the algae. Freshwater algae floc size distributions and fractal dimensions are presented as a function of applied shear rate in a Couette cell using ferric chloride as a flocculant. Comparisons are made with measurements made for a polystyrene microparticle model system taken here as well as reported literature results. The algae floc size distributions are found to be self-preserving with respect to shear rate, consistent with literature data for polystyrene. Moreover, three fractal dimensions are calculated which quantitatively characterize the complexity of the floc structure. Low shear rates result in large, relatively dense packed flocs which elongate and fracture as the shear rate is increased. Our results presented here provide crucial information for economically implementing flocculation as a large scale algae harvesting strategy.
Experiments on sheet metal shearing
Gustafsson, Emil
2013-01-01
Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...
Apparatus for emulsion production in small scale and under controlled shear conditions
DEFF Research Database (Denmark)
Adler-Nissen, Jens; Mason, Sarah; Jacobsen, Charlotte
2004-01-01
In this article, a rotor-stator apparatus for the production of 5 g batches of emulsion is introduced. Special attention was paid to the design of the apparatus and its construction, ensuring close tolerances in all machined parts. The size of the dispersing gap was 500 µm. The need to prepare...... small quantities of homogeneous emulsion formulations containing costly ingredients formed the impetus for this work. We present a set of emulsion production experiments using a model mayonnaise recipe with a weight percentage of dispersed oil of 80%, and illustrate the effect of rotor speed...... on the average size and size distributions of the resulting oil droplets. These size distributions were within the same range as a commercial mayonnaise. The maximum shear rates and corresponding shear stresses existing in the apparatus at different rotational speeds were estimated. A stabilization time related...
Optimized mass flow rate distribution analysis for cooling the ITER Blanket System
Energy Technology Data Exchange (ETDEWEB)
Pérez, Germán, E-mail: German.Perez@iter.org; Mitteau, Raphaël; Furmanek, Andreas; Martin, Alex; Raffray, René; Merola, Mario; Sabourin, Flavien
2014-10-15
Highlights: • Optimized water distribution in ITER blanket modules is presented. • All key challenging constraints are included. • The methodology and the successful result are presented. - Abstract: This paper presents the rationale to the optimization of water distribution in ITER blanket modules, meeting both Blanket System requirements and interface compliance requirements. The key challenging constraints include to: be compatible with the overall water allocation (3140 kg/s for 440 wall mounted BMs); meet the critical heat flux margin of 1.4 in the plasma facing units; meet a maximum temperature increase of 70 °C at the outlet of each single BM; and ensure that water velocity is less than 7 m/s in all manifolds, and that the pressure drops of all BMs can be equilibrated. The methodology and the successful result are presented.
Optimized mass flow rate distribution analysis for cooling the ITER Blanket System
International Nuclear Information System (INIS)
Pérez, Germán; Mitteau, Raphaël; Furmanek, Andreas; Martin, Alex; Raffray, René; Merola, Mario; Sabourin, Flavien
2014-01-01
Highlights: • Optimized water distribution in ITER blanket modules is presented. • All key challenging constraints are included. • The methodology and the successful result are presented. - Abstract: This paper presents the rationale to the optimization of water distribution in ITER blanket modules, meeting both Blanket System requirements and interface compliance requirements. The key challenging constraints include to: be compatible with the overall water allocation (3140 kg/s for 440 wall mounted BMs); meet the critical heat flux margin of 1.4 in the plasma facing units; meet a maximum temperature increase of 70 °C at the outlet of each single BM; and ensure that water velocity is less than 7 m/s in all manifolds, and that the pressure drops of all BMs can be equilibrated. The methodology and the successful result are presented
Evans, Jonathan P; Smith, Chris D; Fine, Nicola F; Porter, Ian; Gangannagaripalli, Jaheeda; Goodwin, Victoria A; Valderas, Jose M
2018-04-01
Clinical rating systems are used as outcome measures in clinical trials and attempt to gauge the patient's view of his or her own health. The choice of clinical rating system should be supported by its performance against established quality standards. A search strategy was developed to identify all studies that reported the use of clinical rating systems in the elbow literature. The strategy was run from inception in Medline Embase and CINHAL. Data extraction identified the date of publication, country of data collection, pathology assessed, and the outcome measure used. We identified 980 studies that reported clinical rating system use. Seventy-two separate rating systems were identified. Forty-one percent of studies used ≥2 separate measures. Overall, 54% of studies used the Mayo Elbow Performance Score (MEPS). For arthroplasty, 82% used MEPS, 17% used Disabilities of Arm, Shoulder and Hand (DASH), and 7% used QuickDASH. For trauma, 66.7% used MEPS, 32% used DASH, and 23% used the Morrey Score. For tendinopathy, 31% used DASH, 23% used Patient-Rated Tennis Elbow Evaluation (PRTEE), and 13% used MEPS. Over time, there was an increased proportional use of the MEPS, DASH, QuickDASH, PRTEE, and the Oxford Elbow Score. This study identified a wide choice and usage of clinical rating systems in the elbow literature. Numerous studies reported measures without a history of either a specific pathology or cross-cultural validation. Interpretability and comparison of outcomes is dependent on the unification of outcome measure choice. This was not demonstrated currently. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
High-Rate Field Demonstration of Large-Alphabet Quantum Key Distribution
2017-05-22
Institute of Technology, Cambridge , MA 02139, USA 2Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420, USA Distribution A...the detectors or the readout electronics — is saturated by the incoming photon flux, 3 as illustrated in Figure 1(b). In this regime, which extends to...The deployed-fiber testbed comprised a pair of dark fibers running between the main campus of MIT in Cambridge , MA, and MIT Lincoln Laboratory in
Enhancing Rotational Diffusion Using Oscillatory Shear
Leahy, Brian D.
2013-05-29
Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.
Goff, R. W.
1978-01-01
The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.
Calculation of fluence rate distributions in a pre design clinical facility for BNCT at the LFR
International Nuclear Information System (INIS)
Peeters, T.T.J.M.; Freudenreich, W.E.
1995-12-01
In a previous study [1], it was demonstrated that the creation of a thermal neutron facility for clinical BNCT in the LFR is feasible. Monte Carlo calculations had shown that the neutron fluence rates and gamma dose rates at the detector position of a model representing a first outline of a clinical facility met all requirements that are necessary for clinical BNCT. In order to gain more information about the neutron fluence rates at several positions, a second step is required. Calculations have been performed for the free beam and for a tumour bearing phantom at 5 cm and 10 cm distance from the irradiation window. Due to thermalization and back scattering, the thermal fluence rates in the tumour at 5 and 10 cm distance from the bismuth shield appeared to be approximately twice as high as the thermal fluence rates in the free beam at the corresponding positions of 5 to 6 cm and 10 to 11 cm from the irradiation window. (orig.)
Interfacial shear behavior of composite flanged concrete beams
Directory of Open Access Journals (Sweden)
Moataz Awry Mahmoud
2014-08-01
Full Text Available Composite concrete decks are commonly used in the construction of highway bridges due to their rapid constructability. The interfacial shear transfer between the top slab and the supporting beams is of great significance to the overall deck load carrying capacity and performance. Interfacial shear capacity is directly influenced by the distribution and the percentage of shear connectors. Research and design guidelines suggest the use of two different approaches to quantify the required interfacial shear strength, namely based on the maximum compressive forces in the flange at mid span or the maximum shear flow at the supports. This paper investigates the performance of flanged reinforced concrete composite beams with different shear connector’s distribution and reinforcing ratios. The study incorporated both experimental and analytical programs for beams. Key experimental findings suggest that concentrating the connectors at the vicinity of the supports enhances the ductility of the beam. The paper proposes a simple and straight forward approach to estimate the interfacial shear capacity that was proven to give good correlation with the experimental results and selected code provisions. The paper presents a method to predict the horizontal shear force between precast beams and cast in-situ slabs.
de Jonge, Mario; Tabbers, Huib K; Pecher, Diane; Zeelenberg, René
2012-03-01
In 2 experiments, we investigated the effect of presentation rate on both immediate (5 min) and delayed (2 days) cued recall of paired associates. Word pairs were presented for a total of 16 s per pair, with presentation duration of individual presentations varying from 1 to 16 s. In Experiment 1, participants studied word pairs with presentation rates of 16 × 1 s, 8 × 2 s, 4 × 4 s, 2 × 8 s, or 1 × 16 s. A nonmonotonic relationship was found between presentation rate and cued recall performance. Both short (e.g., 1 s) and long (e.g., 16 s) presentation durations resulted in poor immediate and delayed recall, compared with intermediate presentation durations. In Experiment 2, we replicated these general findings. Moreover, we showed that the 4 s condition resulted in less proportional forgetting than the 1 s and the 16 s conditions. 2012 APA, all rights reserved
Directory of Open Access Journals (Sweden)
Arbel Harpak
2016-12-01
Full Text Available The site frequency spectrum (SFS has long been used to study demographic history and natural selection. Here, we extend this summary by examining the SFS conditional on the alleles found at the same site in other species. We refer to this extension as the "phylogenetically-conditioned SFS" or cSFS. Using recent large-sample data from the Exome Aggregation Consortium (ExAC, combined with primate genome sequences, we find that human variants that occurred independently in closely related primate lineages are at higher frequencies in humans than variants with parallel substitutions in more distant primates. We show that this effect is largely due to sites with elevated mutation rates causing significant departures from the widely-used infinite sites mutation model. Our analysis also suggests substantial variation in mutation rates even among mutations involving the same nucleotide changes. In summary, we show that variable mutation rates are key determinants of the SFS in humans.
Study of radon progeny distribution and radiation dose rate in the atmosphere
International Nuclear Information System (INIS)
Fujinami, Naoto
2009-01-01
The absorbed dose rate in air of airborne gamma-ray and the concentration of radon progeny in surface air have been observed continuously in Maizuru, Japan. When data observed on fine days were plotted, with dose rate as ordinate and contraction as abscissa, these points traced with a lapse of time illustrated an anticlockwise looping for each day. This result suggests that the variation of absorbed dose rate lags behind that of concentration of radon progeny; this is due to the delay time incurred as the concentration level gradually varies from ground surface to upper air. Radon progeny concentrations in precipitation and in surface air have been observed there in order to study the relationship between the two concentrations and the influence of precipitation patterns on the concentration in precipitation. Results obtained from analysis of the observed data suggest that radon progeny in precipitation originate mainly from scavenging within the cloud (rainout) and not from that below the cloud (washout). (author)
A study of microscopic dose rate distribution of 99Tcm-MIBI in the liver of mice
International Nuclear Information System (INIS)
Wang Mingxi; Zhang Liang'an; Wang Yong; Dai Guangfu
2002-01-01
Objective: A microdosimetry model was tried to develop an accurate way to evaluate absorbed dose rates in target cell nuclei from radiopharmaceuticals. Methods: Microscopic frozen section autoradiography was used to determine the subcellular locations of 99 Tc m -MIBI relative to the tissue histology in the liver of mice after injection of 99 Tc m -MIBI via tail for two hours, and a mathematical model was developed to evaluate the microscopic dose rates in cell nuclei. The Medical Internal Radiation Dose (MIRD) schema was also used to evaluate the dose rates at the same time, and a comparison of the results of the two methods was conducted to determine which method is better to accurately estimate microscopic dose rates. Results: The spatial distribution of 99 Tc m -MIBI in the liver of mice at subcellular level was not uniform, and the differences between the microdosimetry model and MIRD schema were significant (P 99 Tc m -labeled pharmaceuticals at the microscopic level
Affine Bond Pricing with a Mixture Distribution for Interest Rate Time-Series Dynamics
DEFF Research Database (Denmark)
Rasmussen, Torben B.
model is able to let the variance of the one-period rate be higher and faster increasing in the variance factor, and to introduce negative skewness and positive excess kurtosis. When weights on the components depend on factors, the model produces a speed of mean reversion and variance of the one......-period rate that both increase fast with higher levels of the yield curve. The added second component is found to capture infrequent relatively large simultaneous shifts in direction of a yield curve that is at a lower level, is steeper, and is more positively curved....
Fabre, E; González de Agüero, R; de Agustin, J L; Pérez-Hiraldo, M P; Bescos, J L
1988-01-01
The objective of this study is to compare the fetal mortality rate (FMR), early neonatal mortality rate (ENMR) and perinatal mortality rate (PMR) of twin and single births. It is based on a survey which was carried out in 22 Hospital Centers in Spain in 1980, and covered 1,956 twins born and 110,734 singletons born. The FMR in twins was 36.3/1000 and 8.8/1000 for singletons. The ENMR in twins was 36.1/1000 and 5.7/1000 for singletons. The PMR in twins was 71.1/1000 and 14.4/1000 for singletons. When birthweight-specific PMR in twin and singletons births are compared, there were no differences between the rates for groups 500-999 g and 1000-1499 g. For birthweight groups of 1500-1999 g (124.4 vs 283.8/1000) and 2000-2999 g (29.6 vs 73.2/1000) the rates for twins were about twice lower than those for single births. The PMR for 2500 g and over birthweight was about twice higher in twins than in singletons (12.5 vs 5.5/1000). After we adjusted for birthweight there was a difference in the FMR (12.6 vs 9.8/1000) and the PMR (19.1 vs 16.0/1000, and no difference in the ENMR between twins and singletons (5.9 vs 6.4/1000), indicating that most of the differences among crude rates are due to differences in distribution of birthweight.
Energy Technology Data Exchange (ETDEWEB)
Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)
1995-12-31
An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.
Forflytning: shear og friktion
DEFF Research Database (Denmark)
2005-01-01
friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...
Shin, Son-Moon; Chang, Young-Pyo; Lee, Eun-Sil; Lee, Young-Ah; Son, Dong-Woo; Kim, Min-Hee; Choi, Young-Ryoon
2005-01-01
To obtain the low birth weight (LBW) rate, the very low birth weight (VLBW) rate, and gestational age (GA)-specific birth weight distribution based on a large population in Korea, we collected and analyzed the birth data of 108,486 live births with GA greater than 23 weeks for 1 yr from 1 January to 31 December 2001, from 75 hospitals and clinics located in Korea. These data included birth weight, GA, gender of the infants, delivery type, maternal age, and the presence of multiple pregnancy. ...
Energy Technology Data Exchange (ETDEWEB)
Bayoumi, M.; Charlot, R.; Ricque, R.
1976-05-01
For analyzing, correlating and extrapolating experimental burn-out results obtained with LWR rod bundles, it is necessary to know the distributions of mass flow rate and quality between the subchannels. A description is presented of an experimental study in progress at the CEN-Grenoble for determining and adjusting the laws of mixing in the FLICA Code which is used to predict these distributions. The experiments are performed on the FRENESIE loop with Freon 12. The test section, in vertical position, consists of a four rod bundle in a channel with square section. The heat flux is axially uniform. The flow of each subchannel can be sampled in ''isokinetic conditions,'' at the end of the heating length. Thermodynamic quality and mass flow rate of the samplings are measured in steady state conditions by using respectively a calorimeter and a turbine flow meter. The test facility is described and experimental data are presented and discussed.
Ogawa, Masakatsu; Hiraguri, Takefumi; Nishimori, Kentaro; Takaya, Kazuhiro; Murakawa, Kazuo
This paper proposes and investigates a distributed adaptive contention window adjustment algorithm based on the transmission history for wireless LANs called the transmission-history-based distributed adaptive contention window adjustment (THAW) algorithm. The objective of this paper is to reduce the transmission delay and improve the channel throughput compared to conventional algorithms. The feature of THAW is that it adaptively adjusts the initial contention window (CWinit) size in the binary exponential backoff (BEB) algorithm used in the IEEE 802.11 standard according to the transmission history and the automatic rate fallback (ARF) algorithm, which is the most basic algorithm in automatic rate controls. This effect is to keep CWinit at a high value in a congested state. Simulation results show that the THAW algorithm outperforms the conventional algorithms in terms of the channel throughput and delay, even if the timer in the ARF is changed.
Energy Technology Data Exchange (ETDEWEB)
Darghouth, Naïm R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-01-13
The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer
Zeyl, C.; Visser, de J.A.G.M.
2001-01-01
The per-genome, per-generation rate of spontaneous mutation affecting fitness (U) and the mean fitness cost per mutation (s) are important parameters in evolutionary genetics, but have been estimated for few species. We estimated U and sh (the heterozygous effect of mutations) for two diploid yeast
Exact Fill Rates for (R, s, S) Inventory Control With Gamma Distributed Demand
Moors, J.J.A.; Strijbosch, L.W.G.
2001-01-01
For the familiar (R; s; S) inventory control system only approximate expressions exist for the fill rate, i.e. the fraction of demand that can be satisfied from stock.Best-known are the approximations derived from renewal theory by Tijms & Groenevelt (1984), holding under specific conditions; in
Sum-rate performance of large centralized and distributed MU-MIMO systems in indoor WLAN
Wang, Q.; Debbarma, D.; Lo, A.; Niemegeers, I.; Heemstra, Sonia
2015-01-01
Large MIMO systems are recognized as an effective technique for increasing the spectral and energy efficiency of wireless networks. The attractiveness of this technique for WLAN is that it can be an alternative approach to cell densification for providing high data rate wireless access. Here we
Raindrop size distribution and radar reflectivity-rain rate relationships for radar hydrology
Uijlenhoet, R.
2001-01-01
The conversion of the radar reflectivity factor Z (mm6m-3) to rain rate R (mm h-1) is a crucial step in the hydrological application of weather radar measurements. It has been common practice for over 50 years now to take for this conversion a simple power law relationship between Z and R. It is the
2012-09-13
pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed . The
Influence of a CIDR prior to bull breeding on pregnancy rates and subsequent calving distribution.
Lamb, G C; Dahlen, C R; Vonnahme, K A; Hansen, G R; Arseneau, J D; Perry, G A; Walker, R S; Clement, J; Arthington, J D
2008-11-01
We determined whether insertion of a CIDR for 7 days prior to the breeding season enhanced pregnancy rates and altered the date of conception in suckled beef cows mated naturally. Suckled beef cows (n=2033) from 15 locations were randomly assigned to one of two treatments: (1) cows received a CIDR 7 days prior to the breeding season for 7 days (CIDR; n=999); (2) cows received no treatment (Control; n=1034). On the first day of the breeding season bulls were introduced to herds at a rate of 15-25 cows per yearling bull or 20-30 cows per mature bull. Pregnancy status and the date of conception were determined via transrectal ultrasonography at 56 and 120 days after initiation of the breeding season. Overall pregnancy rates ranged from 59.3 to 98.9% among the 15 locations. The percentage of cows becoming pregnant during the first 30 days of the breeding season was similar between CIDR (68.2%) and Control (66.7%) cows, and overall pregnancy rates were similar between CIDR (88.9%) and Control (88.6%) cows. The average day of conception after initiation of the breeding season was shorter (Pbody condition score and nor parity affected pregnancy rates or days to conception, whereas pregnancy rates and days to conception were affected (Pconception were greater for cows that calved within 40 days (31.6+/-1.2 days) of initiation of the breeding season compared to cows calving between 40 and 50 days (25.3+/-1.2 days) prior to initiation of the breeding season, which were greater than those cows calving between 50-60 days (20.0+/-0.8 days) and 60-70 days (21.3+/-1.0 days) prior to initiation of the breeding season. Cows calving greater than 70 days (17.3+/-1.5 days) from initiation of the breeding season had the shortest interval to conception. We concluded that insertion of a CIDR prior to the breeding season failed to increase overall pregnancy rates, but did influence the average day of conception.
Free-Space Quantum Key Distribution with a High Generation Rate KTP Waveguide Photon-Pair Source
Wilson, J.; Chaffee, D.; Wilson, N.; Lekki, J.; Tokars, R.; Pouch, J.; Lind, A.; Cavin, J.; Helmick, S.; Roberts, T.;
2016-01-01
NASA awarded Small Business Innovative Research (SBIR) contracts to AdvR, Inc to develop a high generation rate source of entangled photons that could be used to explore quantum key distribution (QKD) protocols. The final product, a photon pair source using a dual-element periodically- poled potassium titanyl phosphate (KTP) waveguide, was delivered to NASA Glenn Research Center in June of 2015. This paper describes the source, its characterization, and its performance in a B92 (Bennett, 1992) protocol QKD experiment.
Impact of catheter reconstruction error on dose distribution in high dose rate intracavitary brachytherapy and evaluation of OAR doses
International Nuclear Information System (INIS)
Thaper, Deepak; Shukla, Arvind; Rathore, Narendra; Oinam, Arun S.
2016-01-01
In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this study is to evaluate the impact of catheter reconstruction error on dose distribution in CT based intracavitary brachytherapy planning and evaluation of its effect on organ at risk (OAR) like bladder, rectum and sigmoid and target volume High risk clinical target volume (HR-CTV)
Directory of Open Access Journals (Sweden)
Yaser Afshar
Full Text Available Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10 pixels, but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.
Afshar, Yaser; Sbalzarini, Ivo F
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.
Afshar, Yaser; Sbalzarini, Ivo F.
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144
Energy Technology Data Exchange (ETDEWEB)
Rusin, Tiago; Rebello, Wilson F.; Vellozo, Sergio O.; Gomes, Renato G., E-mail: tiagorusin@ime.eb.b, E-mail: rebello@ime.eb.b, E-mail: vellozo@cbpf.b, E-mail: renatoguedes@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Nuclear; Vital, Helio C., E-mail: vital@ctex.eb.b [Centro Tecnologico do Exercito (CTEx), Rio de Janeiro, RJ (Brazil); Silva, Ademir X., E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear
2011-07-01
A cavity-type cesium-137 research irradiating facility at CTEx has been modeled by using the Monte Carlo code MCNPX. The irradiator has been daily used in experiments to optimize the use of ionizing radiation for conservation of many kinds of food and to improve materials properties. In order to correlate the effects of the treatment, average doses have been calculated for each irradiated sample, accounting for the measured dose rate distribution in the irradiating chambers. However that approach is only approximate, being subject to significant systematic errors due to the heterogeneous internal structure of most samples that can lead to large anisotropy in attenuation and Compton scattering properties across the media. Thus this work is aimed at further investigating such uncertainties by calculating the dose rate distribution inside the items treated such that a more accurate and representative estimate of the total absorbed dose can be determined for later use in the effects-versus-dose correlation curves. Samples of different simplified geometries and densities (spheres, cylinders, and parallelepipeds), have been modeled to evaluate internal dose rate distributions within the volume of the samples and the overall effect on the average dose. (author)
International Nuclear Information System (INIS)
Rusin, Tiago; Rebello, Wilson F.; Vellozo, Sergio O.; Gomes, Renato G.; Silva, Ademir X.
2011-01-01
A cavity-type cesium-137 research irradiating facility at CTEx has been modeled by using the Monte Carlo code MCNPX. The irradiator has been daily used in experiments to optimize the use of ionizing radiation for conservation of many kinds of food and to improve materials properties. In order to correlate the effects of the treatment, average doses have been calculated for each irradiated sample, accounting for the measured dose rate distribution in the irradiating chambers. However that approach is only approximate, being subject to significant systematic errors due to the heterogeneous internal structure of most samples that can lead to large anisotropy in attenuation and Compton scattering properties across the media. Thus this work is aimed at further investigating such uncertainties by calculating the dose rate distribution inside the items treated such that a more accurate and representative estimate of the total absorbed dose can be determined for later use in the effects-versus-dose correlation curves. Samples of different simplified geometries and densities (spheres, cylinders, and parallelepipeds), have been modeled to evaluate internal dose rate distributions within the volume of the samples and the overall effect on the average dose. (author)
Golzarijalal, Mohammad; Zokaee Ashtiani, Farzin; Dabir, Bahram
2018-01-01
In this study, shear-induced flocculation modeling of Chlorella sp. microalgae was conducted by combination of population balance modeling and CFD. The inhomogeneous Multiple Size Group (MUSIG) and the Euler-Euler two fluid models were coupled via Ansys-CFX-15 software package to achieve both fluid and particle dynamics during the flocculation. For the first time, a detailed model was proposed to calculate the collision frequency and breakage rate during the microalgae flocculation by means of the response surface methodology as a tool for optimization. The particle size distribution resulted from the model was in good agreement with that of the jar test experiment. Furthermore, the subsequent sedimentation step was also examined by removing the shear rate in both simulations and experiments. Consequently, variation in the shear rate and its effects on the flocculation behavior, sedimentation rate and recovery efficiency were evaluated. Results indicate that flocculation of Chlorella sp. microalgae under shear rates of 37, 182, and 387 s -1 is a promising method of pre-concentration which guarantees the cost efficiency of the subsequent harvesting process by recovering more than 90% of the biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:160-174, 2018. © 2017 American Institute of Chemical Engineers.
Shear-induced Bubble Coalescence in Rhyolitic Melts with Low Vesicularity
Okumura, S.; Nakamura, M.; Tsuchiyama, A.
2006-12-01
Development of bubble structure during magma ascent controls the dynamics of volcanic eruption, because the bubble structure influences the magma rheology and permeability, and hence magma degassing. In the flowing magmas, the bubble structure is expected to be changed by shear, as pointed out by some previous studies based on geological observations. However, the development of bubble structure has been experimentally studied only in the isostatic magmas. We have experimentally demonstrated for the first time, the shear-induced development of number density, size and shape of bubbles in a rhyolitic melt. The deformation experiments were performed by using an externally heated, piston-cylinder type apparatus with a rotational piston. At 975°C, natural obsidian (initial water content of 0.5 wt%) having cylindrical shape (ca. 4.7 mm in diameter and 5 mm in length) was vesiculated in the graphite container (ca. 5 and 9 mm in the inner and the outer diameters, respectively, and 5 mm in length), and the vesiculated samples were twisted at various rotational speeds up to 1 rpm. The number density, size and shape of bubbles in the quenched samples were then measured by using the X-ray computed tomography. The size distribution of bubbles shows that the number of larger bubbles increases with the rotational speed and at the outer zone of the samples at which the shear rate is high. In the high shear rate zone, the magnitude of bubble deformation is large. The 3D images of large bubbles clearly indicate that they were formed by coalescence. These results indicate that the degree of bubble coalescence is enhanced with the shear rate. The experimental results also demonstrated that the coalescence of bubbles occur even at low vesicularity (ca. 20 vol.%). Because the shear rate induced in this study (in the order of 0.01 1/s) seems to be produced for magmas ascending in a volcanic conduit, we propose the possibility that the vesiculated magmas undergo bubble coalescence at a
High shear microfluidics and its application in rheological measurement
Energy Technology Data Exchange (ETDEWEB)
Kang, Kai; Lee, L.James; Koelling, Kurt W. [The Ohio State University, Department of Chemical Engineering, Columbus, OH (United States)
2005-02-01
High shear rheology was explored experimentally in microchannels (150 x 150 {mu}m). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney's analysis. Shear rates as high as 10{sup 6} s {sup -1} were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1 x 10 {sup 3} Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly. (orig.)
High shear microfluidics and its application in rheological measurement
Kang, Kai; Lee, L. James; Koelling, Kurt W.
2005-02-01
High shear rheology was explored experimentally in microchannels (150×150 μm). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney’s analysis. Shear rates as high as 106 s-1 were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1×103 Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly.
Shear induced phase transitions induced in edible fats
Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.
2003-03-01
The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.
Investigation of the specific mass flow rate distribution in pipes supplied with a pulsating flow
International Nuclear Information System (INIS)
Olczyk, Aleksander
2009-01-01
A pulsating flow is typical of inlet and exhaust pipes of internal combustion engines and piston compressors. Unsteady flow phenomena are especially important in the case of turbocharged engines, because dynamic effects occurring in the exhaust pipe can affect turbine operation conditions and performance. One of the basic parameters describing the unsteady flow is a transient mass flow rate related to the instantaneous flow velocity, which is usually measured by means of hot-wire anemometers. For the flowing gas, it is more appropriate to analyze the specific mass flow rate φ m = ρv, which takes into account also variations in the gas density. In order to minimize the volume occupied by measuring devices in the control section, special double-wire sensors for the specific mass flow rate (CTA) and temperature (CCT) measurement were applied. The article describes procedures of their calibration and measurement. Different forms of calibration curves are analyzed as well in order to match the approximation function to calibration points. Special attention is paid to dynamic phenomena related to the resonance occurring in a pipe for characteristic frequencies depending on the pipe length. One of these phenomena is a reverse flow, which makes it difficult to interpret properly the recorded CTA signal. Procedures of signal correction are described in detail. To verify the measurements, a flow field investigation was carried out by displacing probes radially and determining the profiles of the specific mass flow rate under the conditions of a steady and pulsating flow. The presence and general features of a reverse flow, which was identified experimentally, were confirmed by 1-D unsteady flow calculations.
Investigation of the specific mass flow rate distribution in pipes supplied with a pulsating flow
Energy Technology Data Exchange (ETDEWEB)
Olczyk, Aleksander [Institute of Turbomachinery, Technical University of Lodz, Wolczanska 219/223, 90-924 Lodz (Poland)], E-mail: aolczyk@p.lodz.pl
2009-08-15
A pulsating flow is typical of inlet and exhaust pipes of internal combustion engines and piston compressors. Unsteady flow phenomena are especially important in the case of turbocharged engines, because dynamic effects occurring in the exhaust pipe can affect turbine operation conditions and performance. One of the basic parameters describing the unsteady flow is a transient mass flow rate related to the instantaneous flow velocity, which is usually measured by means of hot-wire anemometers. For the flowing gas, it is more appropriate to analyze the specific mass flow rate {phi}{sub m} = {rho}v, which takes into account also variations in the gas density. In order to minimize the volume occupied by measuring devices in the control section, special double-wire sensors for the specific mass flow rate (CTA) and temperature (CCT) measurement were applied. The article describes procedures of their calibration and measurement. Different forms of calibration curves are analyzed as well in order to match the approximation function to calibration points. Special attention is paid to dynamic phenomena related to the resonance occurring in a pipe for characteristic frequencies depending on the pipe length. One of these phenomena is a reverse flow, which makes it difficult to interpret properly the recorded CTA signal. Procedures of signal correction are described in detail. To verify the measurements, a flow field investigation was carried out by displacing probes radially and determining the profiles of the specific mass flow rate under the conditions of a steady and pulsating flow. The presence and general features of a reverse flow, which was identified experimentally, were confirmed by 1-D unsteady flow calculations.
Lenhart, Rachel L; Smith, Colin R; Vignos, Michael F; Kaiser, Jarred; Heiderscheit, Bryan C; Thelen, Darryl G
2015-08-20
Interventions used to treat patellofemoral pain in runners are often designed to alter patellofemoral mechanics. This study used a computational model to investigate the influence of two interventions, step rate manipulation and quadriceps strengthening, on patellofemoral contact pressures during running. Running mechanics were analyzed using a lower extremity musculoskeletal model that included a knee with six degree-of-freedom tibiofemoral and patellofemoral joints. An elastic foundation model was used to compute articular contact pressures. The lower extremity model was scaled to anthropometric dimensions of 22 healthy adults, who ran on an instrumented treadmill at 90%, 100% and 110% of their preferred step rate. Numerical optimization was then used to predict the muscle forces, secondary tibiofemoral kinematics and all patellofemoral kinematics that would generate the measured primary hip, knee and ankle joint accelerations. Mean and peak patella contact pressures reached 5.0 and 9.7MPa during the midstance phase of running. Increasing step rate by 10% significantly reduced mean contact pressures by 10.4% and contact area by 7.4%, but had small effects on lateral patellar translation and tilt. Enhancing vastus medialis strength did not substantially affect pressure magnitudes or lateral patellar translation, but did shift contact pressure medially toward the patellar median ridge. Thus, the model suggests that step rate tends to primarily modulate the magnitude of contact pressure and contact area, while vastus medialis strengthening has the potential to alter mediolateral pressure locations. These results are relevant to consider in the design of interventions used to prevent or treat patellofemoral pain in runners. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cost-related model for transit rates in electric power distribution networks
International Nuclear Information System (INIS)
Collstrand, F.
1994-02-01
The planned deregulation of the swedish electrical power market will require a new structure of the electrical energy rates. In this report different models of transit rates are studied. The report includes studies of literature and a proposal to a rate structure and is made specifically for Malmoe Energi AB. The differences between various methods of calculating the transfer cost are illustrated. Further, the build-up of the tariff structure and its base elements are discussed. The costs are divided on different categories of costumers and shows the cost for each customer. The new regulations should apply simultaneously to all networks, independent of the voltage level. The transit cost should be based on a number of basic elements: capital cost, operation and maintenance, losses, measuring and administration. Capital cost and operation and maintenance should be charged as power fees, the loss cost as an energy fee and the measuring and administration cost as a fixed fee. The customer bill should be split into two parts, one for the transit cost and one for the energy usage. 15 refs., 37 tabs., 6 figs
Plasticity Approach to Shear Design
DEFF Research Database (Denmark)
Hoang, Cao Linh; Nielsen, Mogens Peter
1998-01-01
The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....
Effects of cyclic shear loads on strength, stiffness and dilation of rock fractures
Directory of Open Access Journals (Sweden)
Thanakorn Kamonphet
2015-12-01
Full Text Available Direct shear tests have been performed to determine the peak and residual shear strengths of fractures in sandstone, granite and limestone under cyclic shear loading. The fractures are artificially made in the laboratory by tension inducing and saw-cut methods. Results indicate that the cyclic shear load can significantly reduce the fracture shear strengths and stiffness. The peak shear strengths rapidly decrease after the first cycle and tend to remain unchanged close to the residual strengths through the tenth cycle. Degradation of the first order asperities largely occurs after the first cycle. The fracture dilation rates gradually decrease from the first through the tenth cycles suggesting that the second order asperities continuously degrade after the first load cycle. The residual shear strengths are lower than the peak shear strengths and higher than those of the smooth fractures. The strength of smooth fracture tends to be independent of cyclic shear loading.
International Nuclear Information System (INIS)
Synakowski, E.J.; Beer, M.A.
1997-02-01
The relaxation of core transport barriers in TFTR Enhanced Reversed Shear plasmas has been studied by varying the radial electric field using different applied torques from neutral beam injection. Transport rates and fluctuations remain low over a wide range of radial electric field shear, but increase when the local E x B shearing rates are driven below a threshold comparable to the fastest linear growth rates of the dominant instabilities. Shafranov-shift-induced stabilization alone is not able to sustain enhanced confinement
Mean E×B shear effect on geodesic acoustic modes in Tokamaks
International Nuclear Information System (INIS)
Singh, Rameswar; Gurcan, Ozgur D.
2015-01-01
E × B shearing effect on geodesic acoustic mode (GAM) is investigated for the first time both as an initial value problem in the shearing frame and as an eigenvalue value problem in the lab frame. The nontrivial effects are that E × B shearing couples the standard GAM perturbations to their complimentary poloidal parities. The resulting GAM acquires an effective inertia increasing in time leading to GAM damping. Eigenmode analysis shows that GAMs are radially localized by E × B shearing with the mode width being inversely proportional and radial wave number directly proportional to the shearing rate for weak shear. (author)
Evidence for shear stress-mediated dilation of the internal carotid artery in humans
DEFF Research Database (Denmark)
Carter, Howard Henry; Atkinson, Ceri L; Heinonen, Ilkka H A
2016-01-01
-mediated dilation of larger conduit arteries in humans. There was a strong association between change in shear and diameter of the internal carotid (r=0.68; Ptime in humans, that shear stress is an important stimulus for hypercapnic vasodilation of the internal carotid...... increases carotid shear stress, a known stimulus to vasodilation in other conduit arteries. To explore the hypothesis that shear stress contributes to hypercapnic internal carotid dilation in humans, temporal changes in internal and common carotid shear rate and diameter, along with changes in middle.......01) carotids. Diameter also increased (Ptime course is associated with shear...
Cargo Release from Polymeric Vesicles under Shear
Directory of Open Access Journals (Sweden)
Yingying Guo
2018-03-01
Full Text Available In this paper we study the release of cargo from polymeric nano-carriers under shear. Vesicles formed by two star block polymers— A 12 B 6 C 2 ( A B C and A 12 B 6 A 2 ( A B A —and one linear block copolymer— A 14 B 6 ( A B , are investigated using dissipative particle dynamics (DPD simulations. A - and C -blocks are solvophobic and B -block is solvophilic. The three polymers form vesicles of different structures. The vesicles are subjected to shear both in bulk and between solvophobic walls. In bulk shear, the mechanisms of cargo release are similar for all vesicles, with cargo travelling through vesicle membrane with no preferential release location. When sheared between walls, high cargo release rate is only observed with A B C vesicle after it touches the wall. For A B C vesicle, the critical condition for high cargo release rate is the formation of wall-polymersome interface after which the effect of shear rate in promoting cargo release is secondary. High release rate is achieved by the formation of solvophilic pathway allowing cargo to travel from the vesicle cavity to the vesicle exterior. The results in this paper show that well controlled target cargo release using polymersomes can be achieved with polymers of suitable design and can potentially be very useful for engineering applications. As an example, polymersomes can be used as carriers for surface active friction reducing additives which are only released at rubbing surfaces where the additives are needed most.
Baughman, Carson; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.
2015-01-01
Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500–700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.
Zhou, Hui; Meng, Long; Zhou, Wei; Xin, Lin; Xia, Xiangxiang; Li, Shuai; Zheng, Hairong; Niu, Lili
2017-07-29
Studies have identified hemodynamic shear stress as an important determinant of endothelial function and atherosclerosis. In this study, we assess the influences of hemodynamic shear stress on carotid plaques. Carotid stenosis phantoms with three severity (30, 50, 70%) were made from 10% polyvinyl alcohol (PVA) cryogel. The phantoms were placed in a pulsatile flow loop with the same systolic/diastolic phase (35/65) and inlet flow rate (16 L/h). Ultrasonic particle imaging velocimetry (Echo PIV) and computational fluid dynamics (CFD) were used to calculate the velocity profile and shear stress distribution in the carotid stenosis phantoms. Inlet/outlet boundary conditions used in CFD were extracted from Echo PIV experiments to make sure that the results were comparable. Echo PIV and CFD results showed that velocity was largest in 70% than those in 30 and 50% at peak systole. Echo PIV results indicated that shear stress was larger in the upper wall and the surface of plaque than in the center of vessel. CFD results demonstrated that wall shear stress in the upstream was larger than in downstream of plaque. There was no significant difference in average velocity obtained by CFD and Echo PIV in 30% (p = 0.25). Velocities measured by CFD in 50% (93.01 cm/s) and in 70% (115.07 cm/s) were larger than those by Echo PIV in 50% (60.26 ± 5.36 cm/s) and in 70% (89.11 ± 7.21 cm/s). The results suggested that Echo PIV and CFD could obtain hemodynamic shear stress on carotid plaques. Higher WSS occurred in narrower arteries, and the shoulder of plaque bore higher WSS than in bottom part.
Kuzmin, Michael G; Soboleva, Irina V
2014-05-01
Representation of the experimental reaction kinetics in the form of rate distribution is shown to be an effective method for the analysis of the mechanisms of these reactions and for comparisons of the kinetics with QC calculations, as well as with the experimental data on the medium mobility. The rate constant distribution function P(k) can be obtained directly from the experimental kinetics N(t) by an inverse Laplace transform. The application of this approach to kinetic data for several excited-state electron transfer reactions reveals the transformations of their rate control factors in the time domain of 1-1000 ps. In neat electron donating solvents two components are observed. The fastest component (k > 1 ps(-1)) was found to be controlled by the fluctuations of the overall electronic coupling matrix element, involving all the reactant molecules, located inside the interior of the solvent shell, rather than for specific pairs of reactant molecules. The slower component (1 > k > 0.1 ps(-1)) is controlled by the medium reorganization (longitudinal relaxation times, τL). A substantial contribution from the non-stationary diffusion controlled reaction is observed in diluted solutions ([Q] transformation of the rate control factors in the course of the reactions.
Growth rate and age distribution of deep-sea black corals in the Gulf of Mexico
Prouty, N.G.; Roark, E.B.; Buster, N.A.; Ross, Steve W.
2011-01-01
Black corals (order Antipatharia) are important long-lived, habitat-forming, sessile, benthic suspension feeders that are found in all oceans and are usually found in water depths greater than 30 m. Deep-water black corals are some of the slowest-growing, longest-lived deep-sea corals known. Previous age dating of a limited number of black coral samples in the Gulf of Mexico focused on extrapolated ages and growth rates based on skeletal 210Pb dating. Our results greatly expand the age and growth rate data of black corals from the Gulf of Mexico. Radiocarbon analysis of the oldest Leiopathes sp. specimen from the upper De Soto Slope at 300 m water depth indicates that these animals have been growing continuously for at least the last 2 millennia, with growth rates ranging from 8 to 22 µm yr–1. Visual growth ring counts based on scanning electron microscopy images were in good agreement with the 14C-derived ages, suggestive of annual ring formation. The presence of bomb-derived 14C in the outermost samples confirms sinking particulate organic matter as the dominant carbon source and suggests a link between the deep-sea and surface ocean. There was a high degree of reproducibility found between multiple discs cut from the base of each specimen, as well as within duplicate subsamples. Robust 14C-derived chronologies and known surface ocean 14C reservoir age constraints in the Gulf of Mexico provided reliable calendar ages with future application to the development of proxy records.
Directory of Open Access Journals (Sweden)
S. C. Oukouomi Noutchie
2014-01-01
Full Text Available We make use of Laplace transform techniques and the method of characteristics to solve fragmentation equations explicitly. Our result is a breakthrough in the analysis of pure fragmentation equations as this is the first instance where an exact solution is provided for the fragmentation evolution equation with general fragmentation rates. This paper is the key for resolving most of the open problems in fragmentation theory including “shattering” and the sudden appearance of infinitely many particles in some systems with initial finite particles number.
Global distribution of moisture, evaporation-precipitation, and diabatic heating rates
Christy, John R.
1989-01-01
Global archives were established for ECMWF 12-hour, multilevel analysis beginning 1 January 1985; day and night IR temperatures, and solar incoming and solar absorbed. Routines were written to access these data conveniently from NASA/MSFC MASSTOR facility for diagnostic analysis. Calculations of diabatic heating rates were performed from the ECMWF data using 4-day intervals. Calculations of precipitable water (W) from 1 May 1985 were carried out using the ECMWF data. Because a major operational change on 1 May 1985 had a significant impact on the moisture field, values prior to that date are incompatible with subsequent analyses.
International Nuclear Information System (INIS)
Sharma, S.C.; Kafle, S.R.S.
1983-01-01
The effect of gravity on density distributions has been studied in ethane and methane near their critical points using the linear-model parametric equation of state. The results obtained from this study are used to further understand the sensitivity of orthopositronium annihilation rates to density fluctuations in molecular gases. It is shown that the influence of gravity is too small to account for the recently observed dependence of orthopositronium annihilation rates on the density of ethane gas at 306.4 K. However, a significant variation in local density vs height is calculated at temperatures closer to the gas--liquid critical point. The density and temperature dependencies of the annihilation rates of orthopositronium atoms, recently observed in ethane and methane gases, are discussed in terms of the findings of this study
Fission rate distribution at the 84-pin radial section of a SVEA-96 Optima2 BWR assembly
Energy Technology Data Exchange (ETDEWEB)
Perret, Gregory; Murphy, Michael F.; Jatuff, Fabian [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, Rakesh [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)
2008-07-01
Westinghouse boiling water reactor SVEA-96 Optima2 assemblies were studied during the LWRPROTEUS program at the PROTEUS facility in the Paul Scherrer Institute. Measured radial fission rate distributions at the 84-pin elevation are compared with MCNPX predictions using both ENDF/B-VI (Release 2) and JEFF-3.1 data libraries. Predicted fission rates agree within +-4.5% using both libraries. Fission rates were over-predicted in UO{sub 2} pins close to the missing 1/3 pins and under-predicted in UO{sub 2} pins close to the missing 2/3 pins. Recurrent under-estimations were observed in the UO{sub 2}-Gd{sub 2}O{sub 3} pins, for both libraries, which might be explained by over-estimated thermal cross-sections of {sup 157}Gd, as suggested in a recent work of G. Leinweber et al. (2006). (authors)
John R. Jones
1985-01-01
Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....
Shear thinning behaviors in magmas
Vetere, F. P.; Cassetta, M.; Perugini, D.
2017-12-01
Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour
Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.
2008-02-01
Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.
Self-organization in circular shear layers
DEFF Research Database (Denmark)
Bergeron, K.; Coutsias, E.A.; Lynov, Jens-Peter
1996-01-01
Experiments on forced circular shear layers performed in both magnetized plasmas and in rotating fluids reveal qualitatively similar self-organization processes leading to the formation of patterns of coherent vortical structures with varying complexity. In this paper results are presented from...... both weakly nonlinear analysis and full numerical simulations that closely reproduce the experimental observations. Varying the Reynolds number leads to bifurcation sequences accompanied by topological changes in the distribution of the coherent structures as well as clear transitions in the total...
International Nuclear Information System (INIS)
Hiriart, V.P.; Greenberg, B.M.; Guildford, S.J.; Smith, R.E.H.
2002-01-01
The impact of natural solar ultraviolet radiation (UVR), particularly UVB (297-320 nm), on phytoplankton primary production in Lake Erie was investigated during the spring and summer of 1997. Radiocarbon incorporation and size-selective filtration was used to trace total production and its distribution among particulate and dissolved pools. On average, 1-h exposures produced half the UVB-dependent inhibition of total production realized in 8-h exposures, indicating rapid kinetics of photoinhibition. Cumulative UVB-dependent photoinhibition averaged 36% in 8-h simulated surface exposures. The efficiency of photoinhibition was greater for N-deficient than N-replete communities, but was not related to phytoplankton light history, P limitation, or the dominant genera. The proportion of recently fixed carbon occurring in the dissolved pool after 8-h exposures was significantly greater in higher-UVB treatments, whereas the share in picoplankton (<2 μm) was significantly lower. Significant UVB-dependent inhibition of total production was limited on average to relatively severe exposures, but the rapid kinetics of inhibition and the apparent effects on the allocation of carbon suggest it may be important to the lake's food web. Differences in optical properties and thermal stratification patterns suggested that the relatively turbid west basin was potentially more susceptible to UVR photoinhibition than the more transparent east or central basins. (author)
Quantum-locked key distribution at nearly the classical capacity rate.
Lupo, Cosmo; Lloyd, Seth
2014-10-17
Quantum data locking is a protocol that allows for a small secret key to (un)lock an exponentially larger amount of information, hence yielding the strongest violation of the classical one-time pad encryption in the quantum setting. This violation mirrors a large gap existing between two security criteria for quantum cryptography quantified by two entropic quantities: the Holevo information and the accessible information. We show that the latter becomes a sensible security criterion if an upper bound on the coherence time of the eavesdropper's quantum memory is known. Under this condition, we introduce a protocol for secret key generation through a memoryless qudit channel. For channels with enough symmetry, such as the d-dimensional erasure and depolarizing channels, this protocol allows secret key generation at an asymptotic rate as high as the classical capacity minus one bit.
Impact of newly-measured gadolinium cross sections on BWR fuel rod reaction rate distributions
Energy Technology Data Exchange (ETDEWEB)
Jatuff, F.; Perret, G.; Murphy, M.; Grimm, P.; Seiler, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federal de Lausanne, CH-1015 Lausanne (Switzerland)
2008-07-01
Recent measurements of capture and total cross sections performed at the Rensselaer Polytechnic Institute in the USA confirmed many of the gadolinium thermal and resonant neutron cross section parameters within uncertainties, but they also showed up important discrepancies well out of uncertainties, such as an approx11% overestimation of the {sup 157}Gd thermal capture cross section in ENDF/B-VI and -VII with respect to the newly measured data. In this work, the impact of the newly measured gadolinium cross sections on BWR reactor physics parameters has been preliminarily evaluated. The comparisons of rod-by-rod fission rate and modified conversion ratio predictions with selected cold critical experiments at the PROTEUS reactor in Switzerland show the potential to resolve long-term unexplained discrepancies. (authors)
Freezing of a colloidal liquid subject to shear flow
International Nuclear Information System (INIS)
Bagchi, B.; Thirumalai, D.
1988-01-01
A nonequilibrium generalization of the density-functional theory of freezing is proposed to investigate the shear-induced first-order phase transition in colloidal suspensions. It is assumed that the main effect of a steady shear is to break the symmetry of the structure factor of the liquid and that for small shear rate, the phenomenon of a shear-induced order-disorder transition may be viewed as an equilibrium phase transition. The theory predicts that the effective density at which freezing takes place increases with shear rate. The solid (which is assumed to be a bcc lattice) formed upon freezing is distorted and specifically there is less order in one plane compared with the order in the other two perpendicular planes. It is shown that there exists a critical shear rate above which the colloidal liquid does not undergo a transition to an ordered (or partially ordered) state no matter how large the density is. Conversely, above the critical shear rate an initially formed bcc solid always melts into an amorphous or liquidlike state. Several of these predictions are in qualitative agreement with the light-scattering experiments of Ackerson and Clark. The limitations as well as possible extensions of the theory are also discussed
Thermal History of CBb Chondrules and Cooling Rate Distributions of Ejecta Plumes
Hewins, R. H.; Condie, C.; Morris, M.; Richardson, M. L. A.; Ouellette, N.; Metcalf, M.
2018-03-01
It has been proposed that some meteorites, CB and CH chondrites, contain material formed as a result of a protoplanetary collision during accretion. Their melt droplets (chondrules) and FeNi metal are proposed to have formed by evaporation and condensation in the resulting impact plume. We observe that the skeletal olivine (SO) chondrules in CBb chondrites have a blebby texture and an enrichment in refractory elements not found in normal chondrules. Because the texture requires complete melting, their maximum liquidus temperature of 1928 K represents a minimum temperature for the putative plume. Dynamic crystallization experiments show that the SO texture can be created only by brief reheating episodes during crystallization, giving a partial dissolution of olivine. The ejecta plume formed in a smoothed particle hydrodynamics simulation served as the basis for 3D modeling with the adaptive mesh refinement code FLASH4.3. Tracer particles that move with the fluid cells are used to measure the in situ cooling rates. Their cooling rates are ∼10,000 K hr‑1 briefly at peak temperature and, in the densest regions of the plume, ∼100 K hr‑1 for 1400–1600 K. A small fraction of cells is seen to be heating at any one time, with heating spikes explained by the compression of parcels of gas in a heterogeneous patchy plume. These temperature fluctuations are comparable to those required in crystallization experiments. For the first time, we find an agreement between experiments and models that supports the plume model specifically for the formation of CBb chondrules.
Directory of Open Access Journals (Sweden)
S.M. Moosavi Nejad
2016-04-01
Full Text Available Basically, the energy distribution of bottom-flavored hadrons produced through polarized top quark decays t(↑→W++b(→Xb, is governed by the unpolarized rate and the polar and the azimuthal correlation functions which are related to the density matrix elements of the decay t(↑→bW+. Here we present, for the first time, the analytical expressions for the O(αs radiative corrections to the differential azimuthal decay rates of the partonic process t(↑→b+W+ in two helicity systems, which are needed to study the azimuthal distribution of the energy spectrum of the hadrons produced in polarized top decays. These spin-momentum correlations between the top quark spin and its decay product momenta will allow the detailed studies of the top decay mechanism. Our predictions of the hadron energy distributions also enable us to deepen our knowledge of the hadronization process and to test the universality and scaling violations of the bottom-flavored meson fragmentation functions.
Rheometry-PIV of shear-thickening wormlike micelles.
Marín-Santibañez, Benjamín M; Pérez-Gonzalez, José; de Vargas, Lourdes; Rodríguez-Gonzalez, Francisco; Huelsz, Guadalupe
2006-04-25
The shear-thickening behavior of an equimolar semidilute aqueous solution of 40 mM/L cetylpyridinium chloride and sodium salicylate was studied in this work by using a combined method of rheometry and particle image velocimetry (PIV). Experiments were conducted at 27.5 degrees C with Couette, vane-bob, and capillary rheometers in order to explore a wide shear stress range as well as the effect of boundary conditions and time of flow on the creation and destruction of shear-induced structures (SIS). The use of the combined method of capillary rheometry with PIV allowed the detection of fast spatial and temporal variations in the flow kinematics, which are related to the shear-thickening behavior and the dynamics of the SIS but are not distinguished by pure rheometrical measurements. A rich-in-details flow curve was found for this solution, which includes five different regimes. Namely, at very low shear rates a Newtonian behavior was found, followed by a shear thinning one in the second regime. In the third, shear banding was observed, which served as a precursor of the SIS and shear-thickening. The fourth and fifth regimes in the flow curve were separated by a spurtlike behavior, and they clearly evidenced the existence of shear-thickening accompanied by stick-slip oscillations at the wall of the rheometer, which subsequently produced variations in the shear rate under shear stress controlled flow. Such a stick-slip phenomenon prevailed up to the highest shear stresses used in this work and was reflected in asymmetric velocity profiles with spatial and temporal variations linked to the dynamics of creation and breakage of the SIS. The presence of apparent slip at the wall of the rheometer provides an energy release mechanism which leads to breakage of the SIS, followed by their further reformation during the stick part of the cycles. In addition, PIV measurements allowed the detection of apparent slip at the wall, as well as mechanical failures in the bulk of the
HIERARCHICAL PROBABILISTIC INFERENCE OF COSMIC SHEAR
International Nuclear Information System (INIS)
Schneider, Michael D.; Dawson, William A.; Hogg, David W.; Marshall, Philip J.; Bard, Deborah J.; Meyers, Joshua; Lang, Dustin
2015-01-01
Point estimators for the shearing of galaxy images induced by gravitational lensing involve a complex inverse problem in the presence of noise, pixelization, and model uncertainties. We present a probabilistic forward modeling approach to gravitational lensing inference that has the potential to mitigate the biased inferences in most common point estimators and is practical for upcoming lensing surveys. The first part of our statistical framework requires specification of a likelihood function for the pixel data in an imaging survey given parameterized models for the galaxies in the images. We derive the lensing shear posterior by marginalizing over all intrinsic galaxy properties that contribute to the pixel data (i.e., not limited to galaxy ellipticities) and learn the distributions for the intrinsic galaxy properties via hierarchical inference with a suitably flexible conditional probabilitiy distribution specification. We use importance sampling to separate the modeling of small imaging areas from the global shear inference, thereby rendering our algorithm computationally tractable for large surveys. With simple numerical examples we demonstrate the improvements in accuracy from our importance sampling approach, as well as the significance of the conditional distribution specification for the intrinsic galaxy properties when the data are generated from an unknown number of distinct galaxy populations with different morphological characteristics
International Nuclear Information System (INIS)
Lin, Kevin K; Young, Lai-Sang
2008-01-01
Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed
Lin, Kevin K.; Young, Lai-Sang
2008-05-01
Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed.
2015-03-12
0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and
Energy Technology Data Exchange (ETDEWEB)
Boakye Yiadom, Solomon, E-mail: boakyeys@cc.umanitoba.ca; Khaliq Khan, Abdul, E-mail: abdulkhaliq.khan@umanitoba.ca; Bassim, Nabil, E-mail: nabil.bassim@ad.umanitoba.ca
2014-10-06
While instability may occur homogenously during plastic deformation, the formation of adiabatic shear band (ASBs) does not follow a homogenous instability during impact. Geometrical stress concentration sites and/or microstructural inhomogeneities result in the nucleation and initiation of shear strain localization. In this study, initial microstructural inhomogeneity was found to produce nucleation sites for the initiation of ASBs. It was observed that double misfit interfaces and boundary layers with random arrangement of atomic columns are formed around precipitated carbides and they increase the volume fraction of dislocation sources within the specimens. The AISI 4340 steel specimens which were tempered at the lowest temperature had smaller precipitated carbides with high aspect ratios densely distributed within the matrix and were easily susceptible to the formation of ASBs. As the tempering temperature increased, the relative sizes of the carbides increased with a corresponding reduction in their aspect ratios and their distribution density within the matrix and thus were more resistant to the formation of ASBs. In this study, it is demonstrated that the intersection of an activated dislocation source with the direction of maximum shear (regions of stress concentrations) within the specimens during impact, is a necessary condition for the point of intersection to act as a possible site for the nucleation of ASBs, depending on the rate of dislocation generation, local strain and strain rate. At a constant carbide volume fraction, the higher susceptibility of the tempered specimens to the initiation of ASBs is attributed to the volume fraction of the points of intersection between activated dislocation sources and direction of maximum shear during impact. Additionally, the smaller carbides, with their higher aspect ratios and distribution densities, accentuate the effect of strain gradients and the microstructural inhomogeneities associated with the tempered
Directory of Open Access Journals (Sweden)
Trevor C. Brown
2013-11-01
Full Text Available Deconvolution of the evolved isobutene data obtained from temperature-programmed, low-pressure steady-state conversion of isobutane over HZSM-5 has yielded apparent activation energies for isobutane dehydrogenation, isobutene dimerization and desorption. Intrinsic activation energies and associated isobutane collision frequencies are also estimated. A combination of wavelet shrinkage denoising, followed by time-varying flexible least squares of the evolved mass-spectral abundance data over the temperature range 150 to 450 °C, provides accurate, temperature-dependent, apparent rate parameters. Intrinsic activation energies for isobutane dehydrogenation range from 86 to 235.2 kJ mol−1 (average = 150 ± 42 kJ mol−1 for isobutene dimerization from 48.3 to 267 kJ mol−1 (average = 112 ± 74 kJ mol−1 and for isobutene desorption from 64.4 to 97.8 kJ mol−1 (average = 77 ± 12 kJ mol−1. These wide ranges reflect the heterogeneity and acidity of the zeolite surface and structure. Seven distinct locations and sites, including Lewis and Brønsted acid sites can be identified in the profiles. Isobutane collision frequencies range from 10−0.4 to 1022.2 s−1 and are proportional to the accessibility of active sites, within the HZSM-5 micropores or on the external surface.
On the self-organizing process of large scale shear flows
Energy Technology Data Exchange (ETDEWEB)
Newton, Andrew P. L. [Department of Applied Maths, University of Sheffield, Sheffield, Yorkshire S3 7RH (United Kingdom); Kim, Eun-jin [School of Mathematics and Statistics, University of Sheffield, Sheffield, Yorkshire S3 7RH (United Kingdom); Liu, Han-Li [High Altitude Observatory, National Centre for Atmospheric Research, P. O. BOX 3000, Boulder, Colorado 80303-3000 (United States)
2013-09-15
Self organization is invoked as a paradigm to explore the processes governing the evolution of shear flows. By examining the probability density function (PDF) of the local flow gradient (shear), we show that shear flows reach a quasi-equilibrium state as its growth of shear is balanced by shear relaxation. Specifically, the PDFs of the local shear are calculated numerically and analytically in reduced 1D and 0D models, where the PDFs are shown to converge to a bimodal distribution in the case of finite correlated temporal forcing. This bimodal PDF is then shown to be reproduced in nonlinear simulation of 2D hydrodynamic turbulence. Furthermore, the bimodal PDF is demonstrated to result from a self-organizing shear flow with linear profile. Similar bimodal structure and linear profile of the shear flow are observed in gulf stream, suggesting self-organization.
Numerical study of shear thickening fluid with discrete particles embedded in a base fluid
Directory of Open Access Journals (Sweden)
W Zhu
2016-09-01
Full Text Available The Shear Thickening Fluid (STF is a dilatant material, which displays non-Newtonian characteristics in its unique ability to transit from a low viscosity fluid to a high viscosity fluid. The research performed investigates the STF behavior by modeling and simulation of the interaction between the base flow and embedded rigid particles when subjected to shear stress. The model considered the Lagrangian description of the rigid particles and the Eulerian description of fluid flow. The numerical analysis investigated key parameters such as applied flow acceleration, particle distribution and arrangement, volume concentration of particles, particle size, shape and their behavior in a Newtonian and non-Newtonian fluid base. The fluid-particle interaction model showed that the arrangement, size, shape and volume concentration of the particles had a significant effect on the behavior of the STF. Although non-conclusive, the addition of particles in non-Newtonian fluids showed a promising trend of improved shear thickening effects at high shear strain rates.
Numerical investigations of two-degree-of-freedom vortex-induced vibration in shear flow
Energy Technology Data Exchange (ETDEWEB)
Zhang, Hui; Liu, Mengke; Han, Yang; Li, Jian; Gui, Mingyue; Chen, Zhihua, E-mail: zhanghui1902@hotmail.com [Science and Technology on Transient Physics Laboratory, Nanjing University of Science and Technology, Nanjing 210094 (China)
2017-06-15
Exponential-polar coordinates attached to a moving cylinder are used to deduce the stream function-vorticity equations for two-degree-of-freedom vortex-induced vibration, the initial and boundary conditions, and the distribution of the hydrodynamic force, which consists of the vortex-induced force, inertial force, and viscous damping force. The fluid-structure interactions occurring from the motionless cylinder to the steady vibration are investigated numerically, and the variations of the flow field, pressure, lift/drag, and cylinder displacement are discussed. Both the dominant vortex and the cylinder shift, whose effects are opposite, affect the shear layer along the transverse direction and the secondary vortex along the streamwise direction. However, the effect of the cylinder shift is larger than that of the dominant vortices. Therefore, the former dominates the total effects of the flow field. Moreover, the symmetry of the flow field is broken with the increasing shear rate. With the effect of the background vortex, the upper vortices are strengthened, and the lower vortices are weakened; thus, the shear layer and the secondary vortices induced by the upper shedding vortices are strengthened, while the shear layer and the secondary vortices induced by the lower shedding vortices are weakened. Therefore, the amplitudes of the displacement and drag/lift dominated by the upper vortex are larger than those of the displacement and drag/lift dominated by the lower vortex. (paper)
Electro—magnetic control of shear flow over a cylinder for drag reduction and lift enhancement
International Nuclear Information System (INIS)
Zhang Hui; Fan Bao-Chun; Chen Zhi-Hua; Chen Shuai; Li Hong-Zhi
2013-01-01
In this paper, the electro—magnetic control of a cylinder wake in shear flow is investigated numerically. The effects of the shear rate and Lorentz force on the cylinder wake, the distribution of hydrodynamic force, and the drag/lift phase diagram are discussed in detail. It is revealed that Lorentz force can be classified into the field Lorentz force and the wall Lorentz force and they affect the drag and lift forces independently. The drag/lift phase diagram with a shape of ''8'' consists of two closed curves, which correspond to the halves of the shedding cycle dominated by the upper and lower vortices respectively. The free stream shear (K > 0) induces the diagram to move downward and leftward, so that the average lift force directs toward the downside. With the upper Lorentz force, the diagram moves downwards and to the right by the field Lorentz force, thus resulting in the drag increase and the lift reduction, whereas it moves upward and to the left by the wall Lorentz force, leading to the drag reduction and the lift increase. Finally the diagram is dominated by the wall Lorentz force, thus moving upward and leftward. Therefore the upper Lorentz force, which enhances the lift force, can be used to overcome the lift loss due to the free stream shear, which is also obtained in the experiment. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Non-linear properties of R-R distributions as a measure of heart rate variability
International Nuclear Information System (INIS)
Irurzun, I.M.; Bergero, P.; Cordero, M.C.; Defeo, M.M.; Vicente, J.L.; Mola, E.E.
2003-01-01
We analyze the dynamic quality of the R-R interbeat intervals of electrocardiographic signals from healthy people and from patients with premature ventricular contractions (PVCs) by applying different measure algorithms to standardised public domain data sets of heart rate variability. Our aim is to assess the utility of these algorithms for the above mentioned purposes. Long and short time series, 24 and 0.50 h respectively, of interbeat intervals of healthy and PVC subjects were compared with the aim of developing a fast method to investigate their temporal organization. Two different methods were used: power spectral analysis and the integral correlation method. Power spectral analysis has proven to be a powerful tool for detecting long-range correlations. If it is applied in a short time series, power spectra of healthy and PVC subjects show a similar behavior, which disqualifies power spectral analysis as a fast method to distinguish healthy from PVC subjects. The integral correlation method allows us to study the fractal properties of interbeat intervals of electrocardiographic signals. The cardiac activity of healthy and PVC people stems from dynamics of chaotic nature characterized by correlation dimensions d f equal to 3.40±0.50 and 5.00±0.80 for healthy and PVC subjects respectively. The methodology presented in this article bridges the gap between theoretical and experimental studies of non-linear phenomena. From our results we conclude that the minimum number of coupled differential equations to describe cardiac activity must be six and seven for healthy and PVC individuals respectively. From the present analysis we conclude that the correlation integral method is particularly suitable, in comparison with the power spectral analysis, for the early detection of arrhythmias on short time (0.5 h) series
Bechert, D. W.
1982-01-01
The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.
Nelson, Arif Z.; Ewoldt, Randy H.
2017-11-01
Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.
International Nuclear Information System (INIS)
Rasin, I.M.; Sarapul'tsev, I.A.
1975-01-01
The probability distribution of tissue radiation doses in the skeleton were studied in experiments on swines and dogs. When introducing Sr-90 into the organism from the day of birth till 90 days dose rate probability distribution is characterized by one, or, for adult animals, by two independent aggregates. Each of these aggregates correspond to the normal distribution law
Energy Technology Data Exchange (ETDEWEB)
MacDonald, J.
1983-10-01
The problem of how shear instabilities redistribute matter and angular momentum accreted by a star from a disk is considered. Necessary conditions for stability of the star to nonaxisymmetric perturbations are derived by use of the short wavelength approximation. By considering growth rates, it is shown that freshly accreted material rapidly takes up a quasi-spherical distribution due to dynamical instabilities. However, mixing inward toward the stellar interior occurs on a thermal time scale or longer.
Inductive shearing of drilling pipe
Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy
2016-04-19
Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.
Mechanical properties of jammed packings of frictionless spheres under an applied shear stress
International Nuclear Information System (INIS)
Liu Hao; Tong Hua; Xu Ning
2014-01-01
By minimizing a thermodynamic-like potential, we unbiasedly sample the potential energy landscape of soft and frictionless spheres under a constant shear stress. We obtain zero-temperature jammed states under desired shear stresses and investigate their mechanical properties as a function of the shear stress. As a comparison, we also obtain the jammed states from the quasistatic-shear sampling in which the shear stress is not well-controlled. Although the yield stresses determined by both samplings show the same power-law scaling with the compression from the jamming transition point J at zero temperature and shear stress, for finite size systems the quasistatic-shear sampling leads to a lower yield stress and a higher critical volume fraction at point J. The shear modulus of the jammed solids decreases with increasing shear stress. However, the shear modulus does not decay to zero at yielding. This discontinuous change of the shear modulus implies the discontinuous nature of the unjamming transition under nonzero shear stress, which is further verified by the observation of a discontinuous jump in the pressure from the jammed solids to the shear flows. The pressure jump decreases upon decompression and approaches zero at the critical-like point J, in analogy with the well-known phase transitions under an external field. The analysis of the force networks in the jammed solids reveals that the force distribution is more sensitive to the increase of the shear stress near point J. The force network anisotropy increases with increasing shear stress. The weak particle contacts near the average force and under large shear stresses it exhibit an asymmetric angle distribution. (special topic — non-equilibrium phenomena in soft matters)
Time-dependent behavior of rough discontinuities under shearing conditions
Wang, Zhen; Shen, Mingrong; Ding, Wenqi; Jang, Boan; Zhang, Qingzhao
2018-02-01
The mechanical properties of rocks are generally controlled by their discontinuities. In this study, the time-dependent behavior of rough artificial joints under shearing conditions was investigated. Based on Barton’s standard profile lines, samples with artificial joint surfaces were prepared and used to conduct the shear and creep tests. The test results showed that the shear strength of discontinuity was linearly related to roughness, and subsequently an empirical equation was established. The long-term strength of discontinuity can be identified using the inflection point of the isocreep-rate curve, and it was linearly related to roughness. Furthermore, the ratio of long-term and instantaneous strength decreased with the increase of roughness. The shear-stiffness coefficient increased with the increase of shear rate, and the influence of shear rate on the shear stiffness coefficient decreased with the decrease of roughness. Further study of the mechanism revealed that these results could be attributed to the different time-dependent behavior of intact and joint rocks.
International Nuclear Information System (INIS)
Shah, S.A.; Shah, W.; Shaikh, F.K.
2012-01-01
Flow time analysis is a powerful concept to analyze the flow time of any arriving customer in any system at any instant. A load management mechanism can be employed very effectively in any queueing system by utilizing a system which provides probability of dual service rate. In this paper, we develop and demonstrate the flow and service processes transition diagram to determine the flow time of a customer in a load management late arrival state dependent finite discrete time queueing system with dual service rate where customers are hypo geometrically distributed. We compute the probability mass function of each starting state and total probability mass function. The obtained analytical results are validated with simulation results for varying values of arrival and service probabilities. (author)
Distribution of gamma-ray dose rate in Fukushima prefecture by a car-borne survey method
International Nuclear Information System (INIS)
Sugihara, Shinji; Momoshima, Noriyuki; Maekawa, Akihiro; Ichikawa, Ryohei; Kawamura, Hidehisa
2013-01-01
The Tohoku Pacific Earthquake and Tsunami on March 11, 2011, caused severe damage to the TEPCO Fukushima Dai-ichi NPP. This was followed by a nuclear accident at an unprecedented scale, and huge amounts of radioactive material were released into the environment. The distributions of the gamma-ray dose rate in Fukushima prefecture were measured using a NaI(Tl) scintillation survey meter as part of a car-borne survey method on April 18-21, June 20-22, October 18-21, 2011, and on April 9-11 and July 30 - August 1, 2012. The dose rate near TEPCO Fukushima Dai-ichi NPP and at Iitate-mura, Fukushima-city was high (1 to >30 μSv/h). (author)
Magnetorheological dampers in shear mode
International Nuclear Information System (INIS)
Wereley, N M; Cho, J U; Choi, Y T; Choi, S B
2008-01-01
In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared
Micromechanics of soil responses in cyclic simple shear tests
Directory of Open Access Journals (Sweden)
Cui Liang
2017-01-01
Full Text Available Offshore wind turbine (OWT foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.
Seismic cycle feedbacks in a mid-crustal shear zone
Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul
2018-07-01
Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.
Pinney, Rhiannon; Liverpool, Tanniemola B; Royall, C Patrick
2016-12-21
We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics are correlated with the formation of particles organized into icosahedra under simple steady state shear. We recast this glassformer as an effective system of icosahedra [Pinney et al., J. Chem. Phys. 143, 244507 (2015)]. From the observed population of icosahedra in each steady state, we obtain an effective temperature which is linearly dependent on the shear rate in the range considered. Upon shear banding, the system separates into a region of high shear rate and a region of low shear rate. The effective temperatures obtained in each case show that the low shear regions correspond to a significantly lower temperature than the high shear regions. Taking a weighted average of the effective temperature of these regions (weight determined by region size) yields an estimate of the effective temperature which compares well with an effective temperature based on the global mesocluster population of the whole system.
Shear thinning behavior of monolayer liquid lubricant films measured by fiber wobbling method
International Nuclear Information System (INIS)
Hamamoto, Y; Itoh, S; Fukuzawa, K; Zhang, H
2010-01-01
It is essential to clarify mechanical properties of monolayer lubricant films coated on magnetic disks under shearing motion for designing future hard disk drives with ultra-low flying height. Many of previous researchers reported that strong shear rate dependence of viscoelasticity was one of the typical phenomena observed with molecularly thin liquid films. However, it has not been clarified whether or not perfluoropolyether (PFPE) lubricant films, which are used for the head-disk interface (HDI) lubrication, show shear thinning behavior under actual HDI conditions. In this study, we used the fiber wobbling method that can achieve both highly-sensitive shear force measurement and precise gap control and measured shear rate dependence of viscoelastic properties of monolayer PFPE films coated on the magnetic disk. Our experimental results showed that shear thinning does occur at high shear rate ranged from 10 2 to 10 6 s -1 .
Shear strength of non-shear reinforced concrete elements
DEFF Research Database (Denmark)
Hoang, Cao linh
1997-01-01
The paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions.In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding...
International Nuclear Information System (INIS)
Nourelfath, Mustapha; Yalaoui, Farouk
2012-01-01
A production system containing a set of machines (also called components) arranged according to a series-parallel configuration is addressed. A set of products must be produced in lots on this production system during a specified finite planning horizon. This paper presents a method for integrating load distribution decisions, and tactical production planning considering the costs of capacity change and the costs of unused capacity. The objective is to minimize the sum of capacity change costs, unused capacity costs, setup costs, holding costs, backorder costs, and production costs. The main constraints consist in satisfying the demand for all products over the entire horizon, and in not exceeding available repair resource. The production series-parallel system is modeled as a multi-state system with binary-state components. The proposed model takes into account the dependence of machines' failure rates on their load. Universal generating function technique can be used in the optimization algorithm for evaluating the expected system production rate in each period. We show how the formulated problem can be solved by comparing the results of several multi-product lot-sizing problems with capacity associated costs. The importance of integrating load distribution decisions and production planning is illustrated through numerical examples.
International Nuclear Information System (INIS)
Huang Jianliang; Li Hesong; Zou Yingbin; Tu Naimei; Li Jianhui
2002-01-01
By applying the cultural method 'Vigorous Root-Strong Stem-Heavy Panicle Cultural Method' (VSHM), the yield of double cropping rice reached 18000 kg/hm 2 in large area at Liling county, Hunan province. The net photosynthetic rate and 14 C distribution of rice leaves between VSHM and traditional cultural methods (CK) were compared. The photosynthetic rate of the flag leaves at ripening stages under VSHM was higher than that of controls with both earlier rice or later rice. Regarding the net amount of 14 C-assimilate by a single flag leaf and the second top leaf, there were differences at the significant level of 0.01 and 0.05, respectively between VSHM and controls, and VSHM were 7.72%-35.05% higher. The percentage of distribution at panicles of 14 C-assimilate were 51.93%-61.40% when flag leaf was labelled, and 45.34%-54.25% when the second top leaf was labelled, that of earlier rice was higher than later rice respectively, but the differences were not significant between VSHM and CK. The actual yield of double cropping rice under the cultural condition of VSHM was 17710 kg/hm 2 , and increased by 18.33% when compared with controls
International Nuclear Information System (INIS)
Shimoji, Keigo; Aoki, Shigeki; Nakanishi, Atsushi
2012-01-01
The aim of this study was to elucidate the distribution of estimated glomerular filtration rate (eGFR) values in patients who underwent gadolinium-based contrast agent (GBCA)-enhanced magnetic resonance imaging (MRI) at different types of hospitals. We retrospectively studied 2,550 patients who underwent MRI at five institutions. We recorded the date and value of each patient's eGFR test. The distribution of eGFR values was compared with that in the general Japanese population. A total of 84.3% of patients had their eGFRs evaluated before GBCA-enhanced MRI. Of these, 84.7% were evaluated within 3 months before the GBCA-enhanced MRI, and 1.3% were evaluated on the day of the GBCA-enhanced MRI. A total of 87.2% of patients tested had an eGFR of ≥60 ml/min/1.73 m 2 ; 12.8% had an eGFR of 2 , and no patients had an eGFR of 2 . The rate of renal function evaluation differed among hospitals. The prevalence of low eGFR values was greater in Juntendo Tokyo Koto Geriatric Medical Center than in the other hospitals, and the prevalence of low eGFR values was greater in patients who underwent GBCA-enhanced MRI than in the general Japanese population. (author)
Shear-transformation-zone theory of linear glassy dynamics.
Bouchbinder, Eran; Langer, J S
2011-06-01
We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees of freedom. Our theory accounts for the wide range of relaxation rates observed in both metallic glasses and soft glassy materials such as colloidal suspensions. We find that the frequency-dependent loss modulus is not just a superposition of Maxwell modes. Rather, it exhibits an α peak that rises near the viscous relaxation rate and, for nearly jammed, glassy systems, extends to much higher frequencies in accord with experimental observations. We also use this theory to compute strain recovery following a period of large, persistent deformation and then abrupt unloading. We find that strain recovery is determined in part by the initial barrier-height distribution, but that true structural aging also occurs during this process and determines the system's response to subsequent perturbations. In particular, we find by comparison with experimental data that the initial deformation produces a highly disordered state with a large population of low activation barriers, and that this state relaxes quickly toward one in which the distribution is dominated by the high barriers predicted by the near-equilibrium analysis. The nonequilibrium dynamics of the barrier-height distribution is the most important of the issues raised and left unresolved in this paper.
Isacco, L; Thivel, D; Duclos, M; Aucouturier, J; Boisseau, N
2014-06-01
Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women. Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans. The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
International Nuclear Information System (INIS)
Derks, Didi; Wisman, Hans; Blaaderen, Alfons van; Imhof, Arnout
2004-01-01
We report on novel possibilities for studying colloidal suspensions in a steady shear field in real space. Fluorescence confocal microscopy is combined with the use of a counter-rotating cone-plate shear cell. This allows imaging of individual particles in the bulk of a sheared suspension in a stationary plane. Moreover, this plane of zero velocity can be moved in the velocity gradient direction while keeping the shear rate constant. The colloidal system under study consists of rhodamine labelled PMMA spheres in a nearly density and refractive index matched mixture of cyclohexylbromide and cis-decalin. We show measured flow profiles in both the fluid and the crystalline phase and find indications for shear banding in the case of a sheared crystal. Furthermore, we show that, thanks to the counter-rotating principle of the cone-plate shear cell, a layer of particles in the bulk of a sheared crystalline suspension can be imaged for a prolonged time, with the result that their positions can be tracked
Energy Technology Data Exchange (ETDEWEB)
Gaidano, G. (FIAT Engineering, Torino, Italy); Lionetto, P.F.; Pelizza, C.; Tommazzolli, F.
1979-01-01
This paper deals with the problem of integrated and coordinated design of distribution systems, as regards the definition of system structure and parameters together with protection criteria and schemes. Advantages in system operation, dynamic response, heavier loads with reduced machinery rating margins and overall cost reduction, can be achieved. It must be noted that MV switchgears installed in industrial main distribution substations are the vital nodes of the distribution system. Very large amounts of power (up to 100 MW and more) are conveyed through MV busbars, coming from Utility and from in-plant generators and outgoing to subdistribution substations, to step-down transformers and to main concentrated loads (big drivers, furnaces etc.). Criteria and methods already studied and applied to public distribution are examined to assess service continuity and economics by means of the reduction of thermal stresses, minimization of disturbances and improvement of system stability. The life of network components depends on sizing, on fault energy levels and on probability of fault occurrence. Constructional measures and protection schemes, which reduce probability and duration of faults, are the most important tools to improve overall reliability. The introduction of advanced techniques, mainly based on computer application, not only allows drastic reduction of fault duration, but also permits the system to operate, under any possible contingency, in the optimal conditions, as the computer provides adaptive control. This mode of system management makes it possible to size network components with reference to the true magnitude of system quantities, avoiding expensive oversizing connected to the unflexibility of conventional protection and control schemes.
Kelemen, P. B.; Hirth, G.
2004-12-01
Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation
Onset of shear thinning in glassy liquids: Shear-induced small reduction of effective density.
Furukawa, Akira
2017-01-01
We propose a simple mechanism for describing the onset of shear thinning in a high-density glassy liquid. In a shear flow, along the compression axis, the overlap between neighboring particles is more enhanced than that at equilibrium, meaning that the "effective" size is reduced along this axis. On the other hand, along the extension axis perpendicular to the compression axis, the average structural configurations are stretched, but it does not indicate the expansion of the "effective" size itself. This asymmetric shear flow effect for particles results in a small reduction of the "effective" density. Because, in glass-forming liquids, the structural relaxation time τ_{α} strongly depends on the density ρ, even a very small reduction of the effective density should lead to a significant decrease of the relaxation time under shear flow. We predict that the crossover shear rate from Newtonian to non-Newtonian flow behaviors is given by γ[over ̇]_{c}=[ρ(∂τ_{α}/∂ρ)]^{-1}, which can be much smaller than 1/τ_{α} near the glass transition point. It is shown that this prediction is consistent with the results of molecular dynamics simulations.
International Nuclear Information System (INIS)
Sanchez, Mirtha Elizabet Gamarra
2008-01-01
The evaluation of dose to physicians involved in Interventional Cardiology (IC) is an extreme important matter due to the high and non-uniform distribution of dose values. The radiation control during each procedure is complex and the reasons for the high exposures have many different causes. Many international recommendations have already been written aiming the radiation protection optimization in IC. In Brazil, there is not any special orientation for the protection of those occupational persons, nor a specific legislation. The purpose of this work is to evaluate the air kerma rate at critical anatomic regions of the occupationally exposed staff that carry out IC procedures, in representative incidences in order to give subsidies for individual monitoring procedures implementation and to give more information about their radiation protection. The air kerma rate has been measured in the often used condition in the two more common IC procedures namely angiography and coronary angioplasty, using an adult patient simulator irradiated under RAO, LAO and AP projections for fluoro and digital acquisition modes. The measurements have been made in 45 points around the examination table at 5 different representatives heights of: eyes lens, thorax, hands, gonads and knees. AP projection shows the smaller scattered radiation contributions and a more homogeneous exposure distribution. The digital acquisition mode gives air kerma rates about 4 times higher than fluoro mode for LAO projection in the position occupied by the interventionist doctor, the anesthetist and the nursing staff. The most critical anatomic regions are: knees and gonads (without protection). On the physician hands position, values as high as 5 mGy/h have been measured, which can overpass, depending on the number of procedures done, the individual occupational annual limit. Therefore, in IC it is necessary to implement additional protection tools, elaborate safety guides (based on international experiences
Energy Technology Data Exchange (ETDEWEB)
Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan)
2016-06-01
In the present paper the role of shear reversal on microstructure, texture and mechanical properties of pure copper during a single pass of the simple shear extrusion (SSE) process was investigated. For SSE processing an appropriate die with a linear die profile was designed and constructed, which imposes forward shear in the first half and reverse shear in the second half channels. Electron back-scattering diffraction (EBSD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to evaluate the microstructure of the deformed samples. The geometrical nature of this process imposes a distribution of strain results in the inhomogeneous microstructure and the hardness throughout the plane perpendicular to the extrusion direction. Strain reversal during the process results in a slight reduction in dislocation density, the hardness and mean disorientation angle of the samples, and an increase in the grain size. After a complete pass of SSE, dislocation density decreased by ~14% if compared to the middle of the process. This suggests that the dislocation annihilation occurred by the reversal of the shear strain. The simple shear textures were formed gradually and the strongest simple shear textures were observed on the middle of the SSE channel. The degree of the simple shear textures decreases with the distance from the middle plane where the shear is reversed, but the simple shear textures are still the major components after exit of the channel. Hardness variation was modeled by contributions from dislocation strengthening and grain boundary strengthening, where dislocation density is approximated by the misorientation angle of LAGBs which are regarded as dislocation cell boundaries. As a result, the hardness can be predicted successfully by the microstructural features, i.e. the low-angle boundaries, the mean misorientation angle and the fraction of high-angle grain boundaries.
Directory of Open Access Journals (Sweden)
G. Zhao
2011-03-01
Full Text Available During the intensive observation period of the Watershed Allied Telemetry Experimental Research (WATER, a total of 1074 raindrop size distribution were measured by the Parsivel disdrometer, the latest state-of-the-art optical laser instrument. Because of the limited observation data in Qinghai-Tibet Plateau, the modelling behaviour was not well done. We used raindrop size distributions to improve the rain rate estimator of meteorological radar in order to obtain many accurate rain rate data in this area. We got the relationship between the terminal velocity of the raindrop and the diameter (mm of a raindrop: v(D = 4.67D^{0.53}. Then four types of estimators for X-band polarimetric radar are examined. The simulation results show that the classical estimator R (Z_{H} is most sensitive to variations in DSD and the estimator R (K_{DP}, Z_{H}, Z_{DR} is the best estimator for estimating the rain rate. An X-band polarimetric radar (714XDP is used for verifying these estimators. The lowest sensitivity of the rain rate estimator R (K_{DP}, Z_{H}, Z_{DR} to variations in DSD can be explained by the following facts. The difference in the forward-scattering amplitudes at horizontal and vertical polarizations, which contributes K_{DP}, is proportional to the 3rd power of the drop diameter. On the other hand, the exponent of the backscatter cross-section, which contributes to Z_{H}, is proportional to the 6th power of the drop diameter. Because the rain rate R is proportional to the 3.57th power of the drop diameter, K_{DP} is less sensitive to DSD variations than Z_{H}.
Modelling and analysis of canister and buffer for earthquake induced rock shear and glacial load
International Nuclear Information System (INIS)
Hernelind, Jan
2010-08-01
Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated by finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. However, the earthquake induced rock shear velocity is lower than 1 m/s which is not considered to be very high. The rock shear has been modelled with finite element calculations with the code Abaqus. A three dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place either perpendicular to the canister at the quarter point or at an inclined angle of 22.5 deg in tension. Furthermore horizontal shear has been studied using a vertical shear plane either at the centre or at 1/4-point for the canister. The shear calculations have been driven to a total shear of 10 cm. The canister also has to be designed to withstand the loads caused by a thick ice sheet. Besides rock shear the model has been used to analyse the effect of such glacial load (either combined with rock shear or without rock shear). This report also summarizes the effect when considering creep in the copper shell
Modelling and analysis of canister and buffer for earthquake induced rock shear and glacial load
Energy Technology Data Exchange (ETDEWEB)
Hernelind, Jan (5T Engineering AB (Sweden))
2010-08-15
Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated by finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. However, the earthquake induced rock shear velocity is lower than 1 m/s which is not considered to be very high. The rock shear has been modelled with finite element calculations with the code Abaqus. A three dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place either perpendicular to the canister at the quarter point or at an inclined angle of 22.5 deg in tension. Furthermore horizontal shear has been studied using a vertical shear plane either at the centre or at 1/4-point for the canister. The shear calculations have been driven to a total shear of 10 cm. The canister also has to be designed to withstand the loads caused by a thick ice sheet. Besides rock shear the model has been used to analyse the effect of such glacial load (either combined with rock shear or without rock shear). This report also summarizes the effect when considering creep in the copper shell
A Piezoelectric Shear Stress Sensor
Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning
2016-01-01
In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry
International Nuclear Information System (INIS)
Wojtas, H.
2004-01-01
The main source of errors in measuring the corrosion rate of rebars on site is a non-uniform current distribution between the small counter electrode (CE) on the concrete surface and the large rebar network. Guard ring electrodes (GEs) are used in an attempt to confine the excitation current within a defined area. In order to better understand the functioning of modulated guard ring electrode and to assess its effectiveness in eliminating errors due to lateral spread of current signal from the small CE, measurements of the polarisation resistance performed on a concrete beam have been numerically simulated. Effect of parameters such as rebar corrosion activity, concrete resistivity, concrete cover depth and size of the corroding area on errors in the estimation of polarisation resistance of a single rebar has been examined. The results indicate that modulated GE arrangement fails to confine the lateral spread of the CE current within a constant area. Using the constant diameter of confinement for the calculation of corrosion rate may lead to serious errors when test conditions change. When high corrosion activity of rebar and/or local corrosion occur, the use of the modulated GE confinement may lead to significant underestimation of the corrosion rate
Dong, L.
2017-12-01
Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin
Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.;
2016-01-01
A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.
Shear-driven dynamic clusters in a colloidal glass
Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David
2007-03-01
We investigate the effect of shear applied to a colloidal glass on a microscopic level using a shear device that can be mounted on top of a confocal microscope. We find that the glass yields at a critical strain of about 10%, independently of the shear rate. Surprisingly, the yielding is accompanied by an increase of cooperative particle movements and a formation of dynamic clusters which is in contrast to the normal glass transition where one typically finds heterogeneity increasing whilst moving towards the glass transition.
High Resolution Shear Profile Measurements in Entangled Polymers
Hayes, Keesha A.
2008-11-17
We use confocal microscopy and particle image velocimetry to visualize motion of 250-300 nm. fluorescent tracer particles in entangled polymers subject to a rectilinear shear flow. Our results show linear velocity profiles in polymer solutions spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response of entangled polymers, and instead point to interfacial slip as an important source of strain loss. © 2008 The American Physical Society.
Shear layer characteristics of supersonic free and impinging jets
Davis, T. B.; Kumar, R.
2015-09-01
The initial shear layer characteristics of a jet play an important role in the initiation and development of instabilities and hence radiated noise. Particle image velocimetry has been utilized to study the initial shear layer development of supersonic free and impinging jets. Microjet control employed to reduce flow unsteadiness and jet noise appears to affect the development of the shear layer, particularly near the nozzle exit. Velocity field measurements near the nozzle exit show that the initially thin, uncontrolled shear layer develops at a constant rate while microjet control is characterized by a rapid nonlinear thickening that asymptotes downstream. The shear layer linear growth rate with microjet control, in both the free and the impinging jet, is diminished. In addition, the thickened shear layer with control leads to a reduction in azimuthal vorticity for both free and impinging jets. Linear stability theory is used to compute unstable growth rates and convection velocities of the resultant velocity profiles. The results show that while the convection velocity is largely unaffected, the unstable growth rates are significantly reduced over all frequencies with microjet injection. For the case of the impinging jet, microjet control leads to near elimination of the impingement tones and an appreciable reduction in broadband levels. Similarly, for the free jet, significant reduction in overall sound pressure levels in the peak radiation direction is observed.
Effect of rock joint roughness on its cyclic shear behavior
Directory of Open Access Journals (Sweden)
S.M. Mahdi Niktabar
2017-12-01
Full Text Available Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear behavior of rock joint under this condition. In the present study, synthetic rock joints were prepared with plaster of Paris (PoP. Regular joints were simulated by keeping regular asperity with asperity angles of 15°–15° and 30°–30°, and irregular rock joints which are closer to natural joints were replicated by keeping the asperity angles of 15°–30° and 15°–45°. The sample size and amplitude of roughness were kept the same for both regular and irregular joints which were 298 mm × 298 mm × 125 mm and 5 mm, respectively. Shear test was performed on these joints using a large-scale direct shear testing machine by keeping the frequency and amplitude of shear load under constant cyclic condition with different normal stress values. As expected, the shear strength of rock joints increased with the increases in the asperity angle and normal load during the first cycle of shearing or static load. With the increase of the number of shear cycles, the shear strength decreased for all the asperity angles but the rate of reduction was more in case of high asperity angles. Test results indicated that shear strength of irregular joints was higher than that of regular joints at different cycles of shearing at low normal stress. Shearing and degradation of joint asperities on regular joints were the same between loading and unloading, but different for irregular joints. Shear strength and joint degradation were more significant on the slope of asperity with higher angles on the irregular joint until two angles of asperities became equal during the cycle of shearing and it started behaving like regular joints for subsequent cycles.
Energy Technology Data Exchange (ETDEWEB)
Louis, Heba Kareem; Amin, Esmat [Nuclear and Radiological Regulation Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.
2016-03-15
The aim of the present paper is to assess the calculations of pin-by-pin group integrated fission rates within MOX/UO{sub 2} Fuel assemblies using the Monte Carlo code MCNP2.7c with two sets of the available latest nuclear data libraries used for calculating MOX-fueled systems. The data that are used in this paper are based on the benchmark by the NEA Nuclear Science Committee (NSC). The k{sub ∞} and absorption/fission reaction rates per isotope, k{sub eff} and pin-by-pin group integrated fission rates on 1/8 fraction of the geometry are determined. To assess the overall pin-by-pin fission rate distribution, the collective per cent error measures were investigated. The results of AVG, MRE and RMS error measures were less than 1 % error. The present results are compared with other participants using other Monte Carlo codes and with CEA results that were taken in the benchmark as reference. The results with ENDF/B-VI.6 are close to the results received by MVP (JENDL3.2) and SCALE 4.2 (JEF2.2). The results with ENDF/BVII.1 give higher values of k{sub ∞} reflecting the changes in the newer evaluations. In almost all results presented here, the MCNP calculated results with ENDF/B VII.1 should be considered more than those obtained by using other Monte Carlo codes and nuclear data libraries. The present calculations may be consider a reference for evaluating the numerical schemes in production code systems, as well as the global performance including cross-section data reduction methods as the calculations used continuous energy and no geometrical approximations.
International Nuclear Information System (INIS)
Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan
2011-01-01
Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under th