WorldWideScience

Sample records for shear force feedback

  1. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani

    2016-03-01

    Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.

  2. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    International Nuclear Information System (INIS)

    Samek, Ota; Kurowski, Andre; Kittel, Silke; Kukhlevsky, Sergei; Hergenroeder, Roland

    2005-01-01

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested

  3. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    Directory of Open Access Journals (Sweden)

    Luis Botaya

    2016-05-01

    Full Text Available Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

  4. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  5. Large Scale Scanning Probe Microscope "Making Shear Force Scanning visible."

    NARCIS (Netherlands)

    Bosma, E.; Offerhaus, Herman L.; van der Veen, Jan T.; van der Veen, J.T.; Segerink, Franciscus B.; Wessel, I.M.

    2010-01-01

    We describe a demonstration of a scanning probe microscope with shear-force tuning fork feedback. The tuning fork is several centimeters long, and the rigid fiber is replaced by a toothpick. By scaling this demonstration to visible dimensions the accessibility of shear-force scanning and tuning fork

  6. Centrifuges and inertial shear forces

    NARCIS (Netherlands)

    Loon, van J.J.W.A.; Folgering, H.T.E.; Bouten, C.V.C.; Smit, T.H.

    2004-01-01

    Centrifuges are often used in biological studies for 1xg control samples in space flight microgravity experiments as well as in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the

  7. Force feedback and basic laparoscopic skills

    NARCIS (Netherlands)

    Chmarra, M.K.; Dankelman, J.; Van den Dobbelsteen, J.J.; Jansen, F.W.

    2008-01-01

    Background - Not much is known about the exact role offorce feedback in laparoscopy. This study aimed to determine whether force feedback influences movements of instruments during training in laparoscopic tasks and whether force feedback is required for training in basic laparoscopic force

  8. Seismic cycle feedbacks in a mid-crustal shear zone

    Science.gov (United States)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  9. System analysis of force feedback microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Mario S. [CFMC/Dep. de Física, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Costa, Luca [European Synchrotron Radiation Facility, 6 rue Jules Horowitz BP 220, 38043 Grenoble Cedex (France); Université Joseph Fourier BP 53, 38041 Grenoble Cedex 9 (France); Chevrier, Joël [European Synchrotron Radiation Facility, 6 rue Jules Horowitz BP 220, 38043 Grenoble Cedex (France); Université Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Comin, Fabio [European Synchrotron Radiation Facility, 6 rue Jules Horowitz BP 220, 38043 Grenoble Cedex (France)

    2014-02-07

    It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions.

  10. System analysis of force feedback microscopy

    International Nuclear Information System (INIS)

    Rodrigues, Mario S.; Costa, Luca; Chevrier, Joël; Comin, Fabio

    2014-01-01

    It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions

  11. Six axis force feedback input device

    Science.gov (United States)

    Ohm, Timothy (Inventor)

    1998-01-01

    The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.

  12. Chirality-specific lift forces of helix under shear flows: Helix perpendicular to shear plane.

    Science.gov (United States)

    Zhang, Qi-Yi

    2017-02-01

    Chiral objects in shear flow experience a chirality-specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender-body theory. The chirality-specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality-specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations. © 2016 Wiley Periodicals, Inc.

  13. DOUBLE SHEAR DESIGN TO REDUCED STAMPING FORCE

    Directory of Open Access Journals (Sweden)

    Rudi Kurniawan Arief

    2017-12-01

    Full Text Available Ideally processing of part using stamping machine using only 70-80 % of available force to keep machine in good shape for a long periods. But in some certain case the force may equal to or exceed the available maximum force so the company must sent the process to another outsource company. A case found in a metal stamping company where a final product consist of 3 parts to assembly with one part exceeded the force of available machine. This part can only process in a 1000 tons machine while this company only have 2 of this machine with full workload. Sending this parts outsource will induce delivery problems because other parts are processed, assembled and paint inhouse, this also need additional transportation cost and extra supervision to ensure the quality and delivery schedule. The only exit action of this problem is by reducing the force tonnage. This paper using punch inclining method to reduce the force. The incline punch will distributed the force along the inclined surface that reduce stamping force as well. Inclined surface of punch also cause another major problems that the product becoming curved after process. This problems solved with additional flattening process that add more process cost but better than to outsource the process. Chisel type of inclining punch tip was choosen to avoid worst deformation of product. This paper will give the scientific recomendation to the company.

  14. Development of a shear force measurement dummy for seat comfort.

    Directory of Open Access Journals (Sweden)

    Seong Guk Kim

    Full Text Available Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%. The dummy is manufactured in compliance with the SAE standards (SAE J826 and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  15. Development of a shear force measurement dummy for seat comfort.

    Science.gov (United States)

    Kim, Seong Guk; Ko, Chang-Yong; Kim, Dong Hyun; Song, Ye Eun; Kang, Tae Uk; Ahn, Sungwoo; Lim, Dohyung; Kim, Han Sung

    2017-01-01

    Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%). The dummy is manufactured in compliance with the SAE standards (SAE J826) and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  16. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  17. Driving reconnection in sheared magnetic configurations with forced fluctuations

    Science.gov (United States)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  18. Use of force feedback to enhance graphical user interfaces

    Science.gov (United States)

    Rosenberg, Louis B.; Brave, Scott

    1996-04-01

    This project focuses on the use of force feedback sensations to enhance user interaction with standard graphical user interface paradigms. While typical joystick and mouse devices are input-only, force feedback controllers allow physical sensations to be reflected to a user. Tasks that require users to position a cursor on a given target can be enhanced by applying physical forces to the user that aid in targeting. For example, an attractive force field implemented at the location of a graphical icon can greatly facilitate target acquisition and selection of the icon. It has been shown that force feedback can enhance a users ability to perform basic functions within graphical user interfaces.

  19. The impact of force feedback level on steering performance

    NARCIS (Netherlands)

    Anand, S.; Terken, J.; Hogema, J.H.

    2013-01-01

    Steer-by-wire systems provide designers the ability to customize and personalize force feedback on the steering wheel, based on individual preferences. Earlier studies using subjective responses have shown that there are individual differences in preferences for force feedback. It has also been

  20. Quantitative measurements of shear displacement using atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-01-01

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  1. Energy buildup in sheared force-free magnetic fields

    Science.gov (United States)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  2. PC-based digital feedback control for scanning force microscope

    International Nuclear Information System (INIS)

    Mohd Ashhar Khalid

    2002-01-01

    In the past, most digital feedback implementation for scanned-probe microscope were based on a digital signal processor (DSP). At present DSP plug-in card with the input-output interface module is still expensive compared to a fast pentium PC motherboard. For a magnetic force microscope (MFM) digital feedback has an advantage where the magnetic signal can be easily separated from the topographic signal. In this paper, a simple low-cost PC-based digital feedback and imaging system for Scanning Force Microscope (SFM) is presented. (Author)

  3. Electrotactile EMG feedback improves the control of prosthesis grasping force

    Science.gov (United States)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario

    2016-10-01

    Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for

  4. Contact force structure and force chains in 3D sheared granular systems

    Science.gov (United States)

    Mair, Karen; Jettestuen, Espen; Abe, Steffen

    2010-05-01

    Faults often exhibit accumulations of granular debris, ground up to create a layer of rock flour or fault gouge separating the rigid fault walls. Numerical simulations and laboratory experiments of sheared granular materials, suggest that applied loads are preferentially transmitted across such systems by transient force networks that carry enhanced forces. The characterisation of such features is important since their nature and persistence almost certainly influence the macroscopic mechanical stability of these systems and potentially that of natural faults. 3D numerical simulations of granular shear are a valuable investigation tool since they allow us to track individual particle motions, contact forces and their evolution during applied shear, that are difficult to view directly in laboratory experiments or natural fault zones. In characterising contact force distributions, it is important to use global structure measures that allow meaningful comparisons of granular systems having e.g. different grain size distributions, as may be expected at different stages of a fault's evolution. We therefore use a series of simple measures to characterise the structure, such as distributions and correlations of contact forces that can be mapped onto a force network percolation problem as recently proposed by Ostojic and coworkers for 2D granular systems. This allows the use of measures from percolation theory to both define and characterise the force networks. We demonstrate the application of this method to 3D simulations of a sheared granular material. Importantly, we then compare our measure of the contact force structure with macroscopic frictional behaviour measured at the boundaries of our model to determine the influence of the force networks on macroscopic mechanical stability.

  5. Force Feedback Control Method of Active Tuned Mass Damper

    Directory of Open Access Journals (Sweden)

    Xiuli Wang

    2017-01-01

    Full Text Available Active tuned mass dampers as vibration-control devices are widely used in many fields for their good stability and effectiveness. To improve the performance of such dampers, a control method based on force feedback is proposed. The method offers several advantages such as high-precision control and low-performance requirements for the actuator, as well as not needing additional compensators. The force feedback control strategy was designed based on direct-velocity feedback. The effectiveness of the method was verified in a single-degree-of-freedom system, and factors such as damping effect, required active force, actuator stroke, and power consumption of the damper were analyzed. Finally, a simulation study was performed by configuring a main complex elastic-vibration-damping system. The results show that the method provides effective control over modal resonances of multiple orders of the system and improves its dynamics performance.

  6. Evaluation of total energy-rate feedback for glidescope tracking in wind shear

    Science.gov (United States)

    Belcastro, C. M.; Ostroff, A. J.

    1986-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.

  7. Optimal integral force feedback for active vibration control

    Science.gov (United States)

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  8. A kinesthetic washout filter for force-feedback rendering.

    Science.gov (United States)

    Danieau, Fabien; Lecuyer, Anatole; Guillotel, Philippe; Fleureau, Julien; Mollet, Nicolas; Christie, Marc

    2015-01-01

    Today haptic feedback can be designed and associated to audiovisual content (haptic-audiovisuals or HAV). Although there are multiple means to create individual haptic effects, the issue of how to properly adapt such effects on force-feedback devices has not been addressed and is mostly a manual endeavor. We propose a new approach for the haptic rendering of HAV, based on a washout filter for force-feedback devices. A body model and an inverse kinematics algorithm simulate the user's kinesthetic perception. Then, the haptic rendering is adapted in order to handle transitions between haptic effects and to optimize the amplitude of effects regarding the device capabilities. Results of a user study show that this new haptic rendering can successfully improve the HAV experience.

  9. Can augmented force feedback facilitate virtual target acquisition tasks?

    NARCIS (Netherlands)

    Houtsma, A.J.M.; Keuning - van Oirschot, H.; Westwood, J.D.; Haluck, R.S.

    2006-01-01

    This study investigates facilitation of a manual target acquisition task by the application of appropriate force feedback through the control device (e.g., mouse, joystick, trackball). Typical manual movements with these devices were measured, and models of such movements were used to predict an

  10. Force feedback facilitates multisensory integration during robotic tool use

    NARCIS (Netherlands)

    Sengül, A.; Rognini, G.; van Elk, M.; Aspell, J.E.; Bleuler, H.; Blanke, O.

    2013-01-01

    The present study investigated the effects of force feedback in relation to tool use on the multisensory integration of visuo-tactile information. Participants learned to control a robotic tool through a surgical robotic interface. Following tool-use training, participants performed a crossmodal

  11. Fundamentals of force feedback and application to a surgery simulator.

    Science.gov (United States)

    Maass, Heiko; Chantier, Benjamin B A; Cakmak, Hueseyin K; Trantakis, Christos; Kuehnapfel, Uwe G

    2003-01-01

    Force feedback increases the effectiveness of virtual-reality surgery training systems. An overview of the fundamentals of applying force feedback is presented. An impedance control technique and data processing methods for stability preservation are illustrated. A flexible interface for general force-feedback applications has been developed. This interface is capable of controlling several different force-feedback hardware systems, including the SensAble PHANTOM, the Laparoscopic Impulse Engines from Immersion, and the VS-One virtual endoscopic surgery trainer. The findings are evaluated using the main simulation system, KISMET, and the modeling tools KISMO and VESUV. Within the scope of a cooperative project called HapticIO (funded by the German Ministry of Education and Research [BMBF]), new haptic devices have been designed for virtual neuroendoscopy and laparoscopy. The concept and implementations presented in this paper have been found to be flexible, stable and suitable for universal use. The impedance method, combined with the open-loop feed-forward control technique, is well suited and appropriate for the task.

  12. Hybrid viscous damper with filtered integral force feedback control

    DEFF Research Database (Denmark)

    Høgsberg, Jan; Brodersen, Mark L.

    2016-01-01

    In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion...... is controlled by a filtered integral force feedback strategy, where the main feature is the filter, which is designed to render a damper force that in a phase-plane representation operates in front of the corresponding damper velocity. It is demonstrated that in the specific parameter regime where the damper...

  13. Attainment and retention of force moderation following laparoscopic resection training with visual force feedback.

    Science.gov (United States)

    Hernandez, Rafael; Onar-Thomas, Arzu; Travascio, Francesco; Asfour, Shihab

    2017-11-01

    Laparoscopic training with visual force feedback can lead to immediate improvements in force moderation. However, the long-term retention of this kind of learning and its potential decay are yet unclear. A laparoscopic resection task and force sensing apparatus were designed to assess the benefits of visual force feedback training. Twenty-two male university students with no previous experience in laparoscopy underwent relevant FLS proficiency training. Participants were randomly assigned to either a control or treatment group. Both groups trained on the task for 2 weeks as follows: initial baseline, sixteen training trials, and post-test immediately after. The treatment group had visual force feedback during training, whereas the control group did not. Participants then performed four weekly test trials to assess long-term retention of training. Outcomes recorded were maximum pulling and pushing forces, completion time, and rated task difficulty. Extreme maximum pulling force values were tapered throughout both the training and retention periods. Average maximum pushing forces were significantly lowered towards the end of training and during retention period. No significant decay of applied force learning was found during the 4-week retention period. Completion time and rated task difficulty were higher during training, but results indicate that the difference eventually fades during the retention period. Significant differences in aptitude across participants were found. Visual force feedback training improves on certain aspects of force moderation in a laparoscopic resection task. Results suggest that with enough training there is no significant decay of learning within the first month of the retention period. It is essential to account for differences in aptitude between individuals in this type of longitudinal research. This study shows how an inexpensive force measuring system can be used with an FLS Trainer System after some retrofitting. Surgical

  14. Force feedback in a piezoelectric linear actuator for neurosurgery.

    Science.gov (United States)

    De Lorenzo, Danilo; De Momi, Elena; Dyagilev, Ilya; Manganelli, Rudy; Formaglio, Alessandro; Prattichizzo, Domenico; Shoham, Moshe; Ferrigno, Giancarlo

    2011-09-01

    Force feedback in robotic minimally invasive surgery allows the human operator to manipulate tissues as if his/her hands were in contact with the patient organs. A force sensor mounted on the probe raises problems with sterilization of the overall surgical tool. Also, the use of off-axis gauges introduces a moment that increases the friction force on the bearing, which can easily mask off the signal, given the small force to be measured. This work aims at designing and testing two methods for estimating the resistance to the advancement (force) experienced by a standard probe for brain biopsies within a brain-like material. The further goal is to provide a neurosurgeon using a master-slave tele-operated driver with direct feedback on the tissue mechanical characteristics. Two possible sensing methods, in-axis strain gauge force sensor and position-position error (control-based method), were implemented and tested, both aimed at device miniaturization. The analysis carried out was aimed at fulfilment of the psychophysics requirements for force detection and delay tolerance, also taking into account safety, which is directly related to the last two issues. Controller parameters definition is addressed and consideration is given to development of the device with integration of a haptic interface. Results show better performance of the control-based method (RMSE sensors. Force feedback in minimally invasive surgery allows the human operator to manipulate tissues as if his/her hands were in contact with the patient organs. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Forcings and feedbacks by land ecosystem changes on climate change

    Science.gov (United States)

    Betts, R. A.

    2006-12-01

    Vegetation change is involved in climate change through both forcing and feedback processes. Emissions of CO{2} from past net deforestation are estimated to have contributed approximately 0.22 0.51 Wm - 2 to the overall 1.46 Wm - 2 radiative forcing by anthropogenic increases in CO{2} up to the year 2000. Deforestation-induced increases in global mean surface albedo are estimated to exert a radiative forcing of 0 to -0.2 Wm - 2, and dust emissions from land use may exert a radiative forcing of between approximately +0.1 and -0.2 Wm - 2. Changes in the fluxes of latent and sensible heat due to tropical deforestation are simulated to have exerted other local warming effects which cannot be quantified in terms of a Wm - 2 radiative forcing, with the potential for remote effects through changes in atmospheric circulation. With tropical deforestation continuing rapidly, radiative forcing by surface albedo change may become less useful as a measure of the forcing of climate change by changes in the physical properties of the land surface. Although net global deforestation is continuing, future scenarios used for climate change prediction suggest that fossil fuel emissions of CO{2} may continue to increase at a greater rate than land use emissions and therefore continue to increase in dominance as the main radiative forcing. The CO{2} rise may be accelerated by up to 66% by feedbacks arising from global soil carbon loss and forest dieback in Amazonia as a consequence of climate change, and Amazon forest dieback may also exert feedbacks through changes in the local water cycle and increases in dust emissions.

  16. Virtual grasping: closed-loop force control using electrotactile feedback.

    Science.gov (United States)

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  17. Virtual Grasping: Closed-Loop Force Control Using Electrotactile Feedback

    Directory of Open Access Journals (Sweden)

    Nikola Jorgovanovic

    2014-01-01

    Full Text Available Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously “unseen” objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  18. Imaging stability in force-feedback high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Kim, Byung I.; Boehm, Ryan D.

    2013-01-01

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force–distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2 s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. - Highlights: ► We investigated the imaging stability of force-feedback HSAFM. ► Stable–unstable imaging transitions rely on applied force and sample hydrophilicity. ► The stable–unstable transitions are found to be independent of imaging rate

  19. Forcing, feedback and internal variability in global temperature trends.

    Science.gov (United States)

    Marotzke, Jochem; Forster, Piers M

    2015-01-29

    Most present-generation climate models simulate an increase in global-mean surface temperature (GMST) since 1998, whereas observations suggest a warming hiatus. It is unclear to what extent this mismatch is caused by incorrect model forcing, by incorrect model response to forcing or by random factors. Here we analyse simulations and observations of GMST from 1900 to 2012, and show that the distribution of simulated 15-year trends shows no systematic bias against the observations. Using a multiple regression approach that is physically motivated by surface energy balance, we isolate the impact of radiative forcing, climate feedback and ocean heat uptake on GMST--with the regression residual interpreted as internal variability--and assess all possible 15- and 62-year trends. The differences between simulated and observed trends are dominated by random internal variability over the shorter timescale and by variations in the radiative forcings used to drive models over the longer timescale. For either trend length, spread in simulated climate feedback leaves no traceable imprint on GMST trends or, consequently, on the difference between simulations and observations. The claim that climate models systematically overestimate the response to radiative forcing from increasing greenhouse gas concentrations therefore seems to be unfounded.

  20. Myoelectric hand prosthesis force control through servo motor current feedback.

    Science.gov (United States)

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  1. Optimal feedback control of the forced van der Pol system

    International Nuclear Information System (INIS)

    Chagas, T.P.; Toledo, B.A.; Rempel, E.L.; Chian, A.C.-L.; Valdivia, J.A.

    2012-01-01

    A simple feedback control strategy for chaotic systems is investigated using the forced van der Pol system as an example. The strategy regards chaos control as an optimization problem, where the maximum magnitude Floquet multiplier of a target unstable periodic orbit (UPO) is used as a cost function that needs to be minimized. Thus, the method obtains the optimal control gain in terms of the stability of the target UPO. This strategy was recently proposed for the proportional feedback control (PFC) method. Here, it is extended to the highly popular delayed feedback control (DFC) method. Since the DFC method treats the system as a delay-differential equation whose phase space is infinite-dimensional, the characteristic multipliers are found through a truncation in the number of delayed states. Control of a target UPO is achieved for several values of the forcing amplitude. We compare the DFC and PFC methods in terms of stability of the controlled orbit, steady state error and control effort.

  2. Distributed force feedback in the spinal cord and the regulation of limb mechanics.

    Science.gov (United States)

    Nichols, T Richard

    2018-03-01

    This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.

  3. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    Science.gov (United States)

    Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.

  4. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    International Nuclear Information System (INIS)

    Bippes, Christian A; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA

  5. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xingyan, E-mail: yaoxingyan-jsj@163.com [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Liu, Chuanwen; Liang, Huang; Qin, Huafeng [Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Yu, Qibing; Li, Chuan [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China)

    2016-04-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.

  6. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    International Nuclear Information System (INIS)

    Yao, Xingyan; Liu, Chuanwen; Liang, Huang; Qin, Huafeng; Yu, Qibing; Li, Chuan

    2016-01-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.

  7. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  8. Force and work to shear green southern pine logs at slow speed

    Science.gov (United States)

    Peter Koch

    1971-01-01

    When logs of three diameter classes and two specific gravity classes were sheared with a 3/8-inch-thick knife travelling at 2 inches per minute, shearing force and work averaged greatest for dense 13.6-inch logs cut with a knife having a 45o sharpness angle (73,517 pounds; 49,838 foot-pounds). Force and work averaged at least 5.1-inch bolts of...

  9. Integration of a force feedback joystick with a VR system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A C [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Innovazione

    1999-07-01

    The report shows the result carried out at the Robotics and Information Systems Division of ENEA (National Agency for New Technology, Energy and the Environment) in the Casaccia Centre (Rome). The study presents an approach to the problem of integrating force feedback with a complete real-time virtual environment system: in particular bulky computations for graphics or simulation require a decoupling of the haptic servo loop from the main application loop if high-quality forces are to be obtained. The control system has been developed for the force-feedback joystick Impulse 2000, from Immersion Co., and the integration of it to a virtual environment is presented here. Technical issues related to the development of control architectures for Internet-based exchange of haptic information, in a stable way are discussed. [Italian] Il presente rapporto descrive il lavoro eseguito nella divisione robotica e informatica del dipartimento innovazione dell'ENEA del centro ricerche della Casaccia (Roma): il sistema di controllo del dispositivo con ritorno di forza in un sistema RV (real-time virtual environment system) ed illustra l'approccio a questa problematica ed in particolare la lentezza di esecuzione del ciclo di calcoli per la resa delle immagini da parte del sistema grafico e del ciclio per la simulazione della dinamica di sistema. Viene descritto il sistema di controllo per il joystick con ritorno di forza Impulse 2000 (Immersion Co.) e la sua integrazione ad un ambiente virtuale. Sono inoltre discusse le problematiche connesse allo sviluppo di sistemi che consentano lo scambio dell'informazione tattile attraverso Internet.

  10. Integration of a force feedback joystick with a VR system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.C. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Innovazione

    1999-07-01

    The report shows the result carried out at the Robotics and Information Systems Division of ENEA (National Agency for New Technology, Energy and the Environment) in the Casaccia Centre (Rome). The study presents an approach to the problem of integrating force feedback with a complete real-time virtual environment system: in particular bulky computations for graphics or simulation require a decoupling of the haptic servo loop from the main application loop if high-quality forces are to be obtained. The control system has been developed for the force-feedback joystick Impulse 2000, from Immersion Co., and the integration of it to a virtual environment is presented here. Technical issues related to the development of control architectures for Internet-based exchange of haptic information, in a stable way are discussed. [Italian] Il presente rapporto descrive il lavoro eseguito nella divisione robotica e informatica del dipartimento innovazione dell'ENEA del centro ricerche della Casaccia (Roma): il sistema di controllo del dispositivo con ritorno di forza in un sistema RV (real-time virtual environment system) ed illustra l'approccio a questa problematica ed in particolare la lentezza di esecuzione del ciclo di calcoli per la resa delle immagini da parte del sistema grafico e del ciclio per la simulazione della dinamica di sistema. Viene descritto il sistema di controllo per il joystick con ritorno di forza Impulse 2000 (Immersion Co.) e la sua integrazione ad un ambiente virtuale. Sono inoltre discusse le problematiche connesse allo sviluppo di sistemi che consentano lo scambio dell'informazione tattile attraverso Internet.

  11. Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Du, Han; Zhang, Xingwang; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Zhao, Yunshan [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 (Singapore)

    2016-04-25

    We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the future nanooptoelectromechanical systems.

  12. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.

    Science.gov (United States)

    Ben-Tzvi, Pinhas; Ma, Zhou

    2015-11-01

    This paper presents the design, implementation and experimental validation of a novel robotic haptic exoskeleton device to measure the user's hand motion and assist hand motion while remaining portable and lightweight. The device consists of a five-finger mechanism actuated with miniature DC motors through antagonistically routed cables at each finger, which act as both active and passive force actuators. The SAFE Glove is a wireless and self-contained mechatronic system that mounts over the dorsum of a bare hand and provides haptic force feedback to each finger. The glove is adaptable to a wide variety of finger sizes without constraining the range of motion. This makes it possible to accurately and comfortably track the complex motion of the finger and thumb joints associated with common movements of hand functions, including grip and release patterns. The glove can be wirelessly linked to a computer for displaying and recording the hand status through 3D Graphical User Interface (GUI) in real-time. The experimental results demonstrate that the SAFE Glove is capable of reliably modeling hand kinematics, measuring finger motion and assisting hand grasping motion. Simulation and experimental results show the potential of the proposed system in rehabilitation therapy and virtual reality applications.

  13. Assessing the quality of force feedback in soft tissue simulation.

    Science.gov (United States)

    Basafa, Ehsan; Sefati, Shahin; Okamura, Allison M

    2011-01-01

    Many types of deformable models have been proposed for simulation of soft tissue in surgical simulators, but their realism in comparison to actual tissue is rarely assessed. In this paper, a nonlinear mass-spring model is used for realtime simulation of deformable soft tissues and providing force feedback to a human operator. Force-deformation curves of real soft tissue samples were obtained experimentally, and the model was tuned accordingly. To test the realism of the model, we conducted two human-user experiments involving palpation with a rigid probe. First, in a discrimination test, users identified the correct category of real and virtual tissue better than chance, and tended to identify the tissues as real more often than virtual. Second, users identified real and virtual tissues by name, after training on only real tissues. The sorting accuracy was the same for both real and virtual tissues. These results indicate that, despite model limitations, the simulation could convey the feel of touching real tissues. This evaluation approach could be used to compare and validate various soft-tissue simulators.

  14. Shear forces in the contact patch of a braked-racing tyre

    Science.gov (United States)

    Gruber, Patrick; Sharp, Robin S.

    2012-12-01

    This article identifies tyre modelling features that are fundamental to the accurate simulation of the shear forces in the contact patch of a steady-rolling, slipping and cambered racing tyre. The features investigated include contact patch shape, contact pressure distribution, carcass flexibility, rolling radius (RR) variations and friction coefficient. Using a previously described physical tyre model of modular nature, validated for static conditions, the influence of each feature on the shear forces generated is examined under different running conditions, including normal loads of 1500, 3000 and 4500 N, camber angles of 0° and-3°, and longitudinal slip ratios from 0 to-20%. Special attention is paid to heavy braking, in which context the aligning moment is of great interest in terms of its connection with the limit-handling feel. The results of the simulations reveal that true representations of the contact patch shape, carcass flexibility and lateral RR variation are essential for an accurate prediction of the distribution and the magnitude of the shear forces generated at the tread-road interface of the cambered tyre. Independent of the camber angle, the contact pressure distribution primarily influences the shear force distribution and the slip characteristics around the peak longitudinal force. At low brake-slip ratios, the friction coefficient affects the shear forces in terms of their distribution, while, at medium to high-slip ratios, the force magnitude is significantly affected. On the one hand, these findings help in the creation of efficient yet accurate tyre models. On the other hand, the research results allow improved understanding of how individual tyre components affect the generation of shear forces in the contact patch of a rolling and slipping tyre.

  15. The effect of shear force on ink transfer in gravure offset printing

    International Nuclear Information System (INIS)

    Lee, Taik-Min; Lee, Seung-Hyun; Noh, Jae-Ho; Kim, Dong-Soo; Chun, Sangki

    2010-01-01

    This paper asserts that shear force plays an important role in the printing mechanism of gravure offset line printing. To that end, a theoretical printing model showing shear force dependence on the printing angle is proposed. The decrement of the internal angle between the printing direction and the pattern-line direction increases shear force, thereby enhancing the amount of transferred ink in the off stage. A printing experiment using pattern-line widths of 80 µm and 20 µm shows the angle dependence of the line width, thickness and amount of transferred ink, reflecting the effect of shear force. The effect of the internal angle on cross-sectional differences in lines with a width of 20 µm and with angle variation is greater than that in lines with a width of 80 µm, which corresponds with the theoretical prediction that shear force has greater influence on a narrower line. The strong correlation between the experimental data and the theoretical model supports the validation of the theoretical model

  16. Electromotive force and large-scale magnetic dynamo in a turbulent flow with a mean shear.

    Science.gov (United States)

    Rogachevskii, Igor; Kleeorin, Nathan

    2003-09-01

    An effect of sheared large-scale motions on a mean electromotive force in a nonrotating turbulent flow of a conducting fluid is studied. It is demonstrated that in a homogeneous divergence-free turbulent flow the alpha effect does not exist, however a mean magnetic field can be generated even in a nonrotating turbulence with an imposed mean velocity shear due to a "shear-current" effect. A mean velocity shear results in an anisotropy of turbulent magnetic diffusion. A contribution to the electromotive force related to the symmetric parts of the gradient tensor of the mean magnetic field (the kappa effect) is found in nonrotating turbulent flows with a mean shear. The kappa effect and turbulent magnetic diffusion reduce the growth rate of the mean magnetic field. It is shown that a mean magnetic field can be generated when the exponent of the energy spectrum of the background turbulence (without the mean velocity shear) is less than 2. The shear-current effect was studied using two different methods: the tau approximation (the Orszag third-order closure procedure) and the stochastic calculus (the path integral representation of the solution of the induction equation, Feynman-Kac formula, and Cameron-Martin-Girsanov theorem). Astrophysical applications of the obtained results are discussed.

  17. The role of visual and direct force feedback in robotics-assisted mitral valve annuloplasty.

    Science.gov (United States)

    Currie, Maria E; Talasaz, Ali; Rayman, Reiza; Chu, Michael W A; Kiaii, Bob; Peters, Terry; Trejos, Ana Luisa; Patel, Rajni

    2017-09-01

    The objective of this work was to determine the effect of both direct force feedback and visual force feedback on the amount of force applied to mitral valve tissue during ex vivo robotics-assisted mitral valve annuloplasty. A force feedback-enabled master-slave surgical system was developed to provide both visual and direct force feedback during robotics-assisted cardiac surgery. This system measured the amount of force applied by novice and expert surgeons to cardiac tissue during ex vivo mitral valve annuloplasty repair. The addition of visual (2.16 ± 1.67), direct (1.62 ± 0.86), or both visual and direct force feedback (2.15 ± 1.08) resulted in lower mean maximum force applied to mitral valve tissue while suturing compared with no force feedback (3.34 ± 1.93 N; P forces on cardiac tissue during robotics-assisted mitral valve annuloplasty suturing, force feedback may be required. Copyright © 2016 John Wiley & Sons, Ltd.

  18. On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators

    Science.gov (United States)

    Hwang, Donghyun; Lee, Jaemin; Kim, Keehoon

    2017-10-01

    This paper proposes a miniature haptic ring that can display touch/pressure and shearing force to the user’s fingerpad. For practical use and wider application of the device, it is developed with the aim of achieving high wearability and mobility/portability as well as cutaneous force feedback functionality. A main body of the device is designed as a ring-shaped lightweight structure with a simple driving mechanism, and thin shape memory alloy (SMA) wires having high energy density are applied as actuating elements. Also, based on a band-type wireless control unit including a wireless data communication module, the whole device could be realized as a wearable mobile haptic device system. These features enable the device to take diverse advantages on functional performances and to provide users with significant usability. In this work, the proposed miniature haptic ring is systematically designed, and its working performances are experimentally evaluated with a fabricated functional prototype. The experimental results obviously demonstrate that the proposed device exhibits higher force-to-weight ratio than conventional finger-wearable haptic devices for cutaneous force feedback. Also, it is investigated that operational performances of the device are strongly influenced by electro-thermomechanical behaviors of the SMA actuator. In addition to the experiments for performance evaluation, we conduct a preliminary user test to assess practical feasibility and usability based on user’s qualitative feedback.

  19. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.

    Science.gov (United States)

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Nahavandi, Saeid; Smith, Julian

    2014-06-01

    Robotic assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic procedures but also restore the surgeon's hand-eye coordination and improve the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Several research efforts have already attempted to restore this feature and study the effects of force feedback in robotic systems. The proposed methods and studies have some shortcomings. The main focus of this research is to overcome some of these limitations and to study the effects of force feedback in palpation in a more realistic fashion. A parallel robot assisted minimally invasive surgery system (PRAMiSS) with force feedback capabilities was employed to study the effects of realistic force feedback in palpation of artificial tissue samples. PRAMiSS is capable of actually measuring the tip/tissue interaction forces directly from the surgery site. Four sets of experiments using only vision feedback, only force feedback, simultaneous force and vision feedback and direct manipulation were conducted to evaluate the role of sensory feedback from sideways tip/tissue interaction forces with a scale factor of 100% in characterising tissues of varying stiffness. Twenty human subjects were involved in the experiments for at least 1440 trials. Friedman and Wilcoxon signed-rank tests were employed to statistically analyse the experimental results. Providing realistic force feedback in robotic assisted surgery systems improves the quality of tissue characterization procedures. Force feedback capability also increases the certainty of characterizing soft tissues compared with direct palpation using the lateral sides of index fingers. The force feedback capability can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations.

  20. Raman spectroscopy compared against traditional predictors of shear force in lamb m. longissimus lumborum.

    Science.gov (United States)

    Fowler, Stephanie M; Schmidt, Heinar; van de Ven, Remy; Wynn, Peter; Hopkins, David L

    2014-12-01

    A Raman spectroscopic hand held device was used to predict shear force (SF) of 80 fresh lamb m. longissimus lumborum (LL) at 1 and 5days post mortem (PM). Traditional predictors of SF including sarcomere length (SL), particle size (PS), cooking loss (CL), percentage myofibrillar breaks and pH were also measured. SF values were regressed against Raman spectra using partial least squares regression and against the traditional predictors using linear regression. The best prediction of shear force values used spectra at 1day PM to predict shear force at 1day which gave a root mean square error of prediction (RMSEP) of 13.6 (Null=14.0) and the R(2) between observed and cross validated predicted values was 0.06 (R(2)cv). Overall, for fresh LL, the predictability SF, by either the Raman hand held probe or traditional predictors was low. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. New implementation of a shear-force microscope suitable to study topographical features over wide areas

    International Nuclear Information System (INIS)

    Ustione, A.; Cricenti, A.; Piacentini, M.; Felici, A. C.

    2006-01-01

    A new implementation of a shear-force microscope is described that uses a shear-force detection system to perform topographical imaging of large areas (∼1x1 mm 2 ). This implementation finds very interesting application in the study of archeological or artistic samples. Three dc motors are used to move a sample during a scan, allowing the probe tip to follow the surface and to face height differences of several tens of micrometers. This large-area topographical imaging mode exploits new subroutines that were added to the existing homemade software; these subroutines were created in Microsoft VISUAL BASIC 6.0 programming language. With this new feature our shear-force microscope can be used to study topographical details over large areas of archaeological samples in a nondestructive way. We show results detecting worn reliefs over a coin

  2. Improving training of laparoscopic tissue manipulation skills using various visual force feedback types

    NARCIS (Netherlands)

    Smit, Daan; Spruit, Edward; Dankelman, J.; Tuijthof, G.J.M.; Hamming, J; Horeman, T.

    2017-01-01

    Background Visual force feedback allows trainees to learn laparoscopic tissue manipulation skills. The aim of this experimental study was to find the most efficient visual force feedback method to acquire these skills. Retention and transfer validity to an untrained task were assessed. Methods

  3. Research of the master-slave robot surgical system with the function of force feedback.

    Science.gov (United States)

    Shi, Yunyong; Zhou, Chaozheng; Xie, Le; Chen, Yongjun; Jiang, Jun; Zhang, Zhenfeng; Deng, Ze

    2017-12-01

    Surgical robots lack force feedback, which may lead to operation errors. In order to improve surgical outcomes, this research developed a new master-slave surgical robot, which was designed with an integrated force sensor. The new structure designed for the master-slave robot employs a force feedback mechanism. A six-dimensional force sensor was mounted on the tip of the slave robot's actuator. Sliding model control was adopted to control the slave robot. According to the movement of the master system manipulated by the surgeon, the slave's movement and the force feedback function were validated. The motion was completed, the standard deviation was calculated, and the force data were detected. Hence, force feedback was realized in the experiment. The surgical robot can help surgeons to complete trajectory motions with haptic sensation. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Shear force bond analysis between acrylic resin bases and retention framework (open- and mesh-type)

    Science.gov (United States)

    Royhan, A.; Indrasari, M.; Masulili, C.

    2017-08-01

    Occlusions between teeth and the activity of the muscles around an artificial tooth during mastication create a force on dentures. This force causes friction between acrylic resin bases and retention frameworks that can lead to the complete loss of the acrylic resin base from the framework. The purpose of this study was to analyze the design of retention frameworks and determine which ones have a better resistance to shear forces in order to prevent the loss of heat cured acrylic resin base (HCARB). Six samples each of open-and mesh-type retention frameworks, both types made of Co-Cr material, and HCARB, were shear tested by means of a universal testing machine. The average shear force required to release the HCARB for mesh-type retention frameworks was 28.84 kgf, and the average for the open-type was 26.52 kgf. There was no significant difference between the shear forces required to remove HCARB from open- and mesh-type retention frameworks.

  5. Heterogeneous Cytoskeletal Force Distribution Delineates the Onset Ca2+ Influx Under Fluid Shear Stress in Astrocytes

    Directory of Open Access Journals (Sweden)

    Mohammad M. Maneshi

    2018-03-01

    Full Text Available Mechanical perturbations increase intracellular Ca2+ in cells, but the coupling of mechanical forces to the Ca2+ influx is not well understood. We used a microfluidic chamber driven with a high-speed pressure servo to generate defined fluid shear stress to cultured astrocytes, and simultaneously measured cytoskeletal forces using a force sensitive actinin optical sensor and intracellular Ca2+. Fluid shear generated non-uniform forces in actinin that critically depended on the stimulus rise time emphasizing the presence of viscoelasticity in the activating sequence. A short (ms shear pulse with fast rise time (2 ms produced an immediate increase in actinin tension at the upstream end of the cell with minimal changes at the downstream end. The onset of Ca2+ rise began at highly strained areas. In contrast to stimulus steps, slow ramp stimuli produced uniform forces throughout the cells and only a small Ca2+ response. The heterogeneity of force distribution is exaggerated in cells having fewer stress fibers and lower pre-tension in actinin. Disruption of cytoskeleton with cytochalasin-D (Cyt-D eliminated force gradients, and in those cells Ca2+ elevation started from the soma. Thus, Ca2+ influx with a mechanical stimulus depends on local stress within the cell and that is time dependent due to viscoelastic mechanics.

  6. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Science.gov (United States)

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  7. Influence of Force and Torque Feedback on Operator Performance in a VR-Based Suturing Task

    Directory of Open Access Journals (Sweden)

    L. Santos-Carreras

    2010-01-01

    Full Text Available The introduction of Minimally Invasive Surgery (MIS has revolutionised surgical care, considerably improving the quality of many surgical procedures. Technological advances, particularly in robotic surgery systems, have reduced the complexity of such an approach, paving the way for even less invasive surgical trends. However, the fact that haptic feedback has been progressively lost through this transition is an issue that to date has not been solved. Whereas traditional open surgery provides full haptic feedback, the introduction of MIS has eliminated the possibility of direct palpation and tactile exploration. Nevertheless, these procedures still provide a certain amount of force feedback through the rigid laparoscopic tool. Many of the current telemanipulated robotic surgical systems in return do not provide full haptic feedback, which to a certain extent can be explained by the requirement of force sensors integrated into the tools of the slave robot and actuators in the surgeon’s master console. In view of the increased complexity and cost, the benefit of haptic feedback is open to dispute. Nevertheless, studies have shown the importance of haptic feedback, especially when visual feedback is unreliable or absent. In order to explore the importance of haptic feedback for the surgeon’s master console of a novel teleoperated robotic surgical system, we have identified a typical surgical task where performance could potentially be improved by haptic feedback, and investigate performance with and without this feedback. Two rounds of experiments are performed with 10 subjects, six of them with a medical background. Results show that feedback conditions, including force feedback, significantly improve task performance independently of the operator’s suturing experience. There is, however, no further significant improvement when torque feedback is added. Consequently, it is deduced that force feedback in translations improves subject

  8. Mechanism of interaction between cellulase action and applied shear force, an hypothesis

    NARCIS (Netherlands)

    Lenting, H.B.M.; Lenting, H.B.M.; Warmoeskerken, Marinus

    2001-01-01

    An overview is given of what is known in literature concerning the structure of both cellulose and cellulase enzymes and the enzymatic degradation of cellulose. Based on this knowledge, a hypothesis is formulated about the relation between cellulase performance and required applied shear force on

  9. Inertial shear forces and the use of centrifuges in gravity research. What is the proper control?

    NARCIS (Netherlands)

    Loon, van J.J.W.A.; Folgering, H.T.E.; Bouten, C.V.C.; Veldhuijzen, J.P.; Smit, T.H.

    2003-01-01

    Centrifuges are used for 1×g controls in space flight microgravity experiments and in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the centrifuge and the geometry of the experiment

  10. Modeling Force Transfer around Openings in Wood-Frame Shear Walls

    Science.gov (United States)

    Minghao Li; Frank Lam; Borjen Yeh; Tom Skaggs; Doug Rammer; James Wacker

    2012-01-01

    This paper presented a modeling study on force transfer around openings (FTAO) in wood-frame shear walls detailed for FTAO. To understand the load transfer in the walls, this study used a finite-element model WALL2D, which is able to model individual wall components, including framing members, sheathing panels, oriented panel-frame nailed connections, framing...

  11. Effects of 3D virtual haptics force feedback on brand personality perception: the mediating role of physical presence in advergames.

    Science.gov (United States)

    Jin, Seung-A Annie

    2010-06-01

    This study gauged the effects of force feedback in the Novint Falcon haptics system on the sensory and cognitive dimensions of a virtual test-driving experience. First, in order to explore the effects of tactile stimuli with force feedback on users' sensory experience, feelings of physical presence (the extent to which virtual physical objects are experienced as actual physical objects) were measured after participants used the haptics interface. Second, to evaluate the effects of force feedback on the cognitive dimension of consumers' virtual experience, this study investigated brand personality perception. The experiment utilized the Novint Falcon haptics controller to induce immersive virtual test-driving through tactile stimuli. The author designed a two-group (haptics stimuli with force feedback versus no force feedback) comparison experiment (N = 238) by manipulating the level of force feedback. Users in the force feedback condition were exposed to tactile stimuli involving various force feedback effects (e.g., terrain effects, acceleration, and lateral forces) while test-driving a rally car. In contrast, users in the control condition test-drove the rally car using the Novint Falcon but were not given any force feedback. Results of ANOVAs indicated that (a) users exposed to force feedback felt stronger physical presence than those in the no force feedback condition, and (b) users exposed to haptics stimuli with force feedback perceived the brand personality of the car to be more rugged than those in the control condition. Managerial implications of the study for product trial in the business world are discussed.

  12. Isometric force exaggeration in simulated weightlessness by water immersion: role of visual feedback.

    Science.gov (United States)

    Dalecki, Marc; Bock, Otmar

    2014-06-01

    Previous studies reported that humans produce exaggerated isometric forces (20-50%) in microgravity, hypergravity, and under water. Subjects were not provided with visual feedback and exaggerations were attributed to proprioceptive deficits. The few studies that provided visual feedback in micro- and hypergravity found no deficits. The present work was undertaken to find out whether visual feedback can reduce or eliminate isometric force exaggerations during shallow water immersion, a working environment for astronauts and divers. There were 48 subjects who had to produce isometric forces of 15 N with a joystick; targets were presented via screen. Procedures were similar to earlier studies, but provided visual feedback. Subjects were tested 16.4 ft (5 m) under water (WET) and on dry land (DRY). Response accuracy was calculated with landmarks such as initial and peak force magnitude, and response timing. Initial force and response timing were equal in WET compared to DRY. A small but significant force exaggeration (+5%) remained for peak force in WET that was limited to directions toward the trunk. Force exaggeration under water is largely compensated, but not completely eliminated by visual feedback. As in earlier studies without visual feedback, force exaggeration manifested during later but not early response parts, speaking for impaired proprioceptive feedback rather than for erroneous central motor planning. Since in contrast to micro/hypergravity, visual feedback did not sufficiently abolish force deficits under water, proprioceptive information seems to be weighted differently in micro/hypergravity and shallow water immersion, probably because only the latter environment produces increased ambient pressure, which is known to induce neuronal changes.

  13. Renal shear wave velocity by acoustic radiation force impulse did not reflect advanced renal impairment.

    Science.gov (United States)

    Takata, Tomoaki; Koda, Masahiko; Sugihara, Takaaki; Sugihara, Shinobu; Okamoto, Toshiaki; Miyoshi, Kenichi; Matono, Tomomitsu; Hosho, Keiko; Mae, Yukari; Iyama, Takuji; Fukui, Takeaki; Fukuda, Satoko; Munemura, Chishio; Isomoto, Hajime

    2016-12-01

    Acoustic radiation force impulse is a noninvasive method for evaluating tissue elasticity on ultrasound. Renal shear wave velocity measured by this technique has not been fully investigated in patients with renal disease. The aim of the present study was to compare renal shear wave velocity in end-stage renal disease patients and that in patients without chronic kidney disease and to investigate influencing factors. Renal shear wave velocities were measured in 59 healthy young subjects (control group), 31 subjects without chronic kidney disease (non-CKD group), and 39 end-stage renal disease patients (ESRD group). Each measurement was performed 10 times at both kidneys, and the mean value of eight of 10 measurements, excluding the maximum and minimum values, was compared. Renal shear wave velocity could be measured in all subjects. Renal shear wave velocity in the control group was higher than in the non-CKD group and in the ESRD group, and no difference was found between the non-CKD group and the ESRD group. Age and depth were negatively correlated to the renal shear wave velocity. In multiple regression analysis, age and depth were independent factors for renal shear wave velocity, while renal impairment was not. There was no difference between the non-CKD group and the ESRD group, even when ages were matched and depth was adjusted. Renal shear wave velocity was not associated with advanced renal impairment. However, it reflected alteration of renal aging, and this technique may be useful to detect renal impairment in the earlier stages. © 2015 Asian Pacific Society of Nephrology.

  14. Interrater reliability of quantitative ultrasound using force feedback among examiners with varied levels of experience

    Directory of Open Access Journals (Sweden)

    Michael O. Harris-Love

    2016-06-01

    Full Text Available Background. Quantitative ultrasound measures are influenced by multiple external factors including examiner scanning force. Force feedback may foster the acquisition of reliable morphometry measures under a variety of scanning conditions. The purpose of this study was to determine the reliability of force-feedback image acquisition and morphometry over a range of examiner-generated forces using a muscle tissue-mimicking ultrasound phantom. Methods. Sixty material thickness measures were acquired from a muscle tissue mimicking phantom using B-mode ultrasound scanning by six examiners with varied experience levels (i.e., experienced, intermediate, and novice. Estimates of interrater reliability and measurement error with force feedback scanning were determined for the examiners. In addition, criterion-based reliability was determined using material deformation values across a range of examiner scanning forces (1–10 Newtons via automated and manually acquired image capture methods using force feedback. Results. All examiners demonstrated acceptable interrater reliability (intraclass correlation coefficient, ICC = .98, p .90, p < .001, independent of their level of experience. The measurement error among all examiners was 1.5%–2.9% across all applied stress conditions. Conclusion. Manual image capture with force feedback may aid the reliability of morphometry measures across a range of examiner scanning forces, and allow for consistent performance among examiners with differing levels of experience.

  15. Pressure-induced forces and shear stresses on rubble mound breakwater armour layers in regular waves

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2014-01-01

    This paper presents the results from an experimental investigation of the pressure-induced forces in the core material below the main armour layer and shear stresses on the armour layer for a porous breakwater structure. Two parallel experiments were performed which both involved pore pressure...... structure i.e. no additional filter layers were applied. For both experiments, high-speed video recordings were synchronised with the pressure measurements for a detailed investigation of the coupling between the run-up and run-down flow processes and the measured pressure variations. Outward directed...... and turbulence measurements showed that the large outward directed pressure gradients in general coincide, both in time and space, with the maximum bed-shear stresses on the armour layer based on the Reynolds-stresses. The bed-shear stresses were found to result in a Shields parameter in the same order...

  16. Performance limitations of piezoelectric and force feedback electrostatic transducers in different applications

    International Nuclear Information System (INIS)

    Hadjiloucas, S; Walker, G C; Bowen, J W; Karatzas, L S

    2009-01-01

    Current limitations in piezoelectric and electrostatic transducers are discussed. A force-feedback electrostatic transducer capable of operating at bandwidths up to 20 kHz is described. Advantages of the proposed design are a linearised operation which simplifies the feedback control aspects and robustness of the performance characteristics to environmental perturbations. Applications in nanotechnology, optical sciences and acoustics are discussed.

  17. Effects of age and content of augmented feedback on learning an isometric force-production task

    NARCIS (Netherlands)

    van Dijk, Henk; Mulder, Theo; Hermens, Hermie J.

    2007-01-01

    This study addressed the interaction between age and the informational content of feedback on learning an isometric force-production task. Healthy men and women (30 young adults: 20 to 35 years; 30 older adults: 55 to 70 years) were randomly assigned to a certain type of feedback: knowledge of

  18. The effect of cognitive load on adaptation to differences in steering wheel force feedback level

    NARCIS (Netherlands)

    Anand, S.; Terken, J.; Hogema, J.

    2013-01-01

    In an earlier study it was found that drivers can adjust quickly to different force feedback levels on the steering wheel, even for such extreme levels as zero feedback. It was hypothesized that, due to lack of cognitive load, participants could easily and quickly learn how to deal with extreme

  19. Performance limitations of piezoelectric and force feedback electrostatic transducers in different applications

    Energy Technology Data Exchange (ETDEWEB)

    Hadjiloucas, S; Walker, G C; Bowen, J W [Cybernetics, School of Systems Engineering, University of Reading, RG6 6AY (United Kingdom); Karatzas, L S, E-mail: s.hadjiloucas@reading.ac.u [Temasek Polytechnic, School of Engineering, 21 Tampines Avenue 1, Singapore, 529757 (Singapore)

    2009-07-01

    Current limitations in piezoelectric and electrostatic transducers are discussed. A force-feedback electrostatic transducer capable of operating at bandwidths up to 20 kHz is described. Advantages of the proposed design are a linearised operation which simplifies the feedback control aspects and robustness of the performance characteristics to environmental perturbations. Applications in nanotechnology, optical sciences and acoustics are discussed.

  20. Integration of sensory force feedback is disturbed in CRPS-related dystonia.

    Science.gov (United States)

    Mugge, Winfred; van der Helm, Frans C T; Schouten, Alfred C

    2013-01-01

    Complex regional pain syndrome (CRPS) is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. The origin of this movement disorder is poorly understood, although recent insights suggest involvement of disturbed force feedback. Assessment of sensorimotor integration may provide insight into the pathophysiology of fixed dystonia. Sensory weighting is the process of integrating and weighting sensory feedback channels in the central nervous system to improve the state estimate. It was hypothesized that patients with CRPS-related dystonia bias sensory weighting of force and position toward position due to the unreliability of force feedback. The current study provides experimental evidence for dysfunctional sensory integration in fixed dystonia, showing that CRPS-patients with fixed dystonia weight force and position feedback differently than controls do. The study shows reduced force feedback weights in CRPS-patients with fixed dystonia, making it the first to demonstrate disturbed integration of force feedback in fixed dystonia, an important step towards understanding the pathophysiology of fixed dystonia.

  1. Integration of sensory force feedback is disturbed in CRPS-related dystonia.

    Directory of Open Access Journals (Sweden)

    Winfred Mugge

    Full Text Available Complex regional pain syndrome (CRPS is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. The origin of this movement disorder is poorly understood, although recent insights suggest involvement of disturbed force feedback. Assessment of sensorimotor integration may provide insight into the pathophysiology of fixed dystonia. Sensory weighting is the process of integrating and weighting sensory feedback channels in the central nervous system to improve the state estimate. It was hypothesized that patients with CRPS-related dystonia bias sensory weighting of force and position toward position due to the unreliability of force feedback. The current study provides experimental evidence for dysfunctional sensory integration in fixed dystonia, showing that CRPS-patients with fixed dystonia weight force and position feedback differently than controls do. The study shows reduced force feedback weights in CRPS-patients with fixed dystonia, making it the first to demonstrate disturbed integration of force feedback in fixed dystonia, an important step towards understanding the pathophysiology of fixed dystonia.

  2. Force control in the absence of visual and tactile feedback

    NARCIS (Netherlands)

    Mugge, W.; Abbink, D.A.; Schouten, Alfred Christiaan; van der Helm, F.C.T.; Arendzen, J.H.; Meskers, C.G.M.

    2013-01-01

    Motor control tasks like stance or object handling require sensory feedback from proprioception, vision and touch. The distinction between tactile and proprioceptive sensors is not frequently made in dynamic motor control tasks, and if so, mostly based on signal latency. We previously found that

  3. Force Maintenance Accuracy Using a Tool: Effects of Magnitude and Feedback.

    Science.gov (United States)

    Wang, Dangxiao; Jiao, Jian; Yang, Gaofeng; Zhang, Yuru

    2016-01-01

    The ability to precisely produce a force via a hand-held tool is crucial in fine manipulations. In this paper, we study the error in maintaining a target force ranging from 0.5 to 5 N under two concurrent feedback conditions: pure haptic feedback (H), and visual plus haptic feedback (V + H). The results show that absolute error (AE) increases along with the increasing force magnitudes under both feedback conditions. For target forces ranging from 1.5 to 5 N, the relative error (RE) is approximately constant under both feedback conditions, while the RE significantly increases for the small target forces of 0.5 and 1 N. The effect of force magnitude on the coefficient of variation (CoV) is not significant for target forces ranging from 1.5 to 5 N. For both the RE and the CoV, the values under the H condition are significantly larger than those under the V + H condition. The effect of manipulation mode (i.e., a hand-held tool or a fingertip) on force maintenance accuracy is complex, i.e., its effect on RE is not significant while its effect on CoV is significant. Only for the magnitude of 0.5 N, the RE of using the tool was significantly greater than that of using the fingertip under both feedback conditions. For both the RE and the CoV, no interaction effect exists between manipulation mode, force magnitude and feedback condition.

  4. Dynamics of shearing force and its correlations with chemical compositions and dry matter digestibility of stylo ( stem

    Directory of Open Access Journals (Sweden)

    Xuejuan Zi

    2017-12-01

    Full Text Available Objective The study explored the dynamics of shearing force and its correlation with chemical compositions and in vitro dry matter digestibility (IVDMD of stylo. Methods The shearing force, diameter, linear density, chemical composition, and IVDMD of different height stylo stem were investigated. Linear regression analysis was done to determine the relationships between the shearing force and cut height, diameter, chemical composition, or IVDMD. Results The results showed that shearing force of stylo stem increased with plant height increasing and the crude protein (CP content and IVDMD decreased but fiber content increased over time, resulting in decreased forage value. In addition, tall stem had greater shearing force than short stem. Moreover, shearing force is positively correlated with stem diameter, linear density and fiber fraction, but negatively correlated with CP content and IVDMD. Conclusion Overall, shearing force is an indicator more direct, easier and faster to measure than chemical composition and digestibility for evaluation of forage nutritive value related to animal performance. Therefore, it can be used to evaluate the nutritive value of stylo.

  5. Research of a New 6-Dof Force Feedback Hand Controller System

    Directory of Open Access Journals (Sweden)

    Xin Gao

    2014-01-01

    Full Text Available The field of teleoperation with force telepresence has expanded its scope to include manipulation at different scales and in virtual worlds, and the key component of which is force feedback hand controller. This paper presents a novel force feedback hand controller system, including a 3-dof translational and 3-dof rotational hand controllers, respectively, to implement position and posture teleoperation of the robot end effector. The 3-dof translational hand controller adopts innovative three-axes decoupling structure based on the linear motor; the 3-dof rotational hand controller adopts serial mechanism based on three-axes intersecting at one point, improving its overall stiffness. Based on the kinematics, statics, and dynamics analyses for two platforms separately, the system applies big closed-loop force control method based on the zero force/torque, improving the feedback force/torque accuracy effectively. Experimental results show that self-developed 6-dof force feedback hand controller has good mechanical properties. The translational hand controller has the following advantages: simple kinematics solver, fast dynamic response, and better than 0.05 mm accuracy of three-axis end positioning, while the advantages of the rotational hand controller are wide turning space, larger than 1 Nm feedback, greater than 180 degrees of operating space of three axes, respectively, and high operation precision.

  6. The relationship between shear force, compression, collagen characteristics, desmin degradation and sarcomere length in lamb biceps femoris.

    Science.gov (United States)

    Starkey, Colin P; Geesink, Geert H; van de Ven, Remy; Hopkins, David L

    2017-04-01

    This study aimed to identity the relationships between known variants of tenderness (collagen content (total and soluble), desmin degradation and sarcomere length) and shear force and compression in the biceps femoris aged for 14days from 112 mixed sex lambs. Desmin degradation was related to compression (Pcompression decreased. Sarcomere length (SL) was related to shear force (Pcompression (Pcompression, sarcomere length and soluble collagen. The findings from this experiment indicate that the known variants (soluble collagen, sarcomere length and desmin degradation) are related to shear force and compression in ovine biceps femoris. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. Reducing Trunk Compensation in Stroke Survivors: A Randomized Crossover Trial Comparing Visual and Force Feedback Modalities.

    Science.gov (United States)

    Valdés, Bulmaro Adolfo; Schneider, Andrea Nicole; Van der Loos, H F Machiel

    2017-10-01

    To investigate whether the compensatory trunk movements of stroke survivors observed during reaching tasks can be decreased by force and visual feedback, and to examine whether one of these feedback modalities is more efficacious than the other in reducing this compensatory tendency. Randomized crossover trial. University research laboratory. Community-dwelling older adults (N=15; 5 women; mean age, 64±11y) with hemiplegia from nontraumatic hemorrhagic or ischemic stroke (>3mo poststroke), recruited from stroke recovery groups, the research group's website, and the community. In a single session, participants received augmented feedback about their trunk compensation during a bimanual reaching task. Visual feedback (60 trials) was delivered through a computer monitor, and force feedback (60 trials) was delivered through 2 robotic devices. Primary outcome measure included change in anterior trunk displacement measured by motion tracking camera. Secondary outcomes included trunk rotation, index of curvature (measure of straightness of hands' path toward target), root mean square error of hands' movement (differences between hand position on every iteration of the program), completion time for each trial, and posttest questionnaire to evaluate users' experience and system's usability. Both visual (-45.6% [45.8 SD] change from baseline, P=.004) and force (-41.1% [46.1 SD], P=.004) feedback were effective in reducing trunk compensation. Scores on secondary outcome measures did not improve with either feedback modality. Neither feedback condition was superior. Visual and force feedback show promise as 2 modalities that could be used to decrease trunk compensation in stroke survivors during reaching tasks. It remains to be established which one of these 2 feedback modalities is more efficacious than the other as a cue to reduce compensatory trunk movement. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Evaluation of sampling, cookery, and shear force protocols for objective evaluation of lamb longissimus tenderness.

    Science.gov (United States)

    Shackelford, S D; Wheeler, T L; Koohmaraie, M

    2004-03-01

    Experiments were conducted to compare the effects of two cookery methods, two shear force procedures, and sampling location within non-callipyge and callipyge lamb LM on the magnitude, variance, and repeatability of LM shear force data. In Exp. 1, 15 non-callipyge and 15 callipyge carcasses were sampled, and Warner-Bratzler shear force (WBSF) was determined for both sides of each carcass at three locations along the length (anterior to posterior) of the LM, whereas slice shear force (SSF) was determined for both sides of each carcass at only one location. For approximately half the carcasses within each genotype, LM chops were cooked for a constant amount of time using a belt grill, and chops of the remaining carcasses were cooked to a constant endpoint temperature using open-hearth electric broilers. Regardless of cooking method and sampling location, repeatability estimates were at least 0.8 for LM WBSF and SSF. For WBSF, repeatability estimates were slightly higher at the anterior location (0.93 to 0.98) than the posterior location (0.88 to 0.90). The difference in repeatability between locations was probably a function of a greater level of variation in shear force at the anterior location. For callipyge LM, WBSF was higher (P lamb LM chops cooked with the belt grill using a larger number of animals (n = 87). In Exp. 2, LM chops were obtained from matching locations of both sides of 44 non-callipyge and 43 callipyge carcasses. Chops were cooked with a belt grill and SSF was measured, and repeatability was estimated to be 0.95. Repeatable estimates of lamb LM tenderness can be achieved either by cooking to a constant endpoint temperature with electric broilers or cooking for a constant amount of time with a belt grill. Likewise, repeatable estimates of lamb LM tenderness can be achieved with WBSF or SSF. However, use of belt grill cookery and the SSF technique could decrease time requirements which would decrease research costs.

  9. Study on real-time force feedback for a master-slave interventional surgical robotic system.

    Science.gov (United States)

    Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua

    2018-04-13

    In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.

  10. Haptic force-feedback devices for the office computer: performance and musculoskeletal loading issues.

    Science.gov (United States)

    Dennerlein, J T; Yang, M C

    2001-01-01

    Pointing devices, essential input tools for the graphical user interface (GUI) of desktop computers, require precise motor control and dexterity to use. Haptic force-feedback devices provide the human operator with tactile cues, adding the sense of touch to existing visual and auditory interfaces. However, the performance enhancements, comfort, and possible musculoskeletal loading of using a force-feedback device in an office environment are unknown. Hypothesizing that the time to perform a task and the self-reported pain and discomfort of the task improve with the addition of force feedback, 26 people ranging in age from 22 to 44 years performed a point-and-click task 540 times with and without an attractive force field surrounding the desired target. The point-and-click movements were approximately 25% faster with the addition of force feedback (paired t-tests, p user discomfort and pain, as measured through a questionnaire, were also smaller with the addition of force feedback (p device improves performance, and potentially reduces musculoskeletal loading during mouse use. Actual or potential applications of this research include human-computer interface design, specifically that of the pointing device extensively used for the graphical user interface.

  11. Squatting-Related Tibiofemoral Shear Reaction Forces and a Biomechanical Rationale for Femoral Component Loosening

    Directory of Open Access Journals (Sweden)

    Ashvin Thambyah

    2014-01-01

    Full Text Available Previous gait studies on squatting have described a rapid reversal in the direction of the tibiofemoral joint shear reaction force when going into a full weight-bearing deep knee flexion squat. The effects of such a shear reversal have not been considered with regard to the loading demand on knee implants in patients whose activities of daily living require frequent squatting. In this paper, the shear reversal effect is discussed and simulated in a finite element knee implant-bone model, to evaluate the possible biomechanical significance of this effect on femoral component loosening of high flexion implants as reported in the literature. The analysis shows that one of the effects of the shear reversal was a switch between large compressive and large tensile principal strains, from knee extension to flexion, respectively, in the region of the anterior flange of the femoral component. Together with the known material limits of cement and bone, this large mismatch in strains as a function of knee position provides new insight into how and why knee implants may fail in patients who perform frequent squatting.

  12. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    Science.gov (United States)

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.

  13. Acoustic radiation force impulse shear wave elastography (ARFI) of acute and chronic pancreatitis and pancreatic tumor

    Energy Technology Data Exchange (ETDEWEB)

    Goertz, Ruediger S., E-mail: ruediger.goertz@uk-erlangen.de; Schuderer, Johanna, E-mail: Johanna@schuderer-floss.de; Strobel, Deike, E-mail: deike.strobel@uk-erlangen.de; Pfeifer, Lukas, E-mail: Lukas.Pfeifer@uk-erlangen.de; Neurath, Markus F., E-mail: Markus.Neurath@uk-erlangen.de; Wildner, Dane, E-mail: Dane.Wildner@uk-erlangen.de

    2016-12-15

    Highlights: • ARFI elastography of the pancreas is feasible. • Shear wave velocities in patients with acute or chronic pancreatitis or carcinoma are higher than those occurring in normal tissue. • ARFI values considerable overlap between different pathologies. - Abstract: Introduction: Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. Material and methods: In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. Results: A total of 195 patients were included in the study. Healthy parenchyma (n = 21) and lipomatosis (n = 30) showed similar shear wave velocities of about 1.3 m/s. Acute pancreatitis (n = 35), chronic pancreatitis (n = 53) and adenocarcinoma (n = 52) showed consecutively increasing ARFI values, respectively. NET (n = 4) revealed the highest shear wave velocities amounting to 3.62 m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74 m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. Conclusion: ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities.

  14. Acoustic radiation force impulse shear wave elastography (ARFI) of acute and chronic pancreatitis and pancreatic tumor

    International Nuclear Information System (INIS)

    Goertz, Ruediger S.; Schuderer, Johanna; Strobel, Deike; Pfeifer, Lukas; Neurath, Markus F.; Wildner, Dane

    2016-01-01

    Highlights: • ARFI elastography of the pancreas is feasible. • Shear wave velocities in patients with acute or chronic pancreatitis or carcinoma are higher than those occurring in normal tissue. • ARFI values considerable overlap between different pathologies. - Abstract: Introduction: Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. Material and methods: In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. Results: A total of 195 patients were included in the study. Healthy parenchyma (n = 21) and lipomatosis (n = 30) showed similar shear wave velocities of about 1.3 m/s. Acute pancreatitis (n = 35), chronic pancreatitis (n = 53) and adenocarcinoma (n = 52) showed consecutively increasing ARFI values, respectively. NET (n = 4) revealed the highest shear wave velocities amounting to 3.62 m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74 m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. Conclusion: ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities.

  15. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    Directory of Open Access Journals (Sweden)

    Yi-Ching Chen

    2017-11-01

    Full Text Available Error amplification (EA feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG. EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds, and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  16. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery.

    Science.gov (United States)

    Paydar, Omeed H; Wottawa, Christopher R; Fan, Richard E; Dutson, Erik P; Grundfest, Warren S; Culjat, Martin O; Candler, Rob N

    2012-01-01

    Although surgical robotic systems provide several advantages over conventional minimally invasive techniques, they are limited by a lack of tactile feedback. Recent research efforts have successfully integrated tactile feedback components onto surgical robotic systems, and have shown significant improvement to surgical control during in vitro experiments. The primary barrier to the adoption of tactile feedback in clinical use is the unavailability of suitable force sensing technologies. This paper describes the design and fabrication of a thin-film capacitive force sensor array that is intended for integration with tactile feedback systems. This capacitive force sensing technology could provide precise, high-sensitivity, real-time responses to both static and dynamic loads. Capacitive force sensors were designed to operate with optimal sensitivity and dynamic range in the range of forces typical in minimally invasive surgery (0-40 N). Initial results validate the fabrication of these capacitive force-sensing arrays. We report 16.3 pF and 146 pF for 1-mm(2) and 9-mm(2) capacitive areas, respectively, whose values are within 3% of theoretical predictions.

  17. An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.

    Science.gov (United States)

    Lee, Duk-Hee; Choi, Jaesoon; Park, Jun-Woo; Bach, Du-Jin; Song, Seung-Jun; Kim, Yoon-Ho; Jo, Yungho; Sun, Kyung

    2009-01-01

    Despite the rapid progress in the clinical application of laparoscopic surgery robots, many shortcomings have not yet been fully overcome, one of which is the lack of reliable haptic feedback. This study implemented a force-feedback structure in our compact laparoscopic surgery robot. The surgery robot is a master-slave configuration robot with 5 DOF (degree of freedom corresponding laparoscopic surgical motion. The force-feedback implementation was made in the robot with torque sensors and controllers installed in the pitch joint of the master and slave robots. A simple dynamic model of action-reaction force in the slave robot was used, through which the reflective force was estimated and fed back to the master robot. The results showed the system model could be identified with significant fidelity and the force feedback at the master robot was feasible. However, the qualitative human assessment of the fed-back force showed only limited level of object discrimination ability. Further developments are underway with this result as a framework.

  18. Magnetoelectric versus thermal actuation characteristics of shear force AFM probes with piezoresistive detection

    International Nuclear Information System (INIS)

    Sierakowski, Andrzej; Janus, Paweł; Dobrowolski, Rafał; Grabiec, Piotr; Kopiec, Daniel; Majstrzyk, Wojciech; Kunicki, Piotr; Gotszalk, Teodor; Rangelow, Ivo W

    2017-01-01

    In this paper the authors compare methods used for piezoresistive microcantilevers actuation for the atomic force microscopy (AFM) imaging in the dynamic shear force mode. The piezoresistive detection is an attractive technique comparing the optical beam detection of deflection. The principal advantage is that no external alignment of optical source and detector are needed. When the microcantilever is deflected, the stress is transferred into a change of resistivity of piezoresistors. The integration of piezoresistive read-out provides a promising solution in realizing a compact non-contact AFM. Resolution of piezoresistive read-out is limited by three main noise sources: Johnson, 1/ f and thermomechanical noise. In the dynamic shear force mode measurement the method used for cantilever actuation will also affect the recorded noise in the piezoresistive detection circuit. This is the result of a crosstalk between an aluminium path (current loop used for actuation) and piezoresistors located near the base of the beam. In this paper authors described an elaborated in ITE (Institute of Electron Technology) technology of fabrication cantilevers with piezoresistive detection of deflection and compared efficiency of two methods used for cantilever actuation. (paper)

  19. Self-oscillations of a two-dimensional shear flow with forcing and dissipation

    Science.gov (United States)

    López Zazueta, A.; Zavala Sansón, L.

    2018-04-01

    Two-dimensional shear flows continuously forced in the presence of dissipative effects are studied by means of numerical simulations. In contrast with most previous studies, the forcing is confined in a finite region, so the behavior of the system is characterized by the long-term evolution of the global kinetic energy. We consider regimes with 1 limited to develop only one vortical instability by choosing an appropriate width of the forcing band. The most relevant regime is found for Reλ > 36, in which the energy maintains a regular oscillation around a reference value. The flow configuration is an elliptical vortex tilted with respect to the forcing axis, which oscillates steadily also. Second, the flow is allowed to develop two Kelvin-Helmholtz billows and eventually more complicated structures. The regimes of the one-vortex case are observed again, except for Reλ > 135. At these values, the energy oscillates chaotically as the two vortices merge, form dipolar structures, and split again, with irregular periodicity. The self-oscillations are explained as a result of the alternate competition between forcing and dissipation, which is verified by calculating the budget terms in the energy equation. The relevance of the forcing-vs.-dissipation competition is discussed for more general flow systems.

  20. CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations

    Science.gov (United States)

    Andrews, Timothy; Forster, Piers M.

    2008-02-01

    Climate forcing and feedbacks are diagnosed from seven slab-ocean GCMs for 2 × CO2 using a regression method. Results are compared to those using conventional methodologies to derive a semi-direct forcing due to tropospheric adjustment, analogous to the semi-direct effect of absorbing aerosols. All models show a cloud semi-direct effect, indicating a rapid cloud response to CO2; cloud typically decreases, enhancing the warming. Similarly there is evidence of semi-direct effects from water-vapour, lapse-rate, ice and snow. Previous estimates of climate feedbacks are unlikely to have taken these semi-direct effects into account and so misinterpret processes as feedbacks that depend only on the forcing, but not the global surface temperature. We show that the actual cloud feedback is smaller than what previous methods suggest and that a significant part of the cloud response and the large spread between previous model estimates of cloud feedback is due to the semi-direct forcing.

  1. Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle.

    Science.gov (United States)

    Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce L; Cutkosky, Mark R

    2014-09-01

    This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024).

  2. General stability of memory-type thermoelastic Timoshenko beam acting on shear force

    Science.gov (United States)

    Apalara, Tijani A.

    2018-03-01

    In this paper, we consider a linear thermoelastic Timoshenko system with memory effects where the thermoelastic coupling is acting on shear force under Neumann-Dirichlet-Dirichlet boundary conditions. The same system with fully Dirichlet boundary conditions was considered by Messaoudi and Fareh (Nonlinear Anal TMA 74(18):6895-6906, 2011, Acta Math Sci 33(1):23-40, 2013), but they obtained a general stability result which depends on the speeds of wave propagation. In our case, we obtained a general stability result irrespective of the wave speeds of the system.

  3. Disentangling the role of hydrodynamic and frictional forces in a shear-thickening suspension

    Science.gov (United States)

    Cohen, Itai

    2015-03-01

    Who among us has not spent countless hours squeezing, rubbing, and smushing gooey substances like, tooth paste, silly putty, corn starch, and even bodily fluids between our fingers? If we could magnify our view and look deep within the substances we are handling what structures would we find? How, do these structures lead to the fascinating mechanical properties that we experience on the scale of our fingers. In this talk I will address the phenomenon of shear thickening in which the viscosity of a suspension increases with increasing shear rate. I will describe recent measurements we have made using a newly developed confocal rheoscope that, for the first time, experimentally visualize the hydrodynamically induced particle clusters. Such clusters have been implicated in continuous shear thickening. It remains controversial as to whether thickening in such suspensions also arises from frictional interactions between particles. The distinct contributions of frictional and hydrodynamic forces are typically difficult to measure independently using conventional techniques. Here, I will describe our approach for using both bulk rheometry techniques and our confocal rheoscope to disentangle their contributions to the total stress response.

  4. Empirical resistive-force theory for slender biological filaments in shear-thinning fluids

    Science.gov (United States)

    Riley, Emily E.; Lauga, Eric

    2017-06-01

    Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.

  5. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk

    NARCIS (Netherlands)

    Kingma, I.; Staudenmann, D.; van Dieen, J.H.

    2007-01-01

    High anterior intervertebral shear loads could cause low back injuries and therefore the neuromuscular system may actively counteract these forces. This study investigated whether, under constant moment loading relative to L3L4, an increased externally applied forward force on the trunk results in a

  6. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand.

    Science.gov (United States)

    Panarese, Alessandro; Edin, Benoni B; Vecchi, Fabrizio; Carrozza, Maria C; Johansson, Roland S

    2009-12-01

    Tactile sensory feedback is essential for dexterous object manipulation. Users of hand myoelectric prostheses without tactile feedback must depend essentially on vision to control their device. Indeed, improved tactile feedback is one of their main priorities. Previous research has provided evidence that conveying tactile feedback can improve prostheses control, although additional effort is required to solve problems related to pattern recognition learning, unpleasant sensations, sensory adaptation, and low spatiotemporal resolution. Still, these studies have mainly focused on providing stimulation to hairy skin regions close to the amputation site, i.e., usually to the upper arm. Here, we explored the possibility to provide tactile feedback to the glabrous skin of toes, which have mechanical and neurophysiological properties similar to the fingertips. We explored this paradigm in a grasp-and-lift task, in which healthy participants controlled two opposing digits of a robotic hand by changing the spacing of their index finger and thumb. The normal forces applied by the robotic fingertips to a test object were fed back to the right big and second toe. We show that within a few lifting trials, all the participants incorporated the force feedback received by the foot in their sensorimotor control of the robotic hand.

  7. Localized modelling and feedback control of linear instabilities in 2-D wall bounded shear flows

    Science.gov (United States)

    Tol, Henry; Kotsonis, Marios; de Visser, Coen

    2016-11-01

    A new approach is presented for control of instabilities in 2-D wall bounded shear flows described by the linearized Navier-Stokes equations (LNSE). The control design accounts both for spatially localized actuators/sensors and the dominant perturbation dynamics in an optimal control framework. An inflow disturbance model is proposed for streamwise instabilities that drive laminar-turbulent transition. The perturbation modes that contribute to the transition process can be selected and are included in the control design. A reduced order model is derived from the LNSE that captures the input-output behavior and the dominant perturbation dynamics. This model is used to design an optimal controller for suppressing the instability growth. A 2-D channel flow and a 2-D boundary layer flow over a flat plate are considered as application cases. Disturbances are generated upstream of the control domain and the resulting flow perturbations are estimated/controlled using wall shear measurements and localized unsteady blowing and suction at the wall. It will be shown that the controller is able to cancel the perturbations and is robust to unmodelled disturbances.

  8. Genome-wide Association Study for Warner-Bratzler Shear Force and Sensory Traits in Hanwoo (Korean Cattle

    Directory of Open Access Journals (Sweden)

    C. G. Dang

    2014-09-01

    Full Text Available Significant SNPs associated with Warner-Bratzler (WB shear force and sensory traits were confirmed for Hanwoo beef (Korean cattle. A Bonferroni-corrected genome-wide significant association (p<1.3×10−6 was detected with only one single nucleotide polymorphism (SNP on chromosome 5 for WB shear force. A slightly higher number of SNPs was significantly (p<0.001 associated with WB shear force than with other sensory traits. Further, 50, 25, 29, and 34 SNPs were significantly associated with WB shear force, tenderness, juiciness, and flavor likeness, respectively. The SNPs between p = 0.001 and p = 0.0001 thresholds explained 3% to 9% of the phenotypic variance, while the most significant SNPs accounted for 7% to 12% of the phenotypic variance. In conclusion, because WB shear force and sensory evaluation were moderately affected by a few loci and minimally affected by other loci, further studies are required by using a large sample size and high marker density.

  9. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia

    Science.gov (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2014-09-01

    We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays' exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh

  10. Nonlinear force feedback control of piezoelectric-hydraulic pump actuator for automotive transmission shift control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2008-03-01

    In recent years, researchers have investigated the feasibility of utilizing piezoelectric-hydraulic pump based actuation systems for automotive transmission controls. This new concept could eventually reduce the complexity, weight, and fuel consumption of the current transmissions. In this research, we focus on how to utilize this new approach on the shift control of automatic transmissions (AT), which generally requires pressure profiling for friction elements during the operation. To illustrate the concept, we will consider the 1--> 2 up shift control using band brake friction elements. In order to perform the actuation force tracking for AT shift control, nonlinear force feedback control laws are designed based on the sliding mode theory for the given nonlinear system. This paper will describe the modeling of the band brake actuation system, the design of the nonlinear force feedback controller, and simulation and experimental results for demonstration of the new concept.

  11. Dynamic behavior of tuning fork shear-force structures in a SNOM system

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fengli [Department of Engineering Mechanics, AML, CNMM, Tsinghua University, Beijing 100084 (China); Li, Xide, E-mail: lixide@tsinghua.edu.cn [Department of Engineering Mechanics, AML, CNMM, Tsinghua University, Beijing 100084 (China); Wang, Jia [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Fu, Yu [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore)

    2014-07-01

    Piezoelectric tuning fork shear-force structures are widely used as a distance control unit in a scanning near-field optical microscopy. However, the complex dynamic behavior among the micro-tuning forks (TFs), optical fiber probes, and the probe–surface interactions is still a crucial issue to achieve high-resolution imaging or near-field interaction inspections. Based on nonlinear beam tension-bending vibration theory, vibration equations in both longitudinal and lateral directions have been established when the TF structure and the optical fiber are treated as deformable structures. The relationship of the probe–surface interaction induced by Van der Waals force has been analyzed and the corresponding numerical results used to describe the vibrational behavior of the probe approaching the sample surface are obtained. Meanwhile, the viscous resistance of the liquid film on the sample surface has also been investigated using linear beam-bending vibration theory. Experiments testing the interaction between the probe and the water film on a single crystal silicon wafer have been carried out and the viscous resistance of the water film was estimated using the established equations. Finally, to use the TF-probe structure as a force sensor, the relation between the dynamic response of the TF-probe system and an external force on the probe tip was obtained. - Highlights: • Nonlinear vibration equation is established for a deformable tuning fork probe assembly. • Probe–sample interactions induced by Van der Waals force and viscous resistance are investigated. • The viscous resistance between the probe and the water film is estimated using testing results.

  12. Using mixed reality, force feedback and tactile augmentation to improve the realism of medical simulation.

    Science.gov (United States)

    Fisher, J Brian; Porter, Susan M

    2002-01-01

    This paper describes an application of a display approach which uses chromakey techniques to composite real and computer-generated images allowing a user to see his hands and medical instruments collocated with the display of virtual objects during a medical training simulation. Haptic feedback is provided through the use of a PHANTOM force feedback device in addition to tactile augmentation, which allows the user to touch virtual objects by introducing corresponding real objects in the workspace. A simplified catheter introducer insertion simulation was developed to demonstrate the capabilities of this approach.

  13. Relationships between sensory evaluations of beef tenderness, shear force measurements and consumer characteristics.

    Science.gov (United States)

    Van Wezemael, Lynn; De Smet, Stefaan; Ueland, Øydis; Verbeke, Wim

    2014-07-01

    The supply of tender beef is an important challenge for the beef industry. Knowledge about the profile of consumers who are more optimistic or more accurate in their tenderness evaluations is important for product development and beef marketing purposes. Central location tests of beef steaks were performed in Norway and Belgium (n=218). Instrumental and sensorial tenderness of three muscles from Belgian Blue and Norwegian Red cattle was reported. Consumers who are optimistically evaluating tenderness were found to be more often male, less food neophobic, more positive towards beef healthiness, and showed fewer concerns about beef safety. No clear profile emerged for consumers who assessed tenderness similar to shear force measurements, which suggests that tenderness is mainly evaluated subjectively. The results imply a window of opportunities in tenderness improvements, and allow targeting a market segment which is less critical towards beef tenderness. © 2013 Elsevier Ltd. All rights reserved.

  14. Template model inspired leg force feedback based control can assist human walking.

    Science.gov (United States)

    Zhao, Guoping; Sharbafi, Maziar; Vlutters, Mark; van Asseldonk, Edwin; Seyfarth, Andre

    2017-07-01

    We present a novel control approach for assistive lower-extremity exoskeletons. In particular, we implement a virtual pivot point (VPP) template model inspired leg force feedback based controller on a lower-extremity powered exoskeleton (LOPES II) and demonstrate that it can effectively assist humans during walking. It has been shown that the VPP template model is capable of stabilizing the trunk and reproduce a human-like hip torque during the stance phase of walking. With leg force and joint angle feedback inspired by the VPP template model, our controller provides hip and knee torque assistance during the stance phase. A pilot experiment was conducted with four healthy subjects. Joint kinematics, leg muscle electromyography (EMG), and metabolic cost were measured during walking with and without assistance. Results show that, for 0.6 m/s walking, our controller can reduce leg muscle activations, especially for the medial gastrocnemius (about 16.0%), while hip and knee joint kinematics remain similar to the condition without the controller. Besides, the controller also reduces 10% of the net metabolic cost during walking. This paper demonstrates walking assistance benefits of the VPP template model for the first time. The support of human walking is achieved by a force feedback of leg force applied to the control of hip and knee joints. It can help us to provide a framework for investigating walking assistance control in the future.

  15. Micromachined diffraction based optical microphones and intensity probes with electrostatic force feedback

    Science.gov (United States)

    Bicen, Baris

    Measuring acoustic pressure gradients is critical in many applications such as directional microphones for hearing aids and sound intensity probes. This measurement is especially challenging with decreasing microphone size, which reduces the sensitivity due to small spacing between the pressure ports. Novel, micromachined biomimetic microphone diaphragms are shown to provide high sensitivity to pressure gradients on one side of the diaphragm with low thermal mechanical noise. These structures have a dominant mode shape with see-saw like motion in the audio band, responding to pressure gradients as well as spurious higher order modes sensitive to pressure. In this dissertation, integration of a diffraction based optical detection method with these novel diaphragm structures to implement a low noise optical pressure gradient microphone is described and experimental characterization results are presented, showing 36 dBA noise level with 1mm port spacing, nearly an order of magnitude better than the current gradient microphones. The optical detection scheme also provides electrostatic actuation capability from both sides of the diaphragm separately which can be used for active force feedback. A 4-port electromechanical equivalent circuit model of this microphone with optical readout is developed to predict the overall response of the device to different acoustic and electrostatic excitations. The model includes the damping due to complex motion of air around the microphone diaphragm, and it calculates the detected optical signal on each side of the diaphragm as a combination of two separate dominant vibration modes. This equivalent circuit model is verified by experiments and used to predict the microphone response with different force feedback schemes. Single sided force feedback is used for active damping to improve the linearity and the frequency response of the microphone. Furthermore, it is shown that using two sided force feedback one can significantly suppress

  16. Activation of biceps femoris long head reduces tibiofemoral anterior shear force and tibial internal rotation torque in healthy subjects.

    Science.gov (United States)

    Azmi, Nur Liyana; Ding, Ziyun; Xu, Rui; Bull, Anthony M J

    2018-01-01

    The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases.

  17. Representing delayed force feedback as a combination of current and delayed states.

    Science.gov (United States)

    Avraham, Guy; Mawase, Firas; Karniel, Amir; Shmuelof, Lior; Donchin, Opher; Mussa-Ivaldi, Ferdinando A; Nisky, Ilana

    2017-10-01

    To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the

  18. Resonant passive–active vibration absorber with integrated force feedback control

    International Nuclear Information System (INIS)

    Høgsberg, Jan; Brodersen, Mark L; Krenk, Steen

    2016-01-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction. (technical note)

  19. Stereo advantage for a peg-in-hole task using a force-feedback manipulator

    Science.gov (United States)

    Spain, Edward H.

    1990-01-01

    An improved assessment methodology has been implemented at NOSC and tested using an instrumented peg-in-hole (PiH) taskboard. Several aspects of the methodology are discussed in light of their implications for future studies of manipulator performance. Using a simple (but high-fidelity) force-feedback manipulator, a group of 9 trained operators showed a consistent advantage for stereoscopic TV viewing over monoscopic TV viewing when performing the PiH task. To introduce a controlled element of spatial uncertainty into the testing procedure, taskboard orientation relative to the manipulator and remote video camera head was changed in a randomized order on a trial-by-trial basis. The stereoscopic advantage demonstrated by this study can reasonably be expected to be even more pronounced as the quality of the stereo TV interface is improved and force-feedback provided through the manipulator system is diminished and/or distorted.

  20. End-Point Contact Force Control with Quantitative Feedback Theory for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Shuhuan Wen

    2012-12-01

    Full Text Available Robot force control is an important issue for intelligent mobile robotics. The end-point stiffness of a robot is a key and open problem in the research community. The control strategies are mostly dependent on both the specifications of the task and the environment of the robot. Due to the limited stiffness of the end-effector, we may adopt inherent torque to feedback the oscillations of the controlled force. This paper proposes an effective control strategy which contains a controller using quantitative feedback theory. The nested loop controllers take into account the physical limitation of the system's inner variables and harmful interference. The biggest advantage of the method is its simplicity in both the design process and the implementation of the control algorithm in engineering practice. Taking the one-link manipulator as an example, numerical experiments are carried out to verify the proposed control method. The results show the satisfactory performance.

  1. HapTip: Displaying Haptic Shear Forces at the Fingertips for Multi-Finger Interaction in Virtual Environments

    Directory of Open Access Journals (Sweden)

    Adrien eGirard

    2016-04-01

    Full Text Available The fingertips are one of the most important and sensitive parts of our body.They are the first stimulated areas of the hand when we interact with our environment.Providing haptic feedback to the fingertips in virtual reality could thus drastically improve perception and interaction with virtual environments.In this paper, we present a modular approach called HapTip to display such haptic sensations at the level of the fingertips.This approach relies on a wearable and compact haptic device able to simulate 2 Degree of Freedom (DoF shear forces on the fingertip with a displacement range of +/- 2 mm. Several modules can be added and used jointly in order to address multi-finger and/or bimanual scenarios in virtual environments.For that purpose, we introduce several haptic rendering techniques to cover different cases of 3D interaction such as touching a rough virtual surface, or feeling the inertia or weight of a virtual object.In order to illustrate the possibilities offered by HapTip, we provide four use cases focused on touching or grasping virtual objects.To validate the efficiency of our approach, we also conducted experiments to assess the tactile perception obtained with HapTip.Our results show that participants can successfully discriminate the directions of the 2 DoF stimulation of our haptic device.We found also that participants could well perceive different weights of virtual objects simulated using two HapTip devices. We believe that HapTip could be used in numerous applications in virtual reality for which 3D manipulation and tactile sensations are often crucial, such as in virtual prototyping or virtual training.

  2. Compliant actuation based on dielectric elastomers for a force-feedback device: modeling and experimental evaluation

    Directory of Open Access Journals (Sweden)

    R. Vertechy

    2013-01-01

    Full Text Available Thanks to their large power densities, low costs and shock-insensitivity, Dielectric Elastomers (DE seem to be a promising technology for the implementation of light and compact force-feedback devices such as, for instance, haptic interfaces. Nonetheless, the development of these kinds of DE-based systems is not trivial owing to the relevant dissipative phenomena that affect the DE when subjected to rapidly changing deformations. In this context, the present paper addresses the development of a force feedback controller for an agonist-antagonist linear actuator composed of a couple of conically-shaped DE films and a compliant mechanism behaving as a negative-rate bias spring. The actuator is firstly modeled accounting for the visco-hyperelastic nature of the DE material. The model is then linearized and employed for the design of a force controller. The controller employs a position sensor, which determines the actuator configuration, and a force sensor, which measures the interaction force that the actuator exchanges with the environment. In addition, an optimum full-state observer is also implemented, which enables both accurate estimation of the time-dependent behavior of the elastomeric material and adequate suppression of the sensor measurement noise. Preliminary experimental results are provided to validate the proposed actuator-controller architecture.

  3. Development of Wearable Sheet-Type Shear Force Sensor and Measurement System that is Insusceptible to Temperature and Pressure.

    Science.gov (United States)

    Toyama, Shigeru; Tanaka, Yasuhiro; Shirogane, Satoshi; Nakamura, Takashi; Umino, Tokio; Uehara, Ryo; Okamoto, Takuma; Igarashi, Hiroshi

    2017-07-31

    A sheet-type shear force sensor and a measurement system for the sensor were developed. The sensor has an original structure where a liquid electrolyte is filled in a space composed of two electrode-patterned polymer films and an elastic rubber ring. When a shear force is applied on the surface of the sensor, the two electrode-patterned films mutually move so that the distance between the internal electrodes of the sensor changes, resulting in current increase or decrease between the electrodes. Therefore, the shear force can be calculated by monitoring the current between the electrodes. Moreover, it is possible to measure two-dimensional shear force given that the sensor has multiple electrodes. The diameter and thickness of the sensor head were 10 mm and 0.7 mm, respectively. Additionally, we also developed a measurement system that drives the sensor, corrects the baseline of the raw sensor output, displays data, and stores data as a computer file. Though the raw sensor output was considerably affected by the surrounding temperature, the influence of temperature was drastically decreased by introducing a simple arithmetical calculation. Moreover, the influence of pressure simultaneously decreased after the same calculation process. A demonstrative measurement using the sensor revealed the practical usefulness for on-site monitoring.

  4. Derivation of energy-based base shear force coefficient considering hysteretic behavior and P-delta effects

    Science.gov (United States)

    Ucar, Taner; Merter, Onur

    2018-01-01

    A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom (MDOF) system is approximated by using the modal energy-decomposition. Energy-based base shear coefficients are verified by means of both pushover analysis and nonlinear time history (NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.

  5. Rehabilitation of activities of daily living in virtual environments with intuitive user interface and force feedback.

    Science.gov (United States)

    Chiang, Vico Chung-Lim; Lo, King-Hung; Choi, Kup-Sze

    2017-10-01

    To investigate the feasibility of using a virtual rehabilitation system with intuitive user interface and force feedback to improve the skills in activities of daily living (ADL). A virtual training system equipped with haptic devices was developed for the rehabilitation of three ADL tasks - door unlocking, water pouring and meat cutting. Twenty subjects with upper limb disabilities, supervised by two occupational therapists, received a four-session training using the system. The task completion time and the amount of water poured into a virtual glass were recorded. The performance of the three tasks in reality was assessed before and after the virtual training. Feedback of the participants was collected with questionnaires after the study. The completion time of the virtual tasks decreased during the training (p water successfully poured increased (p = 0.051). The score of the Borg scale of perceived exertion was 1.05 (SD = 1.85; 95% CI =  0.18-1.92) and that of the task specific feedback questionnaire was 31 (SD =  4.85; 95% CI =  28.66-33.34). The feedback of the therapists suggested a positive rehabilitation effect. The participants had positive perception towards the system. The system can potentially be used as a tool to complement conventional rehabilitation approaches of ADL. Implications for rehabilitation Rehabilitation of activities of daily living can be facilitated using computer-assisted approaches. The existing approaches focus on cognitive training rather than the manual skills. A virtual training system with intuitive user interface and force feedback was designed to improve the learning of the manual skills. The study shows that system could be used as a training tool to complement conventional rehabilitation approaches.

  6. Force control tasks with pure haptic feedback promote short-term focused attention.

    Science.gov (United States)

    Wang, Dangxiao; Zhang, Yuru; Yang, Xiaoxiao; Yang, Gaofeng; Yang, Yi

    2014-01-01

    Focused attention has great impact on our quality of life. Our learning, social skills and even happiness are closely intertwined with our capacity for focused attention. Attention promotion is replete with examples of training-induced increases in attention capability, most of which rely on visual and auditory stimulation. Pure haptic stimulation to increase attention capability is rarely found. We show that accurate force control tasks with pure haptic feedback enhance short-term focused attention. Participants were trained by a force control task in which information from visual and auditory channels was blocked, and only haptic feedback was provided. The trainees were asked to exert a target force within a pre-defined force tolerance for a specific duration. The tolerance was adaptively modified to different levels of difficulty to elicit full participant engagement. Three attention tests showed significant changes in different aspects of focused attention in participants who had been trained as compared with those who had not, thereby illustrating the role of haptic-based sensory-motor tasks in the promotion of short-term focused attention. The findings highlight the potential value of haptic stimuli in brain plasticity and serve as a new tool to extend existing computer games for cognitive enhancement.

  7. The vertical distribution of climate forcings and feedbacks from the surface to top of atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Previdi, Michael [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Liepert, Beate G. [NorthWest Research Associates, Redmond, WA (United States)

    2012-08-15

    The radiative forcings and feedbacks that determine Earth's climate sensitivity are typically defined at the top-of-atmosphere (TOA) or tropopause, yet climate sensitivity itself refers to a change in temperature at the surface. In this paper, we describe how TOA radiative perturbations translate into surface temperature changes. It is shown using first principles that radiation changes at the TOA can be equated with the change in energy stored by the oceans and land surface. This ocean and land heat uptake in turn involves an adjustment of the surface radiative and non-radiative energy fluxes, with the latter being comprised of the turbulent exchange of latent and sensible heat between the surface and atmosphere. We employ the radiative kernel technique to decompose TOA radiative feedbacks in the IPCC Fourth Assessment Report climate models into components associated with changes in radiative heating of the atmosphere and of the surface. (We consider the equilibrium response of atmosphere-mixed layer ocean models subjected to an instantaneous doubling of atmospheric CO{sub 2}). It is shown that most feedbacks, i.e., the temperature, water vapor and cloud feedbacks, (as well as CO{sub 2} forcing) affect primarily the turbulent energy exchange at the surface rather than the radiative energy exchange. Specifically, the temperature feedback increases the surface turbulent (radiative) energy loss by 2.87 W m{sup -2} K{sup -1} (0.60 W m{sup -2} K{sup -1}) in the multimodel mean; the water vapor feedback decreases the surface turbulent energy loss by 1.07 W m{sup -2} K{sup -1} and increases the surface radiative heating by 0.89 W m{sup -2} K{sup -1}; and the cloud feedback decreases both the turbulent energy loss and the radiative heating at the surface by 0.43 and 0.24 W m{sup -2} K{sup -1}, respectively. Since changes to the surface turbulent energy exchange are dominated in the global mean sense by changes in surface evaporation, these results serve to highlight

  8. Evaluation of the shear force of single cancer cells by vertically aligned carbon nanotubes suitable for metastasis diagnosis.

    Science.gov (United States)

    Abdolahad, M; Mohajerzadeh, S; Janmaleki, M; Taghinejad, H; Taghinejad, M

    2013-03-01

    Vertically aligned carbon nanotube (VACNT) arrays have been demonstrated as probes for rapid quantifying of cancer cell deformability with high resolution. Through entrapment of various cancer cells on CNT arrays, the deflections of the nanotubes during cell deformation were used to derive the lateral cell shear force using a large deflection mode method. It is observed that VACNT beams act as sensitive and flexible agents, which transfer the shear force of cells trapped on them by an observable deflection. The metastatic cancer cells have significant deformable structures leading to a further cell traction force (CTF) than primary cancerous one on CNT arrays. The elasticity of different cells could be compared by their CTF measurement on CNT arrays. This study presents a nanotube-based methodology for quantifying the single cell mechanical behavior, which could be useful for understanding the metastatic behavior of cells.

  9. Vibrotactile Compliance Feedback for Tangential Force Interaction.

    Science.gov (United States)

    Heo, Seongkook; Lee, Geehyuk

    2017-01-01

    This paper presents a method to generate a haptic illusion of compliance using a vibrotactile actuator when a tangential force is applied to a rigid surface. The novel method builds on a conceptual compliance model where a physical object moves on a textured surface in response to a tangential force. The method plays vibration patterns simulating friction-induced vibrations as an applied tangential force changes. We built a prototype consisting of a two-dimensional tangential force sensor and a surface transducer to test the effectiveness of the model. Participants in user experiments with the prototype perceived the rigid surface of the prototype as a moving, rubber-like plate. The main findings of the experiments are: 1) the perceived stiffness of a simulated material can be controlled by controlling the force-playback transfer function, 2) its perceptual properties such as softness and pleasantness can be controlled by changing friction grain parameters, and 3) the use of the vibrotactile compliance feedback reduces participants' workload including physical demand and frustration while performing a force repetition task.

  10. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    Science.gov (United States)

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  11. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs

    Science.gov (United States)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  12. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs.

    Science.gov (United States)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  13. Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO2

    Science.gov (United States)

    Huneeus, Nicolas; Boucher, Olivier; Alterskjær, Kari; Cole, Jason N. S.; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Kristjánsson, Jón Egill; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Rasch, Phil; Robock, Alan; Singh, Balwinder; Schmidt, Hauke; Schulz, Michael; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho

    2014-05-01

    The effective radiative forcings (including rapid adjustments) and feedbacks associated with an instantaneous quadrupling of the preindustrial CO2 concentration and a counterbalancing reduction of the solar constant are investigated in the context of the Geoengineering Model Intercomparison Project (GeoMIP). The forcing and feedback parameters of the net energy flux, as well as its different components at the top-of-atmosphere (TOA) and surface, were examined in 10 Earth System Models to better understand the impact of solar radiation management on the energy budget. In spite of their very different nature, the feedback parameter and its components at the TOA and surface are almost identical for the two forcing mechanisms, not only in the global mean but also in their geographical distributions. This conclusion holds for each of the individual models despite intermodel differences in how feedbacks affect the energy budget. This indicates that the climate sensitivity parameter is independent of the forcing (when measured as an effective radiative forcing). We also show the existence of a large contribution of the cloudy-sky component to the shortwave effective radiative forcing at the TOA suggesting rapid cloud adjustments to a change in solar irradiance. In addition, the models present significant diversity in the spatial distribution of the shortwave feedback parameter in cloudy regions, indicating persistent uncertainties in cloud feedback mechanisms.

  14. Bimanual elbow robotic orthoses: preliminary investigations on an impairment force feedback rehabilitation method

    Directory of Open Access Journals (Sweden)

    Gil eHerrnstadt

    2015-03-01

    Full Text Available Modern rehabilitation practices have begun integrating robots, recognizing their significant role in recovery. New and alternative stroke rehabilitation treatments are essential to enhance efficacy and mitigate associated health costs. Today’s robotic interventions can play a significant role in advancing rehabilitation. In addition, robots have an inherent ability to perform tasks accurately and reliably and are typically well suited to measure and quantify performance.Most rehabilitation strategies predominantly target activation of the paretic arm. However, bimanual upper limb rehabilitation research suggests potential in enhancing functional recovery. Moreover studies suggest limb coordination and synchronization can improve treatment efficacy.In this preliminary study, we aimed to investigate and validate our user-driven bimanual system in a reduced intensity rehab practice. A Bimanual Wearable Robotic Device (BWRD with a Master-Slave configuration for the elbow joint was developed to carry out the investigation. The BWRD incorporates position and force sensors for which respective control loops are implemented, and offers varying modes of operation ranging from passive to active training. The proposed system enables the perception of the movements, as well as the forces applied by the hemiparetic arm, with the non-hemiparetic arm. Eight participants with chronic unilateral stroke were recruited to participate in a total of three one-hour sessions per participant, delivered in a week. Participants underwent pre and post training functional assessments along with proprioceptive measures. The post assessment was performed at the end of the last training session.The protocol was designed to engage the user in an assortment of static and dynamic arm matching and opposing tasks. The training incorporates force feedback movements, force feedback positioning, and force matching tasks with same and opposite direction movements. We are able to

  15. Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change

    Science.gov (United States)

    Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.

    2011-12-01

    Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This

  16. Visual feedback alters force control and functional activity in the visuomotor network after stroke

    Directory of Open Access Journals (Sweden)

    Derek B. Archer

    2018-01-01

    Full Text Available Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke.

  17. Feedback control and adaptive synchronization of chaotic forced Bonhoeffer-van der Pol oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kontchou, E W Chimi; Fotsin, H B [Laboratoire d' Electronique, Departement de Physique, Faculte des Sciences, Universite de Dschang, B P 67 Dschang (Cameroon); Woafo, P [Laboratory of Modelling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaounde I, Box 812, Yaounde (Cameroon)], E-mail: hbfotsin@yahoo.fr

    2008-04-15

    This paper deals with chaos control and synchronization in forced Bonhoeffer-van der Pol (FBVP) oscillators. The state equations of the model are first established and the stability is analysed. A feedback control strategy for stabilizing the chaotic dynamics on a periodic orbit of the phase space is investigated. Adaptive synchronization of two FBVP oscillators, based on parameter estimation and a nonlinear observer approach, is also investigated. It appears that a particular unknown parameter of the model can be estimated, which gives the possibility of recovering information through chaotic masking. An application in secure communications is presented.

  18. Feedback control and adaptive synchronization of chaotic forced Bonhoeffer-van der Pol oscillators

    International Nuclear Information System (INIS)

    Kontchou, E W Chimi; Fotsin, H B; Woafo, P

    2008-01-01

    This paper deals with chaos control and synchronization in forced Bonhoeffer-van der Pol (FBVP) oscillators. The state equations of the model are first established and the stability is analysed. A feedback control strategy for stabilizing the chaotic dynamics on a periodic orbit of the phase space is investigated. Adaptive synchronization of two FBVP oscillators, based on parameter estimation and a nonlinear observer approach, is also investigated. It appears that a particular unknown parameter of the model can be estimated, which gives the possibility of recovering information through chaotic masking. An application in secure communications is presented

  19. The Sheer Stress of Shear Stress: Responses of the Vascular Wall to a Haemodynamic Force

    NARCIS (Netherlands)

    C. Cheng (Caroline (Ka Lai))

    2006-01-01

    textabstractStudies in the hemodynamic field point to a strong relation between shear stress and the onset to vascular diseases such as atherosclerosis. Data from in vitro studies using sheared endothelial cells have provided insight into the possible mechanisms involved. However, the lack of an

  20. Dynamics of shearing force and its correlations with chemical compositions and in vitro dry matter digestibility of stylo (Stylosanthes guianensis) stem.

    Science.gov (United States)

    Zi, Xuejuan; Li, Mao; Zhou, Hanlin; Tang, Jun; Cai, Yimin

    2017-12-01

    The study explored the dynamics of shearing force and its correlation with chemical compositions and in vitro dry matter digestibility (IVDMD) of stylo. The shearing force, diameter, linear density, chemical composition, and IVDMD of different height stylo stem were investigated. Linear regression analysis was done to determine the relationships between the shearing force and cut height, diameter, chemical composition, or IVDMD. The results showed that shearing force of stylo stem increased with plant height increasing and the crude protein (CP) content and IVDMD decreased but fiber content increased over time, resulting in decreased forage value. In addition, tall stem had greater shearing force than short stem. Moreover, shearing force is positively correlated with stem diameter, linear density and fiber fraction, but negatively correlated with CP content and IVDMD. Overall, shearing force is an indicator more direct, easier and faster to measure than chemical composition and digestibility for evaluation of forage nutritive value related to animal performance. Therefore, it can be used to evaluate the nutritive value of stylo.

  1. Frequency modulation atomic force microscopy in ambient environments utilizing robust feedback tuning

    Science.gov (United States)

    Kilpatrick, J. I.; Gannepalli, A.; Cleveland, J. P.; Jarvis, S. P.

    2009-02-01

    Frequency modulation atomic force microscopy (FM-AFM) is rapidly evolving as the technique of choice in the pursuit of high resolution imaging of biological samples in ambient environments. The enhanced stability afforded by this dynamic AFM mode combined with quantitative analysis enables the study of complex biological systems, at the nanoscale, in their native physiological environment. The operational bandwidth and accuracy of constant amplitude FM-AFM in low Q environments is heavily dependent on the cantilever dynamics and the performance of the demodulation and feedback loops employed to oscillate the cantilever at its resonant frequency with a constant amplitude. Often researchers use ad hoc feedback gains or instrument default values that can result in an inability to quantify experimental data. Poor choice of gains or exceeding the operational bandwidth can result in imaging artifacts and damage to the tip and/or sample. To alleviate this situation we present here a methodology to determine feedback gains for the amplitude and frequency loops that are specific to the cantilever and its environment, which can serve as a reasonable "first guess," thus making quantitative FM-AFM in low Q environments more accessible to the nonexpert. This technique is successfully demonstrated for the low Q systems of air (Q ˜40) and water (Q ˜1). In addition, we present FM-AFM images of MC3T3-E1 preosteoblast cells acquired using the gains calculated by this methodology demonstrating the effectiveness of this technique.

  2. Preliminarily measurement and analysis of sawing forces in fresh cadaver mandible using reciprocating saw for reality-based haptic feedback.

    Science.gov (United States)

    Yua, Dedong; Zhengb, Xiaohu; Chenc, Ming; Shend, Steve G F

    2012-05-01

    The aim of the study was to preliminarily measure and analyze the cutting forces in fresh Chinese cadaver mandible using a clinically widely used reciprocating saw for reality-based haptic feedback. Eight mandibles were taken from fresh Chinese cadavers, 4 females and 4 males, aged between 59 and 95 years. A set of sawing experiments, using a surgery Stryker micro-reciprocating saw and Kistler piezoelectric dynamometer, was carried out by a CNC machining center. Under different vibration frequencies of saw and feeding rates measured from orthognathic surgery, sawing forces were recorded by a signal acquisition system. Remarkably different sawing forces were measured from different cadavers. Feed and vibration frequency of the reciprocating saw could determine the cutting forces only on 1 body. To reduce the impact of bone thickness changes on the cutting force measurements, all the cutting force data should be converted to the force of unit cutting length. The vibration frequency of haptic feedback system is determined by main cutting forces. Fast Fourier transform method can be used to calculate the frequency of this system. To simulate surgery in higher fidelity, all the sawing forces from the experiment should be amended by experienced surgeons before use in virtual reality surgery simulator. Sawing force signals of different ages for force feedback were measured successfully, and more factors related to the bone mechanical properties, such as bone density, should be concerned in the future.

  3. A New Scale Factor Adjustment Method for Magnetic Force Feedback Accelerometer

    Directory of Open Access Journals (Sweden)

    Xiangqing Huang

    2017-10-01

    Full Text Available A new and simple method to adjust the scale factor of a magnetic force feedback accelerometer is presented, which could be used in developing a rotating accelerometer gravity gradient instrument (GGI. Adjusting and matching the acceleration-to-current transfer function of the four accelerometers automatically is one of the basic and necessary technologies for rejecting the common mode accelerations in the development of GGI. In order to adjust the scale factor of the magnetic force rebalance accelerometer, an external current is injected and combined with the normal feedback current; they are then applied together to the torque coil of the magnetic actuator. The injected current could be varied proportionally according to the external adjustment needs, and the change in the acceleration-to-current transfer function then realized dynamically. The new adjustment method has the advantages of no extra assembly and ease of operation. Changes in the scale factors range from 33% smaller to 100% larger are verified experimentally by adjusting the different external coefficients. The static noise of the used accelerometer is compared under conditions with and without the injecting current, and the experimental results find no change at the current noise level, which further confirms the validity of the presented method.

  4. A New Scale Factor Adjustment Method for Magnetic Force Feedback Accelerometer.

    Science.gov (United States)

    Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Li, Zhu; Fan, Ji; Tu, Liangcheng

    2017-10-27

    A new and simple method to adjust the scale factor of a magnetic force feedback accelerometer is presented, which could be used in developing a rotating accelerometer gravity gradient instrument (GGI). Adjusting and matching the acceleration-to-current transfer function of the four accelerometers automatically is one of the basic and necessary technologies for rejecting the common mode accelerations in the development of GGI. In order to adjust the scale factor of the magnetic force rebalance accelerometer, an external current is injected and combined with the normal feedback current; they are then applied together to the torque coil of the magnetic actuator. The injected current could be varied proportionally according to the external adjustment needs, and the change in the acceleration-to-current transfer function then realized dynamically. The new adjustment method has the advantages of no extra assembly and ease of operation. Changes in the scale factors range from 33% smaller to 100% larger are verified experimentally by adjusting the different external coefficients. The static noise of the used accelerometer is compared under conditions with and without the injecting current, and the experimental results find no change at the current noise level, which further confirms the validity of the presented method.

  5. Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems

    Science.gov (United States)

    Feehan, S.; Ruggiero, P.; Hempel, L. A.; Anderson, D. L.; Cohn, N.

    2016-12-01

    Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems American Geophysical Union, 2016 Fall Meeting: San Francisco, CA Authors: Scott Feehan, Peter Ruggiero, Laura Hempel, and Dylan Anderson Linking transport processes and sediment characteristics within different environments along the source to sink continuum provides critical insight into the dominant feedbacks between grain size distributions and morphological evolution. This research is focused on evaluating differences in sediment size distributions across both fluvial and coastal environments in the U.S. Pacific Northwest. The Cascades' high relief is characterized by diverse flow regimes with high peak/flashy flows and sub-threshold flows occurring in relative proximity and one of the most energetic wave climates in the world. Combining analyses of both fluvial and coastal environments provides a broader understanding of the dominant forces driving differences between each system's grain size distributions, sediment transport processes, and resultant evolution. We consider sediment samples taken during a large-scale flume experiment that simulated floods representative of both high/flashy peak flows analogous to runoff dominated rivers and sub-threshold flows, analogous to spring-fed rivers. High discharge flows resulted in narrower grain size distributions while low flows where less skewed. Relative sediment size showed clear dependence on distance from source and the environments' dominant fluid motion. Grain size distributions and sediment transport rates were also quantified in both wave dominated nearshore and aeolian dominated backshore portions of Long Beach Peninsula, Washington during SEDEX2, the Sandbar-aEolian-Dune EXchange Experiment of summer 2016. The distributions showed spatial patterns in mean grain size, skewness, and kurtosis dependent on the dominant sediment transport process. The feedback between these grain size

  6. Rubber friction and force transmission during the shearing process of actively-driven vacuum grippers on rough surfaces

    International Nuclear Information System (INIS)

    Kern, Patrick

    2016-01-01

    Nowadays, vacuum grippers come in many different shapes and sizes. Their stability is guaranteed through specially manufactured metal fittings. These fittings are non-positively and positively connected to the elastic part of the vacuum gripper. The design of the elastic part may vary, though. Elastomer components are used to ensure tightness for the negative pressure in the active cave chamber of the vacuum gripper, as well as for the transfer of shearing forces, which acting parallel to the surface. Some vacuum grippers feature one elastomer for both the sealing function and the transfer of shear forces; other gripper types are equipped with various elastomers for those applications. The vacuum grippers described in this work are equipped with structured rubber friction pads, their tightness being ensured by sealing lips made of a flexible foam rubber. A restraint system consisting of one or several vacuum grippers must be sized prior to its actual practical use. For the transmission of shearing forces, which acting parallel to the surface, it is necessary to take the tribological system, consisting of the suction element's elastomer and the base material, into account since these loads put shearing stress on the vacuum gripper. In practice, however, a standardized value is given for the coefficient of friction μ; i.e. the ratio of transmissible frictional force to the normal force. This does neither include a detailed description of the elastomer used nor of the roughness of the base material. The standardized friction coefficients cannot be applied to the practical design of restraint systems. The present work includes the analysis of the load transmission and the modeling of the friction coefficients μ on rough surfaces during the shearing process of actively-driven vacuum grippers. Based on current theories, the phenomenon of elastomeric friction can be attributed to the two main components of hysteresis and adhesion friction. Both components are presented

  7. Dual-force ISOMAP: a new relevance feedback method for medical image retrieval.

    Science.gov (United States)

    Shen, Hualei; Tao, Dacheng; Ma, Dianfu

    2013-01-01

    With great potential for assisting radiological image interpretation and decision making, content-based image retrieval in the medical domain has become a hot topic in recent years. Many methods to enhance the performance of content-based medical image retrieval have been proposed, among which the relevance feedback (RF) scheme is one of the most promising. Given user feedback information, RF algorithms interactively learn a user's preferences to bridge the "semantic gap" between low-level computerized visual features and high-level human semantic perception and thus improve retrieval performance. However, most existing RF algorithms perform in the original high-dimensional feature space and ignore the manifold structure of the low-level visual features of images. In this paper, we propose a new method, termed dual-force ISOMAP (DFISOMAP), for content-based medical image retrieval. Under the assumption that medical images lie on a low-dimensional manifold embedded in a high-dimensional ambient space, DFISOMAP operates in the following three stages. First, the geometric structure of positive examples in the learned low-dimensional embedding is preserved according to the isometric feature mapping (ISOMAP) criterion. To precisely model the geometric structure, a reconstruction error constraint is also added. Second, the average distance between positive and negative examples is maximized to separate them; this margin maximization acts as a force that pushes negative examples far away from positive examples. Finally, the similarity propagation technique is utilized to provide negative examples with another force that will pull them back into the negative sample set. We evaluate the proposed method on a subset of the IRMA medical image dataset with a RF-based medical image retrieval framework. Experimental results show that DFISOMAP outperforms popular approaches for content-based medical image retrieval in terms of accuracy and stability.

  8. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.

    Science.gov (United States)

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Shamdani, Amir Hossein; Smith, Julian; Zhong, Yongmin

    2014-03-01

    Robotic-assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic instruments but also have other important advantages, including restoring the surgeon's hand-eye coordination and improving the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Various solutions for restoring this feature have been proposed. An actuated modular force feedback-enabled laparoscopic instrument was proposed that is able to measure tip-tissue lateral interaction forces as well as normal grasping forces. The instrument has also the capability to adjust the grasping direction inside the patient body. In order to measure the interaction forces, strain gauges were employed. A series of finite element analyses were performed to gain an understanding of the actual magnitude of surface strains where gauges are applied. The strain gauge bridge configurations were calibrated. A series of experiments was conducted and the results were analysed. The modularity feature of the proposed instrument makes it interchangeable between various tip types of different functionalities (e.g. cutter, grasper, dissector). Calibration results of the strain gauges incorporated into the tube and at the base of the instrument presented the monotonic responses for these strain gauge configurations. Experimental results from tissue probing and tissue characterization experiments verified the capability of the proposed instrument in measuring lateral probing forces and characterizing artificial tissue samples of varying stiffness. The proposed instrument can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations. Copyright © 2013 John Wiley & Sons, Ltd.

  9. A combined experimental and theoretical approach to establish the relationship between shear force and clay platelet delamination in melt-processed polypropylene nanocomposites

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2014-04-01

    Full Text Available In this article, a combined experimental and theoretical approach has been proposed to establish a relationship between the required shear force and the degree of delamination of clay tactoids during the melt-processing of polymer nanocomposites...

  10. Kinesthetic Force Feedback and Belt Control for the Treadport Locomotion Interface.

    Science.gov (United States)

    Hejrati, Babak; Crandall, Kyle L; Hollerbach, John M; Abbott, Jake J

    2015-01-01

    This paper describes an improved control system for the Treadport immersive locomotion interface, with results that generalize to any treadmill that utilizes an actuated tether to enable self-selected walking speed. A new belt controller is implemented to regulate the user's position; when combined with the user's own volition, this controller also enables the user to naturally self-select their walking speed as they would when walking over ground. A new kinesthetic-force-feedback controller is designed for the tether that applies forces to the user's torso. This new controller is derived based on maintaining the user's sense of balance during belt acceleration, rather than by rendering an inertial force as was done in our prior work. Based on the results of a human-subjects study, the improvements in both controllers significantly contribute to an improved perception of realistic walking on the Treadport. The improved control system uses intuitive dynamic-system and anatomical parameters and requires no ad hoc gain tuning. The control system simply requires three measurements to be made for a given user: the user's mass, the user's height, and the height of the tether attachment point on the user's torso.

  11. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.

    Science.gov (United States)

    Brown, Jeremy D; Paek, Andrew; Syed, Mashaal; O'Malley, Marcia K; Shewokis, Patricia A; Contreras-Vidal, Jose L; Davis, Alicia J; Gillespie, R Brent

    2015-11-25

    Haptic display technologies are well suited to relay proprioceptive, force, and contact cues from a prosthetic terminal device back to the residual limb and thereby reduce reliance on visual feedback. The ease with which an amputee interprets these haptic cues, however, likely depends on whether their dynamic signal behavior corresponds to expected behaviors-behaviors consonant with a natural limb coupled to the environment. A highly geared motor in a terminal device along with the associated high back-drive impedance influences dynamic interactions with the environment, creating effects not encountered with a natural limb. Here we explore grasp and lift performance with a backdrivable (low backdrive impedance) terminal device placed under proportional myoelectric position control that features referred haptic feedback. We fabricated a back-drivable terminal device that could be used by amputees and non-amputees alike and drove aperture (or grip force, when a stiff object was in its grasp) in proportion to a myoelectric signal drawn from a single muscle site in the forearm. In randomly ordered trials, we assessed the performance of N=10 participants (7 non-amputee, 3 amputee) attempting to grasp and lift an object using the terminal device under three feedback conditions (no feedback, vibrotactile feedback, and joint torque feedback), and two object weights that were indiscernible by vision. Both non-amputee and amputee participants scaled their grip force according to the object weight. Our results showed only minor differences in grip force, grip/load force coordination, and slip as a function of sensory feedback condition, though the grip force at the point of lift-off for the heavier object was significantly greater for amputee participants in the presence of joint torque feedback. An examination of grip/load force phase plots revealed that our amputee participants used larger safety margins and demonstrated less coordination than our non-amputee participants

  12. A Force-Feedback Exoskeleton for Upper-Limb Rehabilitation in Virtual Reality

    Directory of Open Access Journals (Sweden)

    Antonio Frisoli

    2009-01-01

    Full Text Available This paper presents the design and the clinical validation of an upper-limb force-feedback exoskeleton, the L-EXOS, for robotic-assisted rehabilitation in virtual reality (VR. The L-EXOS is a five degrees of freedom exoskeleton with a wearable structure and anthropomorphic workspace that can cover the full range of motion of human arm. A specific VR application focused on the reaching task was developed and evaluated on a group of eight post-stroke patients, to assess the efficacy of the system for the rehabilitation of upper limb. The evaluation showed a significant reduction of the performance error in the reaching task (paired t-test, p < 0.02

  13. High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force

    International Nuclear Information System (INIS)

    Cranch, G A; Flockhart, G M H; Kirkendall, C K

    2009-01-01

    A low-frequency magnetic field sensor, based on a current-carrying beam driven by the Lorentzian force, is described. The amplitude of the oscillation is measured by a distributed-feedback fiber laser strain sensor attached to the beam. The transduction mechanism of the sensor is derived analytically using conventional beam theory, which is shown to accurately predict the responsivity of a prototype sensor. Excellent linearity and negligible hysteresis are demonstrated. Noise sources in the fiber laser strain sensor are described and thermo-mechanical noise in the transducer is estimated. The prototype sensor achieves a magnetic field resolution of 5 nT Hz for 25 mA of current, which is shown to be close to the predicted thermo-mechanical noise limit of the sensor. The current is supplied optically through a separate optical fiber yielding an electrically passive sensor head

  14. Force Modeling, Identification, and Feedback Control of Robot-Assisted Needle Insertion: A Survey of the Literature

    Directory of Open Access Journals (Sweden)

    Chongjun Yang

    2018-02-01

    Full Text Available Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.

  15. Force Modeling, Identification, and Feedback Control of Robot-Assisted Needle Insertion: A Survey of the Literature.

    Science.gov (United States)

    Yang, Chongjun; Xie, Yu; Liu, Shuang; Sun, Dong

    2018-02-12

    Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.

  16. Muscle involvement during intermittent contraction patterns with different target force feedback modes

    DEFF Research Database (Denmark)

    Sjøgaard, G; Jørgensen, L V; Ekner, D

    2000-01-01

    and following 30 min of intermittent contractions showed larger fatigue development with proprioceptive feedback than visual feedback. Also rating of perceived exertion increased more during proprioceptive feedback than visual feedback. This may in part be explained by small differences in the mechanics during......: Feedback mode significantly effects the muscle involvement and fatigue during intermittent contractions. RelevanceIntermittent contractions are common in many work places and various feedback modes are being given regarding work requirements. The choice of feedback may significantly affect the muscle load...... and consequently the development muscle fatigue and disorders....

  17. Modelling Force Transfer Around Openings of Full-Scale Shear Walls

    Science.gov (United States)

    Tom Skaggs; Borjen Yeh; Frank Lam; Minghao Li; Doug Rammer; James Wacker

    2011-01-01

    Wood structural panel (WSP) sheathed shear walls and diaphragms are the primary lateralload-resisting elements in wood-frame construction. The historical performance of lightframe structures in North America has been very good due, in part, to model building codes that are designed to preserve life safety. These model building codes have spawned continual improvement...

  18. Full-scale shear wall tests for force transfer around openings

    Science.gov (United States)

    Tom Skaggs; Borjen Yeh; Frank Lam; Douglas Rammer; James Wacker

    2010-01-01

    Wood structural panel sheathed shear walls and diaphragms are the primary lateral-load resisting elements in wood-frame construction. The historical performance of light-frame structures in North America are very good due, in part, to model building codes that are designed to preserve life safety, as well as the inherent redundancy of wood-frame construction using wood...

  19. Technical note: use of belt grill cookery and slice shear force for assessment of pork longissimus tenderness.

    Science.gov (United States)

    Shackelford, S D; Wheeler, T L; Koohmaraie, M

    2004-01-01

    The present experiments were conducted to determine whether improved beef longissimus shear force methodology could be used to assess pork longissimus tenderness. Specifically, three experiments were conducted to: 1) determine the effect of belt grill (BG) cookery on repeatability of pork longissimus Warner-Bratzler shear force (WBSF), 2) compare the correlation of WBSF and slice shear force (SSF) with trained sensory panel tenderness ratings, and 3) estimate the repeatability of pork longissimus SSF for chops cooked with a BG. In Exp. 1 and 2, the longissimus was removed from the left side of each carcass (Exp. 1, n = 25; Exp. 2, n = 23) at 1 d postmortem and immediately frozen to maximize variation in tenderness. In Exp. 1, chops were cooked with either open-hearth electric broilers (OH) or BG, and WBSF was measured. Percentage of cooking loss was lower (P cooked with a BG (23.2%; SD = 1.7%) vs. OH (27.6%; SD = 3.0%). Estimates of the repeatability of WBSF were similar for chops cooked with OH (0.61) and BG (0.59). Although significant (P cooking methods accounted for less than 5% of the total variation in WBSF. In Exp. 2, the correlation of SSF (r = -0.72; P cooked with BG, and SSF was determined. The repeatability of SSF was 0.90, which is comparable to repeatability estimates for beef and lamb. Use of BG cookery and SSF could facilitate the collection of accurate pork longissimus tenderness data. Time and labor savings associated with BG cookery and the SSF technique should help to decrease research costs.

  20. Preliminary investigation on the relationship of Raman spectra of sheep meat with shear force and cooking loss.

    Science.gov (United States)

    Schmidt, Heinar; Scheier, Rico; Hopkins, David L

    2013-01-01

    A prototype handheld Raman system was used as a rapid non-invasive optical device to measure raw sheep meat to estimate cooked meat tenderness and cooking loss. Raman measurements were conducted on m. longissimus thoracis et lumborum samples from two sheep flocks from two different origins which had been aged for five days at 3-4°C before deep freezing and further analysis. The Raman data of 140 samples were correlated with shear force and cooking loss data using PLS regression. Both sample origins could be discriminated and separate correlation models yielded better correlations than the joint correlation model. For shear force, R(2)=0.79 and R(2)=0.86 were obtained for the two sites. Results for cooking loss were comparable: separate models yielded R(2)=0.79 and R(2)=0.83 for the two sites. The results show the potential usefulness of Raman spectra which can be recorded during meat processing for the prediction of quality traits such as tenderness and cooking loss. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. VIRGY: a virtual reality and force feedback based endoscopic surgery simulator.

    Science.gov (United States)

    Baur, C; Guzzoni, D; Georg, O

    1998-01-01

    This paper describes the VIRGY project at the VRAI Group (Virtual Reality and Active Interface), Swiss Federal Institute of Technology (Lausanne, Switzerland). Since 1994, we have been investigating a variety of virtual-reality based methods for simulating laparoscopic surgery procedures. Our goal is to develop an endoscopic surgical training tool which realistically simulates the interactions between one or more surgical instruments and gastrointestinal organs. To support real-time interaction and manipulation between instruments and organs, we have developed several novel graphic simulation techniques. In particular, we are using live video texturing to achieve dynamic effects such as bleeding or vaporization of fatty tissues. Special texture manipulations allows us to generate pulsing objects while minimizing processor load. Additionally, we have created a new surface deformation algorithm which enables real-time deformations under external constraints. Lastly, we have developed a new 3D object definition which allows us to perform operations such as total or partial object cuttings, as well as to selectively render objects with different levels of detail. To provide realistic physical simulation of the forces and torques on surgical instruments encountered during an operation, we have also designed a new haptic device dedicated to endososcopic surgery constraints. We are using special interpolation and extrapolation techniques to integrate our 25 Hz visual simulation with the 300 Hz feedback required for realistic tactile interaction. The fully VIRGY simulator has been tested by surgeons and the quality of both our visual and haptic simulation has been judged sufficient for training basic surgery gestures.

  2. GPU-based Green's function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models.

    Science.gov (United States)

    Yang, Yiqun; Urban, Matthew W; McGough, Robert J

    2018-05-15

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.

  3. GPU-based Green’s function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models

    Science.gov (United States)

    Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.

    2018-05-01

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.

  4. Relevance of land forcings and feedbacks in the attribution of climate extremes

    Science.gov (United States)

    Seneviratne, S. I.; Davin, E.; Greve, P.; Gudmundsson, L.; Hauser, M.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Orth, R.

    2014-12-01

    Land forcings and feedbacks play an important role in the climate system, in particular for the occurrence of climate extremes. Recent investigations have for instance highlighted the impacts of soil moisture-climate interactions for the development of droughts and heat waves (e.g. Seneviratne et al. 2012, Mueller and Seneviratne 2012, Seneviratne et al. 2013, Orlowsky and Seneviratne 2013). In addition, forcing from land use and land cover changes through modified albedo or turbulent fluxes can also affect the temperature variability in summer (Davin et al. 2014). These effects are important for better understanding the relationships between climate forcing and regional climate changes, and appear relevant for a recent discrepancy between trends in global mean temperature vs hot extremes over land (Seneviratne et al. 2014). This presentation will provide an overview on the underlying processes and on possible approaches for their consideration in attribution research. References:- Davin, E.L., S.I. Seneviratne, P. Ciais, A. Olioso, T. Wang, 2014: Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci., Published ahead of print June 23, 2014.- Mueller, B., and S.I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences, 109 (31), 12398-12403, doi: 10.1073/pnas.1204330109.- Orlowsky, B., and S.I. Seneviratne, 2013: Elusive drought: Uncertainty in observed trends and short- and long-term CMIP5 projections. Hydr. Earth Syst. Sci., 17, 1765-1781, doi:10.5194/hess-17-1765-2013- Seneviratne, S.I., N. Nicholls, et al., 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., et al. (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, pp. 109-230.- Seneviratne, S.I., et al

  5. Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing

    Science.gov (United States)

    Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will

    2018-05-01

    Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.

  6. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography.

    Science.gov (United States)

    Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing

    2011-04-11

    Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America

  7. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    Science.gov (United States)

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  8. Increasing hip and knee flexion during a drop-jump task reduces tibiofemoral shear and compressive forces: implications for ACL injury prevention training.

    Science.gov (United States)

    Tsai, Liang-Ching; Ko, Yi-An; Hammond, Kyle E; Xerogeanes, John W; Warren, Gordon L; Powers, Christopher M

    2017-12-01

    Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10-15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg -1 ; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg -1 ; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.

  9. Effect of prolonged heat treatments at low temperature on shear force and cooking loss in cows and young bulls

    DEFF Research Database (Denmark)

    Christensen, L.; Andersen, L.; Løje, Hanne

    2011-01-01

    and cooking loss in semitendinosus from cows (4-6 years) and young bulls (12-14 months), representing 2 categories of beef with varying thermal strength of connective tissue. Vacuum packed muscle samples were heat treated at 53°C, 55°C, 58°C and 63°C in water baths for 2½, 7½ and 19½ h. Cooking loss...... 53°C to 55°C, or when increasing heating time from 2½ to 7½ h at 53°C. In semitendinosus from cows shear force decreased significantly with increasing temperature, and with increasing heating time from 2½ to 19½ h at 55°C and 63°C. Cooking loss increased with increasing heating temperature in both...

  10. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow?

    Science.gov (United States)

    Asano, Kenichiro; Ogata, Ai; Tanaka, Keiko; Ide, Yoko; Sankoda, Akiko; Kawakita, Chieko; Nishikawa, Mana; Ohmori, Kazuyoshi; Kinomura, Masaru; Shimada, Noriaki; Fukushima, Masaki

    2014-05-01

    The aim of this study was to identify the main influencing factor of the shear wave velocity (SWV) of the kidneys measured by acoustic radiation force impulse elastography. The SWV was measured in the kidneys of 14 healthy volunteers and 319 patients with chronic kidney disease. The estimated glomerular filtration rate was calculated by the serum creatinine concentration and age. As an indicator of arteriosclerosis of large vessels, the brachial-ankle pulse wave velocity was measured in 183 patients. Compared to the degree of interobserver and intraobserver deviation, a large variance of SWV values was observed in the kidneys of the patients with chronic kidney disease. Shear wave velocity values in the right and left kidneys of each patient correlated well, with high correlation coefficients (r = 0.580-0.732). The SWV decreased concurrently with a decline in the estimated glomerular filtration rate. A low SWV was obtained in patients with a high brachial-ankle pulse wave velocity. Despite progression of renal fibrosis in the advanced stages of chronic kidney disease, these results were in contrast to findings for chronic liver disease, in which progression of hepatic fibrosis results in an increase in the SWV. Considering that a high brachial-ankle pulse wave velocity represents the progression of arteriosclerosis in the large vessels, the reduction of elasticity succeeding diminution of blood flow was suspected to be the main influencing factor of the SWV in the kidneys. This study indicates that diminution of blood flow may affect SWV values in the kidneys more than the progression of tissue fibrosis. Future studies for reducing data variance are needed for effective use of acoustic radiation force impulse elastography in patients with chronic kidney disease.

  11. Evaluating Carbon Sequestration and Solar Forcing Feedbacks Resulting from North American Afforestation

    Science.gov (United States)

    Mykleby, P.; Snyder, P. K.; Twine, T. E.

    2013-12-01

    The planting of trees and forests has long been accepted as a practical and efficient method to sequester carbon dioxide from the atmosphere. Assertive measures are now needed to ensure that atmospheric levels of carbon dioxide (CO2) do not continue to rise and cause additional planetary warming. However, recent studies have detected inadvertent biophysical feedbacks associated with land cover changes, especially in higher northern latitudes. The changes in surface reflectivity that occur when converting a lighter, more reflective surface, such as a grassland or bare soil, into a darker conifer forest, can result in surface warming due to the forest absorbing more shortwave radiation. This warming counteracts the cooling effect resulting from a reduction in atmospheric CO2 with increased vegetation productivity. This effect is further intensified in the higher northern latitudes where snow cover is prevalent during the long winter; the planting of trees can significantly decrease the reflectivity compared with white snow. The goal of this study is to determine whether the amount of carbon sequestered exceeds the carbon equivalent of the radiative forcing due to the change in surface reflectivity. This study uses the IBIS dynamic vegetation model with modified carbon dynamics for conifer forests validated with numerous Ameriflux and Fluxnet Canada field sites with varying stand ages and species compositions. We present results of model performance based on validation of net ecosystem exchange (NEE) and net radiation observations. Results from this study will be used to assess not only the net effect of conifer forest establishment on the long term carbon storage, but also the duration of time that a given location would remain a carbon sink during the lifetime of the forest. Only then, can policymakers begin to discuss the efficacy of afforestation as a sound climate mitigation strategy.

  12. Virtual Cerebral Aneurysm Clipping with Real-Time Haptic Force Feedback in Neurosurgical Education.

    Science.gov (United States)

    Gmeiner, Matthias; Dirnberger, Johannes; Fenz, Wolfgang; Gollwitzer, Maria; Wurm, Gabriele; Trenkler, Johannes; Gruber, Andreas

    2018-04-01

    Realistic, safe, and efficient modalities for simulation-based training are highly warranted to enhance the quality of surgical education, and they should be incorporated in resident training. The aim of this study was to develop a patient-specific virtual cerebral aneurysm-clipping simulator with haptic force feedback and real-time deformation of the aneurysm and vessels. A prototype simulator was developed from 2012 to 2016. Evaluation of virtual clipping by blood flow simulation was integrated in this software, and the prototype was evaluated by 18 neurosurgeons. In 4 patients with different medial cerebral artery aneurysms, virtual clipping was performed after real-life surgery, and surgical results were compared regarding clip application, surgical trajectory, and blood flow. After head positioning and craniotomy, bimanual virtual aneurysm clipping with an original forceps was performed. Blood flow simulation demonstrated residual aneurysm filling or branch stenosis. The simulator improved anatomic understanding for 89% of neurosurgeons. Simulation of head positioning and craniotomy was considered realistic by 89% and 94% of users, respectively. Most participants agreed that this simulator should be integrated into neurosurgical education (94%). Our illustrative cases demonstrated that virtual aneurysm surgery was possible using the same trajectory as in real-life cases. Both virtual clipping and blood flow simulation were realistic in broad-based but not calcified aneurysms. Virtual clipping of a calcified aneurysm could be performed using the same surgical trajectory, but not the same clip type. We have successfully developed a virtual aneurysm-clipping simulator. Next, we will prospectively evaluate this device for surgical procedure planning and education. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Effect of electrical stimulation and cooking temperature on the within-sample variation of cooking loss and shear force of lamb.

    Science.gov (United States)

    Lewis, P K; Babiker, S A

    1983-01-01

    Electrical stimulation decreased the shear force and increased the cooking loss in seven paired lamb Longissimus dorsi (LD) muscles. This treatment did not have any effect on the within-sample variation. Cooking in 55°, 65° and 75°C water baths for 90 min caused a linear increase in the cooking loss and shear force. There was no stimulation-cooking temperature interaction observed. Cooking temperature also had no effect on the within-sample variation. A possible explanation as to why electrical stimulation did not affect the within-sample variation is given. Copyright © 1983. Published by Elsevier Ltd.

  14. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.

    Science.gov (United States)

    Batcho, C S; Gagné, M; Bouyer, L J; Roy, J S; Mercier, C

    2016-11-19

    When subjects learn a novel motor task, several sources of feedback (proprioceptive, visual or auditory) contribute to the performance. Over the past few years, several studies have investigated the role of visual feedback in motor learning, yet evidence remains conflicting. The aim of this study was therefore to investigate the role of online visual feedback (VFb) on the acquisition and retention stages of motor learning associated with training in a reaching task. Thirty healthy subjects made ballistic reaching movements with their dominant arm toward two targets, on 2 consecutive days using a robotized exoskeleton (KINARM). They were randomly assigned to a group with (VFb) or without (NoVFb) VFb of index position during movement. On day 1, the task was performed before (baseline) and during the application of a velocity-dependent resistive force field (adaptation). To assess retention, participants repeated the task with the force field on day 2. Motor learning was characterized by: (1) the final endpoint error (movement accuracy) and (2) the initial angle (iANG) of deviation (motor planning). Even though both groups showed motor adaptation, the NoVFb-group exhibited slower learning and higher final endpoint error than the VFb-group. In some condition, subjects trained without visual feedback used more curved initial trajectories to anticipate for the perturbation. This observation suggests that learning to reach targets in a velocity-dependent resistive force field is possible even when feedback is limited. However, the absence of VFb leads to different strategies that were only apparent when reaching toward the most challenging target. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations.

    Science.gov (United States)

    Braconnot, Pascale; Kageyama, Masa

    2015-11-13

    Simulations of the climates of the Last Glacial Maximum (LGM), 21 000 years ago, and of the Mid-Holocene (MH), 6000 years ago, allow an analysis of climate feedbacks in climate states that are radically different from today. The analyses of cloud and surface albedo feedbacks show that the shortwave cloud feedback is a major driver of differences between model results. Similar behaviours appear when comparing the LGM and MH simulated changes, highlighting the fingerprint of model physics. Even though the different feedbacks show similarities between the different climate periods, the fact that their relative strength differs from one climate to the other prevents a direct comparison of past and future climate sensitivity. The land-surface feedback also shows large disparities among models even though they all produce positive sea-ice and snow feedbacks. Models have very different sensitivities when considering the vegetation feedback. This feedback has a regional pattern that differs significantly between models and depends on their level of complexity and model biases. Analyses of the MH climate in two versions of the IPSL model provide further indication on the possibilities to assess the role of model biases and model physics on simulated climate changes using past climates for which observations can be used to assess the model results. © 2015 The Author(s).

  16. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    Science.gov (United States)

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  17. Influence of shear forces on the aggregation and sedimentation behavior of cerium dioxide (CeO{sub 2}) nanoparticles under different hydrochemical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Bowen; Wang, Chao; Hou, Jun, E-mail: hhuhjyhj@126.com; Wang, Peifang, E-mail: pfwang2005@hhu.edu.cn; Miao, Lingzhan; Li, Yi; Ao, Yanhui; Yang, Yangyang; You, Guoxiang; Xu, Yi [Hohai University, Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education (China)

    2016-07-15

    This study contributed to a better understanding of the behavior of nanoparticles (NPs) in dynamic water. First, the aggregation behavior of CeO{sub 2} NPs at different pH values in various salt solutions was examined to determine the appropriate hydrochemical conditions for hydrodynamics study. Second, the aggregation behavior of CeO{sub 2} NPs under different shear forces was investigated at pH 4 and ionic strength 0 in various salt solutions to find out whether shear forces could influence the stability of the nanoparticles and if yes, how. Also, five-stage sedimentation tests were conducted to understand the influence of shear stress on the vertical distribution of CeO{sub 2} NPs in natural waters. The aggregation test showed that the shear force could increase the collision efficiency between NPs during aggregation and cause a relatively large mass of NPs to remain in suspension. Consequently, the nanoparticles had a greater possibility of continued aggregation. The sedimentation test under static conditions indicated that a large mass of NPs (>1000 nm) sink to the bottom layer, leaving only small aggregates dispersed in the upper or middle layer of the solution. However, later sedimentation studies under stirring conditions demonstrated that shear forces can disrupt this stratification phenomenon. These results suggest that shear forces can influence the spatial distribution of NPs in natural waters, which might lead to different toxicities of CeO{sub 2} NPs to aquatic organisms distributed in the different water layers. This study contributes to a better understanding of nanomaterial toxicology and provides a way for further research.Graphical Abstract.

  18. Salt bridge interactions within the β2 integrin α7 helix mediate force-induced binding and shear resistance ability.

    Science.gov (United States)

    Zhang, Xiao; Li, Linda; Li, Ning; Shu, Xinyu; Zhou, Lüwen; Lü, Shouqin; Chen, Shenbao; Mao, Debin; Long, Mian

    2018-01-01

    The functional performance of the αI domain α 7 helix in β 2 integrin activation depends on the allostery of the α 7 helix, which axially slides down; therefore, it is critical to elucidate what factors regulate the allostery. In this study, we determined that there were two conservative salt bridge interaction pairs that constrain both the upper and bottom ends of the α 7 helix. Molecular dynamics (MD) simulations for three β 2 integrin members, lymphocyte function-associated antigen-1 (LFA-1; α L β 2 ), macrophage-1 antigen (Mac-1; α M β 2 ) and α x β 2 , indicated that the magnitude of the salt bridge interaction is related to the stability of the αI domain and the strength of the corresponding force-induced allostery. The disruption of the salt bridge interaction, especially with double mutations in both salt bridges, significantly reduced the force-induced allostery time for all three members. The effects of salt bridge interactions of the αI domain α 7 helix on β 2 integrin conformational stability and allostery were experimentally validated using Mac-1 constructs. The results demonstrated that salt bridge mutations did not alter the conformational state of Mac-1, but they did increase the force-induced ligand binding and shear resistance ability, which was consistent with MD simulations. This study offers new insight into the importance of salt bridge interaction constraints of the αI domain α 7 helix and external force for β 2 integrin function. © 2017 Federation of European Biochemical Societies.

  19. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiming; Chen, Zhiyong, E-mail: czysh@netease.com; Zhan, Congkun; Kuang, Lianjun; Shao, Jianbo; Wang, Renke; Liu, Chuming

    2017-04-13

    The mechanical behavior and microstructure characteristics of Ti-5Mo-5V-8Cr-3Al alloy were investigated with hat-shaped samples compressed under quasi-static and dynamic loading. Compared with the quasi-static loading, a higher shear stress peak and a shear instability stage were observed during the dynamic shear response. The results showed that an adiabatic shear band consisting of ultrafine equiaxed grains was only developed in the dynamic specimen, while a wider shear region was formed in the quasi-static specimen. The microhardness measurements revealed that shear region in the quasi-static specimen and adiabatic shear band in the dynamic specimen exhibited higher hardness than that of adjacent regions due to the strain hardening and grain refining, respectively. A stable orientation, in which the crystallographic {110} planes and <111> directions were respectively parallel to the shear plane and shear direction, developed in both specimens. And the microtexture of the adiabatic shear band was more well-defined than that of the shear region in the quasi-static specimen. Rotational dynamic recrystallization mechanism was suggested to explain the formation of ultrafine equiaxed grains within the adiabatic shear band by thermodynamic and kinetic calculations.

  20. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.

    Science.gov (United States)

    De Nunzio, Alessandro Marco; Dosen, Strahinja; Lemling, Sabrina; Markovic, Marko; Schweisfurth, Meike Annika; Ge, Nan; Graimann, Bernhard; Falla, Deborah; Farina, Dario

    2017-08-01

    Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not

  1. Prediction of intramuscular fat content and shear force in Texel lamb loins using combinations of different X-ray computed tomography (CT) scanning techniques.

    Science.gov (United States)

    Clelland, N; Bunger, L; McLean, K A; Knott, S; Matthews, K R; Lambe, N R

    2018-06-01

    Computed tomography (CT) parameters, including spiral computed tomography scanning (SCTS) parameters, intramuscular fat (IMF) and mechanically measured shear force were derived from two previously published studies. Purebred Texel (n = 377) of both sexes, females (n = 206) and intact males (n = 171) were used to investigate the prediction of IMF and shear force in the loin. Two and three dimensional CT density information was available. Accuracies in the prediction of shear force and IMF ranged from R 2 0.02 to R 2 0.13 and R 2 0.51 to R 2 0.71 respectively, using combinations of SCTS and CT scan information. The prediction of mechanical shear force could not be achieved at an acceptable level of accuracy employing SCTS information. However, the prediction of IMF in the loin employing information from SCTS and additional information from standard CT scans was successful, providing evidence that the prediction of IMF and related meat eating quality (MEQ) traits for Texel lambs in vivo can be achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.

    Science.gov (United States)

    Walter, Jonathan P; Pandy, Marcus G

    2017-10-01

    The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. 360-Degree Feedback: Key to Translating Air Force Core Values into Behavioral Change

    National Research Council Canada - National Science Library

    Hancock, Thomas

    1999-01-01

    Integrity, service, and excellence. These are only three words, but as core values they serve as ideals that inspire Air Force people to make our institution what it is the best and most respected Air Force in the world...

  4. Numerical investigation on lateral migration and lift force of single bubble in simple shear flow in low viscosity fluid using volume of fluid method

    International Nuclear Information System (INIS)

    Zhongchun, Li; Xiaoming, Song; Shengyao, Jiang; Jiyang, Yu

    2014-01-01

    Highlights: • A VOF simulation of bubble in low viscosity fluid was conducted. • Lift force in different viscosity fluid had different lateral migration characteristics. • Bubble with different size migrated to different direction. • Shear stress triggered the bubble deformation process and the bubble deformation came along with the oscillation behaviors. - Abstract: Two phase flow systems have been widely used in industrial engineering. Phase distribution characteristics are vital to the safety operation and optimization design of two phase flow systems. Lift force has been known as perpendicular to the bubbles’ moving direction, which is one of the mechanisms of interfacial momentum transfer. While most widely used lift force correlations, such as the correlation of Tomiyama et al. (2002), were obtained by experimentally tracking single bubble trajectories in high viscosity glycerol–water mixture, the applicability of these models into low viscosity fluid, such as water in nuclear engineering system, needs to be further evaluated. In the present paper, bubble in low viscosity fluid in shear flow was investigated in a full 3D numerical simulation and the volume of fluid (VOF) method was applied to capture the interface. The fluid parameter: fluid viscosity, bubble parameter: diameter and external flow parameters: shear stress magnitude and liquid velocity were examined. Comparing with bubble in high viscosity shear flow and bubble in low viscosity still flow, relative large bubble in low viscosity shear flow keep an oscillation way towards the moving wall and experienced a shape deformation process. The oscillation amplitude increased as the viscosity of fluid decreased. Small bubble migrated to the static wall in a line with larger migration velocity than that in high viscosity fluid and no deformation occurred. The shear stress triggered the oscillation behaviors while it had no direct influence with the behavior. The liquid velocity had no effect on

  5. Modelling lamb carcase pH and temperature decline parameters: relationship to shear force and abattoir variation.

    Science.gov (United States)

    Hopkins, David L; Holman, Benjamin W B; van de Ven, Remy J

    2015-02-01

    Carcase pH and temperature decline rates influence lamb tenderness; therefore pH decline parameters are beneficial when modelling tenderness. These include pH at temperature 18 °C (pH@Temp18), temperature when pH is 6 (Temp@pH6), and pH at 24 h post-mortem (pH24). This study aimed to establish a relationship between shear force (SF) as a proxy for tenderness and carcase pH decline parameters estimated using both linear and spline estimation models for the m. longissimus lumborum (LL). The study also compared abattoirs regarding their achievement of ideal pH decline, indicative of optimal tenderness. Based on SF measurements of LL and m. semimembranosus collected as part of the Information Nucleus slaughter programme (CRC for Sheep Industry Innovation) this study found significant relationships between tenderness and pH24LL, consistent across the meat cuts and ageing periods examined. Achievement of ideal pH decline was shown not to have significantly differed across abattoirs, although rates of pH decline varied significantly across years within abattoirs.

  6. Estimation of Sensory Pork Loin Tenderness Using Warner-Bratzler Shear Force and Texture Profile Analysis Measurements.

    Science.gov (United States)

    Choe, Jee-Hwan; Choi, Mi-Hee; Rhee, Min-Suk; Kim, Byoung-Chul

    2016-07-01

    This study investigated the degree to which instrumental measurements explain the variation in pork loin tenderness as assessed by the sensory evaluation of trained panelists. Warner-Bratzler shear force (WBS) had a significant relationship with the sensory tenderness variables, such as softness, initial tenderness, chewiness, and rate of breakdown. In a regression analysis, WBS could account variations in these sensory variables, though only to a limited proportion of variation. On the other hand, three parameters from texture profile analysis (TPA)-hardness, gumminess, and chewiness-were significantly correlated with all sensory evaluation variables. In particular, from the result of stepwise regression analysis, TPA hardness alone explained over 15% of variation in all sensory evaluation variables, with the exception of perceptible residue. Based on these results, TPA analysis was found to be better than WBS measurement, with the TPA parameter hardness likely to prove particularly useful, in terms of predicting pork loin tenderness as rated by trained panelists. However, sensory evaluation should be conducted to investigate practical pork tenderness perceived by consumer, because both instrumental measurements could explain only a small portion (less than 20%) of the variability in sensory evaluation.

  7. NON-NEUTRALIZED ELECTRIC CURRENT PATTERNS IN SOLAR ACTIVE REGIONS: ORIGIN OF THE SHEAR-GENERATING LORENTZ FORCE

    International Nuclear Information System (INIS)

    Georgoulis, Manolis K.; Titov, Viacheslav S.; Mikić, Zoran

    2012-01-01

    Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previous works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.

  8. Forcings and feedbacks on convection in the 2010 Pakistan flood: Modeling extreme precipitation with interactive large-scale ascent

    Science.gov (United States)

    Nie, Ji; Shaevitz, Daniel A.; Sobel, Adam H.

    2016-09-01

    Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. The causal relationships between these factors are often not obvious, however, the roles of different physical processes in producing the extreme precipitation event can be difficult to disentangle. Here we examine the large-scale forcings and convective heating feedback in the precipitation events, which caused the 2010 Pakistan flood within the Column Quasi-Geostrophic framework. A cloud-revolving model (CRM) is forced with large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation using input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. Numerical results show that the positive feedback of convective heating to large-scale dynamics is essential in amplifying the precipitation intensity to the observed values. Orographic lifting is the most important dynamic forcing in both events, while differential potential vorticity advection also contributes to the triggering of the first event. Horizontal moisture advection modulates the extreme events mainly by setting the environmental humidity, which modulates the amplitude of the convection's response to the dynamic forcings. When the CRM is replaced by either a single-column model (SCM) with parameterized convection or a dry model with a reduced effective static stability, the model results show substantial discrepancies compared with reanalysis data. The reasons for these discrepancies are examined, and the implications for global models and theoretical models are discussed.

  9. A novel feedback control system – Controlling the material flow in deep drawing using distributed blank-holder force

    DEFF Research Database (Denmark)

    Endelt, Benny Ørtoft; Tommerup, Søren; Danckert, Joachim

    2013-01-01

    The performance of a feedback control system is often limited by the quality of the model on which it is based, and often the controller design is based on trial and error due to insufficient modeling capabilities. A framework is proposed where the controller design is based on classical state...... on a deep drawing operation where the objective was to control material flow throughout the part using only spatial information regarding flange draw-in. The control system controls both the magnitude and distribution of the blank-holder force. The methodology proved stable and flexible with respect...

  10. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.

    Science.gov (United States)

    Ehrampoosh, Shervin; Dave, Mohit; Kia, Michael A; Rablau, Corneliu; Zadeh, Mehrdad H

    2013-01-01

    This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.

  11. Note: Hybrid active/passive force feedback actuator using hydrostatic transmission

    Science.gov (United States)

    Park, Yea-Seok; Lee, Juwon; Kim, Kyung-Soo; Kim, Soohyun

    2017-12-01

    A hybrid actuator for haptic devices is proposed in this paper. The actuator is composed of a DC motor and a magneto-rheological (MR) brake to realize transparency and stable force control. Two piston cylinders are connected with a flexible tube to lighten the weight of the structures on the endpoint that interacts with an operator. Also, the MR brake is designed to be suitable for hydraulic transmission. For the proposed hybrid actuator, a cooperative force control method using a pressure sensor instead of a force sensor is proposed. To verify the proposed control algorithm, a virtual wall collision experiment was conducted using a developed prototype of the hybrid actuator.

  12. Note: Hybrid active/passive force feedback actuator using hydrostatic transmission.

    Science.gov (United States)

    Park, Yea-Seok; Lee, Juwon; Kim, Kyung-Soo; Kim, Soohyun

    2017-12-01

    A hybrid actuator for haptic devices is proposed in this paper. The actuator is composed of a DC motor and a magneto-rheological (MR) brake to realize transparency and stable force control. Two piston cylinders are connected with a flexible tube to lighten the weight of the structures on the endpoint that interacts with an operator. Also, the MR brake is designed to be suitable for hydraulic transmission. For the proposed hybrid actuator, a cooperative force control method using a pressure sensor instead of a force sensor is proposed. To verify the proposed control algorithm, a virtual wall collision experiment was conducted using a developed prototype of the hybrid actuator.

  13. On the Representation of Cloud Phase in Global Climate Models, and its Importance for Simulations of Climate Forcings and Feedbacks

    Science.gov (United States)

    Storelvmo, Trude; Sagoo, Navjit; Tan, Ivy

    2016-04-01

    Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has not focused on improving the ability of GCMs to accurately simulate phase partitioning in mixed-phase clouds. Getting the relative proportion of liquid droplets and ice crystals in clouds right in GCMs is critical for the representation of cloud radiative forcings and cloud-climate feedbacks. Here, we first present satellite observations of cloud phase obtained by NASA's CALIOP instrument, and report on robust statistical relationships between cloud phase and several aerosols species that have been demonstrated to act as ice nuclei (IN) in laboratory studies. We then report on results from model intercomparison projects that reveal that GCMs generally underestimate the amount of supercooled liquid in clouds. For a selected GCM (NCAR 's CAM5), we thereafter show that the underestimate can be attributed to two main factors: i) the presence of IN in the mixed-phase temperature range, and ii) the Wegener-Bergeron-Findeisen process, which converts liquid to ice once ice crystals have formed. Finally, we show that adjusting these two processes such that the GCM's cloud phase is in agreement with the observed has a substantial impact on the simulated radiative forcing due to IN perturbations, as well as on the cloud-climate feedbacks and ultimately climate sensitivity simulated by the GCM.

  14. Shear wave velocity measurements using acoustic radiation force impulse in young children with normal kidneys versus hydronephrotic kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Shon, Beom Seok; Kim, Myung Joon; Han, Sang Won; Im, Young Jae; Lee, Mi Jung [Severance Children' s Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-04-15

    To measure shear wave velocities (SWVs) by acoustic radiation force impulse (ARFI) ultrasound elastography in normal kidneys and in hydronephrotic kidneys in young children and to compare SWVs between the hydronephrosis grades. This study was approved by an institutional review board, and informed consent was obtained from the parents of all the children included. Children under the age of 24 months were prospectively enrolled. Hydronephrosis grade was evaluated on ultrasonography, and three valid ARFI measurements were attempted using a high-frequency transducer for both kidneys. Hydronephrosis was graded from 0 to 4, and high-grade hydronephrosis was defined as grades 3 and 4. Fifty-one children underwent ARFI measurements, and three valid measurements for both kidneys were obtained in 96% (49/51) of the patients. Nineteen children (38.8%) had no hydronephrosis. Twenty-three children (46.9%) had unilateral hydronephrosis, and seven children (14.3%) had bilateral hydronephrosis. Seven children had ureteropelvic junction obstruction (UPJO). Median SWVs in kidneys with high-grade hydronephrosis (2.02 m/sec) were higher than those in normal kidneys (1.75 m/sec; P=0.027). However, the presence of UPJO did not influence the median SWVs in hydronephrotic kidneys (P=0.362). Obtaining ARFI measurements of the kidney is feasible in young children with median SWVs of 1.75 m/sec in normal kidneys. Median SWVs increased in high-grade hydronephrotic kidneys but were not different between hydronephrotic kidneys with and without UPJO.

  15. Shear wave velocity measurements using acoustic radiation force impulse in young children with normal kidneys versus hydronephrotic kidneys

    International Nuclear Information System (INIS)

    Shon, Beom Seok; Kim, Myung Joon; Han, Sang Won; Im, Young Jae; Lee, Mi Jung

    2014-01-01

    To measure shear wave velocities (SWVs) by acoustic radiation force impulse (ARFI) ultrasound elastography in normal kidneys and in hydronephrotic kidneys in young children and to compare SWVs between the hydronephrosis grades. This study was approved by an institutional review board, and informed consent was obtained from the parents of all the children included. Children under the age of 24 months were prospectively enrolled. Hydronephrosis grade was evaluated on ultrasonography, and three valid ARFI measurements were attempted using a high-frequency transducer for both kidneys. Hydronephrosis was graded from 0 to 4, and high-grade hydronephrosis was defined as grades 3 and 4. Fifty-one children underwent ARFI measurements, and three valid measurements for both kidneys were obtained in 96% (49/51) of the patients. Nineteen children (38.8%) had no hydronephrosis. Twenty-three children (46.9%) had unilateral hydronephrosis, and seven children (14.3%) had bilateral hydronephrosis. Seven children had ureteropelvic junction obstruction (UPJO). Median SWVs in kidneys with high-grade hydronephrosis (2.02 m/sec) were higher than those in normal kidneys (1.75 m/sec; P=0.027). However, the presence of UPJO did not influence the median SWVs in hydronephrotic kidneys (P=0.362). Obtaining ARFI measurements of the kidney is feasible in young children with median SWVs of 1.75 m/sec in normal kidneys. Median SWVs increased in high-grade hydronephrotic kidneys but were not different between hydronephrotic kidneys with and without UPJO.

  16. Acoustic radiation force impulse imaging with Virtual Touch™ tissue quantification: mean shear wave velocity of malignant and benign breast masses.

    Science.gov (United States)

    Wojcinski, Sebastian; Brandhorst, Kathrin; Sadigh, Gelareh; Hillemanns, Peter; Degenhardt, Friedrich

    2013-01-01

    Acoustic radiation force impulse imaging (ARFI) with Virtual Touch™ tissue quantification (VTTQ) enables the determination of shear wave velocity (SWV) in meters per second (m/s). The aim of our study was to describe the mean SWV in normal breast tissue and various breast masses. We performed measurements of SWV with ARFI VTTQ in 145 breast masses (57 malignant, 88 benign) and in the adjacent breast parenchyma and adipose tissue. The mean SWV as well as the rate of successful measurements were analyzed. The difference between adipose tissue and parenchyma was statistically significant (3.05 versus 3.65 m/s) (P breast masses, numerous measurements exceeded the upper limit of possible measurement (≥9.10 m/s, indicated as "X.XX m/s"). Nevertheless, the difference between the malignant and benign masses was statistically significant (8.38 ± 1.99 m/s versus 5.39 ± 2.95 m/s) (P < 0.001). The best diagnostic accuracy (75.9%) was achieved when the cutoff point for malignancy was set to 9.10 m/s in ARFI VTTQ. This implies that the SWV was regarded as suspicious when the upper limit of possible measurement was exceeded and the machine returned the value X.XX m/s. In conclusion, ARFI VTTQ is a feasible method for measurement of SWV in a region of interest. Furthermore, we propose the event of a highly elevated SWV as a significant criterion for malignancy. However, the method is technically not yet fully developed, and the problem of unsuccessful measurements must still be solved.

  17. Explaining the variation in the shear force of lamb meat using sarcomere length, the rate of rigor onset and pH.

    Science.gov (United States)

    Hopkins, D L; Toohey, E S; Lamb, T A; Kerr, M J; van de Ven, R; Refshauge, G

    2011-08-01

    The temperature when the pH=6.0 (temp@pH6) impacts on the tenderness and eating quality of sheep meat. Due to the expense, sarcomere length is not routinely measured as a variable to explain variation in shear force, but whether measures such as temp@pH6 are as useful a parameter needs to be established. Measures of rigor onset in 261 carcases, including the temp@pH6, were evaluated in this study for their ability to explain some of the variation in shear force. The results show that for 1 day aged product combinations of the temp@pH6, the pH at 18 °C and the pH at 24 h provided a larger reduction (almost double) in total shear force variation than sarcomere length alone, with pH at 24 h being the single best measure. For 5 day aged product, pH at 18 °C was the single best measure. Inclusion of sarcomere length did represent some improvement, but the marginal increase would not be cost effective. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  18. Application of a soft computing technique in predicting the percentage of shear force carried by walls in a rectangular channel with non-homogeneous roughness.

    Science.gov (United States)

    Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein

    2016-01-01

    Two new soft computing models, namely genetic programming (GP) and genetic artificial algorithm (GAA) neural network (a combination of modified genetic algorithm and artificial neural network methods) were developed in order to predict the percentage of shear force in a rectangular channel with non-homogeneous roughness. The ability of these methods to estimate the percentage of shear force was investigated. Moreover, the independent parameters' effectiveness in predicting the percentage of shear force was determined using sensitivity analysis. According to the results, the GP model demonstrated superior performance to the GAA model. A comparison was also made between the GP program determined as the best model and five equations obtained in prior research. The GP model with the lowest error values (root mean square error ((RMSE) of 0.0515) had the best function compared with the other equations presented for rough and smooth channels as well as smooth ducts. The equation proposed for rectangular channels with rough boundaries (RMSE of 0.0642) outperformed the prior equations for smooth boundaries.

  19. Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.

    2016-12-01

    Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a

  20. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback

    Science.gov (United States)

    Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan

    2017-02-01

    Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.

  1. Enhancement of Feedback Efficiency by Active Galactic Nucleus Outflows via the Magnetic Tension Force in the Inhomogeneous Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, Yuta; Ohsuga, Ken [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Nomura, Mariko, E-mail: asahina@cfca.jp [Keio University, Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522 (Japan)

    2017-05-01

    By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tension force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.

  2. Enhancement of Feedback Efficiency by Active Galactic Nucleus Outflows via the Magnetic Tension Force in the Inhomogeneous Interstellar Medium

    International Nuclear Information System (INIS)

    Asahina, Yuta; Ohsuga, Ken; Nomura, Mariko

    2017-01-01

    By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tension force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.

  3. Architectural study of the design and operation of advanced force feedback manual controllers

    Science.gov (United States)

    Tesar, Delbert; Kim, Whee-Kuk

    1990-01-01

    A teleoperator system consists of a manual controller, control hardware/software, and a remote manipulator. It was employed in either hazardous or unstructured, and/or remote environments. In teleoperation, the main-in-the-loop is the central concept that brings human intelligence to the teleoperator system. When teleoperation involves contact with an uncertain environment, providing the feeling of telepresence to the human operator is one of desired characteristics of the teleoperator system. Unfortunately, most available manual controllers in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size, high costs, or lack of smoothness and transparency, and elementary architectures. To investigate other alternatives, a force-reflecting, 3 degree of freedom (dof) spherical manual controller is designed, analyzed, and implemented as a test bed demonstration in this research effort. To achieve an improved level of design to meet criteria such as compactness, portability, and a somewhat enhanced force-reflecting capability, the demonstration manual controller employs high gear-ratio reducers. To reduce the effects of the inertia and friction on the system, various force control strategies are applied and their performance investigated. The spherical manual controller uses a parallel geometry to minimize inertial and gravitational effects on its primary task of transparent information transfer. As an alternative to the spherical 3-dof manual controller, a new conceptual (or parallel) spherical 3-dof module is introduced with a full kinematic analysis. Also, the resulting kinematic properties are compared to those of other typical spherical 3-dof systems. The conceptual design of a parallel 6-dof manual controller and its kinematic analysis is presented. This 6-dof manual controller is similar to the Stewart Platform with the actuators located on the base to minimize the dynamic effects. Finally, a combination of the new 3-dof and 6-dof

  4. Acoustic radiation force impulse imaging with Virtual Touch™ tissue quantification: mean shear wave velocity of malignant and benign breast masses

    Directory of Open Access Journals (Sweden)

    Wojcinski S

    2013-09-01

    Full Text Available Sebastian Wojcinski,1 Kathrin Brandhorst,2 Gelareh Sadigh,3 Peter Hillemanns,1 Friedrich Degenhardt2 1Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany; 2Department of Obstetrics and Gynecology, Franziskus Hospital, Bielefeld, Germany; 3Department of Radiology, Emory University, Atlanta, GA, USA Abstract: Acoustic radiation force impulse imaging (ARFI with Virtual Touch™ tissue quantification (VTTQ enables the determination of shear wave velocity (SWV in meters per second (m/s. The aim of our study was to describe the mean SWV in normal breast tissue and various breast masses. We performed measurements of SWV with ARFI VTTQ in 145 breast masses (57 malignant, 88 benign and in the adjacent breast parenchyma and adipose tissue. The mean SWV as well as the rate of successful measurements were analyzed. The difference between adipose tissue and parenchyma was statistically significant (3.05 versus 3.65 m/s (P < 0.001. Focusing on breast masses, numerous measurements exceeded the upper limit of possible measurement (≥9.10 m/s, indicated as "X.XX m/s". Nevertheless, the difference between the malignant and benign masses was statistically significant (8.38 ± 1.99 m/s versus 5.39 ± 2.95 m/s (P < 0.001. The best diagnostic accuracy (75.9% was achieved when the cutoff point for malignancy was set to 9.10 m/s in ARFI VTTQ. This implies that the SWV was regarded as suspicious when the upper limit of possible measurement was exceeded and the machine returned the value X.XX m/s. In conclusion, ARFI VTTQ is a feasible method for measurement of SWV in a region of interest. Furthermore, we propose the event of a highly elevated SWV as a significant criterion for malignancy. However, the method is technically not yet fully developed, and the problem of unsuccessful measurements must still be solved. Keywords: ARFI VTTQ, elastography, ultrasound, breast imaging

  5. Long-term climate monitoring by the global climate observing system: report of breakout group 1 - climate forcings and feedbacks

    International Nuclear Information System (INIS)

    Miller, C.; Bretherton, F.

    1995-01-01

    The assignment for Breakout Group A was to re-visit and expand upon the plenary session discussion on climate forcings and feedbacks and to develop a set of recommendations for each of the science disciplines or activities covered within this breakout category. Working guidelines for the group included identifying: (1) what has to be done; (2) why it has to be done, i.e. who is the customer? (3) the process for remedying deficiencies and, specifically, how to leverage the activities at operational centers; and (4) priorities (recognizing that it is premature to distinguish between major systems). The science ares addressed included: greenhouse gases (GHGs); radiation budget; water vapor; aerosols; clouds; precipitation; tropospheric ozone; and solar radiation. The role of climate satellites was also noted

  6. Design and implementation of remote robotic control system for nuclear power plant application achieved through kinesthetic force feedback model

    International Nuclear Information System (INIS)

    Roy, D.

    1995-01-01

    The technology of telerobotic control through a universal and transparent Man-Machine Interface is a growing field of robotics research in today's industrial scenario because of its promising application in hazardous and unstructured environments. The joystick, a sophisticated information receiver-translator-transmitter device, serves as a Man-Machine Interface for telerobots. The present paper describes the development paradigms of a remote control system for a planar four degrees-of-freedom joystick following position feed-forward force/torque feedback strategy in a bi-lateral mode. This joystick based control technology is designed to actuate an industrial robot working in nuclear power plant. The remote control system has been illustrated with model, algorithm, electronic hardware and software routines along with experimental results in order to have effective telemanipulation

  7. Force-feedback tele operation of industrial robots a cost effective solution for decontamination of nuclear plants

    International Nuclear Information System (INIS)

    Desbats, P.; Andriot, C.; Gicquel, P.; Viallesoubranne, J.P.; Souche, C.

    1998-01-01

    Decontamination and maintenance in hot cells are some new emerging applications of industrial robots in the nuclear fuel cycle plants. Industrial robots are low cost, accurate and reliable manipulator arms which are used in manufacturing industries usually. Thanks to the recent evolution of robotics technologies, some industrial robots may be adapted to nuclear environment. These robots are transportable, sealed and can be decontaminated, and they may be 'hardened' up to a level of irradiation dose sufficient for operation in low and medium irradiating/contaminating environments. Although industrial robots are usually programmed to perform specific and repetitive tasks, they may be remotely tele-operated by human operators as well. This allows industrial robots to perform usual tele-manipulation tasks encountered in the nuclear plants and more. The paper presents the computer based tele-operation control system TAO2000 TM , developed by the Tele-operation and Robotics Service of CEA, which has been applied to the RX90 TM industrial robot from ST-UBLI company. This robot has been selected in order to perform various maintenance and decontamination tasks in COGEMA plants. TAO2000 provides the overall tele-robotic and robotic functions necessary to perform any remote tele-operation application in hostile environment: force-feedback master-slave control; computer- assisted tele-operation of mechanical processes; trajectory programming as well as various robotics functions; graphical modelling of working environment and simulation; automatic path planning with obstacle avoidance; man-machine interface for tasks programming and mission execution. Experimental results reported in the paper demonstrate the feasibility of force-feedback master-slave control of standard industrial robots. Finally, the design of new, cost effective. tele-operation systems based on industrial robots may be intended for nuclear plants maintenance. (author)

  8. On the Representation of Ice Nucleation in Global Climate Models, and its Importance for Simulations of Climate Forcings and Feedbacks

    Science.gov (United States)

    Storelvmo, T.

    2015-12-01

    Substantial improvements have been made to the cloud microphysical schemes used in the latest generation of global climate models (GCMs), however, an outstanding weakness of these schemes lies in the arbitrariness of their tuning parameters. Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has not focused on improving the ability of GCMs to accurately simulate phase partitioning in mixed-phase clouds. Getting the relative proportion of liquid droplets and ice crystals in clouds right in GCMs is critical for the representation of cloud radiative forcings and cloud-climate feedbacks. Here, we first present satellite observations of cloud phase obtained by NASA's CALIOP instrument, and report on robust statistical relationships between cloud phase and several aerosols species that have been demonstrated to act as ice nuclei (IN) in laboratory studies. We then report on results from model intercomparison projects that reveal that GCMs generally underestimate the amount of supercooled liquid in clouds. For a selected GCM (NCAR 's CAM5), we thereafter show that the underestimate can be attributed to two main factors: i) the presence of IN in the mixed-phase temperature range, and ii) the Wegener-Bergeron-Findeisen process, which converts liquid to ice once ice crystals have formed. Finally, we show that adjusting these two processes such that the GCM's cloud phase is in agreement with the observed has a substantial impact on the simulated radiative forcing due to IN perturbations, as well as on the cloud-climate feedbacks and ultimately climate sensitivity simulated by the GCM.

  9. Amplification of obliquity forcing through mean annual and seasonal atmospheric feedbacks

    Directory of Open Access Journals (Sweden)

    S.-Y. Lee

    2008-10-01

    Full Text Available Pleistocene benthic δ18O records exhibit strong spectral power at ~41 kyr, indicating that global ice volume has been modulated by Earth's axial tilt. This feature, and weak spectral power in the precessional band, has been attributed to the influence of obliquity on mean annual and seasonal insolation gradients at high latitudes. In this study, we use a coupled ocean-atmosphere general circulation model to quantify changes in continental snowfall associated with mean annual and seasonal insolation forcing due to a change in obliquity. Our model results indicate that insolation changes associated with a decrease in obliquity amplify continental snowfall in three ways: (1 Local reductions in air temperature enhance precipitation as snowfall. (2 An intensification of the winter meridional insolation gradient strengthens zonal circulation (e.g. the Aleutian low, promoting greater vapor transport from ocean to land and snow precipitation. (3 An increase in the summer meridional insolation gradient enhances summer eddy activity, increasing vapor transport to high-latitude regions. In our experiments, a decrease in obliquity leads to an annual snowfall increase of 25.0 cm; just over one-half of this response (14.1 cm is attributed to seasonal changes in insolation. Our results indicate that the role of insolation gradients is important in amplifying the relatively weak insolation forcing due to a change in obliquity. Nonetheless, the total snowfall response to obliquity is similar to that due to a shift in Earth's precession, suggesting that obliquity forcing alone can not account for the spectral characteristics of the ice-volume record.

  10. Shear force distance control in a scanning near-field optical microscope: in resonance excitation of the fiber probe versus out of resonance excitation

    International Nuclear Information System (INIS)

    Lapshin, D.A.; Letokhov, V.S.; Shubeita, G.T.; Sekatskii, S.K.; Dietler, G.

    2004-01-01

    The experimental results of the direct measurement of the absolute value of interaction force between the fiber probe of a scanning near-field optical microscope (SNOM) operated in shear force mode and a sample, which were performed using combined SNOM-atomic force microscope setup, are discussed for the out-of-resonance fiber probe excitation mode. We demonstrate that the value of the tapping component of the total force for this mode at typical dither amplitudes is of the order of 10 nN and thus is quite comparable with the value of this force for in resonance fiber probe excitation mode. It is also shown that for all modes this force component is essentially smaller than the usually neglected static attraction force, which is of the order of 200 nN. The true contact nature of the tip-sample interaction during the out of resonance mode is proven. From this, we conclude that such a detection mode is very promising for operation in liquids, where other modes encounter great difficulties

  11. Magnetic structure of deformation-induced shear bands in amorphous Fe{sub 80}B{sub 16}Si{sub 4} observed by magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.W. [Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hawley, M.E. [Materials Science and Technology Division, (MST-8), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Markiewicz, D.J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Spaepen, F.; Barth, E.P. [Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    1999-04-01

    Processing-induced magnetic structures in amorphous metallic alloys are of interest because of their impact on the performance of materials used in electric device applications. Plastic deformation associated with cutting or bending the material to the desired shape occurs through the formation of shear bands. The stress associated with these shear bands induces magnetic domains that can lead to power losses through interaction with the fields and currents involved in normal device operation. These domains have been studied previously using a variety of techniques capable of imaging magnetic domain structures. In an effort to better characterize and understand these issues, we have applied atomic and magnetic force microscopy to these materials to provide three-dimensional nanometer-scale topographic resolution and micrometer-scale magnetic resolution. {copyright} {ital 1999 American Institute of Physics.}

  12. Stress in closed thin-walled tubes of single box subjected by shear forces and application to airfoils

    Directory of Open Access Journals (Sweden)

    Zebbiche Toufik

    2014-09-01

    Full Text Available The presented work is to develop a numerical computation program to determine the distribution of the shear stress to shear in closed tubes with asymmetric single thin wall section with a constant thickness and applications to airfoils and therefore determining the position and value of the maximum stress. In the literature, there are exact analytical solutions only for some sections of simple geometries such as circular section. Hence our interest is focused on the search of approximate numerical solutions for more complex sections used in aeronautics. In the second stage the position of the shear center is determined so that the section does not undergo torsion. The analytic function of the boundary of the airfoil is obtained by using the cubic spline interpolation since it is given in the form of tabulated points.

  13. L4-L5 compression and anterior/posterior joint shear forces in cabin attendants during the initial push/pull actions of airplane meal carts

    DEFF Research Database (Denmark)

    Sandfeld, Jesper; Rosgaard, Christian; Jensen, Bente Rona

    2014-01-01

    The aim of the present study was to assess the acute low back load of cabin attendants during cart handling and to identify working situations which present the highest strain on the worker. In a setup, 17 cabin attendants (ten females and seven males) pushed, pulled and turned a 20kg standard meal...... was used to calculate the acute L4-L5 load. No working situations created loads greater than the accepted values for single exertions, however compression and anterior/posterior shear forces during pulling and turning were much higher when compared with pushing. There were significant effects of handling...... the cart on different floor types, at the varying inclinations and with different cart weights. Additionally, when external forces were reduced, the cabin attendants did not decrease push/pull force proportionally and thus the L4-L5 load did not decrease as much as expected....

  14. Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness.

    Science.gov (United States)

    Leib, Raz; Rubin, Inbar; Nisky, Ilana

    2018-05-16

    Interaction with an object often requires the estimation of its mechanical properties. We examined whether the hand that is used to interact with the object and their handedness affected people's estimation of these properties using stiffness estimation as a test case. We recorded participants' responses on a stiffness discrimination of a virtual elastic force field and the grip force applied on the robotic device during the interaction. In half of the trials, the robotic device delayed the participants' force feedback. Consistent with previous studies, delayed force feedback biased the perceived stiffness of the force field. Interestingly, in both left-handed and right-handed participants, for the delayed force field, there was even less perceived stiffness when participants used their left hand than their right hand. This result supports the idea that haptic processing is affected by laterality in the brain, not by handedness. Consistent with previous studies, participants adjusted their applied grip force according to the correct size and timing of the load force regardless of the hand that was used, the handedness, or the delay. This suggests that in all these conditions, participants were able to form an accurate internal representation of the anticipated trajectory of the load force (size and timing) and that this representation was used for accurate control of grip force independently of the perceptual bias. Thus, these results provide additional evidence for the dissociation between action and perception in the processing of delayed information.

  15. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method

    International Nuclear Information System (INIS)

    Wen, L; Wang, T M; Liang, J H; Wu, G H

    2012-01-01

    We implement a mackerel (Scomber scombrus) body-shaped robot, programmed to display the three most typical body/caudal fin undulatory kinematics (i.e. anguilliform, carangiform and thunniform), in order to biomimetically investigate hydrodynamic issues not easily tackled experimentally with live fish. The robotic mackerel, mounted on a servo towing system and initially at rest, can determine its self-propelled speed by measuring the external force acting upon it and allowing for the simultaneous measurement of power, flow field and self-propelled speed. Experimental results showed that the robotic swimmer with thunniform kinematics achieved a faster final swimming speed (St = 0.424) relative to those with carangiform (St = 0.43) and anguilliform kinematics (St = 0.55). The thrust efficiency, estimated from a digital particle image velocimetry (DPIV) flow field, showed that the robotic swimmer with thunniform kinematics is more efficient (47.3%) than those with carangiform (31.4%) and anguilliform kinematics (26.6%). Furthermore, the DPIV measurements illustrate that the large-scale characteristics of the flow pattern generated by the robotic swimmer with both anguilliform and carangiform kinematics were wedge-like, double-row wake structures. Additionally, a typical single-row reverse Karman vortex was produced by the robotic swimmer using thunniform kinematics. Finally, we discuss this novel force-feedback-controlled experimental method, and review the relative self-propelled hydrodynamic results of the robot when utilizing the three types of undulatory kinematics. (paper)

  16. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  17. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  18. A Synthetical Estimation of Northern Hemisphere Sea-ice Albedo Radiative Forcing and Feedback between 1982 and 2009

    Science.gov (United States)

    Cao, Y.

    2014-12-01

    The decreasing surface albedo caused by continously vanishing sea ice over the Arctic plays a very important role in Arctic warming amplification. However, the quantification of the change of radiative forcing at top of atmosphere (TOA) introduced by the decreasing sea ice albedo and its generated feedback to the climate remain uncertain. Two recent representative studies showed a large difference with each other: Flanner et al. (2011) used a method of synthesis of surface albedo and radiative kernels and found that the change of sea ice radiative forcing (ΔSIRF) in Northern Hemisphere (NH) from 1979 to 2008 was 0.22 (0.15 - 0.32) W m-2, and the corresponding sea ice albedo feedback (SIAF) over NH was 0.28 (0.19 - 0.41) W m-2 K-1; while Pistone et al. (2014) directly used the observed planetary albedo to estimate the NH ΔSIRF and SIAF from 1979 to 2011 and draw a NH ΔSIRF of 0.43 ± 0.07 W m-2, which was nearly twice as larger as Flanner's result, and the estimated global SIAF was 0.31 ± 0.04 W m-2 K-1. Motivated by reconciling the difference between these two studies and obtaining a more accurate qualification of the NH ΔSIRF, we used a newly released satellite-retrieved surface albedo product CLARA-A1 and made an attempt in two steps: Firstly, based on synthesising the surface albedo and raditive kernels, we calcualted the ΔSIRF from 1982 to 2009 was 0.20 ± 0.05 W m-2, and the NH SIAF was 0.25 W m-2 K-1; After comparing with TOA observed radiative flux, we found it's quite likely the kernel methods yield an underestimation for the all-sky ΔSIRF. Then, we tried to use TOA observed broadband radiative flux to adjust the estimation with kernels. After an adjustment, the NH all-sky ΔSIRF was 0.34 ± 0.09 W m-2, and the corresponding SIAF was 0.43 W m-2 K-1 over NH and 0.31 W m-2 K-1 over the entire globe.

  19. Shear Forces during Blast, Not Abrupt Changes in Pressure Alone, Generate Calcium Activity in Human Brain Cells

    Science.gov (United States)

    2012-06-29

    8217[-·:’ 50 100 150 200 250 300 Time (sec) Mean Peak Shear Stress (Pa) 0.6 ɘ.0001 200 250 300 350 400 Fluid Volume (I- LL ) lack of correlation to...Blood Flow Metab 30: 255–266. 5. Nakagawa A, Manley GT, Gean AD, Ohtani K, Armonda R, et al. (2011) Mechanisms of primary blast-induced traumatic brain

  20. Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaques

    Science.gov (United States)

    Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro

    2016-06-01

    Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events.

  1. Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode

    DEFF Research Database (Denmark)

    Madeleine, Pascal; Jørgensen, Lars Vincents; Søgaard, Karen

    2002-01-01

    ) and proprioceptive (displacement control) feedback was investigated during intermittent (6 s contraction, 4 s rest) and continuous static contractions at 10% and 30% of the maximum voluntary contraction (MVC). Mean force, force fluctuation, rating of perceived exertion and root mean square (RMS) and mean power...... with the EMG, while the decrease in MPF values was more consistent for the EMG compared with the MMG signal. During the intermittent contractions, the main effect was on MPF for both EMG and MMG. Lower force fluctuation and larger rating of perceived exertion ( P

  2. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  3. L4-L5 compression and anterior/posterior joint shear forces in cabin attendants during the initial push/pull actions of airplane meal carts.

    Science.gov (United States)

    Sandfeld, Jesper; Rosgaard, Christian; Jensen, Bente Rona

    2014-07-01

    The aim of the present study was to assess the acute low back load of cabin attendants during cart handling and to identify working situations which present the highest strain on the worker. In a setup, 17 cabin attendants (ten females and seven males) pushed, pulled and turned a 20 kg standard meal cart (L: 0.5m × W: 0.3 m × H: 0.92 m) loaded with extra 20 kg and 40 kg, respectively on two different surfaces (carpet and linoleum) and at three floor inclinations (-2°, 0° and +2°). Two force transducers were mounted as handles. Two-dimensional movement analysis was performed and a 4D WATBAK modelling tool was used to calculate the acute L4-L5 load. No working situations created loads greater than the accepted values for single exertions, however compression and anterior/posterior shear forces during pulling and turning were much higher when compared with pushing. There were significant effects of handling the cart on different floor types, at the varying inclinations and with different cart weights. Additionally, when external forces were reduced, the cabin attendants did not decrease push/pull force proportionally and thus the L4-L5 load did not decrease as much as expected. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  5. New tools for C.A.D. of input devices for tele-operation with force feedback

    International Nuclear Information System (INIS)

    Gosselin, F.

    2000-01-01

    The performances of a tele-operation system are related to the master arm's ability to emulate the behavior of the remote environment. Ideally, it allows the operator to control the slave arm in a natural way as if that were an extension of its own body. The criteria to be checked for that are known but contradictory. It is thus necessary to make trade-offs on which there is not consensus. Existing input devices are therefore very varied thus more or less adapted to the tasks considered, which is in general checked a posteriori. In this document, we propose an original approach allowing to dimension the master arm a priori according to the use which one wishes to make. For that, we developed two tools: - the first one makes it possible to establish his specifications by taking account of the transmission of information between the operator and the slave arm. By exploiting their respective limitations, one is assured that the master arm will not limit the performances of the system, - the second one allows to design it (kinematics, size, motorization... ) according to the preceding specifications. For that, we use well-known theoretical tools which however are approached here as design tools. This leads to the definition of new concepts which do not appear in the literature. This approach is used to establish the specifications of a master arm for nuclear and offshore tele-operation then to design two input devices answering these specifications. The first has 3 degrees of freedom with force feedback. Its performances are higher than those of the best existing input devices. The second is a mock-up of a 6 degrees of freedom master arm. It uses a new parallel structure that is redundant in actuation and whose performances are remarkable. (author) [fr

  6. Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C.

    Science.gov (United States)

    Seneviratne, Sonia I; Wartenburger, Richard; Guillod, Benoit P; Hirsch, Annette L; Vogel, Martha M; Brovkin, Victor; van Vuuren, Detlef P; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke

    2018-05-13

    This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.

  7. Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C

    Science.gov (United States)

    Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke

    2018-01-01

    This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. PMID:29610382

  8. Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C

    Science.gov (United States)

    Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke

    2018-05-01

    This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the `Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  9. Genome Wide Association Studies (GWAS Identify QTL on SSC2 and SSC17 Affecting Loin Peak Shear Force in Crossbred Commercial Pigs.

    Directory of Open Access Journals (Sweden)

    Chunyan Zhang

    Full Text Available Of all the meat quality traits, tenderness is considered the most important with regard to eating quality and market value. In this study we have utilised genome wide association studies (GWAS for peak shear force (PSF of loin muscle as a measure of tenderness for 1,976 crossbred commercial pigs, genotyped for 42,721 informative SNPs using the Illumina PorcineSNP60 Beadchip. Four 1 Mb genomic regions, three on SSC2 (at 4 Mb, 5 Mb and 109 Mb and one on SSC17 (at 20 Mb, were detected which collectively explained about 15.30% and 3.07% of the total genetic and phenotypic variance for PSF respectively. Markers ASGA0008566, ASGA0008695, DRGA0003285 and ASGA0075615 in the four regions were strongly associated with the effects. Analysis of the reference genome sequence in the region with the most important SNPs for SSC2_5 identified FRMD8, SLC25A45 and LTBP3 as potential candidate genes for meat tenderness on the basis of functional annotation of these genes. The region SSC2_109 was close to a previously reported candidate gene CAST; however, the very weak LD between DRGA0003285 (the best marker representing region SSC2_109 and CAST indicated the potential for additional genes which are distinct from, or interact with, CAST to affect meat tenderness. Limited information of known genes in regions SSC2_109 and SSC17_20 restricts further analysis. Re-sequencing of these regions for informative animals may help to resolve the molecular architecture and identify new candidate genes and causative mutations affecting this trait. These findings contribute significantly to our knowledge of the genomic regions affecting pork shear force and will potentially lead to new insights into the molecular mechanisms regulating meat tenderness.

  10. Teleoperator comfort and psychometric stability: Criteria for limiting master-controller forces of operation and feedback during telemanipulation

    Science.gov (United States)

    Wiker, Steven F.; Hershkowitz, Elaine; Zik, John

    1989-01-01

    The following question is addressed: How much force should operators exert, or experience, when operating a telemanipulator master-controller for sustained periods without encountering significant fatigue and discomfort, and without loss of stability in psychometric perception of force. The need to minimize exertion demands to avoid fatigue is diametrically opposed by the need to present a wide range of force stimuli to enhance perception of applied or reflected forces. For 104 minutes subjects repetitiously performed a series of 15 s isometric pinch grasps; controlled at 5, 15, and 25 percent of their maximum voluntary strength. Cyclic pinch grasps were separated by rest intervals of 7.5 and 15 s. Upon completion of every 10 minute period, subjects interrupted grasping activities to gage the intensity of fatigue and discomfort in the hand and forearm using a cross-modal matching technique. A series of psychometric tests were then conducted to determine accuracy and stability in the subject's perception of force experienced. Results showed that onset of sensations of discomfort and fatigue were dependent upon the magnitude of grasp force, work/rest ratio, and progression of task. Declines in force magnitude estimation slopes, indicating a reduction in force perception sensitivity, occurred with increased grasp force when work/rest ratios were greater than 1.0. Specific recommendations for avoiding discomfort and shifts in force perception, by limiting pinch grasp force required for master-controller operation and range of force reflection or work/rest ratios, are provided.

  11. Development of a shear-force scanning near-field cathodoluminescence microscope for characterization of nanostructures' optical properties.

    Science.gov (United States)

    Bercu, N B; Troyon, M; Molinari, M

    2016-09-01

    An original scanning near-field cathodoluminescence microscope for nanostructure characterization has been developed and successfully tested. By using a bimorph piezoelectric stack both as actuator and detector, the developed setup constitutes a real improvement compared to previously reported SEM-based solutions. The technique combines a scanning probe and a scanning electron microscope in order to simultaneously offer near-field cathodoluminescence and topographic images of the sample. Share-force topography and cathodoluminescence measurements on GaN, SiC and ZnO nanostructures using the developed setup are presented showing a nanometric resolution in both topography and cathodoluminescence images with increased sensitivity compared to classical luminescence techniques. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  12. OCT and shear-force evaluations of zirconia Fixed Partial Prosthesis processed with a conventional CAD/CAM technology

    Science.gov (United States)

    Zaharia, C.; Gabor, A.; Sinescu, C.; Topala, F. I.; Negrutiu, M. L.; Levai, C. M.; Duma, V. F.; Bradu, A.; Podoleanu, A. Gh.

    2016-03-01

    Introduction. Dental ceramics show better biocompatibility and aesthetic properties in dental constructs with regard to metals. However, they also have an insufficient mechanical stability, as well as low resistance limits due to their fragility. Taking into account these aspects, glass infiltrated with ceramic materials such as alumina (i.e., zirconiareinforced ceramics) is being nowadays considered a better material for full fixed partial prostheses (FPPs) than ceramics: the former has a higher mechanical resistance, which makes it more appropriate for restoration areas, where there is an increased mechanical stress. The interest for zirconia is growing due both to its resistance and to the possibility to develop such prostheses using the CAD/CAM technology. Materials and methods. 24 all ceramic FPPs created with CAD/CAM technology were used. The models were scanned with Zeno Wieland Scanner, a one touch scanning machine which requires between 45-60 s for a full model scan. The scanner provides 3 axis-architecture and automatic data processing. The zirconia infrastructures resulted from milling zirconia green disks in Wieland units, followed by the deposition of ceramic masses and then by burning procedures. All the samples were assessed with a Time Domain Optical Coherence Tomography (TD-OCT) system working at a wavelenght of 1300 nm. Using OCT investigations, material defects were detected in the areas of maximal tension, i.e. the connectors, the oclusal, and the cervical areas. These samples with defects in the above areas have not been considered for the study further on. Finally, the samples were loaded in a MultiTest 5 i Mecmesin system and tested until fracture occurred. The MultiTest 5-i creates tensile and compression forces of up to 5 kN. Results and discussions. All the test samples survived a dynamic load of 1.2 x 107 cycles and a thermal cycle mixer simulator version; signs of failure in terms of fracture lines were observed in all samples. The

  13. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.

    2015-01-01

    Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.

  14. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  15. Effect of dietary vitamin E on broiler meat qualities, color, water-holding capacity and shear force value, under heat stress conditions.

    Science.gov (United States)

    Hashizawa, Yoshinori; Kubota, Masatoshi; Kadowaki, Motoni; Fujimura, Shinobu

    2013-11-01

    This study was conducted to evaluate the effect of dietary vitamin E (VE) on broiler meat quality, especially focused on PSE (pale color, soft and exudative), under chronic heat stress (HS) conditions. Twenty-eight-day-old female Ross broilers were kept in independent cages with a controlled temperature of 24°C (normal temperature: NT) or 30°C (high temperature: HT). The NT chickens were fed basal feed. The HT chickens were fed basal feed (HT) or VE (200 mg/kg) added feed (HT + E). Broilers were weighed and slaughtered at 38 days old. The breast muscle was removed immediately and then the samples were used for determination of meat color, pH, water holding capacity (WHC) and shear force value (SFV). Body weight gain and feed intake were significantly decreased in the HT and HT + E groups compared to the NT group. VE supplementation did not affect the growth performance. Chronic HS at 30°C for 10 days may cause deterioration of meat quality such as PSE. The effects of chronic HS on meat quality were most significant in the toughness of broiler breast meat. Supplementation of VE in broiler feed would be effective to prevent the extent of PSE on broiler meat by chronic HS. © 2013 Japanese Society of Animal Science.

  16. SU-D-BRF-06: A Brachytherapy Simulator with Realistic Haptic Force Feedback and Real-Time Ultrasounds Image Simulation for Training and Teaching

    International Nuclear Information System (INIS)

    Beaulieu, L; Carette, A; Comtois, S; Lavigueur, M; Cardou, P; Laurendeau, D

    2014-01-01

    Purpose: Surgical procedures require dexterity, expertise and repetition to reach optimal patient outcomes. However, efficient training opportunities are usually limited. This work presents a simulator system with realistic haptic force-feedback and full, real-time ultrasounds image simulation. Methods: The simulator is composed of a custom-made Linear-DELTA force-feedback robotic platform. The needle tip is mounted on a force gauge at the end effector of the robot, which responds to needle insertion by providing reaction forces. 3D geometry of the tissue is using a tetrahedral finite element mesh (FEM) mimicking tissue properties. As the needle is inserted/retracted, tissue deformation is computed using a mass-tensor nonlinear visco-elastic FEM. The real-time deformation is fed to the L-DELTA to take into account the force imparted to the needle, providing feedback to the end-user when crossing tissue boundaries or needle bending. Real-time 2D US image is also generated synchronously showing anatomy, needle insertion and tissue deformation. The simulator is running on an Intel I7 6- core CPU at 3.26 MHz. 3D tissue rendering and ultrasound display are performed on a Windows 7 computer; the FEM computation and L-DELTA control are executed on a similar PC using the Neutrino real-time OS. Both machines communicate through an Ethernet link. Results: The system runs at 500 Hz for a 8333-tetrahedron tissue mesh and a 100-node angular spring needle model. This frame rate ensures a relatively smooth displacement of the needle when pushed or retracted (±20 N in all directions at speeds of up to 2 m/s). Unlike commercially-available haptic platforms, the oblong workspace of the L-DELTA robot complies with that required for brachytherapy needle displacements of 0.1m by 0.1m by 0.25m. Conclusion: We have demonstrated a real-life, realistic brachytherapy simulator developed for prostate implants (LDR/HDR). The platform could be adapted to other sites or training for other

  17. Effects of the visual-feedback-based force platform training with functional electric stimulation on the balance and prevention of falls in older adults: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2018-01-01

    Full Text Available Background Force platform training with functional electric stimulation aimed at improving balance may be effective in fall prevention for older adults. Aim of the study is to evaluate the effects of the visual-feedback-based force platform balance training with functional electric stimulation on balance and fall prevention in older adults. Methods A single-centre, unblinded, randomized controlled trial was conducted. One hundred and twenty older adults were randomly allocated to two groups: the control group (n = 60, one-leg standing balance exercise, 12 min/d or the intervention group (n = 60, force platform training with functional electric stimulation, 12 min/d. The training was provided 15 days a month for 3 months by physical therapists. Medial–lateral and anterior–posterior maximal range of sway with eyes open and closed, the Berg Balance Scale, the Barthel Index, the Falls Efficacy scale-International were assessed at baseline and after the 3-month intervention. A fall diary was kept by each participant during the 6-month follow-up. Results On comparing the two groups, the intervention group showed significantly decreased (p < 0.01 medial–lateral and anterior–posterior maximal range of sway with eyes open and closed. There was significantly higher improvement in the Berg Balance Scale (p < 0.05, the Barthel Index (p < 0.05 and the Falls Efficacy Scale-International (p < 0.05, along with significantly lesser number of injurious fallers (p < 0.05, number of fallers (p < 0.05, and fall rates (p < 0.05 during the 6-month follow-up in the intervention group. Conclusion This study showed that the visual feedback-based force platform training with functional electric stimulation improved balance and prevented falls in older adults.

  18. Quantitative Shear Wave Velocity Measurement on Acoustic Radiation Force Impulse Elastography for Differential Diagnosis between Benign and Malignant Thyroid Nodules: A Meta-analysis.

    Science.gov (United States)

    Liu, Bo-Ji; Li, Dan-Dan; Xu, Hui-Xiong; Guo, Le-Hang; Zhang, Yi-Feng; Xu, Jun-Mei; Liu, Chang; Liu, Lin-Na; Li, Xiao-Long; Xu, Xiao-Hong; Qu, Shen; Xing, Mingzhao

    2015-12-01

    The aim of this study was to evaluate the diagnostic performance of quantitative shear wave velocity (SWV) measurement on acoustic radiation force impulse (ARFI) elastography for differentiation between benign and malignant thyroid nodules using meta-analysis. The databases of PubMed and the Web of Science were searched. Studies published in English on assessment of the sensitivity and specificity of ARFI elastography for the differentiation of thyroid nodules were collected. The quantitative measurement of ARFI elastography was evaluated by SWV (m/s). Meta-Disc Version 1.4 software was used to describe and calculate the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and summary receiver operating characteristic curves. We analyzed a total of 13 studies, which included 1,854 thyroid nodules (including 1,339 benign nodules and 515 malignant nodules) from 1,641 patients. The summary sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules by SWV were 0.81 (95% confidence interval [CI]: 0.77-0.84) and 0.84 (95% CI: 0.81-0.86), respectively. The pooled positive and negative likelihood ratios were 5.21 (95% CI: 3.56-7.62) and 0.23 (95% CI: 0.17-0.32), respectively. The pooled diagnostic odds ratio was 27.53 (95% CI: 14.58-52.01), and the area under the summary receiver operating characteristic curve was 0.91 (Q* = 0.84). In conclusion, SWV measurement on ARFI elastography has high sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules and can be used in combination with conventional ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. ATP sensitive potassium channels in the skeletal muscle functions : involvement of the KCNJ11(Kir6.2 gene in the determination of Warner Bratzer shear force

    Directory of Open Access Journals (Sweden)

    Domenico eTricarico

    2016-05-01

    Full Text Available The ATP-sensitive K+-channels (KATP are distributed in the tissues coupling metabolism with K+ ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1, KCNJ11 (Kir6.2, ABCC8 (SUR1 and ABCC9 (SUR2 genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibres is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.

  20. Effects of the visual-feedback-based force platform training with functional electric stimulation on the balance and prevention of falls in older adults: a randomized controlled trial.

    Science.gov (United States)

    Li, Zhen; Wang, Xiu-Xia; Liang, Yan-Yi; Chen, Shu-Yan; Sheng, Jing; Ma, Shao-Jun

    2018-01-01

    Force platform training with functional electric stimulation aimed at improving balance may be effective in fall prevention for older adults. Aim of the study is to evaluate the effects of the visual-feedback-based force platform balance training with functional electric stimulation on balance and fall prevention in older adults. A single-centre, unblinded, randomized controlled trial was conducted. One hundred and twenty older adults were randomly allocated to two groups: the control group ( n  = 60, one-leg standing balance exercise, 12 min/d) or the intervention group ( n  = 60, force platform training with functional electric stimulation, 12 min/d). The training was provided 15 days a month for 3 months by physical therapists. Medial-lateral and anterior-posterior maximal range of sway with eyes open and closed, the Berg Balance Scale, the Barthel Index, the Falls Efficacy scale-International were assessed at baseline and after the 3-month intervention. A fall diary was kept by each participant during the 6-month follow-up. On comparing the two groups, the intervention group showed significantly decreased ( p  Falls Efficacy Scale-International ( p  fall rates ( p  falls in older adults.

  1. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  2. A Two-Stage Method for Structural Damage Prognosis in Shear Frames Based on Story Displacement Index and Modal Residual Force

    Directory of Open Access Journals (Sweden)

    Asghar Rasouli

    2015-01-01

    Full Text Available A two-stage method is proposed to properly identify the location and the extent of damage in shear frames. In the first stage, a story displacement index (SDI is presented to precisely locate the damage in the shear frame which is calculated using the modal analysis information of the damaged structure. In the second stage, by defining a new objective function, the extent of the actual damage is determined via an imperialist competitive algorithm. The performance of the proposed method is demonstrated by implementing the technique to three examples containing five-, ten-, and twenty-five-story shear frames with noises and without them in modal data. Moreover, the performance of the proposed method has been verified through using a benchmark problem. Numerical results show the high efficiency of the proposed method for accurately identifying the location and the extent of structural damage in shear frames.

  3. Rubber friction and force transmission during the shearing process of actively-driven vacuum grippers on rough surfaces; Elastomerreibung und Kraftuebertragung beim Abscheren von aktiv betriebenen Vakuumgreifern auf rauen Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kern, Patrick

    2016-12-21

    Nowadays, vacuum grippers come in many different shapes and sizes. Their stability is guaranteed through specially manufactured metal fittings. These fittings are non-positively and positively connected to the elastic part of the vacuum gripper. The design of the elastic part may vary, though. Elastomer components are used to ensure tightness for the negative pressure in the active cave chamber of the vacuum gripper, as well as for the transfer of shearing forces, which acting parallel to the surface. Some vacuum grippers feature one elastomer for both the sealing function and the transfer of shear forces; other gripper types are equipped with various elastomers for those applications. The vacuum grippers described in this work are equipped with structured rubber friction pads, their tightness being ensured by sealing lips made of a flexible foam rubber. A restraint system consisting of one or several vacuum grippers must be sized prior to its actual practical use. For the transmission of shearing forces, which acting parallel to the surface, it is necessary to take the tribological system, consisting of the suction element's elastomer and the base material, into account since these loads put shearing stress on the vacuum gripper. In practice, however, a standardized value is given for the coefficient of friction μ; i.e. the ratio of transmissible frictional force to the normal force. This does neither include a detailed description of the elastomer used nor of the roughness of the base material. The standardized friction coefficients cannot be applied to the practical design of restraint systems. The present work includes the analysis of the load transmission and the modeling of the friction coefficients μ on rough surfaces during the shearing process of actively-driven vacuum grippers. Based on current theories, the phenomenon of elastomeric friction can be attributed to the two main components of hysteresis and adhesion friction. Both components are

  4. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring.

    Science.gov (United States)

    Koo, Gunhee; Kim, Kiyoung; Chung, Jun Yeon; Choi, Jaemook; Kwon, Nam-Yeol; Kang, Doo-Young; Sohn, Hoon

    2017-11-28

    A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  5. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring

    Directory of Open Access Journals (Sweden)

    Gunhee Koo

    2017-11-01

    Full Text Available A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  6. Particle size analysis of lamb meat: Effect of homogenization speed, comparison with myofibrillar fragmentation index and its relationship with shear force.

    Science.gov (United States)

    Karumendu, L U; Ven, R van de; Kerr, M J; Lanza, M; Hopkins, D L

    2009-08-01

    The impact of homogenization speed on Particle Size (PS) results was examined using samples from the M.longissimus thoracis et lumborum (LL) of 40 lambs. One gram duplicate samples from meat aged for 1 and 5days were homogenized at five different speeds; 11,000, 13,000, 16,000, 19,000 and 22,000rpm. In addition to this LL samples from 30 different lamb carcases also aged for 1 and 5days were used to study the comparison between PS and myofibrillar fragmentation index (MFI) values. In this case, 1g duplicate samples (n=30) were homogenized at 16,000rpm and the other half (0.5g samples) at 11,000rpm (n=30). The homogenates were then subjected to respective combinations of treatments which included either PS analysis or the determination of MFI, both with or without three cycles of centrifugation. All 140 samples of LL included 65g blocks for subsequent shear force (SF) testing. Homogenization at 16,000rpm provided the greatest ability to detect ageing differences for particle size between samples aged for 1 and 5days. Particle size at the 25% quantile provided the best result for detecting differences due to ageing. It was observed that as ageing increased the mean PS decreased and was significantly (P<0.001) less for 5days aged samples compared to 1day aged samples, while MFI values significantly increased (P<0.001) as ageing period increased. When comparing the PS and MFI methods it became apparent that, as opposed to the MFI method, there was a greater coefficient of variation for the PS method which warranted a quality assurance system. Given this requirement and examination of the mean, standard deviation and the 25% quantile for PS data it was concluded that three cycles of centrifugation were not necessary and this also applied to the MFI method. There were significant correlations (P<0.001) within the same lamb loin sample aged for a given period between mean MFI and mean PS (-0.53), mean MFI and mean SF (-0.38) and mean PS and mean SF (0.23). It was

  7. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. II. Radiation-Gas Interactions and Outflows

    Science.gov (United States)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.

  8. Process Analytical Technology for High Shear Wet Granulation: Wet Mass Consistency Reported by In-Line Drag Flow Force Sensor Is Consistent With Powder Rheology Measured by At-Line FT4 Powder Rheometer.

    Science.gov (United States)

    Narang, Ajit S; Sheverev, Valery; Freeman, Tim; Both, Douglas; Stepaniuk, Vadim; Delancy, Michael; Millington-Smith, Doug; Macias, Kevin; Subramanian, Ganeshkumar

    2016-01-01

    Drag flow force (DFF) sensor that measures the force exerted by wet mass in a granulator on a thin cylindrical probe was shown as a promising process analytical technology for real-time in-line high-resolution monitoring of wet mass consistency during high shear wet granulation. Our previous studies indicated that this process analytical technology tool could be correlated to granulation end point established independently through drug product critical quality attributes. In this study, the measurements of flow force by a DFF sensor, taken during wet granulation of 3 placebo formulations with different binder content, are compared with concurrent at line FT4 Powder Rheometer characterization of wet granules collected at different time points of the processing. The wet mass consistency measured by the DFF sensor correlated well with the granulation's resistance to flow and interparticulate interactions as measured by FT4 Powder Rheometer. This indicated that the force pulse magnitude measured by the DFF sensor was indicative of fundamental material properties (e.g., shear viscosity and granule size/density), as they were changing during the granulation process. These studies indicate that DFF sensor can be a valuable tool for wet granulation formulation and process development and scale up, as well as for routine monitoring and control during manufacturing. Copyright © 2016. Published by Elsevier Inc.

  9. Effects of interactive technology, teacher scaffolding and feedback on university students' conceptual development in motion and force concepts

    Science.gov (United States)

    Stecklein, Jason Jeffrey

    The utilization of interactive technologies will affect learning in science classrooms of the future. And although these technologies have improved in form and function, their effective employment in university science classrooms has lagged behind the rapid development of new constructivist pedagogies and means of instruction. This dissertation examines the enlistment of instructional technologies, in particular tablet PCs and DyKnow Interactive Software, in a technologically enhanced, university-level, introductory physics course. Results of this qualitative case study of three university students indicate that (1) the use of interactive technology positively affects both student learning within force and motion and self-reported beliefs about physics, (2) ad hoc use of instructional technologies may not sufficient for effective learning in introductory physics, (3) student learners dictate the leveraging of technology in any classroom, and (4) that purposeful teacher structuring of classroom activities with technologies are essential for student construction of knowledge. This includes designing activities to elicit attention and make knowledge visible for low-level content, while augmenting student interactions and modelling procedural steps for higher-level content.

  10. Studies and research concerning BNFP: shearing tests conducted at Allied-General Nuclear Services for the Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Weil, B.; Townes, G.

    1979-09-01

    An experiment conducted to shear two dummy PWR subassemblies is described. Results pertain to the removal of end hardware by shearing, spacer grid fragmentation, the character of sheared product, product leachability, shearing force requirements, and the effects of compaction

  11. Study of shear thickening behavior in colloidal suspensions

    Directory of Open Access Journals (Sweden)

    N Maleki Jirsaraee

    2015-01-01

    Full Text Available We studied the shear thickening behavior of the nano silica suspension (silica nanoparticles 12 nm in size suspended in ethylene glycol under steady shear. The critical shear rate for transition into shear thickening phase was determined at different concentrations and temperatures. The effect of temperature and concentration was studied on the shear thickening behavior. In silica suspension, it was observed that all the samples had a transition into shear thickening phase and also by increasing the temperature, critical shear rate increased and viscosity decreased. Our observations showed that movement in silica suspension was Brownian and temperature could cause a delay in transition into shear thickening phase. Yet, we observed that increasing the concentration would decrease critical shear rate and increase viscosity. Increasing temperature increased Brownian forces and increasing concentration increased hydrodynamic forces, confirming the contrast between these two forces for transition into shear thickening phase for the suspensions containing nano particles

  12. Shear-induced chaos

    International Nuclear Information System (INIS)

    Lin, Kevin K; Young, Lai-Sang

    2008-01-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed

  13. Shear-induced chaos

    Science.gov (United States)

    Lin, Kevin K.; Young, Lai-Sang

    2008-05-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed.

  14. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  15. Study on shear properties of coral sand under cyclic simple shear condition

    Science.gov (United States)

    Ji, Wendong; Zhang, Yuting; Jin, Yafei

    2018-05-01

    In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.

  16. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  17. Effects of nanoscale density inhomogeneities on shearing fluids

    DEFF Research Database (Denmark)

    Ben, Dalton,; Peter, Daivis,; Hansen, Jesper Schmidt

    2013-01-01

    It is well known that density inhomogeneities at the solid-liquid interface can have a strong effect on the velocity profile of a nanoconfined fluid in planar Poiseuille flow. However, it is difficult to control the density inhomogeneities induced by solid walls, making this type of system...... systems. Using the sinusoidal transverse force method to produce shearing velocity profiles and the sinusoidal longitudinal force method to produce inhomogeneous density profiles, we are able to observe the interactions between the two property inhomogeneities at the level of individual Fourier components....... This gives us a method for direct measurement of the coupling between the density and velocity fields and allows us to introduce various feedback control mechanisms which customize fluid behavior in individual Fourier components. We briefly discuss the role of temperature inhomogeneity and consider whether...

  18. TAO2000 V2 computer-assisted force feedback tele-manipulators used as maintenance and production tools at the AREVA NC-La Hague fuel recycling plant

    International Nuclear Information System (INIS)

    Geffard, Franck; Garrec, Philippe; Piolain, Gerard; Brudieu, Marie-Anne; Thro, Jean-Francois; Coudray, Alain; Lelann, Eric

    2012-01-01

    During a 15-year joint research program, French Atomic Energy Agency Interactive Robotics Laboratory (CEA LIST) and AREVA have developed several remote operation devices, also called tele-robots. Some of them are now commonly used for maintenance operations at the AREVA NC (Nuclear Cycle) La Hague reprocessing plant. Since the first maintenance operation in 2005, several other successful interventions have been realized using the industrial MA23/RX170 tele-manipulation system. Moreover, since 2010, the through-the-wall tele-robot named MT200 TAO based on the slave arm of the MSM MT200 (La Calhene TM ), has been evaluated in an active production cell at the AREVA NC La Hague fuel recycling plant. Although these evaluations are ongoing, the positive results obtained have led to an update and industrialization program. All these developments are based on the same generic control platform, called TAO2000 V2. TAO2000 V2 is the second release of the CEA LIST core software platform dedicated to computer aided force-feedback tele-operation (TAO is the French acronym for computer aided tele-operation). This paper presents all these developments resulting from the joint research program CEA LIST/AREVA. The TAO2000 V2 controller is first detailed, and then two maintenance operations using the industrial robot RX170 are presented: the removal of the nuclear fuel dissolver wheel rollers and the cleanup of the dissolver wheel inter-bucket spaces. Finally, the new MT200 TAO system and its evaluations at the AREVA NC La Hague facilities are discussed. (authors)

  19. Feedback System Theory

    Science.gov (United States)

    1978-11-01

    R 2. GOVT A $ SION NO. 3 RIEqLPýIVT’S.;TALOG NUMBER r/ 4. TITLE (and wbiFflT, -L M4 1 , FEEDBACK SYSTEM THEORY ~r Inter in- 6. PERFORMING ORG. REPORT...ANNUAL REPORT FEEDBACK SYSTEM THEORY AFOSR GRANT NO. 76-2946B Air Force Office of Scientific Research for year ending October 31, 1978 79 02 08 L|I...re less stringent than in other synthesis techniques which cannot handle significant parameter uncertainty. _I FEEDBACK SYSTEM THEORY 1. Introduction

  20. National Beef Tenderness Survey-2010: Warner-Bratzler shear force values and sensory panel ratings for beef steaks from United States retail and food service establishments.

    Science.gov (United States)

    Guelker, M R; Haneklaus, A N; Brooks, J C; Carr, C C; Delmore, R J; Griffin, D B; Hale, D S; Harris, K B; Mafi, G G; Johnson, D D; Lorenzen, C L; Maddock, R J; Martin, J N; Miller, R K; Raines, C R; VanOverbeke, D L; Vedral, L L; Wasser, B E; Savell, J W

    2013-02-01

    The tenderness and palatability of retail and food service beef steaks from across the United States (12 cities for retail, 5 cities for food service) were evaluated using Warner-Bratzler shear (WBS) and consumer sensory panels. Subprimal postfabrication storage or aging times at retail establishments averaged 20.5 d with a range of 1 to 358 d, whereas postfabrication times at the food service level revealed an average time of 28.1 d with a range of 9 to 67 d. Approximately 64% of retail steaks were labeled with a packer/processor or store brand. For retail, top blade had among the lowest (P 0.05) in WBS values between moist-heat and dry-heat cookery methods for the top round and bottom round steaks or between enhanced (contained salt or phosphate solution) or nonenhanced steaks. Food service top loin and rib eye steaks had the lowest (P food service top loin steaks received among the greatest (P food service rib eye steaks received the greatest ratings (P food service steaks were greater (P Choice, and Low Choice groups. The WBS values and sensory ratings were comparable to the last survey, signifying that no recent or substantive changes in tenderness have occurred.

  1. Meniscal shear stress for punching.

    Science.gov (United States)

    Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek

    2009-01-01

    Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.

  2. Shear and foundation effects on crack root rotation and mode-mixity in moment- and force-loaded single cantilever beam sandwich specimen

    DEFF Research Database (Denmark)

    Saseendran, Vishnu; Carlsson, Leif A.; Berggreen, Christian

    2017-01-01

    Foundation effects play a crucial role in sandwich fracture specimens with a soft core. Accurate estimation of deformationcharacteristics at the crack front is vital in understanding compliance, energy release rate and mode-mixity infracture test specimens. Beam on elastic foundation analysis...... modulus is proposed that closely agrees with the numerical compliance and energy release rate results forall cases considered. An analytical expression for crack root rotation of the loaded upper face sheet provides consistentresults for both loading configurations. For the force-loaded single cantilever...

  3. Formativ Feedback

    DEFF Research Database (Denmark)

    Hyldahl, Kirsten Kofod

    Denne bog undersøger, hvordan lærere kan anvende feedback til at forbedre undervisningen i klasselokalet. I denne sammenhæng har John Hattie, professor ved Melbourne Universitet, udviklet en model for feedback, hvilken er baseret på synteser af meta-analyser. I 2009 udgav han bogen "Visible...

  4. Atributos de qualidade da carne de paca (Agouti paca: perfil sensorial e força de cisalhamento Quality attributes of paca meat (Agouti paca: sensory profile and shear force

    Directory of Open Access Journals (Sweden)

    C. Gomes

    2013-04-01

    Full Text Available Avaliaram-se as características sensoriais e determinou-se a força de cisalhamento de cortes de carne de paca (Agouti paca. As análises foram realizadas nos cortes desossados de paleta, lombo e pernil de nove pacas, preparados por cocção até a temperatura interna de 70ºC. A avaliação de aspecto, cor, sabor, odor e maciez foi realizada pela aplicação de teste afetivo a 146 provadores, utilizando-se escala hedônica, e a força de cisalhamento foi determinada pela técnica Warner Bratzler. Na avaliação sensorial, os cortes de paleta, lombo e pernil de paca mostraram diferença significativa (p0,05 entre os cortes, que se mostraram igualmente macios. A carne de paca apresentou-se sensorialmente semelhante à carne suína e com boa aceitação pelos consumidores. O estudo evidenciou o potencial da paca como uma espécie silvestre para a produção comercial de carne para o mercado de carnes vermelhas ou exóticas.Sensory characteristics and shear force of paca meat (Agouti paca were assessed in this study. Analyses were performed in the bonelessshoulder,loin andhamobtained from nine paca carcassesprepared by cookinguntil reaching the internal temperatureof 70°C. The evaluation of flavor, aroma, color, appearance and tenderness was carried out by the application of an affective test using the hedonic scaleand a 146 consumer panel. Shear force was determined by the Warner-Bratzler technique. Shoulder, loin and ham had significant differences (p 0.05 among the cuts, which were similarly tender. Paca meat was found to resemble pork meat in sensory evaluation and had good acceptance by consumers. This study showed the potential of paca (Agouti paca asa wild species for meat production in the red or exotic meat market.

  5. Shear failure of granular materials

    Science.gov (United States)

    Degiuli, Eric; Balmforth, Neil; McElwaine, Jim; Schoof, Christian; Hewitt, Ian

    2012-02-01

    Connecting the macroscopic behavior of granular materials with the microstructure remains a great challenge. Recent work connects these scales with a discrete calculus [1]. In this work we generalize this formalism from monodisperse packings of disks to 2D assemblies of arbitrarily shaped grains. In particular, we derive Airy's expression for a symmetric, divergence-free stress tensor. Using these tools, we derive, from first-principles and in a mean-field approximation, the entropy of frictional force configurations in the Force Network Ensemble. As a macroscopic consequence of the Coulomb friction condition at contacts, we predict shear failure at a critical shear stress, in accordance with the Mohr-Coulomb failure condition well known in engineering. Results are compared with numerical simulations, and the dependence on the microscopic geometric configuration is discussed. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  6. Simulation of shear thickening in attractive colloidal suspensions.

    Science.gov (United States)

    Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F

    2017-03-01

    The influence of attractive forces between particles under conditions of large particle volume fraction, ϕ, is addressed using numerical simulations which account for hydrodynamic, Brownian, conservative and frictional contact forces. The focus is on conditions for which a significant increase in the apparent viscosity at small shear rates, and possibly the development of a yield stress, is observed. The high shear rate behavior for Brownian suspensions has been shown in recent work [R. Mari, R. Seto, J. F. Morris and M. M. Denn PNAS, 2015, 112, 15326-15330] to be captured by the inclusion of pairwise forces of two forms, one a contact frictional interaction and the second a repulsive force often found in stabilized colloidal dispersions. Under such conditions, shear thickening is observed when shear stress is comparable to the sum of the Brownian stress, kT/a 3 , and a characteristic stress based on the combination of interparticle force, i.e. σ ∼ F 0 /a 2 with kT the thermal energy, F 0 the repulsive force scale and a the particle radius. At sufficiently large ϕ, this shear thickening can be very abrupt. Here it is shown that when attractive interactions are present with the noted forces, the shear thickening is obscured, as the viscosity shear thins with increasing shear rate, eventually descending from an infinite value (yield stress conditions) to a plateau at large stress; this plateau is at the same level as the large-shear rate viscosity found in the shear thickened state without attractive forces. It is shown that this behavior is consistent with prior observations in shear thickening suspensions modified to be attractive through depletion flocculation [V. Gopalakrishnan and C. F. Zukoski J. Rheol., 2004, 48, 1321-1344]. The contributions of the contact, attractive, and hydrodynamics forces to the bulk stress are presented, as are the contact networks found at different attractive strengths.

  7. The effect of acoustic forcing on an airfoil tonal noise mechanism.

    Science.gov (United States)

    Schumacher, Karn L; Doolan, Con J; Kelso, Richard M

    2014-08-01

    The response of the boundary layer over an airfoil with cavity to external acoustic forcing, across a sweep of frequencies, was measured. The boundary layer downstream of the cavity trailing edge was found to respond strongly and selectively at the natural airfoil tonal frequencies. This is considered to be due to enhanced feedback. However, the shear layer upstream of the cavity trailing edge did not respond at these frequencies. These findings confirm that an aeroacoustic feedback loop exists between the airfoil trailing edge and a location near the cavity trailing edge.

  8. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  9. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-01-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear

  10. Feedback Networks

    OpenAIRE

    Zamir, Amir R.; Wu, Te-Lin; Sun, Lin; Shen, William; Malik, Jitendra; Savarese, Silvio

    2016-01-01

    Currently, the most successful learning models in computer vision are based on learning successive representations followed by a decision layer. This is usually actualized through feedforward multilayer neural networks, e.g. ConvNets, where each layer forms one of such successive representations. However, an alternative that can achieve the same goal is a feedback based approach in which the representation is formed in an iterative manner based on a feedback received from previous iteration's...

  11. Analysis of the Shear Behavior of Stubby Y-Type Perfobond Rib Shear Connectors for a Composite Frame Structure.

    Science.gov (United States)

    Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil

    2017-11-22

    Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.

  12. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  13. Shear induced orientation of edible fat and chocolate crystals

    Science.gov (United States)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    Shear-induced orientation of fat crystallites was observed during crystallization of cocoa butter, milk fat, stripped milk fat and palm oil. This universal effect was observed in systems crystallized under high shear. The minor polar components naturally present in milk fat were found to decrease the shear-induced orientation effect in this system. The competition between Brownian and shear forces, described by the Peclet number, determines the crystallite orientation. The critical radius size, from the Gibbs-Thomson equation, provides a tool to understand the effect of shear at the onset stages of crystallization.

  14. Seismic behavior of reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.

    1989-01-01

    Reinforced concrete shear walls have an important contribution to building stiffness. So, it is necessary to know their behavior under seismic loads. The ultimate behavior study of shear walls subjected to dynamic loadings includes: - a description of the nonlinear global model based on cyclic static tests, - nonlinear time history calculations for various forcing functions. The comparison of linear and nonlinear results shows important margins related to the ductility when the bandwidth of the forcing function is narrow and centred on the wall natural frequency

  15. Beam bunch feedback

    International Nuclear Information System (INIS)

    Lambertson, G.

    1995-09-01

    When the electromagnetic fields that are excited by the passage of a bundle of charged particles persist to act upon bunches that follow, then the motions of the bunches are coupled. This action between bunches circulating on a closed orbit can generate growing patterns of bunch excursions. Such growth can often be suppressed by feedback systems that detect the excursion and apply corrective forces to the bunches. To be addressed herein is feedback that acts on motions of the bunch body centers. In addition to being useful for suppressing the spontaneous growth of coupled-bunch motions, such feedback can be used to damp transients in bunches injected into an accelerator or storage ring; for hadrons which lack strong radiation damping, feedback is needed to avoid emittance growth through decoherence. Motions excited by noise in magnetic fields or accelerating rf can also be reduced by using this feedback. Whether the action is on motions that are transverse to the closed orbit or longitudinal, the arrangement is the same. Bunch position is detected by a pickup and that signal is processed and directed to a kicker that may act upon the same bunch or some other portion of the collective beam pattern. Transverse motion is an oscillation with angular frequency ν perpendicular ω o where ω o is the orbital frequency 2π line-integral o. Longitudinal synchrotron oscillation occurs at frequency ω s = ν s ω o . The former is much more rapid, ν perpendicular being on the order of 10 while ν s is typically about 10 minus 1 to 10 minus 2

  16. Wall shear stress hot film sensor for use in gases

    International Nuclear Information System (INIS)

    Osorio, O D; Silin, N

    2011-01-01

    The purpose of this work is to present the construction and characterization of a wall shear stress hot film sensor for use in gases made with MEMS technology. For this purpose, several associated devices were used, including a constant temperature feedback bridge and a shear stress calibration device that allows the sensor performance evaluation. The sensor design adopted here is simple, economical and is manufactured on a flexible substrate allowing its application to curved surfaces. Stationary and transient wall shear stress tests were carried on by means of the calibration device, determining its performance for different conditions.

  17. Adiabatic shear localization in ultrafine grained 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083 (China); Ma, Rui; Zhou, Jindian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zezhou; Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Huang, Xiaoxia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Localized shear is an important mode of deformation; it leads to catastrophic failure with low ductility, and occurs frequently during high strain-rate deformation. The hat-shaped specimen has been successfully used to generate shear bands under controlled shock-loading tests. The microstructure in the forced shear band was characterized by optical microscopy, microhardness, and transmission electron microscopy. The true flow stress in the shear region can reach 800 MPa where the strain is about 2.2. The whole shear localization process lasts for about 100 μs. The shear band is a long and straight band distinguished from the matrix by boundaries. It can be seen that the grains in the boundary of the shear band are highly elongated along the shear direction and form the elongated cell structures (0.2 µm in width), and the core of the shear band consists of a number of recrystallized equiaxed grains with 0.2−0.3 µm in diameters, and the second phase particles distribute in the boundary of the ultrafine equiaxed new grains. The calculated temperature in the shear band can reach about 667 K. Finally, the formation of the shear band in the ultrafine grained 6061 aluminum alloy and its microstructural evolution are proposed.

  18. Object discrimination using electrotactile feedback.

    Science.gov (United States)

    Arakeri, Tapas J; Hasse, Brady A; Fuglevand, Andrew J

    2018-04-09

    A variety of bioengineering systems are being developed to restore tactile sensations in individuals who have lost somatosensory feedback because of spinal cord injury, stroke, or amputation. These systems typically detect tactile force with sensors placed on an insensate hand (or prosthetic hand in the case of amputees) and deliver touch information by electrically or mechanically stimulating sensate skin above the site of injury. Successful object manipulation, however, also requires proprioceptive feedback representing the configuration and movements of the hand and digits. Therefore, we developed a simple system that simultaneously provides information about tactile grip force and hand aperture using current amplitude-modulated electrotactile feedback. We evaluated the utility of this system by testing the ability of eight healthy human subjects to distinguish among 27 objects of varying sizes, weights, and compliances based entirely on electrotactile feedback. The feedback was modulated by grip-force and hand-aperture sensors placed on the hand of an experimenter (not visible to the subject) grasping and lifting the test objects. We were also interested to determine the degree to which subjects could learn to use such feedback when tested over five consecutive sessions. The average percentage correct identifications on day 1 (28.5%  ±  8.2% correct) was well above chance (3.7%) and increased significantly with training to 49.2%  ±  10.6% on day 5. Furthermore, this training transferred reasonably well to a set of novel objects. These results suggest that simple, non-invasive methods can provide useful multisensory feedback that might prove beneficial in improving the control over prosthetic limbs.

  19. Behavior of Tilted Angle Shear Connectors

    Science.gov (United States)

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  20. Behavior of Tilted Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Koosha Khorramian

    Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  1. Shear wave elastography with a new reliability indicator

    Directory of Open Access Journals (Sweden)

    Christoph F. Dietrich

    2016-09-01

    Full Text Available Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s. The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed. The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France, point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France. More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.

  2. Shear wave elastography with a new reliability indicator.

    Science.gov (United States)

    Dietrich, Christoph F; Dong, Yi

    2016-09-01

    Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.

  3. Structural learning in feedforward and feedback control.

    Science.gov (United States)

    Yousif, Nada; Diedrichsen, Jörn

    2012-11-01

    For smooth and efficient motor control, the brain needs to make fast corrections during the movement to resist possible perturbations. It also needs to adapt subsequent movements to improve future performance. It is important that both feedback corrections and feedforward adaptation need to be made based on noisy and often ambiguous sensory data. Therefore, the initial response of the motor system, both for online corrections and adaptive responses, is guided by prior assumptions about the likely structure of perturbations. In the context of correcting and adapting movements perturbed by a force field, we asked whether these priors are hard wired or whether they can be modified through repeated exposure to differently shaped force fields. We found that both feedback corrections to unexpected perturbations and feedforward adaptation to a new force field changed, such that they were appropriate to counteract the type of force field that participants had experienced previously. We then investigated whether these changes were driven by a common mechanism or by two separate mechanisms. Participants experienced force fields that were either temporally consistent, causing sustained adaptation, or temporally inconsistent, causing little overall adaptation. We found that the consistent force fields modified both feedback and feedforward responses. In contrast, the inconsistent force field modified the temporal shape of feedback corrections but not of the feedforward adaptive response. These results indicate that responses to force perturbations can be modified in a structural manner and that these modifications are at least partly dissociable for feedback and feedforward control.

  4. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.

    1999-11-01

    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  5. Shear-induced inflation of coronal magnetic fields

    International Nuclear Information System (INIS)

    Klimchuk, J.A.

    1990-01-01

    Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z) squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes. 38 refs

  6. In vivo wall shear measurements within the developing zebrafish heart.

    Directory of Open Access Journals (Sweden)

    R Aidan Jamison

    Full Text Available Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.

  7. In vivo wall shear measurements within the developing zebrafish heart.

    Science.gov (United States)

    Jamison, R Aidan; Samarage, Chaminda R; Bryson-Richardson, Robert J; Fouras, Andreas

    2013-01-01

    Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.

  8. The response of dense dry granular material to the shear reversal

    Science.gov (United States)

    Zhang, Jie; Ren, Jie; Farhadi, Somayeh; Behringer, Robert

    2008-11-01

    We have performed two dimensional granular experiments under pure shear using bidisperse photo-elastic disks. Starting from a stress free state, a square box filled with granular particles is subject to shear. The forward shears involved various number of steps, leading to maximum strains between 0.1 and 0.3. The area is kept constant during the shear. The network of force chains gradually built up as the strain increased, leading to increased pressure and shear stress. Reverse shear was then applied to the system. Depending on the initial packing fraction and the strain at which the shear is reversed, the force chain network built prior to the shear reversal may be destroyed completely or partially destroyed. Following the force chain weakening, when the reserve shear is continuously applied to the system, there is a force chain strengthening. Following each change of the system, contact forces of individual disks were measured by applying an inverse algorithm. We also kept track of the displacement and angle of rotation of every particle from frame to frame. We present the results for the structure failure and reconstruction during shear reversals. We also present data for stresses, contact force distributions and other statistical measures.

  9. Feedback stabilization experiments using l = 2 equilibrium windings in Scyllac

    International Nuclear Information System (INIS)

    Bartsch, R.R.; Cantrell, E.L.; Gribble, R.F.; Freese, K.B.; Handy, L.E.; Kristal, R.; Miller, G.; Quinn, W.E.

    1977-01-01

    The confinement time in the Scyllac Sector Feedback Experiment has been extended with a pre-programmed equilibrium compensation force. This force was produced by driving a current with a flexible waveform in an additional set of l = 2 windings

  10. Mechanical properties of jammed packings of frictionless spheres under an applied shear stress

    International Nuclear Information System (INIS)

    Liu Hao; Tong Hua; Xu Ning

    2014-01-01

    By minimizing a thermodynamic-like potential, we unbiasedly sample the potential energy landscape of soft and frictionless spheres under a constant shear stress. We obtain zero-temperature jammed states under desired shear stresses and investigate their mechanical properties as a function of the shear stress. As a comparison, we also obtain the jammed states from the quasistatic-shear sampling in which the shear stress is not well-controlled. Although the yield stresses determined by both samplings show the same power-law scaling with the compression from the jamming transition point J at zero temperature and shear stress, for finite size systems the quasistatic-shear sampling leads to a lower yield stress and a higher critical volume fraction at point J. The shear modulus of the jammed solids decreases with increasing shear stress. However, the shear modulus does not decay to zero at yielding. This discontinuous change of the shear modulus implies the discontinuous nature of the unjamming transition under nonzero shear stress, which is further verified by the observation of a discontinuous jump in the pressure from the jammed solids to the shear flows. The pressure jump decreases upon decompression and approaches zero at the critical-like point J, in analogy with the well-known phase transitions under an external field. The analysis of the force networks in the jammed solids reveals that the force distribution is more sensitive to the increase of the shear stress near point J. The force network anisotropy increases with increasing shear stress. The weak particle contacts near the average force and under large shear stresses it exhibit an asymmetric angle distribution. (special topic — non-equilibrium phenomena in soft matters)

  11. Thermal creep force: analysis and application

    OpenAIRE

    Wolfe, David M.

    2016-01-01

    Approved for public release; distribution is unlimited The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force, in particular, has been subject to differing interpretations of the direction in which it acts and its order of magnitude. A horizontal vane radiometer design is provided, which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kin...

  12. Interfacial shear behavior of composite flanged concrete beams

    Directory of Open Access Journals (Sweden)

    Moataz Awry Mahmoud

    2014-08-01

    Full Text Available Composite concrete decks are commonly used in the construction of highway bridges due to their rapid constructability. The interfacial shear transfer between the top slab and the supporting beams is of great significance to the overall deck load carrying capacity and performance. Interfacial shear capacity is directly influenced by the distribution and the percentage of shear connectors. Research and design guidelines suggest the use of two different approaches to quantify the required interfacial shear strength, namely based on the maximum compressive forces in the flange at mid span or the maximum shear flow at the supports. This paper investigates the performance of flanged reinforced concrete composite beams with different shear connector’s distribution and reinforcing ratios. The study incorporated both experimental and analytical programs for beams. Key experimental findings suggest that concentrating the connectors at the vicinity of the supports enhances the ductility of the beam. The paper proposes a simple and straight forward approach to estimate the interfacial shear capacity that was proven to give good correlation with the experimental results and selected code provisions. The paper presents a method to predict the horizontal shear force between precast beams and cast in-situ slabs.

  13. Structural behavior of human lumbar intervertebral disc under direct shear.

    Science.gov (United States)

    Schmidt, Hendrik; Häussler, Kim; Wilke, Hans-Joachim; Wolfram, Uwe

    2015-03-18

    The intervertebral disc (IVD) is a complex, flexible joint between adjacent vertebral bodies that provides load transmission while permitting movements of the spinal column. Finite element models can be used to help clarify why and how IVDs fail or degenerate. To do so, it is of importance to validate those models against controllable experiments. Due to missing experimental data, shear properties are not used thus far in validating finite element models. This study aimed to investigate the structural shear properties of human lumbar IVDs in posteroanterior (PA) and laterolateral (LL) loading directions. Fourteen lumbar IVDs (median age: 49 years) underwent direct shear in PA and LL loading directions. A custom-build shear device was used in combination with a materials testing machine to load the specimens until failure. Shear stiffness, ultimate shear force and displacement, and work to failure were determined. Each specimen was tested until complete or partial disruption. Median stiffness in PA direction was 490 N/mm and in LL direction 568 N/mm. Median ultimate shear force in the PA direction was 2,877 N and in the LL direction 3,199 N. Work to failure was 12 Nm in the PA and 9 Nm in the LL direction. This study was an experiment to subject IVDs to direct shear. The results could help us to understand the structure and function of IVDs with regard to mechanical spinal stability, and they can be used to validate finite element models of the IVD.

  14. Shear behavior of concrete beams externally prestressed with Parafil ropes

    Directory of Open Access Journals (Sweden)

    A.H. Ghallab

    2013-03-01

    Full Text Available Although extensive work has been carried out investigating the use of external prestressing system for flexural strengthening, a few studies regarding the shear behavior of externally prestressed beams can be found. Five beams, four of them were externally strengthened using Parafil rope, were loaded up to failure to investigate the effect of shear span/depth ratio, external prestressing force and concrete strength on their shear behavior. Test results showed that the shear span to depth ratio has a significant effect on both the shear strength and failure mode of the strengthened beams and the presence of external prestressing force increased the ultimate load of the tested beams by about 75%. Equations proposed by different codes for both the conventional reinforced concrete beams and for ordinary prestressed beams were used to evaluate the obtained experimental results. In general, codes equations showed a high level of conservatism in predicting the shear strength of the beams. Also, using the full strength rather than half of the concrete shear strength in the Egyptian code PC-method improves the accuracy of the calculated ultimate shear strength.

  15. Shear modulation experiments with ECCD on TCV

    International Nuclear Information System (INIS)

    Cirant, S.; Alberti, S.; Gandini, F.; Behn, R.; Goodman, T.P.; Nikkola, P.

    2006-01-01

    Anomalous electron transport is determined by turbulence, which in turn is affected by magnetic shear. A novel application of electron cyclotron current drive (ECCD), aiming at localized shear modulation, has been applied on the TCV tokamak for experiments on shear-dependent electron transport. Pairs of EC beams, absorbed at the same radius, with one oriented for co- and the other for counter-injection, are modulated out of phase in order to force a local modulation of current-density at constant input power. Off-axis deposition (ρ dep = 0.24) is performed to avoid the central region, where the low heat flux would make transport analysis difficult. In addition some sawteeth control is achieved in this way. A significant impact on local shear is achieved with I ECCD ∼ 0.1I OH , even when the modulation period is much shorter than the current diffusion time across the whole plasma radius. The main result is that although source (heat and particle) terms are constant, both electron density and temperature are modulated during alternated ECCD. Once equilibrium effects are taken into account for appropriate mapping of Thomson scattering measurements onto flux coordinates, modulation of T e and electron pressure, peaked on-axis, is confirmed at all radii internal to EC deposition. The best confinement occurs for co-injection, in which case a local decrease (∼55%) in the magnetic shear causes a decrease in the electron thermal diffusivity of a similar amount (∼65%)

  16. Feedback and Incentives

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire

    2009-01-01

    This paper experimentally investigates the impact of different pay schemes and relative performance feedback policies on employee effort. We explore three feedback rules: no feedback on relative performance, feedback given halfway through the production period, and continuously updated feedback. ...... behind, and front runners do not slack off. But in both pay schemes relative performance feedback reduces the quality of the low performers' work; we refer to this as a "negative quality peer effect"....

  17. Shear-Rate-Dependent Behavior of Clayey Bimaterial Interfaces at Landslide Stress Levels

    Science.gov (United States)

    Scaringi, Gianvito; Hu, Wei; Xu, Qiang; Huang, Runqiu

    2018-01-01

    The behavior of reactivated and first-failure landslides after large displacements is controlled by the available shear resistance in a shear zone and/or along slip surfaces, such as a soil-bedrock interface. Among the factors influencing the resistance parameter, the dependence on the shear rate can trigger catastrophic evolution (rate-weakening) or exert a slow-down feedback (rate-strengthening) upon stress perturbation. We present ring-shear test results, performed under various normal stresses and shear rates, on clayey soils from a landslide shear zone, on its parent lithology and other lithologies, and on clay-rock interface samples. We find that depending on the materials in contact, the normal stress, and the stress history, the shear-rate-dependent behaviors differ. We discuss possible models and underlying mechanisms for the time-dependent behavior of landslides in clay soils.

  18. Strain gradient drives shear banding in metallic glasses

    Science.gov (United States)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  19. Brazilian consumers' perception of tenderness of beef steaks classified by shear force and taste Percepção pelos consumidores brasileiros da maciez da carne classificada pela força de cisalhamento e sabor

    Directory of Open Access Journals (Sweden)

    Eduardo Francisquine Delgado

    2006-06-01

    Full Text Available The knowledge of consumer perception of meat tenderness and taste is essential to forecast a Brazilian quality value-based beef market. This study aimed to verify perception of tender (WBSF 4.8 kg strip loin steak or uncharacteristic (calcium-treated/Ca-IM and normal (non-calcium/NO-Ca meat taste by consumers according to gender, age, education and income levels. Steaks were previously classified by shear force measurements as tender or tough. Each consumer was served a paired sample of one tender and of one tough steak, which were either Ca-IM or NO-Ca treated before tenderness classification. Three hundred and eight consumers answered a nine-point intensity (tenderness and hedonic (taste scales evaluation questionnaire. Among consumers, 82.2% indicated beef as first choice meat products, 75.3% had beef at least four times a week; 39.3% considered taste as the most important meat attribute and 30.2% considered tenderness; 75.8% were males; 73.6% were 21 to 55 years old; 56.7% had college education; 76.6% had monthly income higher than US $ 435,00. Tender steaks were scored highest (P O conhecimento da percepção de maciez e sabor da carne bovina pelo consumidor é essencial para vislumbrar um mercado brasileiro que pague por qualidade. Este estudo avaliou a percepção diferenciada de contra-filé macio (WBSF 4.8 kg, ou ainda com sabor não característico (imersão em Ca/ Ca-IM ou normal (sem cálcio/ NO-Ca de acordo com sexo, faixa etária, e nível de escolaridade formal e renda dos consumidores. Os bifes foram pareados em amostras macia/dura e Ca-IM/NO-Ca, e servidos a 308 consumidores que responderam a um questionário apresentando escalas de intensidade (maciez e hedônica (sabor de nove pontos. O perfil dos consumidores mostrava que: 82,2% indicaram carne bovina como sua primeira escolha entre as carnes; 75,3% consumiam carne bovina pelo menos quatro vezes por semana; 39,3% consideravam sabor como o atributo mais importante durante o

  20. Self-organization in circular shear layers

    DEFF Research Database (Denmark)

    Bergeron, K.; Coutsias, E.A.; Lynov, Jens-Peter

    1996-01-01

    Experiments on forced circular shear layers performed in both magnetized plasmas and in rotating fluids reveal qualitatively similar self-organization processes leading to the formation of patterns of coherent vortical structures with varying complexity. In this paper results are presented from...... both weakly nonlinear analysis and full numerical simulations that closely reproduce the experimental observations. Varying the Reynolds number leads to bifurcation sequences accompanied by topological changes in the distribution of the coherent structures as well as clear transitions in the total...

  1. Shear induced phase transitions induced in edible fats

    Science.gov (United States)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.

  2. Skriftlig feedback i engelskundervisningen

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher

    2017-01-01

    The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools.......The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools....

  3. Student Engagement with Feedback

    Science.gov (United States)

    Scott, Jon; Shields, Cathy; Gardner, James; Hancock, Alysoun; Nutt, Alex

    2011-01-01

    This report considers Biological Sciences students' perceptions of feedback, compared with those of the University as a whole, this includes what forms of feedback were considered most useful and how feedback used. Compared with data from previous studies, Biological Sciences students gave much greater recognition to oral feedback, placing it on a…

  4. Interaction of equal-size bubbles in shear flow.

    Science.gov (United States)

    Prakash, Jai; Lavrenteva, Olga M; Byk, Leonid; Nir, Avinoam

    2013-04-01

    The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors. We report on experiments showing the dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the experimental observations.

  5. Keyed shear joints

    DEFF Research Database (Denmark)

    Hansen, Klaus

    This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...

  6. An underwater shear compactor

    International Nuclear Information System (INIS)

    Biver, E.; Sims, J.

    1997-01-01

    This paper, originally presented at the WM'96 Conference in Tucson Arizona, describes a concept of a specialised decommissioning tool designed to operate underwater and to reduce the volume of radioactive components by shearing and compacting. The shear compactor was originally conceived to manage the size reduction of a variety of decommissioned stainless steel tubes stored within a reactor fuel cooling pond and which were consuming a substantial volume of the pond. The main objective of this tool was to cut the long tubes into shorter lengths and to compact them into a flat rectangular form which could be stacked on the pond floor, thus saving valuable space. The development programme, undertaken on this project, investigated a wide range of factors which could contribute to an extended cutting blade performance, ie: materials of construction, cutting blade shape and cutting loads required, shock effects, etc. The second phase was to review other aspects of the design, such as radiological protection, cutting blade replacement, maintenance, pond installation and resultant wall loads, water hydraulics, collection of products of shearing/compacting operations, corrosion of the equipment, control system, operational safety and the ability of the equipment to operate in dry environments. The paper summarises the extended work programme involved with this shear compactor tool. (author)

  7. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...

  8. On the self-organizing process of large scale shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Newton, Andrew P. L. [Department of Applied Maths, University of Sheffield, Sheffield, Yorkshire S3 7RH (United Kingdom); Kim, Eun-jin [School of Mathematics and Statistics, University of Sheffield, Sheffield, Yorkshire S3 7RH (United Kingdom); Liu, Han-Li [High Altitude Observatory, National Centre for Atmospheric Research, P. O. BOX 3000, Boulder, Colorado 80303-3000 (United States)

    2013-09-15

    Self organization is invoked as a paradigm to explore the processes governing the evolution of shear flows. By examining the probability density function (PDF) of the local flow gradient (shear), we show that shear flows reach a quasi-equilibrium state as its growth of shear is balanced by shear relaxation. Specifically, the PDFs of the local shear are calculated numerically and analytically in reduced 1D and 0D models, where the PDFs are shown to converge to a bimodal distribution in the case of finite correlated temporal forcing. This bimodal PDF is then shown to be reproduced in nonlinear simulation of 2D hydrodynamic turbulence. Furthermore, the bimodal PDF is demonstrated to result from a self-organizing shear flow with linear profile. Similar bimodal structure and linear profile of the shear flow are observed in gulf stream, suggesting self-organization.

  9. Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices

    Science.gov (United States)

    Wambaugh, J. F.; Marchesoni, F.; Nori, Franco

    2003-04-01

    Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in http://www-personal.engin.umich.edu/˜nori/channel/

  10. Research Concerning the Shearing Strength of Black Locust Wood

    Directory of Open Access Journals (Sweden)

    Mihaela POROJAN

    2011-06-01

    Full Text Available The paper presents the experimental resultsobtained for the shearing strength of black locustwood (Robinia pseudacacia L. harvested from twogeographical areas (North and South of Romania.Wood is subjected to shearing stress when usedwithin different fields, and especially inconstructions. Tangential stresses are produced inthe shearing sections and they are influenced by thestructure of wood through the position of theshearing plane and of the force direction towards thegrain. Accordingly, several shearing types arepossible. The shearing strengths for the three mainshearing types, both on radial and tangentialdirection were determined within the present study.The evaluation of data was achieved by using theANOVA analysis, in order to test the level ofsignificance depending on the shearing planeorientation and the harvesting area. The obtainedresults were compared to the values mentionedwithin reference literature for this wood species andtwo other hardwood species with similar density. It isworth to be mentioned that the shearing strengths ofblack locust wood from Romania (both from Northand South are generally higher than those indicatedby reference literature for oak and beech. Thisrecommends black locust wood as constructionwood and for other applications where wood issubjected to shearing stress.

  11. Shear of ordinary and elongated granular mixtures

    Science.gov (United States)

    Hensley, Alexander; Kern, Matthew; Marschall, Theodore; Teitel, Stephen; Franklin, Scott

    2015-03-01

    We present an experimental and computational study of a mixture of discs and moderate aspect-ratio ellipses under two-dimensional annular planar Couette shear. Experimental particles are cut from acrylic sheet, are essentially incompressible, and constrained in the thin gap between two concentric cylinders. The annular radius of curvature is much larger than the particles, and so the experiment is quasi-2d and allows for arbitrarily large pure-shear strains. Synchronized video cameras and software identify all particles and track them as they move from the field of view of one camera to another. We are particularly interested in the global and local properties as the mixture ratio of discs to ellipses varies. Global quantities include average shear rate and distribution of particle species as functions of height, while locally we investigate the orientation of the ellipses and non-affine events that can be characterized as shear transformational zones or possess a quadrupole signature observed previously in systems of purely circular particles. Discrete Element Method simulations on mixtures of circles and spherocylinders extend the study to the dynamics of the force network and energy dissipated as the system evolves. Supported by NSF CBET #1243571 and PRF #51438-UR10.

  12. CAT LIDAR wind shear studies

    Science.gov (United States)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  13. Ballooning instabilities in tokamaks with sheared toroidal flows

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.; Chen, L.

    1990-11-01

    The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of the mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs

  14. Anomalous feedback and negative domain wall resistance

    International Nuclear Information System (INIS)

    Cheng, Ran; Xiao, Di; Zhu, Jian-Gang

    2016-01-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α . The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine. (paper)

  15. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  16. Gelation under shear

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  17. Forflytning: shear og friktion

    DEFF Research Database (Denmark)

    2005-01-01

    friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...

  18. Feedback on Feedback--Does It Work?

    Science.gov (United States)

    Speicher, Oranna; Stollhans, Sascha

    2015-01-01

    It is well documented that providing assessment feedback through the medium of screencasts is favourably received by students and encourages deeper engagement with the feedback given by the language teacher (inter alia Abdous & Yoshimura, 2010; Brick & Holmes, 2008; Cann, 2007; Stannard, 2007). In this short paper we will report the…

  19. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed . The

  20. Phalanx force magnitude and trajectory deviation increased during power grip with an increased coefficient of friction at the hand-object interface.

    Science.gov (United States)

    Enders, Leah R; Seo, Na Jin

    2011-05-17

    This study examined the effect of friction between the hand and grip surface on a person's grip strategy and force generation capacity. Twelve young healthy adults performed power grip exertions on an instrumented vertical cylinder with the maximum and 50% of maximum efforts (far above the grip force required to hold the cylinder), while normal and shear forces at each phalanx of all five fingers in the direction orthogonal to the gravity were recorded. The cylinder surface was varied for high-friction rubber and low-friction paper coverings. An increase in surface friction by replacing the paper covering with the rubber covering resulted in 4% greater mean phalanx normal force (perpendicular to the cylinder surface) and 22% greater mean phalanx shear force in either the proximal or distal direction of the digits (pfriction with the rubber surface compared to the paper surface was associated with a 20% increase in the angular deviation of the phalanx force from the direction normal to the cylinder surface (p<0.05). This study demonstrates that people significantly changed the magnitude and direction of phalanx forces depending on the surface they gripped. Such change in the grip strategy appears to help increase grip force generation capacity. This finding suggests that a seemingly simple power grip exertion involves sensory feedback-based motor control, and that people's power grip capacity may be reduced in cases of numbness, glove use, or injuries resulting in reduced sensation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. A Novel Geometry for Shear Test Using Axial Tensile Setup

    Directory of Open Access Journals (Sweden)

    Sibo Yuan

    2018-05-01

    Full Text Available This paper studies a novel geometry for the in-plane shear test performed with an axial electromechanical testing machine. In order to investigate the influence of the triaxiality rate on the mechanical behavior, different tests will be performed on the studied material: simple tensile tests, large tensile tests and shear tests. For the whole campaign, a common equipment should be employed to minimize the impact of the testing device. As a consequence, for the shear tests, the geometry of the specimen must be carefully designed in order to adapt the force value and make it comparable to the one obtained for the tensile tests. Like most of the existing shear-included tensile test specimens, the axial loading is converted to shear loading at a particular region through the effect of geometry. A symmetric shape is generally preferred, since it can restrict the in-plane rotation of the shear section, keep shear increasing in a more monotonic path and double the force level thanks to the two shear zones. Due to the specific experimental conditions, such as dimensions of the furnace and the clamping system, the position of the extensometer or the restriction of sheet thickness (related to the further studies of size effect at mesoscale and hot temperature, several geometries were brought up and evaluated in an iterative procedure via finite element simulations. Both the numerical and experimental results reveal that the final geometry ensures some advantages. For instance, a relatively low triaxiality in the shear zone, limited in-plane rotation and no necking are observed. Moreover, it also prevents any out-of-plane displacement of the specimen which seems to be highly sensitive to the geometry, and presents a very limited influence of the material and the thickness.

  2. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks

    International Nuclear Information System (INIS)

    Walton, O.R.; Braun, R.L.

    1986-01-01

    Employing nonequilibrium molecular-dynamics methods the effects of two energy loss mechanisms on viscosity, stress, and granular-temperature in assemblies of nearly rigid, inelastic frictional disks undergoing steady-state shearing are calculated. Energy introduced into the system through forced shearing is dissipated by inelastic normal forces or through frictional sliding during collisions resulting in a natural steady-state kinetic energy density (granular-temperature) that depends on the density and shear rate of the assembly and on the friction and inelasticity properties of the disks. The calculations show that both the mean deviatoric particle velocity and the effective viscosity of a system of particles with fixed friction and restitution coefficients increase almost linearly with strain rate. Particles with a velocity-dependent coefficient of restitution show a less rapid increase in both deviatoric velocity and viscosity as strain rate increases. Particles with highly dissipative interactions result in anisotropic pressure and velocity distributions in the assembly, particularly at low densities. At very high densities the pressure also becomes anisotropic due to high contact forces perpendicular to the shearing direction. The mean rotational velocity of the frictional disks is nearly equal to one-half the shear rate. The calculated ratio of shear stress to normal stress varies significantly with density while the ratio of shear stress to total pressure shows much less variation. The inclusion of surface friction (and thus particle rotation) decreases shear stress at low density but increases shear stress under steady shearing at higher densities

  3. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....

  4. Significance of Shear Wall in Multi-Storey Structure With Seismic Analysis

    Science.gov (United States)

    Bongilwar, Rajat; Harne, V. R.; Chopade, Aditya

    2018-03-01

    In past decades, shear walls are one of the most appropriate and important structural component in multi-storied building. Therefore, it would be very interesting to study the structural response and their systems in multi-storied structure. Shear walls contribute the stiffness and strength during earthquakes which are often neglected during design of structure and construction. This study shows the effect of shear walls which significantly affect the vulnerability of structures. In order to test this hypothesis, G+8 storey building was considered with and without shear walls and analyzed for various parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force. Significance of shear wall has been studied with the help of two models. First model is without shear wall i.e. bare frame and other another model is with shear wall considering opening also in it. For modeling and analysis of both the models, FEM based software ETABS 2016 were used. The analysis of all models was done using Equivalent static method. The comparison of results has been done based on same parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force.

  5. Kansas Department of Transportation column expert : ultimate shear capacity of circular columns using the simplified modified compression field theory : [technical summary].

    Science.gov (United States)

    2015-09-01

    Even though the behavior of concrete elements subjected to shear force has been : studied for many years, researchers do not have a full agreement on concrete : shear resistance. This is mainly because of the many different mechanisms : that affect t...

  6. Rateless feedback codes

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip

    2012-01-01

    This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....

  7. The Mythology of Feedback

    Science.gov (United States)

    Adcroft, Andy

    2011-01-01

    Much of the general education and discipline-specific literature on feedback suggests that it is a central and important element of student learning. This paper examines feedback from a social process perspective and suggests that feedback is best understood through an analysis of the interactions between academics and students. The paper argues…

  8. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    Science.gov (United States)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  9. High-mode-number ballooning modes in a heliotron/torsatron system: 1, Local magnetic shear

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-05-01

    The characteristics of the local magnetic shear, a quantity associated with high-mode-number ballooning mode stability, are considered in heliotron/torsatron devices that have a large Shafranov shift. The local magnetic shear is shown to vanish even in the stellarator-like region in which the global magnetic shear is positive. The reason for this is that the degree of the local compression of the poloidal magnetic field on the outer side of the torus, which maintains the toroidal force balance, is reduced in the stellarator-like region of global magnetic shear because the global rotational transform in heliotron/torsatron systems is a radially increasing function. This vanishing of the local magnetic shear is a universal property in heliotron/torsatron systems with a large Shafranov shift since it results from toroidal force balance in the stellarator-like global shear regime that is inherent to such systems

  10. Estimated strength of shear keys in concrete dams

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, D.D. [Hatch Energy, Niagara Falls, ON (Canada); Lum, K.K.Y. [BC Hydro, Burnaby, BC (Canada)

    2008-07-01

    BC Hydro requested that Hatch Energy review the seismic stability of Ruskin Dam which was constructed in 1930 at Hayward Lake in British Columbia. The concrete gravity dam is founded nearly entirely on rock in a narrow valley. The vertical joints between blocks are keyed and grouted. The strength of the shear keys was assessed when a non-linear finite element model found that significant forces were being transferred laterally to the abutments during an earthquake. The lateral transfer of loads to the abutment relies on the strength of the shear keys. The dynamic finite element analysis was used to determine the stability of the dam. A review of the shear strength measurements reported in literature showed that the measurements compared well to those obtained by BC Hydro from cores taken from Ruskin Dam. The cohesive strength obtained using the Griffith failure criteria was also in good agreement with both sets of measurements. A simple ultimate shear strength equation was developed using the Mohr-Coulomb failure criteria to determine combined cohesive and frictional strength of shear keys. Safety factors of 2.0 for static loads and 1.5 for seismic loads were proposed to reduce the ultimate strength to allowable values. It was concluded that given the relatively high shear strength established for the shear keys, the abutment rock or dam/abutment contact will control the amount of load which can arch to the abutments. 8 refs., 4 tabs., 5 figs.

  11. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.

    Science.gov (United States)

    Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2017-09-11

    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.

  12. Tensile and shear methods for measuring strength of bilayer tablets.

    Science.gov (United States)

    Chang, Shao-Yu; Li, Jian-Xin; Sun, Changquan Calvin

    2017-05-15

    Both shear and tensile measurement methods have been used to quantify interfacial bonding strength of bilayer tablets. The shear method is more convenient to perform, but reproducible strength data requires careful control of the placement of tablet and contact point for shear force application. Moreover, data obtained from the shear method depend on the orientation of the bilayer tablet. Although more time-consuming to perform, the tensile method yields data that are straightforward to interpret. Thus, the tensile method is preferred in fundamental bilayer tableting research to minimize ambiguity in data interpretation. Using both shear and tensile methods, we measured the mechanical strength of bilayer tablets made of several different layer combinations of lactose and microcrystalline cellulose. We observed a good correlation between strength obtained by the tensile method and carefully conducted shear method. This suggests that the shear method may be used for routine quality test of bilayer tablets during manufacturing because of its speed and convenience, provided a protocol for careful control of the placement of the tablet interface, tablet orientation, and blade is implemented. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Shear-Induced Membrane Fusion in Viscous Solutions

    KAUST Repository

    Kogan, Maxim

    2014-05-06

    Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion of 1,2-dioleoyl-sn-glycero-3- phosphocholine (DOPC) liposomes is observed in Couette flow with shear rates above 3000 s-1 provided that the medium is viscous enough. Liposome samples, prepared at different viscosities using a 0-50 wt % range of sucrose concentration, were studied by dynamic light scattering, lipid fusion assays using Förster resonance energy transfer (FRET), and linear dichroism (LD) spectroscopy. Liposomes in solutions with 40 wt % (or more) sucrose showed lipid fusion under shear forces. These results support the hypothesis that under suitable conditions lipid membranes may fuse in response to mechanical-force- induced stress. © 2014 American Chemical Society.

  14. TFTR plasma feedback systems

    International Nuclear Information System (INIS)

    Efthimion, P.; Hawryluk, R.J.; Hojsak, W.; Marsala, R.J.; Mueller, D.; Rauch, W.; Tait, G.D.; Taylor, G.; Thompson, M.

    1985-01-01

    The Tokamak Fusion Test Reactor employs feedback control systems for four plasma parameters, i.e. for plasma current, for plasma major radius, for plasma vertical position, and for plasma density. The plasma current is controlled by adjusting the rate of change of current in the Ohmic Heating (OH) coil system. Plasma current is continuously sensed by a Rogowski coil and its associated electronics; the error between it and a preprogrammed reference plasma current history is operated upon by a ''proportional-plusintegral-plus-derivative'' (PID) control algorithm and combined with various feedforward terms, to generate compensating commands to the phase-controlled thyristor rectifiers which drive current through the OH coils. The plasma position is controlled by adjusting the currents in Equilibrium Field and Horizontal Field coil systems, which respectively determine the vertical and radial external magnetic fields producing J X B forces on the plasma current. The plasma major radius position and vertical position, sensed by ''B /sub theta/ '' and ''B /sub rho/ '' magnetic flux pickup coils with their associated electronics, are controlled toward preprogrammed reference histories by allowing PID and feedforward control algorithms to generate commands to the EF and HF coil power supplies. Plasma density is controlled by adjusting the amount of gas injected into the vacuum vessel. Time-varying gains are used to combine lineaveraged plasma density measurements from a microwave interferometer plasma diagnostic system with vacuum vessel pressure measurements from ion gauges, with various other measurements, and with preprogrammed reference histories, to determine commands to piezoelectric gas injection valves

  15. Shear thinning behavior of monolayer liquid lubricant films measured by fiber wobbling method

    International Nuclear Information System (INIS)

    Hamamoto, Y; Itoh, S; Fukuzawa, K; Zhang, H

    2010-01-01

    It is essential to clarify mechanical properties of monolayer lubricant films coated on magnetic disks under shearing motion for designing future hard disk drives with ultra-low flying height. Many of previous researchers reported that strong shear rate dependence of viscoelasticity was one of the typical phenomena observed with molecularly thin liquid films. However, it has not been clarified whether or not perfluoropolyether (PFPE) lubricant films, which are used for the head-disk interface (HDI) lubrication, show shear thinning behavior under actual HDI conditions. In this study, we used the fiber wobbling method that can achieve both highly-sensitive shear force measurement and precise gap control and measured shear rate dependence of viscoelastic properties of monolayer PFPE films coated on the magnetic disk. Our experimental results showed that shear thinning does occur at high shear rate ranged from 10 2 to 10 6 s -1 .

  16. Electro—magnetic control of shear flow over a cylinder for drag reduction and lift enhancement

    International Nuclear Information System (INIS)

    Zhang Hui; Fan Bao-Chun; Chen Zhi-Hua; Chen Shuai; Li Hong-Zhi

    2013-01-01

    In this paper, the electro—magnetic control of a cylinder wake in shear flow is investigated numerically. The effects of the shear rate and Lorentz force on the cylinder wake, the distribution of hydrodynamic force, and the drag/lift phase diagram are discussed in detail. It is revealed that Lorentz force can be classified into the field Lorentz force and the wall Lorentz force and they affect the drag and lift forces independently. The drag/lift phase diagram with a shape of ''8'' consists of two closed curves, which correspond to the halves of the shedding cycle dominated by the upper and lower vortices respectively. The free stream shear (K > 0) induces the diagram to move downward and leftward, so that the average lift force directs toward the downside. With the upper Lorentz force, the diagram moves downwards and to the right by the field Lorentz force, thus resulting in the drag increase and the lift reduction, whereas it moves upward and to the left by the wall Lorentz force, leading to the drag reduction and the lift increase. Finally the diagram is dominated by the wall Lorentz force, thus moving upward and leftward. Therefore the upper Lorentz force, which enhances the lift force, can be used to overcome the lift loss due to the free stream shear, which is also obtained in the experiment. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Excited waves in shear layers

    Science.gov (United States)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  18. Designing shear-thinning

    Science.gov (United States)

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  19. Inductive shearing of drilling pipe

    Science.gov (United States)

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  20. Particle transport across a circular shear layer with coherent structures

    International Nuclear Information System (INIS)

    Nielsen, A.H.; Lynov, J.P.; Juul Rasmussen, J.

    1998-01-01

    In the study of the dynamics of coherent structures, forced circular shear flows offer many desirable features. The inherent quantisation of circular geometries due to the periodic boundary conditions makes it possible to design experiments in which the spatial and temporal complexity of the coherent structures can be accurately controlled. Experiments on circular shear flows demonstrating the formation of coherent structures have been performed in different physical systems, including quasi-neutral plasmas, non-neutral plasmas and rotating fluids. In this paper we investigate the evolution of such coherent structures by solving the forced incompressible Navier-Stokes equations numerically using a spectral code. The model is formulated in the context of a rotating fluid but apply equally well to low frequency electrostatic oscillations in a homogeneous magnetized plasma. In order to reveal the Lagrangian properties of the flow and in particular to investigate the transport capacity in the shear layer, passive particles are traced by the velocity field. (orig.)

  1. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  2. The Greenhouse Effect and Climate Feedbacks

    Science.gov (United States)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    This chapter reviews the theory of the greenhouse effect and climate feedback. It also compares the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan. The greenhouse effect traps infrared radiation in the atmosphere, thereby increasing surface temperature. It is one of many factors that affect a world's climate. (Others include solar luminosity and the atmospheric scattering and absorption of solar radiation.) A change in these factors — defined as climate forcing — may change the climate in a way that brings other processes — defined as feedbacks — into play. For example, when Earth's atmospheric carbon dioxide increases, warming the surface, the water vapor content of the atmosphere increases. This is a positive feedback on global warming because water vapor is itself a potent greenhouse gas. Many positive and negative feedback processes are significant in determining Earth's climate, and probably the climates of our terrestrial neighbors.

  3. Combined feedforward and feedback control of end milling system

    OpenAIRE

    Čuš, Franc; Župerl, Uroš; Balič, Jože

    2012-01-01

    Purpose: Purpose of this paper. An intelligent control system is presented that uses a combination of feedforward and feedback for cutting force control in end milling.Design/methodology/approach: The network is trained by the feedback output that is minimized during training and most control action for disturbance rejection is finally performed by the rapid feedforward action of the network.Findings: The feedback controller corrects for errors caused by external disturbances. The feedforward...

  4. Pseudo-Haptic Feedback in Teleoperation.

    Science.gov (United States)

    Neupert, Carsten; Matich, Sebastian; Scherping, Nick; Kupnik, Mario; Werthschutzky, Roland; Hatzfeld, Christian

    2016-01-01

    In this paper, we develop possible realizations of pseudo-haptic feedback in teleoperation systems based on existing works for pseudo-haptic feedback in virtual reality and the intended applications. We derive four potential factors affecting the performance of haptic feedback (calculation operator, maximum displacement, offset force, and scaling factor), which are analyzed in three compliance identification experiments. First, we analyze the principle usability of pseudo-haptic feedback by comparing information transfer measures for teleoperation and direct interaction. Pseudo-haptic interaction yields well above-chance performance, while direct interaction performs almost perfectly. In order to optimize pseudo-haptic feedback, in the second study we perform a full-factorial experimental design with 36 subjects performing 6,480 trials with 36 different treatments. Information transfer ranges from 0.68 bit to 1.72 bit in a task with a theoretical maximum of 2.6 bit, with a predominant effect of the calculation operator and a minor effect of the maximum displacement. In a third study, short- and long-term learning effects are analyzed. Learning effects regarding the performance of pseudo-haptic feedback cannot be observed for single-day experiments. Tests over 10 days show a maximum increase in information transfer of 0.8 bit. The results show the feasibility of pseudo-haptic feedback for teleoperation and can be used as design basis for task-specific systems.

  5. Local and Modal Damage Indicators for Reinforced Concrete Shear Frames Subject to Earthquakes

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Abbott, J.

    Local, modal and overall damage indicators for reinforced concrete shear frames subject to seismic excitation are defined and studied. Each storey of the shear frame is represented by a Clough and Johnston hysteretic oscillator with degrading elastic fraction of the restoring force. The local max...

  6. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions.In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding...

  7. Computer simulations of shear thickening of concentrated dispersions

    NARCIS (Netherlands)

    Boersma, W.H.; Laven, J.; Stein, H.N.

    1995-01-01

    Stokesian dynamics computer simulations were performed on monolayers of equally sized spheres. The influence of repulsive and attractive forces on the rheological behavior and on the microstructure were studied. Under specific conditions shear thickening could be observed in the simulations, usually

  8. Sea ice-albedo climate feedback mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J.L.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States); Ebert, E.E. [Bureau of Meterology Research Center, Melbourne (Australia)

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  9. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment

    OpenAIRE

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environme...

  10. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  11. Feedback and Incentives:

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie-Claire

    This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback about relative performance, feedback given halfway through the production period, and continuously updated feedba...... of positive peer effects since the underdogs almost never quit the competition even when lagging significantly behind, and frontrunners do not slack off. Moreover, in both pay schemes information feedback reduces the quality of the low performers' work....

  12. Policy Feedback System (PFS)

    Data.gov (United States)

    Social Security Administration — The Policy Feedback System (PFS) is a web application developed by the Office of Disability Policy Management Information (ODPMI) team that gathers empirical data...

  13. Feedback stabilization initiative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.

  14. Feedback stabilization initiative

    International Nuclear Information System (INIS)

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes

  15. Feedback Loop Gains and Feedback Behavior (1996)

    DEFF Research Database (Denmark)

    Kampmann, Christian Erik

    2012-01-01

    Linking feedback loops and system behavior is part of the foundation of system dynamics, yet the lack of formal tools has so far prevented a systematic application of the concept, except for very simple systems. Having such tools at their disposal would be a great help to analysts in understanding...... large, complicated simulation models. The paper applies tools from graph theory formally linking individual feedback loop strengths to the system eigenvalues. The significance of a link or a loop gain and an eigenvalue can be expressed in the eigenvalue elasticity, i.e., the relative change...... of an eigenvalue resulting from a relative change in the gain. The elasticities of individual links and loops may be found through simple matrix operations on the linearized system. Even though the number of feedback loops can grow rapidly with system size, reaching astronomical proportions even for modest systems...

  16. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    Science.gov (United States)

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  17. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    of delicate micro-electromechanical devices impede the use of most direct shear sensors. Similarly, the cavity required for sensing element displacement is sensitive to particulate obstruction. This work was focused on developing a shear stress sensor for use in subsonic wind tunnel test facilities applicable to an array of test configurations. The non-displacement shear sensors described here have minimal packaging requirements resulting in minimal or no disturbance of boundary layer flow. Compared to previous concepts, device installation could be simple with reduced cost and down-time. The novelty lies in the creation of low profile (nanoscale to 100 µm) micropost arrays that stay within the viscous sub-layer of the airflow. Aerodynamic forces, which are related to the surface shear stress, cause post deflection and optical property changes. Ultimately, a reliable, accurate shear stress sensor that does not disrupt the airflow has the potential to provide high value data for flow physics researchers, aerodynamicists, and aircraft manufacturers leading to greater flight efficiency arising from more in-depth knowledge on how aircraft design impacts near surface properties.

  18. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.

    Science.gov (United States)

    Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter

    2015-03-01

    Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation.

  19. Modeling Shear Induced Von Willebrand Factor Binding to Collagen

    Science.gov (United States)

    Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong

    2017-11-01

    Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).

  20. Effects of opening in shear walls of 30- storey building

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2015-03-01

    Full Text Available Tall towers and multi-storey buildings have fascinated mankind from the beginning of civilization, their construction being initially for defense and subsequently for ecclesiastical purposes. These tall buildings because of its height, is affected by lateral forces due to wind or earthquake actions tends to snap the building in shear and push it over in bending. In general, the rigidity (i.e. Resistance to lateral deflection and stability (i.e. Resistance to overturning moments requirement become more important. Shear walls (Structural walls contribute significant lateral stiffness, strength, and overall ductility and energy dissipation capacity. In many structural walls a regular pattern of openings has to be provided due to various functional requirements such as to accommodate doors, windows and service ducts. Such type of openings reduces the stiffness of the shear wall to some extent depending on the shape and size of the opening. In the present parametric study, efforts are made to investigate and critically assess the effects of various size of openings in shear walls on the responses and behaviors of multi-storey buildings. The 30 storey Prototype buildings with different types of openings in shear wall with and without incorporating the volume of shear wall reduced in the boundary elements are analyzed using software E-TABS using Response spectrum method (1893(Part-1-2002 and Time history method.

  1. Discontinuous Shear Thickening and Dilatancy: Frictional Effects in Viscous Suspensions

    Science.gov (United States)

    Morris, Jeffrey

    2015-03-01

    Shear thickening in concentrated suspensions has been well-known for quite a long time, yet a firm consensus on the basis for very abrupt or ``discontinuous'' shear thickening (DST) seen in suspensions of large solid fraction, ϕ, has not been reached. This work addresses the DST phenomenon, and proposes a simulation method based in the Stokesian Dynamics algorithm to explore the role of various forces between the particles, including hydrodynamic, conservative potential, and frictional interactions. This work shows that allowance for friction between spherical particles suspended in a viscous liquid causes a significant reduction in the jamming solid fraction of the mixture, ϕmax, taken as the maximum fraction at which the suspension will flow. A consequence of this is a shifting of the singularity in the effective viscosity, η, to smaller ϕmax, and the frictional suspension has a larger viscosity than does the frictionless suspension of the same solid fraction, as is clear from the standard empirical modeling of η (ϕ) =(1 - ϕ /ϕmax) - α , α ~ 2 . When a counterbalancing repulsive force between the particles, representative for example of charge-induced repulsion, is incorporated in the dynamics, the mixture undergoes a transition from frictionless to frictional interactions, and from low to high effective viscosity, at a critical shear rate. Comparison with experimental data shows remarkable agreement in the features of DST captured by the method. The basic algorithm and results of both rate-controlled and stress-controlled simulations will be presented. Like the shear stress, the magnitude of the normal stress exerted by the suspended particles also increases abruptly at the critical shear rate, consistent with the long-standing notion that dilatancy and shear-thickening are synonymous. We will show that considering all shear thickening materials as dilatant is a misconception, but demonstrate the validity of the connection of dilatancy with DST in

  2. Effects of feedback reliability on feedback-related brain activity: A feedback valuation account.

    Science.gov (United States)

    Ernst, Benjamin; Steinhauser, Marco

    2018-04-06

    Adaptive decision making relies on learning from feedback. Because feedback sometimes can be misleading, optimal learning requires that knowledge about the feedback's reliability be utilized to adjust feedback processing. Although previous research has shown that feedback reliability indeed influences feedback processing, the underlying mechanisms through which this is accomplished remain unclear. Here we propose that feedback processing is adjusted by the adaptive, top-down valuation of feedback. We assume that unreliable feedback is devalued relative to reliable feedback, thus reducing the reward prediction errors that underlie feedback-related brain activity and learning. A crucial prediction of this account is that the effects of feedback reliability are susceptible to contrast effects. That is, the effects of feedback reliability should be enhanced when both reliable and unreliable feedback are experienced within the same context, as compared to when only one level of feedback reliability is experienced. To evaluate this prediction, we measured the event-related potentials elicited by feedback in two experiments in which feedback reliability was varied either within or between blocks. We found that the fronto-central valence effect, a correlate of reward prediction errors during reinforcement learning, was reduced for unreliable feedback. But this result was obtained only when feedback reliability was varied within blocks, thus indicating a contrast effect. This suggests that the adaptive valuation of feedback is one mechanism underlying the effects of feedback reliability on feedback processing.

  3. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.

    Science.gov (United States)

    Kitagawa, Masaya; Dokko, Daniell; Okamura, Allison M; Yuh, David D

    2005-01-01

    Direct haptic (force or tactile) feedback is not yet available in commercial robotic surgical systems. Previous work by our group and others suggests that haptic feedback might significantly enhance the execution of surgical tasks requiring fine suture manipulation, specifically those encountered in cardiothoracic surgery. We studied the effects of substituting direct haptic feedback with visual and auditory cues to provide the operating surgeon with a representation of the forces he or she is applying with robotic telemanipulators. Using the robotic da Vinci surgical system (Intuitive Surgical, Inc, Sunnyvale, Calif), we compared applied forces during a standardized surgical knot-tying task under 4 different sensory-substitution scenarios: no feedback, auditory feedback, visual feedback, and combined auditory-visual feedback. The forces applied with these sensory-substitution modes more closely approximate suture tensions achieved under ideal haptic conditions (ie, hand ties) than forces applied without such sensory feedback. The consistency of applied forces during robot-assisted suture tying aided by visual feedback or combined auditory-visual feedback sensory substitution is superior to that achieved with hand ties. Robot-assisted ties aided with auditory feedback revealed levels of consistency that were generally equivalent or superior to those attained with hand ties. Visual feedback and auditory feedback improve the consistency of robotically applied forces. Sensory substitution, in the form of visual feedback, auditory feedback, or both, confers quantifiable advantages in applied force accuracy and consistency during the performance of a simple surgical task.

  4. Feedback For Helpers

    Science.gov (United States)

    Stromer, Walter F.

    1975-01-01

    The author offers some feedback to those in the helping professions in three areas: (1) forms and letters; (2) jumping to conclusions; and (3) blaming and belittling, in hopes of stimulating more feedback as well as more positive ways of performing their services. (HMV)

  5. 'Peer feedback' voor huisartsopleiders

    NARCIS (Netherlands)

    Damoiseaux, R A M J; Truijens, L

    2016-01-01

    In medical specialist training programmes it is common practice for residents to provide feedback to their medical trainers. The problem is that due to its anonymous nature, the feedback often lacks the specificity necessary to improve the performance of trainers. If anonymity is to be abolished,

  6. Feedback og interpersonel kommunikation

    DEFF Research Database (Denmark)

    Dindler, Camilla

    2016-01-01

    Som interpersonel kommunikationsform handler feedback om at observere, mærke og italesætte det, som handler om relationen mellem samtaleparterne mere end om samtaleemnet. Her er fokus på, hvad der siges og hvordan der kommunikeres sammen. Feedback er her ikke en korrigerende tilbagemelding til...

  7. Shear-induced partial translational ordering of a colloidal solid

    Science.gov (United States)

    Ackerson, B. J.; Clark, N. A.

    1984-08-01

    Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.

  8. Hydrodynamic of a deformed bubble in linear shear flow

    International Nuclear Information System (INIS)

    Adoua, S.R.

    2007-07-01

    This work is devoted to the study of an oblate spheroidal bubble of prescribed shape set fixed in a linear shear flow using direct numerical simulation. The three dimensional Navier-Stokes equations are solved in orthogonal curvilinear coordinates using a finite volume method. The bubble response is studied over a wide range of the aspect ratio (1-2.7), the bubble Reynolds number (50-2000) and the non-dimensional shear rate (0.-1.2). The numerical simulations shows that the shear flow imposes a plane symmetry of the wake whatever the parameters of the flow. The trailing vorticity is organized into two anti-symmetrical counter rotating tubes with a sign imposed by the competition of two mechanisms (the Lighthill mechanism and the instability of the wake). Whatever the Reynolds number, the lift coefficient reaches the analytical value obtained in an inviscid, weakly sheared flow corresponding to a lift force oriented in the same direction as that of a spherical bubble. For moderate Reynolds numbers, the direction of the lift force reverses when the bubble aspect ratio is large enough as observed in experiments. This reversal occurs for aspect ratios larger than 2.225 and is found to be directly linked to the sign of the trailing vorticity which is concentrated within two counter-rotating threads which propel the bubble in a direction depending of their sign of rotation. The behavior of the drag does not revel any significant effect induced by the wake structure and follows a quadratic increase with the shear rate. Finally, the torque experienced by the bubble also reverses for the same conditions inducing the reversal of the lift force. By varying the orientation of the bubble in the shear flow, a stable equilibrium position is found corresponding to a weak angle between the small axis of the bubble and the flow direction. (author)

  9. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  10. Feedback i matematik

    DEFF Research Database (Denmark)

    Sortkær, Bent

    2017-01-01

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hartberg, Dobson, & Gran, 2012; Hattie & Timperley, 2007; Wiliam, 2015). Dette på trods af, at flere forskere påpeger, at feedback ikke altid er læringsfremmende...... (Hattie & Gan, 2011), og nogle endda viser, at feedback kan have en negativ virkning i forhold til præstationer (Kluger & DeNisi, 1996). Artiklen vil undersøge disse tilsyneladende modstridende resultater ved at stille spørgsmålet: Under hvilke forudsætninger virker feedback i matematik læringsfremmende......? Dette gøres ved at dykke ned i forskningslitteraturen omhandlende feedback ud fra en række temaer for på den måde at besvare ovenstående spørgsmål....

  11. Automated boundary interaction force control of micromanipulators with in situ applications to microsurgery

    International Nuclear Information System (INIS)

    Eslami, Sohrab; Jalili, Nader

    2012-01-01

    Most recent works on miniature tasks are concentrated on developing tools to take advantage of the visual servoing feedback to control the ultra-small interaction forces. This paper spans an extensive platform for automatic controlling of boundary interaction forces with high precision in the level of micro/nano-Newton with extensive micro/nanoengineering applications such as the microsurgery. To this end, a comprehensive piezoresistive microcantilever (PMC) model considering the shear deformation and rotary inertia effects treating as the distributed-parameters model along with the Hertzian contact force is presented. The purpose of considering the Hertzian contact force model is to investigate the dynamic response of the interaction force between the microcantilever's tip and the specimen. Afterward, a control platform is introduced to automatically manipulate the PMC to follow an ideal micro/nano-interaction force. By using the integrated PMC with the micromanipulator and a digital signal processor, an intuitive programming code is written to incorporate the micromanipulator and the controller in a real-time framework. To calibrate and verify the induced voltage in the PMC, a self-sensing experiment on the piezoelectric microcantilever is carried out to warrant the calibration procedure. Some experiments are established to affirm the validity of the proposed control for the autonomous real-time tasks on the boundary interaction force control. Unlike the conventional research studies, the measured force here contributes as the feedback source in contrast to the vision feedback while force sensors possess more precision, productivity and small size. This technique has several potential applications listed but not limited to the micro/nanomanipulation, developing artificial biological systems (e.g., fabricating hydrogel for the scaffold), and medicine such as microsurgery. As a result, using the proposed platform, we are able to manipulate and control the

  12. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    Science.gov (United States)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  13. Shear-induced aggregation or disaggregation in edible oils: Models, computer simulation, and USAXS measurements

    Science.gov (United States)

    Townsend, B.; Peyronel, F.; Callaghan-Patrachar, N.; Quinn, B.; Marangoni, A. G.; Pink, D. A.

    2017-12-01

    The effects of shear upon the aggregation of solid objects formed from solid triacylglycerols (TAGs) immersed in liquid TAG oils were modeled using Dissipative Particle Dynamics (DPD) and the predictions compared to experimental data using Ultra-Small Angle X-ray Scattering (USAXS). The solid components were represented by spheres interacting via attractive van der Waals forces and short range repulsive forces. A velocity was applied to the liquid particles nearest to the boundary, and Lees-Edwards boundary conditions were used to transmit this motion to non-boundary layers via dissipative interactions. The shear was created through the dissipative forces acting between liquid particles. Translational diffusion was simulated, and the Stokes-Einstein equation was used to relate DPD length and time scales to SI units for comparison with USAXS results. The SI values depended on how large the spherical particles were (250 nm vs. 25 nm). Aggregation was studied by (a) computing the Structure Function and (b) quantifying the number of pairs of solid spheres formed. Solid aggregation was found to be enhanced by low shear rates. As the shear rate was increased, a transition shear region was manifested in which aggregation was inhibited and shear banding was observed. Aggregation was inhibited, and eventually eliminated, by further increases in the shear rate. The magnitude of the transition region shear, γ˙ t, depended on the size of the solid particles, which was confirmed experimentally.

  14. Laboratory Studies on the Effects of Shear on Fish

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Richmond, Marshall C.; Dauble, Dennis D.; Mueller, Robert P.; Moursund, Russell A.; Abernethy, Cary S.; Guensch, Greg R.

    2000-09-20

    The overall objective of our studies was to specify an index describing the hydraulic force that fish experience when subjected to a shear environment. Fluid shear is a phenomenon that is important to fish. However, elevated levels of shear may result in strain rates that injure or kill fish. At hydroelectric generating facilities, concerns have been expressed that strain rates associated with passage through turbines, spillways, and fish bypass systems may adversely affect migrating fish. Development of fish friendly hydroelectric turbines requires knowledge of the physical forces (injury mechanisms) that impact entrained fish and the fish's tolerance to these forces. It requires up-front, pre-design specifications for the environmental conditions that occur within the turbine system, in other words, determining or assuming that those conditions known to injure fish will provide the descriptions of conditions that engineers must consider in the design of a turbine system. These biological specifications must be carefully and thoroughly documented throughout the design of a fish friendly turbine. To address the development of biological specifications, we designed and built a test facility where juvenile fish could be subjected to a range of shear environments and quantified their biological response.

  15. Estimation of viscoelastic parameters in Prony series from shear wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu [Department of Civil and Environmental Engineering, KAIST, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Hyoung-Ki; Choi, Kiwan [Health and Medical Equipment, Samsung Electronics, 1003 Daechi-dong, Gangnam-gu, Seoul 135-280 (Korea, Republic of)

    2016-06-21

    When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.

  16. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  17. Direct output feedback control of discrete-time systems

    International Nuclear Information System (INIS)

    Lin, C.C.; Chung, L.L.; Lu, K.H.

    1993-01-01

    An optimal direct output feedback control algorithm is developed for discrete-time systems with the consideration of time delay in control force action. Optimal constant output feedback gains are obtained through variational process such that certain prescribed quadratic performance index is minimized. Discrete-time control forces are then calculated from the multiplication of output measurements by these pre-calculated feedback gains. According to the proposed algorithm, structural system is assured to remain stable even in the presence of time delay. The number of sensors and controllers may be very small as compared with the dimension of states. Numerical results show that direct velocity feedback control is more sensitive to time delay than state feedback but, is still quite effective in reducing the dynamic responses under earthquake excitation. (author)

  18. A study on plate anchor detailing systems of shear re-bar

    International Nuclear Information System (INIS)

    Tsurumaki, S.; Ujiie, K.; Nishikawa, T.; Kitayama, K.

    1995-01-01

    For shell walls and base slabs in reactor buildings, besides a large amount of main bars, numerous shear re-bars have been employed to resist to out-of-plane force. As a result , detailing work involving shear re-bar is extremely involved. For example, the employed re-bar anchor method differs from the ordinary methods in which, a end of shear re-bar with 135-degrees hook or with anchor plate type and another re-bar end with 90-degrees hook are used. However the structural characteristics in members using shear re-bar of the bolt-mounted anchor plate have not yet been examined. A test was performed to confirm the effects of anchor methods for shear re-bars on shearing behavior of members. This paper describes the test plan, method and results. (author). 12 figs., 7 tabs

  19. Feedback and efficient behavior.

    Directory of Open Access Journals (Sweden)

    Sandro Casal

    Full Text Available Feedback is an effective tool for promoting efficient behavior: it enhances individuals' awareness of choice consequences in complex settings. Our study aims to isolate the mechanisms underlying the effects of feedback on achieving efficient behavior in a controlled environment. We design a laboratory experiment in which individuals are not aware of the consequences of different alternatives and, thus, cannot easily identify the efficient ones. We introduce feedback as a mechanism to enhance the awareness of consequences and to stimulate exploration and search for efficient alternatives. We assess the efficacy of three different types of intervention: provision of social information, manipulation of the frequency, and framing of feedback. We find that feedback is most effective when it is framed in terms of losses, that it reduces efficiency when it includes information about inefficient peers' behavior, and that a lower frequency of feedback does not disrupt efficiency. By quantifying the effect of different types of feedback, our study suggests useful insights for policymakers.

  20. Feedback - fra et elevperspektiv

    DEFF Research Database (Denmark)

    Petersen, Benedikte Vilslev; Pedersen, Bent Sortkær

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hattie og Timperley, 2007). Andre studier er dog inde på at feedback ikke altid er læringsfremmende og nogle viser endda at feedback kan have en negativ virkning i...... forhold til præstationer (Kluger & DeNisi, 1996). I forsøget på at forklare hvordan og hvorfor feedback virker (forskelligt), er der undersøgt flere dimensioner og forhold omkring feedback (se bl.a. Black og Wiliam, 1998; Hattie og Timperley, 2007; Shute, 2008). Dog er der få studier der undersøger...... hvordan feedback opleves fra et elevperspektiv (Ruiz-Primo og Li, 2013). Samtidig er der i feedbacklitteraturen en mangel på kvalitative studier, der kommer tæt på fænomenet feedback, som det viser sig i klasserummet (Ruiz-Primo og Li, 2013) i naturlige omgivelser (Black og Wiliam, 1998), og hvordan...

  1. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.

    Science.gov (United States)

    Li, Min; Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.

  2. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.

  3. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  4. Training effectiveness feedback

    International Nuclear Information System (INIS)

    Wiggin, N.A.

    1987-01-01

    A formal method of getting feedback about the job performance of employees is a necessary part of all the authors training programs. The formal process may prove to be inadequate if it is the only process in use. There are many ways and many opportunities to get good feedback about employee performance. It is important to document these methods and specific instances to supplement the more formalized process. The key is to identify them, encourage them, use them, and document the training actions that result from them. This paper describes one plant's method of getting feedback about performance of technicians in the field

  5. Brugbar peer feedback

    DEFF Research Database (Denmark)

    Hvass, Helle; Heger, Stine

    Studerende kan være medskabere af undervisning i akademisk skrivning, når de modtager og giver feedback til hinandens ufærdige akademiske tekster. Det ser vi i et udviklingsprojekt, hvor vi afprøver kollektive vejledningsformater. Vi har dog erfaret: 1. at studerende mangler træning i at give og ...... modtage feedback 2. at den manglende træning kan stå i vejen for realiseringen af læringspotentialet ved peer feedback....

  6. Size effects in shear interfaces

    OpenAIRE

    GARNIER, J

    2001-01-01

    In physical modelling (centrifuge tests, calibration chambers, laboratory tests), the size of the soil particles may not be negligible when compared to the dimensions of the models. Size effects may so disturb the response of the models and the experimental data obtained on these cannot be extended to true scale conditions. Different tests have been performed to study and quantify the size effects that may happen in shear interfaces between soils and structures : modified shear box tests, pul...

  7. Multifractal spectra in shear flows

    Science.gov (United States)

    Keefe, L. R.; Deane, Anil E.

    1989-01-01

    Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.

  8. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.

    1982-12-01

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  9. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  10. Shear Resistance Capacity of Interface of Plate-Studs Connection between CFST Column and RC Beam

    Directory of Open Access Journals (Sweden)

    Qianqian Wang

    2017-01-01

    Full Text Available The combination of a concrete-filled steel tube (CFST column and reinforced concrete (RC beam produces a composite structural system that affords good structural performance, functionality, and workability. The effective transmission of moments and shear forces from the beam to the column is key to the full exploitation of the structural performance. The studs of the composite beam transfer the interfacial shear force between the steel beam and the concrete slab, with the web bearing most of the vertical shear force of the steel beam. In this study, the studs and vertical steel plate were welded to facilitate the transfer of the interfacial shear force between the RC beam and CFST column. Six groups of a total of 18 specimens were used to investigate the shear transfer mechanism and failure mode of the plate-studs connection, which was confirmed to effectively transmit the shear forces between the beam and column. The results of theoretical calculations were also observed to be in good agreement with the experimental measurements.

  11. Shear Tests and Calculation of Shear Resistance with the PC Program RFEM from Thin Partition Walls of Brick in Old Buildings

    Directory of Open Access Journals (Sweden)

    Korjenic Sinan

    2015-11-01

    Full Text Available This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.

  12. Shear Tests and Calculation of Shear Resistance with the PC Program RFEM from Thin Partition Walls of Brick in Old Buildings

    Science.gov (United States)

    Korjenic, Sinan; Nowak, Bernhard; Löffler, Philipp; Vašková, Anna

    2015-11-01

    This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it) and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.

  13. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery

    DEFF Research Database (Denmark)

    Thakur, Ashish; Jaiswal, Manish K.; Peak, Charles W.

    2016-01-01

    -thinning characteristics, and enhanced mechanical stiffness, elastomeric properties, and physiological stability. The shear-thinning characteristics of nanocomposite hydrogels are investigated for human mesenchymal stem cell (hMSC) delivery. The hMSCs showed high cell viability after injection and encapsulated cells......Injectable hydrogels are investigated for cell encapsulation and delivery as they can shield cells from high shear forces. One of the approaches to obtain injectable hydrogels is to reinforce polymeric networks with high aspect ratio nanoparticles such as two-dimensional (2D) nanomaterials. 2D...... showed a circular morphology. The proposed shear-thinning nanoengineered hydrogels can be used for cell delivery for cartilage tissue regeneration and 3D bioprinting....

  14. Effect of sheared flows on neoclassical tearing modes

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A [Institute for Plasma Research, Bhat, Gandhinagar (India); Chandra, D; Kaw, P [Institute for Plasma Research, Bhat, Gandhinagar (India); Bora, M P [Physics Dept., Gauhati University, Guwahati (India); Kruger, S [Tech-X, Boulder, CO (United States); Ramos, J [Plasma Science and Fusion Center, MIT, Cambridge, MA (United States)

    2005-01-01

    The influence of toroidal sheared equilibrium flows on the nonlinear evolution of classical and neoclassical tearing modes (NTMs) is studied through numerical solutions of a set of reduced generalized MHD equations that include viscous force effects based on neoclassical closures. In general, differential flow is found to have a strong stabilizing influence leading to lower saturated island widths for the classical (m/n = 2/1) mode and reduced growth rates for the (m/n = 3/1) neoclassical mode. Velocity shear on the other hand is seen to make a destabilizing contribution. An analytic model calculation, consisting of a generalized Rutherford island evolution equation that includes shear flow effects is also presented and the numerical results are discussed in the context of this model. (author)

  15. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  16. Regional feedbacks under changing climate and land-use conditions

    Science.gov (United States)

    Batlle Bayer, L.; van den Hurk, B. J. J. M.; Strengers, B. J.; van Minnen, J. G.

    2012-04-01

    Ecosystem responses to a changing climate and human-induced climate forcings (e.g. deforestation) might amplify (positive feedback) or dampen (negative feedback) the initial climate response. Feedbacks may include the biogeochemical (e.g. carbon cycle) and biogeophysical feedbacks (e.g. albedo and hydrological cycle). Here, we first review the most important feedbacks and put them into the context of a conceptual framework, including the major processes and interactions between terrestrial ecosystems and climate. We explore potential regional feedbacks in four hot spots with pronounced potential changes in land-use/management and local climate: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, the relevant human-induced climate forcings and feedbacks were identified based on published literature. When evapotranspiration is limited by a soil water deficit, heat waves in Europe are amplified (positive soil moisture-temperature feedback). Drought events in the Amazon lead to further rainfall reduction when water recycling processes are affected (positive soil moisture-precipitation feedback). In SSA, the adoption of irrigation in the commonly rainfed systems can modulate the negative soil moisture-temperature feedback. In contrast, future water shortage in South and Southeast Asia can turn the negative soil moisture-temperature feedback into a positive one. Further research including advanced modeling strategies is needed to isolate the dominant processes affecting the strength and sign of the feedbacks. In addition, the socio-economic dimension needs to be considered in the ecosystems-climate system to include the essential role of human decisions on land-use and land-cover change (LULCC). In this context, enhanced integration between Earth System (ES) and Integrated Assessment (IA) modeling communities is strongly recommended.

  17. Ambulatory Feedback System

    Science.gov (United States)

    Finger, Herbert; Weeks, Bill

    1985-01-01

    This presentation discusses instrumentation that will be used for a specific event, which we hope will carry on to future events within the Space Shuttle program. The experiment is the Autogenic Feedback Training Experiment (AFTE) scheduled for Spacelab 3, currently scheduled to be launched in November, 1984. The objectives of the AFTE are to determine the effectiveness of autogenic feedback in preventing or reducing space adaptation syndrome (SAS), to monitor and record in-flight data from the crew, to determine if prediction criteria for SAS can be established, and, finally, to develop an ambulatory instrument package to mount the crew throughout the mission. The purpose of the Ambulatory Feedback System (AFS) is to record the responses of the subject during a provocative event in space and provide a real-time feedback display to reinforce the training.

  18. NAIP 2015 Imagery Feedback

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback web application allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program...

  19. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  20. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  1. A new confined high pressure rotary shear apparatus: preliminary results

    Science.gov (United States)

    Faulkner, D.; Coughlan, G.; Bedford, J. D.

    2017-12-01

    The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.

  2. Sensor for Boundary Shear Stress in Fluid Flow

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.

    2012-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.

  3. Comparison of shear force tenderness, drip and cooking loss, and ...

    African Journals Online (AJOL)

    Kahl, CEI, Mej

    2016-10-27

    Oct 27, 2016 ... the 9th–10th thoracic vertebrae, were included in this study. .... loss expressed as a percentage of the original sample weight as .... a,b,c Column means for breed crosses within different days of ..... Genetic effects on beef.

  4. Optimal centralized and decentralized velocity feedback control on a beam

    International Nuclear Information System (INIS)

    Engels, W P; Elliott, S J

    2008-01-01

    This paper considers the optimization of a velocity feedback controller with a collocated force actuator, to minimize the kinetic energy of a simply supported beam. If the beam is excited at a single location, the optimum feedback gain varies with the position of the control system. It is shown that this variation depends partly on the location of the control force relative to the exciting force. If a distributed excitation is assumed, that is random in both time and space, a unique optimum value of the feedback gain can be found for a given control location. The effect of the control location on performance and the optimal feedback gain can then be examined and is found to be limited provided the control locations are not close to the ends of the beam. The optimization can also be performed for a multichannel velocity feedback system. Both a centralized and a decentralized controller are considered. It is shown that the difference in performance between a centralized and a decentralized controller is small, unless the control locations are closely spaced. In this case the centralized controller effectively feeds back a moment proportional to angular velocity as well as a force proportional to a velocity. It is also shown that the optimal feedback gain can be approximated on the basis of a limited model and that similar results can be achieved

  5. The role of feedbacks in Antarctic sea ice change

    Science.gov (United States)

    Feltham, D. L.; Frew, R. C.; Holland, P.

    2017-12-01

    The changes in Antarctic sea ice over the last thirty years have a strong seasonal dependence, and the way these changes grow in spring and decay in autumn suggests that feedbacks are strongly involved. The changes may ultimately be caused by atmospheric warming, the winds, snowfall changes, etc., but we cannot understand these forcings without first untangling the feedbacks. A highly simplified coupled sea ice -mixed layer model has been developed to investigate the importance of feedbacks on the evolution of sea ice in two contrasting regions in the Southern Ocean; the Amundsen Sea where sea ice extent has been decreasing, and the Weddell Sea where it has been expanding. The change in mixed layer depth in response to changes in the atmosphere to ocean energy flux is implicit in a strong negative feedback on ice cover changes in the Amundsen Sea, with atmospheric cooling leading to a deeper mixed layer resulting in greater entrainment of warm Circumpolar Deep Water, causing increased basal melting of sea ice. This strong negative feedback produces counter intuitive responses to changes in forcings in the Amundsen Sea. This feedback is absent in the Weddell due to the complete destratification and strong water column cooling that occurs each winter in simulations. The impact of other feedbacks, including the albedo feedback, changes in insulation due to ice thickness and changes in the freezing temperature of the mixed layer, were found to be of secondary importance compared to changes in the mixed layer depth.

  6. Seismic shear waves as Foucault pendulum

    Science.gov (United States)

    Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko

    2016-03-01

    Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.

  7. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed in uncracked concrete.Proposals have been made on how the derived standard solutions may be applied to more complicated cases, such as continuous beams, beams......The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model...

  8. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  9. Modeling of shear wall buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A K [North Carolina State Univ., Raleigh (USA). Dept. of Civil Engineering

    1984-05-01

    Many nuclear power plant buildings, for example, the auxiliary building, have reinforced concrete shear walls as the primary lateral load resisting system. Typically, these walls have low height to length ratio, often less than unity. Such walls exhibit marked shear lag phenomenon which would affect their bending stiffness and the overall stress distribution in the building. The deformation and the stress distribution in walls have been studied which is applicable to both the short and the tall buildings. The behavior of the wall is divided into two parts: the symmetric flange action and the antisymmetry web action. The latter has two parts: the web shear and the web bending. Appropriate stiffness equations have been derived for all the three actions. These actions can be synthesized to solve any nonlinear cross-section. Two specific problems, that of lateral and torsional loadings of a rectangular box, have been studied. It is found that in short buildings shear lag plays a very important role. Any beam type formulation which either ignores shear lag or includes it in an idealized form is likely to lead to erroneous results. On the other hand a rigidity type approach with some modifications to the standard procedures would yield nearly accurate answers.

  10. Mean wall-shear stress measurements using the micro-pillar shear-stress sensor MPS3

    International Nuclear Information System (INIS)

    Große, S; Schröder, W

    2008-01-01

    A new sensor to measure the mean turbulent wall-shear stress in turbulent flows is described. The wall-shear stress sensor MPS 3 has been tested in a well-defined fully developed turbulent pipe flow at Reynolds numbers Re b based on the bulk velocity U b and the pipe diameter D in the range of Re b = 10 000–20 000. The results demonstrate a convincing agreement of the mean wall-shear stress obtained with the new sensor technique with analytical and experimental results from the literature. The sensor device consists of a flexible micro-pillar that extends from the wall into the viscous sublayer. Bending due to the exerting fluid forces, the pillar-tip deflection serves as a measure for the local wall-shear stress. The sensor concept, calibration techniques, the achievable accuracy and error estimates, the fields of application and the sensor limits will be discussed. Furthermore, a first estimate of the pillar dynamic response will be derived showing the potential of the sensor to also measure the turbulent fluctuating wall-shear stress

  11. Establishing a Communications Officer Force Development Program

    National Research Council Canada - National Science Library

    Jenrette, Brian J

    2006-01-01

    ...: experience, skills, training, education, and performance feedback. However, the Air Force has not instituted the structure, supplied the resources, or mandated the governance to make the program a success...

  12. Desarrollo de un modelo generalizado para realimentación de fuerza y torque en cirugía cardiotorácica robótica mínimamente invasiva: determinación de condiciones y restricciones Development of a generalized model for force and torque feedback in robotic minimally invasive cardiothoracic surgery: identification of conditions and restrictions

    Directory of Open Access Journals (Sweden)

    Vera Pérez

    2011-07-01

    : requerimientos de los sensores de fuerza y relación necesaria entre el número de sensores y actuadores para realimentar fuerza en MICS robótica. Posteriormente se implementaron dichas consideraciones en un simulador y se verificó el cumplimiento de las mismas. CONCLUSIONES: las condiciones relacionadas con la incorporación de un sensor de fuerza y la percepción del cirujano en cuanto al tacto y la fuerza aplicada, resultan ser importantes en procedimientos de MICS robótica y requiere la inclusión de un sistema de control que permita la optimización de procedimientos por telepresencia.INTRODUCTION: the procedures in minimally invasive cardiothoracic surgery (MICS aim to reduce the complications of major dissections. However, in the absence of direct contact of the surgeon with the tissue, he receives a partial sense of touch and strength, which can lead to procedural errors, inadequate force applied to the tissue and fatigue during surgery. The inclusion of robotic devices with the MICS technique has enhanced the technical skills of the surgeon to manipulate tissue, and although the market devices still do not have tactile feedback, research in robotic prototypes that incorporate feedback of force and torque is being done. OBJECTIVE: to propose the conditions and restrictions related to the integration of force and torque feedback in robotics MICS applicable to different configurations of manipulators and analyze the implementation of those conditions in a surgical simulator. MATERIAL AND METHODS: from the analysis of needs during cardiothoracic procedures and conditions of minimally invasive surgery, we identified the requirements to ensure reflection of force and performed a mathematical analysis of such considerations. Finally, mathematical analysis were verified by modeling and simulation techniques using the Matlab® computing platform. RESULTS: three types of considerations were argued: a Kinematic: the existence of a fixed point; the way to guarantee it for

  13. Experimental investigation of single small bubble motion in linear shear flow in water

    International Nuclear Information System (INIS)

    Li, Zhongchun; Zhao, Yang; Song, Xiaoming; Yu, Hongxing; Jiang, Shengyao; Ishii, Mamoru

    2016-01-01

    Highlights: • The bubble motion in simple linear shear flow was experimentally investigated. • The bubble trajectories, bubble velocity and drag and lift force were obtained using image process routine. • The bubble trajectory was coupled with a zigzag motion and incline path. • The lift force was kept negative and it decreased when bubble diameter and shear flow magnitude increased. - Abstract: The motion of small bubble in a simple shear flow in water was experimental studied. Stable shear flow with low turbulence level was achieved with curved screen and measured using LDV. The bubbles were captured by high speed camera and the captured images were processed with digital image routine. The bubble was released from a capillary tube. The instantaneous bubble position, bubble velocity and forces were obtained based on the captured parameters. The quasi-steady lift coefficient was determined by the linear fitting of the bubble trajectory of several cycles. The results indicated that the lateral migration was coupled with the zigzag motion of bubble in the present experiment. The bubble migrated to the left side and its quasi-steady lift coefficient was negative. Good repeatable results were observed by measurements of 18 bubbles. The bubble motion in shear flow in water was first experimental studied and negative lift force was observed in the present study condition. The lift coefficient decreased when shear stress magnitude or bubble diameter increased in the present experiment condition.

  14. Influence of enamel conditioning on the shear bond strength of different adhesives.

    Science.gov (United States)

    Brauchli, Lorenz; Muscillo, Teodoro; Steineck, Markus; Wichelhaus, Andrea

    2010-11-01

    Phosphoric acid etching is the gold standard for enamel conditioning. However, it is possible that air abrasion or a combination of air abrasion and etching might result in enhanced adhesion. The aim of this study was to investigate the effect of different enamel conditioning methods on the bond strength of six adhesives. Three different enamel conditioning procedures (phosphoric acid etching, air abrasion, air abrasion + phosphoric acid etching) were evaluated for their influence on the shear bond strength of six different adhesives (Transbond™ XT, Cool-Bond™, Fuji Ortho LC, Ultra Band-Lok, Tetric(®) Flow, Light-Bond™). Each group consisted of 15 specimens. Shear forces were measured with a universal testing machine. The scores of the Adhesive Remnant Index (ARI) were also analyzed. There were no significant differences between phosphoric acid etching and air abrasion + phosphoric acid etching. Air abrasion as a single conditioning technique led to significantly lower shear forces. The ARI scores did not correlate with the shear strengths measured. There were greater variations in shear forces for the different adhesives than for the conditioning techniques. The highest shear forces were found for the conventional composites Transbond™ XT and Cool- Bond™ in combination with conventional etching. Air abrasion alone and in combination with phosphoric acid etching showed no advantages compared with phosphoric acid etching alone and, therefore, cannot be recommended.

  15. High fluid shear strain causes injury in silver shark: Preliminary implications for Mekong hydropower turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, L. J. [New South Wales Department of Primary Industries, Narrandera Fisheries Centre, Narrandera NSW Australia; Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Thorncraft, G. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Phonekhampheng, O. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Boys, C. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay NSW Australia; Navarro, A. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Robinson, W. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Brown, R. [Pacific Northwest National Laboratory, Richland WA USA; Deng, Z. D. [Pacific Northwest National Laboratory, Richland WA USA

    2017-02-09

    Fluid shear arises when two bodies of water, travelling at different velocities, intersect. Fish entrained at the interface of these two water masses will experience shear stress; which can be harmful. The stress magnitude is dependent on waterbody mass and velocity; with the fish impact largely related to body size. Elevated shear stress occurs where rapidly flowing water passes near spillways, across screens, within turbine draft tubes or other passage routes. A flume was used to determine critical tolerances of silver shark (Balantiocheilos melanopterus) to different shear stress rates generated by a high velocity jet. Fish experienced higher levels of injury and mortality as shear stress was increased. Excessive shear forces had damaging impacts on fish. Mortality occurred at shear levels higher that 600/s. It is important that developers should attempt to model potential shear profiles expected during turbine passage in selected designs. These data will be critical to determine potential impacts on fish. If the likelihood of adverse impact is high, then alternative designs which have lower shear stress could be explored.

  16. Global climate feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  17. FEM Simulation of Incremental Shear

    International Nuclear Information System (INIS)

    Rosochowski, Andrzej; Olejnik, Lech

    2007-01-01

    A popular way of producing ultrafine grained metals on a laboratory scale is severe plastic deformation. This paper introduces a new severe plastic deformation process of incremental shear. A finite element method simulation is carried out for various tool geometries and process kinematics. It has been established that for the successful realisation of the process the inner radius of the channel as well as the feeding increment should be approximately 30% of the billet thickness. The angle at which the reciprocating die works the material can be 30 deg. . When compared to equal channel angular pressing, incremental shear shows basic similarities in the mode of material flow and a few technological advantages which make it an attractive alternative to the known severe plastic deformation processes. The most promising characteristic of incremental shear is the possibility of processing very long billets in a continuous way which makes the process more industrially relevant

  18. SHEAR ACCELERATION IN EXPANDING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, F. M. [ZAH, Institut für Theoretische Astrophysik, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie [University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-12-10

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).

  19. Effects of opening in shear walls of 30- storey building

    OpenAIRE

    Ruchi Sharma; Jignesh A Amin

    2015-01-01

    Tall towers and multi-storey buildings have fascinated mankind from the beginning of civilization, their construction being initially for defense and subsequently for ecclesiastical purposes. These tall buildings because of its height, is affected by lateral forces due to wind or earthquake actions tends to snap the building in shear and push it over in bending. In general, the rigidity (i.e. Resistance to lateral deflection) and stability (i.e. Resistance to overturning moments) requirement ...

  20. Computerized lateral-shear interferometer

    Science.gov (United States)

    Hasegan, Sorin A.; Jianu, Angela; Vlad, Valentin I.

    1998-07-01

    A lateral-shear interferometer, coupled with a computer for laser wavefront analysis, is described. A CCD camera is used to transfer the fringe images through a frame-grabber into a PC. 3D phase maps are obtained by fringe pattern processing using a new algorithm for direct spatial reconstruction of the optical phase. The program describes phase maps by Zernike polynomials yielding an analytical description of the wavefront aberration. A compact lateral-shear interferometer has been built using a laser diode as light source, a CCD camera and a rechargeable battery supply, which allows measurements in-situ, if necessary.

  1. Feedback Conversations: Creating Feedback Dialogues with a New Textual Tool for Industrial Design Student Feedback

    Science.gov (United States)

    Funk, Mathias; van Diggelen, Migchiel

    2017-01-01

    In this paper, the authors describe how a study of a large database of written university teacher feedback in the department of Industrial Design led to the development of a new conceptual framework for feedback and the design of a new feedback tool. This paper focuses on the translation of related work in the area of feedback mechanisms for…

  2. Dynamic behavior and functional integrity tests on RC shear walls

    International Nuclear Information System (INIS)

    Akino, Kinji; Nasuda, Toshiaki; Shibata, Akenori.

    1991-01-01

    A project consisting of seven subprojects has been conducted to study the dynamic behavior and functional integrity of reinforced concrete (RC) shear walls in reactor buildings. The objective of this project is to obtain the data to improve and prepare the seismic analysis code regarding the nonlinear structural behavior and integrity of reactor buildings during and after earthquakes. The project started in April, 1986, and will end in March, 1994. Seven subprojects are strain rate test, damping characteristic test, ultimate state response test and the verification test for the test of restoring force characteristics regarding dynamic restoring force characteristics and damping performance; the restoring force characteristic test on the shear walls with openings; and pull-out strength test and the test on air leakage through concrete cracks regarding the functional integrity. The objectives of respective subprojects, the test models and the interim results are reported. Three subprojects have been completed by March, 1990. The results of these projects will be used for the overall evaluation. The strain rate test showed that the ultimate strength of shear walls increased with strain rate. A formula for estimating air flow through the cracks in walls was given by the leakage test. (K.I.)

  3. Model tests on dynamic performance of RC shear walls

    International Nuclear Information System (INIS)

    Nagashima, Toshio; Shibata, Akenori; Inoue, Norio; Muroi, Kazuo.

    1991-01-01

    For the inelastic dynamic response analysis of a reactor building subjected to earthquakes, it is essentially important to properly evaluate its restoring force characteristics under dynamic loading condition and its damping performance. Reinforced concrete shear walls are the main structural members of a reactor building, and dominate its seismic behavior. In order to obtain the basic information on the dynamic restoring force characteristics and damping performance of shear walls, the dynamic test using a large shaking table, static displacement control test and the pseudo-dynamic test on the models of a shear wall were conducted. In the dynamic test, four specimens were tested on a large shaking table. In the static test, four specimens were tested, and in the pseudo-dynamic test, three specimens were tested. These tests are outlined. The results of these tests were compared, placing emphasis on the restoring force characteristics and damping performance of the RC wall models. The strength was higher in the dynamic test models than in the static test models mainly due to the effect of loading rate. (K.I.)

  4. Modelling Inter-Particle Forces and Resulting Agglomerate Sizes in Cement-Based Materials

    DEFF Research Database (Denmark)

    Kjeldsen, Ane Mette; Geiker, Mette Rica

    2005-01-01

    The theory of inter-particle forces versus external shear in cement-based materials is reviewed. On this basis, calculations on maximum agglomerate size present after the combined action of superplasticizers and shear are carried out. Qualitative experimental results indicate that external shear ...

  5. Situated Formative Feedback

    DEFF Research Database (Denmark)

    Lukassen, Niels Bech; Wahl, Christian; Sorensen, Elsebeth Korsgaard

    refer to this type of feedback as, Situated Formative Feedback (SFF). As a basis for exploring, identifying and discussing relevant aspects of SFF the paper analyses qualitative data from a Moodle dialogue. Data are embedded in the qualitative analytic program Nvivo and are analysed with a system...... theoretical textual analysis method. Asynchronous written dialogue from an online master’s course at Aalborg University forms the empirical basis of the study. The findings suggests in general that students play an essential role in SFF and that students and educators are equal in the COP, but holds different...

  6. Subatomic forces

    International Nuclear Information System (INIS)

    Sutton, C.

    1989-01-01

    Inside the atom, particles interact through two forces which are never felt in the everyday world. But they may hold the key to the Universe. These ideas on subatomic forces are discussed with respect to the strong force, the electromagnetic force and the electroweak force. (author)

  7. A Haptic Feedback Scheme to Accurately Position a Virtual Wrist Prosthesis Using a Three-Node Tactor Array.

    Directory of Open Access Journals (Sweden)

    Andrew Erwin

    Full Text Available In this paper, a novel haptic feedback scheme, used for accurately positioning a 1DOF virtual wrist prosthesis through sensory substitution, is presented. The scheme employs a three-node tactor array and discretely and selectively modulates the stimulation frequency of each tactor to relay 11 discrete haptic stimuli to the user. Able-bodied participants were able to move the virtual wrist prosthesis via a surface electromyography based controller. The participants evaluated the feedback scheme without visual or audio feedback and relied solely on the haptic feedback alone to correctly position the hand. The scheme was evaluated through both normal (perpendicular and shear (lateral stimulations applied on the forearm. Normal stimulations were applied through a prototype device previously developed by the authors while shear stimulations were generated using an ubiquitous coin motor vibrotactor. Trials with no feedback served as a baseline to compare results within the study and to the literature. The results indicated that using normal and shear stimulations resulted in accurately positioning the virtual wrist, but were not significantly different. Using haptic feedback was substantially better than no feedback. The results found in this study are significant since the feedback scheme allows for using relatively few tactors to relay rich haptic information to the user and can be learned easily despite a relatively short amount of training. Additionally, the results are important for the haptic community since they contradict the common conception in the literature that normal stimulation is inferior to shear. From an ergonomic perspective normal stimulation has the potential to benefit upper limb amputees since it can operate at lower frequencies than shear-based vibrotactors while also generating less noise. Through further tuning of the novel haptic feedback scheme and normal stimulation device, a compact and comfortable sensory substitution

  8. Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2006-01-01

    We have simulated plastic deformation of a model Mg-Cu metallic glass in order to study shear banding. In uniaxial tension, we find a necking instability occurs rather than shear banding. We can force the latter to occur by deforming in plane strain, forbidding the change of length in one...... of the transverse directions. Furthermore, in most of the simulations a notch is used to initiate shear bands, which lie at a 45 degrees angle to the tensile loading direction. The shear bands are characterized by the Falk and Langer local measure of plastic deformation D-min(2), averaged here over volumes...... observe a slight decrease in density, up to 1%, within the shear band, which is consistent with notions of increased free volume or disorder within a plastically deforming amorphous material....

  9. Study of low-velocity impact response of sandwich panels with shear-thickening gel cores

    Science.gov (United States)

    Wang, Yunpeng; Gong, Xinglong; Xuan, Shouhu

    2018-06-01

    The low-velocity impact response of sandwich panels with shear-thickening gel cores was studied. The impact tests indicated that the sandwich panels with shear-thickening gel cores showed excellent properties of energy dissipation and stress distribution. In comparison to the similar sandwich panels with chloroprene rubber cores and ethylene-propylene-diene monomer cores, the shear-thickening gel cores led to the obviously smaller contact forces and the larger energy absorptions. Numerical modelling with finite element analysis was used to investigate the stress distribution of the sandwich panels with shear-thickening gel cores and the results agreed well with the experimental results. Because of the unique mechanical property of the shear-thickening gel, the concentrated stress on the front facesheets were distributed to larger areas on the back facesheets and the peak stresses were reduced greatly.

  10. Can feedback analysis be used to uncover the physical origin of climate sensitivity and efficacy differences?

    Science.gov (United States)

    Rieger, Vanessa S.; Dietmüller, Simone; Ponater, Michael

    2017-10-01

    Different strengths and types of radiative forcings cause variations in the climate sensitivities and efficacies. To relate these changes to their physical origin, this study tests whether a feedback analysis is a suitable approach. For this end, we apply the partial radiative perturbation method. Combining the forward and backward calculation turns out to be indispensable to ensure the additivity of feedbacks and to yield a closed forcing-feedback-balance at top of the atmosphere. For a set of CO2-forced simulations, the climate sensitivity changes with increasing forcing. The albedo, cloud and combined water vapour and lapse rate feedback are found to be responsible for the variations in the climate sensitivity. An O3-forced simulation (induced by enhanced NOx and CO surface emissions) causes a smaller efficacy than a CO2-forced simulation with a similar magnitude of forcing. We find that the Planck, albedo and most likely the cloud feedback are responsible for this effect. Reducing the radiative forcing impedes the statistical separability of feedbacks. We additionally discuss formal inconsistencies between the common ways of comparing climate sensitivities and feedbacks. Moreover, methodical recommendations for future work are given.

  11. Research status and needs for shear tests on large-scale reinforced concrete containment elements

    International Nuclear Information System (INIS)

    Oesterle, R.G.; Russell, H.G.

    1982-01-01

    Reinforced concrete containments at nuclear power plants are designed to resist forces caused by internal pressure, gravity, and severe earthquakes. The size, shape, and possible stress states in containments produce unique problems for design and construction. A lack of experimental data on the capacity of reinforced concrete to transfer shear stresses while subjected to biaxial tension has led to cumbersome if not impractical design criteria. Research programs recently conducted at the Construction Technology Laboratories and at Cornell University indicate that design criteria for tangential, peripheral, and radial shear are conservative. This paper discusses results from recent research and presents tentative changes for shear design provisions of the current United States code for containment structures. Areas where information is still lacking to fully verify new design provisions are discussed. Needs for further experimental research on large-scale specimens to develop economical, practical, and reliable design criteria for resisting shear forces in containment are identified. (orig.)

  12. Feedback control using only quantum back-action

    International Nuclear Information System (INIS)

    Jacobs, Kurt

    2010-01-01

    The traditional approach to feedback control is to apply deterministic forces to a system by modifying the Hamiltonian. Here we show that finite-dimensional quantum systems can be controlled purely by exploiting the random quantum back-action of a continuous weak measurement. We demonstrate that, quite remarkably, the quantum back-action of such an adaptive measurement is just as effective at controlling quantum systems as traditional feedback.

  13. Kansas Department of Transportation column expert : ultimate shear capacity of circular columns using the simplified modified compression field theory.

    Science.gov (United States)

    2015-09-01

    The importance of the analysis of circular columns to accurately predict their ultimate confined : capacity under shear-flexure-axial force interaction domain is recognized in light of the extreme load event : imposed by the current American Associat...

  14. Bilateral teleoperation for force sensorless 1-dof robots

    NARCIS (Netherlands)

    Lichiardopol, S.; Wouw, van de N.; Nijmeijer, H.; Filipe, J.; Cetto, J.A.; Ferrier, J.-L.

    2010-01-01

    It is well known that for bilateral teleoperation, force feedback information is needed. In this paper, we propose a control approach for bilateral teleoperation with uncertainties in the model of the slave robot and which does not use force sensors for haptic feedback. The controller design is

  15. Bilateral teleoperation for linear force sensorless 3D robots

    NARCIS (Netherlands)

    Lichiardopol, S.; Wouw, van de N.; Nijmeijer, H.; Andrade Cetto, J.; Ferrier, J.; Filipe, J.

    2011-01-01

    It is well known that for bilateral teleoperation, force feedback information is needed. In this paper, we propose a control approach for bilateral teleoperation with uncertainties in the model of the slave robot and which does not use force sensors for haptic feedback. The controller design is

  16. Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls

    Science.gov (United States)

    Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu

    2017-10-01

    In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.

  17. Grouted Connections with Shear Keys

    DEFF Research Database (Denmark)

    Pedersen, Ronnie; Jørgensen, M. B.; Damkilde, Lars

    2012-01-01

    This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so that dif...... that different structural problems can be reproduced successfully....

  18. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.

    Science.gov (United States)

    Wottawa, Christopher R; Genovese, Bradley; Nowroozi, Bryan N; Hart, Steven D; Bisley, James W; Grundfest, Warren S; Dutson, Erik P

    2016-08-01

    The aims of this study were to evaluate (1) grasping forces with the application of a tactile feedback system in vivo and (2) the incidence of tissue damage incurred during robotic tissue manipulation. Robotic-assisted minimally invasive surgery has been shown to be beneficial in a variety of surgical specialties, particularly radical prostatectomy. This innovative surgical tool offers advantages over traditional laparoscopic techniques, such as improved wrist-like maneuverability, stereoscopic video displays, and scaling of surgical gestures to increase precision. A widely cited disadvantage associated with robotic systems is the absence of tactile feedback. Nineteen subjects were categorized into two groups: 5 experts (six or more robotic cases) and 14 novices (five cases or less). The subjects used the da Vinci with integrated tactile feedback to run porcine bowel in the following conditions: (T1: deactivated tactile feedback; T2: activated tactile feedback; and T3: deactivated tactile feedback). The grasping force, incidence of tissue damage, and the correlation of grasping force and tissue damage were analyzed. Tissue damage was evaluated both grossly and histologically by a pathologist blinded to the sample. Tactile feedback resulted in significantly decreased grasping forces for both experts and novices (P system was deactivated (P > 0.05 in all subjects). The in vivo application of integrated tactile feedback in the robotic system demonstrates significantly reduced grasping forces, resulting in significantly less tissue damage. This tactile feedback system may improve surgical outcomes and broaden the use of robotic-assisted minimally invasive surgery.

  19. Development of isometric force and force control in children

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Westenberg, Y.; Duysens, J.E.J.

    2004-01-01

    Fifty-six children between 5 and 12 years of age and 15 adults performed a task (pressing on a lever with the index finger of the preferred hand), in which a force had to be maintained constant at five levels with on-line visual feedback. Since this is a simple isometric task, the hypothesis is that

  20. Development of isometric force and force control in children.

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Westenberg, Y.; Duysens, J.E.J.

    2003-01-01

    Fifty-six children between 5 and 12 years of age and 15 adults performed a task (pressing on a lever with the index finger of the preferred hand), in which a force had to be maintained constant at five levels with on-line visual feedback. Since this is a simple isometric task, the hypothesis is that

  1. Credit Market Information Feedback

    OpenAIRE

    Balasubramanyan, Lakshmi; Craig, Ben R.; Thomson, James B.; Zaman, Saeed

    2015-01-01

    We examine how a combination of credit market and asset quality information can jointly be used in assessing bank franchise value. We find that expectations of future credit demand and future asset quality explain contemporaneous bank franchise value, indicative of the feedback in credit market information and its consequent impact on bank franchise value.

  2. Continuous feedback fluid queues

    NARCIS (Netherlands)

    Scheinhardt, Willem R.W.; van Foreest, N.D.; Mandjes, M.R.H.

    2003-01-01

    We investigate a fluid buffer which is modulated by a stochastic background process, while the momentary behavior of the background process depends on the current buffer level in a continuous way. Loosely speaking the feedback is such that the background process behaves `as a Markov process' with

  3. Feedback i undervisningen

    DEFF Research Database (Denmark)

    Kirkegaard, Preben Olund

    2015-01-01

    undervisningsdifferentiering, feedback på læreprocesser, formativ og summativ evaluering, observationer og analyse af undervisning samt lærernes teamsamarbejde herom. Praktikken udgør et særligt læringsrum i læreruddannelsen. Samspillet mellem studerende, praktiklærere og undervisere giver den studerende en unik mulighed...

  4. Portfolio, refleksion og feedback

    DEFF Research Database (Denmark)

    Hansen, Jens Jørgen; Qvortrup, Ane; Christensen, Inger-Marie F.

    2017-01-01

    Denne leder definerer indledningsvist begrebet portfolio og gør rede for anvendelsesmuligheder i en uddannelseskontekst. Dernæst behandles portfoliometodens kvalitet og effekt for læring og undervisning og de centrale begreber refleksion, progression og feedback præsenteres og diskuteres. Herefter...

  5. In-plane Shear Joint Capacity of Pracast Lightweight Aggregate Concrete Elements

    DEFF Research Database (Denmark)

    Larsen, Henning; Goltermann, Per; Scherfig, Søren

    1996-01-01

    The paper establishes and documents formulas for the in-plane shear capacity between precast elements of lightweight aggregate concrete with open structure. The joints investigated are rough or toothed and have all been precracked prior to the testing in order to obtain realistic test results....... The paper documents the shear force capacity for the joint strength between the most common joint types between precast LAC roof and floor elements used in Scandinavia....

  6. Global monsoons in the mid-Holocene and oceanic feedback

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Kutzbach, J. [Center for Climatic Research, University of Wisconsin-Madison, 1225 W. Dayton Street, Madison, WI 53706 (United States); Harrison, S.P. [Max Planck Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena (Germany); Otto-Bliesner, B. [National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307 (United States)

    2004-03-01

    The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean-atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations. (orig.)

  7. Cutaneous mechanisms of isometric ankle force control

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Jesper Lundbye; Leukel, Christian

    2013-01-01

    The sense of force is critical in the control of movement and posture. Multiple factors influence our perception of exerted force, including inputs from cutaneous afferents, muscle afferents and central commands. Here, we studied the influence of cutaneous feedback on the control of ankle force...... of transient stimulation on force error were greater when compared to continuous stimulation and lidocaine injection. Position-matching performance was unaffected by peroneal nerve or plantar nerve stimulation. Our results show that cutaneous feedback plays a role in the control of force output at the ankle...... joint. Understanding how the nervous system normally uses cutaneous feedback in motor control will help us identify which functional aspects are impaired in aging and neurological diseases....

  8. Laser reflection method for determination of shear stress in low density transitional flows

    Science.gov (United States)

    Sathian, Sarith P.; Kurian, Job

    2006-03-01

    The details of laser reflection method (LRM) for the determination of shear stress in low density transitional flows are presented. The method is employed to determine the shear stress due to impingement of a low density supersonic free jet issuing out from a convergent divergent nozzle on a flat plate. The plate is smeared with a thin oil film and kept parallel to the nozzle axis. For a thin oil film moving under the action of aerodynamic boundary layer, the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope generated by the shear force is done using a position sensing detector (PSD). The thinning rate of the oil film is directly measured which is the major advantage of the LRM. From the oil film slope history, calculation of the shear stress is done using a three-point formula. The range of Knudsen numbers investigated is from 0.028 to 0.516. Pressure ratio across the nozzle varied from 3,500 to 8,500 giving highly under expanded free jets. The measured values of shear, in the overlapping region of experimental parameters, show fair agreement with those obtained by force balance method and laser interferometric method.

  9. High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx.

    Directory of Open Access Journals (Sweden)

    Sandra V Lopez-Quintero

    Full Text Available Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC. After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.

  10. Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.

    Science.gov (United States)

    Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao

    2017-12-07

    In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.

  11. Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Qiyun Qiao

    2017-12-01

    Full Text Available In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.

  12. Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves

    International Nuclear Information System (INIS)

    Biglari, H.; Ono, M.

    1992-01-01

    The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E x B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the pondermotive force. In either case, it is shown that modest amounts of absorbed power (∼ few 100 kW) are required to suppress turbulence in a region of several cm radial width

  13. Test on the splitting failure capacity of the bottom rail due to uplift in partially anchored shear walls

    OpenAIRE

    Caprolu, Giuseppe; Girhammar, Ulf Arne; Källsner, Bo; Johnsson, Helena

    2012-01-01

    Källsner and Girhammar have developed a new plastic design method for wood-frame shear walls at ultimate limit state. The method is capable of calculating the load-carrying capacity of partially anchored shear walls, where the leading stud is not necessarily anchored against uplift. In fully anchored shear walls, the leading stud needs to be anchored using some kind of hold-downs to resist uplift and the bottom rail needs to be fixed by anchor bolts to resist horizontal shear forces. In parti...

  14. Self-diffusion in dense granular shear flows.

    Science.gov (United States)

    Utter, Brian; Behringer, R P

    2004-03-01

    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.

  15. Experimental study and FEM simulation of the simple shear test of cylindrical rods

    Science.gov (United States)

    Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.

    2018-05-01

    In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.

  16. Shake-table testing of a self-centering precast reinforced concrete frame with shear walls

    Science.gov (United States)

    Lu, Xilin; Yang, Boya; Zhao, Bin

    2018-04-01

    The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.

  17. Platelet-free shear flow assay facilitates analysis of shear-dependent functions of VWF and ADAMTS13.

    Science.gov (United States)

    Kraus, Emma; Kraus, Kristina; Obser, Tobias; Oyen, Florian; Klemm, Ulrike; Schneppenheim, Reinhard; Brehm, Maria A

    2014-12-01

    The multimeric form of von Willebrand factor (VWF), is the largest soluble protein in mammals and exhibits a multidomain structure resulting in multiple functions. Upon agonist stimulation endothelial cells secrete VWF multimers from Weibel-Palade bodies into the blood stream where VWF plays an essential role in platelet-dependent primary hemostasis. Elongation of VWF strings on the cells' surface leads to accessibility of VWF binding sites for proteins, such as platelet membrane glycoprotein Ib. The prothrombotic strings are size-regulated by the metalloprotease ADAMTS13 by shear force-activated proteolytic cleavage. VWF string formation was induced by histamine stimulation of HUVEC cells under unidirectional shear flow and VWF strings were detected employing the VWF binding peptide of platelet glycoprotein Ib coupled to latex beads. VWF strings were then used as substrate for kinetic studies of recombinant and plasma ADAMTS13. To investigate specific aspects of the shear-dependent functions of VWF and ADAMTS13, we developed a shear flow assay that allows observation of VWF string formation and their degradation by ADAMTS13 without the need for isolated platelets. Our assay specifically detects VWF strings, can be coupled with fluorescent applications and allows semi-automated, quantitative assessment of recombinant and plasma ADAMTS13 activity. Our assay may serve as a valuable research tool to investigate the biochemical characteristics of VWF and ADAMTS13 under shear flow and could complement diagnostics of von Willebrand Disease and Thrombotic Thrombocytopenic Purpura as it allows detection of shear flow-dependent dysfunction of VWD-associated VWF mutants as well as TTP-associated ADAMTS13 mutants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Comparisons of physical experiment and discrete element simulations of sheared granular materials in an annular shear cell

    Science.gov (United States)

    Ji, S.; Hanes, D.M.; Shen, H.H.

    2009-01-01

    In this study, we report a direct comparison between a physical test and a computer simulation of rapidly sheared granular materials. An annular shear cell experiment was conducted. All parameters were kept the same between the physical and the computational systems to the extent possible. Artificially softened particles were used in the simulation to reduce the computational time to a manageable level. Sensitivity study on the particle stiffness ensured such artificial modification was acceptable. In the experiment, a range of normal stress was applied to a given amount of particles sheared in an annular trough with a range of controlled shear speed. Two types of particles, glass and Delrin, were used in the experiment. Qualitatively, the required torque to shear the materials under different rotational speed compared well with those in the physical experiments for both the glass and the Delrin particles. However, the quantitative discrepancies between the measured and simulated shear stresses were nearly a factor of two. Boundary conditions, particle size distribution, particle damping and friction, including a sliding and rolling, contact force model, were examined to determine their effects on the computational results. It was found that of the above, the rolling friction between particles had the most significant effect on the macro stress level. This study shows that discrete element simulation is a viable method for engineering design for granular material systems. Particle level information is needed to properly conduct these simulations. However, not all particle level information is equally important in the study regime. Rolling friction, which is not commonly considered in many discrete element models, appears to play an important role. ?? 2009 Elsevier Ltd.

  19. Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks

    Science.gov (United States)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-05-01

    We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ , inelasticity of collisions as measured by a parameter Q , and applied uniform shear strain rate γ ˙. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ ,Q ) plane for small γ ˙, we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q , we show that, upon increasing γ ˙, the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ ,γ ˙) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ ˙ at fixed ϕ , we find that discontinuous shear thickening can result if γ ˙ is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ ˙.

  20. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  1. Role of Wall Shear Stress in Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.

    Science.gov (United States)

    Luo, Xia; Jedlicka, Sabrina S; Jellison, Kristen L

    2017-12-15

    This study investigated Cryptosporidium parvum oocyst deposition onto biofilms as a function of shear stress under laminar or turbulent flow. Annular rotating bioreactors were used to grow stabilized stream biofilms at shear stresses ranging from 0.038 to 0.46 Pa. These steady-state biofilms were then used to assess the impact of hydrodynamic conditions on C. parvum oocyst attachment. C. parvum deposition onto biofilms followed a pseudo-second-order model under both laminar (after a lag phase) and turbulent flows. The total number of oocysts attached to the biofilm at steady state decreased as the hydrodynamic wall shear stress increased. The oocyst deposition rate constant increased with shear stress but decreased at high shear, suggesting that increasing wall shear stress results in faster attachment of Cryptosporidium due to higher mass transport until the shear forces exceed a critical limit that prevents oocyst attachment. These data show that oocyst attachment in the short and long term are impacted differently by shear: higher shear (to a certain limit) may be associated with faster initial oocyst attachment, but lower shear is associated with greater numbers of oocysts attached at equilibrium. IMPORTANCE This research provides experimental evidence to demonstrate that shear stress plays a critical role in protozoan-pathogen transport and deposition in environmental waters. The data presented in this work expand scientific understanding of Cryptosporidium attachment and fate, which will further influence the development of timely and accurate sampling strategies, as well as advanced water treatment technologies, to target protozoan pathogens in surface waters that serve as municipal drinking water sources. Copyright © 2017 American Society for Microbiology.

  2. Experimental report of precast prestressed concrete shear wall. Precast prestressed concrete taishinheki no jikken hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Takada, K.; Komura, M.; Sakata, H.; Senoo, M. (Fudo Building Research Co. Ltd., Tokyo (Japan))

    1993-07-30

    The present report outlines the multi-story precast prestressed concrete earthquake-proof wall (PC shear wall system). The PC shear wall is a precast wall which internally contains the columns and beams as a unit. Therefore, the present system integrates the walls, columns and beams without beam-framing installation for the intermediate stories. It can simplify the concreting in site and ease the construction of building. For the system development, experiment was made on the deformation, sliding, yield strength and destruction state of the shear wall. Used were four types of test unit which are different in both reinforcement and connection methods. The test force was given by a hydraulically drawing jack. In the experiment, the four types were compared in destruction state, relation between load and deformation, yield strength, and strain of main column reinforcing bars and wall connection reinforcing bars. PC shear wall system-based design was studied from the experimental result. The shear wall in which there occurred both bending and shearing deformations was modeled by changing to a brace unit. Divided into bending deformation and shearing deformation, the deformation was calculated, which concluded that the shearing deformation dominates in the present system. 15 figs., 4 tabs.

  3. High cable forces deteriorate pinch force control in voluntary-closing body-powered prostheses

    NARCIS (Netherlands)

    Hichert, M.; Abbink, D.A.; Kyberd, P.J.; Plettenburg, D.H.

    2017-01-01

    Background It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Bodypowered prostheses (BPPs) provide the user with direct proprioceptive feedback. Currently available

  4. Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System

    Science.gov (United States)

    Jorgenson, Philip C. E.; Loh, Ching Y.

    2004-01-01

    The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.

  5. Interface Prostheses With Classifier-Feedback-Based User Training.

    Science.gov (United States)

    Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai

    2017-11-01

    It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well

  6. Modeling of Mesoscale Variability in Biofilm Shear Behavior.

    Directory of Open Access Journals (Sweden)

    Pallab Barai

    Full Text Available Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a initial increase in stiffness due to strain stiffening of polymer matrix, and b eventual reduction in stiffness because of tear in polymeric substrate.

  7. Shear instability of a gyroid diblock copolymer

    DEFF Research Database (Denmark)

    Eskimergen, Rüya; Mortensen, Kell; Vigild, Martin Etchells

    2005-01-01

    -induced destabilization is discussed in relation to analogous observations on shear-induced order-to-order and disorder-to-order transitions observed in related block copolymer systems and in microemulsions. It is discussed whether these phenomena originate in shear-reduced fluctuations or shear-induced dislocations....

  8. Imaging the Microscopic Structure of Shear Thinning and Thickening Colloidal Suspensions

    KAUST Repository

    Cheng, X.

    2011-09-01

    The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension\\'s structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.

  9. Partially blind instantly decodable network codes for lossy feedback environment

    KAUST Repository

    Sorour, Sameh

    2014-09-01

    In this paper, we study the multicast completion and decoding delay minimization problems for instantly decodable network coding (IDNC) in the case of lossy feedback. When feedback loss events occur, the sender falls into uncertainties about packet reception at the different receivers, which forces it to perform partially blind selections of packet combinations in subsequent transmissions. To determine efficient selection policies that reduce the completion and decoding delays of IDNC in such an environment, we first extend the perfect feedback formulation in our previous works to the lossy feedback environment, by incorporating the uncertainties resulting from unheard feedback events in these formulations. For the completion delay problem, we use this formulation to identify the maximum likelihood state of the network in events of unheard feedback and employ it to design a partially blind graph update extension to the multicast IDNC algorithm in our earlier work. For the decoding delay problem, we derive an expression for the expected decoding delay increment for any arbitrary transmission. This expression is then used to find the optimal policy that reduces the decoding delay in such lossy feedback environment. Results show that our proposed solutions both outperform previously proposed approaches and achieve tolerable degradation even at relatively high feedback loss rates.

  10. Cloud CCN feedback

    International Nuclear Information System (INIS)

    Hudson, J.G.

    1992-01-01

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result

  11. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  12. Classroom observation and feedback

    Directory of Open Access Journals (Sweden)

    Ana GOREA

    2016-12-01

    Full Text Available Classroom observation is a didactic activity from which both the observer and the observed teacher are to win. The present article comments on and discusses the aims of observation, the stages of observation, the methodological recommendations of offering feedback and the need to introduce a system of classroom observation at institutional or even national level, which would contribute to improving the teaching/learning process.

  13. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  14. Interlayer shear of nanomaterials: Graphene-graphene, boron nitride-boron nitride and graphene-boron nitride

    Institute of Scientific and Technical Information of China (English)

    Yinfeng Li; Weiwei Zhang; Bill Guo; Dibakar Datta

    2017-01-01

    In this paper,the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations.The interlayer shear force between h-BN/h-BN is found to be six times higher than that of graphene/graphene,while the interlayer shear between graphene/h-BN is approximate to that of graphene/graphene.The graphene/h-BN heterostructure shows several anomalous interlayer shear characteristics compared to its bilayer counterparts.For graphene/graphene and h-BN/h-BN,interlayer shears only exit along the sliding direction while interlayer shear for graphene/h-BN is observed along both the translocation and perpendicular directions.Our results provide significant insight into the interlayer shear characteristics of 2D nanomaterials.

  15. Laboratory studies on the effects of shear on fish: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abernethy, C. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cada, G. F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2000-09-01

    The overall objective of these studies was to specify an index describing the hydraulic force that fish experience when subjected to a shear environment. Fluid shear is a phenomenon that is important to fish. However, elevated levels of shear may result in strain rates that injure or kill fish. At hydroelectric generating facilities, concerns have been expressed that strain rates associated with passage through turbines, spillways, and fish bypass systems may adversely affect migrating fish. Development of fish-friendly hydroelectric turbines requires knowledge of the physical forces (injury mechanisms) that impact entrained fish and the fish’s tolerance to these forces. It requires up-front, pre-design specifications for the environmental conditions that occur within the turbine system; in other words, determining or assuming conditions known to injure fish will assist engineers in the design of a fish-friendly turbine system. To address the development of biological specifications, this experiment designed and built a test facility where juvenile fish could be subjected to a range of shear environments and quantified their biological response. The test data reported here provide quantified strain rates and the relationship of these forces to direct and indirect biological effects on fish. The study concludes that juvenile salmonids and American shad should survive shear environments where strain rates do not exceed 500 cm/s/cm at a Dy of 1.8 cm. Additional studies are planned with a sensor fish to better link hydraulic conditions found within the laboratory and field environments.

  16. Engaging Students with Audio Feedback

    Science.gov (United States)

    Cann, Alan

    2014-01-01

    Students express widespread dissatisfaction with academic feedback. Teaching staff perceive a frequent lack of student engagement with written feedback, much of which goes uncollected or unread. Published evidence shows that audio feedback is highly acceptable to students but is underused. This paper explores methods to produce and deliver audio…

  17. Feedback, Incentives and Peer Effects

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire

    This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback, feedback given halfway through the production period, and continuously updated feedback about relative performan...... behind, and frontrunners do not slack off....

  18. Bunch by bunch feedback systems

    International Nuclear Information System (INIS)

    Tobiyama, Makoto

    2006-01-01

    Outlines of bunch-by-bunch feedback systems for suppressing multibunch instabilities in electron/positron storage rings are presented. The design principles and functions of the feedback components are reviewed. Recent topics of applying very fast and dense FPGA as feedback signal processor are also shown. (author)

  19. Det ved vi om Feedback

    DEFF Research Database (Denmark)

    Christensen, Vibeke; Bærenholdt, Jørgen

    Præsentation af forskningsviden om feedback i forskellige personkonstellationer i undervisningen: Feedback fra lærer til elev, fra elever til lærer, fra elev til elev og elevens eget arbejde med feedback til sig selv. De præsenterede forskningsresultater er udvalgt dels inden for en kognitivistisk...

  20. A Journey towards Sustainable Feedback

    Science.gov (United States)

    Mutch, Allyson; Young, Charlotte; Davey, Tamzyn; Fitzgerald, Lisa

    2018-01-01

    Meeting students' expectations associated with the provision of feedback is a perennial challenge for tertiary education. Efforts to provide comprehensive, timely feedback within our own first year undergraduate public health courses have not always met students' expectations. In response, we sought to develop peer feedback activities to support…

  1. Interfacial Shear Strength of Multilayer Graphene Oxide Films.

    Science.gov (United States)

    Daly, Matthew; Cao, Changhong; Sun, Hao; Sun, Yu; Filleter, Tobin; Singh, Chandra Veer

    2016-02-23

    Graphene oxide (GO) is considered as one of the most promising layered materials with tunable physical properties and applicability in many important engineering applications. In this work, the interfacial behavior of multilayer GO films was directly investigated via GO-to-GO friction force microscopy, and the interfacial shear strength (ISS) was measured to be 5.3 ± 3.2 MPa. Based on high resolution atomic force microscopy images and the available chemical data, targeted molecular dynamics simulations were performed to evaluate the influence of functional structure, topological defects, and interlayer registry on the shear response of the GO films. Theoretical values for shear strength ranging from 17 to 132 MPa were predicted for the different structures studied, providing upper bounds for the ISS. Computational results also revealed the atomic origins of the stochastic nature of friction measurements. Specifically, the wide scatter in experimental measurements was attributed to variations in functional structure and topological defects within the sliding volume. The findings of this study provide important insight for understanding the significant differences in strength between monolayer and bulk graphene oxide materials and can be useful for engineering topological structures with tunable mechanical properties.

  2. Climatic feedbacks between stationary and transient eddies

    International Nuclear Information System (INIS)

    Branscome, L.E.

    1994-01-01

    Stationary eddies make a significant contribution to poleward heat transport during Northern Hemisphere winter, equaling the transport by transient eddies. On the other hand, stationary eddy transport during the summer is negligible. The effect of topography on time-mean stationary waves and low-frequency variability has been widely studied. In contrast, little attention has been given to the climatic feedbacks associated with stationary eddies. Furthermore, the relationship between stationary and transient eddies in the context of global and regional climate is not well understood. The response of the climate system to anthropogenic forcing is likely to have some dependence on stationary wave transport and its interaction with transient eddies. Some early GCM simulations and observational analyses indicate a strong feedback between the meridional heat fluxes of stationary and transient eddies

  3. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  4. Role of combined tactile and kinesthetic feedback in minimally invasive surgery.

    Science.gov (United States)

    Lim, Soo-Chul; Lee, Hyung-Kew; Park, Joonah

    2014-10-18

    Haptic feedback is of critical importance in surgical tasks. However, conventional surgical robots do not provide haptic feedback to surgeons during surgery. Thus, in this study, a combined tactile and kinesthetic feedback system was developed to provide haptic feedback to surgeons during robotic surgery. To assess haptic feasibility, the effects of two types of haptic feedback were examined empirically - kinesthetic and tactile feedback - to measure object-pulling force with a telesurgery robotics system at two desired pulling forces (1 N and 2 N). Participants answered a set of questionnaires after experiments. The experimental results reveal reductions in force error (39.1% and 40.9%) when using haptic feedback during 1 N and 2 N pulling tasks. Moreover, survey analyses show the effectiveness of the haptic feedback during teleoperation. The combined tactile and kinesthetic feedback of the master device in robotic surgery improves the surgeon's ability to control the interaction force applied to the tissue. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  5. CFD simulation of estimating critical shear stress for cleaning flat ...

    Indian Academy of Sciences (India)

    Sumit Kawale

    2017-11-22

    Nov 22, 2017 ... Jet impingement; wall shear stress; cleaning of flat plate; turbulence model; critical shear stress; ... On comparing the theoretical predictions with wall shear ... distance and Reynolds number on peak value of local shear stress ...

  6. Continuous shear - a method for studying material elements passing a stationary shear plane

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    2003-01-01

    circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....

  7. Atomic Force Microscope Mediated Chromatography

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  8. Impact of Age and Aerobic Exercise Training on Conduit Artery Wall Thickness: Role of the Shear Pattern.

    Science.gov (United States)

    Tanahashi, Koichiro; Kosaki, Keisei; Sawano, Yuriko; Yoshikawa, Toru; Tagawa, Kaname; Kumagai, Hiroshi; Akazawa, Nobuhiko; Maeda, Seiji

    2017-01-01

    Hemodynamic shear stress is the frictional force of blood on the arterial wall. The shear pattern in the conduit artery affects the endothelium and may participate in the development and progression of atherosclerosis. We investigated the role of the shear pattern in age- and aerobic exercise-induced changes in conduit artery wall thickness via cross-sectional and interventional studies. In a cross-sectional study, we found that brachial shear rate patterns and brachial artery intima-media thickness (IMT) correlated with age. Additionally, brachial artery shear rate patterns were associated with brachial artery IMT in 102 middle-aged and older individuals. In an interventional study, 39 middle-aged and older subjects were divided into 2 groups: control and exercise. The exercise group completed 12 weeks of aerobic exercise training. Aerobic exercise training significantly increased the antegrade shear rate and decreased the retrograde shear rate and brachial artery IMT. Moreover, changes in the brachial artery antegrade shear rate and the retrograde shear rate correlated with the change in brachial artery IMT. The results of the present study indicate that changes in brachial artery shear rate patterns may contribute to age- and aerobic exercise training-induced changes in brachial artery wall thickness. © 2017 S. Karger AG, Basel.

  9. Simulations of Granular Particles Under Cyclic Shear

    Science.gov (United States)

    Royer, John; Chaikin, Paul

    2012-02-01

    We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.

  10. Biomechanical forces promote embryonic haematopoiesis

    Science.gov (United States)

    Adamo, Luigi; Naveiras, Olaia; Wenzel, Pamela L.; McKinney-Freeman, Shannon; Mack, Peter J.; Gracia-Sancho, Jorge; Suchy-Dicey, Astrid; Yoshimoto, Momoko; Lensch, M. William; Yoder, Mervin C.; García-Cardeña, Guillermo; Daley, George Q.

    2009-01-01

    Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system1,2. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3–5), a master regulator of haematopoiesis, and give rise to haematopoietic cells4. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential6. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells7,concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the paraaortic splanchnopleura/aorta–gonads–mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling8, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development. PMID:19440194

  11. Feedback on Feedback: Eliciting Learners' Responses to Written Feedback through Student-Generated Screencasts

    Science.gov (United States)

    Fernández-Toro, María; Furnborough, Concha

    2014-01-01

    Despite the potential benefits of assignment feedback, learners often fail to use it effectively. This study examines the ways in which adult distance learners engage with written feedback on one of their assignments. Participants were 10 undergraduates studying Spanish at the Open University, UK. Their responses to feedback were elicited by means…

  12. Structure-rheology relationship in a sheared lamellar fluid.

    Science.gov (United States)

    Jaju, S J; Kumaran, V

    2016-03-01

    . At high Ericksen number where the viscous forces are large compared to the restoring forces due to layer compression and bending, shear tends to homogenize the concentration field, and the viscosity decreases significantly. At very high Ericksen number, shear even disrupts the layering of the lamellar phase. At low Ericksen number, shear results in the formation of well aligned layers with edge dislocations. However, these edge dislocations take a long time to anneal; the relatively small misalignment due to the defects results in a large increase in viscosity due to high layer stiffness and due to shear localization, because the layers between defects get pinned and move as a plug with no shear. An increase in the viscosity contrast between the hydrophilic and hydrophobic parts does not alter the structural characteristics during alignment. However, there is a significant increase in the viscosity, due to pinning of the layers between defects, which results in a plug flow between defects and a localization of the shear to a part of the domain.

  13. An Innovative Adaptive Pushover Procedure Based on Storey Shear

    International Nuclear Information System (INIS)

    Shakeri, Kazem; Shayanfar, Mohsen A.

    2008-01-01

    Since the conventional pushover analyses are unable to consider the effect of the higher modes and progressive variation in dynamic properties, recent years have witnessed the development of some advanced adaptive pushover methods. However in these methods, using the quadratic combination rules to combine the modal forces result in a positive value in load pattern at all storeys and the reversal sign of the modes is removed; consequently these methods do not have a major advantage over their non-adaptive counterparts. Herein an innovative adaptive pushover method based on storey shear is proposed which can take into account the reversal signs in higher modes. In each storey the applied load pattern is derived from the storey shear profile; consequently, the sign of the applied loads in consecutive steps could be changed. Accuracy of the proposed procedure is examined by applying it to a 20-storey steel building. It illustrates a good estimation of the peak response in inelastic phase

  14. Feedback på arbejdspladser

    DEFF Research Database (Denmark)

    Holdt Christensen, Peter

    Feedback på arbejdspladser er vigtig. Men feedback er også et populært begreb mange taler med om uden dog at vide sig helt sikker på hvad det er. Formålet med denne bog er at bidrage til en bedre forståelse af hvad feedback er, hvordan det fungerer og dermed hvordan arbejdspladser bedst muligt bør...... understøtte feedback. Med udgangspunkt i forskningen identificeres centrale udfordringer ved feedback, bl.a. hvorfor det kan være svært at give præcis feedback, hvordan forholdet mellem lederen og den ansatte påvirker den feedback der gives, og hvad der kendetegner en feedback kultur. Bogen er skrevet til...... undervisere og studerende på videregående uddannelser samt praktikere der ønsker en systematisk og forskningsbaseret forståelse af feedback på arbejdspladser. Bogen er således ikke en kogebog til bedre feedback, men en analyse og diskussion af hvad forskningen ved om feedback, og bidrager med inspiration og...

  15. The Effects of Shear Strain, Fabric, and Porosity Evolution on Elastic and Mechanical Properties of Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Marone, C.

    2017-12-01

    Ultrasonic/seismic waves are widely used for probing fault zone elastic and mechanical properties (gouge composition, frictional strength, density) and elastic properties (Vp, Vs, bulk and shear moduli), as it can provide insight into key processes and fault properties during shearing. These include fabric and force chain formation, porosity evolution, and fault zone stiffness, which are in turn factors in fault slip, damage, and healing. We report on a suite of direct shear experiments on synthetic fault gouge composed of 50% smectite /50% quartz at a normal stress of 25 MPa, in which we use ultrasonic wave transmission to continuously monitor compressional and shear wave velocities (Vp, Vs) up to shear strains of 25, while simultaneously measuring friction and monitoring the evolution of density and porosity. We find that wavespeeds vary with shear strain, due to fabric development and the evolution of density and porosity. The coefficient of friction peaks at μ .47 at a shear strain of .5 - 1, decreases to a steady state value of μ .43 by shear strains of 4.5- 6 and then remains rather constant to shear strains of 6 - 25, consistent with previous work. Density increases rapidly from 1.78 g/cm3 to 1.83 g/cm3 at shear strains from 0-2 (porosity decreases from 33% to 25% over that range), and then more gradually increases to a density of 2.08 g/cm3 (porosity of 21%) at a shear strain of 25. Vp increases from 2400 m/s to 2900 m/s during the onset of shear until a shear strain of 3, and then decreases to 2400-2500 by shear strain of 7-9. At shear strains above 9, Vp slowly increases as the layer becomes denser and less porous. We interpret the co-evolving changes in friction, porosity, and elastic moduli/wavespeed to reflect fabric development and alignment of clay particles as a function of shearing. More specifically, the decrease in Vp at a shear strain of 3 reflects the clay particles gradually aligning. Once the particles are aligned, the gradual increase of

  16. Overview Electrotactile Feedback for Enhancing Human Computer Interface

    Science.gov (United States)

    Pamungkas, Daniel S.; Caesarendra, Wahyu

    2018-04-01

    To achieve effective interaction between a human and a computing device or machine, adequate feedback from the computing device or machine is required. Recently, haptic feedback is increasingly being utilised to improve the interactivity of the Human Computer Interface (HCI). Most existing haptic feedback enhancements aim at producing forces or vibrations to enrich the user’s interactive experience. However, these force and/or vibration actuated haptic feedback systems can be bulky and uncomfortable to wear and only capable of delivering a limited amount of information to the user which can limit both their effectiveness and the applications they can be applied to. To address this deficiency, electrotactile feedback is used. This involves delivering haptic sensations to the user by electrically stimulating nerves in the skin via electrodes placed on the surface of the skin. This paper presents a review and explores the capability of electrotactile feedback for HCI applications. In addition, a description of the sensory receptors within the skin for sensing tactile stimulus and electric currents alsoseveral factors which influenced electric signal to transmit to the brain via human skinare explained.

  17. Miniature large range multi-axis force-torque sensor for biomechanical applications

    International Nuclear Information System (INIS)

    Brookhuis, R A; Sanders, R G P; Ma, K; Lammerink, T S J; De Boer, M J; Krijnen, G J M; Wiegerink, R J

    2015-01-01

    A miniature force sensor for the measurement of forces and moments at a human fingertip is designed and realized. Thin silicon pillars inside the sensor provide in-plane guidance for shear force measurement and provide the spring constant in normal direction. A corrugated silicon ring around the force sensitive area provides the spring constant in shear direction and seals the interior of the sensor. To detect all load components, capacitive read-out is used. A novel electrode pattern results in a large shear force sensitivity. The fingertip force sensor has a wide force range of up to 60 N in normal direction, ± 30 N in shear direction and a torque range of ± 25 N mm. (paper)

  18. Model shear tests of canisters with smectite clay envelopes in deposition holes

    International Nuclear Information System (INIS)

    Boergesson, L.

    1986-01-01

    The consequences of rock displacement across a deposition hole has been investigated by some model tests. The model was scaled 1:10 to a real deposition hole. It was filled with a canister made of solid copper surrounded by highly compacted water saturated MX-80 bentonite. Before shear the swelling pressure was measured by six transducers in order to follow the water uptake process. During shear, pressure, strain, force and deformation were measured in altogether 18 points. The shearing was made at different rates in the various tests. An extensive sampling after shear was made through which the density, water content, degree of saturation, homogenization and the effect of shear on the bentonite and canister could be studied. One important conlusion from these tests was that the rate dependence is about 10% increased shear resistance per decade increased rate of shear. This resulted also in a very clear increase in strain in the canister with increased rate. The results also showed that the saturated bentonite has excellent stress distributing properties and that there is no risk of destroying the canister if the rock displacement is smaller than the thickness of the bentonite cover. The high density of the clay makes the bentonite produce such a high swelling pressure that the material will be very stiff. In the case of a larger shear deformation corresponding to ≅ 50% of the bentonite thickness the result will be a rather large deformation of the canister. A lower density would be preferable if it can be accepted with respect to other required isolating properties. The results also showed that three-dimensional FEM calculation using non-linear material properties is necessary to simulate the shear process. The rate dependence may be taken into account by adapting the properties to the actual rate of shear but might in a later stage be included in the model by giving the material viscous properties. (orig./HP)

  19. FY1995 study of feedback type gait training system; 1995 nendo feedback gata hoko kuren sochi ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this project is to develop and demonstrate the utility of feedback type gait training equipment designed for the measurement and evaluation by a walking training of the aged or patient. As similar concepts of walking training, a locomotion in the water for the aged is applied in rehabilitation. Our development of this study established the system of a suspending mechanism which revolves around the prop, and a walking on the circular type force plate by the aged or patient. It is possible to detect a walking reaction force of several patients from force plate simultaneously. And then, the data from force plate makes feedback signal to put up the patient like a buoyancy in the water. Concerning the evaluations of walking pattern a step range, a hanging ratio and a walking speed, etc. are acquired for each patient by the acknowledgment base. This system is actively able to perform a walking training continuously compared with conventional passive gait equipment. (NEDO)

  20. Driver feedback mobile APP

    Energy Technology Data Exchange (ETDEWEB)

    Soriguera Marti, F.; Miralles Miquel, E.

    2016-07-01

    This paper faces the human factor in driving and its consequences for road safety. It presents the concepts behind the development of a smartphone app capable of evaluating drivers’ performance. The app provides feedback to the driver in terms of a grade (between 0 and 10) depending on the aggressiveness and risks taken while driving. These are computed from the cumulative probability distribution function of the jerks (i.e. the time derivative of acceleration), which are measured using the smartphones’ accelerometer. Different driving contexts (e.g. urban, freeway, congestion, etc.) are identified applying cluster analysis to the measurements, and treated independently. Using regression analysis, the aggressiveness indicator is related to the drivers' safety records and to the probability of having an accident, through the standard DBQ - Driving Behavior Questionnaire. Results from a very limited pilot test show a strong correlation between the 99th percentile of the jerk measurements and the DBQ results. A linear model is fitted. This allows quantifying the safe driving behavior only from smartphone measurements. Finally, this indicator is translated into a normalized grade and feedback to the driver. This feedback will challenge the driver to train and to improve his performance. The phone will be blocked while driving and will incorporate mechanisms to prevent bad practices, like competition in aggressive driving. The app is intended to contribute to the improvement of road safety, one of the major public health problems, by tackling the human factor which is the trigger of the vast majority of traffic accidents. Making explicit and quantifying risky behaviors is the first step towards a safer driving. (Author)